
Chemically informed analyses of metabolomics mass spectrometry data with
Qemistree
Nature Chemical Biology
Tripathi, Anupriya; Vázquez-Baeza, Yoshiki; Gauglitz, Julia M.; Wang, Mingxun; Dührkop, Kai et al
https://doi.org/10.1038/s41589-020-00677-3

This article is made publicly available in the institutional repository of Wageningen University and Research, under the
terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with explicit
consent by the author.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is
entitled to make that work publicly available for no consideration following a reasonable period of time after the work was
first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa
implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the
legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online publication in the original
published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or
copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the
Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be
held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this article please contact openscience.library@wur.nl

https://doi.org/10.1038/s41589-020-00677-3
mailto:openscience.library@wur.nl


Articles
https://doi.org/10.1038/s41589-020-00677-3

1Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. 2Department of Pediatrics, University of California San Diego, 
La Jolla, CA, USA. 3Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA. 4Department of 
Bioengineering, University of California San Diego, La Jolla, CA, USA. 5Center for Microbiome Innovation, University of California San Diego, La Jolla, 
CA, USA. 6Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, 
San Diego, La Jolla, CA, USA. 7Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany. 8Wisconsin Institute for Discovery, University of 
Wisconsin-Madison, Madison, WI, USA. 9Section for Clinical Mass Spectrometry, Department of Congenital Disorders, Danish Center for Neonatal 
Screening, Statens Serum Institut, Copenhagen, Denmark. 10Bioinformatics Group, Wageningen University, Wageningen, The Netherlands. 11Department  
of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA. 12These authors contributed equally: Anupriya Tripathi,  
Yoshiki Vázquez-Baeza. ✉e-mail: pdorrestein@health.ucsd.edu

Molecular networking1, introduced in 2012, was one of 
the first data organization approaches to visualize the 
relationships between tandem mass spectrometry (MS/

MS) fragmentation spectra. In molecular networking, relation-
ships between similar MS/MS spectra are visualized as edges. As 
MS/MS spectral similarity indicates chemical structural similarity1, 
chemical structural information can thus be represented as a net-
work and chemical relationships can be visualized. This approach 
forms the basis for the web-based MS infrastructure, global natural 
products social molecular networking2 (GNPS) (https://gnps.ucsd.
edu/), which sees ~200,000 new accessions per month. Molecular 
networking has successfully been used for a range of applications3 
in drug discovery, natural products research, environmental moni-
toring, medicine and agriculture. To tap into the chemistry of com-
plex samples through metabolomics, a subset of MS/MS spectra 
can be annotated by spectral library matching or by using in silico 
approaches. While molecular networking facilitates the visualiza-
tion of closely related molecules in molecular families, the inference 
of chemical relationships at a dataset-wide level and in the context 
of diverse sample metadata requires complementary representation 
strategies. To address this need, we developed an approach that uses 
fragmentation trees4 and machine learning5 to calculate all pair-
wise chemical relationships. These chemical relationships are rep-
resented as a chemical tree that can be visualized in the context of 
sample metadata and molecular annotations obtained from spectral 

matching and in silico annotation tools. We show that such a chemi-
cal tree representation enables the application of various tree-based 
tools, originally developed for analyzing DNA sequencing data6–9, 
for exploring mass spectrometry data.

Here, we introduce Qemistree (pronounced ‘chemis-tree’) soft-
ware that constructs a chemical tree based on predicted molecular 
fingerprints from MS/MS fragmentation spectra10. Molecular fin-
gerprints are vectors where each position encodes a substructural 
property of the molecule, and recent methods allow us to predict 
molecular fingerprints from tandem mass spectra11–15. In Qemistree, 
we use SIRIUS16 and CSI:FingerID13 to obtain predicted molecular 
fingerprints. Users can first perform feature detection17,18 to gener-
ate a list of observed ions with associated peak areas and MS/MS 
fragmentation spectra, referred to as chemical features henceforth, 
to be analyzed by Qemistree (Extended Data Fig. 1). Only chemi-
cal features with MS/MS data are included; features with only MS1 
(precursor mass) are not considered. SIRIUS then determines the 
molecular formula of each feature using the isotope and fragmenta-
tion patterns and estimates the best fragmentation tree explaining 
the fragmentation spectrum. Subsequently, CSI:FingerID operates 
on the fragmentation trees using kernel support vector machines 
to predict molecular properties (2,936 properties, Supplementary 
Dataset 1). We use these molecular fingerprints to calculate pair-
wise distances between chemical features and hierarchically cluster 
the fingerprint vectors to generate a tree representing their chemical 
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structural relationships. Although alternative approaches to hierar-
chically cluster features based on cosine similarity of fragmenta-
tion spectra exist19–21, we use molecular fingerprints predicted by 
CSI:FingerID for this. Previous work has shown that CSI:FingerID 
outperforms other tools for automatic in silico structural annota-
tion22. Therefore, we leverage it to search molecular structural data-
bases to provide complementary insights into structures when no 
match is obtained against spectral libraries. Subsequently, we use 
ClassyFire23 to assign a five-level chemical taxonomy (chemical 
kingdom, superclass, class, subclass and direct parent ontology) to 
all molecules annotated via spectral library matching and in silico 
prediction (Supplementary Tables 1 and 2 include an assessment of 
improved annotation rates as a result of in silico annotations).

Phylogenetic tools such as iTOL24 can be used to visualize 
Qemistree trees interactively in the context of sample information 
and feature annotations for easy data exploration. The outputs of 
Qemistree can also be plugged into other workflows in QIIME2 
(ref. 25) (many of which were originally developed for microbi-
ome sequence analysis) or in R, Python and so on for system-wide 
metabolomic data analyses6,7,9,26. In this study, we apply Qemistree to 
perform chemically informed comparisons of samples in the pres-
ence of technical variation such as chromatographic shifts that com-
monly affect MS data analysis. Additionally, we exemplify the use of 
a tree-based representation to visualize and explore chemical diver-
sity using a heterogeneous collection of food products. Qemistree 
can be used iteratively to incorporate multiple datasets without the 
need for cumbersome reprocessing (such as repeated feature detec-
tion or retention time alignment), allowing for large-scale dataset 
comparisons. Qemistree is available to the microbiome community 
as a QIIME2 plugin (https://github.com/biocore/q2-qemistree)  
and the metabolomics community as a workflow on GNPS2  
(https://ccms-ucsd.github.io/GNPSDocumentation/qemistree/). 

The chemical tree from the GNPS workflow can be explored inter-
actively using the Qemistree-GNPS dashboard (https://qemistree.
ucsd.edu/; see Methods).

Results
Resolving technical variation using chemical relationships. To 
verify that molecular fingerprint-based trees correctly capture the 
chemical relationships between molecules, we designed an evalu-
ation dataset using four distinct biological specimens: two human 
fecal samples, a tomato seedling sample and a human serum sam-
ple. Samples were prepared by combining them in binary, tertiary 
and quaternary mixtures in various proportions to generate a set 
of diverse but related metabolite profiles (Supplementary Table 3).  
Untargeted MS/MS was used to analyze the chemical composition 
of these samples and obtain fragmentation spectra. The MS experi-
ments were performed twice using different chromatographic elu-
tion gradients, causing a retention time shift between the two runs 
(Extended Data Figs. 2 and 3). Processing the data of these two 
experiments with traditional LC–MS-based pipelines leads to the 
same molecules being detected as different chemical features in 
downstream analysis. Figure 1 shows the analysis of three different 
sample types to demonstrate this. In Extended Data Fig. 4, we high-
light how these technical variations make the same samples appear 
chemically disjointed.

Using Qemistree, we mapped each of the spectra in the two 
chromatographic conditions (batches) to a molecular fingerprint, 
and organized these in a tree structure (Fig. 1). Because molecu-
lar fingerprints are independent of retention time shifts, spectra are 
clustered based on their chemical similarity. It is noteworthy that  
the structural information from chemical features with spectral 
library matches (typically 1–20% of all features, depending on  
how well the sample type has been investigated) or other forms of 
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Fig. 1 | Qemistree mitigates aspects of technical artifacts by coclustering structurally similar molecules across MS runs. A chemical tree based on 
predicted molecular fingerprints representing the structural relationships between compounds detected in the evaluation dataset. The outer ring shows 
the relative prevalence of molecules stratified by the MS run; the inner ring shows the same stratified by fecal, serum and tomato samples in the evaluation 
dataset. All structures shown are spectral reference library matches obtained from feature-based molecular networking17,18 in GNPS (level 2 or 3 according 
to the 2007 Metabolomics Standards Initiative40). Note that untargeted MS is blind to stereochemistry and often regiochemistry (for example, double 
bonds in a fatty acid); therefore, molecules could be related isomers of the illustrated structures.
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annotation (for example, substructure Mass2Motifs27) could also be 
used to compare the chemical composition of samples across differ-
ent MS runs. Qemistree improves on this by enabling the use of all 
MS/MS spectra with molecular fingerprints (86.90% in these data at 
the present time, Supplementary Table 1) for downstream compara-
tive analyses, by not constraining analysis to the chemical features 
with spectral matches only. This tree structure can be decorated 
using sample type descriptions, chromatographic conditions, spec-
tral matches obtained from molecular networking in GNPS (when 
available) and any other chemical annotations23,27. Figure 1 shows 
that similar chemical features were detected exclusively in one of 
the two batches. However, based on the molecular fingerprints, 
these chemical features were arranged as neighboring tips in the 
tree regardless of the retention time shifts. This result shows how 
Qemistree can reconcile and facilitate the comparison of datasets 
acquired on different chromatographic gradients.

Tree-guided system-wide comparisons in metabolomics. Having 
demonstrated Qemistree’s practical use on biologically inspired syn-
thetic datasets, we now turned to a conceptual example illustrating 
the general principle. We demonstrated an application of a chemi-
cal hierarchy in performing chemically informed comparisons of 
metabolomics profiles. In standard metabolomic statistical analy-
ses, each molecule is assumed unrelated to the other molecules in 
the dataset. Some of the pitfalls of this assumption are highlighted 
in Fig. 2a. Consider a scenario where we want to compare samples 
1–3. An analysis schema that does not account for the chemical rela-
tionships among the molecules in these samples (Fig. 2a, left), will 
assume that the sugars in samples 2 and 3 are as chemically related 
to the lipids in sample 1 as they are to each other. This would lead to 
the naive conclusion that samples 1 and 2, and samples 2 and 3 are 
equally distinct, yet from a chemical perspective they are not. On 
the other hand, if we account for the fact that sugar molecules are 
more chemically related to one another than they are to lipids, we 
can obtain a chemically informed sample-to-sample comparison.

The chemical structural compositional similarity (CSCS) 
metric28 was developed to compute pairwise sample-to-sample 
comparison by considering cosine similarity of MS/MS spectra 
from molecular networking. Here, we use a tree-based approach 
to account for chemical relationships, which allows us to adopt 
phylogeny-based tools for metabolomics analyses (Supplementary 
Table 4). Specifically, we first constructed a tree of chemical simi-
larities by hierarchical clustering molecular fingerprints from 
CSI:FingerID (using pairwise Euclidean distance between finger-
print vectors, see Methods). This tree is analogous to phylogenetic 
trees used in ecology, such that the tips of the tree are molecules 
(instead of species). We then computed weighted UniFrac9 distances 
(a tree-based metric that has widely been used in microbial ecol-
ogy to compare microbiomes) to compare metabolomic profiles. In  
Fig. 2a, we show that by using a tree of chemical relationships 
between molecules in samples 1–3, we can visualize that sample 
1 is chemically very distinct (along PC1 in a principal component 
analysis) from samples 2 and 3.

Returning to our evaluation dataset, we can highlight the impor-
tance of comparing samples by accounting for their molecular relat-
edness. Principal coordinates analysis (PCoA) of the evaluation 
dataset (including both pure samples and sample mixtures, N � 162) 
that ignores the tree structure (Fig. 2b) performs far worse than the 
Qemistree PCoA that uses the tree (Fig. 2c). With the structural 
context provided by Qemistree, the differences between replicates 
across batches are comparable to the within-batch differences 
(Extended Data Fig. 5). The retention time shift in this dataset leads 
to a strong signal due to chromatography conditions that obscures 
the biological relationships among the samples (permutational 
analysis of variance (ANOVA); tree-agnostic29 pseudo F � 120.75, 
P �  0.001 versus tree-informed9 pseudo F � 18.2239, P � 0.001). 

We observed and remediated a similar pattern originating from 
plate-to-plate variation in a recently published study investigating 
the metabolome and microbiome of captive cheetahs30 (Extended 
Data Fig. 6). In this study, placing the molecules in a tree using 
Qemistree reduced the observed technical variation (Extended 
Data Fig. 6a,c), and highlighted the dietary effect that was expected 
(Extended Data Fig. 6b,d). These results show how systematic and 
spurious molecular differences can be mitigated in an unsuper-
vised manner using chemically informed distance measures based  
on a tree structure.

Visualizing chemical prevalence in heterogeneous datasets. As a 
case study demonstrating the use of Qemistree on a set of biological 
specimens, we used the platform to explore chemical diversity in 
food samples collected in the Global FoodOmics initiative (http://
globalfoodomics.org). Understanding the chemical relationships 
between different foods is challenging because most molecules 
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