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ABSTRACT
Permutation testing in linear models, where the number of nuisance
coefficients is smaller than the sample size, is awell-studied topic. The
common approach of such tests is to permute residuals after regress-
ing on the nuisance covariates. Permutation-based tests are valuable
in particular because they can be highly robust to violations of the
standard linearmodel, such as non-normality andheteroscedasticity.
Moreover, in some cases they can be combinedwith existing, power-
ful permutation-based multiple testing methods. Here, we propose
permutation tests for models where the number of nuisance coeffi-
cients exceeds the sample size. The performance of the novel tests is
investigated with simulations. In a wide range of simulation scenar-
ios our proposed permutation methods provided appropriate type I
error rate control, unlike some competing tests, while having good
power.
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1. Introduction

We consider the problem of testing hypotheses about coefficients in linear models, where
the outcome may be non-Gaussian and heteroscedastic, and the number of nuisance coef-
ficients exceeds the sample size. By the nuisance coefficients we mean the coefficients that
are not tested by the particular test at hand, but still need to be dealt with since they lead to
confounding effects. In recent decades, the literature on permutationmethods has strongly
expanded [1–9]. While the permutation test dates far back [10], most of the permutation
tests in the presence of nuisance were published in the last four decades. To our knowledge,
the existing methods are limited to low-dimensional nuisance. For the high-dimensional
case, an approach similar to a permutation test is proposed in Dezeure et al. [11].

Permutation tests for low-dimensional linear models are valuable for two main rea-
sons. First, they are robust to violations of certain standard assumptions, such as nor-
mality and homoscedasticity [12,13]. Second, when the outcome is multidimensional, a

CONTACT Jesse Hemerik jesse.hemerik@wur.nl Biometris, Wageningen University & Research, PO Box 16,
6700 AC Wageningen, Netherlands

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00949655.2020.1836183

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2020.1836183&domain=pdf&date_stamp=2020-11-05
http://orcid.org/0000-0002-9811-1336
mailto:jesse.hemerik@wur.nl
https://doi.org/10.1080/00949655.2020.1836183
http://creativecommons.org/licenses/by/4.0/


2 J. HEMERIK ET AL.

permutation-based test can be combined with existing permutation-basedmultiple testing
methods, which tend to be relatively powerful, since they take into account the depen-
dence structure of the outcomes [5–7,14]. For example, under strong positive dependence
among p-values, the Bonferroni-Holmmultiple testingmethod [15] is greatly improved by
a permutation method [16].

For the low-dimensional general linear model, with identity link but not necessarily
Gaussian or homoscedastic residuals, several different permutation tests have been pro-
posed. The main approach that these methods have in common, is to permute residuals
after regressing on the nuisance covariates. For overviews of the available methods, see
Anderson and Legendre [17], Anderson and Robinson [18], Winkler et al. [19] and in par-
ticular Winkler et al. [13]. Among the existing permutation methods, the Freedman–Lane
approach [20] is most commonly used and provides excellent power and type I error
control.

Because the existing permutation tests require estimating the nuisance coefficients
using maximum likelihood, these methods cannot be used when the number of covariates
exceeds the sample size. In recent years, important theoretical results have been published
on testing in such high-dimensional linear models. Several of these tests have proven
asymptotic properties. In particular, the method in Zhang and Zhang [21] has been shown
to be asymptotically optimal under certain assumptions [22]. Dezeure et al. [11] propose
a bootstrap approach, which is related to the method in Zhang and Zhang [21]. Software
implementations of tests for high-dimensional models include those described in Dezeure
et al. [23] and Chernozhukov et al. [24].

Testing in high-dimensional linear models is very challenging, because a large number
of unknown nuisance effects needs to be dealt with, using a relatively small sample size.
Consequently, tests tend to sacrifice much power compared to the situation where all nui-
sance coefficients would be known. Further, the asymptotic properties of the mentioned
methods rely on complex assumptions and sparsity. The test by Zhang and Zhang [21] can
be rather anti-conservative in settings where a substantial fraction of the coefficients are
non-zero.Moreover, thesemethods are not based on permutations. Hence they do not gen-
erally have the above-mentioned advantages, such as robustness against certain violations
of the standard linear model. An exception is the bootstrap method in Dezeure et al. [11],
which tends to be more robust to such violations.

We propose two novel tests, which, to our knowledge, are the first permutation tests in
the presence of high-dimensional nuisance. One is an extension of the low-dimensional
method in Freedman and Lane [20] and the other is somewhat related to a method
by Kennedy [25,26]. Further, we allow the tested parameter to be multi-dimensional,
unlike many existing methods. Using simulations we show that our methods provide
appropriate type I error rate control in a wide range of situations. In particular, we
illustrate empirically that our tests have the above-mentioned robustness properties.
The methods in this paper have been implemented in the R package phd, available on
CRAN.

This paper is built up as follows. In Section 2 we discuss permutation testing in settings
with low-dimensional nuisance. This section contains some novel observations that will
be used in Section 3. There, we propose permutation tests for high-dimensional settings.
We assess the performance of our methods with simulations in Section 4. An analysis of
real data is in Section 5.
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2. Low-dimensional nuisance

2.1. Notation and basic ideas

We consider the general linear model

Y = Xβ + Zγ + ε,

whereX is a n × dmatrix of covariates of interest,Z an n × qmatrix of nuisance covariates
and ε an n-vector of i.i.d. errorswithmean 0 andnon-zero variance, which are independent
of the covariates. Here the rows of X, Z and Y are i.i.d.. The matrix Z is assumed to have
full rank with probability 1. The parameter β ∈ R

d is of interest and γ ∈ R
q is a nuisance

parameter. We want to test the null hypothesisH0 : β = 0 ∈ R
d. Here 0might be replaced

by another constant: the extension is straightforward.
Let w be a positive integer, which will denote the number of random permutations or

other transformations. In this paper, all permutation p-values are of the form

p = w−1∣∣{1 ≤ j ≤ w : Tj ≥ T1}
∣∣, (1)

or, in case of a two-sided test where both small and large values of T1 are evidence against
H0,

p = 2w−1 min
{∣∣{1 ≤ j ≤ w : Tj ≥ T1}

∣∣, ∣∣{1 ≤ j ≤ w : Tj ≤ T1}
∣∣}. (2)

HereT1, . . . ,Tw ∈ R are statistics whose definition depends on the particular permutation
method. They are specified in the sections below. For every 2 ≤ j ≤ w, the statistic Tj cor-
responds to the jth permutation. The statisticT1 is based on the original, unpermuted data.
All existing and novel methods in this paper only differ with respect to how T1, . . . ,Tw are
computed.

Although we will often write ‘permutation’, sign-flipping of residuals can also be used
[13]. The existing methods, as well as the novel methods in this paper, consist of the
following steps.

(1) Compute a test statistic T1 based on the original data.
(2) Compute a test statistic T2 in a similar way, but after randomly permuting certain

residuals. Repeat to obtain T3, . . . ,Tw.
(3) The p-value equals (1) or (2).

Most of the existing permutation methods use residualization of Y or X with respect to
the nuisance Z. In the low-dimensional situation, the residual forming matrix is

R = I − H = I − Z(Z′Z)−1Z′.

When d = 1 we will sometimes consider RX ∈ R
n, which is assumed to be nonzero with

probability 1. In Section 2 we assume Z contains a column of 1’s. This implies that the
entries of RX and RY sum up to 0.

Note that if we use permutation, we can write the transformed residuals as PRY , where
P is an n × nmatrix with exactly one 1 in every row and column and elsewhere 0’s. In case
of sign-flipping, P is instead an n × n diagonal matrix with diagonal elements in {1,−1}
[13]. We write P1, . . . ,Pw to distinguish the w random permutation matrices. Here P1 is
the identity matrix and P2, . . . ,Pw are random.
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2.2. Choice of test statistics

Here we discuss the choice of test statistics within the permutation method of Freedman
and Lane [13,20]. The purpose of this section is to discuss some existing and novel results
that we will use in Section 3.

The Freedman–Lane permutation method is known to provide excellent type I error
control, with both its level and power staying very close to the parametric F-test, under the
Gaussian model. The test statistic T1 is based on the unpermuted model Y = Xβ + Zγ +
ε. The other statistics are obtained after randomly transforming the residuals. That is, for
2 ≤ j ≤ w the statistic Tj is based on the model (PjR + H)Y = Xβ + Zγ + ε, where the
same test statistic, say T, is used as for computing T1. Thus

T1 = T(X,Z,Y), (3)

Tj = T
(
X,Z, (PjR + H)Y

)
, (4)

where T is a suitable test statistic, the choice of which we now discuss.
It is usually important to take T to be an asymptotically pivotal statistic, i.e. a statis-

tic whose asymptotic null distribution does not depend on any unknowns under H0
([p.926–927][26], [p.382][13], [27,28]). A pivotal statistic T will always involve estima-
tion of the nuisance parameters. Thus, after every permutation, the nuisance parameters
need to be estimated anew. Examples of pivotal test statistics are the F-statistic and Wald
statistic. These are equivalent: the resulting permutation p-value (1) is the same.

In caseX is one-dimensional, the F-statistic is also equivalent to the square of the partial
correlation [29,30], which is used in Anderson and Robinson [18]. The partial correlation
is the sample Pearson correlation of RY and RX,

ρ
(
RY ,RX

) = (RY)′RX√∑
i(RY)2i

∑
i(RX)2i

. (5)

Here we used that the sample means of RY and RX are 0. If we use the partial correlation
in the Freedman–Lane permutation test, thismeans that we takeT(X,Z,Y) = ρ(RY ,RX),
so that (3) and (4) become

T1 = ρ
(
RY ,RX

)
(6)

Tj = ρ
(
R(PjR + H)Y ,RX

)
, (7)

where R(PjR + H) could be simplified to RPjR, since RH = 0.
The numerator in (5) is

(RY)′RX = Y ′R′RX = Y ′R′X = (RY)′X,

so that (5) equals

(RY)′X√∑
i(RY)2i

∑
i(RX)2i

. (8)

The Freedman–Lane test with T defined by (8) remains unchanged if in (8) we replace∑
i(RX)2i by 1 or by the constant

∑
i X

2
i . Indeed, T1, . . . ,Tw will just be multiplied by the
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same constant. Thus, with respect to the permutation test, the statistic (5) is equivalent to

(RY)′X√∑
i(RY)2i

∑
i X

2
i

. (9)

If X has been centred around 0, then this equals

ρ
(
RY ,X

) = (RY)′(X − μx)√∑
i(RY)2i

∑
i(Xi − μx)

2
, (10)

where μx denotes the n-vector with entries equal to the sample mean of X. This is the
sample correlation of RY and X and is called the semi-partial correlation. Thus, if X is
centred, using the partial correlation is equivalent to using the semi-partial correlation.

If we take T to be the semi-partial correlation, then (3) and (4) become T1 = ρ(RY ,X)

and

Tj = ρ
(
R(PjR + H)Y ,X

) =
(
R(PjR + H)Y

)′
(X − μx)√∑

i
(
R(PjR + H)Y

)2
i
∑

i(Xi − μx)
2
, (11)

where R(PjR + H) could be simplified to RPjR. Note that we could simply leave the con-
stant

∑
i(Xi − μx)

2 out without changing the result of the permutation test. Although
for centred X the statistics (5) and (10) are equivalent, their counterparts in the high-
dimensional setting are not, as will be discussed in Section 3.1.

3. High-dimensional nuisance

When the nuisance parameter γ has dimension q ≥ n, the existing permutation methods
cannot be used. Here, these approaches are adapted to obtain tests which can account for
high-dimensional nuisance.We first consider the case thatX is one-dimensional, i.e.d = 1.
The case that d>1 is discussed in Section 3.3. We assume that the entries of Y , X and Z
have expected value 0. Consequently, the intercept is 0.

All existing tests rely on residualization steps, where Y or X is regressed on Z. A nat-
ural way to adapt this step to the high-dimensional setting, is to instead estimate the
residuals using some type of elastic net regularization. We will consider ridge regression.
For minimizing prediction error, ridge regression is often preferrable to Lasso, principal
components regression, variable subset selection and partial least squares [31,32].

Compared to the existing methods, including the Freedman–Lane approach discussed
in Section 2.2, using ridge regression comes down to replacing the projections Ŷ = HY
and X̂ = HX by ridge estimates H̃λY and H̃λXX, with λ, λX > 0. Here, for λ′ > 0,

H̃λ′ = Z(Z′Z + λ′Iq)−1Z′, (12)

which satisfies

H̃λ′Y = Z argminγ

(
‖Y − Zγ ‖22 + λ′‖γ ‖22

)

and similarly for X. The values λ, λX are the regularization parameters, whose selection
will be discussed. Using ridge regression, the residuals become R̃λY and R̃λXX, where R̃λ =
(I − H̃λ) and R̃λX = (I − H̃λX ).
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Table 1. Permutation schemes for four different
methods.

Method Model after permutation

Freedman–Lane (PR + H)Y = Xβ + Zγ + ε
Kennedy PRY = RXβ + ε
Freedman–Lane HD (PR̃λ + H̃λ)Y = Xβ + Zγ + ε
Double residualization (PR̃λ + H̃λ)Y = R̃λXXβ + ε

Note: The last two methods are novel and can account for
high-dimensional nuisance.

The last two rows of Table 1 outline the permutation schemes that we will consider
in Sections 3.1 and 3.2. The first two rows summarize the Freedman–Lane method dis-
cussed in Section 2.2 and theKennedymethod [13,25,26]. This table is analogous to Table 2
in Winkler et al. [13] and allows easy comparison of the new methods with the existing
methods discussed in Winkler et al. [13].

Although Table 1 outlines the permutation schemes that we will use, several crucial
specifics remain to be filled in. For example, several choices of the regularization param-
eters λ and λX can be considered. Moreover, the computational challenge of performing
nuisance estimation in every step needs to be addressed. Finally and importantly, we must
determine what test statistics are suitable to use within our permutation tests.

3.1. Freedman–Lane HD

As discussed in Section 2.2, the low-dimensional Freedman–Lane method is known to
provide excellent type I error control and power. Here we will provide an extension to the
case of high-dimensional nuisance. We will refer to this test as Freedman–Lane HD. The
permutation scheme that we use is analogous to that of Freedman–Lane and is shown in
the third row of Table 1.

As in the Freedman–Lane method, after every permutation, we will require nuisance
estimation to compute Tj. We will choose ridge regression to do this. Note however that
when many permutations are used, performing a ridge regression after every permutation
can be a large computational burden.Wewill therefore compute λ only once, for the unper-
mutedmodel. We take λ to be the value that gives the minimal mean cross-validated error;
see Section 4.1 for more details. After each permutation, we then use the same parameter λ

in the ridge regression. Thus, after the jth permutation, to compute the new ridge residuals,
we will only need to pre-multiply the transformed outcome (PjR̃λ + H̃λ)Y by R̃λ. We only
need to compute R̃λ once. Owing to this approach, essentially we need to perform ridge
regression only once.

An important consideration is the test statistic T used within the permutation test. The
usual F-statistic andWald statistic are only defined when the nuisance is low-dimensional.
Extending these definitions to the high-dimensional setting with q ≥ n is problematic. For
example, a Wald-type statistic would require an unbiased estimate of β and a variance
estimate. The partial correlation (5), however, is more naturally generalized to the q ≥ n
setting: we can replace the residuals RY and RX by the ridge residuals R̃λY and R̃λXX.
Similarly we can generalize the semi-partial correlation (10), by replacingRY by R̃λY . This
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gives the following test statistics, which generalize the partial correlation (5) and the semi-
partial correlation (10), respectively:

ρ
(
R̃λY , R̃λXX

) = (R̃λY − μ1)
′(R̃λXX − μ2)√∑

i(R̃λY − μ1)
2
i
∑

i(R̃λXX − μ2)
2
i

, (13)

ρ
(
R̃λY ,X

) = (R̃λY − μ1)
′(X − μx)√∑

i(R̃λY − μ1)
2
i
∑

i(X − μx)
2
i

. (14)

Here, μ1, μ2 and μx are n-vectors whose entries are the sample means of R̃λY , R̃λXX and
X, respectively. Zhu and Bradic [33] also use a type of generalized partial correlation as the
test statistic.

In Section 2.2 we reasoned that if X has been centred, (5) and (10) are equivalent with
respect to the permutation test. This does not apply to (13) and (14). In simulations, using
the statistic (14) tended to result in somewhat higher power than using the statistic (13).
In Section 4 we consider both methods.

In case the generalization of the partial correlation is used, the test statistics T1, . . . ,Tw
on which Freedman–Lane HD is based are

T1 = ρ
(
R̃λY , R̃λXX

)
, (15)

Tj = ρ
(
R̃λ

(
PjR̃λ + H̃λ)Y , R̃λXX

)

=
(
R̃λ(PjR̃λ + H̃λ)Y − μj)′

(R̃λXX − μ2)√∑
i
(
R̃λ(PjR̃λ + H̃λ)Y − μj

)2
i
∑

i(R̃λXX − μ2)
2
i

, (16)

where 2 ≤ j ≤ w. Here μj is an n-vector whose entries are the sample mean of R̃λ(PjR̃λ +
H̃λ)Y . For the version based on the generalization of the semi-partial correlation, the
statistics are

T1 = ρ
(
R̃λY ,X

)
, (17)

Tj = ρ
(
R̃λ(PjR̃λ + H̃λ)Y ,X

)
. (18)

As usual, T1 is just Tj with Pj = In. The pseudo-code for the version based on semi-partial
correlations is in Algorithm 1.

If q<n, as λ ↓ 0, the test converges to the test for λ = 0, which is the classical Freed-
man–Lane method. In the wide range of simulation settings considered in Section 4, the
Freedman–Lane HD method stayed on the conservative side, in the sense that the size
was less than α. This may due to the fact that if λ > 0 and 2 ≤ j < k ≤ w, the correlation
between T1 and Tj tended to be larger than the correlation between Tj and Tk in simula-
tions. Thismay be related to the fact that the correlation betweenY andY∗j is strictly larger
than the correlation between Y∗j and Y∗k, where Y∗j := (PjR̃λ + H̃λ)Y . This inequality is
proved in the Supplementary Material.

As discussed, to perform the test, λ and hence R̃λ need to be computed only once. Thus,
like the low-dimensional Freedman–Lane procedure, the test requires nuisance estimation
after every permutation, but this is not a large computational burden. The method is often
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computationally feasible even whenmanymillions of permutations are used; see Section 4.
It is also worth mentioning that there exist approximate methods for reducing the number
of permutations while still allowing for very small, accurate p-values [19,34].

Algorithm 1 Freedman- -Lane HD (version based on semi-partial correlations)
1: Compute H̃λ = Z(Z′Z + λIq)−1Z′ and the residual forming matrix R̃λ = I − H̃λ.

Here λ is taken to give the minimal mean cross-validated error (see main text).
2: Let T1 = ρ

(
R̃λY ,X

)
, the sample Pearson correlation of the Y-residuals with X.

3: for 2 ≤ j ≤ w do
4: Let Tj = ρ

(
R̃λ(PjR̃λ + H̃λ)Y ,X

)
, where the random matrix Pj encodes random

permutation or sign-flipping.
5: end for
6: The two-sided p-value p equals (2).
7: return p

3.2. Double residualization

Here we propose a test that we refer to as theDouble Residualizationmethod. The method
is somewhat related to the Kennedy procedure [13,25,26], but not analogous. The Kennedy
method residualizes both Y and X and proceeds to permute the Y-residuals. Here we
replace the least squares regression by ridge regression. Moreover, unlike Kennedy’s per-
mutation scheme, we keep H̃λY in the model; see Table 1. The test statistic that we use
within the permutation test is the sample correlation. Thus, the test is based on the statistics

T1 = ρ
(
Y , R̃λXX

)
,

Tj = ρ
(
(PjR̃λ + H̃λ)Y , R̃λXX

)
, (19)

where 2 ≤ j ≤ w. The difference between (19) and (16) is that (16) contains an additional
R̃λ. The pseudo-code for the Double Residualization method is in Algorithm 2. We take λ

andλX to be the values that give theminimalmean cross-validated error; see Section 4.1 for
more details. For fixed q, as n → ∞, the Double Residualization method becomes equiva-
lent to the Kennedy method and the Freedman–Lane method if the penalty is oP(n1/2), as
shown in the Supplementary Material. The case that q>n is investigated in Section 4.

3.3. Multi-dimensional parameter of interest

In the above we considered the case that the tested parameter β has dimension d = 1. Our
tests can be extended to the case d>1 by using Pesarin’s Non-Parametric Combination
(NPC) approach [35, ch. 4]. This is a general method for combining permutation tests
of different hypotheses into a test for the intersection hypothesis. The NPC principle can
be applied in a wide range of scenarios. In simpler settings with no nuisance, NPC has
important proven properties, such as asymptotically optimal power. Here, we will explain
how NPC can be applied in our setting. For convenience, we will focus on the application
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Algorithm 2 Double Residualization
1: Compute H̃λ = Z(Z′Z + λIq)−1Z′ and, analogously, H̃λX . Here λ and λX are deter-

mined through cross-validation (see main text). Let R̃λ = I − H̃λ and R̃λX = I −
H̃λX .

2: Let T1 = ρ
(
Y , R̃λXX

)
, the sample Pearson correlation of Y and R̃λXX.

3: for 2 ≤ j ≤ w do
4: Let Tj = ρ

(
(PjR̃λ + H̃λ)Y , R̃λXX

)
, where the random matrix Pj encodes random

permutation or sign-flipping.
5: end for
6: The two-sided p-value p equals (2).
7: return p

of NPC to our test of Algorithm 1, i.e. Freedman–Lane HD based on the generalized semi-
partial correlation. Combining NPC with our other tests can be done similarly, but can be
computationally much less efficient for large d, as will be explained below.

Suppose d>1. We are interested in H0 : β = β0, where we assume β0 = 0 again for
notational convenience. For every 1 ≤ l ≤ d, let βl be the l-th entry of β . The hypothesis
of interest H0 is the intersection of H1, . . . ,Hd, where Hl is the hypothesis that βl equals
0. To test H0 = H1 ∩ · · · ∩ Hd, we proceed as follows. As usual, sample random matrices
P1, . . . ,Pw that encode permutation (or sign-flipping). For every 1 ≤ l ≤ d and 1 ≤ j ≤ w,
define

Tl
j = ρ

(
R̃λ(PjR̃λ + H̃λ)Y ,X·l

)
,

where X·l is the lth column of X. A key point here is that the same permutation matrix
Pj is used to compute each of the statistics T1

j , . . . .,T
d
j . Due to this manner of simultane-

ous permutation, the dependence structure of (T1
j , . . . .,T

d
j ) mimics that of (T1

1 , . . . .,T
d
1 ).

Indeed, if γ were exactly known so that we could replace R̃λY and H̃λY by ε and Zγ , then
(T1

j , . . . .,T
d
j ) and (T1

1 , . . . .,T
d
1 ) would have exactly the same dependence structure under

H0.
Consider a function � : Rd → R, which will be used to compute a combination statis-

tic [35, ch. 4]. For every 1 ≤ j ≤ w define�j = �(T1
j , . . . .,T

d
j ). Note that if R̃λY and H̃λY

would be the exact errors and expected values, then underH0,�1, . . . ,�w would be iden-
tically distributed and exchangeable. The p-value for testingH0 is now computed as in (1)
but with Tj replaced by the combination statistic �j. The pseudo-code for this test is in
Algorithm 3. Note that if d = 1 and� is the identity and a two-sided p-value is computed,
then this method reduces to the test of Algorithm 1.

The function � should be chosen such that high values of �1 indicate evidence against
H0. The choice of � influences power. Examples of functions � are �(t1, . . . , td) =
max(|t1|, . . . , |td|) and�(t1, . . . , td) = d−1 ∑d

l=1 |tl|. The former choice of� if often used
when one or few of the coefficientsβ1, . . . ,βd are expected to be nonzero under the alterna-
tive. Otherwise, the latter choice of� is often used.Other examples of combining functions
� are in Pesarin and Salmaso [35, ch. 4].

Applying NPC to the other tests of Sections 3.1 and 3.2 tends to be computationally
less efficient than the method of Algorithm 3. For example, applying NPC to our Double
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Algorithm 3 Extension of the test of Algorithm 1 to the case that d > 1.
1: Compute H̃λ = Z(Z′Z + λIq)−1Z′ and the residual forming matrix R̃λ = I − H̃λ.

Here λ is taken to give the minimal mean cross-validated error.
2: for 1 ≤ l ≤ d do
3: Let Tl

1 = ρ
(
R̃λY ,X·l

)
, where X·l is the l-th column of X.

4: end for
5: for 2 ≤ j ≤ w do
6: Consider a random n × nmatrixPj encoding randompermutation or sign-flipping.
7: Compute R̃λ(PjR̃λ + H̃λ)Y .
8: for 1 ≤ l ≤ d do
9: Let Tl

j = ρ
(
R̃λ(PjR̃λ + H̃λ)Y ,X·l

)
.

10: end for
11: end for
12: for 1 ≤ j ≤ w do
13: Compute �j = �(T1

j , ....,T
d
j ), where � is the combining function.

14: end for
15: The p-value p equals w−1

∣∣{1 ≤ j ≤ w : �j ≥ �1}
∣∣.

16: return p

Residualization method would require ridge-regressing each of the d variables of interest
(corresponding to β1, . . . ,βd) on the nuisance variables.

4. Simulations

We used simulations to gain additional insight into the performance of the new tests, as
well as existing tests. The simulations were performed with R version 3.6.0 on a server
with 40 cores and 1TB RAM. In Section 4.2 we consider scenarios where the outcome Y
follows a standard Gaussian high-dimensional linear model. In Section 4.3 we consider
non-standard settings with non-normality and heteroscedasticity. We consider simulated
datasets where the covariates have equal variances. It is well-known that when the data are
not standardized, this can affect the accuracy of the model obtained with ridge regression
[36, p.257].

4.1. Simulation settings and tests

We considered the model in Section 2.1, where the variable of interest was one-
dimensional, i.e. β ∈ R. The case d>1 is considered in Section 4.4. In every simulation,
the covariates had mean 0 and variance 1. They were sampled from a multivariate nor-
mal distribution with homogenous correlation ρ ′, unless stated otherwise. The errors ε

had variance 1, unless stated otherwise. The intercept was γ1 = 0, i.e. Y had mean 0. The
tested hypothesis wasH0 : β = 0. The sample size in the reported simulations was n = 30,
unless stated otherwise. We obtained comparable results for other sample sizes. The esti-
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mated probabilities in the tables are based on 104 repeated simulations, unless stated
otherwise.

In the power simulations we usually took |β| to be relatively large compared to most of
the nuisance coefficients. The reason is that testing in high-dimensional models is very
challenging. For example, in settings with |β| = |γ1| = · · · = |γq| > 0 the power of all
the tests considered (including the competitors) usually barely exceeds the type I error
rate.

The penalty λ was chosen to give the minimal mean error, based on 10-fold cross val-
idation. The penalty λX was chosen analogously. To compute the penalties, we used the
cv.glmnet() function in the R package glmnet.We used [10−5, 105] as the range of candidate
values for the penalty. The penalty obtained with cv.glmnet() is scaled by a factor n, so we
multiplied this penalty by n to obtain λ. We included an intercept in the ridge regressions,
but excluding the intercept gave very similar results.

All tests used were two-sided. The tests corresponding to the columns of the tables in
this section are the following.

‘FLH1’ is the Freedman–Lane HD test defined in Section 3.1, with test statistics
T1, . . . ,Tw based on the generalized partial correlation as in (16). ‘FLH2’ is the same,
except that T1, ..,Tw are based on the generalized semi-partial correlation as in (18). ‘DR’
is the Double Residualization method of Section 3.2. Each of these tests used w = 2 · 104
permutations.

‘BM’ is a high-dimensional test based on ridge projections, proposed in Bühlmann [37].
This test is based on a bias-corrected estimate |β̂corr| of |β| ∈ R and an asymptotic upper
bound of its distribution. We used the implementation in the R package hdi [23].

‘ZZ’ is a high-dimensional test based on Lasso projections, proposed in Zhang and
Zhang [21]. This method constructs a different bias-corrected estimate b̂ of β , which has
an asymptotically known normal distribution under certain assumptions, such as sparsity.
For this test we also used the hdi package. We could not include this test in the simulations
with a very high number of nuisance parameters, since it is computationally very time-
consuming when q is large, as also noted in Dezeure et al. [23]. We expect the test to have
good power in these settings.

‘BO’ is the bootstrap approach in Dezeure et al. [11], which is also implemented in the
hdi package. We set the number of bootstrap samples per test to 1000 and considered the
robust version of the method. We used the shortcut, which avoids repeated tuning of the
penalty. Still, the method was very slow, so that we used 103 instead of 104 repeated simu-
lations of this method per setting. Also, we did not include the test in the simulations with
very large q.

4.2. Gaussian, homoscedastic outcome

We first consider some settings with a moderately large number of nuisance coefficients,
q = 60. We first simulated a setting with γ2 = · · · = γ60 = 0.05, i.e, γ was dense. We took
ρ′ = 0.5. The estimated level and power of the tests described above, for different p-value
cut-offs α, are shown in Table 2. The tests rejected H0 if the p-value was smaller than α.
The level of a test should be at most α.
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Table 2. Dense setting with ρ′ = 0.5, n = 30, q = 60.

Method

α FLH1 FLH2 DR BM ZZ BO

0.05 .0281 .0333 .0219 .0087 .0666 .063
level 0.01 .0042 .0063 .0021 .0024 .0311 .023

0.001 .0003 .0006 0001 .0005 .0121 .009

0.05 .9062 .9273 .9616 .8901 .9934 .982
power 0.01 .8373 .8819 .7984 .7679 .9799 .939

0.001 .6716 .7996 .3263 .5795 .9441 .857

Note: Power is shown for β = 1.5.

Table 3. Sparse setting with ρ′ = 0.9, n = 30, q = 60.

Method

α FLH1 FLH2 DR BM ZZ BO

0.05 .0302 .0270 .0348 .0106 .0358 .051
level 0.01 .0050 .0035 .0044 .0013 .0104 .012

0.001 .0003 .0001 .0001 .0000 .0022 .002

0.05 .4494 .5426 .4804 .3234 .6050 .554
power 0.01 .2283 .3379 .2135 .1506 .4154 .346

0.001 .0685 .1195 .0445 .0501 .2296 .206

Note: Power is shown for β = 1.5.

Table 2 shows that the test ZZ by Zhang and Zhang [21] was rather anti-conservative.
Especially for small α, its level was many times larger than α. This is partly due to the anti-
sparsity. Indeed, ZZ only has proven asymptotic properties under a sparsity assumption.
The bootstrap approach BO of Dezeure et al. [11] was much less liberal, but still seemed
to be somewhat anti-conservative for small α. Of the other tests, Freedman–Lane HD 2
(FLH2) often had the most power. The Double Residualization method had relatively low
power when α was small, e.g. 0.001.

We also considered a setting with very high correlation ρ′ = 0.9, see Table 3. We took
γ2 = γ3 = 1 and γ4 = · · · . = γ60 = 0. The first 4 methods provided appropriate type I
error control. For small cut-offs α, the method ZZ by Zhang and Zhang [21] was relatively
powerful, but also seemed to be somewhat anti-conservative. This method seems more
suitable for settings where q ismany times larger than n. Among our permutationmethods,
Freedman–Lane HD 2 had the best power, while incurring few type I errors. The method
BM by Bühlmann [37] was relatively conservative.

We repeated the same simulation scenario, but with n = 15 instead of n = 30. The
results are in Table 4. The methods ZZ of Zhang and Zhang [21] and BO of Dezeure
et al. [11] were very anti-conservative for α = 0.01 and α = 0.001. Our methods provided
appropriate type I error control.

Further, we considered a simulation where there were clusters of correlated covariates.
The setting was as before, except that there were three independent clusters of size 20. Each
cluster had a multivariate normal distribution with all correlations equal to 0.9. We took
γ2 = · · · = γ60 = 0.05. The results are in Table 5. As before, the tests ZZ of Zhang and
Zhang [21] and BO of Dezeure et al. [11] had good power, but were anti-conservative.
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Table 4. Sparse setting with ρ′ = 0.9, n = 15, q = 60.

Method

α FLH1 FLH2 DR BM ZZ BO

0.05 .0268 .0244 .0294 .0030 .0392 .050
level 0.01 .0048 .0030 .0028 .0004 .0124 .026

0.001 .0008 .0000 .0000 .0002 .0032 .020

0.05 .5020 .6034 .5090 .4038 .7586 .692
power 0.01 .2822 .4558 .2094 .2384 .6248 .552

0.001 .0730 .1982 .0438 .1244 .4614 .386

Note: Power is shown for β = 3.

Table 5. Dense setting with n = 30, q = 60 and three clusters of
dependent covariates.

Method

α FLH1 FLH2 DR BM ZZ BO

0.05 .0356 .0224 .0344 .0130 .0520 .073
level 0.01 .0059 .0025 .0048 .0022 .0248 .023

0.001 .0010 .0002 .0002 .0007 .0087 .008

0.05 .4892 .5706 .5043 .4188 7382 .620
power 0.01 .2672 .3393 .2226 .2399 .6199 .454

0.001 .0814 .1007 .0382 .0977 .4741 .322

Note: Power is shown for β = 1.5.

Table 6. Sparse setting with a large number
(q = 1000) of nuisance variables.

Method

α FLH1 FLH2 DR BM

0.05 .0068 .0065 .0145 .0001
level 0.01 .0013 .0011 .0011 .0000

0.001 .0002 .0001 .0000 .0000

0.05 .5577 .5469 .9613 .7820
power 0.01 .5060 .5043 .8007 .6510

0.001 .3752 .4049 .3463 .4851

Notes: Here ρ′ = 0.5, n = 30. Power is shown for β = 2.

We also performed simulations with a very large number of nuisance variables
(q = 1000). We first took γ2 = γ3 = 1, γ4 = · · · = γ10 = 0.2, γ11 = · · · = γ1000 = 0. See
Table 6 for simulations with ρ′ = 0.5 and Table 7 for simulations with ρ′ = 0.9. All per-
mutationmethods provided appropriate type I error control. Double Residualization (DR)
had relatively high power for large cut-offs α, but not for small cut-offs. The method BM
by Bühlmann [37] had relatively good power for ρ′ = 0.5 but low power for ρ′ = 0.9.

We also performed simulations where γ was very anti-sparse, e.g. with γ2 = 1, γ3 =
· · · = γ800 = 0.002 and ρ′ = 0.9. We also considered negative coefficients and we varied
the magnitude of the coefficients and the errors ε and the sample size. We also considered
more settings where there weremultiple independent clusters of correlated covariates. Also
in these settings, the type I error rate was controlled.
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Table 7. Sparse setting with a large number
(q = 1000) of nuisance variables and high corre-
lation ρ′ = 0.9.

Method

α FLH1 FLH2 DR BM

0.05 .0236 .0319 .0358 .0006
level 0.01 .0040 .0074 .0057 .0000

0.001 .0003 .0006 .0001 .0000

0.05 .4766 .5317 .7127 .2115
power 0.01 .3106 .4254 .4137 .1042

0.001 .1303 .2500 .1344 .0407

Note: Power is shown for β = 2.

Table 8. Same sparse setting as at Table 3 but with very heavy-
tailed errors.

Method

α FLH1 FLH2 DR BM ZZ BO

0.05 .0345 .0313 .0336 .0034 .0215 .022
level 0.01 .0059 .0051 .0053 .0001 .0043 .004

0.001 .0005 .0002 .0002 .0000 .0006 .002

0.05 .4498 .5493 .4593 .2173 .5433 .566
power 0.01 .2295 .3353 .2016 .0730 .3173 .390

0.001 .0780 .1309 .0492 .0151 .1374 .215

4.3. Violations of the Gaussianmodel

Permutation tests can be robust to violations of the standard linear model, such as non-
normality and heteroscedasticity [12,13]. The power of parametric methods is often
substantially decreased when the residuals have heavy tails. The power of the permuta-
tion tests is more robust to such deviations from normality. This is illustrated in Table 8.
Here, the data distribution was the same as in the setting corresponding to Table 3, except
that the errors ε were not standard normally distributed, but had very heavy (cubed expo-
nential) tails, scaled such that the errors had standard deviation 1. Note in Table 8 that the
permutation and bootstrap methods still had roughly the same power as at Table 3, while
the power of BM and ZZ was strongly reduced compared to Table 3.

As a second type of violation of the standard linear model, we considered heteroscedas-
ticity.We simulated errors εi which were normally distributed, but with standard deviation
proportional to the absolute value covariate of interest, |Xi|. We again took γ2 = γ3 = 1,
γ4 = · · · = γ60 = 0. We took ρ′ = 0 for illustration, since in that case the method ZZ
by Zhang and Zhang [21] turned out to be very anti-conservative under heteroscedas-
ticity. Otherwise, the simulated data were again as those used for Table 3. The results
are in Table 9. Note that despite the heteroscedasticity, the permutation-based tests pro-
vided appropriate type I error control. The bootstrap approach BO of Dezeure et al. [11]
seemed to be anti-conservative for small α. The test BM from Bühlmann [37] had higher
power than the permutation methods in this specific setting, but was anti-conservative for
small α.
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Table 9. Sparse setting with heteroscedastic errors, ρ′ = 0,
n = 30, q = 60.

Method

α FLH1 FLH2 DR BM ZZ BO

0.05 .0352 .0354 .0271 .0338 .1490 .077
level 0.01 .0065 .0069 .0050 .0109 .0648 .028

0.001 .0010 .0009 .0008 .0029 .0280 .011

0.05 .7901 .8060 .7855 .9403 .9902 .982
power 0.01 .6787 .6861 .6454 .8534 .9741 .936

0.001 .4910 .4909 .4498 .6903 .9332 .830

Note: Power is shown for β = 1.5.

Table 10. Multi-dimensional β ∈ R
10.

Simulation setting

α Setting 1 Setting 2 Setting 3

0.05 .0174 .0197 .0330
level 0.01 .0023 .0024 .0055

0.001 .0004 .0002 .0002

0.05 .4443 .5098 .6286
power 0.01 .3740 .4552 .5731

0.001 .2503 .3788 .4736

Note: Power is shown for β = (3, 2, 1, 0, . . . , 0).

In the simulations underlying Table 9, we did not use sign-flipping, which is known to
be robust to heteroscedasticity [12,13]. Surprisingly, our tests nevertheless provided appro-
priate type I control. We also performed these simulations with sign-flipping instead of
permutation (results not shown), which further reduced the level of our tests, but also
somewhat reduced the power.

4.4. Multi-dimensional parameter of interest

We simulated the test of Section 3.3 for multi-dimensional β . As the combination statistic
we used �(t1, . . . , td) = max(t1, . . . , td). The parameter of interest β had dimension 10
and there were 490 nuisance variables, i.e. dim(γ ) = 491, since γ1 is the intercept. The
outcome Y followed a Gaussian model, as in Section 4.2. We considered three simulation
settings. The nuisance parameters were γ2 = 3, γ3 = 2, γ4 = 1, γ5 = · · · = γ491 = 0 in the
first two settings and γ2 = · · · . = γ101 = 0.03, γ102 = · · · = γ491 = 0 in the third setting.
The covariates had a multinormal distribution with homogeneous correlation ρ ′ = 0.5 in
the first setting and ρ′ = 0.9 in the last two settings. The results are in Table 10. The test
provided appropriate type I error control.

We conclude from the simulations of Section 4 that our tests provide good type I error
control and are rather robust to several types of model misspecification. The method ZZ
from Zhang and Zhang [21] was often relatively powerful, but was quite anti-conservative
in several scenarios. The bootstrap approach BO of Dezeure et al. [11] was also anti-
conservative in several scenarios, but less so. The method BM from Bühlmann et al. [37]
tended to be relatively conservative.
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Table 11. Real data analysis.

Fraction of rejected hypotheses

α FLH1 FLH2 DR BM ZZ BO

0.05 .0005 .0259 .0428 0 .0135 .0272
0.01 0 .0071 .0066 0 .0022 .0051
0.001 0 .0002 .0012 0 .0007 .0024
0.0001 0 0 0 0 0 0

Note: For different p-value cut-offs α, the fraction of rejected
hypotheses is shown.

5. Data analysis

We analyse a dataset about riboflavin (vitamin B2) production with B. subtilis. This dataset
is called riboflavin and is publicly available [36]. It contains normalized measurements
of expression rates of 4088 genes from n = 71 samples. We use these as input variables.
Further, for each sample the dataset contains the logarithm of the riboflavin production
rate, which is our one-dimensional outcome of interest. We (further) standardized the
expression levels by subtracting the means and dividing by the standard deviations. We
also shifted the outcome values to have mean zero.

For every 1 ≤ i ≤ 4088, we tested the hypothesisHi that the outcome was independent
of the expression level of gene i, conditional on the other expression levels. We used the
same tests as considered in the simulations. This time we used w = 2 · 105 permutations
per test.

The results of the analysis are summarized in Table 11. The columns correspond to the
same methods as considered in Section 4. For every method, the fraction of rejections is
shown for different p-value cut-offs α. The fraction of rejections is the number of rejected
hypotheses divided by 4088, the total number of hypotheses. The hypotheses that were
rejected, were those with p-values smaller than or equal to the cut-off α.

With most methods we obtain many p-values smaller than 0.05. This is not the case for
the test BM by Bühlmann [37], which is known to be relatively conservative. After Bon-
ferroni’s multiple testing correction, we reject no hypotheses with any method, suggesting
there is no strong signal in the data. Van de Geer et al. [22] also obtained such a result with
this dataset.

6. Discussion

We have proposed novel permutation methods for testing in linear models, where the
number of nuisance variables may be much larger than the sample size. Advantages of per-
mutation approaches include robustness to certain violations of the standard linear model
and compatibility with powerful permutation-based multiple testing methods.

We have proposed two novel permutation approaches, Freedman–LaneHD andDouble
Residualization.Within these approaches some variations are possible, with respect to how
the regularization parameters are chosen and which test statistics are used. Our methods
provided excellent type I error rate control in a wide range of simulation settings. In par-
ticular we considered settings with anti-sparsity, high correlations among the covariates,
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clustered covariates, fat-tailedness of the outcome variable and heteroscedasticity. The sim-
ulation study was limited to settings with multivariate normal covariates. Future research
may address more scenarios.

We compared our methods to the parametric tests in Bühlmann [37] and Zhang and
Zhang [21] and to the bootstrap approach in Dezeure et al. [11]. One advantage of our
methods compared to those in Bühlmann [37] and Zhang and Zhang [21], is that they are
defined in the case that the parameter of interest is multi-dimensional. Further, our tests
tended to have higher power than the method by Bühlmann [37]. The test by Zhang and
Zhang [21] had relatively good power, butwas rather anti-conservative in several scenarios,
for example under anti-sparsity and heteroscedasticity. The bootstrap approach of Dezeure
et al. [11] was also anti-conservative in some scenarios, but less so. Our permutation tests
provided appropriate type I error control in all scenarios. Moreover, our permutation tests
were computationally much faster than the bootstrap method.
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