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Chapter 1

General introduction



2 General introduction

1.1 Tomato production and its supplementary
lighting

Tomato (Solanum lycopersicum) is a member of the Solanaceae family and, like
two other members of this family such as potato (Solanum tuberosum) and
tobacco (Nicotiana tabacum), belongs to the world’s most important crops.
Globally, tomato is grown on over 4.7 million hectares and its annual yield is
more than 180 million tonnes (FAOSTAT, 2018). Although tomatoes for fresh
consumption are mainly grown in the open field, greenhouse tomato production
rapidly expanded in the past decades. Compared to open-field production, the
greenhouse production system allows for optimized climate control, protection
from pests, and year-round production. In the Netherlands, for example,
greenhouses only represent 0.7% of the overall agricultural land but represent
20% of the annual agriculture income (Stanghellini et al., 2019). Over the last
three decades, greenhouse tomato yield (kg m-2) has more than doubled thanks to
the rapid development of greenhouse technologies (Marcelis and Heuvelink, 2019).
Recently, more sustainable greenhouse production has been increasingly
demanded by society. Compared to conventional open-field systems, greenhouse
production is quite energy demanding, and this energy consumption is increasing
globally due to the more intense use of climate control and lighting (Katzin et al.,
2021). Light is one of the most important environmental factors in greenhouse
tomato production. It is common to apply supplemental lighting in countries at
higher latitude to maintain a year-round production as natural light is limited
from late autumn to early spring in such regions. In the Netherlands, electricity
use, especially for assimilation lighting, has been increasing yearly (van der
Velden and Smit, 2019). Typically, gas discharge-type lamps (e.g.. high-pressure
sodium lamp, HPS) are used in greenhouses. Regardless of their relatively high
efficiency in converting electric energy into light, HPS lamps typically emit much
radiative heat, thus requiring a relatively long distance to the plants to avoid heat
damage to the crop. Solid-state lighting such as light-emitting diodes (LEDs) has
brought exciting new possibilities to the crop production systems. Compared to
HPS lamps, LEDs have hardly any radiative heat production, higher energy
efficiency, higher flexibility in spectrum output, and longer longevity (Pattison
et al., 2018). LEDs can also facilitate precise spectral and intensity control
(Pattison et al., 2018). These features enable researchers and growers to
manipulate their light source in a much more precise way than before. Compared
to the LEDs which hardly emit any radiative heat, the heat emission from the
HPS lamps does contribute to the heating of the greenhouse, especially during
the winter seasons. Model simulation showed that, despite a 9-49% increase in
energy consumption of heating, replacing HPS (efficacy 1.8 µmol J-1) with LEDs
(efficacy 3 µmol J-1) reduced annual total energy consumption by 13-27% (Katzin
et al., 2021). The de-coupling of heat source from light source also allows flexible
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placement of the light source (closer to the canopy, or within the canopy) and the
possibilities of using heat sources that are more economically and
environmentally friendly. This is even more exciting if electricity is provided by
green energy instead of fossil fuel. Despite that the high investment cost of LED
lighting systems may limit the application of LEDs in greenhouse lighting,
technological development and increased production is expected to reduce the
operating and capital cost per unit of production in the future. Considering the
increasing popularity of LED lighting in greenhouse production, knowledge of
growth responses of important crops such as tomato is urgently needed.

1.2 Plant responses to far red
One unique advantage of using LED lighting is the possibility to fully customize
the light spectrum for different crops. In addition to providing photosynthetically
active radiation (PAR, 400-700nm) that drives photosynthesis, developments of
LEDs also stimulated research on light quality to increase crop productivity and
quality (Pattison et al., 2018). The shade avoidance syndrome (SAS), which is a
set of responses plants deploy when exposed to a low red to far red (R: FR) ratio,
is one of the most extensively studied plant responses towards changes in light
quality. SAS can be triggered not only by natural shading but also by lowering
the R: FR ratio in the growth light conditions. Plants have a cassette of
photoreceptors to sense changes in the spectrum in their light environment.
Phytochrome is the photoreceptor family responsible for perceiving changes in the
R: FR ratio. Phytochromes exist as two photo-interconvertible isoforms: the
biologically inactive red-absorbing form (Pr) and the biologically active
far-red-absorbing form (Pfr), and an equilibrium between the two isoforms is
established depending on the R: FR ratio (Figure 1.1, see Casal, 2012). Upon
being activated, the Pr isoform turns into the active Pfr isoform, which is then
translocated into the nucleus and mediates different photomorphogenic responses
(Ruberti et al., 2012).

The most distinct SAS response is stem elongation, which was not only reported
in Arabidopsis thaliana (Devlin et al., 1998; Franklin and Quail, 2010; Huber and
Wiggerman, 1997), but also in crop species such as tobacco (Kasperbauer, 1971),
cucumber (Shibuya et al., 2019) and tomato (Kalaitzoglou et al., 2019). Other
typical SAS responses such as leaf hyponasty (Michaud et al., 2017), reduced
chlorophyll content and increased apical dominance (Smith and Whitelam, 1997)
and accelerated flowering (Devlin et al., 1998) have been studied extensively in
the model plant A. thaliana (Casal, 2012). The development of LEDs stimulated
many studies that explored SAS responses in ornamental crops (Park and Runkle,
2017), leafy vegetables (Li and Kubota, 2009; Zhen and van Iersel, 2017), and
fruit crops (Hao et al., 2017; Kalaitzoglou et al., 2019). FR may also increase the
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Figure 1.1: The photo-interconversion between the two isoforms (Pr and Pfr)
of phytochrome.

above-ground dry mass because of both elevated total biomass production and a
concomitant increase in shoot: root ratio (Keiller and Smith, 1989; Page et al.,
2009). Considering that FR may regulate the SAS responses via FR-increased
auxin biosynthesis and transportation (Iglesias et al., 2018; Li et al., 2012), the
response of shoot: root ratio may also be regulated via auxin. However, the
detailed mechanism of how FR affects dry mass production and partitioning is
largely unknown.

Interestingly, it seems that additional FR also increases fruit yield in tomato
(Kalaitzoglou et al., 2019; Zhang et al., 2019), but the main reason for this
increase is largely unknown. One explanation may be that the addition of FR in
the supplementary lighting often resulted in a significant increase in total plant
dry mass production (Cao et al., 2018; Kalaitzoglou et al., 2019; Kim et al., 2019;
Zhang et al., 2019). Some authors reported that FR may enhance the quantum
yield of PAR photons (Zhen and Bugbee, 2020; Zhen and van Iersel, 2017), which
is the reverse interpretation of the“Emerson enhancement effect”that described
the enhancement of quantum yield of longer wavelength radiation by shorter
wavelength radiation (Emerson et al., 1957; Emerson and Rabinowitch, 1960;
Govindjee et al., 1964). However, the long-term effect of FR on photosynthesis of
the plants adapted to FR varied between studies (Cao et al., 2018; Kalaitzoglou
et al., 2019; Zhang et al., 2019). FR also induces morphological changes that may
increase light interception (Kalaitzoglou et al., 2019) as well as the improved light
distribution within the canopy (Zhang et al., 2019).

To date, the physiological and molecular mechanism in which FR affects dry mass
production and fruit yield in tomato remains unknown. Furthermore, considering
that contradicting results exist in the plants’response to FR even within the same
species, it is also crucial to evaluate and explain a possible genotypic variation in the
FR responses. Besides the growth responses, there is also evidences that FR may
affect plant immunity. For example, both salicylic acid mediated and jasmonic acid
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mediated responses were downregulated in A. thaliana (de Wit et al., 2013). FR was
also reported to reduce constitutive defenses and jasmonic acid mediated defense
in tomato (Cortés et al., 2016). Botrytis cinerea is one of the major pathogens in
tomato production and, despite that no effect is known in tomato, FR was shown
to reduce resistance against B. cinerea in A. thaliana (Cargnel et al., 2014; Cerrudo
et al., 2012). Thus, it is crucial to not only understand the growth responses to FR
but also study whether there is a trade-off between growth and defense in response
to FR.

1.3 Uploading and transport of photosynthetic as-
similates

In addition to the increased overall dry mass production, a higher fruit yield in
tomato may also be due to an increased fraction of dry mass being partitioned to
fruits. Photosynthetically active “source”organs like mature leaves export the
fixed carbon to “sink”organs like fruits, tubers, and meristems (Koch, 2004).
Tomato fruits are capable of photosynthesizing as they initially contain
photosynthetically active chloroplasts. Earlier experiments estimated that
10%-15% of total carbon skeletons required in fruit growth originated from fruit
photosynthesis of its own (Hetherington et al., 1998; Obiadalla-Ali et al., 2004;
Tanaka et al., 1974). However, it is generally agreed that tomato fruits are rarely
net assimilators of CO2 (Carrara et al., 2001) and fruit photosynthesis appeared
unimportant for fruit energy metabolism throughout their development
(Lytovchenko et al., 2011; Okello et al., 2015; Tanaka et al., 1974).

Sucrose is, in most higher plants, the major transported photosynthetic assimilate
(Geigenberger and Stitt, 2000; Salerno and Curatti, 2003), while starch may be
considered as an overflow product in source organs that is synthesized when CO2
fixation exceeds sucrose synthesis (Osorio et al., 2014). Interestingly,
manipulating sucrose biosynthesis pathways in the leaf provides possibilities to
increase the amount of assimilates available for sink organs. For example,
sucrose-6-phosphate synthase (SPS) and sucrose-6-phosphate phosphatase (SPP)
are two major enzymes which each catalyzes a key step in sucrose synthesis.
While SPP shows a limited influence on sucrose biosynthesis (Chen et al., 2005),
the reaction catalyzed by SPS represents a major regulatory step in the pathway
(Huber and Huber, 1996). SPS plays a crucial role in carbohydrate metabolism
by regulating carbon partitioning between starch and soluble sugars (Maloney
et al., 2015). Micallef et al. (1995) found a considerable increase in the
partitioning of 14C into water-soluble carbohydrates and a decrease in
partitioning into starch in the leaves of tomato SPS overexpression lines. These
plants also had higher total fruit numbers and fruit weight (Micallef et al., 1995).
Tomato and A. thaliana transformants overexpressing heterologous maize SPS
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also showed increased rates of sucrose synthesis and decreased rates of starch
synthesis, increased pools of soluble sugars, and reduced starch content (Galtier
et al., 1995; Laporte et al., 1997; Signera et al., 1998). Similarly, overexpressing a
sugarcane SPS gene increased plant height, total dry mass as well as sucrose
content in Brachypodium distachyon (Falter and Voigt, 2016). In consistence with
these overexpression experiments, reduced SPS activity resulted in decreased
sucrose synthesis and increased leaf starch accumulation in soybean (Huber and
Israel, 1982), but contradicting results exists in A. thaliana (Strand et al., 2000).
Overall, sink organs and their photosynthetic capacity determine the availability
of sucrose to the sink organs and may help increase overall biomass production
and indirectly increase the yield of harvestable organs.

Another important factor determining yield in a harvestable organ, such as fruits,
is the fraction of dry mass partitioning to this organ. Dry mass partitioning to
fruits is determined by the sink strength of both vegetative organs and the fruits,
the latter being the integral of individual fruit sink strength of all fruits
(Heuvelink, 1997). Despite some reports on the FR effect on flowering and fruit
numbers (Hao et al., 2016; Kalaitzoglou et al., 2019), it is unknown whether FR
affects fruit sink strength. The sink strength of an organ is the intrinsic capacity
of that organ to attract assimilates and it is quantified as the growth rate of the
organ under non-limiting assimilate supply (Marcelis, 1996). In tomato fruit, the
capacity of unloading assimilates from the transportation system as well as
metabolizing the imported assimilates can influence the fruit sink strength
(Osorio et al., 2014). Sucrose is the main assimilate transported to sink organs in
tomato and its transporter activity, either at expression level or translation level,
positively correlates with sugar accumulation in sink organs (Gottwald et al.,
2000; Lu et al., 2020; Slewinski et al., 2009). Sugar transporter such as SWEETs
exports sucrose from phloem parenchyma cells and feed the secondary active
transporter SUT in A. thaliana (Chen et al., 2012). Antisense expression of SUT1
in tomato leaves resulted in early senescence and chlorosis, reduced
photosynthesis rate, accumulation of soluble sugars, inability to mobilize
transitory starch, and blockage in phloem loading, while reduced SUT2
expression reduced fruit seed development and pollen germination (Hackel et al.,
2006). Ruan et al. (1997) reported that maximal activities of hexose/H+

symporters were significant determinants of hexose content in tomato fruits of
different varieties. Besides, RNAi knockdown of three hexose symporters led to a
decrease in fruit hexose accumulation while assimilate production by source leaves
and phloem transport capacity remained unaffected (McCurdy et al., 2010).
Upon transportation into the fruit, sucrose can be downgraded into glucose,
fructose, and its derivatives (Ruan, 2014) or can be accumulated in the form of
starch (Osorio et al., 2014). Hence, the metabolism of imported sucrose is crucial
in preventing negative feedback in sucrose transport into the fruits. In agreement
with this, the inclusion of LIN5 allele from a wild accession (Fridman et al., 2004;



1

General introduction 7

Gur and Zamir, 2004; Zanor et al., 2009) or silencing the inhibitor of LIN5 (Jin
et al., 2009), increased fruit soluble sugar content in tomato. Similarly, fruit
soluble sugar content positively correlated with enzyme activity in starch
biosynthesis (Petreikov et al., 2006), suggesting that a higher starch synthesis
rate may positively affect the import of soluble sugars into the fruits. Based on
this, it is logical to speculate that FR may upregulate these pathways to
stimulate sucrose import and storage in the fruits. Indeed, many key genes that
are involved in sugar transport and metabolism in the fruit including LIN,
AGPase, STS, SBE were reported to be phytochrome-regulated (Ernesto
Bianchetti et al., 2018; Fridman and Zamir, 2003; Kocal et al., 2008). Thus, it is
intriguing to quantify the effect of FR on the fruit growth, fruit sugar content,
and fruit sink strength and evaluate its contribution in the determination of dry
mass partitioning as well as fruit yield.

1.4 About this thesis
In this thesis, I aimed to understand the effect of adding FR on the responses of
growth and development of both young and fruit-bearing tomato (Solanum lycop-
ersicum) plants. The main research questions addressed in this thesis are

• What are the underlying physiological and/or morphological components
that can explain the genotypic variation of plant dry mass production in
response to FR?

• Does FR affect the dry mass partitioning between shoot and root in young
tomato plants? If so, how is it regulated?

• Does FR lead to any trade-off between plant growth and plant immunity?

• What is the driving force of such yield increase and what are the physiolog-
ical and molecular pathways by which FR regulates this response?

For all experiments in this thesis, the focus was to compare the differences between
plants grown with or without additional FR added in an otherwise common light
background. This thesis combines growth analysis with model simulation and
quantification of various physiological parameters as well as a molecular biology
approach to provide a thorough explanation of FR induced changes in tomato
growth and insights into its application in modern greenhouse production.

1.5 Thesis outline

This thesis consists of six chapters: general introduction (Chapter 1, this chapter),
four research chapters (Chapter 2-5) and a general discussion (Chapter 6)
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In Chapter 2, I aimed to examine the similarities and differences in the growth
responses of young tomato plants. A climate chamber experiment was conducted
with 33 tomato genotypes and grown under different levels of additional FR. In
this experiment, growth parameters such as plant height, dry mass of leaf, stem
and root, leaf area as well as other physiological parameters such as chlorophyll
content and stomatal conductance were measured. This experiment provided a
detailed understanding of the genotypic similarities and differences in the growth
parameters towards increasing FR in the background light. Also, it provided further
explanation of the causes of the observed genotypic variation.

In Chapter 3, I aimed to understand the role of phytochrome B1/B2 in the control
of shoot: root ratio of young tomato plants in response to FR. Further, I aimed to
test whether auxin transport was involved in facilitating the phytochrome-mediated
control of shoot: root ratio. A loss-of-function double mutation of phyB1/B2 led to
a strong increase in shoot: root ratio, similar to the wildtype phenotype observed
when grown with additional FR. Interestingly, phyB1/B2 double mutant plants
were still able to respond to additional FR in shoot: root ratio, suggesting that
other phytochromes may regulate this response in the absence of phyB. These
results suggest that the response of shoot: root ratio to additional FR is the result
of a phytochrome-mediated effect on auxin transport.

In Chapter 4, I focused on fruit-bearing tomato plants. I aimed to quantify the
effect of FR on tomato yield and the physiological explanation for any observed
effect. A greenhouse experiment was conducted to compare fruit yield between
the plants grown with and without additional FR. To explain the yield
differences, the FR effect on photosynthesis, light interception, as well as dry
mass partitioning between organs were analyzed. Only a slight increase in total
dry mass production was observed, hence improved dry mass partitioning to
fruits was the main component by which additional FR improved tomato yield.
FR also reduced resistance against Botrytis cinerea in tomato leaves.

In Chapter 5, I continued the work in the previous chapter and aimed to further
explain how FR affected dry mass partitioning in tomato. Here, plants were
grown with or without FR, and fruit sink strength was quantified under the two
conditions. Using model simulation, the consequence of measured FR-increased
fruit sink strength on dry mass partitioning to fruits under different fruit load
scenarios was simulated and compared with experimentally observed data. Also,
contents of sucrose, glucose, fructose, and starch was measured in samples
ranging from flowering to fully ripe fruits on plants grown with or without FR.
FR radiation increased fruit sink strength by 38%, which, in model simulation,
led to an increased dry mass partitioned to fruits that quantitatively agreed very
well with measured partitioning. FR radiation increased fruit sugar concentration
and upregulated the expression of genes associated with both sugar transport and
metabolism.
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In Chapter 6, I discussed the findings of this thesis. A comprehensive overview of
the FR effect on tomato growth was presented by relating the findings of this thesis
to the existing literature. I also provided insights on targeting the FR-mediated
responses and the control mechanisms of sink strength for yield improvement in
modern crop production. Lastly, I addressed unsolved research questions in this
thesis and provided perspectives for future research on this topic.





Chapter 2

Dissecting the genotypic variation of
growth responses to far-red radiation in
tomato

Published as

Ji, Y., Ouzounis, T., Schouten, H. J., Visser, R. G., Marcelis, L. F. M., &
Heuvelink, E. (2021). Dissecting the genotypic variation of growth responses
to far-red radiation in tomato. Frontiers in Plant Science, 11, 2172.
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Abstract

Recent development of light-emitting-diodes (LEDs) and their application
in modern horticulture stimulated studies demonstrating that additional
far-red radiation (FR, 700-800 nm) increases plant dry mass. This effect of
FR has been explained by-improved photosynthesis and/or plant
architecture. However, the genotypic variation in this response is largely
unknown. Here, we aim to explore and explain the genotypic variation in
growth responses to additional FR. We expected genotypic variation in
responses of plant dry mass to additional FR. Further, we hypothesized
that a significant improvement of both net assimilation rate (NAR) and
leaf area ratio (LAR) are responsible for a strong dry mass increase under
additional FR, while some genotypes respond only marginally or even
negatively in NAR or LAR under FR, thus resulting in a weak FR effect
on plant dry mass. To test these hypotheses, we grew 33 different tomato
genotypes for 21 days with 0, 25 or 100 µmol m-2 s-1 of FR added to a
common white + red LED background lighting of 150 µmol m-2 s-1.
Genotypes responded similarly with respect to plant height, stem dry mass
and shoot: root ratio, i.e. they all increased with increasing FR. However,
the response of total plant dry mass varied among genotypes. We
categorized the genotypes into three groups (a strongly, moderately, and
weakly responding group) based on their relative response in total plant
dry mass to FR. Growth component analysis revealed that, the strongly
responding genotypes increased strongly in net assimilation rate (NAR)
rather than leaf area ratio (LAR). The weakly responding genotypes,
however, showed a substantial increase in LAR but not NAR. The increase
in LAR was due to the increase in specific leaf area. Leaf mass fraction,
which is the other component of LAR, decreased with FR and did not
differ between groups. In conclusion, tomato genotypes that increased
strongly in NAR in response to FR were able to achieve a more
substantial increase in dry mass compared to other genotypes. This is the
first study to explain the differences in growth responses of a large number
of tomato genotypes towards FR in their light environment.

Keywords: Far red, genotypic variation, growth analysis, LED lighting,
Solanum lycopersicum.
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2.1 Introduction

Far-red radiation (FR, 700-800nm) is an important light signal perceived
by plants via the phytochrome photoreceptor family. Phytochromes exist
as two photo-interconvertible isoforms, that is, the red (R)-absorbing
biologically inactive Pr and the FR absorbing active Pfr (Chen et al.,
2005). A low red (R): FR ratio causes the equilibrium between the two
isoforms of phytochromes to shift towards Pr, resulting in a set of
morphological and physiological changes collectively known as the shade
avoidance syndrome (SAS). SAS responses such as stem elongation, leaf
hyponasty, as well as flowering acceleration enable the plant to compete
for more light capture and to secure a reproductive success as decreased
R:FR ratio occurs naturally when plants are shaded (Devlin et al., 1998;
Huber and Wiggerman, 1997; Michaud et al., 2017; Yang et al.,
2016).

The past decades light-emitting diodes (LEDs) gained popularity in
modern horticulture, a development which stimulated the study of
spectral effects on plant growth and development. Plant photosynthesis is
driven by photosynthetically active radiation (PAR, 400-700 nm). FR is
not commonly considered to be part of PAR as monochromatic FR drives
neither CO2 assimilation nor O2 evolution from photosynthesis (Kono
et al., 2020). When added to PAR radiation, however, FR radiation may
not only increase yield but also total plant biomass production (Li and
Kubota, 2009; Park and Runkle, 2017; Zhen and van Iersel, 2017). Much
effort has been made to explain FR enhanced plant growth. It has been
found that FR-induced changes in plant architecture increase light
interception (Kalaitzoglou et al., 2019). Since long, FR effect on leaf
photosynthesis has been described as the Emerson enhancement effect:
radiation at shorter wavelength enhances the quantum yield of radiation
at longer wavelength (Emerson et al., 1957; Emerson and Rabinowitch,
1960; Govindjee et al., 1964). Several recent studies revisited this concept
and proposed the reverse interpretation: FR radiation enhances quantum
yield of PAR (Zhen and van Iersel, 2017). Furthermore, Zhen and Bugbee
(2020) demonstrated in an experiment with 14 species of both C3 and C4
crops that FR can be as efficient in driving photosynthesis as PAR
radiation not by itself, but when provided in addition to PAR
radiation.
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Modern horticultural production can benefit from a deeper understanding
of plants’responses to different light spectra. More importantly, it is
crucial to explore the genotypic variation in such responses. For example,
Ouzounis et al. (2016) showed genotypical differences in growth and
physiological parameters when plants were grown in a red LED
background with or without 12% of blue LED lighting. Plant’s response
to FR is a new way to increase crop production and resource use efficiency
(Demotes-Mainard et al., 2016). However, the genotypic variation in
plants’responses to additional FR is largely unknown due to the
often-limited numbers of genotypes used in FR related research. Here, we
aim to evaluate and explain the similarities and differences between
tomato genotypes in growth responses under additional FR. We
hypothesize that not all genotypes respond the same way in their dry mass
production under additional FR. Further, we hypothesize that this
variation is the result of different morphological or physiological responses
in the components of dry mass production under additional FR. To test
these hypotheses, we conducted a climate chamber experiment where 33
tomato genotypes were grown for 21 days with 0, 25 or 100 µmol m-2 s-1 of
FR added to a common white + red LED lighting background of 150 µmol
m-2 s-1. Growth component analysis, which subdivides growth into
underlying morphological and physiological components (Jolliffe and
Courtney, 1984), is a useful tool to dissect the effect of FR on dry mass
production (Higashide and Heuvelink, 2009). Here, growth components
such as relative growth rate, net assimilation rate, leaf area ratio, specific
leaf area and leaf mass fraction were determined and the contribution of
the different growth components to the genotypic variation in growth
response was evaluated.

2.2 Material and methods

Plant materials and growth conditions

The experiment was conducted in a fully controlled climate chamber at
Wageningen University (Wageningen, the Netherlands). The air
temperature was maintained at 22°C and the relative humidity was 70%.
In this climate chamber, seeds of 33 tomato (Solanum lycopersicum, Table
2.1) genotypes, varying in genetic background and morphological traits
(Aflitos et al., 2014), were germinated under white fluorescent light
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(Philips, Eindhoven, The Netherlands) with 16 h photoperiod. Ten days
after sowing, eight uniform seedlings of each genotype were individually
transplanted into 10.5 cm diameter plastic pots filled with sterilized river
sand and placed onto the experimental bench equipped with ebb-and-flow
system. The plants were irrigated daily with nutrient solution (electrical
conductivity 2.0 dS m-1, pH 5.5) containing 1.2 mM NH4

+, 7.2 mM K+,
4.0 mM Ca2+, 1.8 mM Mg2+, 12.4 mM NO3– , 3.3 mM SO4

2– , 1.0 mM
PO4

2– , 35 µM Fe3+, 8.0 µM Mn2+, 5.0 µM Zn2+, 20 µM B, 0.5 µM Cu2+,
0.5 µM MoO4

2– .

Light treatments

A deep red + white light at 150 µmol m-2 s-1 with 0.16 W m-2 UV-B was
used as the control light treatment and two light treatments were applied
from transplanting (10 d after sowing). There were three FR treatments:
0, 25 or 100 µmol m-2 s-1 of FR radiation was added to a common
background of red + white LED light of 150 µmol m-2 s-1 with 0.16 W m-2

UV-B. The UV-B radiation was included to mimic the UV dosage in
natural solar radiation. All lighting was provided by LED modules
(Control: 3x GreenPower LED-TL-DR/W-MB-VISN; FR: 15 or 60x
GreenPower LED-RM-FR, Philips, Eindhoven, the Netherlands) except
for UV-B (2x TL 20W/12 RS Ultraviolet-B, Philips). Light modules were
placed 1.3 m above the experimental bench. Spectral distribution (Figure
S2.1) and photon flux density (PFD) of the LED lighting (Table 2.2) was
measured at canopy height at transplanting with a spectroradiometer
(USB 2000 + UV-VIS, Ocean Optics, Duiven, the Netherlands) on 30
evenly distributed spots on the experimental bench. Based on these
measurements, values of phytochrome photostationary state (PSS) were
calculated as described in Sager et al. (1988).
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Table 2.1: List of genotypes used in the experiment and their relative response
in total dry mass to increasing far red and their corresponding growth response
groups.

No. Code Name Source/identification1 Relative
response Group

(µmol-1 m2 s1)
1 RF-1 Moneymaker LA2706/EA00840 0.0073 Strong
2 RF-102 LA4133/TR00026 0.0092 Strong
3 RF-15 Momotaro TR00003 0.0075 Strong
4 RF-16 Rote Beere LYC11/EA01965 0.0177 Strong
5 RF-2 Alisa Craig LA2838A/EA01101 0.0094 Strong
6 RF-23 PI272654/EA05170 0.0104 Strong
7 RF-29 Black Cherry LA4451/EA00027 0.008 Strong

8 RF-3 Gardeners
delight EA06086/PI406760 0.0109 Strong

9 RF-7 Katinka
Cherry EA00375 0.0083 Strong

10 RF-94 Marmande TR00022 0.0089 Strong
11 RZ-CAP Cappricia Rijk Zwaan 0.0093 Strong
12 BJ-HB1 Hybrid-1 Bejo Zaden 0.0073 Moderate
13 RF-11 Allround LA2463/LYC1365 0.005 Moderate
14 RF-20 LYC3153/EA03221 0.0055 Moderate
15 RF-22 PI129097/EA04710 0.005 Moderate
16 RF-226 EA05721 0.007 Moderate
17 RF-27 Cal J Tm VF EA02054/CGN20815 0.0039 Moderate

18 RF-34 Tiffen
Mennonite EA01088 0.0038 Moderate

19 RF-40 ES 58 Heinz LYC1410/EA02655 0.0063 Moderate
20 RF-43 LYC2910/EA03058 0.0071 Moderate
21 RF-89 Brandywine EA01019 0.0053 Moderate

22 RF-97 Watermelon
beefsteak EA01640 0.0073 Moderate

23 BJ-HB2 Hybrid-2 Bejo Zaden -0.0014 Weak
24 N-9008 Foundation Nunhems 0.0037 Weak
25 N-9098 9098 Nunhems 0.0004 Weak
26 N-FM001 FM001 Nunhems 0.0009 Weak
27 RF-103 LA1421/TR00027 -0.0021 Weak
28 RF-206 EA00915 0.0034 Weak
29 RF-229 EA05979 0.0026 Weak
30 RF-4 Rutgers LA1090/EA00465 0.0003 Weak
31 RF-91 Giant Belgium EA01037 -0.0006 Weak

32 RF-93 Kentucky
Beefsteak TR00021 0.0037 Weak

33 RZ-CAL Caldino Rijk Zwaan 0.0036 Weak
1Identification starting with “EA”, “LA”, “LYC”, “PI”, and “TR”are
genotypes registered by“EU-SOL tomato core collection database”(Aflitos et al.,
2014) while others are provided by the corresponding company.
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Table 2.2: Photosynthetic photon flux density (PPFD), photon flux density of
far red, red: far red ratio (R: FR) and phytochrome photostationary state (PSS)
value of the light measured at the top of canopy in each light treatments.

Light treatment PPFD1 Far red R:FR PSS
µmol m-2 s-1 µmol m-2 s-1

White + Red 151 ± 222 3 ± 0.2 35 ± 1.3 0.87
White + Red + 25FR 152 ± 3 28 ± 0.9 3 ± 0.1 0.80
White + Red + 100FR 155 ± 5 95 ± 3.6 1 ± 0.1 0.69

1For the calculation of ratios, PFD was integrated over 100 nm intervals for
red(600–700 nm) and far red (700–800 nm).
2All values are means ± standard error of means (s.e.m.). s.e.m of PSS was very
small (<0.001) and therefore not shown.

Data collection

Nondestructive measurement

After 14 days of growth, stomatal conductance and chlorophyll index on
the first fully expanded leaf of each experimental plant was determined.
Stomatal conductance was measured with a SC-1 leaf porometer (Decagon
Devices, Inc., Pullman, WA, USA) and chlorophyll index was measured
using a Dualex leaf-clip sensor (Force-A, Orsay, France). For the
chlorophyll measurement, the values measured from both sides of the leaf
were averaged.

Destructive measurement

After 21 days from transplanting a final destructive harvest was carried out.
Each experimental plant was carefully cleaned to remove any remaining river
sand from the roots. Excess water was wiped clean with tissue paper and the
plant height was measured immediately, after which the plant was separated
into roots, stem, and leaves. Total leaf area was measured using an area
meter (LI -3100, Li-Cor Biosciences, Lincoln, NE, USA). Leaves, stem, and
roots were dried in a ventilated oven for 72 h at 105 °C to obtain the dry
mass. For each genotype, the initial dry mass at transplanting was measured
using seedlings of each genotype germinated in the same conditions as the
experimental plants.
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Growth component analysis

A linear relation was fitted between the total dry mass and PFD of FR for
each genotype. Then, the relative response of each genotype was
calculated as the ratio between the slope of this line and the absolute total
plant dry mass in the control light treatment. All 33 genotypes were then
ranked by their relative response to increasing FR in total dry mass and
three response groups were distinguished, i.e., the strongly, moderately,
and weakly responding groups, with 11 genotypes in each group. Effects of
additional FR on relative growth rate (RGR) were analyzed using a
growth component analysis (Figure 2.1)s, which separates RGR into its
underlying components (Hunt et al., 2002).

Figure 2.1: General scheme of a growth component analysis of relative growth
rate. Abbreviations and units are included in brackets. RGR is the product of
NAR and LAR, and LAR is the product of SLA and LMF.

RGR is the product of net assimilation rate (NAR) and leaf area ratio
(LAR), as shown in equation 2.1. NAR was calculated by dividing RGR by
LAR.

NAR =
RGR

LAR
(2.1)

RGR was calculated according to equation 2.2 using the initial plant dry
mass (DWinitial) and the final plant dry mass (DWfinal) of each plant after
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21 days of growth.

RGR =
ln(DWfinal) − ln(DWinitial)

21
(2.2)

Further, LAR was analyzed as the product of specific leaf area (SLA) and
leaf mass fraction (LMF) as indicated by equation 2.3.

LAR =
SLA

LMF
(2.3)

LAR, SLA and LMF were calculated from the measured total leaf area
(LAplant), final plant dry mass (DWfinal) and leaf dry mass per plant
(DWleaf) using equations 2.4-2.6.

LAR =
LAplant

DWfinal
(2.4)

SLA =
LAplant

DWleaf
(2.5)

LMF =
DWleaf

DWfinal
(2.6)

Experimental set-up and statistical analysis

Each experiment with one light treatment was conducted consecutively in
the same fully-controlled climate room. For each light treatment eight
blocks were designed according to the light distribution over the bench
and one plant per genotype was randomly placed in each block. The
experiment with 25 µmol m-2 s-1 FR was repeated in time for one extra
time (again with eight blocks). To prevent border effects, S. lycopersicum
cv. “Moneymaker”plants were grown around the experimental plants as
border plants. Responsiveness of plant dry mass and relative growth rate
to additional FR was quantified as the slope of a linear regression with the
FR PFD as the regressor. For the growth component analysis, statistical
differences for the FR effect in each group was tested with paired sample
t-test (genotypes defining the pairs). All statistics were performed in
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Genstat (18th Edition, VSN International Ltd., Hemel Hempstead, UK) at
α = 0.05.

2.3 Results

Effect of FR radiation on growth parameters

Effects of additional FR varied among genotypes and among growth
parameters studied (Figure 2.2). Plant height, stem dry mass and shoot
root ratio increased in all genotypes with increasing FR. Chlorophyll index
showed a minor decrease by adding 25 µmol m-2 s-1 FR and a stronger and
universal decrease in all genotypes by adding 100 µmol m-2 s-1 FR.
Responses of plant dry mass, leaf dry mass, root dry mass, and leaf area to
increasing FR varied among genotypes. For plant dry mass, 58% of the
genotypes showed a positive response under 25 µmol m-2 s-1 FR and this
percentage increased to 70% under 100 µmol m-2 s-1 FR. For leaf dry mass
and root dry mass, about 30-40% of the genotypes responded positively to
increasing FR, most of which belong to the strongly responding group
(genotypes whose total dry mass increased relatively strong with FR). For
stomatal conductance, half of the genotypes responded positively to 25
µmol m-2 s-1 additional FR while this fraction decreased to 21% under 100
µmol m-2 s-1 additional FR. Absolute numbers of each parameters are
shown in Table S2.1.

Growth component analysis

In order to explain the variation in the FR effect on plant dry mass
production, we categorized the genotypes into three groups (i.e., a
strongly, a moderately, and a weakly responding group; 11 genotypes in
each group) based on their relative response to increasing FR in total plant
dry mass (Figure 2.3A, Table 2.1). Relative growth rate (RGR), which is a
common parameter used for growth component analysis, showed a similar
pattern as total plant dry mass in response to increasing FR (Figure 2.3B).
Slopes of the regression models fitted for both total dry mass and relative
growth rate showed significant differences between the three groups.

This similarity facilitates using a growth component analysis of RGR to
explain the genotypic variation in the FR effect on total dry mass (Figure
2.4). When 25 µmol m-2 s-1 of FR was provided, RGR and net
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Figure 2.3: Effects of adding 25 or 100 µmol m-2 s-1 of FR radiation on total
plant dry mass (A) and relative plant growth rate (B) in the strongly (red circle),
moderately (blue triangle) and weakly (orange rectangle) responding groups of
genotypes. Lines represent linear regression. Error bars represents standard
error of means (n=8 for 0 and 100 µmol m-2 s-1 FR and n=16 for 25 µmol m-2

s-1 FR).

assimilation rate (NAR) increased in the strongly responding group while
both were not significantly affected in the moderately and weakly
responding groups. Leaf area ratio (LAR) showed an opposite response to
FR with a decrease in the strongly responding group and an increase in
the weakly responding group. LAR was further divided into specific leaf
area (SLA) and leaf mass fraction (LMF). LMF decreased in all three
groups by a comparable magnitude, while SLA was increased by FR with
the weakly responding group showing the strongest increase, followed by
moderately and strongly responding group. Similar responses of the
growth components were observed when additional FR increased from 25
µmol m-2 s-1 to 100 µmol m-2 s-1. Here, additional 100 µmol m-2 s-1 FR
resulted in a significant increase in RGR, NAR in the strong and moderate
groups while that in the weak group was not statistically significant. Also,
100 µmol m-2 s-1 FR decreased the LAR in the strong and moderate
groups while increasing that in the weak group. This was due to the
difference in the increasingly large response in SLA from strong to weak
group. LMF was strongly reduced by FR with only marginal differences
between the three groups. For all parameters, there was a clear dosage
effect as the responses became more substantial as FR increased from 25
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to 100 µmol m-2 s-1. The absolute numbers of the parameters used in the
component analysis are presented in Table S2.2.

Figure 2.4: Effects of adding 25 (A-C) or 100 µmol m-2 s-1 of FR radiation (D-
F) on the growth components in the strongly, moderately and weakly responding
groups of genotypes. Abbreviations in this figure: RGR (relative growth rate),
NAR (net assimilation rate), LAR (leaf area ratio), SLA (specific leaf area), and
LMF (leaf mass fraction). The percentage represents the relative change in the
components when compared between the FR treatment and the control treatment.
P-value of the paired t-test is indicated in each component with a significant
difference (P<0.05) being highlighted yellow.
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2.4 Discussion

Genotypic similarities and variations in growth response to
FR

This study is the first to analyze the differences in growth responses of a
large number of tomato genotypes towards FR in their light environment
(Figure 2.2). The most distinct response to FR in many species is stem
elongation, which has been reported in many species (Franklin and Quail,
2010; Kalaitzoglou et al., 2019; Kasperbauer, 1971; Shibuya et al., 2019).
In agreement with this, we observed a universal increase of plant height in
all 33 genotypes and this increase in plant height was dosage dependent.
Corresponding to the FR-induced stem elongation, stem dry mass was also
increased by FR in all genotypes and this agreed well with other studies
(Zhang et al., 2019). In general, responses of leaf growth to FR may vary
between species and genotypes (Casal and Aphalo, 1989). Also in tomato
both positive (Cao et al., 2018; Zhang et al., 2019) and negative (Kim
et al., 2019) effects of FR on leaf dry mass have been reported. Similarly,
we observed that the response of leaf dry mass to FR varied among
genotypes, ranging from negative to positive response when grown with
FR, with a negative response being more frequent. FR stimulates the dry
mass to be distributed more to the above ground, thus increasing the
shoot: root ratio (Cao et al., 2018; Kasperbauer, 1987; Lee et al., 2016).
In line with these results, we observed that all genotypes responded
positively to increasing FR in shoot: root ratio, which may be a combined
result of higher shoot (mainly stem) dry mass and a lower root dry mass.
In this study, we noticed that the increase in shoot: root ratio for the
strongly responding genotypes was likely due to an increase in shoot dry
mass that was stronger than the increase in root dry mass. For moderately
and weakly responding genotypes, this was a result of an increase in shoot
dry mass combined with a decrease in root dry mass. Interestingly, FR
decreased the chlorophyll index, which indicates that FR reduces
chlorophyll content and suggests that photosynthetic capacity may be
reduced. Similarly, decrease in chlorophyll content was also reported both
in young tomato and fruiting tomato plants (Cao et al., 2018; Kalaitzoglou
et al., 2019; Kim et al., 2019) as well as other crops (Casal and Aphalo,
1989; Li and Kubota, 2009; Tucker, 1981). Furthermore, despite a trend of
increased total plant dry mass (TDM) due to FR, the genotypic variation
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in the response was very noticeable when comparing the magnitude of this
FR effect.

Genotypes achieved a stronger increase in dry mass produc-
tion by the increase in net assimilation rate

We categorized the genotypes into three groups (i.e., strongly, moderately,
and weakly responding group) based on their relative response in total
plant dry mass to FR (Table 2.1) to conduct a growth component analysis
based on the break-down of RGR (Hunt et al., 2002). RGR is the product
of net assimilation rate (NAR) and leaf area ratio (LAR). The strongly
responding genotypes substantially increased their RGR under additional
FR, followed by the moderately responding genotypes, while the weakly
responding genotypes showed no significant changes in their RGR under
FR (Figure 2.4). The increase in RGR of the strongly responding
genotypes under FR was the result of an increase in NAR, but not in LAR
as it was decreased by FR. FR was reported by Kalaitzoglou et al. (2019)
to increased specific leaf area (SLA). Here, we found that the weakly
responding genotypes showed a stronger increase in SLA compared to
other genotypes. Leaf mass fraction, the other component of LAR, was
significantly decreased for all groups and the response did not differ
between groups and was only dependent on the amount of FR. The dry
mass partitioning between organs is regulated by the relative sink strength
of the organs (Marcelis, 1996). The decreased LMF may be due to the
strong enhancement of stem sink strength under FR, causing less dry mass
to be partitioned to the leaves. For both the strongly and weakly
responding groups, their responses to FR were in accordance with the
known SAS responses. Our result suggests that when grown under
additional FR, tomato plants are not likely to be able to increase NAR
and LAR simultaneously, and that the genotypes with a strong increase in
NAR under FR allowed them to achieve a stronger increase in RGR
compared to other genotypes.

Possible mechanism of FR enhancement in NAR

One explanation for the FR-increased NAR maybe that the morphology of
plants grown with FR contributed to better vertical distribution of light.
FR increases the internode length in tomato, which may lead to a more
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open plant architecture. Indeed, up to 10% increase in canopy
photosynthesis was achieved in a model simulation by increasing internode
length in tomato (Sarlikioti et al., 2011). Also, NAR represents largely the
net carbon gain from photosynthesis (Poorter and Remkes, 1990). FR
enhances quantum yield of photosynthetically active radiation (PAR,
400-700 nm) in various species (Zhen and Bugbee, 2020; Zhen and van
Iersel, 2017). Such improvement in photosynthesis agrees with our finding
that FR increases NAR. However, their studies focused on short-term light
treatments. Experiments with plants grown or adapted to additional FR
showed varying results. For example, Kalaitzoglou et al. (2019) found that
four-week growth period with additional FR resulted in a higher net leaf
photosynthesis rate (A) when 50 µmol m-2 s-1 FR was added to 150 µmol
m-2 s-1 PAR. Cao et al. (2018), however, reported no significant differences
in A using a comparable spectrum. In addition, no significant FR effect on
A was reported for tomato plants grown with prolonged exposure to
additional FR until fruiting stage (Zhang et al., 2019). This may indicate
that the short-term FR enhancement in photosynthesis cannot fully
explain the increase in NAR either, especially when considering the
decrease in chlorophyll index (Figure 2.2; Cao et al., 2018; Kalaitzoglou
et al., 2019; Li and Kubota, 2009) and a decreased photosynthetic
capacity. To date, there is still insufficient evidence to fully dissect the
effect of FR on the NAR due to the complex interaction between the
underlying morphological and physiological components. We do, however,
speculate that the effect of FR (positive, neutral, or negative) on net
photosynthesis rate, light interception and light distribution varies and
that it is the combined effect that determines the NAR.

2.5 Conclusions

Genotypes responded similarly with respect to plant height, stem dry mass
and shoot: root ratio. However, the response of total plant dry mass varied
among genotypes. Here, we demonstrated that it was the differences in
genotype’s responses in net assimilation rate (NAR) and leaf area ratio
(LAR) that explains the genotypic variation in response of total dry mass.
Genotypes with a strong increase in RGR with increasing FR showed a
strong increase in NAR rather than LAR. The weakly responding genotypes,
however, showed a substantial increase in LAR but not NAR. The genotypic
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differences in the increase in LAR was mainly due to the genotypic difference
in the increase in specific leaf area, while responses of leaf mass fraction to
FR were conserved between genotypes.
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Supplementary information

Figure S2.1 Spectral composition of light treatments provided by light-emitting diodes (LEDs) 
measured at the top of the canopy.
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30 Genotypic variation in response to FR
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Chapter 3

Phytochrome B1/B2 and auxin transport
are involved in the regulation of
shoot:root ratio by far red in tomato

Ji, Y., Mooren, J., Marcelis, L. F. M., & Heuvelink, E.

(to be submitted).
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Abstract

Plants possess a set of photoreceptors to perceive changes in light
spectrum. Phytochromes B1/B2 sense changes in red: far red ratios and
are involved in mediating the shade-avoidance responses in tomato
(Solanum lycopersicum). Far red (FR) increases the fraction of dry mass
partitioning between shoot and root in tomato, but the control of this
response has not been explained. Here we aimed to study the role of
phytochromes and auxin transport in the regulation of shoot: root ratio at
young plant stage. We hypothesized that a loss-of-function mutation in
phyB1/B2 leads to a strong increase in shoot: root ratio, similar to the
effect of reduced R: FR ratio in wildtype plants. We also hypothesized
that the phyB1/B2 double mutant may still respond to FR in shoot: root
ratio. Furthermore, we hypothesized that the increased shoot: root ratio is
linked to the auxin transport between shoot and root. To test these
hypotheses, we conducted an experiment in a climate chamber where both
wildtype and phyB1/B2 double mutant tomato plants (S. lycopersicum cv.
Moneymaker) were grown for 21 days with 0, 55 or 85 µmol m-2 s-1 FR in
a background of white + red light at 150 µmol m-2 s-1. On 14th day,
auxin polar transport inhibitor 1-N-naphthylphthalamic acid (NPA) was
applied at the shoot-root junction. PhyB1/B2 mutant showed higher
shoot: root ratio compared to the wildtypes. PhyB1/B2 double mutant
still responded to FR. Blocking auxin transport from shoot to root led to
an increase in shoot: root ratio for both genotypes under all light
conditions. These results suggest that the response of shoot: root ratio to
additional FR involves the regulation of phytochromes, possibly via
affecting auxin transport.

Keywords: auxin transport, dry mass partitioning, far red, phytochrome,
tomato (Solanum lycopersicum)
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3.1 Introduction

Light is one of the most important environmental factors influencing
growth and development of plants by not only serving as the driving force
for photosynthesis, but also as a signal alerting plants for changes in the
growth environment. Shading by neighboring plants, which means a
decrease in light intensity and a decrease in red: far red (R:FR) ratio, is
one of the most intensively studied environmental signals. Upon the
detection of shading, which suggests competition for light, plants impose a
set of morphological and physiological responses to maximize their light
capture and to ensure reproductive success (Franklin, 2008; Yang et al.,
2016). These responses, collectively termed shade avoidance responses,
typically involve stem elongation (Huber and Wiggerman, 1997), changes
in leaf angles (Michaud et al., 2017), increased apical dominance
(Finlayson, 2007), and accelerated flowering (Devlin et al., 1998). In
addition to the well documented elongation responses to low R: FR ratio,
many authors also reported responses in dry mass production and
partitioning. Cao et al. (2018) and Kalaitzoglou et al. (2019) reported that
a low R: FR ratio increased the total plant dry mass in young tomato
(Solanum lycopersicum) plants. Similarly, a higher biomass was reported
for ornamental crops such as geranium (Pelargonium × hortorum) and
petunia (Petunia × hybrida) (Park and Runkle, 2017), leafy vegetables
such as lettuce (Li and Kubota, 2009), as well as fruiting tomato (Hao
et al., 2016; Kalaitzoglou et al., 2019).

A low R: FR ratio led to changes in the partitioning of dry mass between
organs, often favoring the growth of shoots over roots (Keiller and Smith,
1989; Page et al., 2009). In the vegetative phase of plant growth, the dry
mass partitioning between the above- and below-ground parts has be
related to the activities of the organs, as suggested by the “functional
equilibrium”theory (Brouwer, 1963). Based on this, it is reasonable to
speculate that changes in the light spectrum sensed by the shoot organs
may cause shifts in the functional equilibrium between shoot and root,
thus influencing the dry mass partitioning between the two parts. The
detection of changes in R: FR ratio is mediated by the phytochrome
photoreceptor family, which exists as two photo-interconvertible isoforms:
the red-light absorbing form Pr (biologically inactive) and the far-red
absorbing form Pfr (biologically active) (Chen et al., 2005). The
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biologically active Pfr translocates to the nucleus to mediate the
downstream shade avoidance responses (Ruberti et al., 2012). Auxin
signaling is heavily involved in the regulation of shade avoidance responses
in Arabidopsis thaliana (Iglesias et al., 2018).Shading or a low R: FR ratio
affects not only biosynthesis of auxin in A. thaliana (Li et al., 2012), but
also its transport and perception (Keuskamp et al., 2010; Kohnen et al.,
2016). Furthermore, other phytochromes such as phytochrome E may be
required to mediate tomato’s elongation responses to FR in the absence
of phytochrome B1 and B2 (Schrager-Lavelle et al., 2016). These results
suggest that also the impact of FR on dry mass partitioning between
shoot and root may be mediated by multiple phytochromes, possibly via
affecting auxin biosynthesis and transport.

Despite the intensive studies on A. thaliana, little is known about this
interaction in tomato, which has substantial and genotypically-conserved
responses of shoot: root ratio to increasing FR (this thesis, Chapter 2). In
the present study, we aim to understand the role of phytochrome B1/B2,
which are mainly responsible for sensing R: FR ratio in tomato (Weller
et al., 2000), in controlling the shoot: root ratio of young tomato plants.
Further, we investigated the involvement of auxin transport in facilitating
the phytochrome-mediated control of shoot: root ratio in tomato. We
hypothesized that a loss-of-function mutation in phyB1/B2 leads to a
strong increase in shoot: root ratio similar to the effect of reduced R: FR
ratio on wildtype plants. We also hypothesized that expected that the
phyB1/B2 double mutant may still increase in shoot: root ratio in
response to FR. Furthermore, we hypothesized that the increased shoot:
root ratio is linked to the auxin transport between the shoots and roots.
To test these hypotheses, we conducted a climate chamber experiment
where both wildtype and phyB1/B2 double mutant tomato plants (S.
lycopersicum cv. Moneymaker) were grown with 0, 55 or 85 µmol m-2 s-1

FR in a background of white + red lighting at 150 µmol m-2 s-1. In half of
the plants an auxin polar transport inhibitor 1-N-naphthylphthalamic acid
(NPA) was applied at the shoot-root junction. Growth component
analysis was conducted to evaluate the effects of treatments on the
components determining shoot: root ratio.
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3.2 Material and methods

Plant materials and growth conditions

The experiment was conducted in a fully-controlled climate chamber of
Wageningen University (52°N, 6°E, Wageningen, the Netherlands).
Wildtype tomato (accession LA2706, S. lycopersicum L. cv Moneymaker)
and a phyB1/phyB2 double mutant (accession LA4364 in the background
of cv. Moneymaker) were used in this experiment. The seeds of these
genotypes were obtained from the UC Davis/C.M. Rick Tomato Genetics
Resource Center (Davis, CA, USA) and maintained by Wageningen
University (Wageningen, the Netherlands). The seeds were treated with
70% ethanol for 1 min and then 28 min in 3% sodium hypochlorite before
being sown in trays containing vermiculite. The trays were kept in
darkness for three days, after which they were placed under fluorescence
tubes (Philips, Eindhoven, The Netherlands) with an intensity of 120
µmol m-2 s-1 and a photoperiod of 16 hours. Two weeks after sowing,
uniform seedlings were transplanted individually into plastic pots
(11x11x12 cm) containing expanded clay grid (Ø=6 mm) and grown for
three weeks. A day temperature of 20 ̊C, night temperature of 18 ̊C,
relative humidity of 70% and photoperiod of 16 hours was maintained
during the whole experimental period. Plants were irrigated with nutrient
solution (electrical conductivity 2.1 dS m-1, pH 5.5) containing 1.2 mM
NH4

+, 7.2 mM K+, 4.0 mM Ca2+, 1.8 mM Mg2+, 12.4 mM NO3– , 3.3 mM
SO4

2– , 1.0 mM PO4
2– , 35 µM Fe3+, 8.0 µM Mn2+, 5.0 µM Zn2+, 20 µM B,

0.5 µM Cu2+, 0.5 µM MoO4
2– .

Light treatments

There were three light treatments: white + red (WR) without additional
far red (FR), WR with 55 µmol m-2 s-1 FR and WR with 85 µmol m-2

s-1 FR (Table 3.1, Figure S3.1). All lighting was provided by overhead
LED modules (WR: Greenpower PM-DR/W-120, FR: Greenpower PM-FR-
120, Philips, Eindhoven, the Netherlands). The photosynthetic photon flux
density (PPFD) of WR was maintained at around 150 µmol m-2 s-1 at plant
height for all light treatments by adjusting the height of the LED fixtures.
The spectral distribution and photon flux density (PFD) was measured
using a spectroradiometer (USB 2000 + UV‐VIS; Ocean Optics, Duiven, the
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Netherlands). Phytochrome photostationary state (PSS) in each treatment
was calculated based on the measured spectra as the ratio of Pfr to the total
of Pfr and Pr according to (Sager et al., 1988).

Table 3.1: Photosynthetic photon flux density (PPFD), photon flux density of
far red, red: far red ratio (R: FR) and phytochrome photostationary state (PSS)
value of the light measured at the top of canopy in treatments with low, medium
or high far red.

Light treatment PPFD Far red R: FR1 PSS
µmol m-2 s-1 µmol m-2 s-1

No FR 151 ± 32 1 ± 0.1 100 ± 2.1 0.88
Medium FR 151 ± 4 55 ± 1.3 2 ± 0.1 0.77
High FR 148 ± 4 85 ± 2.1 1 ± 0.1 0.73

1For the calculation of ratios, PFD was integrated over 100 nm intervals for
red(600–700 nm) and far red (700–800 nm).
2All values are means ± standard error of means (s.e.m.). s.e.m of PSS was very
small (<0.001) and therefore not shown.

1-N-naphthylphthalamic acid treatments

Auxin polar transport inhibitor 1-N-naphthylphthalamic acid (NPA,
Sigma-Aldrich, Zwijndrecht, the Netherlands) was applied 14 days after
transplanting. NPA 1% (w/w) was prepared by dissolving NPA in warm
lanolin (Dražeta et al., 2004). Then, it was applied in a 3-5 mm thick ring
around the stem at the root-shoot junction using a syringe. Plants used as
control were applied with only lanolin using the same method.

Data collection

Plants were destructively measured 21 days after transplanting. Each plant
was cleaned off any remaining growth medium and was separated into leaves,
stem, and root. Leaf area of each plant was measured with a leaf area meter
(LI-3100 area meter, Li-Cor Biosciences, Lincoln, USA)). Each plant part
was dried in a ventilated oven for 48 hours at 105 °C and weighted for dry
mass.

Growth component analysis

Effect of different treatments on shoot: root ratio was analyzed by
separating shoot: root ratio into its underlying components (Figure 3.1).
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Shoot: root ratio is determined as shoot dry mass divided by root dry
mass. Shoot dry mass was determined as the sum of leaf dry mass and
stem dry mass.

Figure 3.1: General scheme of a top-down growth component analysis of shoot:
root ratio. Units for each component are included in brackets

Experimental set-up and statistical analysis

The experiment was a split-plot design with light and genotype as main
factors and NPA application as sub-factor. Each combination of light
condition and genotype was repeated 4 times. Within each light-genotype
plot, three randomly selected plants were applied with only lanolin and
three other plants were applied with lanolin containing NPA. Treatment
effect on root: shoot ratio was analyzed using analysis of variance
(ANOVA). Assumptions of homogeneity and normality of residuals were
satisfied as tested by Bartlett’s test and Shapiro-Wilk test at α=0.05,
respectively. Fisher’s unprotected least significant difference (LSD) test
was used for mean separation. Unprotected, because we also applied this
test for separating interaction means when the F-test for interaction was
not significant at α = 0.05. For the growth component analysis, each
component was compared between treatments using Student’s t-test. All
statistical analyses were performed in Genstat (18th Edition, VSN
International Ltd., Hemel Hempstead, UK) at α = 0.05.
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3.3 Results

Effect of far red and auxin transport inhibitor on the shoot:
root ratio

Shoot: root ratio increased in loss-of-function phyB1/B2 mutant compared
to that in the wildtype (Figure 3.2). In both wildtype and mutant, adding
55 µmol m-2 s-1 of FR seemed to slightly increase the shoot: root ratio (not
statistically significant), while adding 85 µmol m-2 s-1 of FR increased shoot:
root ratio significantly. Also, the local application of NPA at the root-shoot
junction significantly increased S:R ratio for both the wildtype and mutant
in each light treatment.

Figure 3.2: Effects adding 0, 55, or 85 µmol m-2 s-1 of far red on the
shoot: root ratio in a white + red background light. Dashed and solid lines,
respectively, represent plants with or without the application of 1% (w/w) N-
1-naphthylphthalamic acid (NPA) at the root-shoot junction in wildtype (blue
lines) and phyB1/B2 mutant (orange lines). Error bar represents standard error
of means (n=4) and different letters denote significant differences according to
Fisher’s unprotected LSD test (α = 0.05).
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Growth component analysis

The increased shoot: root ratio due to loss-of-function mutation of
phyB1/B2 was the result of more substantial decrease in root dry mass
and to a lesser extent also the result of a decrease in shoot dry mass
(Figure 3.3). Decreased shoot dry mass resulted from decreased leaf dry
mass and stem dry mass, although stem dry mass was not significantly
reduced by the mutation when no FR was present (Figure 3.3A). All
components showed a dosage dependent effect to the increasing FR
intensity with a stronger response under higher FR intensity.

The addition of FR increased shoot: root ratio in both wildtype and
phyB1/B2 mutant (Figure 3.4). In the wildtype, FR increased shoot: root
ratio by increasing shoot dry mass, with no significant effect on root dry
mass. Increased stem dry mass was the main reason for the increase in
shoot dry mass while the increase in leaf dry mass was only statistically
significant at 85 µmol m-2 s-1 FR. In the phyB1/B2 mutant, FR increased
shoot: root ratio due to a stronger reduction of root dry mass than that of
shoot dry mass. The reduction of shoot dry mass in phyB1/B2 mutant
was the result of reduced leaf dry mass, stem dry mass was hardly
affected. Responses were all dosage-dependent: stronger response at
higher FR intensity.

In both wildtype and phyB1/B2 mutant, NPA application increased shoot:
root ratio due to a stronger decrease in root dry mass than in shoot dry mass
(Figure 3.5). In the wildtype, both leaf dry mass and stem dry mass were
decreased by NPA application while only leaf dry mass was affected by NPA
application in the phyB1/B2 mutant. The wildtype was more responsive to
NPA treatment compared to the phyB1/B2 mutant.

3.4 Discussion

Phytochrome regulation of shoot: root ratio

Wildtype tomato plants showed a significant increase in shoot: root ratio
with increasing FR intensity (Figure 3.2). This increase is not only in
accordance with the conserved FR-induced increase in shoot: root ratio
observed among various tomato genotypes (Chapter 2, this thesis), but also
with previous studies of (Cao et al., 2018; Kasperbauer, 1987; Lee et al.,
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Figure 3.3: Effect of loss-of-function mutation of phyB1/B2 on the components
determining shoot: root ratio when 0(A), 55(B) or 85 µmol m-2 s-1 of far red
(C) was added in a white + red background light. The percentages represent
the relative changes in the components when comparing mutant with wildtype.
P-value of the t-test is indicated in each component with a significant difference
(P<0.05) being highlighted in yellow.



3

Phytychrome and auxin control of shoot: root ratio 43

Figure 3.4: Effect of adding 55, or 85 µmol m-2 s-1 of far red in a white + red
background light on the components determining shoot: root ratio in wildtype (A,
B) and phyB1/B2 mutant (C, D). The percentage represents the relative change
in the components when compared with no FR. P-value of the t-test is indicated
in each component with a significant difference (P<0.05) being highlighted.
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2016). This increase was mainly a consequence of higher shoot dry mass due
to higher stem dry mass (Figure 3.4), possibly caused by FR induced stem
growth. Phytochromes are the main photoreceptors responsible in sensing
R: FR ratio, and a loss-of-function phytochrome mutant grown without FR
is similar to the wildtype grown with FR (Devlin et al., 1999). PhyB1/B2
double mutant increased shoot: root ratio compared to the wildtype (Figure
3.2) as a result of a stronger reduction in root dry mass than that in shoot
dry mass (Figure 3.3). This reduction in plant mass as a result mutation
in phyB1/B2 was also reported by Weller et al (2000). This may result
from a strong stem and petiole elongation in the double mutant, together
with a reduction in the establishment of leaf area (Figure S3.2, Devlin et al.
1999). Plant response in biomass to FR seems to be dosage-dependent and
we suggest that there is an optimum FR dosage or optimum R: FR ratio for
the biomass production. Before reaching the optimum dosage, increase of
leaf area (and consequently light interception) is more favorable for biomass
production. Further increase of FR (or decrease of R: FR ratio), which
strongly favors stem elongation, leads to limitation of biomass partitioning
to leaves and the establishment of leaf area. This limitation, combined with
the reduction in photosynthetic capacity and chlorophyll content, may lead
to the reduction on biomass production that contradicts the positive effect
of FR. This may explain the reduced biomass observed in the phyB1/B2
mutants grown with FR.

When looking at biomass in absolute terms, it is difficult to determine
whether changes in stem dry mass is the cause or the consequence of
changes in processes such as stem elongation. On relative terms, however,
it is known that dry mass partitioning between organs are mainly
determined by the relative sink strength of the organs (Marcelis, 1996). A
higher fraction of dry mass partitioning to the stem suggests a higher
relative sink strength in the stem. No previous study touched the FR
effect on the sink strength of vegetative organs. However, the expression of
genes related to source-to-sink sugar transport, and sugar metabolisms in
the sink, are subject to phytochrome regulation (Ernesto Bianchetti et al.,
2018; Fridman and Zamir, 2003; Kocal et al., 2008). Considering the direct
relationship between sink strength and sugar metabolism as well as
transportation (Osorio et al., 2014), we reason that FR may increase the
shoot: root ratio by increasing shoot relative sink strength. Whether this
increase is a result of higher shoot sink strength, lower root strength, or
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more complicated changes in the sink strength of each organ, requires 
dedicated studies.

In A. thaliana, the phyB/phyD double mutant showed little response to 
R:FR ratio (Aukerman et al., 1997; Devlin et al., 1999). This was not the 
case in tomato as earlier studies showed that phyA/B1/B2 triple mutant 
still retain phytochrome responses (Weller et al., 2000). The phyB1/B2 
double mutant was still capable in responding with elongation to 
additional FR, showing that other members of the phytochrome family, 
such as phytochrome E, are able to mediate the elongation responses to 
FR in the absence phytochrome B (Schrager-Lavelle et al., 2016). Tomato 
phyB1/B2 double mutant also responded to additional FR with increased 
shoot: root ratio (Figure 3.2), which suggest that the changes in shoot: 
root ratio is also a phytochrome-regulated response to FR in tomato that 
can be regulated by other phytochrome in absence of phytochrome B1 and 
phytochrome B2 in tomato.

Interaction between phytochrome and auxin in regulating 
shoot: root ratio under FR

Loss-of-function phyB1/B2 mutant responded to FR with increasing 
shoot: root ratio just as wildtype plants (Figure 3.2). The perception of 
FR by phytochrome B leads to the accumulation of phytochrome 
interaction factors (PIFs) and induces growth responses via upregulated 
auxin synthesis (Courbier et al., 2020; Li et al., 2012; Pantazopoulou 
et al., 2017). This suggests that the phyB1/B2 mutant may have a 
constitutively elevated auxin level in the shoots, which stimulates increase 
in shoot: root ratio and stem elongation. Auxin is transported from the 
shoot apex towards the base and from shoot to root. The application of 
auxin transport inhibitor NPA at the shoot-root junction has been shown 
to effectively b lock t he t ransport f rom s hoot t o r oot a nd substantially 
reduce the auxin level in the root (Reed et al., 1998). Hence, blocking 
shoot-to-root auxin transport should increase shoot: root ratio just as 
wildtype grown under FR, or as phyB1/B2 mutant grown without FR. 
Indeed, we observed significant increase in stem elongation (Figure S3.3) 
and in shoot: root ratio (Figure 3.2, Figure 3.5) when NPA was applied at 
shoot-root junction. Especially, the NPA application strongly reduced 
root growth relative to that of shoot growth. This is in agreement with 
reports demonstrating that blocking auxin transport with NPA suppressed
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the development and growth of root (Casimiro et al., 2001; Reed et al.,
1998). More interestingly, the effect of NPA application was less
substantial in the mutant (Figure 3.5D-3.5F) than that in the wildtype
(Figure 3.5A-3.5C), and it was also less substantial in treatments with
high FR (Figure 3.5C, 3.5F) than that with no FR (Figure 3.5A, 3.5D).
This may suggest that under high FR conditions and/or without
functioning phytochrome B, the auxin level in the shoot is already
elevated to a point where blocking auxin transport has little effect on.
Collectively, these results demonstrated the interacting roles between
phytochrome and auxin in controlling shoot: root ratio in tomato.

3.5 Conclusions

FR increases shoot: root ratio in tomato. This increase involves the
regulation by phytochrome B1/B2, as shown by the strong increase of
shoot: root ratio phyB1/B2 double mutant. The phyB1/B2 double mutant
still showed an increase in shoot: root ratio when FR increased, hence
providing evidence for the involvement of other phytochromes in the
regulation of shoot: root ratio in tomato. Phytochrome regulates shoot:
root ratio in response to FR possibly via affecting auxin transport.
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Supplementary information

Figure S3.1 Spectral composition of light treatments provided by light-emitting diodes (LEDs) measured at the top of the 
canopy. 
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Figure S3.2 Effect of adding 0, 55, or 85 μmol m−2 s−1 of far red in a white + red background light, and application of N-1-
naphthylphthalamic acid (NPA) in a ring of lanolin at the root-shoot junction on plant leaf area in wildtype (A) and 
phyB1/B2 mutant (B). Orange represents plants applied with NPA and blue represents control plants without NPA. For the 
control treatment, a mock ring of lanolin without NPA was applied at the root-shoot junction. Error bar represents standard 
error of means (n=4). 

Figure S3.3 Effect of adding 0, 55, or 85 μmol m−2 s−1 of far red in a white + red background light, and application of N-1-
naphthylphthalamic acid (NPA) in a ring of lanolin at the root-shoot junction on plant height in wildtype (A) and phyB1/B2 
mutant (B). Orange represents plants applied with NPA and blue represents control plants without NPA. For the control 
treatment, a mock ring of lanolin without NPA was applied at the root-shoot junction. Error bar represents standard error of 
means (n=4). 
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Abstract

The addition of far-red (FR, 700-800 nm) radiation to standard growth
light triggers a set of photomorphogenic responses collectively termed
shade avoidance syndrome. Recent research showed that additional FR
increased fruit yield in greenhouse tomato production. However, the
mechanism behind this increase is not clear; nor is it known whether there
is a trade-off between growth and defense against plant diseases in tomato
under additional FR. The aims of this study were 1) to quantify the effect
of additional FR on tomato fruit growth, 2) to explain this effect based on
underlying growth components and 3) to examine the FR effect on
resistance against the necrotrophic fungus Botrytis cinerea. Tomato
(Solanum lycopersicum ‘Moneymaker’) plants were grown for four
months with 30 or 50 µmol m-2 s-1 of FR added to 150 µmol m-2 s-1 red +
blue or white background LED lighting. Growth and development
parameters were recorded, and a growth component analysis was
conducted. Bioassays for resistance against B. cinerea were conducted on
leaf samples collected from each light treatment. Additional FR increased
total fruit dry mass per plant by 26-45%. FR affected multiple growth
components, among which the fraction of dry mass partitioned to fruits
was the most prominent with a 15-35% increase. Truss appearance rate
was increased 11-14% by FR while instantaneous net photosynthesis rate
was not affected. FR also resulted in more severe disease symptoms upon
infection with B. cinerea. In conclusion, additional FR increases tomato
fruit production mainly by increasing dry mass partitioning to fruits,
rather than improving photosynthesis or increasing total plant biomass.
However, FR also reduces resistance of tomato leaves against B.
cinerea.

Key words: Botrytis cinerea; dry mass partitioning; far red; growth com-
ponent analysis; LED lighting; Solanum lycopersicum.
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4.1 Introduction

The shade avoidance syndrome (SAS), a set of adaptive changes that
plants deploy when exposed to light with a low red (R, 600-700 nm) to
far-red (FR, 700-800 nm) ratio, is among the most intensively studied set
of plant responses to changes in their light environment. Plants perceive
changes in the R: FR ratio via a family of photoreceptors named
phytochromes, which exist as two photo-interconvertible isoforms: the
biologically inactive red-light absorbing form (Pr) and the biologically
active far-red-absorbing form (Pfr) (Chen et al., 2005). Pfr translocates to
the nucleus and mediates different photomorphogenetic responses (Ruberti
et al., 2012). Typical SAS responses such as stem elongation (Huber and
Wiggerman, 1997), leaf hyponasty (Michaud et al., 2017; Pantazopoulou
et al., 2017), reduced branching (Finlayson, 2007), and accelerated
flowering (Devlin et al., 1998) have been studied intensively in Arabidopsis
thaliana (for review, see Casal, 2012). Unlike in nature, where a low R: FR
ratio often coincides with a decrease in photosynthetic photon flux density
(PPFD), recent research typically features the addition of FR in a defined
background light. The development of efficient light-emitting diodes
(LEDs) in the past decade also stimulated the study of FR responses in a
wide range of crop species including ornamental crops (Park and Runkle,
2017), leafy vegetables (Li and Kubota, 2009; Zhen and van Iersel, 2017)
and fruit crops (Hao et al., 2017). Frequently, a positive FR effect on
plant dry mass production is reported. To explain this, some authors
demonstrated that additional FR may alter plant architecture to increase
light interception (Kalaitzoglou et al., 2019), while in other studies
additional FR was shown to increase leaf net photosynthesis rates (A)
(Cao et al., 2018; Zhen and van Iersel, 2017) or whole-plant photosynthesis
(Park and Runkle, 2017). However, it is also worth noting that the FR
effect on photosynthesis varies between studies (Kim et al., 2019; Zhang
et al., 2019). Additional FR was also reported to affect dry mass
partitioning among plant organs, often increasing partitioning to shoot
over root (Keiller and Smith, 1989; Page et al., 2009). In contrast to the
abundance of research on relatively young plants, detailed studies of FR
effects during the fruiting stage of crops such as tomato (Solanum
lycopersicum) are less frequent. Recently, Kalaitzoglou et al. (2019)
reported that additional FR increased total dry mass of tomato plants in
the vegetative growth stage, as well as the fruit number per plant, fruit
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fresh weight per plant and average fruit fresh weight. Similarly, Zhang
et al. (2019) reported higher total plant dry mass and higher fruit yield in
tomato under additional FR radiation. However, neither study provided
sufficient insights on how additional FR increases fruit growth in the
fruiting stage of the crop, which is a key step in understanding the FR
induced yield improvement in fruit crops like tomato.

Besides the increase of plant growth under additional FR, the promotion
of SAS may negatively impact plant immunity (Izaguirre et al., 2006;
McGuire and Agrawal, 2005). FR has been reported to downregulate both
salicylic-acid and jasmonic-acid-induced plant defense responses in A.
thaliana (de Wit et al., 2013). Botrytis cinerea, a necrotrophic fungal
pathogen causing gray mold disease in many plant species, has been
studied intensively due to its destructive effects on crop production
(reviewed by van Kan 2006). In A. thaliana, exposure to a low R:FR light
reduced plant resistance against B. cinerea (Cargnel et al., 2014; Cerrudo
et al., 2012). Although no direct FR effect on tomato resistance against B.
cinerea is known, reduced constitutive defenses and reduced
jasmonic-acid-induced direct defenses have been reported under low R:FR
light conditions (Cortés et al., 2016). Taken together, it is reasonable to
expect that additional FR may reduce the resistance of tomato against B.
cinerea.

Growth component analysis, which is an analysis that subdivides growth
into underlying morphological and physiological components (Jolliffe and
Courtney, 1984), can be a useful tool to evaluate the contribution of these
processes to fruit growth (Higashide and Heuvelink, 2009). Here, we aimed
to identify and quantify the key components of tomato fruit growth as
affected by additional FR and study whether additional FR affects
resistance against B. cinerea in fruiting tomato plants grown with
supplemental LED lighting. We hypothesized that additional FR would
accelerate plant development (flowering, truss appearance rate), increase
total fruit dry mass and fraction of dry mass partitioned to fruits and
decrease plant defense against B. cinerea. To test these hypotheses, we
conducted an experiment with tomato plants for four months in a
greenhouse with different levels of FR added to different LED light
combinations. Growth components were monitored and bioassays were
conducted to evaluate plant resistance against B. cinerea.
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4.2 Material and methods

Plant materials and growth conditions

The experiment was conducted at Wageningen University (52°N, 6°E,
Wageningen, the Netherlands.). Tomato (S. lycopersicum ‘Moneymaker’
) seeds were sown in the greenhouse (20 °C, relative humidity 80%) on 28
Nov. 2016 and germinated under natural light. On 15 Dec. 2016, uniform
seedlings were transplanted into black 7.5-liter plastic pots filled with river
sand and moved into another greenhouse. The greenhouse was divided
into 15 compartments separated by double-sided light-impermeable white
plastic sheet. In each compartment, 14 plants were placed on two gutters,
including two border plants at both ends. Plant density was four plants
m-2. Climate in the greenhouse was controlled by greenhouse climate
control computer (Hoogendoorn, Vlaardingen, the Netherlands).
Measured day/night temperature was 22 ± 0.5/18 ± 0.3 °C (mean ±
standard deviation) until plants started flowering (35 days after
transplanting). Thereafter, temperatures were adjusted to 20 ± 0.7/16 ±
0.3 °C to facilitate fruit set. Temperature was recorded every 10 minutes
with PT500 temperature sensors (Hoogendoorn) placed in the center of
each plot. Measured daily average relative humidity was 78 ± 5 % and
CO2 partial pressure was 408 ± 11 µbar. The plants were irrigated with
nutrient solution (electrical conductivity 2.1 dS m-1, pH 5.5) containing
1.2 mM NH4

+, 7.2 mM K+, 4.0 mM Ca2+, 1.8 mM Mg2+, 12.4 mM NO3– ,
3.3 mM SO4

2– , 1.0 mM PO4
2– , 35 µM Fe3+, 8.0 µM Mn2+, 5.0 µM Zn2+,

20 µM B, 0.5 µM Cu2+, 0.5 µM MoO4
2– . The EC and pH level of the

nutrient solution were measured twice a week and the nutrient solution
was refreshed frequently. Manual pollination with an electronic bee (Vibri
Vario, Royal Brinkman, Gameren, the Netherlands) was applied three
times per week. Side shoots and same number of old leaves were removed
weekly from all plants.

Light treatments and experimental set-up

Five overhead light treatments were applied: white (W), white + 30 µmol
m-2 s-1 FR (WFR30), red + blue (RB), red + blue + 30 µmol m-2 s-1

FR (RBFR30) and RB + 50 µmol m-2 s-1 FR (RBFR50) (Figure 4.1, Table
4.1). The spectral distribution and photon flux density of the supplementary
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Table 4.1: Photosynthetic photon flux density (PPFD), photon flux density
(PFD) of blue, green, red, and far red, ratios of red: blue, red: far red and
phytochrome photostationary state (PSS) value of the LED supplementary light
in the five light treatments measured at the canopy level in the absence of solar
radiation.

Parameter Unit Light tretment
W WFR30 RB RBFR30 RBFR50

PAR PPFD1 µmol m-2 s-1 153 ± 82 144 ± 9 155 ± 9 146 ± 9 146 ± 8
Blue µmol m-2 s-1 25 ± 3 23 ± 3 9 ± 2 8 ± 3 9 ± 1
Green µmol m-2 s-1 38 ± 4 34 ± 3 3 ± 0.2 4 ± 0.1 3 ± 0.2
Red µmol m-2 s-1 86 ± 4 79 ± 7 141 ± 8 133 ± 6 136 ± 8
Far red µmol m-2 s-1 1 ± 0.1 30 ± 3 3 ± 0.3 28 ± 1 49 ± 2
Red: blue 3 ± 0.3 3 ± 0.1 16 ± 0.4 17 ± 0.3 16 ± 0.4
Red: far red 79 ± 4 3 ± 0.1 49 ± 5 5 ± 0.1 3 ± 0.1
PSS 0.87 0.80 0.88 0.84 0.80

1For the calculations of ratios, PFD was integrated over 100 nm intervals for blue
(400-500 nm), green (500-600 nm), red (600-700 nm) and far red (700-800 nm).
2All values are means ± standard error of means (s.e.m.). s.e.m of PSS was very
small (0.001-0.002) and is therefore not shown.

light was measured with a spectroradiometer (USB 2000 + UV-VIS, Ocean
Optics, Duiven, the Netherlands), on 6 evenly distributed locations in each
plot at the top of the canopy. Phytochrome photostationary state (PSS) in
each treatment was calculated based on the measured spectra as the ratio
of Pfr to the total of Pfr and Pr according to (Sager et al., 1988). The
RBFR50 treatment was included because it had the same PSS value as
WFR30 (Table 4.1). The blue, red and far-red spectra in this experiment
peaked at 453 nm, 666 nm and 735 nm, respectively. Photoperiod was set
to 16 hours (0400h - 2000h). On average, solar daily photosynthetic photon
flux density (PPFD, 400-700 nm) contributed 12% to the total daily PPFD
integral during the whole experiment at canopy level (Figure S4.2).

All supplementary lighting was provided by LED modules (W:
GreenPower LED-TL-DR/W-MB-VISN, RB: GreenPower LED
-TL-DR/B-150, FR: GreenPower LED -PM-FR-150, Philips, Eindhoven,
the Netherlands). The height of the LEDs was adjusted weekly to
maintain the desired PPFD at the top of the canopy (150 µmol m-2 s-1,
Table 4.1). When the LEDs reached the maximal height of the
greenhouse, the top of the canopy was lowered weekly, as is usual in a
modern high wire cultivation system. A spectroradiometer was used to
ensure that both PPFD and PSS values were kept constant every time the
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Figure 4.1: Spectral composition of light treatments provided by light-emitting
diodes (LEDs) measured at the top of the canopy. (A) 150 µmol m-2 s-1

background light of red/blue (RB) without far red (FR), with 30 or 50 µmol
m-2 s-1 FR. (B) 150 µmol m-2 s-1 background light of white (W) LEDs, without
FR, or with 30 µmol m-2 s-1 FR.

height of lamps or that of the plants was adjusted. The experiment was
set up as a randomized complete block design, where the five light
treatments were repeated in three blocks.

Non-destructive measurements

Growth and development parameters

Numbers of leaves (length ≥ 1 cm) per plant, flowering buds per truss, fully
opened flowers per truss and set fruits (diameter ≥ 5 mm) per truss were
recorded weekly for three plants per block.

Leaf net photosynthesis rate

Measurements of leaf net photosynthesis were performed using the
LI-6400XT photosynthesis system (Li-Cor Biosciences, Lincoln, NE,
USA). Acclimation of leaf net photosynthesis rate (A) to FR was assessed
using CO2 (A/Ci) and light response curves (A/PPFD), by means of the
leaf chamber fluorometer (leaf area: 2 cm2) with the built-in RB LED
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light source. Instantaneous A under the treatment spectra was
additionally assessed using a transparent leaf chamber (leaf area: 6 cm2).
Conditions in the chamber were: 400 µbar CO2 partial pressure, 0.9-1.2
kPa leaf-to-air vapor pressure deficit, 25 °C cuvette temperature, and 400
µmol s-1 air flow rate, unless described otherwise. The third or fourth
leaflet of the fifth leaf (counting from the top of plant, the first leaf being
longer than 5 cm) of one plant per plot was used for measurements.
Measurements were conducted for two time periods (1) from 16 to 23 Jan.
2017 (32-39 days after transplanting) and (2) from 19 to 24 Feb. 2017
(66-71 days after transplanting).

A/Ci curves: Leaves were first adapted to 500 µbar CO2 and 1500 µmol
m-2 s-1 PPFD for 10 - 15 minutes, after which CO2 partial pressure was
increased to 2000 µbar. Then, CO2 was reduced to 1500, 1000, 800, 600,
400, 200, 100, 50 and 40 µbar, with each step taking ∼5 min. Data was
logged every five seconds, and averages of six stable values at each CO2 step
were calculated. PPFD was maintained at 1500 µmol m-2 s-1. Parameters
of a biochemical photosynthesis model (Farquhar et al., 1980), namely the
maximum rate of carboxylation of Rubisco (Vcmax), maximum electron
transport rate at 1500 µmol m-2 s-1 PPFD (J1500), and maximum rate of
triose phosphate use (TPU) were estimated by using the fitting procedure
by (Sharkey et al., 2007).

A/PPFD curves: Directly after A/Ci curve measurements, CO2 partial
pressure was adjusted to 400 µbar, and PPFD remained at 1500 µmol m-2 s-1

until A and stomatal conductance were stable. Then, PPFD was reduced
stepwise to 1000, 800, 600, 400, 200, 150, 100, 50 and 30 µmol m-2 s-1.
Data were logged as described above. Quantum yield (QY), a curvature
parameter (Θ) and maximum A (Amax) were determined by fitting a non-
rectangular hyperbola (Ögren and Evans, 1993).

Instantaneous A: Opposite leaflets of those used in A/Ci and A/PPFD
curves were clamped into the transparent leaf chamber. After waiting for
approximately two minutes for CO2 partial pressures and water vapor to
equilibrate, data were logged for 30 seconds, as described above. This was
repeated at 1000h, 1200h and 1400h on the same leaflets and the same
day. Instantaneous A was later expressed as a function of PPFD inside the
transparent leaf chamber, which was 88.4% of PPFD measured above the
transparent leaf chamber.
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Destructive measurements

On 30 Jan. 2017 (46 days after transplanting), 6 Mar. 2017 (81 days
after transplanting) and 24 Apr. 2017 (130 days after transplanting), three
replicate plants per compartment (experimental unit) were destructively
measured. Total leaf area per plant (LI -3100 area meter, Li-Cor) and fruit
number were measured. Leaves, stem, fruits and roots were separated and
dried in the oven for 72 hours at 105 °C to obtain the dry mass. The number
and dry mass of harvested ripe fruits and removed old leaves was recorded
and included in the calculation of total fruit dry mass and total plant dry
mass.

Growth component analysis

Effects of light treatment on plant growth were analyzed by separating
growth in its underlying components (Figure 4.2). Fruit dry mass (FDM)
was analyzed as the product of total plant dry mass (TDM) and fraction
of dry mass partitioned to fruits (Ffruit). Ffruit was further divided into
fruit number (FNplant) and fruit relative sink strength (FSS, fruit sink
strength relative to total sink strength of fruit and vegetative organs). FSS
was not directly measured but can be evaluated by examining individual
ripe fruit dry mass (IFDM). FNplant can be explained by truss appearance
rate (TAR) and fruit number per truss (FNtruss). All comparisons were
based on the destructive harvests 46 and 130 days after transplanting,
unless described otherwise. Instantaneous A was the average of the two
measurement periods in January and February. Leaf area index (LAI),
total leaf number per plant (LNplant), and average leaf area per leaf
(LAleaf) were calculated from daily values estimated from linear
interpolation of the data measured 46, 81 and 130 days after transplanting.
TAR was calculated based on leaf appearance rate assuming that after
formation of every three leaves a truss was formed.

4.3 Results

Growth component analysis

During the generative growth period (46–130 days after transplanting),
adding 30 µmol m-2 s-1 of far red (FR) to white (W) or red + blue (RB)
background light resulted in 33% and 26% higher total fruit dry mass,
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respectively (Figure 4.3A). Adding 50 µmol m-2 s-1 of FR in an RB
background increased total fruit dry mass by 45%. Similar effect was
observed for the individual ripe fruit dry mass (Figure 4.3B).

Figure 4.3: Effects of additional far red on cumulative fruit dry mass (A) and
individual ripe fruit dry mass(B) in white or red + blue background light during
generative growth (46–130 days after transplanting). Error bars represent s.e.m.
Different letters denote significant differences according to Fisher’s protected
LSD test (α=0.05).

In both RB and W backgrounds, adding 30 µmol m-2 s-1 of FR
significantly increased the fraction of dry mass partitioned to fruits
(Ffruit), and truss appearance rate (TAR, Figure 4.4A, 4.4B). These two
components further increased when FR was increased from 30 to
50 µmol m-2 s-1 (Figure 4.4C). FR increased significantly (9–10%) the leaf
number per plant (LNplant) during this period, however only in the RB
background (Figure 4.4). No significant effect of additional FR was found
for other components. Absolute values of all components are shown in
Table S4.1.

Additional FR shifts dry mass partitioning towards fruits and
stem at the expense of leaves

After 130 days of growth with additional FR in a W or RB background, the
fraction of dry mass partitioned to fruits and stem increased, whereas that
partitioned to the leaves was reduced (Figure 4.5). There were no significant
differences in the fraction of dry mass partitioned to roots between light
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treatments (Figure 4.5D). Similar patterns were observed 46 and 81 days
after transplanting (Figure S4.1).

Figure 4.5: Effects of additional far red in white or red + blue background light
on the fraction of dry mass partitioned to fruits (A), leaves (B) stem (C) and roots
(D). Error bars represent s.e.m. Different letters denote significant differences
for the dry mass fraction of the same organ according to Fisher’s protected LSD
test (α = 0.05).

Acclimation to additional FR tends to reduce leaf photosyn-
thetic capacity

No difference was observed in net photosynthesis rate (A) measured with a
RB light source in the A/Ci or the A/PPFD curve when comparing plant
grown in W and RB without FR, while plants grown under additional FR
showed lower A (Figure 4.6). This difference was most clear at higher light
intensities (Figure 4.6A) and CO2 partial pressures (Figure 4.6B). Quantum
yield (QY) was not significantly affected by growth under additional FR,
except that compared to RB, RBFR30 resulted in a significantly lower QY



64 FR affects partitioning and resistance

(Figure 4.6A, inset). Additional FR significantly reduced the maximum
electron transport rate in W background (J1500, Figure 4.6B, inset). Other
parameters derived from the fitted model were not significantly different,
although reduction in Amax (P = 0.056) and TPU (P = 0.052) when grown
under additional FR was close to significant. Instantaneous A, which is
the net photosynthesis rate measured under actual growth light, was not
significantly affected by the light treatments, neither as absolute rates nor
when normalized for PPFD during the measurement (Table S4.1).

Plants grown with additional FR show reduced resistance
against B. cinerea

In the RB background, additional FR resulted in significantly larger lesion
size, which further increased as FR increased from 30 to 50 µmol m-2 s-1. In
the W background, lesion size was not significantly affected by the addition
of 30 µmol m-2 s-1 FR, although there was a tendency for lesion size to
increase with increased FR.

4.4 Discussion

Additional FR increases fruit growth mainly by increasing
dry mass partitioning to fruits

Additional FR in both W and RB backgrounds increased total fruit dry
mass (Figure 4.3A), confirming earlier findings in experiments that used
either continuous or end-of-day FR treatments (Hao et al., 2016;
Kalaitzoglou et al., 2019; Zhang et al., 2019). FR has been shown to
increase leaf area, especially in the early stage of plant growth (Cao et al.,
2018; Kalaitzoglou et al., 2019). In the present study we observed a
similar but smaller FR effect (Figure 4.4), which could be a result of the
difference in developmental stage and the fact that we used a less extreme
FR treatment in this compared to previous experiments. Despite a
negative FR effect on photosynthetic capacity, total plant dry mass was
not significantly affected by additional FR (Figure 4.4). This may be the
result of an improved light distribution within the plant canopy as the
elongated internodes under additional FR led to a more open plant
architecture, which allowed radiation to penetrate deeper into the canopy
(Zhang et al., 2019). This is further supported by a model simulation
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Figure 4.7: Effects of additional far red in white or red + blue background light
on lesion area after B. cinerea infection. Error bars represent s.e.m. Different
letters denote significant differences in lesion area between growth conditions
according to Fisher’s protected LSD test (α = 0.05).

showing that increasing internode length indeed increases canopy light
absorption in the upper part of the canopy and increased canopy
photosynthesis rate by up to 10% (Sarlikioti et al., 2011).

Exposure to FR may increase the efficiency of photosystem II electron
transport by balancing the excitation of both photosystems, thereby
increasing net photosynthesis rate and decreasing non-photochemical
quenching in the short term; this has been described as the Emerson
enhancement effect (Emerson et al., 1957; Pettai et al., 2005; Zhen and
van Iersel, 2017). Here, we observed a tendency towards a decreased
photosynthetic capacity and a reduced efficiency for CO2 fixation per unit
leaf area in FR acclimated leaves when these were measured using a light
source containing only RB light (Figure 4.6). This negative effect may be
related to a lower chlorophyll content per unit leaf area, which was often
reported in plants grown with additional FR (Héraut-Bron et al., 2001;
Kalaitzoglou et al., 2019; Tucker, 1981). When measured with a
transparent chamber exposed to the different treatment spectra, we found
no significant effect of FR on A (Figure 4.4, Figure S4.1), which was
similar to the results reported by (Zhang et al., 2019). Previous FR
acclimation studies showed positive (Kalaitzoglou et al., 2019), negative
(Barreiro et al., 1992) or no effects on A (Bonnett et al., 1975; Chow



4

FR affects partitioning and resistance 67

et al., 1990). In the present study, we observed a higher specific leaf area
under additional FR (Table S4.2), which is in line with decreased
photosynthetic capacity per unit leaf area. Here, we argue that the FR
effect on total plant growth via affecting photosynthesis, on the long run,
is rather limited. A low R:FR is a signal for light competition and plants
may respond by optimizing their architecture for better light interception.
For young tomato plants, the increase in total plant dry mass under
additional FR mainly resulted from an increased light interception due to
a higher total leaf area index (Kalaitzoglou et al., 2019). In a fruiting
tomato canopy, which usually has a leaf area index higher than three and
typically intercepts about 90% incident light (Heuvelink and Dorais,
2005), total light interception can only be improved marginally. This is in
accordance with our finding that total plant dry mass was not significantly
affected by FR during generative growth. Further, we speculate that the
positive short-term effect (Emerson enhancement effect) and slightly
negative long-term acclimation effect of additional FR on A may cancel
each other out.

Additional FR significantly increased the fraction of dry mass partitioned
to fruits during generative growth (Figure 4.4), which was at the expense
of partitioning to leaves. This reduced partitioning to leaves is in
accordance with a meta-analysis on young plants by (Poorter et al., 2012),
which associated low R:FR with a decreased leaf mass fraction, in that
case accompanied by increased stem mass fraction. Similar changes of
partitioning patterns were also reported by Kalaitzoglou et al. (2019).
Recently, Kim et al. (2019) showed a tendency that an increased fraction
of dry mass was partitioned to tomato fruits when additional FR was
provided in an intra-canopy R lighting, however the effect was not
statistically significant. In contrast, Zhang et al. (2019) showed small
negative effects of additional FR on dry mass partitioning to fruits when
overhead additional FR was provided, while RB was provided as
intra-canopy lighting. In that research, additional FR increased leaf dry
mass remarkably and hence influenced the partitioning pattern. Also, for
a fully-grown tomato canopy, whose uppermost leaf layer is responsible for
most of the light capture (Acock et al., 1978), intra-canopy lighting may
result in different responses to FR compared to that of a plant grown
solely under overhead supplemental lighting. To our knowledge, this is the
first study to demonstrate a FR induced increase in dry mass partitioning
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to fruits in an overhead LED crop production system.

Possible mechanisms of how FR may increase dry mass par-
titioning to fruits

In the present study, we show that during generative growth, additional
FR significantly increases the fraction of dry mass partitioned to fruits in
both light backgrounds (Figure 4.5). In tomato, fruit load may influence
fraction of dry mass partitioned to fruits (Heuvelink, 1997). In this study,
fruit number per plant tended to increase by 7–16% (Figure 4.4, Table
S4.1). Following the concept of sink strength as a determinant of dry mass
partitioning (Heuvelink, 1997; Marcelis, 1996), this could increase the
fraction of dry mass partitioned to fruits by up to 11% (Table S4.3).
Hence, increased fruit number can only partly explain the observed 22–
42% increase in fraction of dry mass partitioned to the fruits (Figure 4.4,
Table S4.1). Collectively, this points to the possibility that additional FR
may affect dry mass partitioning by increasing individual fruit sink
strength, which is the intrinsic capacity to compete for photosynthetic
assimilates (Heuvelink, 1997). To our knowledge, no direct effect of
additional FR on fruit sink strength has been reported, but we may derive
some clues from existing studies. For example, individual fruit size or
mass, which is an indication for fruit sink strength, were shown to be
increased by additional FR (Hao et al., 2016; Kim et al., 2019). In the
present study, we have also observed a significant increase in individual
ripe fruit dry mass under additional FR (Figure 4.3B). Further,
phytochromes in tomato fruits have been shown to be involved in the
transcriptional regulation of genes crucial for sink activity (Ernesto
Bianchetti et al., 2018; Fridman and Zamir, 2003; Kocal et al., 2008).
Taking these lines of evidence together, we argue that higher individual
fruit sink strength may be an important reason for improved fruit growth
under FR. Indeed, a decreased leaf sink strength may also partly
contribute to the increase in fraction of dry mass partitioned to fruits.
However, should that be the case, we would expect the dry mass
partitioning to stem and roots to be increased to a similar extent as that
in fruits, which was not observed in the present study. These results
warrant further investigation into the direct effects of additional FR on
fruit sink strength.
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Additional FR alters the trade-off between growth and
defense

The FR-induced SAS is a strategy that FR-sensitive plants use to ensure
reproductive success. The deployment of such a strategy implies a change
in the allocation of resources between different physiological processes.
The trade-off between growth and defense, often titled “the dilemma of
plants”(Herms and Mattson, 1992), is one of the most well-studied
allocation trade-offs. In our study, we observed that tomato plants grown
under additional FR showed reduced resistance against B. cinerea (Figure
4.7). Early works on the effects of canopy density on plant defense against
fungal diseases already provided hints for a decreased resistance under
high density (low R:FR, for review, see Ballaré, 2014). However, a
decreased R:FR is only part of the consequences of a higher planting
density. Further work demonstrated the effect of light spectrum, including
additional FR, on growth and sporulation of B. cinerea (Schumacher,
2017). Research on A. thaliana showed that exposure to low R:FR reduced
resistance against B. cinerea (Cargnel et al., 2014; Cerrudo et al., 2012; de
Wit et al., 2013). Also, it has been reported that inactivation of phyB in
tomato downregulates direct defenses via the jasmonic acid pathway
(Cortés et al., 2016), which is closely linked to plant defense against fungal
diseases like B. cinerea. These results imply that phytochrome mediated
FR responses may play important roles in regulating plant’s balance
between growth and defense.

4.5 Conclusions

Our results demonstrate that additional FR in supplementary lighting
significantly increases tomato fruit dry mass production. This increase is
mainly due to the increase in the fraction of dry mass partitioned to fruits,
rather than increased photosynthesis or a higher plant biomass. However,
additional FR also comes with some negative effects. The larger lesion size
observed on leaf samples collected from plants grown under additional FR
suggests that additional FR during growth can reduce tomato resistance
against B. cinerea.
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Supplementary information

Table S4.1. Absolute values of component variables used in growth components analysis for the generative growth period of 
46-130 days after transplanting. 
Parameter1 Unit Light treatment s.e.m.3 P-value

RB RBFR30 RBFR50 W WFR30 
Total Fruit Dry Mass (g plant-1) 62 79 90 75 99 5.0 0.006 
Total Plant Dry Mass (g plant-1) 193 207 206 203 235 8.8 0.08 
Fruit Dry Mass 
Fraction 

(g g-1) 0.32 0.38 0.44 0.36 0.42 0.01 0.002 

Instantaneous A 
(Absolute) 

(µmol CO2 m-2 s-1) 4.8 4.5 5.0 4.5 4.8 0.31 0.8 

Instantaneous A 
(Relative2) 

(µmol CO2 µmol PPFD-1) 0.06 0.06 0.07 0.04 0.04 0.005 0.3 

Leaf Area Index (m2 m-2) 3.8 4.0 4.2 3.8 4.2 0.19 0.4 
Leaf Area per Leaf (cm2) 411 402 424 405 430 21.8 0.8 
Total Leaf Number (plant-1) 23 25 25 24 24 0.26 0.002 
Total Fruit Number (plant-1) 56 60 65 50 66 3.5 0.3 
Truss Appearance Rate (plant-1 week -1) 0.9 1.0 1.0 0.9 1.0 0.01 0.001 
Fruit Number per Truss (truss-1) 4.3 4.1 4.4 4.6 4.4 0.28 0.8 
Individual Ripe Fruit 
Dry Mass 

(g fruit-1) 1.7 1.9 2.1 1.8 2.2 0.09 0.002 

1Total fruit dry mass, total plant dry mass, fruit dry mass fraction, total leaf number, total fruit number and individual ripe 
fruit dry mass were calculated as the average increase over the generative growth period. Other parameters were average 
values over the period.  
2Instantaneous A (relative) was calculated by dividing instantaneous A (absolute) by PPFD at measurement leaf position.  
3s.e.m and P-value of each parameter were calculated by ANOVA.  

Table S4.2.  Specific leaf area of plants (cm2 g-1) grown in the five light treatments measured on 46, 81, 130 days after 
transplanting and weighted average during the period of 46-130 days after transplanting. 
Measurement time (d)  Light treatment s.e.m. P-value 

RB RBFR30 RBFR50 W WFR30 
46 259 349 332 263 352 13.4 0.002 
81 238 261 287 245 291 11.0 0.03 
130 215 267 255 214 263 17.3 0.16 
46-130 236 a 281 b 287 b 240 a 295 b 6.8 <0.001 

s.e.m and P-value of each parameter were calculated by ANOVA. Different letters denote significant difference according to
Fisher’s protected LSD test (α=0.05) 

Table S4.3. Effect of increased fruit number on fruit sink strength and fraction of dry mass partitioned to fruits. 
Reference 16% More Fruits 

Fruit sink strength1 (g day-1) 0.3 0.348 
Vegetative sink strength2 (g day -1) 0.7 0.7 
Dry mass partitioning to fruits (%) 30 33.2 

1Fruit sink strength was assumed proportional to fruit number. 
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Abstract

Far-red (FR) promotes fruit growth by increasing dry mass partitioning to
fruits, but the mechanism behind this is unknown. We hypothesize that it
is due to an increased fruit sink strength as FR enhances sugar transport
and metabolism. Tomato plants were grown with or without 50-80 µmol
m-2 s-1 of FR added to a common background 150-170 µmol m-2 s-1 red +
blue LED lighting. Potential fruit growth, achieved by pruning each truss
to one remaining fruit, was measured to quantify fruit sink strength. Model
simulation was conducted to test whether the measured fruit sink strength
quantitatively explains the FR effect on dry mass partitioning. Starch,
sucrose, fructose, and glucose content were measured. Expression levels
of key genes involved in sugar transport and metabolism were determined.
FR increased fruit sink strength by 38%, which, in model simulation, led to
an increased dry mass partitioned to fruits that quantitatively agreed very
well with measured partitioning. FR increased fruit sugar concentration
and upregulated expression of genes associated with both sugar transport
and metabolism. This is the first study to demonstrate that FR stimulates
dry mass partitioning to fruits mainly by increasing fruit sink strength via
simultaneous up-regulation of sugar transport and metabolism.

Key words: dry mass partitioning, far red, LED lighting, sink strength,
Solanum lycopersicum (tomato), sugar metabolism, sugar transport.
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5.1 Introduction

Recent development of light emitting diodes (LEDs) stimulated research on
light quality to achieve higher crop productivity with more health benefit
but less energy consumption (Pattison et al., 2018). Far-red (FR) radiation
promotes plant growth and development (Li and Kubota, 2009; Park and
Runkle, 2017; Zhen and Bugbee, 2020). In tomato, which is a crop of both
economical and scientific importance, FR significantly increased fraction
of dry mass partitioned to fruits and this increase was shown to be the
main explanation of the yield increase under additional FR (Chapter 4, this
thesis).

Fraction of dry mass partitioned to fruits is strongly influenced by the
vegetative sink strength and the fruit sink strength, the latter being the
product of the sink strength of individual fruits and total fruit number
(Heuvelink, 1997). Sink strength, quantified as the growth rate of an organ
under non-limiting assimilate supply (potential growth), is the intrinsic
capacity of an organ to attract assimilates (Marcelis, 1996). Unlike fruit
sink strength, the vegetative sink strength cannot be easily measured
experimentally as leaves may get deformed when exposed to prolonged low
sink-source ratio (Heuvelink, 1996; Ho et al., 1982; Nederhoff et al., 1992).
Sink strength of a fruit is directly linked to its capability to 1) unload
assimilates into the fruit and 2) optimize the utilization and metabolism of
imported assimilates (Osorio et al., 2014). Photosynthetic assimilates
(sucrose) unloading from the phloem to the sink is usually symplasmically,
facilitated by sugar transporters (Carpaneto et al., 2005; Chen et al.,
2012). For example, sugar transporter activities positively correlate with
sugar accumulation in Arabidopsis thaliana (Gottwald et al., 2000), pea
(Lu et al., 2020), tobacco (Bürkle et al., 1998) and maize (Slewinski et al.,
2009). Upon transportation into sinks, sucrose can be degraded into
glucose, fructose, or other derivatives (Ruan, 2014). An enhanced
hydrolysis of sucrose in sink organs may increase yield (Baroja-Fernández
et al., 2009) by increasing the gradient of sucrose concentration from
source to sink (Fridman et al., 2004; Koch, 2004; Tortora et al., 2009) and
enhancing cell growth and sugar accumulation (Jin et al., 2009). In
tomato, the inclusion of the more-efficient wild allele of Lycopersicum
Invertase 5 (LIN5) increases soluble solids in fruits (Fridman et al., 2004;
Gur and Zamir, 2004; Zanor et al., 2009). Silencing INVINH1, which



78 Far red increases fruit sink strength

encodes a putative inhibitor of LIN5, increases seed weight and fruit
hexose level (Jin et al., 2009). Starch is also an important part of sugar
metabolism. APGase, for example, is a key regulatory enzyme of starch
biosynthesis its activity positively correlates with fruit sugar content in
tomato (Petreikov et al., 2006).

To our knowledge, there is no report on the effect of FR on the sink strength
of fruits. However, there are some results hinting towards a positive FR
effect on fruit sink strength. For example, FR increases the size and dry
mass of individual fruits in tomato (Chapter 4, this thesis, Fanwoua et al.
(2019); Kalaitzoglou et al. (2019)). Furthermore, key genes (e.g. LIN,
AGPaseL1, AGPaseS1, STS1, STS2, SBE1) involved in regulating fruit
sugar transport and metabolism are associated with phytochromes, which
are photoreceptors sensing FR (Ernesto Bianchetti et al., 2018; Fridman
and Zamir, 2003; Kocal et al., 2008). Collectively, these results warrant
further study into the application of FR to lift sink strength of fruits, as
was recently suggested to have great potential in yield increase (Fernie et al.,
2020).

In this research, we aim to identify the mechanism by which FR affects dry
mass partitioning to fruits. We hypothesize that FR affects partitioning by
increasing sink strength of individual fruits. Furthermore, we hypothesize
that FR stimulates sugar transport into the fruits as well as sugar
metabolism in the fruit resulting in a higher sink strength. Tomato plants
were grown in a glasshouse with or without additional FR. Potential fruit
growth, achieved by pruning each truss to one remaining fruit, was
measured to quantify fruit sink strength. We used model simulation and
concluded that the measured FR-enhanced fruit sink strength could
quantitatively explain the FR-enhanced dry mass partitioning to fruits. In
a climate chamber experiment, we observed that FR increased fruit sugar
concentration and upregulated expression of genes associated with both
sugar transport and metabolism. We conclude that FR stimulates dry
mass partitioning to fruits mainly by increasing fruit sink strength via
simultaneous up-regulation of sugar transport and metabolism.
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5.2 Material and methods

Plant material and growth conditions

To determine the effect of FR on fruit sink strength an experiment was
conducted from in a glasshouse of Wageningen University (52° N, 6° E,
Wageningen, the Netherlands). Tomato (Solanum lycopersicum L. cv.
Moneymaker) seeds were sown in potting soil and seedlings were
transplanted two weeks later into Rockwool blocks. After four weeks,
uniform young plants with 11 visible leaves were transplanted into another
glasshouse and grown with the high wire system. This glasshouse was
divided into eight compartments (5.0m x 2.5m) separated by white plastic
film. Two double gutters were placed in each compartment, 12 plants
(planting density 3.4 plants m-2) were placed on each double gutter,
including two border plants placed at each end of a gutter. The day/night
temperature was maintained at 19.2 ± 0.5/17.1 ± 0.5 °C. Daily average
CO2 partial pressure and relative humidity were 680 ± 80 µbar and 79 ±
5%, respectively. Plants were irrigated with nutrient solution (electrical
conductivity 2.1 dS m-1, pH 5.5) containing 1.2 mM NH4

+, 7.2 mM K+,
4.0 mM Ca2+, 1.8 mM Mg2+, 12.4 mM NO3– , 3.3 mM SO4

2– , 1.0 mM
PO4

2– , 35 µM Fe3+, 8.0 µM Mn2+, 5.0 µM Zn2+, 20 µM B, 0.5 µM Cu2+,
0.5 µM MoO4

2– . The EC and pH level of the nutrient solution in the
drainage were monitored twice a week. In addition to the use of
bumblebees, manual pollination with a Vibri Vario electronic bee (Royal
Brinkman, ’s Gravenzande, the Netherlands) was applied three times per
week. For all plants, side shoots were pruned when visible. In the second
half of the experiment, four to six old leaves per plant were removed for
four times. The dry mass of the removed parts was recorded and included
in the calculation of total dry mass and dry mass partitioning.

A climate chamber experiment was conducted to determine the sugar
concentration and expression level of key genes in sugar transport and
metabolism. Two climate chambers were each divided into four
compartments, separated by white plastic film and six uniform plants were
placed in each compartment. The day/night temperature was maintained
at 19.9 ± 0.6/18.4 ± 0.4°C. Daily average CO2 partial pressure and
relative humidity were 488 ± 31 µbar and 75 ± 6%, respectively. Same
irrigation and plant management practices were applied as for the
glasshouse experiment except that only manual pollination was applied in
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the climate chamber experiment.

Experimental treatments

There were two light treatments: red + blue (RB, R:B 95:5) without far
red (FR) and RB + 80 µmol m-2 s-1 far red (RB+FR) (Figure 5.1, Table
5.1). The spectral distribution and photon flux density (PFD) of the
supplementary light was measured with a spectroradiometer (USB 2000 +
UV-VIS, Ocean Optics, Duiven, the Netherlands), on eight evenly
distributed locations in each plot at the top of the canopy. Phytochrome
photostationary state (PSS) in each treatment was calculated based on the
measured spectra as the ratio of Pfr to the total of Pfr and Pr according
to Sager et al. (1988). Photoperiod was 16 hours. Hence, in the glasshouse
experiment, the photoperiod was longer than the natural photoperiod, i.e.,
LED lamps were switched on before sunrise and switched off after sunset.
On average, solar daily photosynthetic photon flux density (PPFD,
400-700 nm) contributed ∼18% to the total daily PPFD integral at
canopy level in the glasshouse experiment (Figure S5.1). All
supplementary lighting was provided by overhead LED modules (RB:
Greenpower TL-DR/B-150, FR: Greenpower PM-FR-150, Signify,
Eindhoven, the Netherlands). The blue, red, and far-red spectra peaked at
453 nm, 666 nm, and 735 nm, respectively. Height of the LED frames was
adjusted weekly to maintain the desired PPFD at the top of the canopy
(∼170 µmol m-2 s-1 in the glasshouse experiment and ∼150 µmol m-2 s-1 in
the climate chamber experiment, Table 5.1). When the LED frames
reached the maximum height, top of the plants were lowered weekly (high
wire cultivation system). A spectroradiometer was used to ensure that
both PPFD and PSS values were maintained at the desired level every
time the LED frame or the plant was adjusted.

In the glasshouse experiment, within each light treatment, plants were
either unpruned, or pruned to one, two, or five remaining fruits per truss
(four plants per treatment in each of the four repetitions). Plants without
fruit pruning were used to test the overall effect of FR on partitioning to
fruits while those pruned to five fruits per truss were used to test whether
partitioning was affected by FR, independent of potential effects of FR on
fruit number. Plants with two fruits per truss were included to test
whether one fruit per truss reflected potential growth. If there was no
significant difference between fruit growth when fruit load was doubled
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Table 5.1: Photosynthetic photon flux density (PPFD), photon flux density
(PFD) of far red, red: far red ratio and phytochrome photostationary state (PSS)
value of the LED supplementary light measured at the top of canopy.

Experiment Light treatment PPFD1 Far red R:FR PSS
(µmol m-2 s-1) (µmol m-2 s-1)

Glasshouse RB 167 ± 52 4 ± 0.5 42 ± 5.1 0.87
RB+FR 170 ± 4 80 ± 4.2 2 ± 0.1 0.77

Climate chamber RB 152 ± 1 2 ± 0.2 46 ± 5.2 0.88
RB+FR 150 ± 3 51 ± 1.8 2 ± 0.1 0.78

1For the calculation of ratios, PFD was integrated over 100 nm intervals for
red(600–700 nm) and far red (700–800 nm).
2All values are means ± standard error of means (s.e.m.). s.e.m of PSS was very
small (<0.001) and therefore not shown.

(one fruit per truss vs. two fruits per truss), then it can be assumed that
observed fruit growth was potential fruit growth. The proximal fruit on
each truss was removed at anthesis for all plants except those that
received no fruit pruning. In the climate chamber experiment, there were
five to six experimental plants in each of the four repetitions and all
trusses were pruned at anthesis to one remaining fruit per truss to achieve
potential fruit growth.

Measurement of growth parameters

Leaf number (width > 1 cm) was determined weekly and number of flower
buds, flowers (fully open flower) and fruits (visible set fruit with a diameter
> 5 mm) on the second, third and fourth trusses were recorded three times
a week for the unpruned plants and those with five fruits per truss. Fruit
ripening was monitored three times per week with a hand-held pigment
analyser (PA1101, CP, Potsdam-Golm, Germany). Two readings on the
equatorial region of each tomato fruit were taken to estimate the normalized
difference vegetation index (NDVI) and the normalized anthocyanin index
(NAI). When a fruit reached a NDVI value lower than -0.65 and a NAI
value higher than 0.4, it was harvested as fully ripe fruit (Farneti et al.,
2013) and the date was recorded. At the end of the experiment, two plants
with five fruits per truss and two plants with no pruning were destructively
measured from each of the eight main plots to determine dry mass of fruits,
stem, and leaves (ventilated oven for 24 hours at 70 °C and then 36 hours at
105 °C). For plants with two or five fruits per truss, two ripe fruits from 2nd,
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Figure 5.1: Spectral composition of red + blue (RB) and RB + far‐red (FR)
light treatment provided by the LEDs measured at the top of the canopy.

3rd and 4th truss were randomly selected per plot for counting of number
of seeds per fruit as seed number may also influence fruit growth. The dry
mass of these fruits was also measured and added to the calculation of dry
mass partitioning.

Determination of potential fruit growth

Potential growth rate (g day-1) was calculated from non-destructive
measurement of height (h) and diameter (d) of the remaining proximal
fruits on the 2nd, 3rd and 4th truss of the plants with one or two fruits per
truss (the first fruit was removed at anthesis). Measurements were
performed twice per week and the volume (v) of a tomato fruit was
calculated with the following formula assuming the shape to be a spheroid
(Li et al., 2015).

v =
4

3
· π · (d

2
)2 · h

2
(5.1)
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Forty fruits varying in size were randomly collected from each light
treatment to establish a light-specific linear regression between fruit
volume and fruit fresh mass (R2=0.99 for both RB and RB+FR). In
accordance with (Wubs et al., 2012) a fourth-order polynomial function
was established between fruit age and fruit dry matter content under each
light treatment (R2=0.78 for RB and R2=0.90 for RB+FR) by randomly
sampling of two fruits every 3-4 days. These samples were collected from a
separate set of plants grown alongside the experimental plants. With this
function, fruit fresh mass was converted to fruit dry mass. The dry mass
of each individual fruit was fitted as a function of fruit age (DAA) by a
Gompertz function:

W (t) = Wmax · e−e−k(t−tm) (5.2)

where W(t) is the dry mass (g) of a fruit at age t (days after anthesis,
DAA), Wmax is the upper asymptote of fruit dry mass (g), k is the growth-
rate coefficient, and tm is the fruit age (DAA) at maximum growth rate.
The derivative of this Gompertz function gives the fruit growth rate (FGR,
g day-1) as a function of fruit age (t, DAA).

FGR(t) = W (t) · k · e−k(t−tm) (5.3)

Fitting of the growth curve was done for each individual fruit using a non-
linear mixed model, which considered that the measurements on one fruit
are grouped while assuming lower variation between measurements of one
fruit than between different fruits (Li et al., 2015).

Model simulation of sink strength and dry mass
partitioning

A crop growth model was used to determine whether an observed effect of
FR on fruit sink strength could quantitatively explain observed effects on
partitioning. First, the growth model was used to simulate the daily dry
mass production of a whole tomato plant during the experimental period.
Following the LINTUL approach, which describes dry mass accumulation
as a function of light interception and light use efficiency (Haverkort et al.,
2015), daily plant dry mass (GRplant, g day-1) production was calculated
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as:

GRplant = 0.33 · (1− e−0.004·CO2) ·DPARtot · (1− e−0.7·LAI) (5.4)

where CO2 is the daily average CO2 partial pressure (µbar) during
photoperiod, DPARtot is total daily PAR integral on top of the canopy
(mol m-2 day-1) and LAI is leaf area index. LAI was assumed to increase
linearly from 0.7 to 3.4 in 30 days after transplanting (DAP) and was
maintained at 3.4. The values of 0.7 and 3.4 used here were based on the
LAI measured at transplanting and the start of leaf pruning. 0.33 was a
constant calculated from the calibration process to fit the reference
treatment (RB light, 5 fruits/truss).

The daily fraction of dry mass partitioned to fruits (Ffruits) was calculated
as:

Ffruit =
SSfruit

SSfruit + SSveg
(5.5)

where SSfruit is fruit sink strength (g day-1) and SSveg is vegetative sink
strength (g day-1). SSfruit was calculated as the sum of measured potential
growth rate of every fruit present at a given day. As suggested by previous
studies, a constant SSveg can be assumed at constant daily average
temperature for the simulation of Ffruits (Heuvelink, 1996; Kano and van
Gavel, 1988). In this simulation, SSveg was calibrated to be constant at a
value of 3.4 g day-1 to fit the observed final fruit dry mass fraction in the
reference treatment (RB light, 5 fruits/truss). According to previous
study, a SSveg of 3.4 g day-1 was within the reasonable range for tomato
plants (Heuvelink, 1996). A sensitivity analysis was conducted to test the
effect of changes in SSfruit and SSveg on Ffruits. Values of SSfruit and SSveg
calibrated for the treatment with RB light pruned to 5 fruits/truss was
used as reference. Then we simulated the Ffruits when the SSfruit was set to
-50%, -30%, -10%, +10%, +30% and +50% of the reference value while
maintaining the SSveg reference value. Finally, we simulated Ffruits with
the same changes made to SSveg while maintaining SSfruit at the reference
value.

For simulation of plants where no fruits were pruned, SSfruit was increased
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by 1.5 times because the fruit number on plants with no pruning was on
average 7.3-7.5 fruits per truss, which was 1.5 times that of plants pruned to
five fruits per truss. The product of GRplant and Ffruits gave the daily fruit
dry mass production, which was then accumulated over the whole growth
period to calculate total fruit dry mass. The ratio between the accumulated
fruit dry mass and accumulated plant dry mass gave the simulated fraction
of dry mass partitioned to fruits and was compared to the final fraction of
dry mass partitioned to the fruits in plants with five fruits per truss or no
pruning, grown under RB and RB+FR. With this approach, we ensured
that the simulated fraction of dry mass partitioned to fruits at the end of
the growth period was only a result of the differences in SSfruit. If this
would result in differences between the simulated and observed Ffruits under
a given treatment, these differences would then suggest that SSveg was also
affected.

Carbohydrate analysis

In the climate chamber experiment, flowering time of each fruit was
registered. One flower/fruit per plant (5-6 plants per treatment repetition)
was harvested at the stages of 0 (fully open flower), 10, 20, 30, 40, 50, 60
DAA. Additionally, two fully ripen fruits, determined as described before,
were harvested from each plant. At harvest, fruits were detached from the
plant and were quickly sliced into two halves. One half was immediately
frozen in liquid nitrogen for later use. The other half was weighed for fresh
weight before being transferred to a ventilated oven for drying (24 hours
at 70 °C and then 36 hours at 105 °C), after which the dry weight was
measured.

Frozen tissue of each individual sample was grinded mechanically into fine
powder with liquid nitrogen. Then, equal weights of powdered tissues
harvested at the same developmental stage from six replicate plants of the
same compartment were pooled into one sample and mixed well. Glucose,
fructose, sucrose and starch concentrations were measured as described by
Plantenga et al. (2019) with an adaptation that 300 mg ground frozen
fresh material from each pooled sample was weighed and mixed with 5 ml
of 85% ethanol in a shaking water bath for 20 min at 80 °C. After
centrifugation at 8500 rcf for 5 min, 1 ml of the supernatant containing
soluble sugars was vacuum dried using Savant SpeedVac (SPD2010,
Thermo Fisher Scientific, Waltham, MA, USA) and then dissolved in 1 ml
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Milli-Q water and diluted 50x for the analysis of soluble sugars. Sucrose,
fructose and glucose quantification was conducted using a
high-performance ion chromatograph (ICS-5000, Thermo Fisher Scientific)
with an anion CarboPac 2x250 mm exchange column (PA1, Thermo Fisher
Scientific) at 25 °C with 100nM NaOH as eluent at the flowrate of 0.25 ml
min-1. Pulsed amperometry was used for the detection and Chromeleon
(Thermo Fisher Scientific) was used for the analysis of the chromatograms
and the quantification of sugar concentrations. The remaining pellet after
sugar extraction was used for starch determination. After discarding the
supernatant that contains soluble sugars, the remaining pellet was washed
three times with 80% ethanol, each time followed by 5 min centrifugation
and removal of the supernatant. The remaining pellet was dried for 20
min in SpeedVac and resuspended in 2 ml 1 mg ml-1 thermostable
α-amylase solution (SERVA Electrophoresis, Heidelberg, Germany) and
incubated for 30 min at 90 °C. Then, 1 ml of 0.5 mg ml-1 amyloglucosidase
(10115, Sigma-Aldrich, St. Louis, MO, USA) in 50 mM citrate buffer (pH
4.6) was added and incubated for 15 min at 60 °C. By now, the starch in
the sample was converted into glucose. After centrifugation for 5 min at
8500 rcf, 1 ml of the supernatant was diluted 50x and was used for the
quantification of glucose content as described above.

Gene expression analysis

Quantitative reverse transcription polymerase chain reaction (RT-qPCR)
was used to determine expression levels of target genes involved in sugar
transport (SUTs, HTs, SWEETs), sucrose synthase (SUS), invertase
(LINs, INVINH), starch synthesis (STSs, SBE, AgpL1, AgpS1) and starch
catabolism (pGlcT1, pGlcT3). Further information and primer sequences
of the target genes are provided in Table S5.1. Fine powders of the pooled
samples of the fresh frozen fruit material was used for RNA isolation using
the CTAB method (Schultz et al., 1994). RNA quality was examined with
2% agarose gel. Furthermore, quality and concentration of the isolated
RNA was tested with a spectrophotometer (DS-11, DeNovix Wilmington,
DE, USA). 200 ng of RNA was treated with RQ1 RNAse-free DNAse kit
(Promega, Madison, WI, USA) and synthesized to cDNA with the
MultiScribe kit (Applied Biosystems, Foster City, CA, USA). The DNAse
treatment and cDNA synthesis were conducted according to
manufacturers’manuals. The synthesized cDNA was diluted 5 times
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before use. The expression of target genes was analyzed in a 10 µl system
of 5 µl SYBR-green master mix (Bio-rad, Hercules, CA, USA), 0.5 µl
forward primer (10µM), 0.5 µl reverse primer (10 µM), 3 µl Milli-Q water
and 1 µl cDNA with a thermal cycler (CFX96, Bio-rad) set at 95 °C for 2
min followed by 40 cycles of 95°C for 5 s, 60 °C for 20s, 72 °C for 15s, and
for a melt curve from 55 °C to 95 °C in a 0.5 °C steps every 5 s. Absolute
fluorescence data was analyzed using LinRegPCR (Ruijter et al., 2009)
and was normalized against two references genes (ACTIN and
EFα1).

Experimental set-up and statistical analysis

For the glasshouse experiment, each light treatment was repeated four
times while the four pruning treatments were applied within the light
treatments. Hence, the experimental set-up was a split-plot design with
light as the main factor and pruning as sub-factor. The climate chamber
experiment was a randomized complete block design with each light
treatment repeated four times. Growth parameters were analyzed with
Genstat (18th Edition, VSN International, London, UK). The assumptions
of homogeneity and normality of the residuals were tested with Bartlett’s
test and Shapiro-Wilk test, respectively. Data satisfied the assumptions
and were further analyzed with Analysis of Variances (ANOVA).
Parameters of the Gompertz growth function of each individual fruit were
estimated with package “Saemix”in R (R Core Team, 2013) and were
subsequently analyzed for differences between treatments with ANOVA in
Genstat. Statistical differences between light treatments in sugar content
and relative expression levels of target genes were tested at each sampling
stage with Student’s t-test in Genstat. All statistical tests were
conducted at a probability level of α=0.05.

5.3 Results

Far red promotes dry mass partitioning to fruits

To study the effect of FR on fruit number and dry mass partitioning to
fruits, plants were unpruned or pruned to five remaining fruits per truss.
The plants without fruit pruning were used to test the overall effect of FR
on partitioning to fruits while those pruned to five fruits per truss were used
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to test whether partitioning was affected by FR, independent of potential
effects of FR on fruit number. FR significantly increased fraction of dry
mass partitioned to fruits and stems at the expense of that partitioned to
leaves (Figure 5.22). Also, FR increased dry mass of individual ripe fruits
(Table 5.2). Pruning the trusses to five fruits per truss reduced the fraction
of dry mass partitioned to fruits. Unpruned plants produced 42-43% more
fruits and 20-30% more total fruit dry mass per plant while total plant dry
mass was not affected. FR significantly accelerated fruit ripening but had
no effect on flowering time (Table 5.2). Total seed number per fruit, which
may also influence fruit development, was not affected by either light or
pruning treatment. Leaf appearance rate was not affected either (Figure
S5.2).

Far red increases sink strength of individual fruits

In order to quantify fruit sink strength, we pruned the tomato plants to
one and two remaining fruits per truss to achieve a potential fruit growth
condition in which fruit growth was not limited by the assimilate supply
from the source leaves. Comparison between plants with one and two fruits
per truss showed no difference in fruit growth, which means fruit growth
was not affected even when fruit load was doubled (one fruit per truss vs
two fruits per truss). Hence, we showed that fruit growth with one fruit per
truss was potential fruit growth (Figure S5.3). In the glasshouse experiment,
FR radiation significantly promoted potential fruit growth (Figure 5.3a).
Potential fruit growth rate was higher under RB + FR throughout the whole
growth period and reached a higher maximal growth rate at an earlier fruit
age (Figure 5.3b; Table S5.2). Similar FR radiation effect was also observed
in the climate chamber experiment (Figure S5.4).

Increased sink strength of individual fruits explains the
increase in fraction of dry mass partitioned to fruits

Fruit dry mass fraction was simulated with a model assuming
proportionality between fruit dry mass fraction and the ratio between fruit
sink strength and the sum of fruit and vegetative strength (equation 5.5).
Using the measured data on flowering time and the potential growth rate
of individual fruits, we calculated the total sink strength of all fruits
together for plants with five fruits per truss grown with or without
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Figure 5.2: Effects of adding far‐red (FR) to red + blue (RB) light on the
fraction of dry mass partitioned to fruits, stem and leaves in tomato (Solanum
lycopersicum) plants where fruits were pruned to five fruits per truss or not
pruned (7–8 fruits per truss). Data were based on cumulative dry mass of plants
90 d after transplanting. Different letters denote significant differences between
treatments according to Fisher’s protected least significant difference (LSD) test
conducted independently for fruit, stem, and leaf (n = 4, α = 0.05).

additional FR. The total fruit sink strength was increased by ∼38% by FR
radiation and started to increase rapidly after flowering of the 1st truss
(∼10 DAP) (Figure 5.4a). The simulated fruit dry mass fraction was
increased by ∼21% with additional FR radiation in both pruning scenarios
(Figure 5.4b). Simulation results agreed very well with the measured
fraction of dry mass partitioned to fruits (Figure 5.2). Using the scenario
of plants with five fruits per truss grown with RB as reference, sensitivity
analysis of the simulated dry mass partitioning to fruits showed that
changes in both vegetative and fruit sink strength influenced dry mass
partitioning to fruits (Table 5.3).
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Figure 5.3: Effects of adding far‐red (FR) radiation to red + blue (RB) light on
potential fruit growth (a) and potential fruit growth rate (b) in tomato (Solanum
lycopersicum). Curves represent Gompertz function (a) and its derivative (b)
fitted for RB + FR (dashed lines) and RB (solid lines) light conditions. Symbols
represent measured fruit dry mass for RB + FR (open symbols) and RB (closed
symbols) and error bar represents standard error of means (n = 4).

Figure 5.4: Simulated total fruit sink strength per plant for plants with five
fruits per truss (a) and dry mass fraction of fruits and vegetative parts (b) of
tomato (Solanum lycopersicum) plants grown with or without additional far‐red
radiation. Curves represent fruit sink strength simulated for a fruit load of five
fruits per truss. Both simulations were conducted for a period of 90 d after
transplanting. RB, red + blue; FR, far red.
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Table 5.3: Simulated fraction of dry mass partitioning to fruits in tomato
(Solanum lycopersicum) when fruit sink strength (SSfruit) or vegetative sink
strength (SSveg) was changed by −50, −30, −30, +10, +30 or +50%.

Parameter Changes in input parameter relative to the control
−50% −30% −10% Control +10% +30% +50%

SSfruit 21% 26% 31% 33% 34% 38% 41%
SSveg 45% 39% 35% 33% 31% 28% 26%

elevates fruit sugar content and sugarFar red 
metabolism

To further understand the cause of the increase in fruit sink strength, we
measured the concentrations of starch, sucrose, fructose and glucose
throughout the growth of the fruits. Starch concentration increased
rapidly until 20 DAA and then decreased almost linearly afterwards
(Figure 5.5a). Both rates of starch accumulation and break‐down were
significantly accelerated by FR. Sucrose concentration gradually decreased
during fruit development and no significant FR effect was observed
(Figure 5.5b). Both fructose and glucose concentrations increased during
fruit growth and concentrations of both sugars were significantly higher in
fruits grown with additional FR radiation after 10 DAA (Figure 5.5c,
5.5d). Same FR effect was observed when concentrations were expressed
on dry weight basis (Figure S5.5).

Far red upregulates the expression of genes responsible for
sugar transport and metabolism in tomato fruit

To further explain the elevated sugar concentration, we measured the
expression of key genes involved in sugar transport and sugar metabolism
at different growth stage of the fruits. At flowering stage (0 DAA),
expression of genes encoding sucrose transporters, sucrose synthase and
starch synthase were significantly upregulated by additional FR radiation
(Figure 5.6). During early fruit growth at 10–20 DAA, FR radiation
significantly upregulated genes of sucrose synthase SUS1, invertase LIN7
as well as ADP‐Glc pyrophosphorylase AgpL1 and AgpS1. However,
expression of sugar transporter SUT2 decreased with FR. At 30 DAA, FR
radiation significantly increased the expression of genes of sucrose
synthases SUS1 and SUS3, the invertases LIN5 and LIN7 and starch



5

Far red increases fruit sink strength 93

Figure 5.5: Effects of adding far‐red (FR) radiation to red + blue (RB) light on
concentration of starch (a), sucrose (b), fructose (c) and glucose (d) in tomato
(Solanum lycopersicum) fruits measured every 10 d after anthesis until fully
ripe. Starch concentration is expressed as equivalent glucose concentration. Error
bar represents standard error of means (n = 4). Asterisks denote statistically
significant effects of FR radiation as tested with Student’s t‐test (n = 4; *, P
< 0.05; **, P < 0.01; ***, P < 0.001).

catabolism pGlcT1 and pGlcT3. Interestingly, in addition to the increased
expression of invertase genes, FR radiation also significantly increased the
expression of INVINH1, which encodes a putative invertase inhibitor. In
this developmental stage, FR radiation resulted in the downregulation of
sugar transporter HT2 and invertase LIN4.
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Figure 5.6: Effects of adding far‐red (FR) radiation to red + blue (RB) light on
relative expression of genes related to sugar transport, sucrose synthase, invertase,
starch synthesis and starch catabolism in tomato (Solanum lycopersicum)
flowers/fruits at 0, 10–20 and 30 d after anthesis (DAA). Different colors
represent expression levels of each gene under RB + FR relative to that under
RB. Asterisks denote statistically significant effects of FR radiation as tested
with Student’s t‐test (n = 4; *, P < 0.05; **, P < 0.01).

5.4 Discussion

Far red increases fruit sink strength and hence stimulates dry
mass partitioning to fruits

FR radiation increased dry mass partitioning to fruits (Figure 5.2) and
total fruit dry mass per plant (Table 5.2), while PPFD was kept constant
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(Table 5.1). This finding agreed with recent reports on the effects of
additional FR radiation on tomato growth and development (Chapter 4,
this thesis, Kalaitzoglou et al. (2019); Zhang et al. (2019)). Sink strength
of individual fruits and total fruit number collectively determined total
fruit sink strength and consequently influenced the fraction of dry mass
partitioned to fruits (Heuvelink, 1997; Marcelis, 1994). FR radiation was
reported to significantly increase size or mass of individual fruits (Chapter
4, this thesis, Kim et al. (2019)). Indeed, we observed significantly higher
individual fruit dry mass under additional FR radiation (Table 5.2). FR
radiation significantly increased the potential growth rate and hence the
sink strength of individual fruit (Figure 5.3b). Model simulation, taking
into account the observed increase in fruit sink strength, resulted in an
increase in simulated dry mass partitioning to fruits (Figure 5.4b). The
sensitivity analysis of the model showed that both a higher fruit sink
strength and a decreased vegetative sink strength can lead to increased dry
mass partitioning to fruits (Table 5.3). Vegetative sink strength cannot be
measured experimentally, hence it is difficult to evaluate directly whether
it is affected by FR. However, in a separate experiment when 100 m-2 s-1

FR radiation was added to 150 m-2 s-1 RB LED lighting, soluble sugars in
the leaves of 3‐wk‐old tomato plants increased from 7.9 mg g−1 DW to
19.1 mg g−1 DW. This FR‐increased soluble sugar was also reported by
(Courbier et al., 2020) and may suggest that FR radiation could affect
vegetative sink strength. If that was true, we should have found significant
differences between simulated and observed dry mass partitioning to
fruits, as the simulation only took into account the observed increase in
fruit sink strength while assuming a constant vegetative sink strength.
However, the simulated results agreed very well with the observed result.
Therefore, we reasoned that the FR radiation enhancement of fruit sink
strength alone could explain the increase in fruit dry mass fraction.

Total plant dry mass, which reflected the source strength (dry matter
production of the plant), was not influenced by FR radiation (Table 5.2).
In a study with younger plants, an increase in source strength of the
plants was observed and this increase was due to increased light
interception (Kalaitzoglou et al., 2019). Here we started the light
treatments when plants had already formed sufficient number of leaves
and established an LAI of 3 within 4 wk. For a fruiting tomato canopy, an
LAI of 3 usually means that 90% of the incident light will be intercepted
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(Heuvelink and Dorais, 2005), leaving little room for FR radiation to
affect total light interception (Chapter 4, this thesis). Total fruit number
may also influence total fruit sink strength. FR radiation does not have a
strong effect on total fruit number per plant (Chapter 4, this thesis,
Kalaitzoglou et al. (2019); Kim et al. (2019)), Table 5.2). Accelerated
flowering is part of typical shade avoidance responses in many species
(Ballaré, 2017; Yuan et al., 2017) and may lead to a higher fruit number
and consequently a larger total fruit sink size at a given time. We
observed a trend of accelerated flowering of about 1–2 d caused by
additional FR radiation, but this effect was not statistically significant
(Table 5.2). Model simulation for plants grown under RB showed that
advancing flowering time by 1 or even 2 d resulted in minor increase in the
cumulative fraction of dry mass partitioned to fruits at the end of the
experiment (Table S5.3). Hence, we argued that the FR effect on flowering
time does not contribute significantly to the increase of dry mass
partitioning to fruits in tomato.

Taken together, we concluded that the increase in fraction of assimilates
partitioned into fruits under additional FR radiation is mainly due to an
increase in fruit sink strength. To the best of our knowledge, this is the
first study to demonstrate a strong FR effect on fruit sink strength and its
contribution to dry mass partitioning.

Far red increases fruit sink strength by upregulating sugar
transport and metabolism in fruit

Sink strength is closely linked to the sugar metabolism in the sink organs
(Osorio et al., 2014)). Considering that the fruits in the present study
were grown under non-limiting assimilate supply, we reason that the sugar
content in the fruits was mainly determined by the metabolic activities in
the fruit. Tomato fruit typically switches from starch accumulation to
hexose‐accumulation at around 15–20 d after anthesis (Ruan and Patrick,
1995). In agreement with this, starch concentration in the fruit kept
increasing until 20 DAA (Figure 5.5a). Starch may be considered as an
overflow product when sugar concentration (especially sucrose) increases
in the sink organ (Osorio et al., 2014). The substantial increase of starch
concentration and upregulation of starch synthesis genes suggests a
substantially increased amount of sugars are being transported into the
fruit, and this was indeed supported by the upregulation of sugar



5

Far red increases fruit sink strength 97

transporters genes (Figure 5.6). FR radiation significantly increased the 
fructose and glucose content in tomato fruits across the whole growth 
period, accompanied by an enhanced break‐down of starch (Figure 5.5), 
which was also reported by (Fanwoua et al., 2019). Indeed, after the fruit 
switched to hexose‐accumulation, we observed that FR radiation increased 
the expression of genes encoding sucrose synthase and invertases in the 
fruits (Figure 5.6), suggesting that FR radiation induced a stronger 
metabolism of the imported sucrose, thus allowing more sucrose to be 
imported into the fruit (Fridman et al., 2004; Koch, 2004; Tortora et al., 
2009). In accordance with our findings, specifically knocking‐down 
fruit‐localized phytochromes (major FR‐sensing photoreceptors) also 
upregulated LIN5 and LIN6, which encode cell‐wall invertases crucial for 
sink activity in tomato fruits (Ernesto Bianchetti et al., 2018; Fridman 
and Zamir, 2003; Kocal et al., 2008). Interestingly, we also found that FR 
radiation increased the expression of INVINH1, which encodes an inhibitor 
of the above‐mentioned invertase Lin5 in tomato (Jin et al., 2009). 
Upregulation of INVINH1 allows the tomato to regulate fruit development 
by capping cell‐wall invertase activity (Jin et al., 2009), thus further 
supporting that FR radiation elevated the invertase activities in tomato 
fruit. The sucrose concentration was not significantly affected by FR 
radiation (Figure 5.5b). We observed a higher expression of sucrose 
transporters at flowering but not in later stages (Figure 5.6). However, 
considering that FR radiation enhanced sugar metabolism and increased 
carbohydrate content, it is reasonable to argue that the import rate of 
sucrose should have been increased to maintain the same sucrose 
concentration in the fruit. This is further supported by the finding that 
HY5, a transcription factor known to directly enhance the expression of 
sucrose transporters SWEET11 and SWEET12 (Chen et al., 2016), was 
shown to be activated by FR radiation (van Geest et al., 2016). 
Interestingly, FR radiation also accelerated fruit ripening (Table 5.2). 
This is in agreement with studies in which knocking out phyB1, phyA/
B1, phyB1/B2 and phyA/B1/B2 significantly reduced fruit ripening 
time by accelerating transition from mature green to breaker stage and 
that from breaker to red ripe stage (Gupta et al., 2014). 
Furthermore, phytochrome‐interacting factors (PIFs) have key regulatory 
roles in fruit ripening (Gramegna et al., 2019; Rosado et al., 2019). 
These results collectively suggested that phytochromes are important 
regulators of not only fruit growth but also fruit ripening.
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5.5 Conclusions

Additional FR radiation upregulated key genes involved in fruit sugar
transport and sugar metabolism, which resulted in a substantial elevation
of fruit sink strength. When this FR effect on fruit sink strength was used
in a model simulating dry mass partitioning, the model predicted very well
the measured increase in dry matter partitioning to the fruits by FR
radiation. Hence, we concluded that FR‐enhanced dry mass partitioning
to fruits is primarily the result of an increased fruit sink strength.
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In this thesis, I aimed to understand the effect of adding FR on the
responses of growth and development of both young and fruit-bearing
tomato (Solanum lycopersicum) plants. First, I explored the various
growth responses of young tomato plants when grown with different levels
of FR and evaluated the genotypic variation in these responses (Chapter
2). Similar to the commonly known elongation response, the increase in
shoot: root ratio under additional FR was also conserved among
genotypes. This suggests that this change in dry mass partitioning
patterns between organs may also be considered as a typical response to
additional FR. To better understand this regulation, we conducted
experiments using phyB1/B2 double mutant and demonstrated that the
change in shoot: root ratio was mainly mediated by phytochromes
(Chapter 3). Interestingly, the phyB1/B2 double mutant was still able to
respond to FR, suggesting that other phytochromes may also regulate
shoot: root ratio in the absence of phyB. Furthermore, it was also
demonstrated that auxin transport between shoot and root was involved
in the regulation of dry mass partitioning between the shoot and the root.
In Chapter 4, I demonstrated that an increased dry mass partitioning to
fruits was the main reason for FR-simulated tomato fruit yield. This
increase, however, resulted in a trade-off where plant’s resistance against
Botrytis cinerea was reduced. By means of experimentation and model
simulation, we proved that the FR-simulated dry mass partitioning to
fruits was the result of FR-increased individual fruit sink strength
(Chapter 5). This was further supported by the corresponding changes
observed in fruit sugar concentrations and the expression levels of genes
involved in sugar transport and metabolism. In this general discussion, I
first extend the discussion on the positive and the negative consequences
of additional FR in tomato and other species. Secondly, I focus on the
findings related to the enhancement of sink activities and discuss the
potential of targeting the sink activities for yield improvement. Thirdly, I
discuss the possibilities of incorporating FR as part of standard growth
light in modern greenhouse production. Lastly, I present the perspectives
for future research on this topic.
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6.1 FR induced trade-offs during plant growth

The addition of FR results in a reduction of R: FR ratio, similar to
natural shading, but without a reduction in photosynthetically active
radiation. The reduction of R: FR ratio functions as a signal for
competition and triggers responses in morphology (stem elongation, leaf
hyponasty, etc.) and physiology (accelerated flowering, change in resource
allocation) (Casal, 2012). Often, adding FR leads to an increase in growth
such as higher dry mass production, higher yield of harvestable parts, etc.
(Hao et al., 2016; Kalaitzoglou et al., 2019; Li and Kubota, 2009). It is
intriguing to consider whether such promotion of growth would come at
costs of resistance or tolerance against biotic or abiotic stress. Previously,
it was reported that plants grown under high density (shading, with low
R: FR ratio) expressed a reduced resistance against not only pathogens
but also herbivory (for review, see Ballaré, 2014). We observed that
additional FR during growth reduced tomato’s resistance against B.
cinerea (Chapter 4), suggesting that the positive effect on yield may
come at the cost of reduced plant immunity. This result was further
explained in the work of Courbier et al. (2020) demonstrating that the
additional FR reduced jasmonic-acid mediated defense response against B.
cinerea, resulting in more severe disease symptoms. FR also increased
sugar content in tomato fruits, which was a positive FR effect in the fruits
(Chapter 5). FR also increased the sugar content in the leaves and this
was shown to help support pathogen growth in tomato leaves (Courbier
et al., 2020). Not only the jasmonic-acid-mediated resistance was reduced
by additional FR, the salicylic acid pathways, which were predominately
activated against biotrophic microbial pathogens (Glazebrook, 2005), were
also downregulated by additional FR (Ballaré, 2014; Moreno et al., 2009;
Wang et al., 2010). Taken together, it is crucial to further understand the
regulatory mechanism of FR-induced reduction of plant resistances against
biotic stress such as pathogens and pests to secure the yield of modern
crop production.

Abiotic stress, such as salt stress, may also have a negative impact on
plant growth and development. Salinity stress reduces water potential in
the soil and may lead to reduced water uptake by the plants and
consequently limit plant growth. Earlier studies showed that a low R: FR
ratio triggers the production of salinity-responding molecules such as
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pinitol, suggesting the involvement of phytochromes in the transduction of
salt stress signals (Cockburn et al., 1996; Guo and Oosterhuis, 1997).
Indeed, the addition of FR increased the tolerance of tomato seedlings
against salinity (Cao et al., 2018). Further, these authors demonstrated
that a lower R: FR ratio resulted in a decrease in electrolytic leakage, an
increase in proline and soluble protein contents, and reduced accumulation
of H2O2 and O2−. Similarly, mutation in phytochromes led to increased
salt tolerance in Nicotianum tabacum (Yang et al., 2018) and Oryza sativa
(Kwon et al., 2018). Taken together, it may be suggested that FR
increases the tolerance against salinity by inactivating phytochromes. This
increase in salt tolerance may be a result of regulation via
phytochrome-interaction-factors (PIFs), which were suppressed by
phytochromes and hence were upregulated under additional FR. For
example, the expression of maize ZmPIF3 in rice significantly increased its
tolerance against salt stress (Gao et al., 2015). In addition, FR was also
shown to promote the SPA1-COP1-PIF1 kinase regulatory complex to
promote the expression of STO (SALT TOLERANCE-RELATED) in
Arabidopsis thaliana to improve root growth under salt stress (Indorf
et al., 2007; Junior et al., 2020). Plant hormones such as auxin and
abscisic acid may also be involved in this regulation (Hayes et al., 2019).
The responsive network of FR-induced increase in salt tolerance still
requires further investigation.

Clearly, FR has different, even opposite effects on plants’capacities in
dealing with various stress conditions. Our understanding of this complex
response network is still far from complete; thus, further research is
needed to not only quantify the FR effect on plants’ responses towards
different stress stimuli, but also the regulatory mechanisms. These studies
should also extend from model species to important crops for a further
yield improvement achieved by increased stress tolerance/resistance.

6.2 Targeting FR responses and sink activities for
yield improvement

The global human population is expected to reach 10 billion in the coming
30 years, posing an urgent demand for further yield improvement. The
yield of major crops increased substantially in the past decades (Table
6.1). Such yield improvement is a result of not only advances in



6

General discussion 109

cultivation techniques but also in breeding for new varieties. In tomato,
for example, modern varieties showed significantly higher yield compared
to that of old cultivars when grown under current greenhouse conditions
(Higashide and Heuvelink, 2009; van der Ploeg et al., 2007). Yield is a
complex trait with multiple components and the cause for the yield
improvements varies between crops. For example, modern rice cultivars
increased in harvest index (Morrison et al., 1999; Saitoh et al., 1990) and
some modern maize varieties showed improved light use efficiency (Hay,
1995; Tollenaar and Aguilera, 1992). In tomato, yield improvement of
cultivars released from 1950 to 2000 was correlated with higher light use
efficiency and leaf photosynthetic rate (Higashide and Heuvelink, 2009).
In recent years, the development of climate control technologies in
horticultural production enables precise and tailor-made conditions to
maximize crop production. Such precision should be matched with
varieties selected for these growth conditions. The rapid development of
genetic and molecular tools allowed for a precise breeding approach that
targets specific pathways or components of yield. Therefore, the
knowledge of how crop yield is affected in response to different
environmental cues such as light quality, as well as the underlying
mechanism of such effects, becomes increasingly crucial.

Table 6.1: Global average yield of tomato potato, maize, rice, wheat and
soybeans in the 1968 and 2018.

Crop Yield Increase
hg ha-1 %
1968 2018

Tomatoes 192879 382694 98
Potatoes 143266 209441 46
Maize 22894 59237 159
Rice 22328 46789 110
Wheat 14534 34254 136
Soybeans 14345 27914 95

FAOSTAT: http://www.fao.org/faostat (accessed October 2020)

FR increases yield in not only leafy crops (Li and Kubota, 2009; Zhen and
van Iersel, 2017) but also in fruit crops (Hao et al., 2016; Kalaitzoglou
et al., 2019; Zhang et al., 2019). We demonstrated that FR may increase
the total plant dry mass of young tomato plants by increasing net
assimilation rate (Chapter 2). Furthermore, FR increased dry mass
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partitioning to the shoot in all tested genotypes, which contributes to the
increase in shoot dry mass (Chapter 2). This promotion of dry mass
partitioning to the shoots was later demonstrated to be subject to the
regulation of phytochrome B and auxin (Chapter 3). These results
suggest that increasing dry mass partitioning harvestable organs may be a
new approach for yield improvement. For example, whether increasing dry
mass partitioning to fruits can also yield in tomato. Indeed, FR increased
tomato fruit yield, and such increase was mainly due to enhanced dry
mass partitioning to the fruits (Chapter 4). Environmental factors such
as temperature and irradiance may affect dry mass partitioning due to
their indirect effects on traits like fruit number, but such effect was
usually limited (Heuvelink, 1995; Marcelis, 1993). Sink strength, which is
quantified by the potential growth rate of an organ under non-limiting
assimilate supply, is the intrinsic capacity of an organ to attract
assimilates (Marcelis, 1996). Dry mass partitioning to fruits is determined
by the sink strength of both vegetative organs and the fruits, the latter
being the integral of individual fruit sink strength of all fruits (Heuvelink,
1997). In Chapter 5, we proved that FR significantly increased the
individual fruit sink strength of a tomato fruit and that this increase
quantitatively explained the FR increased dry mass partitioning to fruits.
These results hint at the potential in targeting the elevation of sink
strength for yield improvement. Sink strength of an organ is directly
linked to its capacity to unload, utilize, and metabolize assimilates. When
delivered to sinks, the assimilates (mainly sucrose) are unloaded
symplasmically from the phloem, facilitated by sugar transporters such as
SWEETs and SUTs (Carpaneto et al., 2005; Chen et al., 2012). We
observed an elevated expression of sugar transporter genes under FR,
suggesting that an enhanced sugar transport is indeed responsible for the
increased sink strength (Chapter 5). Over-expression of SUC in pea
successfully increased source-to-sink assimilate transport (Lu et al., 2020).
In accordance with this, repressing the expression of sucrose transporters
in A. thaliana (Gottwald et al., 2000), tobacco (Bürkle et al., 1998) and
maize (Slewinski et al., 2009) led to the reduction in growth as well as
starch accumulation in source leaves. Efficient unloading of the assimilates
is also needed to avoid negative feedback of sugar signals to source leaves
in their photosynthetic capacity (Franck et al., 2006). Similarly, to
maintain the efficiency of assimilate unloading into the sinks, rapid
hydrolysis of sucrose is also needed. Several enzymes are known to be
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involved in this process. For example, invertases are responsible for the
degradation of imported sucrose into glucose and fructose (Renz and Stitt,
1993), and sucrose synthase for degradation into fructose and UDP-glucose
(Huber and Akazawa, 1986). Indeed, we demonstrated that FR increased
the post-transport metabolism of imported sucrose in the fruits, shown by
the increase in glucose and fructose content, as well as the elevated
expression of genes encoding sucrose synthase and invertases (Chapter
5). Others attempted to manipulate these processes, such as the inclusion
of a more efficient allele of invertase LIN5 (Fridman et al., 2004; Gur and
Zamir, 2004; Zanor et al., 2009), or silencing the inhibitor of LIN5 (Jin
et al., 2009) led to increased sugar content in tomato fruits. Many of the
above-mentioned genes and pathways were demonstrated to be regulated
by FR or FR-induced regulatory networks. For example, expression of
LIN5 and LIN6, which encodes cell-wall invertases, were significantly
upregulated in fruits when phytochromes were locally knocked down in the
fruits (Ernesto Bianchetti et al., 2018). Expression of SWEET11 and
SWEET12, which encode sucrose transporters, was increased by HY5
(Chen et al., 2016). As HY5 was directly regulated by FR (van Gelderen
et al., 2018), it may be concluded that sugar transporters are also subject
to the FR regulation (Chapter 5).

Collectively, these results shed light on the potential of targeting FR
responses and sink activities for further yield improvement. First,
FR-induced enhancement of dry mass partitioning to the fruits warrants
the possibility to include FR in the supplementary lighting provided in the
greenhouse. Second, the regulatory mechanism, key genes, and enzymes,
as well as hormones involved in the FR-enhancement of sink strength can
be specifically selected or engineered to achieve a higher fraction of dry
mass partitioning to the fruits. The genotypic variation in FR responses
provides the foundation for such specific breeding programs. Third, the
development of powerful tools such as efficient gene editing by
CRISPR/Cas9 facilitates the targeted manipulation of multiple genes and
pathways at the same time, while speed-breeding (Ghosh et al., 2018)
greatly shortens the breeding cycle by using specific growth conditions.
Altogether, it can be expected that breeding for yield-promoting FR
responses, and elevated sink activities, possess great potential in further
yield improvement for modern agricultural production (Fernie et al.,
2020).
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6.3 Potential of incorporating FR in modern agri-
cultural production

The recent development of light-emitting diodes (LEDs) as a light source
provides exciting opportunities to secure a year-round production of
greenhouse crops, especially at high latitudes where light is limited during
winter periods. Currently, high-pressure sodium (HPS) lamps are the most
used source of supplementary lighting in greenhouses around the world.
LEDs, however, are progressively becoming popular and used either as an
addition or as a replacement of the HPS lamps (Marcelis and Heuvelink,
2019; Pattison et al., 2018). One of the advantages of LEDs, compared to
HPS lamps, is that they have a higher efficacy in converting electrical
power to light. HPS lamps typically have an efficacy of ∼1.7 µmol J-1

(Nelson and Bugbee, 2014) while that of LEDs used in horticultural
production exceeds 3 µmol J-1 (Kusuma et al., 2020). In addition to the
high efficacy, LEDs are also able to provide more flexibility compared to
HPS lamps in the spectral composition. Unlike HPS lamps that have a
pre-determined spectrum with little capability to adjust either its intensity
or its spectrum, LED light modules can be dimmable and can be designed
to provide a wide range of wavelengths with desired spectral composition.
Plants use the photons in the 400-700nm range to drive photosynthesis;
hence light within this range is termed as photosynthetic active radiation
(PAR). FR radiation has a wavelength of 700-800 nm and is generally
considered as unable to directly drive photosynthesis. However, it can
increase photosynthetic rate of PAR (Zhen and Bugbee, 2020). The
addition of FR to PAR light results in positive effects on plant growth and
development in various crop species. In pot flowers, for example,
additional FR promotes leaf expansion and whole-plant net assimilation as
well as flowering (Park & Runkle, 2017). For leafy vegetables such as
lettuce, additional FR increased dry mass production (Li and Kubota,
2009; Zhen and Bugbee, 2020; Zou et al., 2019). The promotion of biomass
production by FR (Cao et al., 2018; Kalaitzoglou et al., 2019) was also
observed in Chapter 2. FR increased yield of tomato (Hao et al., 2016;
Kalaitzoglou et al., 2019; Zhang et al., 2019),which was also observed in
Chapter 4 and Chapter 5. Such yield increase does not have to
compromise product quality, as demonstrated by the increased sugar
content in Chapter 5 and in the results of Fanwoua et al. (2019) and
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Kim et al. (2019). Furthermore, FR during cultivation improved tolerance 
to chilling injury in post-harvest storage (Affandi e t a l., 2 020) and 
improved nutritional content and taste (Kim et al., 2020).

One frequently asked question when considering supplying FR as 
supplementary light is whether it is more e icient to invest the electricity 
consumption in the PAR range (e.g. red or white light). For major 
greenhouse-grown crops like cucumber, tomato, lettuce, rose etc., a general 
rule of thumb is that 1% increment in light leads to 0.5-1% yield increase 
(Marcelis et al., 2006). In Chapter 4, adding 30-50 µmol m-2 s-1 of FR to 
a 150 µmol m-2 s-1 supplementary background (20-33% extra photon) 
resulted in 26-45% increase in fruit yield, which was slightly higher than 
the expected yield increase according to Marcelis et al. (2006). Further, 
with more research being published about FR effects on y ield, the total 
dosage of FR required for a significant yield increase may even be lowered. 
For example, Hao et al. (2016) showed that only 8 µmol m-2 s-1 FR added 
to 165 µmol m-2 s-1 HPS lighting (5% extra supplementary photons) was 
su icient to trigger a yield increase of 9%. This can be further 
accompanied by a smart application of FR in terms of time (e.g. end-of-
day lighting) and space (e.g. inter-canopy lighting).

These results demonstrate that the addition of FR improves yield and 
product quality in modern agriculture production, especially greenhouses 
or vertical farms. FR also proves to be a new tool to fine-tune the balance 
between vegetative and generative growth. These advantages may become 
more prominent as more research accumulates, accompanied by a further 
increase in efficacy of the LED modules as technology develops.

6.4 Perspectives for future research

The results presented in this thesis provide exciting advances in the 
understanding of how FR increases the growth and development of 
tomato. These findings also bring up new questions that warrant future 
research. First, it is not clear how the long-term application of FR 
increases dry mass production. While factors such as short-term Emerson 
enhancement effect (Zhen and Bugbee, 2020), higher net assimilation rate 
(Chapter 2, Park and Runkle 2017), higher whole-plant light absorption 
(Kalaitzoglou et al., 2019), and improved light distribution (Zhang et al., 
2019) were suggested to explain the increase in total plant biomass by FR,
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the explanations remain inconclusive. Using a study combining growth
analysis and model simulation, FR effects on both plant architecture and
leaf photosynthesis can be measured and their contribution to final total
plant biomass can be quantified. Second, despite that FR upregulates
sugar transport into the fruits (Chapter 5), it is not known if this is a
consequence of 1)more sugar transporters are translated, 2) sugar
transporters are working at a higher efficiency, or a combination of both.
The number of transporter proteins can be quantified with
well-established methods such as western blot. Using more advanced
techniques such as FRET (fluorescence resonance energy transfer), it
would be possible to monitor the transport rate of sugar molecules
through individual sugar transporters (Chen et al., 2010). Third, further
research should be conducted on the location where FR signals are
perceived and study whether the FR signals works locally or systemically.
Especially, the role of fruit-localized FR perception should be studied.
Fourth, from a practical point of view, the dosage, timing, and location of
FR application should be studied in more detail. It is not yet known what
the minimal amount of FR is needed to trigger a significant yield
improvement, or when the optimal timing is during the diel cycle to apply
FR. Also, this study should be conducted under different backgrounds
such as HPS, or different LED lighting like white or red + blue. Effects of
FR on other major fruiting crops such as cucumber, pepper, strawberry,
etc. are still lacking. It would be also interesting to extend this research to
cereal crops such as wheat, maize, and rice and study whether targeting
phytochrome-regulated sink activities can lead to further yield
improvement. Lastly, breeding traits based on the regulation of sink
activities should be identified and, with the help of efficient tools such as
CRISPR/Cas9, attempts should be made to target sink activities for
further yield improvement. This breeding approach aiming at FR related
responses should be conducted under LED lighting conditions, rather than
in the greenhouse with only HPS lighting or even without any
supplemental lighting, to ensure that selected genotypes are suitable for
growth in a fully controlled environment with LED lighting.
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Summary

Tomato (Solanum lycopersicum) is not only one of the world’s most important
horticultural crops but also one of the main crops for greenhouse production.
Modern greenhouse production is not only expected to increase yield and product
quality but also to achieve that sustainably. The horticultural sector has long
been at the front of technological advances in crop production. Light is one of the
most important environmental factors in crop production, and it is a common
practice to apply supplementary lighting in greenhouses at locations where low
daily light integral is low during the growing season to ensure a year-round
production. In these greenhouses, the high-pressure sodium (HPS) lamps are the
most used light source due to their low price and decent efficacy in converting
electric power to light photons. Despite their popularity, HPS lamps also have
disadvantages such as excessive heat emission and inflexibility in the light
spectrum. Recently, light-emitting-diodes (LEDs) emerge as an exciting
alternative to HPS lamps. LED lighting has over 60% higher efficacy, low heat
emission, and can be customized to provide different intensities and spectra. The
popularity of LED lighting in horticultural production also stimulated research on
the spectral effects of supplementary lighting on plant growth and development,
even extending the research to the spectrum that is beyond photosynthetically
active radiation (400-700 nm). Far-red radiation, which has a wavelength between
700-800 nm, has been extensively studied due to its role in plant’s neighbor
detection and sensing of shading. Interestingly, several studies point towards
yield increases as a result of additional FR in several crops. This thesis aims to
understand the effect of adding FR on the responses of growth and development
of both young and fruit-bearing tomato plants. Specifically, 1) to evaluate and
explain genotypic variation in dry mass production of young tomato plants in
response to FR, 2) to quantify the FR effect on dry mass partitioning between
shoot and root in young tomato plants and explain the regulatory mechanisms, 3)
to evaluate whether FR leads a trade-off between growth and plant immunity,
and 4) to quantify the FR effect on tomato fruit yield and study the physiological
and molecular pathways by which FR regulates this response.

Chapter 1 described the status of greenhouse tomato production, and what is
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known about plants’ responses to FR. The development of supplementary lighting
used in greenhouse tomato production was described, and a comparison was made
between the more efficient LED lighting and conventional HPS lighting. Here,
known effects on the perception of FR and its regulation of shade avoidance
responses were summarized. The latest studies were summarized, and they
pointed towards a positive effect of FR on tomato yield. However, these studies
did not reveal a clear mechanism for this yield improvement. Moreover, there was
contradiction and variation between the results, suggesting that species and even
different genotypes within the same species may respond differently to FR. FR
may also alter the partitioning of photosynthetic assimilates between organs.
Findings in the regulation of dry mass partitioning in plants were summarized
and they demonstrated a knowledge gap between a well-studied regulatory
network downstream the perception of FR and a set of FR-induced growth
responses. Lastly, the research of this thesis was introduced and the different
approaches for each of the research questions were outlined.

Chapter 2 demonstrated the genotypic variation within 33 different tomato
genotypes in their responses to FR at the young plant stage. Genotypes
responded similarly in plant height, stem dry mass, and shoot: root ratio, i.e.
they all increased with increasing FR. However, the response of total plant dry
mass varied among genotypes. Then, genotypes were categorized into three
groups (a strong, moderate, and weak responding group) based on their relative
response in total plant dry mass to FR. Growth component analysis revealed that
tomato genotypes that increased strongly in growth response to FR, compared to
the moderate and weak responding ones, were characterized by a strong increase
in net assimilation rate.

Chapter 3 continued from the finding in the previous chapter that young plants
of all genotypes increased in their shoot: root ratio with FR. Using both wild type
and loss-of-function double mutant of phyB1/B2, it was demonstrated that the FR-
induced increase in shoot: root ratio involved phytochrome B, as the phyB1/B2
double mutant also showed a strong increase in shoot: root ratio when grown
without FR. Interestingly, the phyB1/B2 double mutant still responded in shoot:
root ratio when FR increased, providing evidence for the involvement of other
phytochromes in the regulation of shoot: root ratio in tomato. Lastly, it was
demonstrated that the phytochrome-regulated response of shoot: root ratio to FR
may be mediated by affecting auxin transport.

Chapter 4 focused on fruit-bearing tomato plants and demonstrated the FR
effect on tomato fruit growth, and the main cause for this effect. FR significantly
increased total fruit dry mass. Growth component analysis revealed that FR
increased tomato fruit production mainly by increasing the fraction of dry mass
partitioned to fruits, rather than improving photosynthesis and total plant dry
mass. Furthermore, FR also reduced the resistance of tomato leaves against
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Botrytis cinerea.

Chapter 5 explained how FR increased the fraction of dry mass partitioned to
fruits. Sink strength, quantified as the growth rate of an organ under non-limiting
assimilate supply, is the intrinsic capacity of an organ to attract assimilates and
the main determinant of dry mass partitioning. FR increased fruit sink strength
by 38% in the glasshouse experiment. Based on this measurement, the model
simulation showed that such an increase in sink strength resulted in increased
dry mass partitioned to fruits, and the simulation result quantitatively agreed
very well with experimentally measured partitioning fractions. FR also increased
fruit sugar concentration and upregulated the expression of genes associated with
both sugar transport and metabolism. Taken together, it was concluded that FR
stimulates dry mass partitioning to fruits mainly by increasing fruit sink strength
via simultaneous upregulation of sugar transport and metabolism.

Chapter 6 summarized the findings of the experimental chapters and extended
the interpretation and discussion of these findings. The promotional effect of FR
in tomato growth comes at a cost in the form of reduced resistance against
pathogens. However, FR may increase plants’ tolerance against abiotic stress
such as salt stress. The understanding of these trade-offs is far from complete.
Also, I discussed the potential of targeting FR responses and sink activity in yield
improvement. It was demonstrated that there is genotypic variation in tomato’s
growth responses to FR, thus providing the foundation for breeding. FR
increased fruit growth in tomato by increasing fruit sink strength, and genes
responsible for sink strength were extensively studied. Therefore, it was
intriguing to attempt to specifically select varieties with higher fruit sink
strength. Powerful tools such as CRISPR and speed breeding are expected to
further accelerate this breeding process. Furthermore, I discussed the possibility
of integrating FR in modern greenhouse production based on the effects of not
only yield improvement but also an enhancement in product quality. Finally, I
provided perspectives for future research which will not only help complete our
understanding of the plant’s response to FR but also assist the application of
FR in modern agriculture production.
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