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Abstract 

Agriculture is a key source of food and income security for farmers in Ghana. The farming sector, 

however, is severely affected by climate variability and change, with subsistence farmers impacted 

worst of all. Providing reliable, accessible and actionable agrometeorological forecast information 

can enable smallholder farmers to increase their adaptive capacity in the face of climate variability 

and change. This study investigated weather and climate information services for smallholder 

farmers, particularly, how the quality, accessibility and use of such services can be improved. 

Several methods and tools were developed drawing on and/or integrating scientific and local 

forecasting knowledge systems. The study first identified and investigated trends in the variability 

and predictability of key local agrometeorological indicators, namely wet season onset dates, dry 

spell occurrence and seasonal rainfall. Forecast performance was assessed using both dynamical 

(i.e., ECMWF System 4) and statistical (i.e., influence of sea surface temperatures) models, which 

were compared to weather station observations across Ghana. Results show high interannual 

variability of the agrometeorological indicators, especially across the coastal zone and in northern 

Ghana. Performance of the scientific, model-based seasonal forecasts in reproducing the observed 

interannual variability was a function of location, lead time, categories and the agrometeorological 

indicators considered. Categorical (probabilistic) seasonal predictions provided smallholder 

farmers valuable information for coping with climate variability. Forecast performance was greater 

for the coastal savanna than for the other agroecological zones.  

Next, the potential for improving forecast accuracy by combining local and scientific, model-based 

forecasts was explored in the Ada East district case study location. There, I found that combining 

a specific set of local forecast indicators could improve local forecast performance. Particularly, 

one-day rainfall forecasts could be improved by use of local and scientific forecasts side-by-side, 

depending on the set of local forecast indicators observed by farmers. The range of identified local 

forecast indicators offers the potential for development of other approaches to integrate local and 

modern forecasting systems, to improve and enrich each.  

I also analysed a citizen science coproduction experiment to produce and implement an ICT-based 

climate information service tailored for smallholder farmers in the Ada East district of Ghana. In 

this case, the co-design of user-friendly digital tools (smartphone apps) and coproduction of local 

and scientific forecast information with and for smallholder farmers facilitated access, 

understanding and the usefulness of the tools and information for decision-making. Implementing 
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such a service requires intensive collaboration between researchers and a dedicated group of 

farmers and extension agents to build a basis for information production and dissemination in the 

area of interest. In this case, the collaboration included a capacity building component, as well as 

monitoring and technical assistance, especially in the development phase.  

Overall, the current research indicates that access to and use of reliable, locally actionable 

agrometeorological forecast information is possible in Ghana and elsewhere. Three key findings of 

this research warrant particular mention: (i) scientific forecasts need to be tailored to smallholder 

farmers’ needs; (ii) integration of local forecasting knowledge can add value to scientific, model-

based climate information services; and (iii) a tailor-made ICT-based weather and climate 

information platform can effectively deliver useful and actionable information to smallholder 

farmers while providing a vehicle for feedback. 
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Chapter 1. General Introduction 

1.1.  Background 

Agriculture plays an important role in income and food security in sub-Saharan Africa, but the 

sector is highly impacted by climate variability and change (Collier and Dercon, 2014, Rockström 

and Falkenmark, 2015, Shimeles et al., 2018). With climate variability on the rise in Africa, as 

elsewhere, average crop yields are expected to diminish in the coming years (Sultan and Gaetani, 

2016, Knox et al., 2012, Roudier et al., 2011). Even if global warming can be retained to within 

the limits set in the Paris Agreement, negative effects on agriculture are unavoidable (IPCC, 2018, 

2019). People involved in agriculture will be affected differently by these impacts (Jalloh et al., 

2013, Atta et al., 2015), with the strongest negative effects felt by the poorest and most vulnerable 

populations (Holt-Giménez et al., 2012, Stringer et al., 2020). 

Throughout sub-Saharan Africa, farming shares common struggles related to weather and climate 

risks (Stringer et al., 2008, Dixon and Stringer, 2015). Most of the region’s smallholders are 

involved predominantly in rainfed agriculture (Gbangou et al., 2018, Pirret et al., 2020). Moreover, 

they must manage their activities with very limited access to timely, location-specific and tailored 

weather and climate information (Vaughan et al., 2019). This renders smallholder crop production, 

which is the dominant mode of food production in the region, especially vulnerable to weather 

extremes – such as drought, heavy rains, heatwaves and frequent storms (Atta et al., 2015, Pirret et 

al., 2020). Due to climate variability and change such extremes are likely to occur much more 

often. Development and provision of adequate weather and climate information services (WCIS) 

can help farmers make better farming decisions, for example, in the face of uncertainty about water 

availability.  

WCIS can also be a valuable instrument for climate change adaptation and mitigation. For instance, 

the information provided can signal progress towards the objectives of the Paris Agreement and 

Sustainable Development Goals (Jones et al., 2015). Recent improvements and increased 

availability of weather and climate model predictions have brought opportunities to support 

decision-making in farm and water management, even at the farm level (Vaughan and Dessai, 

2014, Ingram et al., 2002). Already, many African countries are involved in development and 

provision of scientific, model-based seasonal forecasts, drought predictions, flood monitoring and 
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agrometeorological bulletins (Kadi et al., 2011, Dube et al., 2016, Plotz et al., 2017). However, 

several barriers prevent appropriate interpretation and use of such forecast information by 

smallholder farmers. Among these barriers are the forecasts’ unsuitable spatial and temporal scale, 

users’ lack of understanding of scientific model output jargon, gaps in communication channels, 

lack of decision-relevant information and poor communication of model uncertainties (Ingram et 

al., 2002, Vaughan and Dessai, 2014, Sultan et al., 2020).  

In Ghana, too, these obstacles affect smallholder farmers’ access to, reliance on and use of WCIS 

in farm decision-making (Yaro, 2013, Codjoe et al., 2014, Nyadzi, 2020). Many Ghanaian farmers 

still rely mainly on local or traditional knowledge to make decisions on farm operations. 

Particularly in today’s context of increasing weather and climate variability, farmers need 

improved knowledge to base their responses to uncertainties regarding the weather and climate 

(Codjoe et al., 2014, Nyadzi, 2020).  

Within the scientific community, too, there is a growing appeal to combine data from large-scale 

models with local, traditional knowledge systems, to obtain a better representation of local 

environments and thereby improve information services (Berkes, 1999, Riedlinger and Berkes, 

2001, Speranza et al., 2010, Balehegn et al., 2019, Gbangou et al., 2018). Information about users’ 

specific needs and local data can be employed to adjust and tailor weather and climate model 

outputs to meet end-users’ specific needs. Also, the many scholars who have compared modern 

and traditional knowledge on weather and climate have found positive connections between the 

two knowledge systems, and recommend creation of a new knowledge system that synergizes the 

two systems for greater accuracy (Speranza et al., 2010, Chisadza et al., 2015, Balehegn et al., 

2019, Nyadzi, 2020). Nonetheless, current WCIS undertakings in Africa, including in Ghana, 

operate based only on modern forecasting knowledge, mostly using a one-directional approach, 

with little focus on understanding users’ specific requirements and integrating local forecasting 

knowledge into modern, scientific systems (Hansen, 2002, Lourenço et al., 2016). This, possibly, 

limits the credibility, trust and acceptance of WCIS by local-level users such as smallholder farmers 

(Ingram et al., 2002, Kniveton et al., 2015, Nyadzi, 2020). The research presented in this 

dissertation explores the potential for improving the quality, accessibility and usefulness of weather 

and climate forecast information for smallholder farmers in Ghana. To achieve this objective, I 

investigated (i) the prediction performance of model-based forecasts tailored to smallholder 
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farmers’ needs, (ii) approaches to integrate local, traditional forecasting knowledge with scientific 

WCIS systems and the added value of such integration and (iii) design principles for an effective 

WCIS tailored for smallholder farmers.  

Defined broadly, climate information services (or climate services) provide short- to medium-range 

predictions (one day to several months) and long-term climate projections (several years) (Tall et 

al., 2018, Vaughan et al., 2019). However, the current research considered only the first range of 

climate information services. Also, the term ‘weather and climate information services’ (WCIS) is 

used alternatively with ‘climate information services’. The sections below introduce the research 

problem, knowledge gaps and approaches adopted in this research to fill these gaps. The chapter 

then introduces the research questions, which are answered in the subsequent chapters. 

1.1.1 Tailoring scientific, model-based forecast information for smallholder farmers 

Interest in agricultural WCIS is growing. Many scholars welcome climate information systems as 

an integral part of sustainable development strategies to meet food security goals in a climate 

uncertain future (Campbell et al., 2014, Chandra et al., 2017, Vaughan et al., 2019). In Ghana, 

national meteorological services and other organizations are actively involved in the production of 

weather and climate information to support decision-making in agriculture, and in other sectors 

(World Agrometeorological Information Service, 2020, Ghana Meteorological Agency, 2020). 

However, the information made available to smallholder farmers is often not at an appropriate scale 

or is too raw, without relevant agro/hydro-meteorological indices to meet farmers’ needs (Codjoe 

et al., 2014, Matthews et al., 2013, Wetterhall et al., 2015, Gbangou et al., 2018). For instance, 

accurate prediction of the onset of the rainy season, dry spells and rainfall amounts at critical points 

in the growing season are of key interest to farmers to reduce the risk of crop failure (Owusu et al., 

2017, Nicholson, 2017, Baidu et al., 2017, Atiah et al., 2019, Kumi et al., 2020). Up to now, 

however, most local farmers in Ghana receive only daily rainfall and temperature forecasts (and 

even then, only occasionally). They continue to lack access to long-term and seasonal forecasts 

(Jost et al., 2016, Limantol et al., 2016, Sarku et al., 2020). Understanding and improving forecasts 

of key agrometeorological indicators at the appropriate spatial and temporal scales can provide 

valuable support to smallholder farmers in Ghana. 

1.1.2 Integrating local and model-based forecasting knowledge 
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Scholars increasingly recognize that integrating local and scientific forecasting knowledge can 

strengthen both knowledge systems, leading to better responses to climate variability (Kalanda-

Joshua et al., 2011, Ingram et al., 2002, Lebel, 2013, Kniveton et al., 2015). This thesis defines 

local forecasting knowledge (LFK) as indigenous or traditional forecasts by smallholder farmers 

or pastoralists (non-scientists) based on experience in observing biophysical indicators (Radeny et 

al., 2019, Balehegn et al., 2019). Scientific forecasting knowledge (SFK) refers to forecasts derived 

from scientific weather and or climate models. LFK, by definition, encompasses knowledge and 

practices that are embedded in local institutions, values and beliefs. It is thus more likely to be 

accepted and influential in decision-making within local communities, compared to SFK (Kniveton 

et al., 2015). Some have suggested that combining SFK and LFK could increase not only local 

adoption of SFK, but also the quality of weather and climate information (Crane et al., 2010, 

Kniveton et al., 2015, Radeny et al., 2019). While LFK is built-in and established in many African 

communities, including in Ghana, there is a general lack of coordinated research on LFK, including 

its formal documentation, verification of its quality (e.g., its accuracy and reliability) and methods 

of integration with modern forecasting knowledge. Exploring integration possibilities between the 

two knowledge systems could improve the quality and use of weather and climate information by 

smallholder farmers in Ghana. 

1.1.3 Role of coproduction in facilitating knowledge integration  

The coproduction approach can be employed to integrate local and scientific knowledge. 

Coproduction, by definition, facilitates a joined-up development of new and combined knowledge 

to address societal problems of common interest or concern. In short, knowledge is gathered from 

different actors representing different sources, experiences and working practices (Audia, 2018). 

Smallholder farmers in developing countries like Ghana typically have low literacy levels (Barnett 

et al., 2017, Naab et al., 2019). Coproducing WCIS with and for these farmers can engender local 

interest and interaction and help farmers use and understand weather and climate forecast 

information provided (Ingram et al., 2002). Through the coproduction process, the complex 

scientific jargon used in scientific weather reports, seasonal forecasts and agrometeorological 

bulletins (including terminology for forecast uncertainty) can be translated with and for farmers 

(Kniveton et al., 2015). The result can be a better understanding among information users of the 

uncertainties inherent in forecasts. This can prevent misinterpretations and thereby maintain the 
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credibility of information and its source, while building community resilience (Kniveton et al., 

2015, Patt and Gwata, 2002). Moreover, farmers can contribute to co-generate weather and climate 

knowledge by collecting local forecast observations and data through the citizen science approach 

(Buytaert et al., 2014). Contributions of local knowledge and forecast information are important, 

as scientific models vary in their predictive performance across time and space, so they might not 

always be good enough to support local decision-making by smallholders (Audia, 2018). Despite 

recognition of the value of knowledge coproduction, there is as yet little evidence and few case 

studies on participatory approaches to WCIS coproduction combining scientific and local 

knowledge systems in developing countries like Ghana (Vaughan et al., 2019, Nyadzi et al., 2018). 

1.1.4 ICT and knowledge coproduction  

Information and communication technology (ICT) can be used to facilitate knowledge sharing and 

coproduction. In particular, the rapid rise of digital media has brought a wealth of opportunities for 

farmers to access and use modern information systems and tools (Vaughan and Dessai, 2014, 

Sultan et al., 2020, van der Burgt et al., 2018). Data management systems, the internet, smartphones 

and mobile-based applications can be used to facilitate data collection, dissemination and direct 

interaction with users. Indeed, no technology has spread around the world faster than the mobile 

telephone (Qiang, 2009, Khalil et al., 2009). George et al. (2011) found that mobile phone use had 

a significant positive impact on economic growth in developing countries. The devices are 

becoming more affordable, too, and can be increasingly linked to data management systems via 

the internet, with smartphone applications fostering interactive sharing of information. 

Nonetheless, in many developing countries, including Ghana, information on weather and seasonal 

forecasts still passes through several intermediaries before it reaches end-users (Tall et al., 2014b). 

Existing WCIS in Ghana primarily reach users via radio and television (Jost et al. (2016)), and 

provide little opportunity for farmers to provide feedback to improve the usefulness of the forecast 

information. Also, the ICT-based forecasting tools available are weak in data visualization, which 

makes probabilistic and ensemble-based forecast information difficult to grasp for low literate 

populations (Stephenson, 2000, Elkhatib et al., 2013). Use of an ICT-based knowledge-sharing 

platform in a coproduction process can help ensure access to WCIS by both smallholder farmers 

and intermediaries, like agricultural and meteorological extension agents. 

1.2 Knowledge gaps and research focus 
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Despite progress in accelerating climate information service development in Ghana and other 

developing counties, questions remain regarding the provision of timely, location-specific, 

accessible, understandable and useful weather and climate information, especially for smallholder 

farmers. The type of weather and climate information systems available locally varies across West 

Africa (Vaughan et al., 2019). Information on the weather is generally more accessible than 

seasonal forecasts (Rasmussen et al., 2014, Zongo et al., 2016). Information formats differ as well, 

with some WCIS offering tailored agrometeorological information, while others are more general. 

Accuracy, or reliability, varies too, as does the influence of forecast information on decision-

making by smallholder farmers (Coulibaly et al., 2015, Roudier et al., 2014, Hansen et al., 2009, 

Patt and Dessai, 2005). Previous studies found that West African farmers do use WCIS when it is 

accessible and considered reliable, understandable and relevant to their decision-making 

(Amegnaglo et al., 2017, Roncoli et al., 2009, Vaughan et al., 2019, Coulibaly et al., 2015). The 

need for information on agrometeorological indices such as onset and cessation dates of seasonal 

rains, dry spell occurrence and seasonal rainfall is acknowledged throughout West Africa, and in 

Ghana (Atiah et al., 2019, Gbangou et al., 2018, Fitzpatrick et al., 2015). Tailoring model-based 

seasonal forecasts to include these indicators is crucial to provide farmers the information they 

need for decision-making. Similarly, combining local forecast knowledge with model-based 

forecasts can increase forecast reliability and local acceptance (Ingram et al., 2002). Poor 

dissemination media can hamper access to and use of weather and climate information (Roudier et 

al., 2016, Coulibaly et al., 2015, Zongo et al., 2016). Other factors that can impact WCIS 

effectiveness are design, targeting and implementation (Vaughan et al., 2019). ICT tools can 

contribute to better design, while facilitating knowledge coproduction and sharing, which fosters 

WCIS that benefit vulnerable smallholders. 

Against this backdrop, I identified three knowledge gaps in provision of credible weather and 

climate information for smallholder farmers in Ghana: 

• Poor understanding of seasonal variability and of the performance of scientific, model-based 

forecasting systems regarding agrometeorological indicators tailored to smallholder farmers’ 

needs 
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• Lack of insight into the performance of local forecasting knowledge and the potential to 

integrate such knowledge with scientific, model-based forecasting systems for increased 

accuracy 

• Inadequate understanding of the design requirements of ICT-based WCIS tailored for 

smallholder farmers and including both local and scientific forecasting knowledge 

1.3 Research objectives 

My objective in this PhD research was to analyse the quality of, access to and use of weather and 

climate forecast information to support decision-making by smallholder farmers in Ghana. To 

achieve this, I developed methods, ICT-based tools and processes using and/or integrating both 

scientific and local forecasting knowledge and data. I formulated four research questions to address 

the  knowledge gaps identified above. 

The first two research questions focus on the tailoring of scientific, model-based forecasts to meet 

local farmers’ needs. The first question is how and with what results can a dynamical model be 

used to tailor and improve predictions of the onset of the rainy season (RQ1, Chapter 2)? In this 

part of the research, I sought to define and explore trends and variability in location-specific onset 

dates of the rainy season and to assess the predictions of this indicator to better serve farmers’ 

information needs. Drawing on scientific, model-based seasonal forecasts, I developed two 

definitions of the local rainy season onset date and demonstrated the challenges involved in 

location-specific onset predictions. This serves to demonstrate the potential for improving such 

predictions. 

The second research question is how and with what results can dynamical and statistical models 

be used to tailor and improve predictions of dry spell occurrence and seasonal rainfall  (RQ2, 

Chapter 3)? This question explored trends, variability and predictability of rainfall amounts and 

dry spell occurrence at critical points in the growing season in the study area, based on forecasts 

from statistical and dynamical models. In this part of the research, I identified challenges in the use 

of agrometeorological indices to predict seasonal rainfall and dry spell occurrence. I also explored 

the potential of using dynamical and statistical forecasts to improve predictions of both indices. 
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The third research question focused on the integration of local and scientific forecasting systems. 

Thus, our third research question asks what are local forecast indicators, their accuracy and 

integration opportunities between local and modern forecasting systems (RQ3, Chapter 4)? In this 

part of the research, I set out to document local forecasting knowledge (LFK), to assess LFK 

performance and to develop methods for integrating it with scientific forecasting knowledge in the 

study area. Insights were particularly sought on the diversity and accuracy of LFK, compared to 

scientific forecasts. Another aim was to identify integration opportunities between local and 

scientific forecasting systems to improve the accuracy of both systems, for better weather and 

climate information for local farmers. 

The final research question focused on principles for designing ICT-based weather and climate 

services tailored for smallholder farmers: What are the benefits and design principles of ICT-based 

climate service coproduction with and for smallholder farmers (RQ4, Chapter 5)? In this part of 

the research I evaluated an ICT-based climate service coproduction process with and for 

smallholder farmers combining local and scientific forecasting knowledge. I thus provide case 

study evidence regarding a collaboration between farmers, extension agents and scientists in the 

design and production of tools, and the sharing and use of weather forecast information. Drawing 

on results from the case study, I derived design principles for an effective ICT-based climate 

information platform integrating local forecasting and scientific knowledge. The principles derived 

will help guide science and policy towards development of climate services that are more accessible 

and actionable by smallholder farmers. 

1.4 Research methodology and thesis outline 

1.4.1 Study area 

The research was carried out in Ghana with a focus on the coastal savanna zone of the Volta Delta. 

Figure 1.1 shows the sites where scientific (model-based) forecasts were interpolated and 

evaluated, as well as the Ada East district, where the local forecasting knowledge system was 

explored and the coproduction experiment was carried out. Ada East district is peri-urban and 

located in the savanna zone. It is the pilot site of the Waterapps project (www.waterapps.net), which 

seeks to improve water information services for farmers in the urbanizing delta of Ghana. Four 
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agroecological zones were identified in the study region, representing areas for which model-based 

climate forecasts were evaluated or verified. 

Ghana is a tropical country characterized by two seasons (wet and dry) (Amekudzi et al., 2015). 

Rainfall patterns exhibit high spatio-temporal variability (Lacombe et al., 2012, Asante and 

Amuakwa-Mensah, 2015). Rainfall is also characterized by a unimodal and bimodal pattern, 

respectively, in the northern and southern halves, due to the meridional movement of the 

intertropical discontinuity (Sultan and Janicot, 2003). The lowest rainfall values are found in the 

northern and coastal savanna areas (Atiah et al., 2019) where Ada East district is located. This 

complex rainfall regime makes food production difficult, as farmers are heavily reliant on rainfed 

agriculture (Antwi-Agyei et al., 2012, Kanu et al., 2014). 

Agricultural production in Ghana is dominated by traditional smallholder, rainfed farming (MoFA, 

2011, OECD/FAO, 2016, Angelucci et al., 2019). This mode of cultivation is characterized by 

significant weather and climate-related risks and low productivity (Sonwa et al., 2017, Vaughan et 

al., 2019). Particularly, rainfall fluctuations induce variability in soil moisture which can limit plant 

growth and yield. Yet, food production demand in Ghana is on the rise (Angelucci et al., 2019) and 

is projected to increase further under the influence of climate change and economic growth. The 

country’s farmers, nonetheless, have limited access to climate information to help them navigate 

the burgeoning weather and climate risks (Jost et al., 2016, Naab et al., 2019). Improved weather 

and climate information could aid them in facing the challenges of an increasingly variable climate, 

leading to reduced poverty in Ghana as a whole (Naab et al., 2019). 

Fishing and farming are the main sources of livelihood in the Ada East district. The most 

economically important crops here are cassava, pepper, rice, maize and tomato (Amisigo et al., 

2015). According to Ghana Statistical Service (2014), engagement of young adults in crop farming 

has given a major boost to the economy of the district and Ghana as a whole. Improving peri-urban 

agriculture could increase farmers’ yields and incomes. Also, there seems to be substantial potential 

for adoption of digital technologies in this region, due to its proximity to several urban areas. 
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Fig. 1.1: Map of the study area showing (i) the locations/stations per agroecological zone in Ghana 

where scientific, model-based forecasts were interpolated and evaluated; and (ii) Ada East district, 

which was the pilot site of the Waterapps project, where the the local forecasting knowledge system 

was explored and the coproduction experiment was carried out. 

1.4.2 Thesis outline and research design 

This dissertation is structured in six chapters. After this general introduction, the four research 

questions are addressed in four scientific articles, presented as chapters 2-5. Each chapter addresses 

one research question. Figure 1.2 presents the substance of these and their interconnections. 

Chapters 2 and 3 focus on tailoring scientific, model-based forecasts to farmers’ needs in order to 

improve the quality and usefulness of the forecast information.  

This research used a multimethodological approach for data collection and analyses. Figure 1.3 

presents an overview of the research objectives, research questions and chapters with their 

corresponding methodological designs. 

Chapter 2 addresses seasonal variability and predictability of agrometeorological indices of 

particular relevance to smallholder farmers, particularly rainy season onset dates. The need to tailor 

forecast information to smallholder farmers’ needs emerged from the literature and my own field 

observations in relation to the cropping calendar. I developed two suitable definitions of the rainy 
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season onset date and assessed trends in and variability of onset dates based on time series data 

from stations’ observations. I then applied forecast verification metrics to explore the accuracy of 

the onset date estimates from scientific, model-based seasonal forecasts. The analyses were carried 

out for Ghana as a whole, though with an emphasis on two study sites, in coastal and northern 

Ghana, where the effects of climate variability and change are relatively more dominant. 

Chapter 3 concerns rainfall and dry spell occurrence in Ghana, particularly trends, variability and 

seasonal predictions based on both dynamical and statistical models. The need for better, locally 

tailored predictions of these indicators was again identified based on the literature, supplemented 

with my field observations and the local cropping calendar. I analysed trends and interannual 

variability of these indicators to understand the challenges involved in producing accurate 

predictions of seasonal rainfall and dry spell occurrence at critical stages of crop production. I 

developed statistical forecasts based on the link with nearby and remote sea surface temperatures 

(SSTs) driven by the El Niño–Southern Oscillation (ENSO) phenomenon. Subsequently, I 

investigated the predictability of these agrometeorological indices using both scientific, model-

based dynamical forecasts and statistical forecasts to improve the quality of seasonal predictions. 

Chapter 4 explores the potential for harnessing local forecasting knowledge on weather and climate 

in Ghana, and integrating it with scientific forecasting techniques.  For this, I documented local 

forecasting knowledge (LFK) on weather and seasons, based on interviews, focus group 

discussions and a citizen science experiment. Using forecast evaluation metrics, I analysed the 

performance of LFK compared to scientific forecasting knowledge (SFK). Finally, I developed an 

integrated approach to predict daily rainfall occurrence and identified three other opportunities to 

integrate LFK and SFK for investigation in future research. 

Chapter 5 explores the coproduction of weather forecast information with and for smallholder 

farmers in Ghana. Specifically, it evaluates a citizen science coproduction experiment in which 

farmers, extension agents and scientists participated in training, data collection and monitoring 

activities. I used expert observation and ex post evaluation to assess an ICT-based weather forecast 

information service designed with and for smallholder farmers and including both local and 

scientific forecast information. This allowed me to test the benefit of the joined-up approach to 

WCIS design and production and to derive design features required for effective WCIS tailored for 

vulnerable smallholder farmers. 
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Chapter 6 recaps the methods and tools developed, the research results and the main conclusions. 

It begins by summarizing the answers to the four research questions, and then reflects on the 

methods developed to tailor scientific forecasts to farmers’ needs, the approaches used to assess 

forecast performance and opportunities to combine local and scientific forecasting knowledge, as 

well as design parameters for an effective ICT-based climate information service tailored for 

smallholder farmers. The strengths and limitations of the research are then discussed, followed by 

an examination of, respectively, the scientific and societal significance of the research with regard 

to WCIS development for small-scale agriculture. Finally, recommendations are made for future 

research in the field. 

 

Fig 1.2: Outline of the thesis 
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Fig 1.3: Research framework, research objectives and research questions, with their corresponding 

chapters in this thesis and the data, methods and tools applied. 
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Chapter 2. Seasonal variability and predictability of agro-meteorological 

indices: Tailoring onset of rainy season estimation to meet farmers’ needs in 

Ghana 

Abstract 

Reliable information on onset of the rainy season is important for local agriculture planning in 

Ghana. We examine the (i) trend and variability of onset in local observations to better understand 

the need for onset forecast information  and (ii) performance of ECMWF System 4 seasonal climate 

forecast in reproducing this variability and discriminating tercile categories of onset dates across 

Ghana. The analyses focused on two pilots locations of interest among the fourteen synoptic 

stations studied, namely Ada and Tamale located in the coastal savanna and in northern Ghana. 

Two different onset date definitions were tested to suite with uncorrected and bias-corrected 

forecasts in order to test the predictability. The definitions were tailored to suit with forecast start 

dates, local climate data availability and cropping calendar. Results show a significant decreasing 

trend in historical onset dates towards more recent times (i.e 1986-2010) at Tamale station. Also, 

historical onset dates exhibit a significant increasing variability towards more recent time at Ada 

station. System 4 shows some ability for reproducing local onset variability with significant 

correlational relationship between forecasted and observed onset dates at some locations including 

Ada station. The forecasting system also has significant skill in predicting early and late onset dates 

categories (i.e H-K score > 0) at the pilot stations. In conclusion, the use of onset agro-

meteorological index, based on System 4 as climate service in Ghana, has a potential value for 

decision making when considering categorical based forecasts. 
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Practical Implications 

Seasonal crop production in Ghana is subjected to important challenges due to the changing 

climatic conditions. These challenges are often related to poor understanding of climate variability 

and low access to tailored climate information that affect farmers’ decision making and induces 

crop failure and yield reduction. This paper addresses this issue by estimating monsoon onset dates 

trend, variability and predictability. Onset dates agrometeorological information is highly valuable 

for local agricultural production, especially for small scale rainfed farmers in Ghana whose crop 

production depend mainly on rainfall. It can help farmers improve their decision-making about the 

selection of crop types and varieties. Informed farmers can also reduce the risks and costs related 

to the re-sowing or re-planting process.  

This research proposes and applies methods for transforming seasonal climate forecasts related-

data into relevant climate information tailored to end-users needs in Ghana. To this end, monsoon 

onset dates forecast information is estimated and verified (evaluated) against local observations 

(local stations data) as a way to represent better local-scale experience and thereby increase the 

information value. Furthermore, local cropping calendar time-scale are taken into account in the 

verification process to ensure that onset dates information is tailored to farmer’s specific locations 

and climatic conditions. The significant forecast skills found for the early and late onset dates show 

promises for provision of tailored forecast onset dates information to local farmers. Thus, prior to 

each growing season, farmers could use this information to make the right decision. For instance, 

forecasts starting in March and April respectively for Ada and Tamale could be used to inform 

farmers on whether rain will start early or late. 

The research reflects on uptake of appropriate methods for ensemble seasonal forecasts verification 

processes by water managers from national meteorological agencies or any institution/programme 

involved in climate information services provision. This is in view of filling the gap of climate 

forecasts information creation and access in Ghana based on ECMWF seasonal climate forecasting 

system. A case application of new seamless monsoon onset definitions and forecast evaluation 

methods are used in the paper and can help improve forecast usefulness, usability and uptake. 

Moreover, the probabilistic nature of the forecast assessment offers the benefit of taking into 

account uncertainties by exploring different potential future realizations or ensemble members. 

Seasonal predictions of onset date of the rainy season
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Owing to a high spatial and temporal variability of monsoon onset dates, famers have problems to 

decide when to start with the sowing preparations and to optimize investments despite the use a 

range of traditional coping strategies. Seasonal onset dates forecast information can back up the 

traditional methods and strategies used by local farmers. The categorization of onset dates in the 

form of early, normal and late onset dates classes can facilitate the understanding even by local 

farmers. This format of information can equally give room for future integration with traditional 

knowledge and can built a roadmap for co-production of climate services. 

 

2.1.Introduction 

Understanding climate variability is a key concern to achieve food security in West African 

countries. There is evidence that rainfall variability will increase under climate change (Morris et 

al., 2009, Sylla et al., 2016, Salack et al., 2016). As a result of this variability, many small scale 

farmers are facing challenges because they depend, largely, on rain-fed agriculture (Cooper et al., 

2008, Wani et al., 2009). In rain-fed farming, rainfall fluctuations induce variability in soil moisture 

which can limit plant growth and yield. Especially, the inter-annual variability in onset dates can 

lead to crop failure and yield reduction (Rockstrom, 2000, Ingram et al., 2002, Ochola and 

Kerkides, 2003, Barron, 2004, Usman and Reason, 2004). For example, delay planting due to late 

onset of rains may result in reduced yield, while planting following a “false” onset of the growing 

season may lead to failure and the need for expensive replanting (Ingram et al., 2002, Wetterhall 

et al., 2015, Dunning et al., 2016). The ability to cope with uncertainty in rainfall and water 

availability is vital for all farmers. Farming in Ghana is no exception to this uncertainty (Yaro, 

2013) as traditional knowledge is often no longer enough to make appropriate decisions (Codjoe 

et al., 2014). Seasonal forecasts of the onset of the growing season is important for farmers’ 

decision making. Predicting onset of the rainy season can help local farmers plan on when and 

what to plant. It can also help water managers and authorities plan good seasonal policies towards 

food security. Understanding onset variability and predictability based on local data is also an 

important step to fully (i) understand the needs for rains onset information and (ii) the potential for 

predicting it. 

Previous research has shown that skilful seasonal climate prediction can provide meaningful 

information several months ahead to support decision-makers (Charney and Shukla, 1981, Slingo 
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and Palmer, 2011, MacLeod, 2018) despite the chaotic nature of weather. It follows that cropping 

calendar’ decisions for different crops with growing lengths falling totally or partially within 7 

months period can potentially benefit from the seasonal climate forecasts information. However, 

there are still major issues regarding the prediction of onset dates especially for local farmers. 

Seasonal onset forecasts are shown to have little value to forecast users in West Africa as forecast 

models tend to under-predict the variability of onset dates across the region, especially when using 

the wrong onset definitions and observation dataset (Vellinga et al., 2013, Fitzpatrick et al., 2015).  

Previous studies carried out on onset seasonal prediction in West Africa (including Ghana) have 

mostly used large-scale observational products as reference for comparison or for bias correction 

(Fitzpatrick et al., 2015, Vellinga et al., 2013, Wetterhall et al., 2015) instead of local station data. 

This is a limitation because global data does not often give a representation of what is experienced 

on local scale (Wetterhall et al., 2015, Gbangou et al., 2018). For example, Sylla et al. (2013) 

identified significant differences between satellite and gauges merged observations. Important 

discrepancies were also found between gauge-based observations and satellite products by Nikulin 

et al. (2012) and Diallo et al. (2013). Therefore, rigorous validation of climate model outputs using 

high quality observations remains a challenge Diallo et al. (2016). Moreover, Manzanas et al. 

(2014a) raised a warning regarding the use of global data, especially, in Ghana as most of the 

products fail to reproduce the complex rainfall regime in the country (Owusu and Waylen, 2009). 

These studies use also regional definitions of onset dates instead of local definitions which are 

locally calibrated and represent local climate conditions (Fitzpatrick et al., 2015). 

The importance of a tailored (i.e. specific to local climate and cropping calendar) rainy season onset 

definition has been proven to be relevant at local scale by previous studies (Janicot et al., 2011, 

Codjoe et al., 2014, MacLeod, 2018). The surveys on farmers information needs carried out by the 

Waterapps project1 in Ghana has also confirmed a high demand for local specific agro-climatic 

information. Exploring patterns of local onset trends and variability can provide a clear insight on 

the factors that drive current challenges faced by traditional knowledge (Ingram et al., 2002), 

formerly used by farmers to make agro-climatic predictions including onset of the rainy season.  

 
1 Surveys have been conducted locally in Ada East District, Ghana under the WaterApps (www.waterapps.net) 
project on farmers information needs. 
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This paper aims to optimize the approach for assessing the trend, variability and predictability of 

growing season onset timing by (i) using local station observations as reference and (ii) adopting a 

locally tailored definition of the season onset. In doing so, onset information need is ascertained 

and its predictability is verified with long range seasonal forecasts.  

The study area covers the whole Ghana focusing on two pilot stations namely Ada and Tamale 

(Figure 2.1) located in the coastal savanna and in Northern Ghana respectively. These are locations 

with a high demand for climate information to support agriculture and where the Waterapps project 

(www.waterapps.net) is actively involved. Moreover the two stations are located both within a 

savannah climate conditions where climatic change and variability remains a challenge for 

agriculture.  

 

Figure 2.1: Map of Ghana showing the location the 22 gauges stations (left) collected from GMet 

and sorted into 14 gauges stations (right) across the four main agro-ecological zones previously 

used in Owusu and Waylen (2009, 2013). 

2.2.Datasets 
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This section give the description of seasonal forecast and stations dataset used in to the study. 

2.2.1.  ECMWF seasonal climate forecasts 

The European Centre for Medium-Range Weather Forecasts (ECMWF) seasonal forecasts System 

4 was used in the current study. The forecasting system has 51 ensemble members, with initial date 

on 1st of each month, and then run daily for 7 months (i.e Lead-months). The 51 ensemble members 

are made up with one control member initialised by ERA-Interim and 50 ensembles in which the 

initial conditions (ocean and atmosphere) combined with stochastic schemes in the model physics 

of the atmospheric model (Molteni et al., 2011). The re-forecasts (also referred to as hindcasts) for 

System 4 consists of forecasts starting also on the 1st of every month over the years 1981-2010 with 

an ensemble size of 15 members. The hindcasts can be used to calibrate the real-time forecasts in 

combination with the observed weather and climate. In this study, hindcasts acquired from the 

ECOMS User Gateway ((Magariño Manero et al., 2014); http://meteo.unican.es/ecoms‐udg) are 

used to verify the performance of System 4 to reproduce local onset dates. Lead-month 0, 1 and 2 

of System 4 forecasts were selected considering lead time needs2 as described in Table 2.1 bellow. 

Table 2.1: System 4 lead months selection per agro-ecological zones 

Leadtime Costal&Southern zone Transition&Northern zone 

Leadmonth 0 Forecast start date is 1st March and 
MAM season is considered 

Forecast start date is 1st April and 
AMJ season is considered 

Leadmonth 1 Forecast start date is 1st February 
and MAM season is considered 

Forecast start date is 1st March and 
AMJ season is considered 

Leadmonth 2 Forecast start date is 1st January 
and MAM season is considered 

Forecast start date is 1st February and 
AMJ season is considered 

 

2.2.2.  Stations datasets 

A 50 years (1961-2010) rainfall dataset for 14 gauges with less than 2% missing values (Figure 

2.1) were used to (i) characterize historical trend and interannual variability of rainy season onset 

and (ii) serve partly as reference for the skill assessment of System 4 seasonal climate forecast 

 
2 Lead time needs is based on the cropping calendar (Supplementary S2.3) and surveys conducted in situ 
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described above. These datasets were acquired from Ghana Meteorological Agency (GMet). 

Considering that Ghana has an area of 238,535 km², 14 stations correspond to a coverage of about 

17,038 km² per station. This is considered as spare coverage according to Masinde et al. (2012b) 

as some model gridded data (e.g. System 4 has 0.75x0.75 grid size) may not have a station within 

its grid-cell (Figure 2.1). Therefore, instead of interpolating point station rainfall to grid format, 

which requires a well distributed synoptic stations over Ghana, we rather extracted (interpolated) 

gridded data for each of the 14 stations. This was done by applying the nearest neighbour 

interpolation as described by Manzanas et al. (2014a). As mentioned earlier in the introduction, 

local stations were taken as reference observations for forecasts bias-correction and skill 

assessment. This is because large-scale products mostly fails to represent local experience, 

especially at coastal areas with two rainy seasons (Dunning et al., 2016).  

 

2.3.Methods 

The predictability of rainy season onset is shown to be dependent on (i) lead-time, (ii) definition 

of onset (iii) the presence of model biases and (iv) the spatial averaging scale of prediction 

(Wetterhall et al., 2015). We therefore consider adopting adequate definitions and thresholds to 

check the predictability of this index over Ghana. The bias-correction methodology is also 

presented in this section.  

 

2.3.1. Onset date definitions 

Rainy season onset definitions ranges from (i) regional to local definitions and from (ii) rainfall-

evapotranspiration to rainfall-only related definitions (Ati et al., 2002, Laux et al., 2008, Fitzpatrick 

et al., 2015). The local definition based on ‘rainfall-evapotranspiration that can detect false onset 

date’ seems to be most adequate for onset prediction as it accounts for both local scale experience, 

and includes environmental water losses through evapotranspiration (Gbangou et al., 2018). 

However it requires the inputs of several climate variables to calculate evapotranspiration. Thus, 

two onsets definitions based on ‘rainfall-related’ definitions  namely “isochrone” and “agronomic” 

were adopted due to lack of data to fully compute evapotranspiration. The isochrone and agronomic 

method being respectively adequate for (i) raw model runs and (ii) bias-corrected model runs. The 

two definitions are described below: 
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• An adjusted onset definition presented by Vellinga et al. (2013) and often called ‘isochrone 

method’ was adopted and applied to both raw System 4 and GMet datasets. They define 

onset date as the date when a given percentage of cumulative season rainfall has fallen, here 

25% of the normalized seasonal (e.g: MAM or AMJ) rainfall was considered as calibrated 

threshold (Supplementary S2.2). The threshold is chosen to reflect the agronomic onset 

definition which is a rainfall-evapotranspiration definition of Benoit (1977).  Although, this 

definition is only a rainfall-related, in contrast to rainfall-evapotranspiration related 

definition, and it remains relevant for the purpose of this study. This method is particularly 

useful when dealing with raw System 4 outputs because it is not sensitive to models biases 

(Vellinga et al., 2013). This is because the definition uses a relative number as a threshold 

instead of an absolute rainfall amount.  

 
• An agronomic onset date definition (based on absolute rainfall value) was adopted for bias-

corrected System 4 outputs. For example at Ada district (coastal zone) onset is defined as 

follow : starting from 1st March, onset of growing season is when average 4 days rainfall 

exceeds 10 mm. The definition was motivated by the study of Huho et al. (2012) based on 

cropping calendar in Kenya. The threshold of 10 mm is chosen after validation with the full 

rainfall-evapotranspiration onset definition of Benoit (1977)  (see Supplementary S2.2, 

figure S2.2).  

The definitions were chosen to reflect the local farmers cropping calendar3 and the northward 

evolution in rainfall distribution across Ghana. The forecasts start dates were selected based the 

cropping calendar at Ada district, taken as reference for the coastal savannah and considering the 

northward rainfall distribution in Ghana as described in previous  (Manzanas et al., 2014a, Owusu 

and Waylen, 2009). Therefore, MAM  (March-April-May) and AMJ (April-March-June) seasons 

were selected for Coast-South and Transitional-North agro-ecological zones respectively (Figure 

2.1).  

Both methods were validated using Benoit (1977) ‘rainfall-evapotranspiration related onset 

definition’, which is ‘false onset’-sensitive, over years and stations where data were available. This 

was done in order to avoid false starts related to prolonged dry spells that can cause serious damage 

 
3 The general cropping calendar in Ada East district is presented  Appendix 3 
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to crops (Ati et al., 2002, Marteau et al., 2009, Dunning et al., 2016). At Ada, relatively good 

correlations 0.71 and 0.72 were found, respectively, between (i) Benoit (false-onset sensitive) and 

the agronomic (absolute value) definitions used in this paper and (ii) Benoit (false-onset sensitive) 

with the isochrone methods (see Supplementary, S2.2). These correlations indicate that there are 

differences in onset dates among the definitions. However this is not surprising given that 

local/agronomic definitions usually have discrepancies among them unlike regional definitions 

which can predict homogeneous onset dates (Fitzpatrick et al 2015). When considering the Benoit 

(1977) definition as reference, we identified 4/31 cases of false onset starts for the absolute value 

agronomic definition and 3/31 of false onset starts with the isochrone definition (see 

Supplementary, Figure S2.2). These false onset dates can be assumed to be rare. 

2.3.2. Bias-correction and lead-time selection 

Bias-correction was applied on the System 4 seasonal climate forecasts using GMet observations 

as reference. The quantile mapping bias-correction method (Panofsky et al., 1958) was used (see 

full methodology in Supplementary S2.4). The method adjusts the forecasted rainfall (System 4) 

to the observed rainfall (GMet) by matching the cumulative density function (CDF) of daily rainfall 

at each station. The method is proven to be successful in many hydrological and climate impact 

studies (Maurer and Hidalgo, 2008, Li et al., 2010, Jakob Themeßl et al., 2011, Wetterhall et al., 

2012) as well as medium-range (Voisin et al., 2010) and seasonal forecasts (Wood et al., 2002). 

We consider forecast starting in March and April for (i) Coast -South and (ii) Transitional-North 

agro-ecological zones respectively in order to account for bimodal, unimodal as well as the 

northward shift in rainfall distribution across Ghana (Sultan and Janicot, 2003).  

2.3.3. Skill metrics 

The onset dates derived from System 4 ensemble forecasts were verified against GMet observations 

using Pearson’ correlation coefficient (PCC) and Hanssen-Kuipers (H-K) skill score discriminant 

for the categories (Hanssen and Kuipers, 1965). PCC, presented in Equation 2.1, measures how 

well the forecast anomalies correspond to the observed anomalies over the hindcast period 1981-

2010 at each station. Hence, PCC stands as a measure of variability. This H-K score (Equation 2.2) 

has been widely used for many years to evaluate precipitation forecasts (Accadia et al., 2003, 

Stephenson, 2000, Tartaglione, 2010, Gsella et al., 2014, Fekri and Yau, 2016, Singh et al., 2017) 
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against observations. Hanssen and Kuipers' discriminant score is universally acceptable and give 

the best in evaluating yes/no forecasts for decision making purpose (Woodcock, 1976). The score 

measures the ability of the forecasts to discriminate (correctly classify) events and non-events. The 

events are considered here as early, near average, and late onset dates. Onset dates (i) before 

average corresponds to the lower tercile or lower third (≤ 33rd) of the onset dates over the full 

hindcast period, (ii) near average corresponds to middle tercile, or central third of the onset dates 

and (iii) later than average corresponds to upper tercile or top third (≥ 66th) of the onset dates.  

 

PCC = 
 ∑

  ∑.  ∑ (Equation 2.1) 

Where:  and  are respectively the forecasted and observed indices for year m;   and  is 

the time mean of  and  respectively ; and M is the number of hindcast years; PCC is the 

correlation coefficient. 

H-K = POD – POFD with POD = a/(a+c) and POFD=b/(b+d)  (Equation 2.2) 

Where: H-K is the Hanssen-Kuipers discriminant or Pierce Skill Score (Hanssen and Kuipers, 

1965); POD and POFD represent respectively the probability of detection or hit rate and the 

probability of false detection or false alarm rate; HK ranges from -1 to 1; H-K ≤ 0 indicates no 

skill, H-K =1 is the perfect score; a, b, c and d are described in Table 2.2. 

FAR = b/(b+a) (Equation 2.3)  

Where: FAR is the false alarm ratio and ranges from 0 to 1, FAR=0 is the perfect score. 

Table 2.2: Contingency table for categories of events. 

 Event-observed Event-not observed Total 

Event-forecasted Hits (a) False alarms (b) 
Yes forecasted (a 

+ b) 

Event-not forecasted Misses (c) Correct rejection (d) 
No forecasted (c 

+ d) 

Total Yes observed (a + c) No observed (b + d) Total forecasts (n) 

 

Hit rate (POD, Equation 2.2), false alarms ratio (FAR, Equation 2.3), and false alarm ratio (POFD, 

Equation 2.2) were subsequently analyzed to facilitate the use for forecast for decision making. 

POD measures the fraction of the observed "yes"  events that were correctly forecasted and ranges 
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from 0 to 1 where the perfect score is 1. FAR measures the fraction of predicted "yes" events that 

did not occur and ranges from 0 to 1 with 0 as perfect score. POFD measures the fraction of the 

observed "no" events were incorrectly forecast as "yes" and ranges from 0 to 1 with 0 as perfect 

score. We recall that the ‘event’ here indicates early, normal or late onset dates.  POD and POFD 

are measures of discrimination while FAR is a measure of reliability. These metrics can facilitate 

decision making, even for non-scientific, and were computed for the best leadtimes found after the 

H-K skill scores analyses at Ada and Tamale pilot stations of interest. 

2.3.4. Statistical Analyses 

Patterns of onset starting date trend and variability were analyzed for P1: 1961-1985 and P2: 1986-

2010 over the 14 stations including Ada and Tamale pilots stations. P1 and P2 periods are set to 

represent past and more recent time climate conditions following the work of Manzanas et al. 

(2014a) on precipitation trend and variability in Ghana. The analysis over these separate periods 

help to account for changes in trend and variability in Ghana. Moreover, the equal-length of the 

cut-off years prevents from the effect of sample size on the significance tests. 

Statistical tests were performed for the trend and variability of historical onset dates over the P1 

and P2 periods. The Mann-Kendall test analysis of linear trend significance was carried out. This 

method has been used in many previous studies across the world (Partal and Kahya, 2006, Obot et 

al., 2010, Manzanas et al., 2014a). The analysis of onset date variability significance was performed 

using F-test to test whether there is a difference in variability between P1 to P2 periods. An 

additional evidence on the change in variability was carried out using the Fligner-Killeen test 

(Fligner and Killeen, 1976, Hettmansperger and McKean, 2010) which is robust and non-

parametric (see supplementary, Table S2.3). 

Statistical significance tests were also carried out on the forecasts skill assessment over the hindcast 

period of 1981-2010 using t-test. The significance tests were applied to the (i) correlation between 

GMet and System 4 and the (i) H-K skill scores. 

 

2.4.Results 

2.4.1. Trend and variability in onset dates from GMet observations 
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The inter-annual variability of onset dates for Ada (coastal savannah) and Tamale (northern Ghana) 

stations under the isochrone and agronomic methods are presented on Figure 2.2. The figure clearly 

show that onset dates vary from year to year for both P1 and P2 periods at the two stations. Julian 

days at Tamale are generally higher than Ada implying that onset occurs later in the northern 

although both have a savanna type of climate. Differences in onset dates also exist between the two 

local onset definitions. At Ada station, there is a non-significant decreasing and increasing linear 

trend over P1 and P2 periods respectively for both onset definitions (Figure 2.3a). However, at 

Tamale, there is a significant (P<0.10) decreasing linear trend for P1 and P2 periods respectively 

under the two onset definitions (Fig 2.3b). Using the isochrone method, the trend towards an earlier 

date is even significant at P<0.05 for Tamale. These results imply that, towards more recent time, 

there is no significant change in trend for onset starting dates at Ada. At Tamale, however, there is 

a clear change pattern that indicate an earlier start of rainy season towards present day. The results 

for other stations also show a general trend towards an earlier date over the majority of stations 

located at the transition and northern Ghana compared to those located in the Coastal and Southern 

Ghana (Figures 2.3a and 2.3b). For example, stations like Wa and Yendi show a significant 

decreasing trend at 95%  confidence level. 

At Ada, there is an increase variability of the onset of the rainfall. The standard deviation of both 

the isochrone and agronomic (Figures 2.4) definitions are significantly increasing. At Tamale, the 

figures show a reduction of standard deviation with no-significant decrease in variability and under 

the isochrone and agronomic definitions. These findings show that there is a higher variability in 

onset dates occurring at Ada towards more recent time whereas at Tamale, le variability is small. 

Under the isochrone method (Figure 2.4), the majority (10 over 14 stations) of the stations exhibit 

an increasing variability over P2 in relation to P1 period. Under the agronomic method (Figure 

2.4), half of the stations show an increasing variability. However, both methods consistently 

predicted with 90% confidence a significant increasing variability at 3 stations namely Ada, 

Saltpond, Kete-Krachi, Wa and Yendi. At 95% confidence level, both methods consistently 

predicted an increased variability at Kete-Krachi station only. 

In summary, the results show that at Tamale the rainfall season has started earlier over the last 

decades indicated by significant trends for the 1986-2010 period. In Ada there has not been a 

significant change in the onset of the rainfall season. In Ada, however, the variability of the onset 
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has increased during both periods. At Tamale there was no significant change in the variability of 

the onset of the rainfall season. 

 

Figure 2.2: Interannual variability of  onset dates in GMet observations for the two different 

periods: P1:1961-1985 and P2: 1986-2010 for Ada and Tamale stations. Onset dates were 

calculated using the isochrone (iso) and agronomic (agro) methods.  
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Figure 2.3: Linear trend of onset dates for all the stations and for the isochrone (a) and agronomic 

(b) definitions. The small and big asterisks indicate, respectively, significance in trend at 90% 

and 95% confidence levels based on Mann-Kendall test. The decreasing and increasing trends are 

indicate by the tau values of the statistical test. 
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Figure 2.4 : Change in the standard deviation of onset dates across the 14 stations in Ghana for 

periods P1:1961-1985 and P2: 1986-2010. (*) and (**) asterisks indicate, respectively, significance 

changes in variability at 90% and 95% confidence level based on F-test. Iso and Agro indicate the 

isochrone and agronomic onset definitions respectively. The stations are also grouped by agro-

ecological zones. 

 

2.4.2. Ability of System 4 for the reproduction of local onset variability 

This section analyses findings on the ability of system 4 to reproduce the variability in observed 

onset dates, focusing on correlations. Results on the correlational analysis is presented in Figures 

2.5a and 2.5b for the isochrone and agronomic onset definitions respectively over the 14 stations. 

The correlation relationship plot between GMet and System 4 ensemble mean onset dates is 

presented for lead month 0, 1 and 2 (i.e 1st March, 1st February, and 1st January forecast starting 

dates for the South-Coast and 1st April, 1st March, and 1st February forecast starting dates for the 

Transition-North zones respectively). The correlation coefficient ranges from 0 to 0.42 and from 0 

to 0.49 for the agronomic and isochrone methods respectively. Globally, correlation for leadmonth 

0 performs better than the others for both onset definitions. In terms of correlation strength, these 

coefficients are weak but there are, interestingly, significant positive correlational relationships for 

some stations. For example, at Ada station and under leadmonth 0, the correlation is positively 

weak (i.e PCC is less than 0.5) but significant at 95% confidence level under the two onset 

definitions. With the isochrone definition at Leadmonth 0, there are 9/14 stations with significant 

relationship at 90% confidence level and 6/14 at 95% confidence level. Under the agronomic 

definition, only 7/14 of the stations show a significant correlation at 90% confidence for leadmonth 

0, 1 and 2 put together and 4/14 stations significant at 95% confidence level for leadmonth 0 and 

1. In term of agro-ecological zones, higher correlations are generally found over the Coast-

Southern zone in comparison to the Transition-Northern zone. 

 Figure 2.6 presents the interannual variability of onset dates at Ada and Tamale from GMet and 

System 4 ensemble forecasts for the 15 members over the hindcast period and for the isochrone 

and agronomic methods using boxplots. Each boxplot measures onset dates distribution over the 

hindcast period 1981-2010 by highlighting the central tendency and its variability. The figure also 

shows the median and mean (red asterisk). Additional detailed analyses at individual member level 
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were presented in the supplementary material (see Supplemental S2.6). This was done by 

resampling interannual variability across the hindcasts years and for each ensemble member. Under 

the isochrone definition, Figure 2.6 shows that the magnitude of observed onset date variability is 

under-estimated by System 4 at Ada. Interestingly, this correspond to period where high variability 

has been observed earlier in section 2.4.1. However, at Tamale, where a reduced onset variability 

has been observed, the magnitude of variability is better reproduced. In contrast, the agronomic 

definition over-estimate the observed variability.  

The results on significance correlational relationship (see Figure 2.5), shows weak correlation 

coefficients range from 0 to 0.49 but significant at some stations like Ada. The inter-annual 

variability findings (see Figure 2.6) show that system 4 usually under-estimate the variability at 

station where high onset variability is occurring based on the isochrone method. With the 

agronomic, which is based on bias-corrected forecast, the variability is generally over-estimated in 

all cases. 
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Figure 2.5: Anomaly correlation coefficients between onset dates GMet and System 4 ensemble 

mean for the (a) isochrone and (b) agronomic methods. The agronomic definition are applied on 

bias-corrected forecasts. The ensemble mean being computed for lead time 0, 1 and 2. (**) and (*) 

indicate significant correlation at 0.05 and 0.10 confidence level respectively. Stations are grouped 

by agro-ecological zones. 

 

 

 

Figure 2.6: Inter-annual variability of onset dates over the hindcasts period 1981-2010 for Ada and 

Tamale stations. Edges of Box show 25 and 75 percentiles with the line within the box showing 

the median. Error bars show 10 and 90 percentiles and dots indicate individual outliers. The red 

asterisk represents mean. Lead 0,1,2 represent the forecasts starting in (i) March, February, and 

January for Ada, and (ii) April, March, and February for Tamale. 

 

2.4.3. Ability of system 4 to reproduction categories of local onset 
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Results on the skill test of System 4 ensemble forecasts in classifying early, normal and late onset 

are presented in this section for Ada and Tamale pilot stations and for the two onset definitions. 

The analysis for all 15 members and the ensemble mean for Leadmonth 0, 1 and 2 and for each 

category are presented in Figure 2.7 together with the significance test results at 95% and 99% 

confidence levels. Under lead-month 0, the median and mean fall above H-K score = 0 for the early 

and late onset categories. These two categories also show significant scores at the two stations 

when using the isochrone method (see Figure 2.7). However, under the agronomic definition, only 

the late category has significant score at lead-month 0. The other lead-months, with exception of 

the late category of lead-month 1 at Tamale, show non-significant skillful scores. Therefore 

Leadmonth 0 has better skill than Learmonth 1 and 2 for both definitions at the two pilot stations. 

The figure also shows that System 4 is able, at some extent, to discriminate better early and late 

rain onset dates than those at near average (normal) categories. Moreover, the isochrone definition 

performance slightly better than the agronomic definition at Learmonth 0 with higher skill scores 

value around the central tendency. 

In conclusion, System 4 seasonal climate forecast has skills in reproducing onset date categories 

especially for low and higher tercile categories and for Learmonth 0 which corresponds to March 

and April forecasts for Ada and Tamale respectively. The next section presents results discussion 

of all findings. 
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Figure 2.7: Skill in onset date categories for lead-month 0,1, and 2 at Ada and Tanmale stations. 

Edges of Box show 25 and 75 percentiles with the line within the box showing the median. Error 

bars show 10 and 90 percentiles and dots indicate individual outliers. The red asterisk indicates the 

skill in the ensemble mean. The single and two black asterisks show lead-months and categories 

where the skill is respectively significant at 95% and 99% confidence levels based on t-test. The 

isochrone dates are presented in pink and agronomic in blue. 

 

Analyses of hit rate (POD), false alarms ratio (FAR), and false alarm rate (PODF) for Leadtime 0 

are presented in Table 2.3 and 2.4 for Ada and Tamale stations. These are meant to facilitate the 

use the forecasts information for decision making. Based on the ensemble results for Ada and for 

the isochrone method, Table 2.3 indicates that 56% (i.e. POD) of the observed late-onset events 

were correctly predicted while 45% (i.e. FAR) of the predicted ‘yes’ late-onset events did not occur; 

and only 27% (i.e. POFD)  of the forecasted ‘no’ late onset event was incorrectly ‘yes’. As for early 

onset event with the same station and method, the table indicates that 40% of the observed early-

onset events were correctly predicted while 60% of the predicted ‘yes’ early-onset events did not 
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occur; and only 30%  of the forecasted ‘no’ early onset event was incorrectly ‘yes’. Recalling that 

the best case for decision making is when POD, FAR, and POFD are respectively close to 1,0, and 

0, late onset forecast are more reliable compared to early onset date. Both can discriminate onset 

categories and for that reason are still better than random guesses. With the agronomic definition, 

hit rates were found to be lower than the false alarm ratio (e.g. POD of 36% and 45%  against FAR 

of 64% and 55% for the early and late onset respectively) although the false alarm rate is still 

relatively good (i.e low with 31% and 27% for the early and late onset dates). This further 

confirmed that the isochrone method perform better compared to the agronomic definition. Similar 

analysis for Tamale show that late onset date forecasts are more reliable than early onset category, 

although both categories are discriminated by the forecasts. Some of the best ensemble members 

do show good reliability (e.g. at Ada under the isochrone method, POD=80% and FAR=20% for 

late onset date event ). 

Table 2.3 : Analysis of hit rate, false alarm ratios and false alarm ratio at Ada station to facilitate 

forecast interpretation for decision making. Leadtime 0 is considered. 

Onset 

definition 

Best 

Leadtime

s 

Best 

Categorie

s 

Ensemble 

forecast 

POD (hit 

rates) 

FAR (false 

alarm ratio) 

POFD (false 

alarm rate) 

Isochrone Lead 0 

Early 

onset date 

Ensemble 36% 60% 30% 

Best 

member 
55% 40% 21% 

Late onset 

date 

Ensemble 56% 45% 27% 

Best 

member 
80% 20% 30% 

       

Agronomi

c 
Lead 0 

Early 

onset date 

Ensemble 36% 64% 31% 

Best 

member 
60% 40% 20% 

Late onset 

date 

Ensemble 49% 55% 27% 

Best 

member 
81% 21% 30% 
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Table 2.4: Analysis of hit rate, false alarm ratios and false alarm ratio at Tamale station to facilitate 

forecast interpretation for decision making. Leadtime 0 is considered. 

Onset 

definition 

Best 

Leadtime

s 

Best 

Categorie

s 

Ensemble 

forecast 

POD (hit 

rates) 

FAR (false 

alarm ratio) 

POFD (false 

alarm rate) 

Iso Lead 0 

Early 

onset date 

Ensemble 40% 58% 30% 

Best 

member 
55% 45% 26% 

Late 

onset date 

Ensemble 49% 54% 33% 

Best 

member 
86% 17% 30% 

       

Agro Lead 0 

Early 

onset date 

Ensemble 33% 68% 33% 

Best 

member 
50% 50% 25% 

Late 

onset date 

Ensemble 60% 56% 44% 

Best 

member 
86% 25% 49% 

 

2.5.Discussions 

The study set up the aim to understand patterns of trend and variability in onset dates and to explore 

the ability of System 4 seasonal forecasts in reproducing this variability. In this process, the need 

and provision of onset forecast information can be better understood especially for the two pilot 

stations of interest.  

2.5.1. Trend and variability implication for local farming 

Our findings show that, over the more recent period 1986-2010, the rainfall season has started 

earlier in Tamale while at Ada there has not been a significant change in onset of the rainfall season. 

There is (i) no significant change in trend and (ii) a significant decreasing trend for Ada and Tamale 

respectively. Equally, from P1 (1961-1985) to P2 (1986-2010) periods there is (i) a significant 

increasing variability at Ada and (ii) a non-significant decreasing variability at Ada and Tamale 

respectively. The two onset definitions generally predict similar patterns on trend and variability 

despite some differences in significance.  
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These patterns of increasing/decreasing trend and variability in onset  support the study of 

Manzanas et al. (2014a) over the two stations using GMet data. Although these authors studied 

only seasonal rainfall, the current study found similar patterns of trend and variability for onset 

dates over P1 and P2 periods. However, results on variability for some stations in Ghana do support 

with cautiousness the general statement about the increasing climate variability over West Africa 

(Salack et al., 2016, Morris et al., 2009, Sylla et al., 2016) since this is not always valid for local 

onset date variability towards more recent time. These stations include Tamale, Kumassi, Bole and 

Akuse where there are no signals of increasing variability. The differences in onset dates found 

between the two local definitions were expected because Fitzpatrick et al. (2015) show that local 

onset definitions have high spatial, interannual, and interdefinition variability. This explains the 

discrepancies between  the two definitions. A possible explanation for the occurring high variability 

in rain onset dates at Ada could be related to complex series of coastal/oceanic and atmospheric 

interactions (Acheampong, 1982, Owusu and Waylen, 2009, Manzanas et al., 2014a, Philippon et 

al., 2010) which have increased with climate change.  

There are several implications for local farming in Ada and Tamale especially. At Ada, the increase 

variability of seasonal rainfall is likely to increase the risk of rainfed crop systems. One of the 

problems is the costs associated with the need to re-plant due a late start of the rainy season.  At 

the same time (too) late planting  reduces the yield potential. This increasing variability can also 

have an impact on the effectiveness of traditional prediction (formerly) used by farmer‘s  to 

appreciate the monsoon start (Yaro, 2013, Ingram et al., 2002).  At Tamale station, where there is 

no increase variability but a trend towards an earlier date in onset. Here, farmers need information 

about whether this earlier onset is permanent or only a temporary situation. Supporting local 

farmer’s knowledge with skillful modern forecasts information can help them mitigate the risks 

related to climate variability and change both in Southern and Northern Ghana. 

2.5.2. Forecast skill and implication for local farming 

The analyses of correlational relationship significance between GMet and System 4 show weak 

correlations of 0.0-0.49 but significant at some stations. These results reflects those from Vellinga 

et al. (2013) who also found correlations between 0.15 and 0.4 using seasonal forecasting system 

of the UK Met Office (GloSea4). This is already encouraging as it may imply that there is a 

potential for the forecast to correctly classify locally observed onset categories. The higher 
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correlations found in the Coast-South agro-ecological zone suggest a stronger influence of the sea 

surface temperature on rainfall variability (Philippon et al., 2010). The comparison of the inter-

annual variability between GMet and System 4 show that System 4 usually under-estimates the 

variability at station were high onset variability is occurring if the isochrone method is used. With 

the agronomic definition, which is based on bias-corrected forecasts, the variability is generally 

over-estimated. It is surprising that isochrone definitions applied to raw forecasts capture twice 

better the observed central tendency (e.g mean and median) better than the agronomic definition 

which is based on bias-corrected forecast. In general, the results support the suggestion that 

seasonal forecasts is not very useful in reproducing the magnitude of variability in the monsoon 

onset over West African region (Fitzpatrick et al., 2015).  

The skill analyses for categorizing onset dates show that System 4 can reproduce onset date 

categories. This is, especially the case for low and higher tercile categories and for Learmonth 0 

which corresponds to March (Ada) and April (Tamale) forecasts. This is because the skill of the 

seasonal forecast generally decrease as the lead-time increases (Wetterhall et al., 2015, Ogutu et 

al., 2017). In fact, since rains onset is defined based on 3 months period, by moving from 

Learmonth 0 to 2, we also move towards the 3rd , 4th , and 5th  months respectively. This corresponds 

to an increasing lead time towards the 7th month, which explains the decrease in skills. 

These results show promise for the provision of tailored forecast onset dates information to local 

farmers at least in terms of early and late categories. The forecasts starting in March and April 

respectively for Ada and Tamale could be used to inform farmers on whether rain will start early 

or late. This information can potentially support farmer’ decision making. It can help them to 

reduce the risk for re-planting. Also, this could be a modern prediction of onset dates that can be 

combined or complemented with local traditional predictions. In this way the forecast information 

could be culturally accepted by farmers (Ingram et al., 2002). 

2.5.3. Importance of using local station observations and cautious interpretation of 

findings 

Using directly local observations for this particular study is a relatively new approach with it 

strength and challenges. Assessing trend and variability, and verifying seasonal forecasts with local 

observations offer the benefit to derive conclusions that are more tailored to farmers at Ada and 
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Tamale. This is because large-scale observations (satellite and reanalyses) cannot capture local 

micro-climatic processes. For example, a quick comparison of WATCH-Forcing-Data-ERA-

Interim (WFDEI) (Weedon et al., 2014) between the most suitable large-scale reanalysis product 

(Manzanas et al., 2014a) and GMet rainfall data shows some important discrepancies (see 

supplementary S2.1) especially for Ada. It is also important to consider some of the limitations 

related to the datasets and methodology. Although the observations have been carefully checked in 

order to keep stations that have low percentage of missing, the residual missing values might still 

affect the prediction of onset dates. Also, the neighbor weighted interpolation technic used to 

interpolate the forecast at each point station is still a form of averaging approximation that can also 

have an effect on the results. 

The potential use of the forecasts for decision making also depends on the  ECMWF System 

operational forecast release timing restriction. Operational forecast would not actually be available 

on first of each month as applied in this paper using hindcasts. For instance, System 4 is released 

on 8th of the month while the new System 5 is released on the 5th . In addition to that, one must 

further consider the processing and communication time between ECMWF, the local Met agency 

and farmers. This delay can potentially impact on the use of the forecasts since farmers may not be 

informed in time (e.g. case of early onset dates occurrence that may occur close or event after the 

release date). Therefore, future research and application with operational forecast should consider 

the forecast release time lag. 

2.6.Conclusions 

The purpose of the current study was to assess the trend, variability and predictability of onset of 

the rainy season by (i) using local station observations as reference and (ii) adopting two tailored 

local definitions. The analyses focused on Ada and Tamale stations which are two pilot stations of 

interest.  

The study has identified changes in the onset of the rainy season. At Ada (coastal savannah), there 

is a an increasing onset variability that can increase rainfed crop production risks. At, Tamale, there 

is, rather, a decreasing trend implying an earlier start of the wet season towards more recent time. 

The analysis of predictability shows that System 4 has little benefit for reproducing the magnitude 

of local variability of onset dates, especially where there is an observed high variability. This means 
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that the system does not have enough benefit for giving exact/precise onset date information to 

local farmers. However, System 4 is proven to have skills for categorizing early and late onset dates 

especially for forecast starting in March and April for Ada and Tamale respectively. The use of 

onset agro-meteorological index based on System 4 as climate services in Ghana can have a 

potential value for decision making when considering categories. These results give promise for 

the provision of tailored forecast onset dates information to local farmers at least in term of 

categories.  

Considering the time lag restriction in the release of operational forecast, future research or 

applications of seasonal forecast is recommended to always take into account this time lag in order 

to optimize the utility of the forecast information for decision making. The additional time related 

to the processing and communication between, for instance, ECMWF, National Met agency and 

farmers need also to be considered as much as possible. Organizations promoting forecast-based 

climate services (e.g. ECMWF, National Met Agencies and others projects) are encouraged to 

reduce the release time in future forecasting systems and the communication timing to the end-

users. The improvement on the quality and availability of station observations  for better improved 

skill assessment of operational forecasts is also a priority.  

Future analyses of seasonal climate forecast performance on additional agro-meteorological 

indices such as dry spell occurrence are also an important climate information for crop production 

in Ghana. Potential predictability of this index is highly demanded by local as climate information 

in order to avoid crop failure during plant’s critical growth. For future studies, it might  also be 

interesting to look at methods that integrate (e.g. combination or complementarity) modern 

(scientific) onset prediction with the traditional ones. In that process, the value of onset information 

for local agriculture might increase. 
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Chapter3. Rainfall and dry spell occurrence in Ghana: trends and seasonal 

predictions with a dynamical and a statistical model 

Abstract 

Improved information on the distribution of seasonal rainfall is important for crop production in 

Ghana. The predictability of key agro-meteorological indices, namely, seasonal rainfall, maximum 

dry spell length (MDSL), and dry spell frequency (DSF) was investigated across Ghana [with an 

interest on the coastal savannah agro-ecological zone]. These three variables are relevant for local 

agricultural water management. A dynamical model (i.e. European Centre for Medium-Range 

Weather Forecasts (ECMWF) System 4 seasonal forecasts) and a statistical model (i.e. response to 

sea surface temperatures (SST)) were used and analysed using correlation and other discrimination 

skill metrics. ECMWF-System 4 was bias-corrected and verified with 14 local stations’ 

observations. Results show that differences in variability and skills of the agrometeorological 

indices are small between agro-ecological zones as compared to the differences between stations. 

The dynamic model System 4 explains up to 31% of the variability of the MDSL and seasonal 

rainfall indices. Coastal savannah exhibits the highest level of discrimination skills. However, these 

skills are generally higher for the below and above normal MDSL and seasonal rainfall categories 

at lead-time 0. Similarity in skills for the agro-meteorological indices over the same zones and 

stations are found both for the dynamical and statistical models. Although System 4 performs 

slightly better than the statistical model, especially, for dry spell length and seasonal rainfall. For 

dry spell frequency and longer lead-times dry spell length, the statistical model tends to perform 

better. These results suggest that the agro-meteorological indices derived from System 4’ updated 

versions, corrected with local observations, together with the response to SST information, can 

potentially support decision-making of local smallholders farmers in Ghana. 
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3.1.Introduction 

In Ghana, West Africa, demands for operational predictions of rainfall and related indices are 

growing to support rural communities (Vitart et al., 2017, Gbangou et al., 2019, Nyadzi et al., 

2019). This is especially true where rainfed smallholder farmers are affected by climate variability 

and change (Mendelsohn et al., 2006, Codjoe et al., 2014, Gbangou et al., 2019). Provision of 

forecasts of water availability indicators with sufficient accuracy and appropriate lead-time can 

potentially improve management for rainfed or semi-rainfed farming systems in Ghana. Seasonal 

forecast of the likelihood of the growing season’ water availability can help inform farmers with 

long-term planning. For example, the Waterapps research project (www.waterapps.net) aims to 

develop tailored water information services with and for farmers in peri-urban areas in the 

urbanising deltas of Accra, Ghana to improve the water and food security. The project focusses on 

Ghana’s urbanising delta because of agricultural intensification, water availability issues and the 

increasing possibilities of farmers to use ICT for climate information service . Also risks in terms 

of crop failure due to unexpected rainfall events are growing and hence the need for improved 

rainfall forecasts is growing too. Therefore, this study focusses on the coastal savannah agro-

ecological zone along the delta area (Figure 3.1). 

There is a need for agro-meteorological forecast information about seasonal rainfall and dry spells 

occurrence for West African farmers in general (Usman and Reason, 2004, Codjoe et al., 2014, 

Yaro, 2013) and more specifically in the coastal savannah of Ghana delta area (Gbangou et al., 

2019). This information can help to improve specific decision-making of many local farmers by 

optimising the selection of crop types/varieties, reducing the cost of land preparation and avoiding 

crops failure due to premature or late planting time. Dry spells during the growing season have a 

large impact on crops and the cumulative rainfall does not fully explain impacts on agriculture, 

because a few heavy rainfall events may lead to an erroneous impression that a growing season is 

good (Usman and Reason, 2004). According to Usman and Reason (2004), crops are more likely 

to do well with uniformly spread ‘light’ rains compared to a few ‘heavy’ rainfall events interrupted 

by dry periods. So, the timing of breaks in rainfall events (dry spells) relative to the cropping 

calendar rather than total seasonal rainfall is fundamental to crop viability and production. 

West African rainfall is highly variable on interannual and decadal time scales and is highly 

correlated with  sea surface temperature (SST) (Zhang et al., 2015). Globally, dry conditions over 
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the Sahel and wet conditions over Guinea are associated with positive El Niño–Southern 

Oscillation (ENSO) SST anomalies of the eastern tropical Pacific, with positive SST anomalies of 

the Southern Hemisphere Atlantic, and with negative anomalies of the Northern Hemisphere 

Atlantic (the Atlantic dipole), and positive SST anomalies of the tropical Indian Ocean (Folland et 

al., 1986, Janicot et al., 1998, Rowell, 2001, Matthews, 2004). The majority of these studies have 

focused on large areas (eg. Sahel and Guinea) of West Africa. Hence, the mentioned rainfall 

teleconnection may not account for the considerable variability at a more local scale (Diro et al., 

2011).  

Additionally, global-gridded rainfall products have been shown to exhibit clear ENSO signals over 

West Africa (Jury et al., 2002, Joly and Voldoire, 2009, Alizadeh-Choobari et al., 2018). However, 

the societal effects of rainfall characteristics are often felt on local scales (Gbangou et al., 2018, 

Matthews et al., 2013, Wetterhall et al., 2015). For example, small-scale rain-fed agriculture in 

Ghana or local industrial operations may be crucially dependent on the rainfall in the immediate 

vicinity but not directly connected to large-scale aggregated rainfall patterns. Hence, the question 

of whether a large-scale system such as ENSO is “felt” at the local level and for a specific season 

of interest can be an important one. No study has yet addressed precisely ENSO effects on dry 

spells agro-met indices during critical growing seasons in Ghana using local station data. 

There are also some limitations on seasonal forecast evaluation approaches for the purpose of local 

communities. More often, large-scale observational products are used as reference for comparison 

or for bias correction (Fitzpatrick et al., 2015, Vellinga et al., 2013, Wetterhall et al., 2015, Joly 

and Voldoire, 2009) instead of local station data. Although these approaches are often justified by 

the recurent lack of consistent local observations over West Africa, including Ghana (Owusu and 

Waylen, 2009, 2013), findings at large-scale level may have litle benefit for smallholder farmers. 

Localized data analysis on dry spells occurrence and seasonal rainfall is important from the point 

of view of farmers. Farmers need information on these indicators, especially in the first three rainy 

season months. This type of analysis is yet lacking. March-April-May (MAM) and April-May-June 

(AMJ) seasons over the Coast-South and Transition-North agro-ecological zones respectively (see 

Figure 3.1, Table 3.1) have been given minimal attention compared to other seasons in Ghana. 

However, for agricultural applications, these  are critical seasons during crops’ growing stages as 

they are highly sensitive to onset, dry spell occurrence and rainfall totals (Gbangou et al., 2019). 
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This paper examines the skill of ECMWF-System 4 seasonal climate forecasts, a dynamical model, 

in reproducing the variability of seasonal rainfall and dry spells agro-meteorological indices, and 

explores the effect of pre-rainy season SST on these indices over Ghana using local station 

observations as reference and focusing its analysis on the coastal zone. The response to SST is 

being considered as a statistical model. Trend and variability in historical observations are explored 

prior to skill assessment in order to ascertain the climatic conditions and the challenges related to 

the predictability of the indices.  

The study area is Ghana’s coastal savannah area, but to identify possible difference between local 

stations and agro-ecological zones, we covered the entire of  Ghana focussing on 14 stations (Figure 

3.1).  

 

 

Figure.3.1: Map of Ghana showing the location of the 22 gauges stations (left) collected from GMet 

and sorted into 14 gauges stations (right) across the four main agro-ecological zones previously 

used in Owusu and Waylen (2009, 2013). 

3.2.Data 
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3.2.1. ECMWF-System 4 seasonal climate hindcasts 

ECMWF-System 4 seasonal climate reforecasts were used. They consist of 15 ensemble members, 

with initial date on the 1st of each month, and then run for 7 months (i.e leadmonths). The re-

forecasts (also referred to as hindcasts) extend over the 1981-2010 period. They were acquired 

from the ECOMS User Gateway (Cofiño et al. (2018); http://meteo.unican.es/ecoms‐udg) and used 

to verify the performance of System 4 to reproduce dry spell occurrence and seasonal rainfall. 

Forecasts for periods starting in March and April (i.e MAM and AMJ seasons) were considered for 

stations located respectively within the (i) Southern and Coastal and (ii) Transition and Northern 

agro-ecological zones (Table 3.1). These seasons were selected considering the local cropping 

calendar and the northward shift with the time of rainfall across Ghana (Sultan and Janicot, 2003, 

Gbangou et al., 2019).  

Considering that Ghana has an area of 238,535 km², 14 stations correspond to a mean of  17,038 

km² per station (Figure 3.1). This is considered as sparse coverage, according to Masinde et al. 

(2012a) as many models gridded cells (e.g. System 4 has 0.75x0.75 grid size) may not contain any 

station within their grid-cell area (Figure 3.1). Therefore, instead of interpolating point station 

rainfall to grid format, which requires a well distributed synoptic stations over Ghana, we rather 

extracted model gridded data for each of the 14 stations. This was done by applying the nearest 

neighbour interpolation as described by Manzanas et al. (2014a). Hence, this technique provides 

relatively good estimates of forecasts time series at each station. 

Table 3.1: System4 lead months selection per zone (Gbangou et al. 2019) 

Leadtime Costal&Southern zone Transition&Northern zone 

Leadmonth 0 Forecast start date is 1st March and 

MAM season is considered 

Forecast start date is 1st April and 

AMJ season is considered 

Leadmonth 1 Forecast start date is 1st February 

and MAM season is considered 

Forecast start date is 1st March and 

AMJ season is considered 

Leadmonth 2 Forecast start date is 1st January and 

MAM season is considered 

Forecast start date is 1st February and 

AMJ season is considered 
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3.2.2. Local station data 

Primary data used in this study are the time series of daily rainfall totals from rain gauges at 14 

stations out the 22 synoptic stations in Ghana (Figure 3.1) over 30 years (1981-2010). These data 

were used to assess the skill of the forecasts and assess the response to SSTs anomalies. Datasets 

were acquired from Ghana Meteorological Agency (GMet). The stations have been grouped 

according to the four main agro-ecological zones in Ghana (Figure 3.1). 

3.2.3. Sea surface temperature data  

SST data for February, January, December and for March, February, January lagged-months were 

used to assess the response of the agrometeorological indices during MAM and AMJ seasons 

respectively. This was done on purpose to explore longer lag time teleconnection and to be 

consistent with lead-months from System 4 (see Table 3.1).  The South Atlantic Tropical SST index 

(SAT), the Tropical Southern Atlantic index (TSA) and Niño3.4 SST were acquired from NOAA 

website (https://stateoftheocean.osmc.noaa.gov/sur/) (Reynolds et al., 2002). Niño3.4 SSTs are 

widely used to characterize ENSO conditions (Huang et al., 2015). The SSTs are averages for the 

areas shown in Figure 3.2. The data cover the seasonal System 4 hindcasts period, i.e. 1981-2010. 

For the remote Niño3.4 SSTs, we also performed analyses much longer lead times i.e. SSTs for 

September, October and November and  for October, November, and December were related to the 

MAM and AMJ agrometeorological indices, respectively. However, these results are only 

presented in the supplemental. 
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Fig 3.2: South Atlantic Tropical SST index (SAT), Tropical Southern Atlantic index (TSA) and 

Niño3.4 SST box locations. SAT-SST anomalies are in the box 15°W - 5°E, 5°S - 5°N. TSA-SST 

anomalies are in the box 30°W - 10°E, 20°S - EQ. 4. Niño3.4 -SST anomalies are in the box 170°W 

- 120°W, 5°S - 5°N. 

3.3.Methods 

The area of interest for this study is the coastal savanna area. However, in order to analyse possible 

differences between large (i.e. entire Ghana) and local (i.e. station and agroecological zones) scale, 

we compared outcomes with all selected stations in Ghana. 

3.3.1.  Bias-correction 

System 4 seasonal hindcasts were bias-corrected against reference GMet observations following 

the quantile mapping bias-correction method. For each station, the method adjusts the forecasted 

rainfall (System 4) to the observed rainfall (GMet) by matching the cumulative density functions 

(CDF) of daily rainfall (Gudmundsson et al., 2012, Gudmundsson, 2016). The method is proven to 

be successful in many hydrological and climate impact studies (Maurer and Hidalgo, 2008, Li et 

al., 2010, Wetterhall et al., 2012, Themeßl et al., 2012, Cooper, 2019) as well as in medium-range 

(Voisin et al., 2010) and seasonal forecasts (Wood et al., 2002).  

Wetterhall et al. (2015) demonstrated that this bias-correction technique can improve the skill of 

dry spell length and frequency in comparison with the use of raw forecasts. In a previous study, 

Ogutu et al. (2017) showed that bias-correction does not necessarily improve the skill of rainfall 

prediction. Therefore, in order to check the bias-correction sensitivity, we also analysed un-

corrected forecasts. The results were very similar compared to bias-corrected forecasts in terms of 

skills and were in agreement with the study of Manzanas et al. (2019). However, only bias-

corrected results are presented and discussed in this paper. Furthermore, we checked the need for 

frequency adaptation correction, which is required when the predicted frequency of dry days in the 

model is larger than the observed one (Themeßl et al., 2012). In all of our cases, the frequency of 

dry days was higher in the model than in the observations, so this correction was not made in the 

present study (see Supplemental 3.2, Table S3.1). 

3.3.2. Definition of the agro-meteorological indices 
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The dry spell occurrence definition was adopted from Usman and Reason (2004). During the rainy 

season, it is not expected that precipitation will occur on a daily basis. However, when breaks in 

between rains spells are prolonged, plants may wilt and die or have reduced yield. Breaks of equal 

to or more than 15 days are considered serious anomalies (Adefolalu, 1988, Barron, 2004). Here, 

we define the number or frequency of dry spell and the longest or maximum dry spell length as 

follow: 

• Longest/maximum dry spell: the largest number of consecutive days during which the 

rainfall is less than 1 mm/day over the season. 

• Frequency/number of dry spells: the number of dry spells with a length of more than 5 days 

duringwhich precipitation is less than 1 mm/day over the season. 

• Total seasonal rainfall: the sum of rainfall over the season. 

Seasons are defined as March-April-May for the South-Coast and April-May-June for the 

Transition-North agro-ecological zones. 

3.3.3. Skill assessment metrics of the dynamical model 

Different metrics for assessing the forecasts usefulness for decision making were computed. 

Seasonal rainfall and dry spell occurrence agro-meteorological indices, derived from System 4 

ensemble forecasts, were then verified against GMet observations using (i) Pearson’ correlation 

with the ensemble mean (EnsCorr), (ii) the generalized discrimination score for ensemble forecasts 

(Ens2AFC) (Weigel and Mason, 2011), and (iii) relative operating characteristic skill score 

(ROCSS) computed from the ROC area (Jolliffe and Stephenson, 2012). All the three metrics, 

globally, show the discrimination ability of the forecasts. EnsCorr is a measure of variability and 

measures how well the forecast anomalies correspond to the observed anomalies over the hindcast 

period 1981-2010 at each station. Significant correlations indicate that System 4, at least partly, 

reproduced the variability of observed indices.  

Ens2AFC quantified globally, whether a set of observed agro-meteorological indices can be 

correctly discriminated by the corresponding forecasts (i.e., it is a measure of the skill attribute of 

discrimination). Positively skilled forecasts will show Ens2AFC > 0.5 (Mason, 2013). The ROCSS 

metric plays the same role as Ens2AFC but gives more details at tercile category level (i.e. below 

normal, normal and above normal categories). A ROCSS > 0 for a specific category indicates 
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forecasts with positive skill for discriminating forecast categories (i.e. better than the climatology) 

(Mason, 2013). The ROCSS metric is conditioned on the observations and often needs the 

reliability diagram, as a partner, which is conditioned on the forecast (i.e., given that an event was 

predicted, what was the outcome?). The reliability diagram measures how well the predicted 

probabilities of an event correspond to their observed frequencies.  

All the skill metrics were computed using R-packages “Specs Verification” (Siegert, 2017) and 

“Easy Verification” (MeteoSwiss, 2017). These metrics and packages have been widely used to 

evaluate the skill of the climate predictions (Cofiño et al., 2018, Manzanas et al., 2018, Ogutu et 

al., 2017). 

3.3.4.  Analysis of the skills of the statistical model 

The response of agro-meteorological indices (i.e MDSL, DSF and Seasonal rainfall) to SST was 

expressed using a statistical model (i.e. linear regression) driven by SSTs indices to assess the 

predictability. This was done using the (i) two SST indices of relatively nearby areas, namely the 

South Atlantic index (SAT) and the Tropical Southern Atlantic index (TSA), and (ii) one index of 

a more remote area, namely the Tropical Pacific Niño index (Niño3.4) (Figure 3.2). The statistical 

forecasts were obtained using a linear regression model between observed agrometeorological 

indices and SSTs for individual months (i.e. in a univariate mode). This regression was done in a 

leave-one-year-out cross-validation mode. Then, the observed agrometeorological indices from 

GMet were correlated with the forecasted ones derived from the statistical model over the period 

1981-2010 and at individual stations across the agro-ecological zones. We recall that the agro-

meteorological indices were computed for MAM over the Coast-South and for AMJ season over 

the Transition-North agro-ecological zones. To assess the effect of lead time, SST data of February, 

January, December and for March, February, and January were considered for the Coast-South (i.e. 

MAM season) and Transition-North (i.e. AMJ season) agro-ecological zones, respectively.  

3.3.5. Statistical trend, variability and significance analyses 

Several statistical significance tests were applied. The Mann-Kendall test analysis of linear trend 

significance was carried out on observed agrometeorological indices. This method is proven to be 

robust for trend analyses of time series (Partal and Kahya, 2006, Obot et al., 2010, Manzanas et al., 

2014a). The coefficient of variation (Cv) was used as a measure interannual variability as suggested 
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by Obarein and Amanambu (2018). The t-test was used to determine both the (i) significance of 

correlation relationships between the dynamical forecasts System 4 and GMet derived agro-

meteorological indices and the (ii) significance of correlation relationships between statistical 

forecasts driven by SST and GMet derived agro-meteorological indices. The relation is significant 

when, for an infinite number of tests, one out of 10 (p threshold of 0.10) is found. 

The term “skilful” forecast is used for positive and significant EnsCorr and ROCSS throughout the 

paper. Considering that Ens2AFC metric does not have a build-in test for significance at individual 

stations as for the EnsCorr and ROCSS) (Weigel and Mason 2011), a binomial distribution test 

was used alternatively to identify lead-time with significant forecasts. 

3.4. Results 

3.4.1.  Observed trend and variability of dry spell occurrence and seasonal rainfall 

Observed trends of the agrometeorological indices, over 1981-2010 period, generally, show no 

clear significant decreasing and increasing patterns for MAM and AMJ seasons (Table 3.2) except 

for 4 stations out of the 14 stations. These 4 stations with significant trend are Ada, Akuse, Wa and 

Yendi. MDSL at Ada is significantly increasing implying that the prolonged dry spells have 

increased (p<0.10). DSF at Akuse shows a decreasing pattern with 90% confidence level as well, 

implying that the frequency of dry spells has reduced in that location. Seasonal rainfall significantly 

increased at Wa and Yendi. 

The mean and relative variability of MDSL, DSF and seasonal rainfall varies by location and by 

agro-ecological zones (Figure 3.3 and Table 3.2). Average MDSL and DSF are higher along the 

coast and in northern Ghana compared to the South and Transition zones. Southern and transition 

zones have the highest average seasonal rainfall. MDSL in the overall Coastal and Northern Ghana 

have higher relative variability compared to the South and Transition zones. The coastal savannah 

also has the highest variability of seasonal rainfall. 

Table 3.2: Mean, coefficient of variation, and trend significance test of the agrometeorological 

indices for the 14 stations over 1981-2010. (*) indicates significant trend at 95% confidence. 

Positive (blue bar) and negative (i.e. red bar) tau indicate increasing and decreasing trends, 

respectively. Bold values indicate the average over each agro-ecological zone. 
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Indices         MDSL (days) DSF (number) Seasonal rainfall (mm)

Climate Trend Climate Trend Climate Trend

tau/p-value tau/p-value tau/p-value

Stations Mean (Cv) Mean (Cv) Mean (Cv)

Accra 18 (34%) 5 (33%) 282.4 (46%)

Ada 19 (36%) 5 (30%) 319.6 (32%)

Saltpond 16 (45%) 4 (31%) 362.7 (37%)

<Coast> 18 (38%) 5 (31%) 321.6 (38%)

Akuse 13 (37%) 4 (35%) 349.8 (30%)

Axim 13 (47%) 2 (44%) 579.1 (34%)

Ho 13 (34%) 4 (38%) 386.2 (25%)

Kumassi 11 (28%) 3 (37%) 422.8 (24%)

<South> 12 (36%) 3 (38%) 434.5 (28%)

Ketekrachi 13 (39%) 3 (39%) 435.9 (30%)

Wenchi 8 (35%) 2 (67%) 459.5 (23%)

<Trans> 10 (37%) 2 (53%) 447.7 (26%)

Bole 10 (38%) 3 (41%) 382.0 (25%)

Navrongo 16 (41%) 4 (30%) 293.6 (22%)

Tamale 13 (44%) 4 (28%) 355.7 (25%)

Wa 11 (35%) 4 (50%) 344.9 (27%)

Yendi 13 (48%) 3 (35%) 373.87 (19%)

<North> 13 (41%) 4 (37%) 350 (24%)

*

*

*
*

-0.4 0.4

Decrease Increase Decrease Increase

0 -0.4 0.4

Decrease Increase

-0.4 0.40 0
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Figure 3.3: Spatial variation of the climatology for the MDSL, DSF and Seasonal rainfall across 

Ghana stations and agro-ecological zones. MAM and AMJ seasons are consider for Coast-South 
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and Transition-Northern agro-ecological zones, respectively. Error bars represent standard 

deviation of annual values of the agro-meteorological indices at each station.  

3.4.2. Ability of System 4 in reproducing dry spell occurrence and seasonal rainfall 

(dynamical model) 

The EnsCorr for the three agro-met indices (i.e MDSL, DSF, and seasonal rainfall) range from -

0.35 to 0.56 for different lead-times and different stations across Ghana (Figure 3.4). This range of 

values implies that the three observed indices (i.e. indices calculated from GMet data) have weak 

correlation relationship with predicted indices (i.e. agro-met indices derived from System 4 

simulations). The significance test show, however, that some stations are significant. For MDSL, 

lead-time 0,1 and 2 have, respectively (i) 12/14, 8/14 and 10/14 fraction of stations with positive 

skill and (ii) 7/14, 2/14, and 2/14 fraction of stations with positive and significant skill (Figure 3.4). 

More positive and significant stations are found in Coast-South (4) as compared to the Transition-

North zone (2) for MDSL.  

In the case of DSF (Figure 3.4), lead-time 0,1 and 2 count, respectively (i) 4/14, 9/14 and 3/14 

fraction of stations with positive skill and (ii) only one station with positive and  significant skill. 

As for seasonal rainfall presented in Figure 3.4, Lead-time 0,1 and 2 have, respectively (i) 10/14, 

11/14 and 13/14 fraction of stations with positive skills and (ii) 4/14, 1/14, and 4/14 fraction of 

stations with positive and significant skills. A large number of positive and significant stations are 

also found in the Coast-South (i.e. 4) as compared to the Transition-North zone (i.e. 3) for seasonal 

rainfall. 

Summarizing, lead-time 0, generally gives the highest positive and significant skills, especially for 

MDSL and seasonal rainfall. The coastal-south zone has a higher number of stations with positive 

and significant skills than the Transition-Northern zone for both MDSL and seasonal rainfall. DSF 

show the lowest positive and significant skills. Findings on the correlation relationship show that 

System 4 can explain up to 31% of the variability (i.e. correlation peaks at 0.56)  of the indices, 

especially for MDSF at the coastal and southern zones. 
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Figure 3.4:  Ensemble correlation (EnsCorr) between GMet and the dynamical model System 4 

forecasts for the maximum dry spell length (MDSL), dry spell frequency (DSF) and seasonal 

rainfall. Lead0, 1 and 2 represent initialisation in February (March), January (February), and 

December (January) considered for MAM (AMJ) seasons, respectively. (*) indicates the 

correlation significance at p < 0.10. The overall significant EnsCorr ranges from 0.30 to 0.56. 

The generalized discriminant skill score over the 14 locations ranges from 0.37 to 0.66 over 

leadmonth 0, 1 and 2 (Figure 3.5). Figure 3.5 reveals that, for MDSL, lead-month 0, 1 and 2 have 

respectively 12/14, 8/14 and 7/14 fraction of stations where Ens2AFC > 0.5. Recalling that 
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significance for Ens2AFC cannot be tested at individual stations, the application of the binomial 

distribution test show that System 4  has significant skill at Lead-time 0 (see details in 

Supplementary S3.5, Table S3.2). Results for DSF and Seasonal rainfall are the same as for the 

ensemble correlation in terms of patterns of skills (i.e. skills in DSF are the lowest and skill in 

seasonal rainfall are similar to that of MDSL (see Supplementary 3.4, Figure S3.4). Coastal 

savannah area, including Ada, Accra, Saltpond and Akuse, a nearby station from the southern 

region, shows the highest skills. 

 

Figure 3.5 : Generalized discriminant score (Ens2AFC) between GMet and System 4 forecasts for 

the maximum dry spell length (MDSL). Lead0, 1 and 2 represent initialisation in February (March), 

January (February), and December (January) considered for MAM (AMJ) seasons, respectively. 

(+) indicates the stations where Ens2AFC is greater than 0.5 (i.e. forecast better than random 

guessing). The overall Ens2AFC scores ranges from 0.37 to 0.66. 

At categorical level, skilful and non-skilful categories were found over different time leads and for 

different agro-meteorological indices. Positive ROCSS ranges from 0 to 0. 58 for MDSL (Figure 

3.6). The figure reveals that a large number of stations have positive skill (i.e. ROCSS > 0) for the 

below and above normal categories (i.e. 13/14, 8/14, and 9/14 fraction of stations with positive 

skill for lead times 0, 1, and 2 respectively, for each category) in comparison to the near normal 

category (i.e. 9/14, 5/14, and 6/14 fraction of stations with positive skill for Lead-time 0, 1, and 2 

respectively). Also, the number of stations with significant skills is higher for below (above) normal 
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categories (i.e. 5/14 (5/14), 4/14 (3/14), and 3/14 (5/14) for Lead-time 0, 1, and 2 respectively) 

when compared to the near normal category (i.e. 1/14, 3/14, and 5/14 for Lead-time 0, 1, and 2 

respectively). Additionally, the majority of stations with positive and significant skills are found in 

Coast-South (i.e. 6 and 7 for the below and above normal categories across the lead times) 

compared to the Transition-North zone (i.e. 4 for both below and above normal categories across 

the lead times) for MDSL. Results for DSF and Seasonal rainfall are also the same as for the 

ensemble correlation in terms of patterns of the skills (i.e. . i.e. skills in DSF are the lowest, whereas 

the skills  for seasonal rainfall are similar to MDSL (see Supplementary S3.6, Figures S3.5 and 

S3.6). The reliability diagrams, constructed for two sample locations (Ada and Tamale) with skilful 

lead-times (see Supplementary S3.7, Figure S3.7) show some proximity of the curves with the 

perfectly reliable line and suggest that forecast probability and mean observed frequency have, 

relatively, good agreement. 
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Figure 3.6 :  ROCSS between GMet and the dynamical model System 4 forecasts for the maximum 

dry spell length (MDSL) and for the below normal, near normal, and above normal categories. 

Lead0, 1 and 2 represent initialisation in February (March), January (February), and December 

(January) considered for MAM (AMJ) seasons, respectively. (*) indicates the correlation 

significance at p < 0.10. The overall positive ROCSS ranges from 0 to 0.58. 
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In conclusion, the generalized and categorical skills in discriminating prolonged dry spell and 

Seasonal rainfall are generally better than that of dry spell frequency over MAM and AMJ seasons 

in Ghana. System 4 performs better at distinguishing the bellow and above normal categories as it 

accounts a majority of positive and significant skilled stations in comparison to the near normal 

category. Lead-time 0 generally has the highest skills with the exception of seasonal rainfall where 

Lead-time 2 has, surprisingly, more skilful stations. Considering the agro-ecological zone together 

with the two best categories (i.e. bellow and above normal), the forecasts tend to perform better in 

the South-Coast compared to the North-transition zones especially for prolonged dry spell and the 

seasonal rainfall. 

3.4.3. Response of seasonal rainfall and dry spell occurrence to SSTs (statistical model) 

The response of agrometeorological indices to SAT, TSA and Niño3.4 SST is expressed as a 

statistical model (i.e. a linear regression model) and used to examine the seasonal prediction ability. 

Results presented in Figure 3.7  show the spatial variation of the correlational relationship between 

the observed agrometeorological indices and their statistical forecasts driven by the SSTs. SAT-

SST tends to have weak and non-significant correlations (i.e. correlation ranging from 0 to 0.25) 

for the agro-meteorological indices with the exception of  DSF which is significantly correlated 

with SAT-SST at (i) Ada, Tamale, Wenchi and Navrongo, (ii) Ada, Tamale and Navrongo;  and 

(iv)  Kumassi for lead-month 0, 1 and 2 (Figure 3.7). Compared to SAT-SST, the statistical model 

driven by Niño3.4-SST tends to have stronger and correlations and stations with significant 

correlation relationships (i.e. correlations ranging from 0.30 to 0.45) across lead-times and Ghana 

(Figure 3.8). This is especially the case for MDSL and applies to all lead times. Analysis for lead 

times longer than two months shows less skill (See Supplementary S3.8, Figure S3.9). The 

statistical forecasts for MDSL, DSF, and seasonal rainfall are all positively correlated with the 

observed ones across Ghana. At the agro-ecological zone levels, the statistical model driven by 

Niño3.4-SST has more stations with significant correlations over Coastal and Northern for MDSL 

as compared to other regions. Analyses for TSA-SST show similar results as for SAT-SST (see 

Supplementary S3.9, Figure S3.10), therefore, only SAT results are presented. 

In summary, results show that the statistical model driven by Tropical Pacific SST (i.e. Niño3.4) 

has a better correlation relationship with local agrometeorological indices in comparison to the 

Tropical Atlantic SSTs (i.e. SAT or TSA). The statistical model can explain up to 20% of the 
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variability (i.e. correlation peaks at 0.45)  of the agro-meteorological indices, especially for MDSL 

in the coastal zones. 

 

Figure 3.7: Correlation between GMet and the statistical model forecasts driven by SAT-SST 

(SM_SAT) for the maximum dry spell length (MDSL), dry spell frequency (DSF) and seasonal 

rainfall. Lead0, 1 and 2 represent the relation between SSTs for February (March), 
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January(February), and December(January) and agrometeorological indices considered for the 

MAM (AMJ) seasons, respectively. (*) indicates significance at p < 0.10. The overall significant 

correlations coefficients range from 0.30 to 0.43. 
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Figure 3.8: Correlation between GMet and the statistical model forecasts driven by Niño3.4-SST 

(SM_Niño3.4) for the maximum dry spell length (MDSL), dry spell frequency (DSF) and seasonal 

rainfall. Lead0, 1 and 2 represent the relation between SSTs for February (March), 

January(February), and December(January) and agrometeorological indices considered for MAM 

(AMJ) seasons, respectively. (*) indicates significance at p < 0.10. The overall significant 

correlations coefficients from 0.30 to 0.45. 

3.4.4. Comparing the predictability of the dynamical (System 4) with the statistical model 

(SSTs) 

The values of significant correlation coefficients for both the dynamical model (i.e. System 4) and 

the statistical model (i.e. response-to-SST) have more or less the same range across Ghana (see 

section 3.4.2 and 3.4.3). Although, the positive correlations peak at 0.56 and 0.45 for the dynamical 

and statistical models, respectively. Figure 3.9 shows the difference in correlation coefficients 

between the dynamical and the Niño3.4 driven statistical model. The figure indicates that the spatial 

distribution of significant correlations varies with lead times and agro-meteorological indices. For 

MDSL, the statistical model driven by Niño3.4 is more successful than the dynamical model with 

the exception of lead-time 0 where the both models have similar skill in terms of distribution of 

significant correlations coefficients. The statistical model is also more skilful than the dynamical 

one for DSF with a larger share of significant correlation coefficients. However, for seasonal 

rainfall, System4 largely dominates the statistical model for all three lead-months. The dynamical 

model is also more skilful than the statistical model driven by SAT for the agro-meteorological 

indices with the exception of DSF that has more significant correlation coefficients (see 

Supplementary S3.10, Figure S3.11). 

The comparison reveals that the dynamical model (i.e. System 4) has, slightly, a higher predictive 

skill (i.e. in terms of difference in correlation coefficients) than the statistical model for MDSL and 

seasonal rainfall at short lead times (i.e. Lead0). For longer lead times, the statistical model driven 

by Niño3.4 tends to perform better for MDSL. Also, DSF is better predicted by the statistical model 

driven by both SSTs indices. 
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Figure 3.9: Comparison of the predictive skill between the dynamical model System 4 (i.e. DM) 

and statistical model driven by Niño3.4 (i.e. SM) in terms of difference in the correlation 

relationships with GMet observed agro-meteorological indices. Lead 0, 1 and 2 represent the 

relation between SSTs for February (March), January (February), and December (January) and 
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agrometeorological indices considered for MAM (AMJ) seasons, respectively. “Corr.”  and “sig.”  

mean, respectively, correlation and significant. 

 

3.5.Discussion 

The aim of the current work was to assess the predictability of seasonal rainfall, dry spell length 

and frequency using local station observations as reference. In this process, both trend and inter-

annual variability are first explored in view of ascertaining the climatic conditions prior the 

verification with the dynamical model (i.e. System4). The effects of SSTs on various agro-

meteorological indices are also examined as a statistical model. 

3.5.1. Trend, variability and predictability  

We showed that across Ghana and over the period 1981-2010, the coastal zone has the longest dry 

spells (i.e. MDSL) and the highest frequency of dry spells (i.e DSF) and the lowest mean rainfall 

during the rainy season (i.e. MAM). It is also interesting to note that variations of the agromet 

indices between zones are small in comparison to differences between stations. Both Coastal and 

Northern zones have higher variability for MDSL.  Coastal zone has also the highest interannual 

variability in terms of seasonal rainfall. This variability ranging from 19-67% (Table 3.2) for all 

indices is high with reference to the study of Obarein and Amanambu (2019). These results are 

broadly in agreement with more recent studies on rainfall patterns over this area with large-scale 

dataset (Baidu et al., 2017, Atiah et al., 2019). With such level of variability one can guess why 

local communities are facing challenges to make predictions based on their traditional knowledge. 

Over the coastal zone, the complex series of coastal/oceanic and atmospheric interactions 

contribute to this uncertainty (Acheampong 1982, Owusu and Waylen 2009, Manzanas et al. 2014). 

The analyses also show higher correlations between System 4 and GMet for the dry spell length 

and seasonal rainfall as compared to the dry spell frequency (see section 3.4.2). The correlations 

found are generally weak over various stations and agro-ecological zones (i.e. correlations peaks 

at 0.56). This support the statement that seasonal forecast usually performs poorly in reproducing 

rainfall indices variability, including onset of the rainy season (Fitzpatrick et al., 2015, Gbangou et 

al., 2019). Interestingly, the Coastal area which has the highest dry spell length/lowest seasonal 
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rainfall, was found to have the highest level of predictability in terms of correlation relationships 

where System 4 was able to explain up to 31% of the variability of dry spell length.  

The discrimination ability of System 4 is also confirmed by the results from the Ens2AFC and 

ROCSS (see section 3.4.3) especially for dry spell length and seasonal rainfall agrometeorological 

indices over the coast. Discrimination skills are shown to vary with the lead-times and categories. 

The below and above normal categories at the majority of stations tend to have higher skills than 

the near normal category, this is consistent with the findings of Manzanas et al. (2014b).  Results 

on dry spell length are also consistent with those found over another African region by Wetterhall 

et al. (2015). These authors also find discrimination skills for dry spell agrometeorological indices. 

This implies that the use of System 4 agro-meteorological information for decision making remains 

better than the use of climatology or than guessing. 

3.5.2. Performance of the dynamical and statistical model 

Surprisingly, the statistical model (i.e. linear regression model) driven by the remote Tropical 

Pacific SSTs (i.e. Niño3.4-SST) showed higher correlations with local agro-meteorological indices 

as compared to the one driven by local (nearby) Southern Tropical Atlantic SST (SAT or TSA), 

especially, for MDSL and seasonal rainfall. Findings (i.e. level of correlations) with local SSTs 

are, however, consistent with a previous study on precipitation teleconnections over Ghana 

(Opoku-Ankomah and Cordery, 1994). The authors showed that the relationship of local SSTs with 

local rainfall is strong from July to September but very weak from March to June. Our findings 

suggest that during the most important seasons (i.e. MAM and AMJ) where correlations with local 

SST are weak, farm planning can rely on predictions based on the remote SST, namely Niño3.4-

SST. Although the correlations peak at 0.45, the teleconnection is still strong enough to provide 

information to farmers on the likelihood of the indices during MAM and AMJ seasons (Opoku-

Ankomah and Cordery, 1994, Alhamshry et al., 2019).  

The dynamical model explains up to 31%  (i.e. correlation peaks at 0.56)  of the variance of 

agrometeorological indices while the statistical model driven by Tropical Pacific SST can only 

explain 20%  (i.e. correlation peaks at 0.45) of the variance (see sections 3.4.2 and 3.4.3). This 

implies that the dynamical performs, slightly, better than the statistical model. Although both 

models have the same patterns of skills, that is, the same zones and indices have generally 

Chapter 3



71 
 

significant skills, especially, for dry spell length and rainfall. Also, for dry spell frequency and for 

longer lead times dry spell length, the statistical model tends to perform better. Skills found for 

longer lead times are, particularly, useful for useful for operational purposes. The similarity in the 

level of skill between the response-to-SST with System 4 seasonal forecasting is probably justified, 

since the System 4 is also driven/initialized by SST. The difference between the dynamical and 

statistical models suggest that the joined use of both models can help generate more qualitative 

seasonal climate information. 

3.5.3. Importance of using local station observations and cautious interpretation of findings 

The use of local stations’ observations for bias-correction and skill assessment of the seasonal 

forecasts in this paper is a relatively new approach with strengths and challenges. The approach 

offers the opportunity to explore differences in forecasts skills between local stations and agro-

ecological zones. By using large-scale gridded data (e.g. satellite and reanalyses), we may miss 

some information on local variations due to micro-scale processes (Wetterhall et al., 2015, 

Gbangou et al., 2019). This is the case of most previous studies that used large scale dataset (Ogutu 

et al., 2017, Nyadzi et al., 2019). It is also important to consider some limitations related to the 

stations datasets and the methodology (Gbangou et al., 2019). The neighbour weighted 

interpolation technique used to interpolate the forecast at each point station is still a form of 

averaging approximation that can have an effect on the results. 

For dry spell and seasonal rainfall information, derived from operational dynamical forecasts, to 

be valuable to local farmers and water managers, the release timing restriction of the forecasts 

needs to be taken into account. This is because, the operational forecasts from the new System (i.e. 

System 5) has a release date on the 5th of each month. In addition, one should consider the 

processing and communication time between ECMWF, the local Met agency and end-users (e.g. 

local farmers in Ghana). Operational statistical and dynamical forecasts with skills at long lead 

times offer less time restriction for the processing and communication. It is equally important to 

explore the predictability with more shorter term forecasts, including sub-seasonal to seasonal 

forecasts (1-2 months) and also weather forecasts (1-14 days) to fully meet the need of local end-

users, especially in Costal delta area of Ghana. 

3.5.4. Implication of the findings for local farming climate services development 
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With regards to farming, due to the high variability in dry spell length and frequency, and seasonal 

rainfall, risks of rainfed crop systems during MAM and AMJ critical growing seasons are large. 

One of the problems is the risk associated with crop failure during plant growing stages due to 

insufficient soil moisture. This can lead to a decrease in yield or generate additional costs for 

replanting. So far, farmers mostly relied on traditional predictions (Yaro, 2013, Ingram et al., 2002, 

Antwi-Agyei et al., 2012, Naab et al., 2019) to appreciate the likelihood of the wet and dry seasons. 

Introducing modern scientific forecasts of the agro-meteorological indices can help local farmers 

adapt agricultural practices and hence reduce crop failure and losses, particularly in Coastal and 

Northern Ghana where Waterapps project is actively involved. 

Our results show promise for the provision of some degree of skilful dry spell and seasonal rainfall 

forecast for local farmers in Ghana, especially during critical growing seasons. Information derived 

from the forecasts starting from January, February, and March (coastal and southern zones) and 

from February, March, and April (transitional and northern zones) can potentially help end-users 

such as local water manager and farmers with making decisions. The below and above normal 

information being better discriminated over the costal savannah can help to reduce the risks and 

costs related to crop failure through an early crop types and varieties selection. For instance, during 

below normal dry spell and above normal rainfall year, farmers may expect a good year. They can 

thus plan for early farming activities and worry less about crop failure related to water scarcity. 

During above normal dry spell and below normal rainfall year, there is a risk for drought. Skilful 

predictions could also be complemented with local traditional predictions to some extent to 

facilitate its acceptability and uptake (Ingram et al., 2002, Gbangou et al., 2018). However, farmers 

need to be well informed on the limitations of the forecasts to avoid damages related to false alarms. 

3.6.Conclusions 

This study has shown that there are differences in variability and skills of the agrometeorological 

indices across different zones and stations that might not be noticed when using large-scale datasets 

for forecast verification. Variations in skills between stations are higher than those between the 

agro-ecological zones which is a new insight on forecast performance at local scale. Also, similarity 

in skills of the agro-meteorological indices over the same zones and stations are found both for the 

dynamical and statically models although System 4 slightly performs better, especially, for dry 

spell length and seasonal rainfall. For dry spell frequency and longer lead-time dry spell length, the 
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statistical model tends to perform better. The closeness in the level of skill between the response-

to-SST with System 4 seasonal forecasting is probably justified, since the System is 

driven/initialized by SST.  

Important skills in the dry spell length and seasonal rainfall forecasts with reasonable lead-time are 

present in the coastal savannah zone. These skills are, specifically, higher for the below and above 

normal categories. This proves that the operational seasonal forecast from the updated System (e.g. 

System 5) and the response-to-SST can be used to provide useful information to end-users 

including local farmers and water managers. This finding is particularly of interest for the districts 

located in the coastal savannah around the delta area, namely, Ada districts, where the Waterapps 

project is experimenting with co-production of water information service. The provision of 

operational forecasts at appropriate leadtime and categories in combination with the response-to-

SST’s information can help mitigate the effect of high variability in dry spell and seasonal rainfall 

during critical growing stages of crops. 

This new approach and understanding of the predictability could help to verify and improve 

agrometeorological information in other regions affected by climate variability. Future research 

and application in climate services development are encouraged to explore both models (dynamical 

and statistical models) to improve the predictability of dry spell occurrence and seasonal rainfall 

information during MAM and AMJ growing seasons in Ghana. 
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Chapter 4. Harnessing local forecasting knowledge on weather and climate in 

Ghana: documentation, skills and integration with scientific forecasting 

knowledge 

Abstract 

Improved weather and climate forecast information services are important to sustain small-scale 

crop production in many developing countries. Previous studies recognized the value of integrating 

local forecasting knowledge (LFK) with scientific forecasting knowledge (SFK) to support 

farming’s decisions making. Yet, little work has focused on proper documentation, quality 

verification, and integration techniques. The skills of local and scientific forecasts were compared 

and new integration approaches derived over the coastal zone of Ghana. LFK-indicators were 

documented and farmers trained to collect indicators’ observations and record rainfall in real-time 

using digital tools and rain gauges respectively in 2019. Dichotomous forecasts verification metrics 

were then used to verify the skills of both local and scientific forecasts against rainfall records. 

Farmers use a diverse set of LKF-indicators for both weather and seasonal climate timescale 

predictions. LFK-indicators are mainly used to predict rainfall occurrence, amount of seasonal 

rainfall, dry spell occurrence, and onset and cessation of the rainy season. The average skill of a 

set of  LFK-indicators in predicting one-day rainfall is higher than individual LFK-indicators. Also, 

the skills of a set of LFK-indicators can potentially be higher than the forecasts given by the Ghana 

Meteorological Agency for Ada district. The results of the documentation and skills indicate that 

approaches and methods developed for integrating LFK and SFK can contribute to increase 

forecast resolution, skills, and reduce recurring tensions between the two knowledge systems. 

Future research and applications on these methods can help improve weather and climate 

information services in Ghana. 
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Significance Statement 

Most African farmers still rely on local or traditional knowledge on weather and climate forecasts 

to manage climate variability and change, although much efforts are put in to reach farmers with 

the increasing availability of scientific forecasts and data. Exploring the potential of local forecasts 

and the possible integration with modern forecasts has been suggested as a path to reach out to 

farmers with more accessible and credible climate information services (CIS). We aimed to 

understand the contribution of this local knowledge by documenting and investigating its quality. 

We found that local forecast indicators used by farmers are diverse and their level of quality can 

potentially improve the development of CIS, especially when they are combined or integrated with 

scientific forecasts. 

4.1.Introduction 

There is a strong need for better and more accessible weather and climate information services to 

support, especially, small scale farmers in their decision making. In large parts of Africa, the 

climate is highly variable, and improved climate information services can potentially help farmers 

to manage climate variability and change. In Ghana, food production contributes substantially to 

the national economy, with 80% of total agricultural production of the country being attributed to 

smallholder farmers (Barnett et al., 2017). These farmers, predominantly, rely on rainwater for 

agricultural production. This dependence on rains makes the region vulnerable to climate change 

and variability such as shifts in onset of rains and amounts of seasonal rainfall, and dry spell 

occurrences (Owusu and Waylen, 2009, Yaro, 2013, Gbangou et al., 2019). As a result, local 

farmers struggle to meet food and income security. Improved and tailored forecast information on 

weather and climate can help them adapt and make better decisions to increase their crop yields 

(Derbile et al., 2016, Gbangou et al., 2018, 2019) 

Although previous studies showed that African’ farmers use both local and scientific forecasting 

knowledge on weather and climate across Africa (Orlove et al., 2010, Roudier et al., 2014, Codjoe 

et al., 2014), several limitations remain. Firstly, scientific forecast information often has limited 

skills and accuracy at high spatial resolution (i.e. local scale) (Derbile et al., 2016, Fitzpatrick et 

al., 2015, Vellinga et al., 2013). In addition, the understanding and acceptability of modern 

forecasts by farmers sometimes limit forecast usefulness and usability (Ingram et al., 2002). 
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Moreover, this knowledge is usually not tailored to end-users needs. Secondly, there are claims 

that local forecasting knowledge is subjected to a decrease in trust due to the loss of indicators 

probably caused by changing weather and climate conditions (Kalanda-Joshua et al., 2011, 

Ziervogel and Downing, 2004, Ziervogel, 2001). Local knowledge is also subject to skepticism 

due to replicability issues that limit knowledge spread in practical applications and science 

(Huntington, 2000, Pierotti and Wildcat, 2000, Gilchrist et al., 2005). According to Lebel (2013), 

the systematic assessment of the consistency and validity of local knowledge is still lacking. 

In view of these constraints, there is a need to integrate local and scientific knowledge to provide 

improved information services (Riedlinger and Berkes, 2001, Luseno et al., 2003, Speranza et al., 

2010). Speranza et al. (2010) showed that the density and diversity of local knowledge indicators 

used for weather and climate monitoring and prediction have the potential to improve 

meteorological forecasts. This study focusses on local knowledge (LFK) and scientific forecasting 

knowledge (SFK) on weather and climate. Scientific knowledge refers to the expert or modern 

knowledge based on rigorous methods through observation and experimentation (e.g. forecasts 

from large-scale models, station, or satellite observational data). LFK is a knowledge that is rooted 

in local culture and generally associated with long-settled communities that have strong ties to their 

natural environment (Ingram et al., 2002, Orlove et al., 2010, Codjoe et al., 2014, Derbile et al., 

2016). This local knowledge, inherently, also follows a rigorous process based on observations of 

biophysical indicators, experimentation in its production and analysis to build trusted cause-effect 

relationships between indicators and their predictive outcomes in terms of current and future 

weather and climate conditions (Aronson, 2007, Gearheard et al., 2010, Balehegn et al., 2019). 

Despite the increasing interest in the use and integration of LFK with SFK, there are only a few 

studies on the performance assessment of the LFK and its integration with SFK (Speranza et al., 

2010). Studies that focused on integration hardly exist, especially in Ghana. The majority of the 

studies focused on understanding and interpreting local knowledge related to environmental and 

social impact assessments for climate change adaption and mitigation (Berkes and Ecology, 

Huntington, 2000, Nakashima and Roué, 2002, Olsson and Folke, 2001). Also, the few studies that 

assessed the performance of LFK, have done so, qualitatively (Crane et al., 2010, Radeny et al., 

2019), and therefore can hardly be used for a quantitative comparison with scientific knowledge 

(see Figure 4.1). Until now, no attempt has been made to assess the skills of LFK and integrate it 
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with the modern forecasting system in the peri-urban delta areas of Ghana. In order to explore these 

skills, proper documentation of the local forecast indicators, specific to this area, is also needed. 

This paper attempts to bridge this gap by both documenting and assessing the skills of LFK, and 

comparing these skills with conventional forecasts and observations. The paper further discusses 

the possible integration of LFK and SFK. We stress that the paper intends to propose new 

approaches and methods for collecting and assessing the quality of local knowledge, and 

integrating both local and scientific forecasting knowledge systems. These approaches and methods 

being both qualitative and quantitative (Figure 4.1). Farmers in Ada East district, Ghana (see. the 

study area, Figure 4.2) have also recognized the decline in LFK confidence through evidence from 

the surveys conducted by the Waterapps research project (http://www.waterapps.net/). Assessing 

the quality in LFK against SFK with local observations as a reference can help increase the 

confidence in LFK for both farmers and scientists towards improved climate services.    

The work was designed to answer the following questions in the case study: 

i. What are the most frequently used indicators for predicting daily and seasonal rainfall by 

local farmers? 

ii. What is the perceived reliability of local forecasting knowledge?  

iii. How are  the skills of local forecasting knowledge indicators compared to those of  scientific 

forecasting?  

iv. How can we integrate local with scientific forecasting knowledge for improvement? 
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Figure 4.1. Framework showing current literature on LFK (stage 1) and the desired goal of the 

study presented (stage 2) 
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Figure 4.2: Map of the Study Area in Greater Accra Region, Ghana showing various communities 

of Ada East District. 

4.2.Study area 

The study was carried out in the Ada East District (AED) which is located in Ghana’s coastal 

savannah along the delta area of the Volta River (Figure 4.1). A dry equatorial climate and coastal 

savanna vegetation are found in the area. AED is one of the hottest districts in Ghana with average 

temperatures ranging between 23°C and 28°C (Ghana Statistical Service, 2014). Average annual 

rainfall is about 750 mm (Lazar et al., 2015). AED is a peri-urban area, located within the Greater 

Accra Region of Ghana. The district produces mainly vegetables for big cities like Tema and Accra. 

According to Ghana Statistical Service (2014), the engagement of young adults in crop farming is 

a major boost to the district and the economy of Ghana. Also, the potential for digital technology 

to be adopted is high due to proximity to urban areas. The most economically important crops 

include cassava, pepper, rice, maize, and tomato (Amisigo et al., 2015). The majority of the 
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agricultural households are either into mono-cropping or intercropping type of farming (Ghana 

Statistical Service, 2012).  

Crop production along the peri-urban delta area is vital to safeguard sustainable food production 

(Gbangou et al. 2019). This is because of agricultural intensification, water availability issues, and 

the increasing possibilities of farmers to use information and communication technology (ICT; e.g., 

cellular telephones, television, radio, and internet services) for climate information service. Also, 

risks of crop failure due to unpredictable rainfall events are growing and hence the need for 

improved rainfall forecasts.  

4.3.Methods 

This section presents the methodological approach for data collection and analysis.   

4.3.1.  Data  

4.3.1.1.Documentation of local foresting knowledge data 

Respondents for documenting of LFK were selected through purposeful non-random sampling 

which is the most adapted sampling method for collecting data from experienced targeted people 

as in this context (Santha et al., 2010). The sub-category snowball sampling (Quinn Patton, 2002) 

was adopted and focused on farmers that had local knowledge and experience in weather and 

climate forecasts across five communities of Ada East district (Figure 4.2), namely, Balekope, 

Amlakpo, Bedeku, Kasseh, and Korlekope (see demographic information in Figure 4.3a). With the 

help of agricultural extension agents, 32 respondents across communities were identified and in-

depth key informant interviews and five focus group discussions (FGDs) were carried out to collect 

the qualitative data. FGDs were done with a group of 5-9 farmers per community. Questions 

focused on identifying (i) indicators used for weather and climate predictions, (ii) their signals, (iv) 

the period, and (i) the corresponding outcomes (predictions) as described by Codjoe et al. (2014). 

The survey was carried out during the 2017 growing season before the real-time data collection at 

Ada East District during the 2019 season. 

4.3.1.2.Perceived reliability of local and scientific forecasts data 

Farmers’ perceptions of the performance of local and scientific forecasts were investigated with 68 

respondents also in 2017 (see demographic information in Figure 4.3b). Farmers who used both 
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forecasting systems in their daily farming activities were, purposefully, identified by a pre-survey. 

And a random selection was performed to choose the final respondents across the communities of 

the district. Hence, this final sample could give a credible comparative appreciation of the 

reliability of local and scientific forecasting systems. This method allows to identify the population 

of interest and ensure the credibility of the findings even with small samples (Palinkas et al., 2015). 

The sampling focused on rainfed farmers who have used both local and scientific forecasts across 

Ada East district communities. Farmers were asked to rank the performance of each forecasting 

system in terms of reliability level: Not reliable, Somewhat reliable, and Reliable. Local forecasting 

knowledge comes from their own knowledge and experience while scientific knowledge comes 

from Ghana meteorological agency (GMet) through radio and television mainly. 

4.3.1.3.LFK-indicators observations data 

We also used a purposeful sample to select 22 farmers for collecting real-time LFK-indicators’ 

observations (see demography in Figure 4.3c). For this stage, we selected individuals who had prior 

experience in local forecasting. We focused on the knowledge, availability, and willingness to 

participate, gender, and involvement of younger farmers in view to ensure the generational 

knowledge sharing and sustainability of the co-production process (see Figure 4.3c). In order to 

also ensure that those with less experience (e.g. younger farmers) in LFK can provide good 

observations, we trained all participants on the indicators’ signals used and their outcomes. This 

was done during the 2018 and 2019 seasons. LFK-indicators’ observations are based on the 

frequently used indicators documented during the 2017 season. We used a web-based application 

(Weatherapp, see Figure 4.4) tailored for the collection of LFK-indicators observations. LFK-

indicators’ observations were subsequently converted into forecasts based on the database on 

indicators’ signals and outcomes collected during the 2017 season (see section 4.3.1.1). 

4.3.1.4.Rainfall records data  

Farmers were provided with manual rain gauges (see supplementary, Figure S4.1) and trained by 

a meteorological extension agent from GMet on how to set up the gauges, measure, and record 

rainfall data from 5th April to 17th July 2019. A total number of twenty (20) manual rain-gauges 

were provided across communities (Figure 4.2). Rainfall data were recorded on a daily basis for 
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105 days starting from 5th  April 2019 until 17th July 2019. These data were used as a reference to 

assess the skills (verify) both local and scientific forecasts from GMet and meteoblue. 
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Figure 4.3. Socio-demographic characteristics of (a) the 32 participants (farmers) involved in the 

focus group discussions and interviews for the documentation of local forecasting knowledge in 

2017 season [including their level (years) of experience], (b) the 68 farmers involved on the 

assessment of the perceived reliability of local forecasting knowledge compared to the 24h-forecast 

from the Ghana Meteorological Agency (survey carried out in 2017 season), and (c) the 22 farmers 

who participated in the real-time collection of LFK-indicators observations in Ada East District 

from the 5th April to the 17th July 2019.   

 

Figure 4.4. The interface of the WeatherApp of the web-application (http://waterapps-

weatherforecast.azurewebsites.net/Account/Login) showing some of the symbolic images of local 

weather indicators and data collection procedure. The WeatherApp was designed, tested and 

improved to collect Farmer’s knowledge remotely from 2018 to 2019. More details on the 

application are described in a follow-up research output focusing on the evaluation of the co-

production experiment carried out in Ada East District under the Waterapps project. 
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4.3.1.5.GMet and meteoblue datasets  

Two scientific weather forecasts were used and compared with gauges data collected during the 

105 days co-production experiment. These include GMet and meteblue 24h-forecast (i.e. daily) 

data. For consistency with the terms “LFK” and “SFK”, daily forecast from GMet and meteoblue 

are named SFK-GMet and SFK-meteoblue respectively throughout the paper. GMet gives out the 

daily forecasts for different agro-ecological zones in Ghana (see Gbangou et al. 2019) that are much 

larger than the Ada East district area. Forecasts data for the coastal zone that contains the district 

was therefore considered. These forecasts are shared with the public through the official GMet 

website, social networks, TV, and Radio. Forecasts from meteoblue (https://www.meteoblue.com/)  

are raw simulations from the most appropriate (usually the one with the highest resolution) model, 

depending on location and period. They cover a spatial resolution of 30 km around Ada East 

District. These meteoblue forecasts are given for illustrative purposes only since the best guess 

forecast used cannot be known in advance. The skill of the meteoblue’ real forecast that farmers 

can see in real-time might be much lower. 

4.3.2.  Analysis of documentation and perceived reliability of local forecasting knowledge 

LFK-indicators were compiled, described and grouped into existing local knowledge spheres 

identified in previous studies (Codjoe et al., 2014, Speranza et al., 2010). The main spheres are 

atmospheric conditions, celestial elements, fauna, and flora. Indicators were also classified into 

weather and seasonal timescales. The perceived reliability was grouped into three categories using 

data on farmers’ perceptions of the performance of local and scientific forecasts as applied in 

Radeny et al. (2019). These categories include: Not reliable ]0-33%], Somewhat reliable ]33-66%], 

and Reliable ]66-100%]. These categories for the two forecasting systems were subsequently 

compared. 

4.3.3. Analysis of skills of local and scientific forecasting knowledge 

The actual (quantitative) skills of local and scientific forecasts for predicting rainfall occurrence 

were assessed using a contingency table (Table 4.1). In this table, the ‘forecast’ indicates LFK-

indicators, SFK-GMet, and SFK-meteoblue forecasts and the ‘observation’ refers to gauge 

observations measured by farmers (see details in Appendix A4.1 and Supplementary, Figure S4.1). 

The table was used to compute the most relevant skill metrics such as the hit rate (POD), the false 

Harnessing local forecasting knowledge

4



86 
 

alarm ratio (POFD), the false alarm rate (FAR) and the Hanssen-Kuipers (H-K) discriminant skill 

score as described in Gbangou et al. (2019) (see Eq. 4.1, Eq. 4.2, and Table 4.1). This set of metrics 

allows for a complete analysis of the performance of forecast data (Gbangou et al., 2019). H-K 

skill measures the ability of the LFK-indicator or SFK-forecast to discriminate rainfall occurrence 

events. Skill scores were computed for both individuals LFK-indicators and the realization of 

combined LFK-indicators. All possible combinations of scenarios were derived using the formula 

presented in Eq. 4.3.  

FAR = 


  (Equation 4.1)  

Where: FAR is the false alarm ratio and ranges from 0 to 1, FAR=0 is the perfect score. 

H-K = POD – POFD with POD = 


  and POFD = 


   (Equation 4.2) 

Where: H-K is the Hanssen-Kuiper’s discriminant or Pierce Skill Score (Hanssen and Kuipers 

1965); POD and POFD represent respectively the probability of detection or hit rate and the 

probability of false detection or false alarm rate; HK ranges from -1 to 1; H-K ≤ 0 indicates no 

skill, H-K =1 is the perfect score; a, b, c and d are described in Table 4.1. 

 = !
!!  (Equation 4.3)  

Where:  is the possible combinations of k elements from the set of the element with size n. The 

combinations are carried out without repetition (i.e. number of arrangements of k from n). Here, n 

is the total number of LFK-indicators tested. 

Table 4.1: Contingency table for categories of events (Gbangou et al. 2019) 

 Event-observed Event-not observed Total 

Event-forecasted Hits (a) False alarms (b) Yes forecasted (a + b) 

Event-not forecasted Misses (c) Correct rejection (d) No forecasted (c + d) 

Total Yes observed (a + c) No observed (b + d) Total forecasts (n) 
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4.3.4.  Analysis of skills of integrated forecasts (local and scientific) 

The word “integration” has several synonyms that include: combination, completion, connection, 

etc. Here, analyses focused on combining LFK and SFK. We, therefore, considered to alternate 

LFK and SFK systems (i.e. GMet and meteoblue) whenever suitable based on the statistical results 

from the analyses described above (section 4.3.3). We choose to call this integration approach, a “ 

statistical integration” implying that the integration is based on statistical combination of local 

forecast indicators. This integration focused mainly on the prediction of daily rainfall occurrence. 

Other approaches of integration (e.g. completion, connection) where identified from the results on 

the documentation and are only discussed for future research and application. These approaches 

aimed to help enrich both local and scientific forecasting knowledge. They include the approach 

(i)  that uses specific weather and climate indicators from LFK to enrich SFK and vice versa were 

called “ intuitive integration”, (ii) that explores the scientific/meteorological patterns of LFK based 

on scientific historical observations were called “ patterns evidence from meteorological data”, and 

(iii) that seeks to update some invariable LFK-indicators using scientific evidence was called 

“updating invariable LFK indicators”. Each approach was provided with an example.  

Theoretically, the “ Intuitive integration” is a judgmental approach as it uses expert or experience 

based judgment to derive the forecasts (Lawrence et al. 2006) while all other approaches are 

statistically related approaches for integrating local and scientific knowledge. The judgment or 

'intuition' can be derived by the scientist, the farmers, or both (if they are working together to make 

a joint prediction). 

4.4.Results 

4.4.1.  Documentation of Local Forecasting Knowledge 

Several LFK-indicators used by farmers to monitor or forecast local weather and climate conditions 

are identified and documented in Tables 4.2 and 4.3 based on interviews and discussions with 

experienced local knowledge holders. Farmers from the five communities identified twenty-two 

(22) indicators related to weather timescale prediction (Table 4.2) and twelve (12) indicators used 

for seasonal timescale predictions (Table 4.3). The indicators documented pertain to different 

features of atmospheric conditions (wind, clouds, and dew), celestial elements (sun, moon, and 

sky), fauna (ants, frogs, goats, scorpions, worms, birds, and pigs) and flora (trees). Results showed 
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that the same indicator can have different signals and therefore indicates a different predictive 

outcome (see Table 4.2 and 4.3). Also, similar indicators can be found for the two timescales (i.e. 

weather and seasonal) but with different signals and predictions. Moreover, outcomes or 

predictions depend on the period the indicator is observed. This period expands from December 

until July which coincided with the major rainfall season’s first and highest peak of the bimodal 

pattern of the rainy season.  

Weather timescale indicators, listed in Table 4.2, give predictions of rainfall occurrence ranging 

from 1 to 14 days. The majority of the indicators are used to predict if it will rain within the coming 

three days.  For instance, rainfall occurring within the next 1 to 3 days is predicted when farmers 

have observed: strong wind blowing from west to east direction; the Halo (red circle around the 

sun or moon); croaking of frogs; half of the moon visible at night; thick and dark clouds form in 

the eastern side; presence of dew; movement of ants, behavior of pig, and scorching sun. Some 

indicators give predictions about rainfall distribution: when the moon shape is curved such that the 

shadow is on the left side then rain is expected to occur inland, away, from the coast; if the shadow 

is on the right side then rain will occur inland close to the coast; and if the shadow is on the top, 

rain is expected in both locations (see Table 4.2). Other indicators give information about dry spell 

occurrence, for example, scorpions appearing frequently on the farm indicate that rains occur more 

frequently, in other words, frequency of dry spell and length is reduced during that season. 

Sub-seasonal and seasonal timescale indicators are used to predict rainfall amounts, start and cease 

of the rainy season (Table 4.3). These indicators are used for predictions beyond the two weeks’ 

timescale. Rainfall amount prediction refers to the below and above normal rainfall occurrence. 

For example, above-normal rainfall is expected when: a persisting strong wind is blowing at the 

start of the season (Feb/March) or one month before Easter; a feeling of cold weather is experienced 

during Feb-March, or big black scorpions are abundant on farms. Other indicators for below normal 

rainfall include: if heavy rainfall is occurring at the onset of the rainy season (March-April); when 

season falls on a leap year. Onset of the rainy season is also predicted to be early when: harmattan 

winds appear early.  

In summary, a rich source of data on LFK exists in Ada, Ghana. A total number of 34 LFK-

indicators on weather and climate forecast were identified and documented. Results revealed that 

LFK-indicators are associated with weather forecast timescale in the majority (22 indicators) 
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followed by sub-seasonal or seasonal climate forecast timescale (12 indicators). Most indicators 

are used during the major rainfall season in Ada East District. 

Table 4.2: Documentation of  Local Forecasting Knowledge indicators for the weather timescale 

in Ada East district 

Indicators 
name 

Indicator’ Signal Month/period Outcome (prediction) 

Wind 

When strong winds blow from 
the sea (usually from West to 

East direction) 

Rainy season 
(March-July) 

Rain is expected within 1 to 
3 days 

When the wind is blowing 
from the sea carrying dust 
(West-East direction) with 
high intensity of the sun 

Rainy season 

Rain expected within 3 
days, intensity depends on 

the strength of wind 
observed 

Halo (around 
the Sun) 

If at sunset there is a red 
circle around the sun 

Rainy season 
(March-July) 

Rain expected within 1 to 3 
days 

Sun 

If high intensity of sunshine is 
observed 

Rainy season 
(March-July) 

Rain expected within 1 to 7 
days 

If high intensity of sunshine 
and dust-wind blowing (from 

West to East) is observed 
Rainy season 

Rain expected within 1-2 
days 

Bird (Torle, 
Clamator 

jacobinus) 
Make a lot of sounds 

At the entrance 
of the rainy 

season (from 
Feb going) 

Onset of the rainy season is 
expected in next 1 or two 

weeks 

Bird (Torle, 
Clamator 

jacobinus) 
When making sounds Rainy season 

Rain is expected within 1 to 
2 weeks 

Bird 
(Gbonyu, 
Ploceus 

cucullatus) 

Sings a lot Rainy season 
Rain expected within 1 to 2 

days 

Frog 
When frogs start croaking a 

lot 
Rainy season 

Rain is expected within 1 to 
3 days 

Pig 
When pigs catch the grass and 

turning around it 
Rainy season 

Rain is expecting within a 1 
day 

Goat 
When goat are gathered in the 

evening and run together 
Rainy season 

Rain is expected within a 
day 

Moon 
(distribution) 

 
  

When the moon shape is 
curved such that the shadow 

is on the left side 
Rainy season 

Rain is expected within two 
(2) weeks’ time inland 

When the moon shape is 
curved such that the shadow 

is on the right side 
Rainy season 

Rain is expected within two 
(2) weeks’ time inland in 

the coastal part 

Harnessing local forecasting knowledge

4



90 
 

When the moon shape is 
curved such that the shadow 

is on the top side 
Rainy season 

Rain is expected within two 
(2) weeks both inland and 

coastal part 

Moon 

When the moon disappears 
and before its re-appears 

(from the West) 
Rainy season 

Rain expected generally 
after 3 days 

At night, if you see that half 
of the moon is visible 

Rainy season 
Rain is expected within the 

next 2 days 
At night, if you see a red 

circle (like a rainbow) around 
the moon 

Rainy season 
It may rain within the next 

3 days 

Worm 
(Abotele) 

Spread all over the grass after 
a previous rain 

After February 
It will rain again that same 
day or within 1-week time 

Scorpion 
When big black scorpions 

appear frequently on the farm 
Rainy season 

More frequent rains event 
are expected (that is less 

dry spell) 

Clouds 
A thick cloud appears at the 

eastern side of the sea 
Rainy season 

It will rain on the same day 
or within 3 days, but the 

distribution can be different 

Ants 
Carry their food or eggs to 

their holes 
Rainy season 

Rain expected within next 
the two days 

Dew 
If from mid-night to the 

following morning there is a 
lot of dews falling 

 No rain is expected the next 
day (sunny day) 

 

Table 4.3: Documentation of Local Forecasting Knowledge indicators for the sub-seasonal and 

seasonal timescale in Ada East district 

Indicators 
name 

Indicator’ Signal Month/period Outcome (Prediction) 

Wind 
When early persisting, 
strong winds appear 
(harmattan winds). 

During February 
-March 

Onset of the rainy season is 
expected to be early as well 

Sun 
If a scorching sun is 
observed (i.e. above 
normal temperature) 

During the 
Christmas period 

(Dec) 

The upcoming season is likely 
to be good (i.e. above normal 
rainfall with regular rains is 

expected) 

Temperature 
patterns 

When feeling or 
experiencing cold 

weather condition (i.e. 
below normal 
temperature) 

During the two 
months to Easter 

(February-
March) 

The upcoming season is likely 
to be good (above normal 

rainfall with regular rains is 
expected) 

If chilling weather (cold) 
is experienced 

Middle of June 
Cessation of the rainy season 

is likely to be early 
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Rainfall 
patterns 

When it rains heavily at 
the onset (March-April) 

At the beginning 
of the growing 

season 

Cessation of the rainy season 
is expected to be early 

Leap year 
If the season falls on a 

leap year 
Rainy season 
(March-July) 

The upcoming season will not 
be good (i.e. below normal 

rainfall expected with 
important dry spells) 

Insect 
(Manubi-

Tetey) 

When they are abundant 
on farms 

rainy season 
The season is likely to be good 

(above normal rainfall 
expected with regular rains) 

Dew If there is a lot of dews 
At the beginning 
of rainy season 
(March-April) 

Onset of the rainy season is 
expected to be late 

Sky 
If there are a lot of stars 

in the sky 
From March 

ongoing 
Onset of the rainy season is 

expected to be late 

Moon 
(Traditional 

lunar 
calendar) 

Counting 7 months from 
September 

September till 
March/April 

Onset of the rainy season is 
expected in March 6th. When 
rains starting before or after 

this date then onset is 
respectively early or late 

Scorpion 
When big-black scorpion 

are abundant on farms 
Rainy season 

It will rain heavily in that 
particular year (e.g. above 
normal rainfall expected) 

Tree 
(Odokpo, 

honey tree) 

When start flowering 
early 

Rainy season 
Early onset of the rainy season 

is expected 

 

4.4.2.  Distribution of LFK-indicators observations collected  

The distribution of LFK-indicators observations collected using the WeatherApp is presented in 

Figure 4.5. The monthly distribution of indicators shows that the number of observations varies by 

month and with the indicator. It shows the monthly variation in local weather conditions. The 

difference in the distribution is also related to the number of days where observations on local 

indicators were collected differ per month. For example, during April data collection started on 5th 

April while in July data were collected until 17th July 2019. Over the 105 days of data collection, 

some indicators were seen more often than others (Figure 4.5). For instance, sun, clouds, birds, 

wind, dew, ants, frog, Halo were among the 8 most often observed indicators with more than 25 

observations recorded; while the moon, worms, stars, pig, and scorpions were the least frequently 

observed indicators. Only the skills of the 8 most frequently observed indicators were analyzed. 
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Figure. 4.5. Distribution of LFK-indicators observations collected for the period  5th April to 17th 

July 2019. Number of  observation are presented (y-axis) and the total number over the whole 

period are shown in parenthesis (x-axis). 

4.4.3.  Farmers’ perception of the performance of local and scientific weather forecasts 

The perceived reliability of 24 hours local forecasts are compared with the national scientific 

forecasts (GMet) in Ada East District (Table 4.4). The largest share of farmers (40% responses) 

believed that local forecasting knowledge is reliable compared with 22% for the national scientific 

forecasts. More than half of the farmers (67%) thought scientific forecasts were somehow reliable, 

as compared with 45% for local forecasts. Very few and close share of farmers believed that both 

local (14%) and scientific (11%) forecast were not reliable. These results suggest that a large share 

of local farmers who are using both local and scientific forecasts believe that local forecasting 

knowledge is more reliable. Finding also implies that the majority of farmers believes the reliability 

of both systems is little or moderate. 

Table 4.4: Farmers’ perception on the reliability of daily local and scientific forecasts 

Forecasting systems /Performance Not Reliable Somewhat Reliable Reliable 

Local forecast (daily) 14% 45% 40% 
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Scientific forecast (daily) 11% 67% 22% 

 

4.4.4. Comparative skills between individual local and scientific forecasting systems 

Analyses of the probability of detection (POD), probability of false detection (POFD), False alarm 

ratio (FAR) and H-K skill score of LFK-indicators are presented together on Figures 4.6 and 4.7 

for the 8 indicators. The skills of various indicators vary per month and per indicators (Figure 4.6). 

However, when the skill is aggregated over the 105 days period, the pattern of the best performing 

indicators becomes clear (see Figure 4.7). Results in Figure 4.7 show high probabilities of detection 

(ranging from 0.75 to 0.90) but also show an important level of false detection probabilities (i.e. 

0.24 to 0.80) which contribute to reduce the skill score of the LFK-indicators. Halo, dew, frog, 

wind, ant, sun, and bird are respectively the most performing indicators with H-K skill score > 0. 

The highest score is the Halo with HK=0.56. 

Similar analyses for scientific forecasts from Ghana meteorological agency (SFK-GMet) and from 

meteoblue (SFK-meteoblue) are presented in Figure 4.7 over from 5th April to 17th July 2019 

period. Skills in both scientific forecasting systems vary by month as in the case of LFK. SFK-

GMet shows an aggregated H-K skill score of 0.50 whereas the SFK-meteoblue has an overall skill 

of 0.59. This implies that the skill of meteoblue is higher than GMet in Ada with a difference of 

HK=0.09. Also, the most performing LKF-indicator (i.e. the Halo with H-K=0.56) performs 

slightly better than SFK-GMet (i.e. H-K=0.50) but show a little less skill than SFK-meteoblue (i.e. 

H-K=0.59). 

Harnessing local forecasting knowledge

4



94 
 

 

Figure 4.6. Skill of local forecast (LFK-Indicators) and scientific forecast (SFK-GMet, SFK-

meteoblue) for April, May, June and July 2019. Hit rate, False alarm rate, and False alarm ratio are 

presented in different colors. LFK-indicator skills are assessed against gauge observations. Skills 

are classified from the highest to the lowest. 

4.4.5. Performance of combined LFK-indicators 

The skills of combined LFK-indicators are presented in Figure 4.8 for all possible combination 

scenarios together with the two scientific forecasting systems. H-K skill scores for each forecast 

are only presented here from the 5th April to the 17th July 2019 period. The figure shows that the 

more indicators are combined, the higher the aggregated (average) skill is. For example, the skill 

of individual LFK-indicators presented above (see Figure 4.7) corresponds to k=1 and that of all 

eight indicators corresponds to k=8. By combining indicators, the average skill improves from 0.22 

to 0.80 for the eight indicators tested. Also, the average skill of LFK-indicator starts to surpass 

national and meteoblue forecasts when combining k= 3 and k=4 elements respectively. The figure 

also shows that the average number of days (i.e. frequency), where a set of indicators is used 

simultaneously, decrease as the combination of k elements increases. In other words, scenarios of 

combined indicators with higher skills were less frequently observed by local farmers. 
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Together these results provide important insights on the monthly distribution and overall 

performance of LFK-indicators in comparison to SFK from GMet and meteoblue. Results suggest 

that combined LFK-indicators can compete or often surpass scientific forecasts from GMet and 

meteoblue which are given for much broader area. 

 

Figure 4.7. Overall skills of local forecast (LFK-Indicators) and scientific forecasts (GMet, 

meteoblue) over from 5th April to 17th July 2019 period. Hit rate, False alarm rate, and False alarm 

ratio are presented in different colors. Local and scientific forecasts skills are assessed against 

gauge observations. Skills are classified from the highest to the lowest. 
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Figure 4.8. Skills of combined LFK-indicators compared with the skills of scientific forecasts from 

GMet and meteoblue from 5th April to 17th July 2019 period. K=1, 2, 3, 4, 5, 6, 7, and 8 indicate 

the possible combination of eight LFK-indicators observed; the combination is carried out without 

repetition and generate 8, 28, 56, 70, 56, 28, 8, and 1 scenarios respectively. Also Boxplots 

represent the skill of these scenarios. (*) indicate the average skill of each scenarios. The square 

brackets [X %] indicates the frequency (i.e. average number of days over the whole period) at 

which each scenario of combined indicators was observed simultaneously by local farmers. NA 

indicates that the scenario was not observed. 

4.5.Discussion 

4.5.1.  Documentation and skills of LFK 

Documentation of LFK showed a rich source of data in terms of amount, diversity, and forecast 

timescales that include both weather and seasonal timeframe. The performance of weather 

timescale indicators in discriminating daily rainfall occurrence varies depending on whether an 

individual or a set of indicators is used. If a set of several LFK-indicators is used, LFK can 
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potentially predict daily rainfall occurrence better than national forecast and meteoblue that are 

given for a much broader area. Although scenarios in which local farmers observe several LFK-

indicators tend to have higher skills, such scenarios occur less frequently. These results are in 

agreement with the perceived reliability of local weather forecasts when compared with the 

national daily forecast.  

The diversity of indicators is comparable to those found in other regions of Africa (Roncoli et al., 

2009, Speranza et al., 2010, Radeny et al., 2019) and more particularly in Ghana (Codjoe et al., 

2014). However, results achieved surpass the earlier work in Ghana (Codjoe et al., 2014) in terms 

of amount and diversity of indicators documented as they pertain not only to the weather but also 

to sub-seasonal and seasonal climate timescale predictions. Moreover, LFK outcomes (see Table 

4.2 and 4.3) provide insights on tailored forecast information needs in the district: rainfall 

occurrence, categorical season rainfall amount, dry spell occurrence, onset and cessation of the 

rainy season (Gbangou et al., 2019, Nyadzi et al., 2019).  

Findings on the skills imply that some LFK-indicators still stand and can even compete with 

advance modern forecasting systems despite the decrease in the reliability of local knowledge due 

to climate change and variability and due to the fast urbanization that has resulted in the loss of 

some local forecast indicators (Ziervogel, 2001, Ziervogel and Downing, 2004, Kalanda-Joshua et 

al., 2011, Balehegn et al., 2019). Hence, this study supports evidence from previous observations 

that local weather forecasting is still valuable for local farmers (Balehegn et al., 2019, Chisadza et 

al., 2015, Green et al., 2010). 

4.5.2.  Integration opportunities between local and scientific forecasting knowledge  

4.5.2.1.Method used to integrate local and scientific daily rainfall occurrence forecast 

Based on the statistics found for individual and combined skills of LFK-indicators (see section 

4.4.5), an approach that we called “ statistical integration” can be used to optimize local and modern 

forecasts performance by alternating both systems whenever suitable (Table 4.5). The table shows 

that farmers can alternate the choice of local and modern forecasting system based on the set of 

local indicators that are observed. For instance, with a set of more than three specific indicators 

observed, farmers would choose the local forecast instead of the scientific one, and, when less than 

three specific indicators are observed, then they would go for the scientific forecast (Table 4.5). 
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This approach can contribute to increment the skill for predicting daily rainfall occurrence despite 

the difference in scale and configuration of the two knowledge systems. It does not require the two 

systems to have a similar spatial resolution to make sense as in modern forecasting systems. In that 

sense, this integration approach offers an added value in accordance with Speranza et al. (2010) as 

it helps farmers select the most appropriate forecasts depending on the set of data 

observed/collected at the local scale. This is particularly useful when scientific forecast information 

available to farmers covers much larger areas and/or has fewer skills than local knowledge. 

Summarizing, the ‘statistical integration’ which refers to an integration based on the statistics that 

combine a set of several indicators, was developed and applied in this study. This integration 

approach suggests that local and modern forecasts can be alternated on the basis of the set of local 

indicators observed by local farmers. This approach can improve the quality in daily weather 

forecast information for local farmers in Ada East District, Ghana. 

Table 4.5: Proposed approach for integrating weather of local and scientific for daily rainfall 

occurrence in Ada East District (approach tested in this study and called the ‘statistical 

integration’). The approach alternates local and modern daily forecasts based on the combination 

of a set of local forecast indicators (k) observed by local farmers.  

Number of elements combined (k) Choice of the weather forecasting system 

2 ≤ LFK-indicators are observed ( k ≤ 2) 
Farmers are advised to adopt the scientific forecasts 

for decision making 

3 LFK-indicators are observed ( k =3) 
Farmers can adopt either local or scientific forecasts 

for decision making 

> 3 LFK-indicators  are observed (k > 3) 
Farmers are advised to adopt the local forecasting 

system for decision making 

 

4.5.2.2.Other integration possibilities between local and scientific forecasting systems 

The rich diversity and performance of LFK-indicators create opportunities for more different 

integration approaches with the scientific forecasts (albeit not applied in this study). Based on the 

above-mentioned results, three additional approaches for integration were identified and discussed. 

These include (i) an intuitive integration, (ii) a patterns evidence analyses, and (iii) an updating of 
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invariable LFK indicators. Table 4.6 summaries the three other recommended approaches with an 

example. 

The “Intuitive integration” consists of complementing each knowledge system using the strength 

and weaknesses of the other to derive improved forecast information (Table 4.6). In this integration, 

scientific information on large-scale weather and climate dynamics, which is often not visible to 

farmers is used to enrich local knowledge. Inversely, observations on local-scale dynamics that are 

not visible to meteorologists can enrich scientific knowledge. The “Intuitive integration” approach 

can provide a much richer forecast outcome since it uses specific information available from each 

forecasting system to enrich the other. This can result in a higher predictive skill especially for 

weather timescale predictions of one or the other knowledge systems. Each knowledge system can 

benefit from a piece of punctual information or indicator from the other system to enhance its skills. 

However, it is important to recognize that intuitive forecasting is subjective and comes with 

limitations (Daan and AH, 1982). Therefore, good judgmental forecast requires close collaboration 

between well experienced local and scientific forecasters in the area to inform and update each 

other in time (Lawrence et al., 2006). This can be facilitated through the co-production of climate 

services with and for farmers.  

The “Patterns evidence method” uses historical meteorological data to assess patterns in weather 

and climate conditions identified by local farmers through experience (Table 4.6). This can bring 

new discoveries of relationships and time lag-teleconnections (correlations) between local weather 

variables and agro-meteorological indices at a local scale. Insights from this integration approach 

can be useful to improve seasonal predictions by identifying, scientifically, existing lag-

correlations claim by local forecasters.  

The “ Updating invariable LFK-indicators” approach seeks to adjust LFK static indicators to the 

changing weather and climatic conditions (Table 4.6). It has similarities with the pattern evidence 

approach as it uses meteorological data to give insights on variability and changes related to some 

LFK static indicators in order to update and improve this knowledge. The method can allow taking 

into account indicators that have changed as a result of the climate change and variability 

mentioned in the previous works (Kalanda-Joshua et al., 2011, Ziervogel and Downing, 2004, 

Ziervogel, 2001).  
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All said, exploring these integrations methods can help to reduce the recurring tensions that exist 

between local and scientific knowledge (Briggs, 2005, Wohling, 2009) and increasing the 

replicability and spread of local knowledge in practice and in science. 

Table 4.6: Proposed approaches opportunities (albeit not tested in this study) for integrating local 

and scientific forecasting knowledge. 

Recommended 

integration 

approaches 

Description Examples 

(1) 

Intuitive 

integration 

An intuitive approach consists of 

supporting local forecasting 

knowledge with insights from 

scientific forecasting knowledge 

and vice versa. This is because 

the coastal area in Ghana is more 

subjected to strong atmospheric-

sea-land interactions (Gbangou et 

al. 2019). Ada being at a coastal 

area, the district is affected by 

local land-sea breeze interactions 

due to the heating or pressure 

gradient. Also, remote large-scale 

disturbances such as storms or 

thunderstorms can move towards 

coastal zone and affect Ada 

district. 

 

For example, local farmers are often unable 

to perceive storm clouds forming far away 

(e.g. from Nigeria or Benin) as well as its 

momentum (See Supplementary, Figure 

S4.2 for details). When such a strong storm 

is located in those regions and moving 

towards Ada, farmers might not observe 

the cloud indicator from their location. 

Satellite imagery data can help informed 

local knowledge by estimating a storm 

cloud speed and direction moving towards 

the Ada district environment. 

Similarly, observations on LFK-indicators 

such as the halo, wind, and dew can be used 

as a piece of real-time additional 

information to informs modern weather 

forecasts for Ada location. For instance, 

dew observation is connected with 

atmospheric stability (i.e. clear skies, light 

winds) and therefore implies an absence of 
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turbulence, vertical motion, clouds, and 

thunderstorm precipitation. 

(2) 

Patterns 

evidence from 

meteorological 

data 

This approach consists of 

exploring hidden patterns on 

weather and climate conditions, 

identified by local forecasting 

knowledge, using historical 

scientific observations. 

For example, in the LFK system, cold 

weather experienced during the Feb-Mar 

period indicates an above-normal rainfall 

season; or if the cold weather is 

experienced in June then an early cessation 

is expected. Hence, historical 

meteorological data can be used to explore 

whether below-normal temperature during 

February-March is associated with above 

normal seasonal rainfall; or if early 

cessation is associated with below-normal 

temperature in June. LFK indicator on rain 

patterns indicated that heavy rains observe 

in March-April is a sign of early cessation. 

(3) 

Updating 

invariable 

LFK 

indicators 

This method is close to the 

pattern evidence approach. It 

seeks to make changes or 

adjustments into LFK indicators 

that are invariable by looking into 

variability and shifts from 

meteorological data. This can 

allow taking into account the 

recurring high variability in 

weather and climate conditions 

especially in the coastal zone of 

Ghana (Gbangou et al. 2019).  

An interesting example, in this case, is the 

traditional calendar indicator used by 

farmers to predict a fixed date of onset by 

counting 7 months from September. The 

work done by Gbangou et al (2019) can 

help inform farmers that, because of 

climate variability and change, there has 

been an important shifts in the mean onset 

date as well as an increased variability in 

the year to year onset dates. This can be 

applied to the leap-year indicator as well. 
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4.5.3.  Limitation and cautious interpretation of the results 

A number of limitations are applicable to this new approach for documentation, quantitative skill 

assessment and integration of local and scientific forecasting knowledge. The most important one 

relates to LFK-indicators’ observations and rainfall records that were collected during one single 

rainy season, and therefore do not allow for a multi-year analysis that will give more insights on 

the performance of LFK in Ada. However, these results reflect well farmer’s long-term perception 

of the reliability of their indicators. To further validate our results and test the long term skills of 

LFK-indicators including significance tests, longer-term historical data are needed.  

In this study, the performance of local and scientific forecasts are compared although they are not 

on the same scale or resolution. For instance, LFK is provided for the Ada East district level, while 

SFK-GMet forecast is provided for the coastal agro-ecological zone level (see Figure 4.2). 

Similarly, SFK-meteoblue is valid for a spatial resolution of 30 km. This is because the scientific 

forecasts used in the area are not yet available at a finer spatial resolution. However, this does not 

affect the outcome of the study as findings intend to show the value of documenting and integrating 

LFK with modern forecast towards downscaling and improvement of forecast information. 

Results of the indicators and skills cannot easily be transferred to other regions. This is because a 

different region/community can have different weather patterns and indicators with different 

performances in predicting rainfall occurrence. In other words, an LFK-indicator performing in 

Ada may not be present or have similar performance elsewhere. Further documentation of 

indicators for different regions is needed. However, the approaches for the quantitative assessment 

of the skills and integration can be adapted and applied anywhere. 

Also, in this study, we have mainly used a scientific approach (e.g. skills assessment metrics, 

validation with rainfall measurements, etc.) to analyze the performance of both the local and 

scientific forecasting systems. And we recognize that we could have also used in the other way 

round a local approach to evaluate both the local and scientific forecasts performance (Balehegn et 

al., 2019). Further research should be undertaken to investigate the approaches for local forecast 

quality assessment, specific to the location of interest, and use this local method to get further 

insights on the performance. This can contribute to further stimulate the reconciliation between the 

two knowledge systems. 
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4.5.4.  Practical implication for local farming and the development of climate services 

Our study shows similar results as Codjoe et al. (2014) indicating that LFKs have several practical 

applications for local farmers and can also contribute to improve scientific knowledge. Adopting 

the integration approaches of local and scientific forecasts support the idea of Deloria (1996) that 

scientific research can benefit from more or sometimes better weather and climate information. 

This can be done through a better collaboration of local and scientific communities through a co-

production process of weather and climate information. Such collaboration requires appropriate 

infrastructures, capacity building, and user-friendly environmental monitoring tools such as 

interactive mobile apps (Buytaert et al., 2014, Nyadzi et al., 2018) to facilitate the exchange, 

understandable and acceptability (Ingram et al., 2002). 

Our work shows potential for exploring new approaches and methods to deal with challenges 

related to weather and climate information especially for farmers in the developing countries where 

meteorological observations are not often available or accessible. Moreover, collecting LFK 

observations can be used for continuous improvement of farmers’ forecasts through the process of 

verification alike hindcasts used for scientific forecasting systems. If these data are collected for 

several years, they can help build LFK-hindcasts datasets for future studies and provide better 

insight for both weather and seasonal timescale predictions. This approach is built on citizen 

science approaches, thus the performance of local forecasts may be dependent on the education 

levels, experiences, engagement and motivation of the farmers involved. Therefore, local forecasts 

performance/quality can be improved through better engagement and training of local farmers. 

Improving the tools used for data collection and exchange is also important to facilitate and get 

qualitative data.  

Documenting local forecasting has helped to reveal local forecast information’ needs that can help 

farmers enhance their decision-making. Although this study tested only daily rainfall occurrence, 

many other agrometeorological indices can be predicted by LFK (e.g. onset, cessation, and dry 

spell) and can be used in future studies as well.   

4.6.Conclusions 

This study provides new insights into the diversity and performance of farmers’ contribution to 

weather and climate forecasting in the Ada case study. New approaches for integrating local and 
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scientific forecasting knowledge are identified for future research and applications in climate 

service development. Local forecasting knowledge is proven to go beyond the weather time scale 

as it includes also sub-seasonal or seasonal time scale prediction indicators. Besides, this 

knowledge focusses on forecasting tailor-made agro-meteorological indices such as rainfall 

occurrence and amount, dry spell occurrence, onset, and cessation. In that sense, it also contributes 

to understanding local information needs for weather and climate service development. 

The level of skills found also reveals that the local forecasting system can potentially compete with 

modern forecasting systems with regards to the prediction of rainfall occurrence. This is especially 

applicable when local knowledge indicators are combined. More importantly, local and scientific 

forecasting can enrich each other through several integration approaches. Although further research 

and development are necessary to bring more evidence and insights. Such integrated forecast 

information can help in developing improved climate services for and with farmers towards a better 

adaptation to climate change and variability in Ghana and other regions of the world. Integration 

can reduce the recurrent tensions between the two knowledge systems and foster the acceptability 

by both farmers and scientists. 

Acknowledgements 

This research is fully funded by the Netherlands Organization for Scientific Research 

(NWO/WOTRO) under the urbanizing deltas of the world program (UDW) and WaterApps 

(www.waterapps.net) project. My sincerest gratitude goes to Mr. Tsatu, a meteorologist from 

Ghana Meteorological Agency (GMet) who has been working in Ada for many years and whose 

experience in local weather and climate patterns has enriched this study. We also thank the Ghana 

Ministry of Food and Agriculture (MOFA) extension office in Ada East district for their support 

in organizing, translating and participating in various fieldwork activities. Finally, we would like 

to thank meteoblue for providing the necessary data for Ada to include in this work and in general 

to the WaterApps project. 

Appendix 

Appendix A4.1. Notes on the analysis of the skills of local forecasting knowledge indicators in 
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The skills of LFK-indicators are based on indicators observations and rainfall records. We looked 

at indicators observed by farmers and the rainfall occurrence (P >1mm) recorded by farmers within 

the next 24 hours (i.e. daily). For instance, when an indicator or a set of indicators is/ is not observed 

and rainfall has/has not occurred respectively within the next 24h, then it is a hit. Both LFK-

indicators and rain observations are aggregated on a daily basis. 
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Chapter 5. Coproducing Weather Forecast Information with and for 

Smallholder Farmers in Ghana: Evaluation and Design Principles 

Abstract  

Many West African farmers are struggling to cope with changing weather and climatic conditions. 

This situation limits farmers’ ability to make optimal decisions for food and income security. 

Developing more useful and accessible weather and climate information services (WCIS) can help 

small-scale farmers improve their adaptive capacity. The literature suggests that such WCIS can 

be achieved if forecast information is produced jointly by farmers and scientists. To test this 

hypothesis and derive design requirements for effective WCIS, we evaluated the outcomes of an 

experimental coproduction of weather forecasts in Ada, Ghana. The experiment involved a user-

driven design and testing of information and communications technology (ICT)-based digital 

(smartphones and apps) and rainfall monitoring tools by 22 farmers. They collected data and 

received weather forecasts during the 2018/2019 study period. The results showed a positive 

evaluation of the intervention, expressed by the level of engagement, the increase in usability of 

the tools and understanding of forecast uncertainty, outreach capacity with other farmers, and 

improved daily farming decisions. The success of the intervention was attributed to the iterative 

design process, as well as the training, monitoring, and technical support provided. We conclude 

that the application of modern technology in a coproduction process with targeted training and 

monitoring can improve smallholder farmers’ access to and use of weather and climate forecast 

information. 
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5.1.Introduction 

Agriculture is a key source of food and income security in many sub-Saharan African countries 

(Shimeles et al., 2018, Rockström and Falkenmark, 2015). However, the sector is heavily impacted 

by climate variability and change (Sultan et al., 2020, Sultan and Gaetani, 2016, Gbangou et al., 

2018). Future projections suggest significant risks to agriculture, even if global warming remains 

below the limits set by the Paris Agreement (Sultan et al., 2020, IPCC, 2019). Moreover, people 

involved in different agricultural water use systems throughout sub-Saharan Africa are unevenly 

impacted by climate variability and change (Jalloh et al., 2013, Atta et al., 2015). 

Climate variability and change prompted increased demand for early warning systems for weather 

and climate risks, especially in developing countries, where the climate is already highly variable 

and threatens food security, and where adaptation capacities are low (Sultan et al., 2020, Yobom, 

2020, Gbangou et al., 2019). In West African countries like Ghana, where crop production depends 

largely on smallholder farming and rainwater, the need for better weather and climate information 

systems is significant (Cooper et al., 2008, Wani et al., 2009, Vaughan et al., 2019, Sultan et al., 

2020, Gbangou et al., 2019). Although much effort is made by governments and other organizations 

to provide such information services to farmers and water managers, the resulting systems are often 

of limited usefulness for local smallholders (Sultan et al., 2020, Masinde et al., 2012a). This is 

because many smallholder farmers in Africa need information to be more tailored to their specific 

needs (Gbangou et al., 2020a, van der Burgt et al., 2018, Vogel et al., 2017). Among the climate 

information services currently available to West African farmers, the majority are hampered by 

information irrelevance, incompleteness, uncertainty, and the lack of user training for a better 

understanding of the required technology (Vaughan et al., 2019, Sultan et al., 2020). Hence, the 

design of information systems needs not only to be based on the provider’s ideas and principles but 

also to integrate local farmers’ needs and knowledge in a user-driven design approach (Masinde et 

al., 2012a, Buytaert et al., 2014, Nyadzi et al., 2018). 

The coproduction of information systems is a potential strategy for attaining adequate interaction 

between information producers and users, as well as to foster knowledge sharing (Byerlee et al., 

2008, Lemos et al., 2018). Regarding weather and climate information systems, coproduction is 

increasingly recognized as a potential path to success, with several positive outcomes already 

documented (Zebiak, 2019, van der Burgt et al., 2018, Masinde et al., 2012a). The current study 
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uses the term “coproduction” to refer to participatory engagement between researchers and a group 

of farmers and extension agents in the design of tools and the production of weather data and 

forecasts (Vedeld et al., 2019). By definition, the coproduction process is built according to user 

engagement and needs and, thus, can facilitate the development of and access to climate services, 

i.e., the production, translation, and use of weather and climate information in a way that assists 

users in terms of decision-making and policy planning (CSP, 2011, GFCS, 2016). Such services 

are crucial for smallholder farmers, who are particularly vulnerable to climate variability and 

change because of their reliance on rainfall for farming and their limited adaptive capacity (Sarku 

et al., 2020, Gbangou et al., 2019). 

Interactions with local farmers in Ada East District, Ghana (Figure 5.1) helped to define and predict 

relevant, tailor-made agrometeorological indices, such as the onset of the wet season, dry spell 

occurrence, and total seasonal rainfall, to support farming decision-making (Gbangou et al., 2019, 

2020a). Previous research undertaken as part of the Waterapps project (www.waterapps.net) in Ada 

found that, due to the lack of location-specific information and limited understanding of modern 

forecasts (Vaughan et al., 2019, Sultan et al., 2020, van der Burgt et al., 2018), local farmers rely 

mainly on traditional knowledge for farming decisions. The coproduction of forecast knowledge 

with and for farmers can help foster trust and increase the local uptake of scientific model-based 

forecasting knowledge (Ingram et al., 2002). Furthermore, collecting and integrating local or 

traditional knowledge with scientific data can help increase credibility and improve access (Nyadzi, 

2020, Gbangou et al., 2020b). Good local information can help to enhance usefulness and skills of 

model-based forecasts (Nyadzi, 2020). For instance, information about crop types, cropping 

calendars, and other local specific needs can be incorporated into models to derive relevant forecast 

information to enable adaptation to climate variability. Similarly, harnessing local forecasts can 

potentially be combined with the model’s forecasts to synergize the accuracy of the combined 

weather and climate forecast information (Radeny et al., 2019, Nyadzi, 2020, Crane et al., 2010). 

As in many West African countries, Ghana’s current climate information services are based on 

long-term modeled trends and resilience planning, regional agrometeorological bulletins, and 

weather forecasts at grid scales that are often too coarse to be useful for location-specific 

predictions (Gbangou et al., 2018, Gbangou et al., 2019). 
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In this regard, modern digital technology offers opportunities for developing innovative climate 

information services. For example, information and communications technology (ICT) such as 

mobile phones, smartphones, apps, and the internet can serve as supportive tools at all stages of 

climate information service provision, including production, transfer, and use by end-users (Sultan 

et al., 2020, van der Burgt et al., 2018). The ICT interface can be designed with and for farmers to 

facilitate effective data collection, feedback, and interaction (Nyadzi et al., 2018). Farmers can also 

be engaged as citizen scientists to monitor daily and seasonal climate observations and share these 

with peer farmers and scientists (O’Grady et al., 2016, Rutten et al., 2017, Tinati et al., 2017, 

Turreira-García et al., 2018). Despite the overall limited use of ICT by local communities (Naab et 

al., 2019), there is evidence of a rapidly increasing digital literacy that indicates promise for ICT 

adoption in West Africa, particularly in Ghana (Aker, 2011, Aker and Mbiti, 2010, Zibi, 2009). 

The coproduction of weather and climate information services (WCIS) using digital tools could be 

an important means to enhance adaptive capacity and resilience of smallholder farmers in the face 

of climate variability. Nonetheless, there is limited practical evidence on smallholder farmers’ use 

of ICT-based technology in coproduction processes in West Africa (Beza et al., 2017, Phillips et 

al., 2018, Sultan et al., 2020). Practical evidence regarding the coproduction of climate information 

services could orient knowledge and policy to better support vulnerable smallholder farmers (Field, 

2014, Vaughan et al., 2019). 

This paper reports on an ICT-based weather information service coproduction process involving 

farmers, extension workers, and scientists in Ada East District, Ghana (Figure 5.1), on the testing 

of the codesigned WCIS and evaluation of the experiment’s results. Based on the evaluation 

findings, design criteria for such services are proposed. Extracting the design principles will help 

improve future WCIS for smallholder farmers in Ghana and elsewhere. The current study focuses 

on aspects of WCIS implementation, particularly testing of design features and the associated 

training, monitoring, and support provided during the testing phase of the coproduction experiment. 
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Figure 5.1. Map of the study area in the Greater Accra Region, Ghana, showing the various 

communities of Ada East District (Gbangou et al., 2020b). 

5.2.Materials and Methods 

This section details the methodological approach for coproduction implementation, data collection, 

and analysis. Figure 5.2 presents a general methodological flowchart, including the participants, 

inputs, and processes, as well as the outcomes evaluated. The various components of the figure are 

addressed below. Other results from the field study, for instance, regarding local forecast 

performance and motivations and barriers for farmer participation, are presented elsewhere 

(Gbangou et al., 2020b, Sarku et al., Accepted) and, therefore, not included in the current paper. 

Similarly, before the design and testing phase, farmers’ agrometeorological information needs and 

local forecasting indicators were assessed under the Waterapps project. Results of those pre-

surveys were discussed in Reference (Gbangou et al., 2020b). 
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Figure 5.2. Codesign and testing of agrometeorological information services: methodological 

flowchart showing the cyclical and iterative process of knowledge development. Local data refer 

to farmers’ forecasts (based on locally used biophysical indicators) and scientific data refer to 

model-based forecasts. Digital technology includes information and communications technology 

(ICT; smartphones, apps, and the internet) used for knowledge exchange and collection of rainfall 

monitoring data. 

5.2.1. Study Area and Participants 

Our study was carried out in the Ada East District (AED) of Ghana, which is a peri-urban district 

located in the Volta Delta, a coastal savanna subregion. The map in Figure 5.1 shows the location 

of communities with field study participants. In this region, crop growth is affected by changing 

climatic conditions, including greater variability in the onset date of the rainy season, more erratic 

total seasonal rainfall, and dry spells (Gbangou et al., 2020a, 2019, Addo et al., 2018). 

Unpredictable early and late onset dates and dry spell occurrence affect AED farmers’ decision-

making strategies (Sarku et al., 2020). Unlike many farmers in Northern Ghana, who have access 

to private weather forecast services in addition to national forecasts (Nyadzi et al., 2019, Nyamekye 

et al., 2019), AED farmers only occasionally receive (mainly via radio and television (TV)) daily 

national weather forecasts that are given for the entire coastal region and are, thus, too coarse for 

location-specific farming decisions (Jost et al., 2016, Limantol et al., 2016, Gbangou et al., 2019). 

Hence, local farmers in the area are among the most vulnerable to climate variability in Ghana. 

Crop production in the district mainly includes cassava, pepper, rice, maize, and tomato. These 
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products represent an important source of food for urban markets, especially in nearby major cities 

like Accra and Tema in Ghana, as well as Lomé in Togo. The district’s proximity to urban areas 

also suggests a potential for adoption of ICT-based digital technology by farmers. Developing 

location-specific, tailored ICT-based forecast information services could help farmers improve 

their daily farming decisions and adaptive capacity.  

Study participants were selected using a purposive sampling method based on experience with local 

forecasts, availability, gender, and willingness to participate. A group of 22 farmers, five 

agricultural extension agents, and one meteorological extension agent was selected. This was 

considered representative and sufficient for the experiment in WCIS codesign and testing, which 

took place in 2018–2019. Figure 5.3 presents the socio-demographic characteristics of participants, 

including gender, age, and education levels. In our sample there were 18 male and four female 

farmers. Participant ages ranged from 20 to over 60, thus including both young and older farmers. 

Education levels varied from no formal education to high school level, with the majority of farmers 

having attended middle school. Extension agents were considered key participants, as they worked 

with farmers in different communities and, thus, had greater outreach potential. Although the 

extension agents did not collect primary data, they saw, shared, and interacted with the forecasts 

and data collected by the farmers and scientists. The extension agents were also asked to give their 

opinions in evaluating the coproduction experiment. 

 

Figure 5.3. Age, education level, and gender of farmers and extension agents participating in 

coproduction experiment for weather and climate information in Ada East District, Ghana. 
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5.2.2. Digital and Rainfall Monitoring Tools 

Modern technology, including web-connected smartphones, mobile applications (apps), and the 

internet, was used to facilitate the coproduction process. We provided a smartphone with an internet 

data bundle from a local telecommunication company to each of the 22 participating farmers and 

to extension agents who did not already have one. Each phone contained (i) a weather app 

(http://waterapps-weatherforecast.azurewebsites.net/Account/Login) for collecting local forecast 

indicators and rainfall observation data, and (ii) WhatsApp (a smartphone chat app) for 

disseminating forecasts prepared by scientists for farmers and to enable interaction among the 

participants. Although this dual-app set-up was satisfactory for the coproduction experiment, future 

applications might seek ways to integrate data collection, dissemination, and interaction into one 

ICT tool. To measure daily rainfall, a total of 20 manual rain gauges were distributed to farmers 

from the 15 communities involved (see Figure 5.1). We ensured that each community had at least 

one rain gauge. 

5.2.3. Data Collection and Sharing 

Data collected by local farmers included daily local weather forecast indicators (see Table S5.1, 

Supplementary Materials) and daily rainfall observations (Table 5.1). Farmers collected these on a 

real-time basis, sharing them with the research team via the weather app. These data were then 

processed into daily forecasts (for details see Gbangou et al. (2020b)) and shared with all 

participants via the WhatsApp group. Similarly, daily scientific model-based weather forecasts 

(from www.meteoblue.com) were simplified and shared via the WhatsApp group. This sharing was 

done in real time and on a daily basis from April to July 2019. 

Table 5.1. Data collected and shared via the digital tools. 

Digital Tools Data Collected and Shared 

Weather app 
(collection) 

Daily biophysical local forecast indicators as observed and reported by 
farmers in their various locations 
Daily rainfall observations as measured by farmers using the provided 
rain gauges 

WhatsApp group 
(sharing) 

Daily local forecasts based on the processed and aggregated local forecast 
indicators (Gbangou et al., 2020b)  
Daily local forecasts derived from scientific sources (e.g., meteoblue) 
(Gbangou et al., 2020b)  
Daily rainfall observations as measured with the provided rain gauges 
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5.2.4. Workshops, Training, and Monitoring 

Several workshop sessions were conducted to learn from farmers what forecast indicators they 

typically used and to codesign the digital tool interface for the weather app. This was done 

following a user-driven design approach (Zulkafli et al., 2017). Hence, the researchers learned from 

farmers and extension agents and, with them, jointly defined and redefined features of the apps, 

including visuals, symbols, texts, and format. Farmers were also trained in use of the digital tools, 

including the smartphones, apps, internet handling, and installation and use of the rainfall 

monitoring tools. They were also educated on the probabilistic nature of the forecasts shared via 

WhatsApp group. Throughout the four-month data collection period (April to July 2019), 

monitoring was carried out, including field visits with farmers. A final evaluation of the whole 

experiment was conducted at the end of the rainy season, in July 2019. Figure 5.4 summarizes the 

chronology, activities, and methods used. Activities carried out in the rainy season of 2017 on local 

agrometeorological information needs and local forecasting indicators are outside the scope of the 

present study (details on these can be found in Reference (Gbangou et al., 2020b). Nonetheless, 

this step is included in Figure 5.4 to show the flow of the project and the link to local information 

needs and forecasting indicators. 
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Figure 5.4. Chronology of the coproduction work carried out in Ada East District, Ghana. Activities 

and methods for the 2017 rainy season, above the horizontal dashed line, are covered in previous 

studies, as part of the Waterapps project. They are, therefore, not included in the present study. 

5.2.5. Analysis of Design and Lessons Learned 

Since the aim of this study was to improve the quality and effectiveness of weather and climate 

information services in the study area, an ex post evaluation approach was adopted (Tall et al., 

2018). This approach was deemed suitable for the actual intervention and sought to document and 

analyze participants’ behavior and the impacts of climate information service delivery (Tall et al., 

2018, Vaughan et al., 2019). Note that the focus of the current study was on evaluating farmers’ 

engagement and the usability and usefulness of the weather information system introduced to them, 
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not on examining the impacts of the intervention in terms of farming outcomes (like changes in 

cropping practices or yields). To determine the usability and usefulness of the WCIS and the extent 

to which farmers’ understanding and daily management decisions improved or changed following 

access to the weather and climate information, we used answers to a set of descriptive questions. 

These covered the ability of farmers to use the information service (i.e., its usability (Collier and 

Dercon, 2014)), estimation of the potential relevance of the service for farmers (i.e., its usefulness 

(Sonwa et al., 2017)), and identification of elements of design and implementation that could lead 

to better outcomes (i.e., design criteria (Collier and Dercon, 2014, Sonwa et al., 2017)). The 

evaluation questions were posed in interviews conducted with both the participating farmers and 

the extension agents. Considering our small sample size, a binomial distribution approach was used 

to test the significance of the results. Expert (participant) observation (Bowden and Ciesielska, 

2016, Chandra et al., 2017) was also applied, to better understand differences between socio-

demographic groups (age, gender, and literacy) in challenges encountered by farmers during the 

testing phase. Based on the evaluation results and expert judgments, design principles for an 

effective ICT-based weather information service coproduction process were derived. 

5.3.Results 

5.3.1. Design Phase of the Digital and Rain Monitoring Tools  

The co-development process began in 2017, with an initial exploration, by researchers, of the 

forecast information needs and challenges faced by Ada East District farmers in using weather and 

climate information (Sarku et al., 2020, Gbangou et al., 2019). ICT-based tools appropriate for 

weather and climate information sharing and rainfall monitoring were then designed with and for 

farmers and extension agents in 2018. Table 5.2 presents design features, which were iteratively 

adjusted and refined by participants at design workshops. The main tools used were a web-based 

weather app, a WhatsApp group, and rain gauges (see Figure 5.5 for illustration). 

The weather app was designed to be user-friendly and allow for collection of local forecast 

observations and rainfall data from local farmers. These local observations included indicators that 

farmers typically paid attention to when assessing daily weather (see Reference Gbangou et al. 

(2020b)). These indicators were represented by symbols agreed upon with local farmers. The 

weather app also contained pictures illustrating various intensities of rainfall; these could be 

selected by participants (farmers) to record the amounts of rainfall observed at their locations. Each 
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picture was complemented with a short descriptive text, as the majority of farmers could read 

(Figure 5.5a). The weather app required a login step for security purposes, although it offered the 

option of remembering the user’s log-in details. Its interface offered easy selection of options, 

scrolling, and submission of data with a confirmation message sent to verify successful data 

submission. 

The WhatsApp mobile application was installed on participants’ smartphones, and a WhatsApp 

chat group was created so they could receive both local and scientific forecasts and interact with 

one another (Table 5.2). Participants received training to help them understand and interpret the 

probability of rainfall occurrence represented by the simple pie charts that were shared (see Figure 

5.5b for illustration). Farmers could also write messages or use emojis to interact with other 

members of the WhatsApp group. Farmers unfamiliar with WhatsApp were trained in its aim and 

usage. Farmers were free to share their opinions on forecast quality. They could also share their 

rainfall data in the WhatsApp group to help others understand rainfall distribution across the 

district. Both apps required participants to use the mobile internet connection included in their 

smartphone subscription (e.g., they needed to be able to turn mobile data on and off). 

Participants were also trained by a meteorological extension officer to install, read, and record 

rainfall data using the manual rain gauges provided (Figure 5.5c). Only farmers were asked to 

record daily rainfall at their locations, which they submitted via the weather app, the WhatsApp 

group, or notebook records. Farmers were asked to not only be attentive and report the rainfall 

amount and category (low, medium, and high; see Figure 5.5a) but also to note the beginning and 

end times of rainfall events when these occurred. 

Summarizing, the coproduction tools were designed with and for farmers to be user-friendly, and 

consensus on design features was sought with the study participants. The design features agreed 

upon with farmers in 2018 were tested in real time during the rainy season of 2019, from April to 

July. At the end of the rainy season, in July 2019, an evaluation was carried out. 

Table 5.2. Design aspects considered in coproduction of ICT-based digital and rain monitoring 

tools. 
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Digital Tools Features Important Characteristics 

Weather app 
(for collection of daily 
observations on local 
forecast indicators and 
rainfall data) 

Images 
Images for local forecast indicators were chosen 
and refined with farmers and presented on the 
app interface. 

Symbols 
Symbols were used for easy selection of options, 
such as heavy, light, low, or no rain and 
confidence levels (see Figure 5.5a). 

Text 

Most farmers could read (see socio-demographic 
details in Figure 5.3); thus, short phrases were 
used to describe, for example, signal indicators, 
rainfall levels, and farmer forecasts. 

App 
manipulation 

The app was designed for easy scrolling, 
selection, and submission of data, with a 
confirmation message sent upon successful 
submission. A training session helped farmers to 
quickly master it. 

WhatsApp 
(for sharing daily local 
and scientific forecasts, 
and daily rainfall data) 

Forecast graphs 

To illustrate the probabilistic nature of both local 
and scientific forecasts, simple pie charts were 
used to show the probability of, for example, rain 
or no rain (see Figure 5.5b). 

Text 

Chats among farmers, extension agents, and 
scientists required that each participant be able to 
read and write. Most farmers could do so. Low-
literacy farmers were assisted by relatives at 
home. 

App 
manipulation 

Most farmers had never used this app; thus, 
training was provided to help them find the app, 
launch it, and read and write messages. 

Internet  
(medium for transmitting 
digital weather forecasts 
and data) 

Set-up and 
handling 

Internet connections were preconfigured on each 
smartphone with a subscription from a local 
provider in Ghana. Farmers were trained in how 
to turn mobile data on and off. 

Rain gauges 
(for measuring daily 
rainfall amounts) 

Set-up of manual 
rain gauges 

An experienced meteorologist from the Ghana 
Meteorological Agency trained farmers to set up 
conventional rain gauges on their farms or near 
their homes (Figure 5.5c). 

Recording of 
daily rainfall 
amounts 

Farmers were trained to record daily rainfall 
amounts at 9:00 a.m. and to specify the start and 
end times and dates of each rainfall event 

Reporting of 
daily rainfall 
amounts 

Farmers could report the data collected in several 
ways, including the weather app, WhatsApp, or 
a notebook (e.g., if internet service was 
unavailable or the telephone battery was dead). 
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Figure 5.5. The mobile applications and rain gauges used during the coproduction experiment. 

These included (a) a weather app used by farmers to collect real-time data on local forecast 

indicators and rainfall (see Table 5.2), (b) a WhatsApp group used by participants to share data on 

rainfall, as well as to disseminate both local and scientific forecasts in simple pie chart format and 

also to interact (see Table 5.2), and (c) manual rain gauges used by farmers to record rainfall 

amounts (see Table 5.2). 

5.3.2. Evaluation of the Testing Phase 

5.3.2.1.Participant Engagement  
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During the testing phase, from April to July 2019, engagement of the farmers and extension agents 

varied in terms of their data inputs and participation (Figure 5.6). Based on the frequency of data 

collection and interaction, we ranked engagement levels into three categories: low (<33%), 

medium, and high (>66%). Some 76% of farmers fell into the medium to high range during the 

four-month testing period. The high-level engagement category grew over time. Extension agents’ 

engagement remained constant over time, meaning that they were consistently active in monitoring 

activities, providing feedback, and sharing knowledge with farmers beyond those involved in the 

experiment. 

 

Figure 5.6. Evolution of participants’ engagement based on their frequency of data collection and 

interaction via the digital and rain monitoring tools. Asterisks (* and **) indicate the significance 

of the results for the combined “medium and high engagement” category at, respectively, p < 0.05 

and p < 0.01, based on a binomial distribution test. 

5.3.2.2.Usability of the Digital Technology 

Farmers’ ability to use the digital and rain monitoring tools was evaluated throughout the testing 

phase. Figure 5.7 shows participants’ assessments of the usability of the various tools, before and 

after four months of practice. Usability of all the tools improved considerably. Nonetheless, the 

figure indicates some design aspects that, although improved, still needed further refinement. These 

included the mobile internet connection, inputting text in the WhatsApp, recording rainfall data, 
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and submitting reports. A small percentage of farmers (<23%) did not answer because they did not 

know or dropped out of the experiment due to low motivation or other barriers. 

 

 

Figure 5.7. Usability of the digital and rain monitoring tools throughout the testing phase. “Not 

applicable (NA)” indicates participants who did not answer or dropped out of the experiment. 

Asterisks (*, **, and ***) indicate the significance of the results for the combined “somewhat and 

very easy” category at, respectively, p < 0.05, p < 0.01, and p < 0.001, based on a binomial 

distribution test. 

5.3.2.3.Usefulness of Tools, Weather Forecasts, and Data 

The usefulness of the tools, weather forecasts, and data was also evaluated. Figure 5.8 presents 

farmers’ and extension agents’ opinions on the relevance of each component to farmers in the study 

area. Most participants confirmed that the design tools (i.e., mobile internet, the rain gauges, 

smartphones, the weather app, and WhatsApp) were at least somewhat relevant as communication 

tools for weather forecast information (compared to traditional channels like radio and TV). 

Similarly, the majority thought the local and scientific weather forecasts and data produced and 

shared were highly relevant to their daily farming decisions. However, some digital technology 
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items (e.g., mobile internet) were less appreciated by participants. This was mainly due to the low 

internet coverage in remote locations of the study district, which prevented some participants from 

using the apps effectively. 

Both farmers and extension agents observed that the experiment helped farmers improve their 

understanding of rainfall distribution and forecast uncertainties. Furthermore, farmers’ decision-

making was said to have improved, compared to previous years (see daily decisions in Table S5.2, 

Supplementary Materials). Most participants noted that their understanding and decisions 

improved, at least somewhat (Figure 5.9). 

In summary, although further improvements were still called for, the evaluation pointed to positive 

outcomes regarding engagement of farmers, usability and usefulness of the tools, understanding of 

the tools, and farming decisions. These results are significant at the 95% confidence level, 

considering a binomial distribution for the medium and high response categories, except for the 

internet category (see details in Tables S5.3 and S5.4, Supplementary Materials). 

 

Figure 5.8. Farmers’ perceptions of the relevance or usefulness of the digital tools and weather 

forecast information and data shared compared to channels formerly used for dissemination of 

Chapter 5



123 
 

forecast data. “NA” indicates the share of participants who abstained from answering the question 

or dropped out of the experiment. Farmers were asked how useful the tools and information were, 

while extension agents were asked to confirm this usefulness. Various symbols (+, *, **, and ***) 

indicate the significance of the results for the combined “somewhat and highly relevant” category 

at, respectively, p < 0.1, p < 0.05, p < 0.01, and p < 0.001, based on a binomial distribution test. 

 

Figure 5.9. Perception of improvement in farmers’ decision-making, as well as understanding of 

forecast uncertainty and rainfall distribution, as compared to previous seasons. Farmers were asked 

if their decisions and understanding improved, while extension agents were asked if they perceived 

any such improvement. Asterisks (***) indicate the significance of the result for the combined 

“somewhat and highly improved” category at p < 0.001, based on a binomial distribution test. 

5.3.2.4.Outreach to Other Farmers 

The coproduction experiment reached more farmers in Ada East communities beyond those 

directly involved in the experiment. Table 5.3 presents the numbers of farmers with whom 

experiment participants (i.e., both farmers and extension agents) shared data and what they learned. 

In total, farmers indicated having shared their data and knowledge with more than 350 fellow 

farmers, while the extension agents, who were in constant contact with farmers throughout Ada 

East, indicated they reached out to more than 504 farmers. This implies that all participants can 
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spread the knowledge coproduced. It also demonstrates the importance of involving agricultural 

and meteorological extension agents, as they have larger networks and can transmit the coproduced 

knowledge to many farmers not involved in the experiment. 

Table 5.3. Numbers of farmers reached indirectly, via participants in the coproduction experiment 

(both farmers and extension agents). 

 Farmers 
Extension 

Agents 

Number of participants in coproduction experiment 22 6 

Number of farmers with whom forecast information and/or data 

were shared. 
350+ 504+ 

 

5.3.2.5.Monthly Monitoring and Assistance Activities 

Continuous monitoring was carried out during the testing phase to support farmers in their usage 

of the tools and to ensure the quality of the data collected. Table 5.4 lists several adjustments made 

during the process, alongside observations on lessons learned regarding design principles. Primary 

adjustments were to increase the frequency of tool maintenance (e.g., replacing broken rain gauges 

and defective phone batteries), correcting rainfall recording and reporting techniques, and advising 

some farmers on how to work around internet instability. These activities generated a workload for 

scientists of a half-day per week and one full day each month on average. 

We also observed differences between the socio-demographic categories of participants that helped 

us to adjust and target our monitoring and assistance efforts (Table 5.4). For example, older farmers 

had better knowledge of local forecast indicators (see Table S5.6, Supplementary Materials) but 

faced more technical challenges in using the tools compared to younger farmers. Moreover, literate 

farmers tended to have less difficulty in handling the tools. Female and male farmers invested 

similar levels of time and effort in their participation in the coproduction experiment activities. 

As noted, mobile internet stability varied across the district, and this particularly affected data 

collection and interaction of farmers in the most remote communities. Adjustments were made to 
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help them address the issue. For instance, they were advised to try to reconnect on an elevated 

surface or, alternatively, to use a notebook to record rainfall data and local forecast indicators, and 

to call one of the scientists to submit their data. 

Both apps (the weather app and WhatsApp) were essential for data collection and participant 

interaction. However, the double tools generated increased workload for both the farmers and the 

scientists. For instance, farmers had to keep track of two separate tools, which effectively doubled 

the technical challenges some faced. Researchers, for their part, had to manually process the data 

input via the weather app for sharing on WhatsApp. 

Table 5.4. Observations from the monitoring and assistance activities during the testing phase 

(April–July 2019). 

Period 

Monitoring and Technical 

Assistance Provided during the 

Testing Phase 

Observations from the Monitoring and 

Assistance during the Testing Phase 

Monthly/Weekly 

• Weekly coaching and support 

for farmers facing technical 

issues related to the digital tools 

(e.g., smartphone repairs, 

replacement of batteries and 

chargers, work-arounds for 

internet and app problems). 

• Monthly field visits to check 

the state of the rain gauges and 

issues with their set-up, data 

recording, and reporting (e.g., 

two broken gauges were 

replaced and reporting errors 

were corrected, such as 

emphasis on the need to specify 

• In terms of workload, the field 

visits generated about one day of 

work per month for the scientists 

involved. Providing the weekly 

technical support/coaching 

generated about a half-day of work 

per week. Nonetheless, these 

monitoring and assistance activities 

were essential to ensure continuous 

functioning and good use of the 

tools and to safeguard the quality of 

the data collected. 

• Reliability of mobile internet 

service varied across the Ada East 

District, depending on the 
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times that rainfall events began 

and ended). 

• Renewing monthly mobile data 

subscriptions for each farmer. 

geographic location. As a result, 

some farmers struggled to send 

their data and interact with the 

group. 

• The WhatsApp group generated a 

lot of interaction between the 

farmers, extension agents and 

scientists. From 5 April to 17 July 

2019, we counted 736 messages, 

199 pictures (mainly forecast 

graphs), and 287 emojis; see 

illustration in Figure S5.1 and 

Table S5.5, Supplementary 

Materials). 

• Use of the two separate tools for 

data collection and group 

interaction, i.e., the weather app 

and WhatsApp, respectively, 

increased the workload in terms of 

the technical support needed. This 

set-up also meant that manual 

processing was required for both 

the local and scientific forecasts, 

which was an additional burden on 

the scientists. 

• A number of notable differences 

were observed between socio-

demographic categories of farmers 

April 2019 

• At Monitoring Workshop III 

(April 2019), we presented and 

discussed processes for the 

testing phase involving real-

time data collection by farmers 

and interactions with the 

scientists: 

 Together with the farmers, we 

learned and planned how they 

could integrate testing phase 

activities into their daily 

activities (e.g., time and 

frequency of submitting data 

such as on local forecast 

indicators and rainfall). 

 Farmers expressed concerns 

regarding practical issues with 

the tools, which led us to plan 

the monthly and weekly 

monitoring and technical 

assistance activities listed 

above. 

 Farmers could share rainfall 

data via the WhatsApp group 
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and interact that way with the 

participating scientists, 

extension agents, and fellow 

farmers. 

* (see supporting analyses in Table 

S6, Supplementary Materials): 

(a) Differences by age 

The younger farmers generally had 

fewer technical difficulties (difficulty 

ratio of 2.92) in using the tools, 

compared to older farmers (difficulty 

ratio of 5.7). Older farmers 

demonstrated good knowledge and 

awareness of local forecast indicators. 

(b) Differences by literacy level 

The more literate farmers were more 

adept at using the tools (difficulty ratio 

of 3.18) compared to the low-literate 

farmers (difficulty ratio of 5.4) 

(c) Differences by gender 

Although there were fewer female 

farmers (only 4) among the 22 farmer 

participants, female and male farmers 

were equally engaged participants 

(though no female farmers dropped out 

of the experiment), and women and 

men reported proportionally very 

similar levels of technical difficulty 

(difficulty ratios of 4.22 and 4.0 for 

male and female farmers, 

respectively). 

May 2019 

• During Monitoring Workshop 

IV (May 2019), we reflected on 

the use of the coproduction 

tools and introduced the sharing 

of both local forecasts and 

scientific model-based 

forecasts via the WhatsApp 

group: 

 We determined that older 

and low-literacy farmers 

were having more 

difficulties and needed 

more technical assistance. 

We decided to pay more 

attention to them by 

providing more frequent 

coaching during the weekly 

and monthly activities 

listed above. 

 A few farmers had 

unreliable internet coverage 

due to their remote location. 

We advised them to use a 

notebook to document 

rainfall data and, if 
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required, local forecast 

indicators. They could then 

share the data at a later time 

when a more stable internet 

connection was available. 

 Farmers were encouraged 

to interact more on the 

WhatsApp group, as this 

seemed to stimulate greater 

engagement in data 

collection and sharing. 

 

June 2019 

• During Monitoring Workshop 

V (June 2019), we reflected on 

the use of the coproduction 

tools: 

 Difficulties were similar to 

those identified at previous 

monitoring workshops, but 

with fewer technical 

challenges. Thus, we 

maintained the same 

procedures as in May. 

July 2019 
• We maintained the same 

procedures as in June. 

(*) These observations are based on expert (participant) observation during the workshops and 

analysis of technical issue reports. 

5.4.Discussion 
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The objective of this study was to evaluate a coproduction experiment and extract lessons on design 

principles for an ICT-based WCIS that combines local and scientific forecasting knowledge and is 

tailored to the needs of smallholder farmers. This section discusses the evaluation results and draws 

lessons on design criteria. In our evaluation of the experiment, we drew on participants’ 

engagement in the coproduction experiment, the usability and usefulness of the tools, the weather 

forecasts and data coproduced, and improvements in farmer decision-making and understanding of 

rainfall distribution and forecast uncertainty. Our focus was on the design process, as the aim was 

to define critical design criteria/principles for effective ICT-based WCIS. We did not evaluate 

impacts in terms of farming outcomes, like changes in cropping practices or yields. 

5.4.1. Evaluation of the Coproduction Experiment 

The results include the level of engagement (i.e., 76% of farmers with medium and high levels of 

engagement) and the usability of the designed tools that were found to increase over time. In 

addition, most farmers and extension agents expressed appreciation for the relevance of the features 

and functionality of the tools (i.e., the weather app, the WhatsApp group, and the rain gauges) and 

the coproduced information (i.e., weather forecasts and rainfall data). A large share of the 

participants indicated that their understanding of rainfall distribution, forecast uncertainty, and 

farm decisions improved. Moreover, the coproduction experiment reached many farmers beyond 

those directly involved. A next step could be to evaluate the impacts of the coproduction 

experiment, for example, in terms of changes in cropping practices and yields. This was beyond 

the scope of the current experiment, as it would require a longer-term intervention. 

Capacity building proved to be a key factor in the success of the experiment, alongside the 

continuous monitoring and technical support provided throughout the design and testing phases. 

This includes the joint definition and refinement of the app interfaces with farmers during the 

design phase, as well as several adjustments made during the testing phase of the experiment (see 

Table 5.4). The participants’ engagement and interaction allowed the research team to identify and 

address challenges early and ensured the continuity of the experiment activities. Both farmers and 

scientists learned from each other as they defined the features and functionalities of the tools 

together. The scientists followed up by providing the participating farmers individualized coaching 

and technical assistance (see Table 5.4). Despite the intensive interactions between the scientists 

and farmers, a small portion of farmers still dropped out of the experiment. 
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At the start of the intervention, most of the participating farmers had no prior experience with 

mobile internet and smartphones, as they were still using basic mobile phone services, such as text 

alerts and voice messaging. The choice to use smartphones in our experiment meant that greater 

effort would be required to achieve the goals of the coproduction. However, the decision not to 

limit our experiment to the level of technology currently in use, but instead to jump ahead to the 

next level (smartphones) reflects our expectation of the fast development of digital technology in 

sub-Saharan Africa, and especially Ghana, in the near future (Aker, 2011, Aker and Mbiti, 2010, 

Zibi, 2009). ICT services, including internet service providers and telecommunication companies, 

have huge investments planned for the coming years in Ghana (Musters, 2017). The cost of mobile 

devices, including mobile data subscriptions, is also dropping, making them more accessible to 

peri-urban farmers and even to rural ones (Intelligence, 2016, Smith, 2014, Zibi, 2009). Digital 

devices like smartphones with mobile apps have much more power to generate interaction between 

scientists and farmers than short message service (SMS)-based alert services (David-West, 2011). 

In line with our results, many previous studies found that coproduction is an efficient way to reach 

out to and engage smallholder farmers and build trust and user confidence (van der Burgt et al., 

2018, Lemos et al., 2018, Nyadzi, 2020). Consistent with the literature, our results suggest that 

capacity building is essential to the success of coproduction (Rao et al., 2015, Vogel et al., 2017, 

van der Burgt et al., 2018). Capacity building is particularly important for interventions involving 

the testing of an innovative approach (Rao et al., 2015, Gertler et al., 2016). 

Application of our findings could add value to existing climate information systems in Ghana. 

Indeed, today’s information systems in Ghana still apply a traditional top-down approach, referred 

to as “one-directional”. In these first-generation climate information services, researchers create 

and transfer knowledge and/or technology to end-users (e.g., farmers) and assume that farmers will 

access, understand, and adopt the information provided for improved decision-making (Musters, 

2017, Nyadzi et al., 2018). This applies to the forecast information provided by the Ghana 

Meteorological Agency and by private information services such as Esoko and Farmerline 

(Nyamekye et al., 2019, Nyadzi et al., 2018). Our study went beyond this traditional approach. It 

used a holistic or second-generation methodology that acknowledges farmers as active participants 

in the production of knowledge and the codesign of innovative technology (Karpouzoglou et al., 

2016, Nyadzi et al., 2018). This approach additionally promotes processes of intense collaboration 
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between researchers and dedicated groups of farmers and extension agents, to build a strong 

foundation for technology design, weather forecast production, and dissemination of knowledge to 

the wider community.  

The concept of joint, intensive collaboration with farmers for provision of location-specific 

knowledge is not new in West Africa (Kniveton et al., 2015, Tall et al., 2014a). Nonetheless, our 

findings extend existing scholarship (Vaughan et al., 2019, Field, 2014) by providing practical 

evidence that coproduction of climate information services can advance science and policies on 

smallholder agriculture within and outside Ghana. Our experiment showed the codesign of ICT-

based tools, which harness real-time local/traditional weather forecasting knowledge, to be a 

significant step forward, particularly in the development of climate services that integrate 

traditional forecasting systems and scientific model-based forecasts. Availability of such combined 

services can foster acceptance and use of climate information by smallholder farmers (Roncoli et 

al., 2002, Roncoli et al., 2009). This could, in turn, enhance the adaptive capacity and resilience of 

smallholder agriculture in developing countries in the face of climate variability and change 

 Although implementing this approach requires efforts to build a strong collaboration with local 

farmers (especially during the development phase), once codesigned, the information service can 

be scaled up relatively quickly. Another limitation is the need for traditional forecasting knowledge 

to be local-specific, meaning that, while the information service designed may be good for the 

target community, it may not be wholly transferable to other regions within or outside Ghana. 

Our overall results suggest that the use of modern technology in a coproduction process, with 

targeted training, can improve access to and use of weather forecasts by smallholder farmers. 

Currently, such an approach is mainly applicable in peri-urban areas of Ghana, like the Ada East 

District, or in rural areas with basic ICT infrastructure, particularly internet service and electricity. 

However, implementation in other remote rural communities will likely be possible in the near 

future, considering the fast growth of ICTs and internet access in Ghana and West Africa overall 

(Zibi, 2009). 

5.4.2. Design Criteria for Weather and Climate Information Services for 

Smallholders 

Coproduction evaluation and design principles

5



132 
 

Our research demonstrates that digital and rainfall monitoring tools can be codesigned with user-

friendly features (e.g., visualization with symbols, Table 5.5) and tailored to smallholder farmers’ 

needs. It also highlights the importance of appropriate training and monitoring throughout the 

design and testing of information systems for farmers, particularly if target farmers differ in literacy 

levels, ages, and locations (see Figures 5.1 and 5.3). Our coproduction experiment’s use of two 

different apps and multiple data sources proved to be hectic for both scientists and farmers. In the 

future, we recommend combining the functionality of the weather app and WhatsApp in a single 

app that offers users the ability to both record data and interact. An additional improvement would 

be to process the forecasts and data from both local sources and scientific models by algorithms 

integrated into the back-end design of the single app. This would reduce the data processing, 

training, and monitoring workload. Nonetheless, for the purpose of this experiment, and 

considering limitations of time, the current set-up was sufficient for learning design principles for 

an effective WCIS. Additionally, involving young farmers and balancing gender would seem 

important for sustainable knowledge sharing. Particularly, mixing age groups can foster knowledge 

transmission between generations. 

In designing a WCIS, it is important to focus on a smaller but dedicated group of intensive users 

who will form the basis for wider dissemination in their communities. This is especially because 

of the workload and the cost related to tool training, monitoring, and assistance, which require the 

coproduction investments to be optimized to ensure sustainability in future applications. The focus 

can then be on a representative but an optimal sample size of participants (especially farmers who 

are collecting the data, as well as extension agents) and with attention paid to the good use of tools 

and quality of the data (Table 5.5). Coproduction requires investment of sufficient resources to 

allow for targeted technical support to ensure the continued engagement of participants and 

guarantee the quality of the data collected. The coproduced information can then be made publicly 

available in the district. Regarding outreach, the current study found that extension agents had 

bigger networks and were good disseminators of forecast information. Although “extension-to-

farmer” outreach was higher than “farmer-to-farmer” outreach in our case, the latter remains an 

important channel for reaching other farmers in the community. Farmer-to-farmer dissemination 

has the potential to spread agricultural technologies among smallholder farmer communities 

(Kiptot et al., 2006). However, more research is needed to understand and determine the impact 
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and effectiveness of the “farmer-to-farmer” dissemination route for weather and climate 

information. 

The lessons drawn from the coproduction approach used in this experiment are transferable to other 

regions under certain conditions (Table 5.6). Internet availability is an important one, as the real-

time collection of forecast indicators and rainfall data from remote locations requires reliable 

internet coverage. This was one of the reasons why we selected a peri-urban region as our study 

area. Furthermore, the indicators used by farmers to forecast the weather and climate will differ 

depending on the region/district studied and, therefore, need to be adjusted for each. 

Results from the current study advance research on the development and application of WCIS for 

smallholder farmers. Our coproduction experiment also contributes to other ongoing studies and to 

mobile app development for smallholder farmers. It demonstrates how local or traditional 

forecasting knowledge can be harnessed in real time and combined with scientific model-based 

forecasts for Ada East District, Ghana (Gbangou et al., 2020b). Additionally, the study helps to 

examine and understand the motivation and barriers to the engagement of local farmers for the 

same district in a follow-up study (see Reference Sarku et al. (Accepted)). Moreover, the design 

lessons learned from this coproduction experiment, combined with related research outputs, will 

help to further optimize the design of the two-way information systems within a single app, which 

is now under development and provisionally called “FarmerSupport” 

(http://www.waterapps.net/en-us/ghana-updates/farmersupport-mobile-app-now-online/). 

Defining a strategy to sustain the coproduction process was found to be a critical design principle 

(Table 5.6). In this regard, it is important to reflect on WCIS sustainability and inclusiveness. For 

example, together with local authorities, roadmaps that can be adapted to local needs can be 

developed for establishing coproduction processes even in the absence of external research-driven 

projects. In the present study, we sought, with the acquiesce of local stakeholders such as the district 

assembly, extension department, and farmers (EVOCA and Waterapps, 2019), to create a 

sustainable business model. This was another factor that prompted our selection of a target farming 

community in proximity to an urban market outlet. Similar initiatives could involve collaboration 

between farmers and social enterprises. Moreover, local enterprises could elaborate a win–win 

business model around the coproduction process, connecting with partners such as government 

institutions, universities, agricultural insurance companies, and nongovernmental organizations to 
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ensure the sustainability of activities and outputs. However, this is not the only way to sustain the 

coproduction process. Prior research (Chandra et al., 2017, Oxfam, 2015) found that climate-

resilient field schools (CrFSs) provide a fruitful environment for the coproduction of location-

specific knowledge such as weather and climate information for smallholder farmers. CrFSs 

involve multilevel institutional actors (Chandra et al., 2017) that help to cover the costs of the 

coproduction process. However, barriers in terms of mismanagement and financial constraints need 

to be addressed for effective application of the farmer field school strategy (Chandra et al., 2017). 

Table 5.5. Recommended design criteria or principles (development phase) for creating an effective 

weather and climate information system (WCIS) with and for smallholder farmers, combining local 

and scientific-based forecasting knowledge. 

 Design Criteria Recommendations 

(2) Goal of coproduction 

of a weather 

information service 

Defining the goal of the WCIS is important for design tailoring. The 

WCIS designed in our experiment used ICT-based tools and 

engagement with farmers, extension agents, and scientists to collect 

local forecasts and weather indicators (with rainfall data for 

validation), combined with scientific model-based forecasts and 

group interaction. 

(3) User interface of the 

application (front-end 

and back-end design) 

The ICT-based tool should have a simple and clean design with 

emphasis on visualization. Consensus and visual design facilitate 

understanding by low-literacy farmers. Additional voice messages 

can be used to further facilitate farmers’ understanding. The two-

way information sharing system (i.e., both sending and receiving 

data and forecasts) could be integrated within a single application 

that uses algorithms in the back-end design which automatically 

process and display forecasts. 

(4) Capacity building of 

both farmers and 

research scientists 

Training is necessary to learn from farmers and ensure appropriate 

design, good usage of tools, and the quality of the data collected. 

Training can be delivered through workshop sessions with farmers. 
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(5) Monitoring and 

technical assistance 

during the 

development phase 

During the development phase of the information service, 

monitoring and technical assistance are important to ensure 

appropriate use of tools and quality of the local forecast knowledge 

and data, as well as coaching to keep the participants motivated. 

Monitoring and technical assistance also helps in detecting 

problems and making the adjustments needed to solve the technical 

and non-technical issues that arise. 

(6) Sample size of the 

coproduction 

participants 

Sample size is important. At least one farmer should be included 

from each community targeted. This will help achieve a good 

distribution of the dataset across the district or area considered. We 

also learned that availability, knowledge, and engagement are more 

important for the quality of data than having a large number of 

farmers. However, the coproduced information can be shared with 

a larger group of farmers in the district. 

(7) Socio-demographic 

characteristics of the 

coproduction 

participants 

We learned that it is important to include both older and younger 

farmers in the coproduction process and to balance gender as much 

as possible. This facilitates knowledge harnessing, sharing, and 

transfer between generations. It is also important to include 

agricultural and meteorological extension agents in the 

coproduction process, as they are in contact with a large network of 

farmers and, thus, can boost sharing of the results. 

 

Table 5.6. Recommended design criteria or principles (in the scaling-up phase) for creation of an 

effective weather and climate information system (WCIS) with and for smallholder farmers, 

combining local and scientific knowledge. 

 Design Criteria Recommendations 

(1) Trade-off between Costs are involved in the acquisition of tools (e.g., smartphones and 

rain gauges), in providing training sessions, and in monitoring and 
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cost (investment) and 

quality of intervention 

lending assistance to farmers to ensure appropriate usage of tools 

and the quality of data and forecasts. To optimize these 

investments, we recommend intensifying the coproduction 

intervention within a limited but representative group of farmers 

and extension agents (see notes on sample size and socio-

demographic characteristics in Table 5.5). This will help ensure the 

quality of the data and its continuous improvement. The 

coproduced information can be made available and disseminated 

publicly in the targeted district. 

(2) Dissemination of 

weather and 

climate 

information 

This case study found that extension agents played a key role in 

dissemination of weather forecast information, as they were in 

contact with a larger network of farmers. This demonstrates that 

both farmers and extension agents involved in the experiment can 

provide a base for sharing knowledge across the communities of the 

district. 

(3) Transferability of 

the design criteria 

to other areas 

The design principles can be applied to other areas where local or 

traditional forecasting knowledge exists and can be used to boost 

uptake of scientific model-based weather and climate information. 

However, internet coverage is essential for real-time data 

collection. Moreover, location-specific information needs have to 

be identified first. Moreover, local forecast indicators will vary 

from place to place, and need to be identified for each new target 

community. 

(4) Sustainability and 

inclusiveness 

Regarding sustainability and inclusive development, it is important 

to reflect on the way forward with local authorities and to choose 

together an appropriate approach for scaling up. For example, as a 

follow-up to this study, we decided together with district authorities 

to create a business model for development of an app that combines 

the functionalities of the two apps used in this experiment. That app 
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is now under development and provisionally called 

“FarmerSupport” (http://www.waterapps.net/en-us/ghana-

updates/farmersupport-mobile-app-now-online/). 

The coproduction process can be incorporated into the “farmer field 

school system”, which offers a location-specific environment for 

intensive, technically rigorous knowledge exchange (Chandra et 

al., 2017). Farmer field schools are often supported by a multilevel 

institutional platform that includes international, national, and sub-

national actors. Hence, they can provide a setting and resources for 

farmers to coproduce and access weather and climate information 

and related agrometeorological services. 

 

5.5.Conclusions 

This study evaluated an experimental coproduction process for ICT-based weather forecast 

information services developed with and for smallholder farmers in Ada East District, Ghana. It 

also identified several lessons for similar interventions in the future. In particular, our research 

yielded two main insights related to the value of coproduction and its implementation. Firstly, the 

research demonstrated that digital tools (smartphones and apps) and rainfall monitoring tools with 

simple interfaces, designed with and for smallholder farmers, can lead to useful and usable weather 

forecast information services. The tools employed offered a unique opportunity for farmers and 

researchers to collaborate, for real-time collection of local or traditional forecasts and data, and for 

processing and combining local knowledge with scientific model-based forecasts. The Ada East 

case study further demonstrated that coproduction of a WCIS can facilitate farmers’ access to and 

acceptance of weather and climate information and promote better understanding of forecast 

uncertainties, leading to improved farming decisions. However, longer-term changes in yields and 

livelihood assessments are needed to prove the real effectiveness of the coproduced WCIS. Our 

findings suggest that a coproduced information service is more likely to be accepted and used by 

vulnerable smallholder farmers in the study district. 
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Secondly, our study advanced understanding of design principles for a new generation of climate 

information services tailored for smallholder farmers. Coproduction of an ICT-based WCIS was 

found to require intensive collaboration between scientists and a dedicated group of farmers and 

extension agents. Capacity building was needed, alongside continuous monitoring and technical 

support during the design and testing phases. If a WCIS is built on both local and scientific forecast 

knowledge, it has more chance to be accepted, understood, and used by smallholder farmers. 

Integrating WCIS into agricultural policies and decision-making would further enhance the 

adaptive capacity of smallholder farmers in developing countries. These findings will also be of 

interest to the growing research community studying the integration of traditional forecasting 

systems into modern climate information services. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: Figure 

S5.1. Sample photos of the smartphones used by farmers and extension agents; Figure S5.2. 

Statistics on emojis shared in the WhatsApp group; Figure S5.3. Details on the integrated app 

developed under the Waterapps project (based on lessons from the present study), which is 

available on the Google Play store:  

https://play.google.com/store/apps/details?id=com.spacewek.farmersupport ; Table S5.1. List of 

the local forecast indicators for the daily rainfall forecast at Ada East district used in the 

WeatherApp (adapted from Reference Gbangou et al. (2020b)); Table S5.2. Farming decisions that 

the coproduced information helped to support. It gives the percentage of decisions that were more 

of interest by the 28 participants (22 farmers and six extension agents); Table S5.3. Significance 

of the results on the engagement, usability, usefulness, understanding, and decision improvement 

when considering a binomial distribution for the medium and high categories of responses 

(farmers); Table S5.4. Significance of the results on the usefulness, understanding, and decision 

improvement when considering a binomial distribution for the medium and high categories of 

responses (extension agents); Table S5.5. Count of messages, pictures, and emojis exchanged via 

the WhatsApp group; Table S5.6. Analysis of the technical issues reported by age, gender, and 

literacy levels from a total of 92 technical issues recorded during the testing phase. 
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Chapter 6. Synthesis 

This chapter presents a general discussion and main conclusions of the research. Section 6.1 recaps 

the answers to the research questions. Section 6.2  reflects on (i) the methods developed to tailor 

scientific forecasts to smallholder farmers’ needs, (ii) the methods and approaches used to assess 

forecast performance and to combine local and scientific forecasting knowledge, and (iii) design 

features and implementation of an effective ICT-based climate information service tailored for 

smallholder farmers. This is followed, in section 6.3, by a discussion of the strengths and 

limitations of the research. Sections 6.4 and 6.5, respectively, reflect on the scientific and societal 

significance of the research with regard to WCIS development for smallholder agriculture in 

Ghana, and developing countries in general. Section 6.6 draws final conclusions, and makes 

recommendations for future research in the field. 

6.1 Introduction: Research objectives and main findings  

Smallholder agriculture is crucial for the food and income security of farmers in Ghana (Kanu et 

al., 2014). Currently, most smallholders have limited access to weather and climate information to 

support farm decision-making and to help them take appropriate action in the face of weather and 

climate shocks (Shimeles et al., 2018, Jost et al., 2016). The overall aim of the research presented 

in this thesis was to identify ways to improve the quality of weather and climate information for 

smallholder farmers, and to determine how such information could be made more  accessible and 

useful for farmers. To this end, I formulated four research questions. The first two questions 

concerned the tailoring of scientific, model-based forecasts to meet local farmers’ needs. The 

second two questions regarded the integration of local and scientific forecasting systems and design 

principles for an effective ICT-based climate information service tailored for smallholder farmers. 

Each of these research questions was addressed in a separate scientific article, presented in this 

thesis as chapters 2-5. This section recaps the major findings from these chapters focused on 

tailoring scientific forecasts to local farmers’ needs, integrating local and scientific forecasting 

knowledge and design principles for an effective ICT-based climate information service for 

smallholder farmers. Added to this discussion are reflections on the contributions of the findings 

from the different research questions towards the overall objective of the dissertation, which was 
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to analyse the quality, accessibility and usefulness of weather and climate forecast information for 

supporting decision-making by smallholder farmers in Ghana. 

6.1.1 Main findings on tailoring scientific forecasts for local agriculture 

The first question was how and with what results a dynamical model could be used to tailor and 

improve predictions of the onset date of the rainy season (RQ1, Chapter 2). To this end, I proposed 

different definitions of the date of the rainy season onset and assessed the performance of seasonal 

forecast models (ECMWF System 4) in predicting these onset dates. Both definitions were suitable 

for the raw and bias-corrected ECMWF System 4 seasonal forecasts. I then assessed trends in 

observed rainy season onset, variability and prediction performance of the forecast models in 

Ghana with a focus on the coastal delta zone where the pilot station was located. 

Results showed significant variation in season onset dates, particularly in the coastal savanna zone 

and northern Ghana. Nonetheless, the ECMWF System 4 seasonal forecasts were found to have 

considerable potential in categorical predictions (i.e., predicting whether conditions will be above 

or below normal), which were useful in supporting smallholder farmers’ decision-making. The 

high observed variability of rainy season onset is indicative of the challenges faced by smallholder 

farmers in Ghana, and why they cannot rely solely on local forecasting knowledge systems. The 

two onset definitions developed were the ‘isochrone’ and ‘absolute value’ definitions. These were 

found to be, respectively,  non-sensitive and sensitive to model biases. Hence, with appropriate 

season onset date definitions both raw and bias-corrected seasonal forecasts could be adopted to 

make predictions. The accuracy of onset date predictions was generally low across Ghana, though 

forecast performance that varied by lead times, categories (i.e. below-, near-, and above normal) 

and was generally higher for the coastal savanna zone. The Ada East district, which was a coastal 

pilot site for the Waterapps project, was among the areas with the highest variability in season 

onset dates, but was also the area with the highest potential for tailor-made scientific, model-based 

seasonal forecast information to support local farmers. 

The next research question concerned how and with what results dynamical and statistical models 

could be employed to tailor and improve predictions of seasonal rainfall and dry spell length and 

frequency across Ghana, with a focus on the coastal savanna zone (RQ2, Chapter 3). Here, I used 

a dynamical model (ECMWF System 4) and a statistical model (a linear regression model based 
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on the influence of sea surface temperatures (SSTs)) to assess predictions of seasonal rainfall and 

dry spell occurrence using agrometeorological indices at critical stages of crop production in 

Ghana. Before the assessment, I investigated trends and variability of these indices. 

Results showed that at critical stages in crop production, seasonal rainfall and dry spells were 

highly variable in both length and frequency, especially across the coastal savanna zone and 

northern Ghana. This, again, is indicative of the difficulties that local farmers face in predicting 

these key agrometeorological indicators. The accuracy of the predictions using the two scientific 

forecast methods differed across time (lead times), space (location) and categories (below-, near-, 

and above normal). Combining the dynamical model (ECMWF System 4) and the statistical model 

(SSTs-driven) provided better predictions of seasonal rainfall and dry spell occurrence across 

Ghana. This suggests that statistical and dynamical forecasts should be combined when and where 

appropriate to obtain greater accuracy and model-based predictions more tailored for smallholder 

farmers in Ghana. 

The conclusions drawn from chapters 2 and 3 proved applicable to the Waterapps project site, in 

Ada East district, located in the coastal savanna zone of the Volta Delta. Ada is among the districts 

of Ghana with the highest variability in wet season onset, seasonal rainfall and dry spell occurrence. 

Nonetheless, significant potential was found to provide farmers tailor-made scientific, model-based 

seasonal forecast information. Chapter 3 explored the opportunities to integrate scientific and local 

knowledge systems for improved forecast performance in the Ada East district pilot location. 

6.1.2 Main findings on integrating local and scientific forecasting knowledge 

Chapter 4 investigated the forecast indicators used locally, and the accuracy of these and the 

potential for their integration with modern forecasting systems. The aim here was to improve 

weather and climate information for farmers in Ada, Ghana, by combining local forecasting 

knowledge (LFK) with scientific forecasting knowledge (SFK). Towards this objective, I followed 

three steps. First, I investigated and documented LFK, drawing mainly on findings from interviews 

and focus group discussions and data collected in real time using digital tools (smartphone apps). 

In the second step, I developed metrics and assessed the quality of LFK compared to SFK. In the 

last step, I developed four approaches to integrate LFK and SFK. Of these, one was tested in the 

current research, and the three others were detailed for investigation in future studies. 
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Findings from the Ada pilot site suggest three main findings. First, local forecasting knowledge 

draws on a diversity of biophysical indicators and extends from the short-term, current weather to 

seasonal timescales. The local forecast indicators used provided information on the 

agrometeorological indices of key importance to smallholder farmers in Ada. Ghanaian farmers 

used LFK indicators mainly to predict rainfall occurrence, seasonal rainfall, dry spell occurrence 

and onset and cessation dates of the rainy season. Second, the accuracy of a set of LFK indicators 

in predicting one-day rainfall was greater on average than that of the individual LFK indicators. 

Third, combining farmers’ observations on a set of local forecast indicators produced more accurate 

predictions of daily rainfall than the available national scientific forecasts, which covered the larger 

region surrounding Ada. The diversity and prediction accuracy of LFK indicators suggested several 

opportunities for integrating local and modern forecasts in climate information services. 

Improving the quality of forecasts, either by improving and tailoring scientific forecasts or by 

integration of local and scientific forecasting knowledge, would result in information that is much 

more likely to be relevant to end-users (Roncoli, 2006, Coulibaly et al., 2015). The extent to which 

local farmers can access, understand and use the improved forecast information is also important 

(Sultan et al., 2020). This brings us to the fourth research question, regarding design principles for  

ICT-based WCIS coproduction with and for smallholder farmers. 

6.1.3 Main findings on design principles for WCIS integrating local and scientific knowledge 

Chapter 5 investigated the benefits of coproduction of an ICT-based climate information service 

with and for smallholder farmers, and the design principles for an effective WCIS. The aim was to 

experiment with design features, access and use of climate information services by smallholder 

farmers. The experimental coproduction approach engaged farmers, extension agents and 

researchers in a joined-up design, production and tool testing process for weather forecast 

information and data. Expert observations and ex post evaluation were used to understand the 

impact of the coproduction process and derive design criteria for future climate information 

services. 

Results pointed to two main findings on the value and implementation of an ICT-based climate 

information service developed with and for smallholder farmers. First, co-designing a user-friendly 

digital tool (a smartphone app) and producing local and scientific forecasting knowledge with and 
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for farmers facilitated smallholders’ access to tools and information for decision-making and their 

understanding and use of these tools and information. Second, climate information services need 

to be designed in an intensive process of collaboration between researchers and a dedicated group 

of farmers and extension agents to build a basis for information production and dissemination in 

the location of interest. Such collaboration should include a capacity building component, as well 

as monitoring and technical assistance, especially in the development phase. Third, selection of 

coproduction participants is important for appropriate use of the tools for collecting local forecast 

data and for disseminating forecast information within the community. Forecasting experience, 

age, gender and literacy level are among the socio-demographic characteristics that need to be 

considered. 

6.2 Connecting the dots 

This section reflects on the link between the research questions and broader perspectives on the 

results discussed above regarding the quality, accessibility and usefulness of climate information 

services. 

6.2.1 Tailoring modern forecasts for smallholder farmers  

There is growing interest in investigating the complex rainfall regime across the agroecological 

zones of Ghana to build a foundation for climate information service development (Owusu and 

Waylen, 2009, Manzanas et al., 2014a). As yet, however, there is a very limited amount of 

documented evidence on trends, variability and predictions of decision-relevant 

agrometeorological indices (Janicot et al., 2011, Codjoe et al., 2014, Baidu et al., 2017). Evidence 

is especially scarce at the local level. Chapters 2 and 3 examined location-specific methods for 

defining and predicting rainy season onset dates, rainfall amounts and dry spell occurrence. I 

demonstrated that the interannual variability of these agrometeorological indices represented a 

challenge for farmers, particularly in the coastal savanna zone and northern Ghana. Seasonal 

forecasts, both dynamical and statistical, proved to some extent valuable to local farmers. The 

analysis showed that, although the accuracy of categorical agrometeorological forecasts 

(probabilistic forecasts) varied over time and space, they performed better overall than predictions 

based on climatology, particularly throughout the coastal savanna zone. The categorical 

agrometeorological forecast format proved easy to understand for farmers and effective in 
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communicating the uncertainties associated with decision-relevant agrometeorological 

information. 

6.2.2 Integrating local and modern knowledge systems 

Tailoring and improving the quality of scientific, model-based forecasts can foster their value and 

uptake, but the issue of their coarse temporal and spatial scale remains. Indeed, modern forecasts 

have limited location specificity and their usefulness depends on the lead times with which they 

reach farmers. Improving the resolution and accuracy of forecast information could enable 

smallholders to take action to avoid negative impacts of climate shocks (Masinde and Bagula, 2011, 

Ziervogel and Downing, 2004). A practical way to improve modern forecasts is to integrate local, 

traditional forecast knowledge into scientific, model-based forecasts (Tadesse et al., 2015, Plotz et 

al., 2017). Chapter 4 demonstrated that integrating local and modern knowledge systems can 

improve the overall accuracy of forecasts. Unlike modern forecasts, local forecast indicators do not 

have the limitations of coarse resolution and unsuitable release timing. Local indicators are 

collected by observation of biophysical markers in the environment and can be directly translated 

to forecast outcomes whenever such observations are made. Furthermore, the example presented 

in chapter 4, of the integration method called ‘statistical integration’, demonstrated that local and 

scientific knowledge need not be combined into a single integrated forecast, but instead can be 

used side by side, depending on the set of local indicators observed by local farmers. In other words, 

local and scientific forecasts can coexist, but must be used appropriately based on the criteria 

mentioned above. Chapter 4 proposed three additional opportunities whereby the local and 

scientific forecast systems could be integrated, to complement and enrich both. These integration 

opportunities could be explored in future research to improve forecast information at the farm level. 

6.2.3 Coproduction with and for smallholder farmers 

The accessibility and usefulness of climate information services for smallholder farmers rely on 

WCIS design, targeting and implementation (Zongo et al., 2016, Sonwa et al., 2017, Roudier et al., 

2014, Vaughan et al., 2019). The ICT-based climate information platform evaluated in chapter 5 

enabled farmers to gather data on local forecast indicators, which could then be combined with 

outcomes from the modern forecasting systems presented in chapter 4. Assessment of the 
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experiment demonstrated that coproduction fostered interaction between scientists and farmers and 

facilitated local understanding and use of climate information tools.   

Moreover, several design criteria were found to be crucial for effective implementation, 

particularly in the development and scaling up phases. These design principles were found to 

ensure that data quality was maintained and that the forecast information remained accessible, 

understandable, beneficial for end-users. The ICT-based climate information service that was 

developed represents an advance on existing climate information services in Ghana, as it combined 

‘top-down’ and ‘bottom-up’ approaches through a process of knowledge co-creation, to provide 

tailor-made, understandable, accessible and credible information to support smallholder farmers’ 

decision-making. The seasonal agrometeorological forecast information derived in chapters 2 and 

3 could also be included in the ICT-based climate information system presented in chapter 5 

tailored for smallholder farmers. 

6.3 Strengths and limitations of the study 

The current researched used a multi-methodological approach to analyse the design of 

agrometeorological information services based on scientific and/or local forecasting knowledge 

systems. The aim was to identify areas of improvement with regard to the quality, accessibility and 

usefulness of climate information services for smallholders. This section reflects on the strengths 

and limitations of the study, with emphasis on the validity of the data, methods and tools. 

Chapters 2 and 3 assessed the quality of seasonal forecasts, that is, their performance in reproducing 

observed variation in decision-relevant agrometeorological indices at the local level. I verified the 

performance of both dynamical forecasts (ECMWF System 4, Molteni et al. (2011)) and statistical 

forecasts (influence of SSTs) using correlation and other discriminant skill metrics. The quality of 

the reference observations used for forecast verification often presents a challenge. Use of 

independent observational datasets is crucial for robust forecast validation. Forecast verification 

commonly uses the large-scale gridded observations from the WATCH forcing dataset ERA-

Interim (WFDEI) (Vellinga et al., 2013, Manzanas et al., 2014a, Ogutu et al., 2017, Nyadzi et al., 

2019). However, WFDEI and System 4 have similarities that might have influenced forecast 

accuracy, since both are built on the same atmospheric model (the Integrated Forecast System, 

Johnson et al. (2019)). Moreover, due to the complexity of the rainfall regime in Ghana, care is 
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needed in the use of large-scale datasets such as WFDEI, as discrepancies can arise between these 

datasets and station observations (Manzanas et al., 2014a). In addition, information derived from 

comparing seasonal forecasts with large-scale observations may be of little usefulness at the local 

level, as variations on smaller scales may be missed (Wetterhall et al., 2015, Fitzpatrick et al., 2015, 

Gbangou et al., 2018). In the current study, I used independent observations from local stations 

instead of large-scale gridded data as my reference to assess forecast performance. This provided 

a more representative forecast performance assessment. Observations were gathered from 22 

synoptic weather stations with consistent records (see (Owusu and Waylen, 2013, Manzanas et al., 

2014a). 

Two further limitations from chapters 2 and 3 warrant mention. A first and key limitation for 

forecast verification is the current research’s use of the dynamical ECMWF System 4 model, which 

is no longer available. System 4 (Molteni et al., 2011) was an operational and competitive seasonal 

forecast system in the six years, but it was replaced by its successor, System 5, in November 2017 

(Johnson et al., 2019). System 5 offers an upgraded version of the atmospheric and ocean models 

at a finer horizontal resolution (36 km, Johnson et al. (2019) compared to System 4 (80 km, Molteni 

et al. (2011)). It also contains a prognostic sea ice model that did not exist in System 4 (Johnson et 

al., 2019). The resolution enhancement and better representation of ENSO events in System 5 

(Johnson et al., 2019) suggest its better fit for seasonal forecasting compared to System 4. Produced 

by a global leader in forecasting, System 4 was still in use during this research (Weisheimer and 

Palmer, 2014). At the time of my research design, it represented the best observational and forecast 

data available.  

The second limitation relates to the interpolation of System 4 seasonal forecasts at the local station 

level. Though widely accepted and applied in the literature (Manzanas et al., 2014a), interpolating 

large-scale model forecasts to a local station is still a form of averaging and approximation that can 

affect the results. However, this was the best option to derive representative forecast performance 

for the local farm scale, as opposed to using coarse and dependent observations (Wetterhall et al., 

2015, Gbangou et al., 2018). Moreover, in this study, statistical forecasts were developed and used 

for seasonal predictions of the decision-relevant agrometeorological indices (chapter 3). 

Up to now, scientific investigation and application of local forecasting knowledge has been limited 

due to issues of trust and replicability (Huntington, 2000, Pierotti and Wildcat, 2000, Gilchrist et 
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al., 2005). Chapter 4 presented robust tools and methods for collection of local forecast parameters, 

for gauging their quality and for integrating them with scientific forecasts. For example, the citizen 

coproduction experiment served as a vehicle for training, monitoring and technical assistance in 

forecast data collection and use, thus ensuring appropriate use of the ICT tools (smartphone app) 

and rain gauges and maintaining the quality of the collected data. Robust and established 

verification metrics (Gsella et al., 2014, Fekri and Yau, 2016, Singh et al., 2017) were also used to 

assess the performance of the local forecasting indicators. Nevertheless, unlike scientific forecast 

data, no long-term historical datasets could be acquired for local forecasts within the timeframe of 

the current research. Hence, no multi-year analysis could be carried out. Moreover, my assessment 

of local forecast performance was limited to the one-day rainfall forecasts. The tools and techniques 

developed can nonetheless serve for longer-term data collection and local forecast verification. 

Several additional integration approaches were also proposed that would be applicable to both 

short-term (weather) and longer-term (seasonal) forecasts.  

Exploring forecast performance and integrating local and scientific forecasting systems is a key 

starting point for reducing tensions and reconciling local and scientific forecasting knowledge 

(Kniveton et al., 2015). The current study used only scientific forecast evaluation metrics to assess 

the quality of both local and scientific forecasts. This constitutes a logical point of reference for the 

scientific community. However, Balehegn et al. (2019) noted that local people have their own 

forecast verification techniques. Exploration and use of these local forecast evaluation metrics for 

forecast performance assessment is thus recommended as a next step towards full reconciliation of 

both knowledge systems. This step was beyond the scope of the current study. 

The citizen science coproduction experiment provided an opportunity to implement and capture 

the benefits of an ICT-based climate information service combining local and scientific forecasting 

knowledge. The participatory approach allowed researchers, farmers and extension agents to learn 

from each other. The ex post evaluation of the climate information service, presented in chapter 5, 

enabled examination of the real effectiveness of the information service, as opposed to an ex ante 

evaluation which would draw conclusions on effectiveness based on assumptions (Vaughan et al., 

2019; Tall et al., 2018). The coproduction experiment provided evidence of the actual use and 

understanding of forecasts and the associated uncertainties and of the dissemination potential of 

the farmers and extension agents involved. The intensive collaboration process did prove laborious 
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for the researchers. Here it bears mentioning that the local forecasting experiences and indicators 

and the design principles derived for the ICT-based climate information service tailored for 

smallholder farmers, were based on a single case study, in Ada East district, Ghana. Further insights 

might be obtained from direct comparisons of this case with similar experiments in other districts 

within and outside Ghana. To that end, the current study made recommendations regarding the 

transferability of the case study lessons. 

6.4 Scientific contributions 

Smallholder agriculture in developing countries like Ghana is severely affected by climate 

variability and change (Kanu et al., 2014, Barnett et al., 2017). Improved understanding of the 

prediction performance, accessibility and usefulness of agrometeorological forecasts is important 

to advance development of the needed climate information services. This section presents main 

contributions of the current research to the field. 

Model-based climate information services are under construction in many developing countries, 

though they are currently mostly limited to the regional level. They thus provide general 

agrometeorological information with little direct bearing on the local level (Vincent et al., 2018; 

Vaughan et al., 2019). Existing studies on the accuracy of seasonal forecasts have similarly mainly 

been conducted over large areas (Vellinga et al., 2013, Dunning et al., 2016, Ogutu et al., 2017, 

Nyadzi et al., 2018). In this study, I explored the potential for defining and predicting decision-

relevant local agrometeorological indices, considering local data collection, the local cropping 

calendar and the lead time requirements for decision-making by smallholder farmers. I identified 

key agrometeorological forecast information in the study area to be onset dates of the rainy season, 

seasonal rainfall amounts and dry spell occurrence. Advancing methodologies to incorporate these 

indicators into scientific, model-based forecasts could add value to such forecasts for smallholder 

agriculture.  

The impacts of ENSO events are a main source of seasonal climate predictability in much of the 

tropical zone (Kniveton et al., 2015, Nicholson, 2017, Johnson et al., 2019). Their influence on 

interannual variability of rainfall across West Africa is well documented (Zhang et al., 2015, 

Alizadeh-Choobari et al., 2018). However, there is much less understanding of how they affect 

local scale variation in rainfall (Diro et al., 2011, Wetterhall et al., 2015). Development and 
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verification of statistical agrometeorological forecasts based on SST indices provided an empirical 

understanding of how large-scale components of the climate system, such as  ENSO events,  are 

felt at the farm level. To the best of my knowledge, no study has yet investigated, precisely, the 

predictability of dry spell occurrence during critical growing seasons in Ghana using statistical 

forecasts driven by ENSO SSTs indices.  

There is an emerging consensus in the literature regarding the potential of combining local and 

modern forecasting systems to increase forecast accuracy and acceptance (Ingram et al., 2002, 

Kalanda-Joshua et al., 2011, Lebel, 2013, Kniveton et al., 2015, Radeny et al., 2019). However, 

empirical evidence on integration techniques is still lacking. Additionally, existing studies on local 

forecast performance are mostly qualitative rather than quantitative, and methods for integrating 

local and scientific forecasts hardly exist. Hence, opportunities for replicating and comparing local 

and modern forecasts are limited (Gilchrist et al., 2005, Crane et al., 2010, Radeny et al., 2019). 

This study presented approaches and tools to allow the harnessing, quantitative evaluation and 

integration of local and scientific forecasting systems. The improvements in forecast performance 

that resulted from the integration of the two knowledge systems will advance the scientific debate 

on ways to synergize traditional and model-based forecasting systems for improved accuracy and 

usefulness. My research recognizes the contribution local knowledge systems can make to science 

and contributes to theory on how local forecasting knowledge can be integrated into climate 

information services in Ghana and elsewhere.    

Weather and climate variability and change, now and in the future, pose a threat to the adaptive 

capacity of smallholder farmers (IPCC, 2018, 2019). Yet, empirical evidence on the design of 

climate information systems suitable for the most vulnerable farmers in developing countries 

remains limited (Vaughan et al., 2019; Vincent et al., 2018; Nyadzi et al., 2018). This study 

established design principles for local (rather than regional) climate information services that 

integrate traditional and scientific forecast information. The findings presented contribute towards 

the operationalization of climate information services tailored to the local level and integrating 

local forecasting knowledge. No other study, to my knowledge, has explored the real-time (actual) 

benefits and design features of ICT-based local climate information services tailored for 

smallholder farmers in Ghana.  
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In particular, this work has already contributed to other studies and mobile application development 

for climate service coproduction in developing countries. Paparrizos et al. (2020) used the same 

methodological approach to tailor ECMWF-System 5 seasonal climate forecasts for local farming 

in Lower Ganges Delta, Bangladesh. This coproduction set up also helps a follow-up study examine 

and understand the motivation and barriers to smallholder farmers' engagement in the same Ada 

district, Ghana (Sarku et al., Accepted). Moreover, insights from designing principles of ICT-based 

tools supported the development of the FarmerSupport app that incorporates LFK, SFK, and hybrid 

forecasts for smallholder farmers (http://www.waterapps.net/en-us/ghana-updates/farmersupport-

app-traingings-have-started/).  

Overall, this research contributes to the literature on climate information service design. 

Particularly, it advances knowledge on the integration of bottom-up and top-down approaches to 

provide more useful, accessible but also actionable services. 

6.5 Societal contribution 

Demand for WCIS is growing as societies and governments seek means to respond to weather and 

climate shocks (Cane, 2010, Bowyer et al., 2015, Naab et al., 2019). In terms of societal relevance, 

my research makes a number of significant contributions in the field of climate information services 

for vulnerable smallholder farmers in Ghana and elsewhere. 

First, considering that the climate information hitherto available to smallholder farmers was mostly 

limited to traditional knowledge (Antwi-Agyei et al., 2012, Naab et al., 2019), the current work 

provides tailored, model-based agrometeorological information responding to the specific needs of 

farmers in the study area. With improved quality and tailoring to the local situation, model-based 

forecasts can support decision-making by smallholder farmers and contributing to reduce the risk 

of crop failure and yield reduction. For instance, information on early or late onset of the rainy 

season, the probability of below or above average seasonal rainfall and dry spell occurrence, could 

be improved and targeted for smallholders in the coastal savanna zone of Ghana. This information 

can be provided in a format that non-scientists can easily understand, especially if basic training is 

provided. More importantly, categorical information (probabilistic forecasting) aptly expresses 

forecast uncertainties, which is an essential element in farmers’ decision-making regarding 

seasonal farming operations (Patt and Dessai, 2005). Findings from the current study can also 
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promote appropriate and understandable methods of information collection and dissemination 

among water management and national meteorological agencies, within Ghana and elsewhere. 

These will help them deliver more useful seasonal predictions (both statistical and dynamical) for 

smallholder farmers.  

Second, the presented evidence on the added value of combining local and scientific, model-based 

forecasts can foster farmer uptake of WCIS (Ingram et al., 2002, Patt and Gwata, 2002, Kniveton 

et al., 2015, Nyamekye et al., 2019). The integrated forecasting knowledge that was developed in 

this study provided improved spatial resolution of forecasts, which benefited local farm decision-

making. In addition, generation of local forecasts by farmers themselves created a sense of 

ownership and inclusiveness in the knowledge production process, which fostered trust and 

acceptance of the information. 

Third, lessons from the design and implementation of an ICT-based climate information platform 

tailored for smallholder farmers can advise policymakers and practitioners on ways to enhance 

access to and use of weather and climate information. Current channels for climate information 

communication are generally unsuitable for smallholder farmers, as they are too complicated with 

too many intermediaries and little opportunity for feedback (Antwi-Agyei et al., 2014, Jost et al., 

2016, Naab et al., 2019). Promoting the co-design of WCIS with user-friendly modern 

technologies, like the internet and smartphone applications, can facilitate access and interaction 

with farmers. It can also shorten the dissemination route between WCIS producers and end-users. 

Considering the rapid growth of access to digital technology in West Africa, particularly in Ghana, 

use of ICT-based tools will likely be increasingly feasible in the near future. ICT-based tools 

facilitate provision of more useful and timely weather and climate information for the most 

vulnerable farmers.  

The tailor-made ICT-based climate information system examined in this study engaged farmers, 

extension agents and researchers in a process of knowledge coproduction. The system 

acknowledged farmers’ role as citizen scientists with their own unique forecasting expertise, which 

enriched modern forecasts. I demonstrated that both farmers and extension agents can contribute 

to disseminate forecast information with peer farmers in their communities. Inclusion of local 

knowledge in the current study fostered development of a WCIS that was culturally appropriate 

and locally relevant (Kniveton et al., 2015, Radeny et al., 2019). In addition, coproducing local 
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forecasting knowledge with consideration of farmers’ socio-demographic characteristics, such as 

age, literacy level and gender,  strengthened knowledge transmission between generations and 

empowered women to access and use climate information. The findings of this research confirm 

that valuing local forecasting systems increases trust and preserves traditional knowledge of 

biophysical weather and climate indicators (Balehegn et al., 2019). As a wider audience starts to 

acknowledge the potential of local knowledge, more initiatives can be expected that push back 

against policies that directly or indirectly encourage abandonment of local knowledge systems. 

The research outputs presented in this thesis support international and national initiatives for 

climate information service development in developing countries. International initiatives, such as 

the Global Framework on Climate Services (GFCS) and Climate Change, Agriculture and Food 

Security (CCAFS), advocate for development of climate information services in many developing 

countries (Bowyer et al., 2015, Naab et al., 2019). In Ghana, improving agricultural productivity 

is a key goal, as the country aims to achieve upper-middle-income status in the next decade (Barnett 

et al., 2017). In particular, Ghana’s agricultural sector development policy (FASDEP II) focuses 

on development of smallholder farming, with international support from the European Union, the 

US Agency for International Development and Canada (Bowyer et al., 2015). An important and 

common challenge facing these initiatives is provision of useful climate information services for 

adaptive decision-making. Insights from the current study will advance the implementation of this 

agenda. Three key findings of this research warrant particular mention: (i) scientific forecasts need 

to be tailored to smallholder farmers’ needs; (ii) integration of local forecasting knowledge can add 

value to scientific, model-based climate information services; and (iii) a tailor-made ICT-based 

weather and climate information platform can effectively deliver useful and actionable information 

to smallholder farmers while providing a vehicle for feedback. 

6.6 Future outlook 

With further research, scientific forecast information can be increasingly tailored for smallholder 

farmers in developing countries such as Ghana. Chapter 3 demonstrated that statistical predictions 

driven by SSTs were valuable for forecasting seasonal rainfall and dry spell occurrence, 

particularly if combined with dynamical predictions. In chapter 2, I tested only a dynamical model 

(ECMWF System 4) to predict rainy season onset dates. Thus, future research is recommended 

exploring the added value of dynamical statistical forecasts to enhance the performance of rainy 
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season onset date predictions. This is important because statistical forecasts based on SSTs can 

contribute to provide better forecasts with longer lead times, thus contributing to long-term 

planning in agriculture. This is especially the case for SST indices driven by ENSO events, as these 

are highly influential in the tropics (Kniveton et al., 2015, Nicholson, 2017). I additionally used a 

simple linear regression model to assess predictions of seasonal rainfall and dry spell occurrence 

at critical stages of crop production. Future research could test more advanced machine learning 

models to obtain further insights on the performance of statistical forecasts. 

Further research is also recommended to deepen understanding of the potential of local forecast 

systems to contribute to local climate information service development. In chapter 4, I developed 

several integration approaches to synergize local and modern forecasting systems for improved 

accuracy. But only one approach was tested. Future research could explore the other integration 

opportunities, to potentially enrich both local and modern forecasting systems and advance local 

climate information service development. Further evidence on the performance of LFK and 

opportunities to integrate LFK and SFK using long-term datasets could enable stronger claims to 

be made regarding the added value of LFK and its integration with SFK systems. This study’s 

performance assessment of weather forecasts was limited to daily rainfall forecasts. Future work 

could extend this line of inquiry to seasonal forecasts (1–2 months). Investigation of weather 

forecasts up to 14 days is also recommended, to meet the medium-range forecast needs of 

smallholder farmers in Ghana and elsewhere. In this study only science-based techniques were 

used explore the performance of local and scientific forecast systems. However, to fully reconcile 

the two knowledge systems, it is important to explore the traditional methods that local people use 

to evaluate forecasts. 

In Chapter 5, I demonstrated the benefits and implementation criteria of ICT-based climate services 

tailored for smallholder farmers using experimentation during a rainy season. This allowed me to 

analyse farmers’ access to weather and climate information, and explore how they used the 

information in farm decision-making, including their understanding of forecast uncertainty. 

However, to understand the real effectiveness and impacts of the system in terms of changes in 

cropping practices, yield and income, longer-term study is required. Testing such systems at 

different locations within and outside Ghana could provide further comparative insights on the 

benefit and implementation of climate information systems.   
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Combining local and modern forecasts proved to have a huge potential for developing better local 

forecast information. Climate variability and change are not the only causes of the progressive 

abandonment and lack of generational transmission of traditional forecast knowledge (Masinde and 

Bagula, 2011, Gilberthorpe and Hilson, 2016, Balehegn et al., 2019). Current state policies and 

globalization have contributed to the degradation and decline in use of local forecasting knowledge 

in developing countries (Balehegn et al., 2019, Naab et al., 2019). Given the value of this 

knowledge, national, international policymakers are encouraged to adopt policies that stimulate 

development and inclusion of local forecasting knowledge in the climate information services 

currently under development. For example, ICT-based coproduction exercises could be introduced 

in farmer field schools focused on climate resilience (Chandra et al., 2017). Further, business 

models could be developed to preserve and help sustain local knowledge for the benefit of 

smallholder farmers and, indeed, for the scientific community as a whole. 
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Supplementary information  

Supplementary materials contain additional information to the following chapters of the 

PhD thesis: 

- Supplementary Material Chapter 2 (published as Gbangou et al. 2019); 

- Supplementary Material Chapter 3 (published as Gbangou et al. 2020a); 

- Supplementary Material Chapter 4 (published as Gbangou et al. 2020b); 

- Supplementary Material  Chapter 5 (published as Gbangou et al. 2020c). 

The text, figures and tables of the supplementary materials from published articles have been 

adjusted to the PhD thesis format (e.g., the numbering, formatting). This includes editorial changes 

for the consistency of presentation in the PhD thesis. The published versions of the supplementary 

manterials are available online with the published articles. 
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Supplementary Material Chapter 2 

S2.1. Comparing WFDEI with GMet rainfall data 

Figures S2.1.a and S2.1.b present respectively inter-annual variability and annual cycle of rainfall 

for GMet and WFDEI at Ada and Tamale pilot stations. The figure shows that WFDEI does not 

always have a good agreement with local station data. WFDEI seems to reproduce well the patterns 

(relatively good correlation) at Tamale station however, important discrepancies are observed at 

Ada where WFDEI tends to over-estimate the magnitude of rainfall. Using WFDEI as alternative 

to station data for forecast verification may not be suitable in that location. Therefore, bias 

correction with station data was adopted in order to take into account climate processes experienced 

at the local scale.  

 

Figure S2.1: Comparing inter-annual rainfall and annual cycle of rainfall between GMet and 

WFDEI  at Ada 

S2.2. Validation of onset definitions 
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Using different thresholds (30%, 25%,24%,23%, 22%, 21%, and 20%) for the isochrones onset 

dates definition, we found that 25% threshold reproduces onset dates close to the rainfall-

evapotranspiration related definition of Benoit (1977) which is an agronomic ‘false onset’-sensitive 

definition. Benoit (1977) defined the onset date  as the date when accumulated daily rainfall (P) 

has exceeded 50% of accumulated potential evapotranspiration () i.e  ∑ − 0.5 ∗  > 0 

for the remainder of the season, provided that no dry spell longer than 5 days occurs immediately 

after that date. This onset definition was chosen instead of many others (Olaniran, 1984, Stern et 

al., 1981, Marteau et al., 2009, Sivakumar, 1988)4 because it further include potential 

evapotranspiration (Gbangou et al., 2018). The definition has the benefit to ensure that the rain 

compensates water losses by evapotranspiration throughout the growing season. Hence, after the 

onset, the soil will keep enough moisture and protect crops from any plausible long dry spells 

which may occur during the growing season (Gbangou et al., 2018). The agronomic definition used 

in our study is not explicitly sensitive to false onset but was also calibrated with Benoit (1977) 

onset definition. 

The comparison between the (i) isochrone and Benoit (1977) and between the (ii) absolute value-

based agronomic (i.e definition used in the study) and   Benoit (1977)  definitions at Ada show 

relatively good correlations of 0.72 and 0.71 respectively  (Figure S2.2). The different methods 

also give close mean onset dates (i.e 1th , 3nd  and 6th of April for the agronomic-false-onset-

sensitive, agronomic-absolute-value, and isochrone definitions respectively). There are 13/31 and 

9/31 cases where isochrone and absolute-value agronomic onset dates does not match closely with 

 
4   
BENOIT P. 1977. The start of the growing season in Northern Nigeria. Agricultural Meteorology 18: 91-99. 

GBANGOU T, SYLLA MB, JIMOH OD AND OKHIMAMHE AA. 2018. Assessment of projected agro-climatic 

indices over Awun river basin, Nigeria for the late twenty-first century. Climatic Change 151: 445-462. 

MARTEAU R, MORON V AND PHILIPPON N. 2009. Spatial coherence of monsoon onset over Western and 

Central Sahel (1950-2000). Journal of Climate 22: 1313-1324. 

OLANIRAN O. 1984. The start and end of the growing season in the Niger River Basin Development Authority 

Area of Nigeria. Malaysian Journal of Tropical Geography (Malaysia). 

SIVAKUMAR M. 1988. Predicting rainy season potential from the onset of rains in Southern Sahelian and Sudanian 

climatic zones of West Africa. Agricultural and Forest Meteorology 42: 295-305. 

STERN R, DENNETT M AND GARBUTT D. 1981. The start of the rains in West Africa. Journal of Climatology 1: 

59-68. 
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the Benoit false onset sensitive definition. This is not surprising given that  that local/agronomic 

definitions usually show discrepancies among them unlike regional definitions that can predict 

similar onset dates (Fitzpatrick et al 2015). Considering the Benoit (1977) as reference, we can 

identify 4/31 years of false onset starts for the absolute value agronomic definition and 3/31 of false 

onset starts with the isochrones definition. Therefore false onset dates can be assumed to be rare, 

thus the two methods used in the paper are acceptable. 

 

Figure S2.2: Comparison of isochrone, with the rainfall-evapotranspiration onset dates 

(agronomic) definition (Benoit, 1977) for different thresholds at Ada station. 25% threshold 

presented with the black-bold line is the selected for the isochrones method used in the study. 

S2.3. General Cropping Calendar 
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Figure S2.3: Current cropping calendar decisions in Ada East district, Ghana. L= Land preparation, 

P=planting for the cropping cycle, F=fertilizer application and H=harvesting for cropping cycle 

and W=weeding. 

S2.4. Flowchart for bias-correction of seasonal forecasts with GMet observations 

 

Figure S2.4: Flowchart for bias-correction of seasonal forecasts with GMet observations 

 

S2.5. Trend and variability significance in the observed onset dates for all the 14 stations 

Table S2.1: Trend significance for onset dates over the periods P1:1960-1984 and P2: 1985-2010. 

Positive tau values imply increasing trend while negative values imply decreasing trends. 

Agro-eco-
zones 

Stations 

Trend Significance-Isochrone 
(0.05 significance level) 

Trend Significance-Agronomic 
(0.05 significance level) 

P1: 1961-1985 P2: 1986-2010 P1: 1961-1985 P1: 1961-1985 
tau p-value tau p-value tau p-value tau p-value 

COAST 

Accra 0.178 0.22386 
0.026

8 
0.87 0.134 

0.3621
2 

0.003 0.99 

Ada 
-

0.0336 
0.83334 0.135 0.36159 

-
0.0471 

0.7610
4 

0.174 0.23336 

Salpond 0.294 
0.044026

* 
0.023

5 
0.88847 

-
0.0033

7 
0.99 0.0975 0.5125 

         

SOUTH 

Kumassi 0.128 0.38639 0.188 0.19839 0.179 0.2236 
-

0.0473 
0.76087 

Ho 
0.0033

7 
0.99 

0.013
6 

0.94386 0.158 
0.2819

3 

-
0.0067

8 
0.9813 
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Akuse 
-

0.0101 
0.96271 

-
0.067

3 
0.65664 

-
0.0805 

0.5906
8 

0.0033
4 

0.99 

Axim 0.0875 0.55837 
0.087

3 
0.55888 0.061 

0.6904
3 

0.0504 0.74335 

         

TRANSITIO
N 

Kerekrac
hi 

0.245 0.09215 
-

0.053
9 

0.72557 0.131 
0.3744

2 
-

0.0473 
0.76075 

Wenchi 
-

0.1691 
0.251421 

-
0.187 

0.19871 0.0586 
0.7064

7 
-

0.0881 
0.55809 

         

NORTH 

Tamale 0.0641 0.67356 
-

0.409 
0.0046688

* 
0.125 

0.3994
8 

-0.235 0.10669 

Bole 0.0339 0.83295 
-

0.087
3 

0.55888 
-

0.0771 
0.6070

9 
-

0.0771 
0.60709 

Wa 0.0778 0.60643 
-

0.203 
0.16698 0.202 

0.1675
2 

-0.374 
0.01004

* 

Yendi 0.166 0.26092 
-

0.497 
0.000588 

* 
0.162 

0.2715
6 

-0.356 
0.01409

* 

Navrongo 
-

0.0203 
0.90675 

-
0.154 

0.29266 
-

0.0978 
0.5122

7 
0.0033

7 
1 

*shows the trend is significant 

Table S2.2: Change in variability from periods P1: 1961-1985 to P2: 1986-2010 based on F-test 

Agro-

ecological 

Zones 

Stations 
Variability Significance from  

P1 to P2 (Isochrone) 

Variability Significance  

from P1 to P2 (Agronomic) 

  F p-value F p-value 

COAST Accra 0.77136 0.2649 1.1502 0.3672 

 Ada 0.51591 0.05589* 0.43536 0.02339** 

 Salpond 0.62965 0.1321 0.58178 0.0959* 

      

SOUTH Kumassi 1.5194 0.3457 1.5243 0.1543 

 Ho 0.806 0.3007 1.454 0.1828 

 Akuse 1.178 0.1561 1.7159 0.0966* 

 Axim 0.53351 0.06541* 0.7154 0.209 

      

TRANSITION Kerekrachi 0.37327 0.009552** 0.35384 0.00684** 

 Wenchi 0.58106 0.0954* 0.69973 0.194 

      

NORTH Tamale 1.4028 0.2065 1.1815 0.3431 

 Bole 1.8924 0.06257* 1.3846 0.2156 

Supplemental materials



173 
 

 Wa 0.58439 0.09773* 0.68514 0.1804 

 Yendi 0.46427 0.03302** 0.54302 0.07091* 

 Navrongo 0.89553 0.3946 1.7053 0.09917* 

(*) and (**) indicate significant increasing variability at p < 0.10 and p < 0.05 respectively, F<1 

and F> 1 indicate increasing and decreasing variability respectively. 

Table S2.3: Testing homogeneity of variance between P1: 1961-1985 and P2: 1986-2010 using 

Fligner-Killeen non-parametric test 

Agro-
ecological 

Zones 
Stations 

Variability Significance 
from P1 to P2 (Isochrone) 

Variability Significance 
from P1 to P2 
(Agronomic) 

  p-value p-value 

COAST Accra 0.1027 0.7116 

 Ada 0.1225 0.009211** 

 Saltpond 0.02658** 0.2808 

    

SOUTH Kumassi 0.9754 0.3714 

 Ho 0.7366 0.7466 

 Akuse 0.8962 0.4002 

 Axim 0.1634 0.1425 

    

TRANSITION Kerekrachi 0.01233** 0.009435** 

 Wenchi 0.4087 0.4281 

    

NORTH Tamale 0.8378 0.7934 

 Bole 0.7288 0.9445 

 Wa 0.07719* 0.3305 

 Yendi 0.1758 0.02999** 

 Navrongo 0.5251 0.09016* 

(*) and (**) indicate significant increasing variability at p < 0.10 and p < 0.05 respectively 

S2.6. Resampling of interannual variability for the ensemble members 
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Figure 2.5: Interannual variability of onset dates at Ada for each of the 15 ensemble members 

across the hindcast years (1981-2010). The isochrones and agronomic methods are presented for 

leadtime 0,1, and 2. 
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Figure S2.6 : Interannual variability of onset dates at Tamale for each of the 15 ensemble members 

across the hindcast years (1981-2010). The isochrones and agronomic methods are presented for 

leadtime 0,1, and 2. 

S2.7. Significance test for the skill scores for Ada and Tamale 

S
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Table S2.4: P-values for the skill score significance at 95% confidence level (after verification of 

normality) 

STATIONS ADA TAMALE 

Method Categories Lead0 Lead1 Lead2 Lead0 Lead1 Lead2 

isochrones 

Early 0.03441* 0.8827 0.5123 0.03786* 0.2744 0.679 

Normal 0.2073 0.5174 0.4375 0.3839 0.3255 0.5787 

Late 0.0001616* 0.07033 0.1075 0.02842* 0.03145* 0.2259 

agronomic 

Early 0.2172 0.2573 0.1484 0.2744 0.3445 0.7073 

Normal 0.8504 0.5 0.1484 0.3255 0.3633 0.5338 

Late 0.04391* 0.268 0.07337 0.03145* 0.2775 0.5531 

*Indicates significant skill scores 

 

Supplemental Material Chapter 3 

S3.1. Comparing local observations with large-scale data at Ada and Tamale sample stations 
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Figure S3.1: Comparing inter-annual rainfall and annual cycle of rainfall between GMet and 

WFDEI  at Ada (Gbangou et al. 2019) 

S3.2. Frequency Adaptation Verification for the bias-correction 

In order to check the need for frequency adaptation correction we compared the frequency in dry 

days in the model and observations. We defined precipitation <1 mm as dry day for both models 

and observations (see Polade et al., 2014)5 and found that the number of dry days in the models for 

the seasons considered (MAM/AMJ) was not larger than in observations (see Table S3.1). We 

therefore concluded that the correction for the frequency adaptation was not needed. This is, 

especially, because these seasons represent the beginning of the rainy season in Ghana and 

therefore have a lot of observed dry days. 

Table S3.1: Checking the need for Frequency adaptation correction 

 
5 Polade, S.D., Pierce, D.W., Cayan, D.R., Gershunov, A. and Dettinger, M.D., 2014. The key role of dry days in 
changing regional climate and precipitation regimes. Scientific reports, 4, p.4364. 
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Stations 
Number/frequency of dry 

days in GMet Observations 

Number of dry days in System 4 

simulations (Largest number among the 

15 members and across the 3 Lead-

times) 

Ada 2548 1133 

Accra 2772 1193 

Saltpond 2664 1288 

Axim 2011 743 

Akuse 2694 918 

Ho 2483 1184 

Kumassi 2042 1056 

Wenchi 2125 995 

Ketekrachi 2596 1005 

Bole 2055 1308 

Tamale 2558 1550 

Yendi 2086 1519 

Navrongo 2129 1815 

Wa 2239 1390 

 

S3.2. Bias-correction Flowchart  
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Figure S3.2: Flowchart for bias-correction of seasonal forecasts with GMet observations (Gbangou 

et al. 2019) 

S3.3. Generalized skill score (Ens2AFC) for DSF and Seasonal rainfall 

 

Figure S3.4 : Map plot for the generalized discriminant score (Ens2AFC) between GMet and 

System 4 forecasts for the dry spell frequency (DSF) and seasonal rainfall. Lead0, 1 and 2 represent 

initialisation in February (March), January (February), and December (January) lagged-months 

considered for MAM (AMJ) seasons, respectively. (+) indicates Ens2AFC > 0.5 (i.e. forecast better 

than random guessing). The overall Ens2AFC scores ranges from 0.37 to 0.66. 

S3.4. Summary of the binomial distribution test for Ens2AFC 

Table S3.2: Binomial significance test results for the generalized skill score of the agromet indices. 

(*) and (**) indicate significant leadtime at 90% and 95% confidence level respectively. 
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Agrometeorolog

ical Indices 
Leadtime 

Number of 

stations with 

Ens2AFC>0.5 

Total number 

of stations 
p-value 

MDSL Lead 0 12 14 0.000916 ** 

 Lead 1 8 14 0.211975 

 Lead 2 7 14 0.395264 

DSF Lead 0 7 14 0.395264 

 Lead 1 7 14 0.395264 

 Lead 2 3 14 0.971313 

Seasonal 

Rainfall 
Lead 0 9 14 0.089783* 

 Lead 1 9 14 0.089783* 

 Lead 2 12 14 0.000916** 

 

S3.5. ROCSS for DSF and Seasonal rainfall 
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Figure S3.5: ROCSS between GMet and the dynamical model System 4 forecasts for the maximum 

dry spell frequency (DSF) and for the below normal, near normal, and above normal categories. 

Lead0, 1 and 2 represent initialisation in February (March), January (February), and December 

(January) lagged-months considered for MAM (AMJ) seasons, respectively. (*) indicates the 

correlation significance at p < 0.10. The overall positive ROCSS ranges from 0 to 0.58. 
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Figure S3.6: ROCSS between GMet and the dynamical model System 4 forecasts for the maximum 

dry spell frequency (DSF) and for the below normal, near normal, and above normal categories. 

Lead0, 1 and 2 represent initialisation in February (March), January (February), and December 

(January) lagged-months considered for MAM (AMJ) seasons respectively. (*) indicates the 

correlation significance at p < 0.10. The overall positive ROCSS ranges from 0 to 0.58. 

S3.6. Reliability diagram results for two sample locations  
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Figure S3.7: Reliability diagrams with consistency bars for the maximum dry spell length (MDSL), 

Dry spell frequency (DSF) and Seasonal rainfall at Ada and Tamale for Leadtime 0, 1 and 2. 
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Figure S3.8: Interpretation of the reliability diagram 

S3.7. Correlation between the GMet  and the statistical model driven by Nino3.4 SST for 

SON (OND) lagged-months  
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Figure S3.9: Correlation between GMet and the statistical model forecasts driven Nino3.4 SSTs 

for the maximum dry spell length (MDSL), dry spell frequency (DSF) and seasonal rainfall. Lead3, 

4 and 5 represent the relation between SSTs for November (December), October (November), and 

September(October) and agrometeorological indices considered for MAM (AMJ) seasons 

respectively. (*) indicates significance at p < 0.10. 
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S3.8. Correlation between the GMet  and the statistical model driven by TSA-SST for  lead-

months and for MAM(AMJ) seasons 

 

Figure S3.10: Correlation between GMet and the statistical model forecasts driven TSA-SST 

(SM_TSA) for the maximum dry spell length (MDSL), dry spell frequency (DSF) and seasonal 
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rainfall. Lead0, 1 and 2 represent the relation between SSTs for February (March), 

January(February), and December(January) and agrometeorological indices considered for MAM 

(AMJ) seasons respectively. (*) indicates significance at p < 0.10. The overall correlations 

significant coefficients range from 0.30 to 0.43. 

 

S3.9. Comparison between the dynamical model and statistical model driven by SAT-SST 
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Figure S3.11: Comparison of the predictive skill between the dynamical model System 4 (i.e. DM) 

and statistical model driven by SAT (i.e. SM) in terms difference in correlation relationship with 

GMet observed agro-meteorological indices. Lead 0, 1 and 2 represent the relation between SSTs 

for February (March), January(February), and December(January) and agrometeorological indices 
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considered for MAM (AMJ) seasons, respectively. “Corr.”  and “sig.”  mean respectively 

correlation and significant. 

Supplemental Material Chapter 4 

S4.1. Example of rain gauge used with local farmers to measure rainfall from 5th April to 

17th July  in order to verify/evaluate the skills of local forecasting knowledge indicators 

collected 

  

Figure S4.1: Example of rain gauged used by a farmer to measure rainfall occurrence during the 

data collection period. Daily rainfall is recorded at 9 AM. Rainfall occurrence is defined as rainfall 

record more than 1 mm and is based on the average rainfall collected from all stations/communities. 

S4.2. Notes on the intuitive integration between local and scientific forecasting knowledge 

Practical example on the judgmental/intuitive integration: Field observations with expert GMet 

meteorological officers shows that satellite imagery such the Multi-Sensor Precipitation  Estimate 

S
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Real-Time imagery (MPE, EUMETSAT) can help predict the speed and direction of a storm 

coming from remote places (e.g. Nigeria and Benin) and moving towards Ada (see Supplementary 

4.2, Figure S4.2). This information is usually not perceived by farmers from their local area (i.e. 

Ada). This prevents local farmers from making longer term forecast based on clouds observations. 

In the meantime, local forecasting knowledge observation on the presence of dew by farmers, from 

their position, can help inform meteorologists that coastal area is likely to be subjected to 

atmospheric stability (i.e. high pressure) that can result in a scattering of the incoming storm. Thus, 

meteorologists may be aware of the uncertainty related to the incoming considering LFK provided 

by farmers. 
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Figure S4.2: Multi-sensor estimation of a storm from EUMETSAT moving towards Ada East 

District that was not observed by local farmers on 12th May 2019. 

Supplemental Material Chapter 5  

S5.1. Summary of local forecast indicators for daily rainfall forecast in the WeatherApp 

(Gbangou et al. (2020b)) 

S

Supplemental materials



192 
 

Table S5.1: List of the local rainfall forecasting knowledge indicators for the weather timescale in 

Ada East district used in the WeatherApp (adapted from Gbangou et al. 2020b) 

Indicators name Indicator’ signal used for daily rainfall prediction 

Wind 

When strong winds blow from the sea (usually from West to East 
direction) 
When the wind is blowing from the sea carrying dust (West-East 
direction) with high intensity of the sun 

Halo (around the 
Sun) 

If at sunset there is a red circle around the sun 

Sun 
If high intensity of sunshine is observed 
If high intensity of sunshine and dust-wind blowing (from West to East) 
is observed 

Bird (Torle, Ploceus 
cucullatus) 

Make a lot of sounds 

Frog When frogs start croaking a lot 
Pig When pigs catch the grass and turning around it 

Moon (distribution) 
 
  

When the moon shape is curved such that the shadow is on the left side 

When the moon shape is curved such that the shadow is on the right side 
When the moon shape is curved such that the shadow is on the top side 

Worm (Abotele) Spread all over the grass after a previous rain 
Scorpion When big black scorpions appear frequently on the farm 
Clouds A thick cloud appears at the eastern side of the sea 
Ants Carry their food or eggs to their holes 
Dew If from mid-night to the following morning there is a lot of dews falling 

 

S5.2. Farming decisions that were made using the forecasts and data 

Table S5.2. Farming decisions that the co-produced experiment information has helped to support. 

It gives the percentage of decisions that were more of interest by the 28 participants (22 Farmers 

and 6 extension agents). 

 
Prepare 
land 

Amount 
of water to 
allocate 

Seeding/
transplan
t 

Fertilizing 
Pesticide 
applicati
on 

Labor/we
eding 

Othe
rs 

Rainfall 
monitoring data 

64% 29% 68% 64% 50% 61% 50% 

Daily forecasts 
from farmers 

50% 25% 57% 50% 46% 46% 50% 

Daily forecasts 
from scientific 

57% 29% 61% 57% 46 % 46% 50% 
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models 
(meteoblue) 

 

Table S5.3. Significance of the results on the engagement, usability, usefulness, understanding and 

decisions improvement when considering a binomial distribution for the medium and high 

categories of responses. (for farmers) 

Eval
uatio
n 
metri
cs 

Digital 
items or 
tools 

Category  
Level 

Functi
onality 

Numb
er of 
succe
ss 

Total 
numb
er of 
farme
rs 

Prob
abilit
y  

Succ
ess 
Probi
lity 

p-
value 

Sign 
0.05 
(*); 
0.01 
(**); 
0.001 
(***) 

Enga
geme
nt  

  Medium and 
High 

 
15 22 0.5 0.97

3761 
0.0262
39 

* 

Low 
 

7 22 0.5 0.06
69 

0.9331 
 

Usab
ility 
 
 
 
  

WeatherA
pp (After 
experime
nt)  

Somehow and 
Very easy 

Manup
ilation  

16 22 0.5 0.99
155 

0.0084
5 

** 

Not easy and 
NA 

6 22 0.5 0.02
6239 

0.9737
61 

 

WhatsAp
p (After 
experime
nt)  

Somehow and 
Very easy 

Graphs  16 22 0.5 0.99
155 

0.0084
5 

** 

Not easy and 
NA 

6 22 0.5 0.02
6239 

0.9737
61 

 

Rain 
gauges 
(After 
experime
nt)  

Somehow and 
Very easy 

Reporti
ng  

15 22 0.5 0.97
3761 

0.0262
39 

* 

Not easy and 
NA 

7 22 0.5 0.06
69 

0.9331 
 

Usef
ulnes
s/Rel
even
ce 
 
 
 
 
 
 
 
 

Tools 
 
 
 
 
 
 
 
 
  

Somehow and 
Very 
Relevant 

Interne
t 

14 22 0.5 0.93
31 

0.0669 + 

Not Relevant 
and NA 

8 22 0.5 0.14
3139 

0.8568
61 

 

Somehow and 
Very 
Relevant 

Rain 
gauge  

18 22 0.5 0.99
9572 

0.0004
28 

*** 

Not Relevant 
and NA 

5 22 0.5 0.00
845 

0.9915
5 

 

Somehow and 
Very 
Relevant 

Smartp
hone  

17 22 0.5 0.99
7828 

0.0021
72 

** 

S
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Not Relevant 
and NA 

6 22 0.5 0.02
6239 

0.9737
61 

 

Somehow and 
Very 
Relevant 

Weath
erApp  

18 22 0.5 0.99
9572 

0.0004
28 

*** 

Not Relevant 
and NA 

5 22 0.5 0.00
845 

0.9915
5 

 

Somehow and 
Very 
Relevant 

Whats
App  

16 22 0.5 0.99
155 

0.0084
5 

** 

Not Relevant 
and NA 

7 22 0.5 0.06
69 

0.9331 
 

        

Informati
on and 
data co-
produced 
 
 
 
  

Somehow and 
Very 
Relevant 

local 
forecas
t  

18 22 0.5 0.99
9572 

0.0004
28 

*** 

Not Relevant 
and NA 

5 22 0.5 0.00
845 

0.9915
5 

 

Somehow and 
Very 
Relevant 

rainfall 
data  

18 22 0.5 0.99
9572 

0.0004
28 

*** 

Not Relevant 
and NA 

5 22 0.5 0.00
845 

0.9915
5 

 

Somehow and 
Very easy 

Scienti
fic 
forecas
t  

18 22 0.5 0.99
9572 

0.0004
28 

*** 

Not relevant 
and NA 

5 22 0.5 0.00
845 

0.9915
5 

 

Unde
rstan
ding 
 
 
 
  

Forecast 
uncertaint
y  

Somehow and 
highly 
improved 

 
18 22 0.5 0.99

9572 
0.0004
28 

*** 

Not improve 
and NA 

 
5 22 0.5 0.00

845 
0.9915
5 

 

Rainfall 
distributio
n  

Somehow and 
highly 
improved 

 
18 22 0.5 0.99

9572 
0.0004
28 

*** 

Not improve 
and NA 

 
5 22 0.5 0.00

845 
0.9915
5 

 

Decisions  Somehow and 
highly 
improved 

 
18 22 0.5 0.99

9572 
0.0004
28 

*** 

Not improve 
and NA 

 
5 22 0.5 0.00

845 
0.9915
5 
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Table S5.4. Significance of the results on the usefulness, understanding and decisions improvement 

when considering a binomial distribution for the medium and high categories of responses (for 

extension agents). 

Eval
uatio
n 
metri
cs 

Digital 
items or 
tools 

Category  
Level 

Functi
onality 

Numb
er of 
succe
ss 

Total 
numb
er of 
farme
rs 

Prob
abilit
y  

Succ
ess 
Probi
lity 

p-
value 

Sign 
0.05 
(*); 
0.01 
(**); 
0.001 
(***) 

Usef
ulnes
s/Rel
evan
ce 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Tools 
 
 
 
 
 
 
 
 
  

Somehow and 
Very 
Relevant 

Interne
t 

3 6 0.5 0.65
625 

0.3437
5 

 

Not Relevant 
and NA 

3 6 0.5 0.65
625 

0.3437
5 

 

Somehow and 
Very 
Relevant 

Rain 
gauge  

4 6 0.5 0.89
0625 

0.1093
75 

+ 

Not Relevant 
and NA 

2 6 0.5 0.34
375 

0.6562
5 

 

Somehow and 
Very 
Relevant 

Smartp
hone  

6 6 0.5 1 0 *** 

Not Relevant 
and NA 

0 6 0.5 0.01
5625 

0.9843
75 

 

Somehow and 
Very 
Relevant 

Weath
erApp  

6 6 0.5 1 0 *** 

Not Relevant 
and NA 

0 6 0.5 0.01
5625 

0.9843
75 

 

Somehow and 
Very 
Relevant 

Whats
App  

6 6 0.5 1 0 *** 

Not Relevant 
and NA 

0 6 0.5 0.01
5625 

0.9843
75 

 

        

Informati
on and 
data co-
produced 
 
 
 
  

Somehow and 
Very 
Relevant 

local 
forecas
t  

6 6 0.5 1 0 *** 

Not Relevant 
and NA 

0 6 0.5 0.01
5625 

0.9843
75 

 

Somehow and 
Very 
Relevant 

rainfall 
data  

6 6 0.5 1 0 *** 
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Not Relevant 
and NA 

0 6 0.5 0.01
5625 

0.9843
75 

 

Somehow and 
Very easy 

Scienti
fic 
forecas
t  

6 6 0.5 1 0 *** 

Not relevant 
and NA 

0 6 0.5 0.01
5625 

0.9843
75 

 

Unde
rstan
ding 
 
 
 
  

Forecast 
uncertaint
y  

Somehow and 
highly 
improved 

 
6 6 0.5 1 0 *** 

Not improve 
and NA 

 
0 6 0.5 0.01

5625 
0.9843
75 

 

Rainfall 
distributio
n  

Somehow and 
highly 
improved 

 
6 6 0.5 1 0 *** 

Not improve 
and NA 

 
0 6 0.5 0.01

5625 
0.9843
75 

 

Decisions  Somehow and 
highly 
improved 

 
6 6 0.5 1 0 *** 

Not improve 
and NA 

 
0 6 0.5 0.01

5625 
0.9843
75 

 

 

S5.3. Statistics on messages received via the WhatsApp group 
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Figure 5.1. Sample photos of the smartphones used by farmers and extension agents. 

Table S5.5. Count of messages, pictures and emojis exchanged via the WhatsApp group. 

Months Messages Pictures/Graphs (forecasts) Emojis exchanges 

April 164 33 92 

May 324 70 103 

June 154 61 62 

July 93 35 30 

Total (5th April- 17th July 2019) 736 199 287 

 

 

Figure S5.2. Statistics on emojis shared in the WhatsApp group. 

S5.4. Technical reports on issues by socio-demographic characteristics (age, gender and 

literacy) 

Table S5.6 Analysis of the technical issues reported by age, gender and literacy level from a total 

of 92 technical issues recorded during the testing phase. 

 Age  Gender  Edu  

 
Young 
(<50) 

elder 
(>50

) 
Ma
le 

Fem
ale 

Primary 
school and 

below 

Secondary 
School and 

above 
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Number 14 8 18 4 5 17 
Technical issues report 

(smartphone use, internet 
handling) 23 28 45 12 35 17 

Ratio 1.64 3.50 
2.5
0 3.00 6.93 1.02 

 

S5.5. FarmerSupport mobile APP developed based on insight from this study 

  

FarmerSupport APP: Local forecast 

indicators collection by farmer in the study 

areas used for rainfall forecasting. 

FarmerSupport APP: Local Forecast tab. 

This is the result of combining the local 

indicator used by farmers. The use of the pie-

diagram format, depicting probabilities, has 

proven to be understandable for Ada farmers. 
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FarmerSupport APP: Scientific Forecast 

tab, based on Meteoblue forecasts. 

FarmerSupport APP: Hybrid Forecast tab. 

Putting together the Meteoblue forecasts with 

the farmer’s forecast. 

 

Figure 5.3. Details on the integrated APP  developed under the Waterapps project (based on 

lessons from the present study) and which is available on google play store 

(https://play.google.com/store/apps/details?id=com.spacewek.farmersupport). 
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Summary 

Smallholder farmers represent the backbone of Ghana’s agricultural production. However, they are 

the most disadvantaged population group as they are mostly involved in traditional and rainfed 

agriculture characterized by low productivity. The high dependence on rainfall and limited access 

to reliable climate services (and other agricultural technologies and inputs) render smallholders 

more vulnerable to current and future weather and climate shocks. Providing accessible and reliable 

weather and climate information is crucial for smallholder farmers to increase their adaptive 

capacity in the face of climate variability and change. Yet, most smallholder farmers rely only on 

traditional or local forecasts to make short and long-term decisions for farm and water 

management. Effective agrometeorological forecast information service can improve farmers’ 

decision-making about selecting crop types/varieties, planting and harvesting dates, fertilizer 

applications, water allocation optimization, and preparation for extreme events. 

Therefore, this PhD thesis explored ways to improve the quality, access to and use of weather and 

climate information by smallholder farmers in Ghana. To this end, I formulated four research 

questions.  

The first two research questions focus on the tailoring of scientific, model-based forecasts to meet 

local farmers’ needs. The first question is how and with what results can a dynamical model be 

used to tailor and improve predictions of the onset of the rainy season (RQ1, Chapter 2)? 

The second research question is how and with what results can dynamical and statistical models 

be used to tailor and improve predictions of dry spell occurrence and seasonal rainfall  (RQ2, 

Chapter 3)? 

The third research question focused on the integration of local and scientific forecasting systems. 

Thus, our third research question asks what are local forecast indicators, their accuracy and 

integration opportunities between local and modern forecasting systems (RQ3, Chapter 4)? 

The final research question focused on principles for designing ICT-based weather and climate 

services tailored for smallholder farmers: What are the benefits and design principles of ICT-based 

climate service coproduction with and for smallholder farmers (RQ4, Chapter 5)? 
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A multimethodological approach was used for data collection and analyses to address the 

objectives and research questions. Chapters 2 and 3 focus on tailoring scientific, model-based 

forecasts to meet local farmers’ needs. I started this research by proposing two different definitions 

of local onset dates of the rainy season and assessed the performance of seasonal forecast models 

(ECMWF System 4) in predicting these onset dates (chapter 2). Both definitions were suitable for 

the raw and bias-corrected ECMWF System 4 seasonal forecasts. I then assessed trends in observed 

rainy season onset, variability and prediction performance of the forecast models in Ghana with a 

focus on the coastal delta zone where the pilot station was located. I found that onset dates vary 

significantly locally, particularly over the coastal savanna and northern Ghana, which pose a 

challenge for local farmers to foresee the start of the rainy season only based on local knowledge. 

ECMWF-System 4 seasonal climate forecasts exhibit significant skills that vary by location, lead-

time, and categories but more present in the coastal savanna zone. I conclude that there is a potential 

to provide tailor-made scientific, model-based seasonal forecast information to support local 

farmers. 

Next, in chapter 3, I analyzed the trends, variability, and predictability of seasonal rainfall, dry spell 

length and frequency at critical stages of crop production in Ghana using both dynamical (i.e. 

ECMWF-System 4) and statistical forecasts (i.e. influence of sea surface temperature (SSTs)). 

Results show that these agrometeorological indicators are also highly variable, especially over the 

coastal and northern Ghana. Again, this indicates the difficulties that local farmers face in 

predicting these decision-relevant agrometeorological indicators. Skillful (significant) forecasts 

also depend on the location, lead-time and categories but are more concentrated in the coastal 

savanna area. Using the dynamical and statistical forecasts (together) helps to synergize the 

decision-relevant agrometeorological indicators' predictability to address the occurring local 

climate variability. 

Chapter 4 focuses on integrating local and scientific forecasting systems. I explore the potential for 

improving local weather and climate information by integrating local forecasting knowledge (LFK) 

and scientific forecasting knowledge (SFK) for farmers in Ada, Ghana. To achieve this, I 

documented local forecasting knowledge (LFK) using qualitative methods (interviews and focus 

group discussions) and collected LFK-indicators in real-time using a citizen experiment involving 

ICT-based digital tools (apps). I developed ways to quantify the skills and integrate LFK and SFK. 
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There, I found that combining a specific set of local forecast indicators can result in higher local 

forecasts' performance. Notably, to increment one-day rainfall forecast, local and scientific 

forecasts can be used side-by-side but alternated depending on the set of local forecast indicators 

observed by farmers. The diversity of local forecast indicators also offers the potential to develop 

other integration approaches between local and modern forecasting systems to improve and enrich 

each system. 

Chapter 5 focuses on the benefits and design principles of ICT-based climate services tailored for 

smallholder farmers. I analyzed outputs from the citizen science experiment involving farmers, 

extension agents, and scientists to design and test ICT-based climate services that include local and 

scientific forecasts. I found that the joined-up design of user-friendly digital tools (apps) and 

production of local and scientific forecasting knowledge with and for farmers facilitated 

smallholders’ access to tools and information for decision-making and their understanding and use 

of these tools and information. Principles for designing such ICT-based climate services require an 

intensive collaboration of researchers with a dedicated and targeted group of farmers and extension 

agents to build a basis for weather and climate information production and dissemination in the 

area of interest. This collaboration includes capacity building, monitoring and technical assistance, 

especially during the development phase. Forecasting experience, age, gender and literacy level 

are also among the socio-demographic characteristics that need to be considered in the design. 

Last, in Chapter 6, I reflected on the overall research and derived implications for Ghana (and 

elsewhere)'s climate services development. Firstly, this thesis demonstrated that uncertainties in 

predicting locally decision-relevant agrometeorological indicators are a real challenge for farmers, 

especially over the coastal savanna and northern Ghana. I showed that the use of large-scale 

scientific (model-based) forecasts together with local information and data can useful (significant) 

predictions to address local climate variability that undermine smallholders’ adaptive capacity. 

Secondly, I provided novel methods for quantifying the local forecasting knowledge and 

integrating (combining) local and model-based forecasts at the Ada East district, the Waterapps 

pilot site. These integration technics represent an added-value for small-scale predictions as they 

can potentially enhance the accuracy of integrated forecasts compared to the standalone local or 

scientific forecasts. Finally, I demonstrated the benefits and design requirements of an ICT-based 

climate information service that facilitate the coproduction of local and scientific forecasting 
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knowledge. Such service engages a targeted and dedicated group of farmers and extension agents 

to collaborate with researchers and generate forecasts and share forecast information within the 

targeted community. 

My thesis contributes to enlightening and orienting science on ways to develop locally-effective 

climate services that integrate the bottom-up and top-down approaches within an environment of 

knowledge coproduction and sharing process. Considering the predominance and contribution of 

small-scale farming, national and international stakeholders are encouraged to adopt agricultural 

policies that facilitate the proposed process of local climate service development. This process will 

increase the quality, access, and use of smallholder farmers' climate services in developing 

countries. 
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