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Abstract
1.	 For understanding how social behaviour evolves and responds to selection, we 

need to be able to accurately estimate heritability with quantitative genetic mod-
els. More recently, this has moved into using node-specific statistics from social 
networks as social phenotypes. However, parameter estimation can be problem-
atic because social phenotypes are not independent observations and standard 
models tend to ignore the uncertainties around their estimates.

2.	 Here I present a framework using latent variable modelling to account for these de-
pendencies and uncertainties. I use edge weights, rather than node-specific network 
statistics, as dependent variables. From these edge weights, two types of latent (i.e. 
unobserved) phenotypes are estimated: the individual tendency to be social (i.e. so-
cial tendency) and the relative contribution to associations (i.e. social governance). 
Effects of the social environment and indirect genetic effects are accounted for in the 
model and can be estimated post hoc. If edge weights are a proportion (e.g. simple 
ratio index) their uncertainty can be accounted for by a binomial sampling process.

3.	 I illustrate this method in Stan, a flexible Bayesian inference library, using a publicly 
available dataset on bottlenose dolphin networks. This method not only accounts 
for dependencies and uncertainties, it also illuminates aspects of social evolution 
which are not observed with standard quantitative genetic models. For instance, 
indirect genetic effects models predict heritable variation in sociality (21.9%), 
while latent variable modelling shows heritability of social tendency (28.7%), but 
not for social governance (0.0%). Covariates at different levels in the model (edge 
and node level) highlight differences in sociality between different foraging strat-
egies and the sexes.

4.	 This example shows that not properly accounting for the assumptions underlying 
the use of social network statistics can have misleading effects on conclusions. 
Although some model assumption violations are less common, others are inherit 
to the study of (semi)wild populations. The presented framework offers solutions 
for some critical assumptions and is a flexible tool to further develop and tailor to 
the needs of specific studies, to ensure the proper fit to the study system.
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1  | INTRODUC TION

Most animals regularly engage in social interactions (Krause & 
Ruxton, 2002). These interactions can have profound consequences, 
as they may shape phenotypes and affect survival and reproduc-
tion (Frank, 1988; Wolf et al., 1998). In recent years, social network 
analysis has been successfully applied to animal populations, largely 
due to recent technological advances in animal tracking (Krause 
et al., 2014). Typically, the nodes of the network represent individu-
als and the edges are a dyadic measure of social behaviour between 
individuals such as an association strength. From these networks, 
statistics can be derived to quantify aspects of the whole net-
work, specific clusters within the network, edges or nodes (Croft 
et al., 2008; Whitehead, 2008). Node-specific statistics are used to 
quantify aspects of individual social phenotypes that can be used to 
describe phenotypic variation in sociality within populations (Wey 
et al., 2008; Wilson et al., 2012). For many species, individuals con-
sistently differ in network-derived social phenotypes (e.g. birds: 
Aplin et  al.,  2015; Hillemann et  al.,  2019; Plaza et  al.,  2019, mam-
mals: Blaszczyk, 2018, fish: Jacoby et al., 2014; Krause et al., 2017 
and insects: Formica et al., 2017). This raises the question whether 
social phenotypes have a genetic basis. Since there is currently a 
large interest in understanding how social behaviour evolved and is 
maintained (Ward & Webster, 2016), there is a drive for estimating 
and understanding genetic variance and heritability of these social 
phenotypes.

A critical issue with quantitative genetic analyses of social 
behaviour is the lack of independence of observations; social 
behaviour is only expressed in the presence of other individu-
als (Fuller & Hahn, 1976; Moore et al., 1997). This has two major 
consequences. First, a behaviour expressed by a focal individual 
is additionally affected by the phenotype or identity of the in-
teractee and therefore heritability can operate via both a direct 
and an indirect route and indirect genetic effects are expected 
to be the norm (Moore et  al.,  1997). If not accounted for, quan-
titative genetic models will fail to properly estimate heritability 
and give improper insight with respect to the importance of the 
social environment (Bijma et al., 2007). Second, the measured so-
cial behaviour is an expression of the social phenotypes of both 
individuals and therefore not exclusively a phenotypic measure-
ment of the focal individual, but also to some degree of its inter-
actees (Fuller & Hahn, 1976). A non-random subset of interactees 
will therefore bias the social phenotypes which are estimated from 
network edges. Other dependencies are also important, for in-
stance social interactions require individuals to be close in space, 
leading to correlations between the spatial distribution and per-
ceived social behaviour of individuals (Radersma et al., 2017). This 

is particularly problematic if genotypes are not randomly distrib-
uted in space, such as occurs with limited natal dispersal, territori-
ality or in any kin structured population.

Various studies have attempted to estimate genetic variation in, 
and the heritability of, social phenotypes derived from social net-
works. Studies of humans (Fowler et al., 2009), yellow-bellied marmots 
(Marmota flaviventris; Lea et al., 2010) and rhesus macaques (Macaca 
mulatta; Brent et al., 2013) show considerable heritability for some 
social network metrics, describing both affiliative (average heritability 
ranging from 0.11 to 0.84) and aggressive (average heritability ranging 
from 0.11 to 0.66) behaviours. The human study is relatively little af-
fected by the above-mentioned dependency issues; the authors used 
friendship networks that were directed and based on listings con-
structed outside the social context, reducing the risk of observations 
to be biased by the expression of phenotypes of others. However, real 
indirect effects might still be present. The studies of marmots and 
macaques potentially suffer from dependency issues. In both studies, 
group composition was not random—with relatedness to be higher 
within social groups (Brent et  al.,  2013; Wey & Blumstein,  2010)—
making interactees a non-random subset of the populations which 
creates the risk of overestimating heritability. Overestimation of her-
itability might occur because related individuals experience a similar 
social environment (namely their kin; see Appendix  S1, pp. 42–47 
for a simulation demonstrating this), a phenomena that has been re-
ported for individuals sharing their physical environment (e.g. Stopher 
et al., 2012; Van Der Jeugd & McCleery, 2002). The marmot and ma-
caque studies used quantitative genetic models without accounting 
for indirect genetic effects to estimate heritability, but accounted 
partly for non-random interactees by introducing a group specific 
random effect into the models (both studies were based on multiple 
networks for different social groups).

Though not implemented for social phenotypes from networks 
to date, alternative modelling techniques are available to account 
for indirect effects. A class of quantitative genetic models exists 
which accounts for the social environment and indirect genetic 
effects for fixed numbers of interactees and allows all individ-
uals within one group to affect each other to the same degree 
(Bijma, 2014). These models are particularly useful in experimen-
tal settings, for instance when animals are kept in pens or cages. 
The phenotypes of interactees are introduced into the models as 
covariates. Parallels can also be drawn with some maternal, pa-
ternal and parental models (Kirkpatrick & Lande,  1989) in which 
the phenotype of mother, father or both parents are added to the 
models as covariates (McAdam et al., 2014). Rather than assuming 
equal indirect genetic contributions by all interactees (or groups 
members), the contributions can also be weighted. For instance, 
in trees (Cappa & Cantet,  2008; Costa E Silva et  al.,  2013) and 
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territorial mammals (Fisher et  al.,  2019) the indirect genetic ef-
fects of a fixed number of neighbours were weighted by their dis-
tance. Neighbours closer in space were assumed to have a larger 
effect on the phenotype of the focal individual. Instead of imple-
menting a spatial distance matrix, a social network matrix can also 
be used. As such, the social network is used for understanding 
how the social environment is affecting a particular trait. This dif-
fers from the focus in this paper; estimating the contributions of 
genes and the environment to the social traits that structure the 
network. Moore et  al.  (1997) introduced models with reciprocal 
effects between the phenotype of the focal individual and its in-
teractees, which is more appropriate for social phenotypes from 
networks. They suggested that in the case of multiple and variable 
numbers of interactees, each interaction can be treated as a re-
peated measure. These models can be very difficult to fit for social 
phenotypes from networks, due to the highly correlative nature of 
neighbouring node-specific statistics (see Appendix S1).

Here I show how latent variable modelling can be used to esti-
mate genetic variation and heritability of social phenotypes, while 
accounting for the dependencies and uncertainties mentioned 
above. In latent variable modelling observed data are used to es-
timate underlying unobserved (i.e. latent) variables; in this case 
social interactions are used to infer the underlying social traits 
for the interacting individuals. This relies on an assumed rela-
tionship between the measured interactions and inferred social 
traits. Since individuals are interacting with multiple conspecifics, 
the contribution of each individual to the interaction can be esti-
mated and hence the contribution by each interactee is assumed 
to be equal for all. I present the basic latent variable model first, 
and then discuss expansions of the model to account for edge 
and node specific covariates, and spatial and temporal effects. I 
illustrate this modelling framework with an example analysis with 
Stan—a Bayesian general purpose inference library (Carpenter 
et al., 2017)—using a publicly available dataset on bottlenose dol-
phins (Wild et  al.,  2019a) and compare latent variable modelling 
to standard quantitative genetic models. This example shows how 
heritability and genetic variation in unobserved social phenotypes 
are estimated. It also shows how these social phenotypes relate 
to node-specific network metrics, indirect genetic effects and 
other effects of the social environment. The example showcases 
how latent variable models provide additional insights into social 
behaviour, such as sex-specific social behaviour, which cannot be 
elucidated with standard quantitative genetic models.

2  | MATERIAL S AND METHODS

In animal social networks, nodes represent individuals and the 
edges represent associations between them. Although other 
metrics are conceivable, edges often represent a ratio between 
the number of instances two individuals interacted and the num-
ber of instances either one or both individuals were observed. 
Different variations of these ratios exist, of which the simple ratio 

index (SRI) and half-weight index (HWI) are most commonly used. 
For more information and considerations of which index to use, 
see Croft et al.  (2008), Whitehead (2008) or Hoppitt and Farine 
(2018). Edges between different pairs of individuals are assumed 
to be independent from each other, but this assumption is typically 
violated since social interactions are often also affected by oth-
ers in close proximity (more on this in the discussion). From these 
edge weights node-specific network measures can be calculated 
and these can be used as social phenotypes (Figure 1a; Farine & 
Whitehead,  2015; Whitehead,  2008). These social phenotypes 

F I G U R E  1   (a) An example of a social network, in which the 
thickness of the edges indicates the edge weight. The size of the 
nodes indicates a node-specific statistic of sociality; for instance, 
the mean weighted degree (the mean edge weight of all connections 
a node has). (b) Graph representation of an indirect genetic effects 
model (current standard). Fixed effects such as covariates (ci) and 
random effects such as direct additive genetic (aD

i
), indirect additive 

genetic (aI
j
) and environmental effects (ei) contribute to a dependent 

variable (zi), which is a network statistic calculated from the network 
prior to the quantitative genetics analysis. (c) Graph representation 
of a quantitative genetic latent variable model which is used to 
estimate unobserved social phenotypes for the two individuals 
engaged in an interaction. The social phenotypes (zi and zj) of both 
individuals, together with edge-specific covariates (cij) contribute to 
the edge weight (wij). Depending on the distribution of edge weight 
an error term (eij) can be included here if necessary (e.g. in case 
of normal distributed edge weights). Node-specific fixed effects 
such as covariates (ci and cj) and node-specific random effects such 
as additive genetic (ai and aj) and environmental effects (ei and ej) 
contribute to the social phenotype

(a)
(b)

(c)
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can be treated as dependent variables in quantitative genetic 
models to estimate their heritabilities (Figure 1b). Indirect genetic 
effects can be accounted for when the number of interactees is 
small (Moore et al., 1997) or fixed (Bijma, 2014) and all interactees 
are representative of the whole population (Fuller & Hahn, 1976). 
Maternal or parental effects models are good examples of this 
(McAdam et al., 2014) as are models which account for the effects 
of cage or pen mates (Bijma, 2014). With large numbers of inter-
actees, these methods become impractical. Additionally, other 
dependencies such as spatial effects and uncertainties should be 
accounted for.

2.1 | Latent variable modelling

Here I take a latent variable approach. The rational of latent vari-
able modelling is that observations are shaped by underlying unob-
served processes. These processes can be modelled with functions 
that describe the assumed relationship between those observations 
and particular unobserved ‘latent’ variables (Beaujean, 2014; Loehlin 
& Beaujean,  2017). I aim to infer unobserved social phenotypes 
(the latent variables) that shaped the observed social interactions 
(Figure 1c). The relationship between observed interactions and un-
derlying social phenotypes is highly dependent on the type of interac-
tions and social phenotypes of interest. Here I describe a relationship 
between observed interactions and social phenotypes for undirected 
networks, but other relationships can be explored as well, even for 
directed networks such as aggression or grooming networks (more 
on this in the discussion). I treat edge weights as observations which 
have four underlying phenotypic latent variables—two for both the 
individuals connected by the edge. For both individuals, one latent 
variable is called social tendency and represents the willingness of 
individuals to interact. In the case of node-specific statistics this is 
equivalent to, but not the same as, mean weighted degree, which is 
the mean value of weights of all edges connected to an individual. The 
other latent variable is social governance and represents how much 
an individual is affecting the edge weights relative to other individu-
als. Estimating social governance is particularly useful when the pro-
pensity to interact is asymmetrical and mainly driven by one but not 
the other individual. In some cases, this will relate to some form of 
social dominance, but it does not have an equivalent network statistic. 
The relationship between edge weight and these social phenotypes is 
modelled by summing the social tendencies, which are weighted by 
their respective social governance; 

In which wij is the edge weight between individual i and j, gi and gj 
are social governance for individual i and j respectively and si and 
sj are their social tendencies. g (the vector containing the social 
governance values for all individuals) has to be positive. If edge 
weight is a proportion such as the simple ratio index (SRI) we can 

also account for the number of observations the SRI values are 
calculated from. We can expect a great imbalance in the number 
of observations giving rise to SRI values for different dyads as typ-
ically some pairs of individuals will have many more opportunities 
to interact than others. Accounting for the variation in uncertainty 
between SRI values and letting them scale up into the estimates is 
therefore crucial. Rather than using SRI as edge weight, I assume 
that the number of times the two individuals interacted comes 
from a binomial distribution. The probability of interacting is a 
function of the social phenotypes and the total number of draws 
from the binomial distribution is the number of opportunities for 
interacting; 

 

 

in which pij is the probability of an interaction occurring between 
individual i and j, and uij and vij being the number of interactions be-
tween them and the number of potential interactions respectively 
(the latter is typically the number of observations of either one or 
both). An important benefit of this approach is that uncertainty in 
edge weight wij (resulting from the finite number of potential inter-
actions) is accounted for, and more importantly, propagates through 
the models into the eventual parameter estimates (e.g. additive ge-
netic effects).

Taking this approach has other advantages as well; covariates 
can be added to both the edge weights and social phenotypes, 
to account for effects on the interactions as well as individual 
variation. First, I will explain how temporal and spatial overlap are 
accounted for, after that how covariates are introduced. The tem-
poral overlap between two individuals can be accounted for by 
including in vij only instances for which both individuals were pres-
ent at the study site (e.g. Armansin et al., 2016; Leu et al., 2010). 
If we want to account for spatial overlap, we can also introduce an 
overlap parameter, for instance a proportion of overlap between 
home ranges. The probability of interacting is multiplied by this 
factor. 

in which oij is the proportion of overlap of the home ranges. Note that 
in territorial animals, a lack of home range overlap might be the result 
of individuals actively avoiding each other, rather than meaning that 
they did not have the opportunity to interact. Therefore in territorial 
animals correcting for home-range overlap might be undesirable, since 
home-range overlap is potentially part of the phenotype of interest. 
A more appropriate measure in that case could be the proportion of 

(1)wij =
gisi + gjsj

gi + gj
, g ∈ ℝ

+.

(2)
pij =

gisi + gjsj

gi + gj
, p ∈ [0, 1], g ∈ ℝ

+, s ∈ [0, 1],

(3)
uij ∼ binom

(

vij, pij
)

,

(4)wij =
uij

vij
, u ∈ ℤ

+, v ∈ ℤ
+,

(5)pij = oij
gisi + gjsj

gi + gj
, p ∈ [0, 1], o ∈ [0, 1], g ∈ ℝ

+, s ∈ [0, 1],
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shared territory borders. The approach presented here can flexibly ac-
commodate species biology.

In a similar fashion we can account for edge-specific covari-
ates, but care must be taken that pij should vary between 0 and 
1. To accommodate this, working on the logit (or probit) scale is 
useful. Edge specific covariates are for instance, useful when the 
data come from multiple networks (e.g. multiple populations or 
multiple years) to correct for population or year effects. In the ex-
ample, I will account for foraging strategy and sex, assuming that 
the probability of two dolphins interacting depends on their re-
semblance with respect to those two traits. The covariate effects 
can be added to the effects of social phenotypes. The probability 
of interaction pij then becomes: 

with xeij being a row vector containing the covariates for the edge be-
tween i and j and βe being the vector with the effect sizes for the edge 
covariates.

Next, the quantitative genetic parts of the model need to 
be defined. By using the logit (or probit) transformation, social 
tendency can be drawn from a normal distribution. Social gover-
nance is drawn from a log-normal distribution to ensure positive 
values. Since social governance is a relative value and its abso-
lute values do not have any meaning, both the mean and stan-
dard variation should be conditioned. This can be done in various 
ways; for instance, by setting the intercept to 0 and the standard 
deviation for residuals (i.e. the environmental effects; σge) to 1 or 
alternatively set the sum of all variance components to 1 (as I will 
do in the example). Social tendency s and social governance g are 
estimated by summing covariate, additive genetic and environ-
mental effects. Additive genetic effects follow a normal distribu-
tion but are sampled from a multivariate normal distribution to 
account for the correlating additive genetic effects for relatives, 
while the environmental effects come from a univariate normal 
distribution; 

 

 

 

 

 

in which xsi and xgi are the node level covariates for individual i for so-
cial tendency and social governance respectively, βs and βg are the ef-
fect sizes for the covariates, as and ag are the additive genetic effects, 

es and eg are the environmental effects, A is the relatedness matrix and 
σsa, σse, σga and σge are the additive genetic and environmental standard 
deviations.

2.2 | Indirect genetic and social environment effects

Since edge weights are decomposed into social phenotypes of two 
individuals, which are in turn decomposed into genetic and environ-
mental contributions, there are no immediate estimates for indirect 
effects such as the effects of the social environment and indirect ge-
netic effects on the social phenotypes. To gain insight into the level 
of influence on others' social behaviour and to estimate the relative 
contribution of indirect genetic effects to phenotypes, I make use of 
the additive nature of the various components in which edge weights 
were decomposed. First, I take all edges of a focal individual and 
treating its own genetic and environmental contributions to the edge 
weights as direct effects and its contributions to the social phenotypes 
of the interactees as indirect effects. Next, I calculate node-specific 
statistics for each component separately to estimate their relative 
contributions. Here I calculate the contributions for mean weighted 
degree, because it is one of the easiest and most biologically straight-
forward statistics (many social network metrices are highly correlated 
with mean weighted degree) and it relates clearly to the edge weights 
(Figure 2). Other node-specific statistics (such as centrality or dispar-
ity statistics) can be calculated as well, however, care must be taken 
when these statistics involve nonlinear transformations. Another im-
portant consideration is that edge weight is transformed to the logit 
scale, which eases further analysis, because the distribution of edge 
weight becomes normal, but has consequences for the interpretation 
of the results.

Indirect genetic and social environment effects can be estimated 
for node-specific statistics by using the breeding values (additive ge-
netic effects) and environment effects of social tendency. We can 
decompose edge weight on the logit scale w∗

ij
 into a part for the focal 

individual i and a part for the interactee j by weighting their respec-
tive social tendencies by their relative social governance; 

Next, we can decompose social tendency of the focal individual si and 
the interactee sj into their respective fixed and random effects with 
Equation 7. Note that for the purpose of simplifying annotation, I drop 
the subscript s from as, es, Xs and βs, since the genetic effects and the 
environmental effects will always refer to social tendency. Edge weight 
on the logit scale w∗

ij
 can be calculated as, 

Since all components are additive, we can now separate the additive 
genetic and environmental effects of the focal individual from the 

(6)pij = logit

(

gisi + gjsj

gi + gj
+ xeij × �e

)

,

(7)logit
(

si
)

= xsi�s + asi + esi,

(8)as ∼ MVN
(

0, A�2
sa

)

,

(9)es ∼ N
(

0, �se
)

,

(10)gi = log
(

xgi�g + agi + egi
)

,

(11)ag ∼ MVN
(

0, A�2
ga

)

,

(12)eg ∼ N
(

0, �ge
)

,

(13)w∗

ij
=

gi

gi + gj
logit(si) +

gj

gi + gj
logit(sj).

(14)w∗

ij
=

gi

gi + gj

(

xi� + ai + ei
)

+
gj

gi + gj

(

xj� + aj + ej
)

.
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indirect effects coming from the interactees—the indirect genetic and 
indirect environmental effects. Equation 14 can be rewritten as, 

From the additive components in Equation 15, I calculate their con-
tributions to node-specific statistics, the same way as they would 
do for edge weights, as long as the calculation of the node-specific 
statistic does not require any nonlinear transformations. Since mean 
weighted degree is the mean of all weights of the edges connected 
to the focal individual i, the (direct) additive genetic effect aD

i
 and the 

(direct) environmental effect eD
i
 can be calculated by taking the average 

of their contributions to all edges individual i is involved in: 

 

in which Ji is the number of interactees for individual i. For the indi-
rect genetic effect aI

i
 and the indirect environmental effect eI

i
 the con-

tributions of individual i to the weighted degree of its interactees are 
calculated: 

 

in which Jj is the number of interactees for individual j. Now the variances 
for direct additive genetic effects �2

DA
, direct environmental effects �2

DE
,  

indirect additive genetic effects �2
IA

 the social environment �2
IA+IE

 and 
total genetic effects �2

TA
 for the whole population can be calculated as 

 

 

 

 

Heritabilities at the level of the social phenotypes can be calculated 
directly from the posterior distributions by dividing the additive ge-
netic variance by the additive genetic variance plus the environmental 
variance for both social tendency (h2

s
) and social governance (h2

g
): 

 

The mean weighted degree heritability (h2
MWD

) and total heritability 
(proportion of the total phenotypic variance attributed to direct and 
indirect additive genetic variance; �2

MWD
) can be calculated from the 

previously calculated variance components: 

(15)

w∗

ij
=

gi

gi + gj
xi� +

gi

gi+gj
ai +

gi

gi + gj
ei +

gj

gi+gj
xj� +

gj

gi + gj
aj

+
gj

gi + gj
ej.

(16)aD
i
=

1

Ji

Ji
∑

j=1

gi

gi+gj
ai,

(17)eD
i
=

1

Ji

Ji
∑

j=1

gi

gi+gj
ei,

(18)aI
i
=

Ji
∑

j=1

1

Jj
×

gi

gi + gj
ai,

(19)eI
i
=

Ji
∑

j=1

1

Jj
×

gi

gi + gj
ei,

(20)�
2
DA

= Var
(

aD
)

,

(21)�
2
DE

= Var
(

eD
)

(22)�
2
IA

= Var
(

aI
)

,

(23)�
2
IA+IE

= Var
(

aI + eI
)

,

(24)�
2
TA

= �
2
DA

+ �
2
IA
.

(25)h2
s
=

�
2
sa

�
2
sa
+ �

2
se

,

(26)h2
g
=

�
2
ga

�
2
ga
+ �

2
ge

.

(27)h2
MWD

=
�
2
DA

�
2
DA

+ �
2
DE

+ �
2
IA+IE

,

F I G U R E  2   Calculating indirect genetic and social environment 
effects from latent variable model output. (a) For all individuals 
additive genetic and environmental effects for social tendency 
are estimated (here the values for three individuals from one 
iteration are depicted). Individual i is the focal individual in this 
example. (b) For two interacting individuals, the additive genetic 
and environmental effects are weighted by social governance 
(g) to calculate their genetic and environmental contributions 
to edge weight (Equation 15). Values for the focal individual are 
treated as direct effects, while the values for the interactee are 
the indirect effects. (c) The direct and indirect components are 
used to calculate node-specific statistics, for example, weighted 
degree—the mean edge weight for all connected edges (Equations 
16–19). (d) From these values the variances of the components are 
estimated (Equations 20–24). Here the indirect additive genetic and 
indirect environment effects are summed to the social environment 
effect

(a)

(b)

(c) (d)
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2.3 | Empirical example

I illustrate the implementation of this model with a publicly available 
dataset of bottlenose dolphins Tursiops aduncus. With this dataset 
collected over 12 years, Wild et al. (2019b) showed that the use of 
sponges as foraging tools is culturally transmitted from mother to 
offspring. The authors compared multiple networks including social 
and genetic networks. Here I use their data for another purpose; I 
estimate the heritability of social network-derived phenotypes. I use 
the ‘horizontal’ social network, which contains 22,994 association 
strengths between 243 individuals and is based on the observation 
of 4,476 groups (group size range: 1–24, median 2). I use the genetic 
network as a relatedness matrix and sex and foraging strategy as 
covariates. Foraging strategy is a binary trait, with individuals being 
‘spongers’ when using sponges while foraging or otherwise ‘non-
spongers’. First, I built four standard quantitative genetic models 
predicting logit-transformed weighted degree, based on methods 
from Zhao et  al.  (2018). (a) A null model without covariates (b) A 
model with sex and foraging strategy as covariates. (c) A model with 
sex, foraging strategy and the average of the weighted degrees of all 
interactees as covariates. This model is a variation on maternal ef-
fects models with a trait-based approach (Kirkpatrick & Lande, 1989) 
in which the effect of the mother's phenotype is replaced by the 
mean phenotype of all interactees. (d) I also built an indirect genetic 
effects model, in which I account for genetic effects from the five 
conspecifics with the largest home-range overlap and weigh their 
contribution to the focal phenotype by their home-range overlap 
(see Appendix S1). Of these four models, I selected the best fitting 
one with leave-one-out cross validation using Pareto-smoothed im-
portance sampling (Vehtari et al., 2017), which is an approximation 
of exact leave-one-out cross validation—in this case at the individual 
level. Next I use latent variable modelling to estimate the heritability 
of social tendency and governance. I add sex and foraging strategy 
as covariates at the node level and whether sex and foraging strat-
egy were the same or differed for interactees at the edge level. This 
model cannot be compared to the other models with leave-one-out 
cross validation, because different dependent variables are used. I 
compare to the variance components and heritability estimates of 
the best standard model to those of the latent variable model.

2.4 | Validation

To test whether the latent variable model is correctly estimating vari-
ance components, I performed a simulation study based on the em-
pirical example. Details and code of the simulations can be found in 
Appendix S1. In short, I simulated social tendency and governance for 
all individuals by drawing new values for additive genetic and environ-
mental effects under different levels of inheritance (using the related-
ness structure of the example). From these, I calculated for all edges in 

the social network new values for the probability to interact (Equation 
6). Next I drew for each of these edges a new number of interactions 
from a binomial distribution, based on the simulated probabilities to in-
teract and the numbers of opportunities to interact from the example 
(Equation 3). I produced three simulations for all combinations of herit-
ability of social tendency (h2

T
= {0, 0.3, 0.8}) and heritability of social 

governance h2
G
= {0, 0.3, 0.6, 0.8} and ran the latent variable model to 

estimate heritabilities (total of 36 simulations, each for 1 thread, 5,000 
iterations of which 4,000 were burn-in).

3  | RESULTS

3.1 | Standard models

The best fitting standard quantitative genetic model is the indirect 
genetic effects model (Appendix S1). Heritability for mean weighted 
degree was 21.9% (95% credible intervals [CI]  =  11.4%–31.5%; 
Figure 3a), while the total heritable variance (direct plus indirect ad-
ditive genetic variance) was 67.7% (CI  =  50.3%–82.6%; Figure  3a). 
Mean weighted degree was affected by both sex and foraging strate-
gies; males had a higher weighted degree as did the non-spongers 
(Figure 4). The direct additive genetic effect correlated strongly with 
indirect additive genetic effects (ρ = 0.87; CI = 0.67–0.98). This is per-
haps not surprising, because dolphins are observed in groups—rather 
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F I G U R E  3   Heritability estimates for (a) mean weighted degree 
in the best fitting standard model, (b) for social tendency and 
governance in the latent variable model and (c) the proportions of 
variance explained by direct additive genetic, direct environmental, 
indirect additive genetic and the total genetic for mean weighted 
degree by the latent variable model
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than pairs—resulting in a lot of overlap between the interactees for 
individuals which have a strong association in the network.

3.2 | Latent variable model

The latent variable model shows substantial additive genetic variation 
for social tendency (h2 = 28.7%; CI = 6.3%–50.4%; Figure 3b), but not 
for social governance (h2 = 2.9 × 10−4%; CI = 1.6 × 10−7–1.9 × 10−3%; 
Figure 3b). For social tendency, the effects of sex were in the same 
direction as for weighted degree in the standard model, with males 
having higher social tendency (Figure 5a). Interestingly spongers had 
higher social tendency than non-spongers, which contradicts the 
findings of the standard model. Females and spongers had higher so-
cial governance (Figure 5b). At the level of edges, the probability of 
interacting was highest between same sex individuals with the same 
foraging strategy. Both differing sex and foraging strategy decreased 
the probability of interacting, with the latter having the largest nega-
tive effect (Figure 5c). The lower probability of interaction between 
different foraging strategies might explain why spongers had lower 
social tendency in the standard model. Spongers were in the minor-
ity (17.7%), meaning that their mean weighted degree would be dis-
proportionally affected by edge weights between differing foraging 
strategies, which were lower than for edges between same foraging 
strategies.

3.3 | Social environment and indirect genetic effects

Indirect effects on social tendency or weighted degree on the logit 
scale are substantial; the social environment accounted for (47.5%; 
CI = 45.3%–49.3%) of the variation. (Direct) heritability was relative 
low (h2

D
= 14.7%; CI = 4.2%–23.6%) as was the indirect heritability 

(h2
I
= 14.0%; CI  =  4.1%–22.3%, Figure  3c). Total additive genetic 

variance was very similar to the additive genetic variance of social 
tendency τ2  =  28.7%; CI  =  8.4%–45.7%. This indicates—together 
with the fact that the social environment accounts for about half 

the total variance—that in this example population structure did not 
have much effect on the variance estimates.

3.4 | Validation

For social tendency, the latent variable model quite accurately esti-
mated heritability, since the median estimates are close to the simu-
lated values and are all well within the 95% credible intervals, though 
the posterior distributions are quite wide (Figure 6). For social govern-
ance the model estimated heritability well for a heritability of zero and 
for high heritabilities (0.8, Figure 6a,b,c,j,k,l), but not for intermediate 
heritability (0.3 and 0.6). For intermediate heritability the model is over-
conservative, estimating heritability to be close to 0 (Figure 6d,e,f,g,h,i).

4  | DISCUSSION

Here I showed that latent variable modelling can be used to esti-
mate heritability and indirect genetic effects for phenotypes de-
rived from social networks. Other than in standard quantitative 
genetic models, dependencies between the individual's network 
positions and their uncertainties are accounted for. Rather than tak-
ing node-specific statistics as dependent variables, edge weights 
were used. The relative contributions of individuals to these edge 
weights were estimated and used for estimating indirect effects, 

F I G U R E  4   Effects sizes for covariates in the best standard 
quantitative genetic model. The effect for sex indicates the 
difference for males relative to females and the effect of foraging 
strategy difference for spongers relative to non-spongers
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F I G U R E  6   Posterior distributions for heritability of social tendency (x-axes) and social governance (y-axes) for validation simulations. 
Lighter colour means higher density. Red dashed lines indicate the anticipated heritabilities, while the red crosses indicate the achieved 
heritabilities for the three replicates per heritability combination. Distributions are the combined posterior distributions of the three 
replicates
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such as indirect genetic effects and social environment effects. This 
method takes indirect effects into account and, if necessary, spatial 
and temporal effects as well. I show with an example that—since 
the model estimates different aspects of social behaviour—further 
biological insights are gained. I will sum up the advantages and dis-
advantages of using quantitative genetic latent variable models in 
particular, the use of Bayesian modelling framework in general, and 
finally give some recommendations for using this methodology.

4.1 | Latent variable modelling

As pointed out before, with latent variable modelling some im-
portant dependencies in social network data are accounted for, 
indirect effects can be estimated and additional insights into the 
underlying biological phenomena can be gained. Here I estimated 
indirect effects for mean weighted degree as social phenotype. 
However, other descriptors of network position might better 
capture the social phenotype of interest. For instance, modelling 
centrality indices would give insight in the genetic basis of the 
role individuals can play in the spread of information or disease. 
Estimating indirect effects for social phenotypes other than mean 
weighted degree is feasible, but the assumption that components 
(genetic, environmental, social environmental effects etc.) are ad-
ditive restricts this method to social network measures that do 
not require nonlinear transformations (e.g. local clustering coef-
ficient, Barrat et al., 2004 or disparity, Whitehead, 2008, p. 175). It 
must also be noted that the chosen structure of the models comes 
with assumptions of the underlying biological mechanisms, but by 
cross-validating various models, alternative hypotheses can be 
explored. A drawback of using the more complex latent variable 
models over standard quantitative genetic models is of course the 
higher number of degrees of freedom taken by the model. As a 
consequence, more data are needed to get reliable parameter esti-
mates. Because of the many dependencies in social network data, 
the predictive capabilities of the models do not linearly increase 
with more data (Farine & Strandburg-Peshkin,  2015; Sánchez-
Tójar et al., 2018). With some assumptions, models can be simpli-
fied in case the information carried by the data is not sufficient. 
For instance, by assuming that all individuals contribute equally to 
the edges weight, the social governance for all individuals can be 
set to one and the number of degrees of freedom increases sub-
stantially. As the validation simulations show, genetic effects for 
social governance are difficult to estimate in the example, which 
would argue for simplifying the model. Alternatively, informative 
priors can be used to restrict parameter space to sensible values 
and therefore improving model convergence (Lemoine, 2019).

4.2 | Heritability

With the breeder's equation, heritability can be used to predict a 
population's response to selection (Walsh & Lynch, 2018). Indirect 

genetic effects complicate these predictions as they provide an al-
ternative route of inheritance (Wolf et al., 1998). This implies that 
for estimating the response to selection not only direct additive ge-
netic variance, but also indirect additive genetic variance and their 
covariance should be accounted for (Bijma et al., 2007). In case of 
the latent variable model, heritability is estimated at the level of so-
cial phenotypes. Heritability can therefore not be directly used to 
predict changes due to selection in social network structure and the 
position of nodes. However, since all parameters of the latent vari-
able model can be stored in Stan, these changes can be estimated 
by simulating social networks after a selection event. For instance, 
imposing differential fitness effects on edge weights, the distribu-
tion of social phenotypes in the population will be modified and its 
consequence for the social network structure can be monitored with 
network statistics.

4.3 | Indirect genetic and common 
environment effects

The presence of indirect genetic effects for social network traits is 
not surprising; as stated in the introduction, social network traits are 
measured within and shaped by a specific social context (Fuller & 
Hahn,  1976). By definition, interactees affect social network meas-
ures, but whether individuals truly affect each other's underyling 
social phenotypes remains to be explored. What can be tested is 
whether prior social interactions affect the current social phenotypes 
of individuals, making indirect genetic effects on social interactions a 
potential route for inheritance. In various animal species, the social 
environment in early life affects social phenotypes later in life (e.g. 
McDonald, 2007; Shimada & Sueur, 2018; Van Den Berg et al., 1999). 
Modelling the effects of prior social interactions on the social phe-
notype can be done by implementing indirect genetic effects in the 
quantitative genetic part of the latent variable model. Not the social 
network for which the underlying social phenotypes are estimated, 
but a different social network should in that case be chosen for es-
timating indirect genetic effects, for instance the social network of a 
previous year or from early life. Similarly common environment effects 
can be accounted for by assuming spatial autocorrelation. Rather than 
drawing the environmental effects on the social phenotypes indepen-
dently from a normal distribution, one can assume correlations based 
on, for instance, territory overlap. Most types of social interactions 
are, however, based on spatial proximity and therefore correcting for 
spatial autocorrelation potentially affects the estimates of variation in 
social phenotypes.

4.4 | Modelling framework

Using a flexible inference library like Stan has some clear benefits. It uses 
efficient algorithms for exploring parameter space and the model struc-
ture can be tailored to specifically suit the study (McElreath, 2016; de 
Villemereuil, 2019). Here I present an example estimating latent social 



     |  11Methods in Ecology and Evolu
onRADERSMA

phenotypes from dyads, but interactions can, and often will, involve more 
than two individuals. To analyse interactions of groups larger than two, 
equation 1 can be modified by adding more individuals. If necessary, equa-
tion 1 can be replaced by an equation which better reflects the biology of 
the study system. For example, Mueller et al. (2013) studied social learn-
ing of migration routes in cranes and found that deviations from a straight 
path were not genetically determined, but depended on the age of the 
oldest individual in the group. Analysing this data with the latent vari-
able approach is possible by introducing all group members into Equation 
1 (allowing for variable group sizes) and estimating social governance as 
a function of experience (or age). Similarly, directed networks, in which 
social interactions are directed from one individual towards another (e.g. 
aggression, food-sharing, grooming), can also be implemented by modify-
ing Equation 1. In the presented model for undirected networks, the so-
cial phenotypes (social tendency and social governance) are the same for 
both interactees, but for directed networks different social phenotypes 
for the initiators and receivers of the social interactions can be estimated. 
For instance, rather than social tendency, social phenotypes could be at-
tacking and victimizing or giving and receiving food. Edge weight would 
be a function of social phenotypes for the initiator (e.g. aggressiveness 
or probability to share food) and social phenotypes for the receiver (e.g. 
probability of being victimized and probability to accept food). For all in-
dividuals, social phenotypes as an initiator and receiver will be estimated 
based on their interactions and the interactions of their kin.

4.5 | Recommendations

When applied to social phenotypes from networks, quantitative 
genetic latent variable models offer solutions for some critical vio-
lations inherent in standard quantitative genetic models for social 
network data. Although latent variable models are data hungry, the 
example shows that they can be applied to long-term datasets. Some 
suggestions for model simplifications are discussed in this paper. 
Example code can be found in Appendix S1 (for latent variable mod-
els) and elsewhere (for linear mixed modelling: McElreath, 2016; for 
quantitative genetic models: Zhao et al., 2018) and can be adjusted 
to study-specific needs.
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