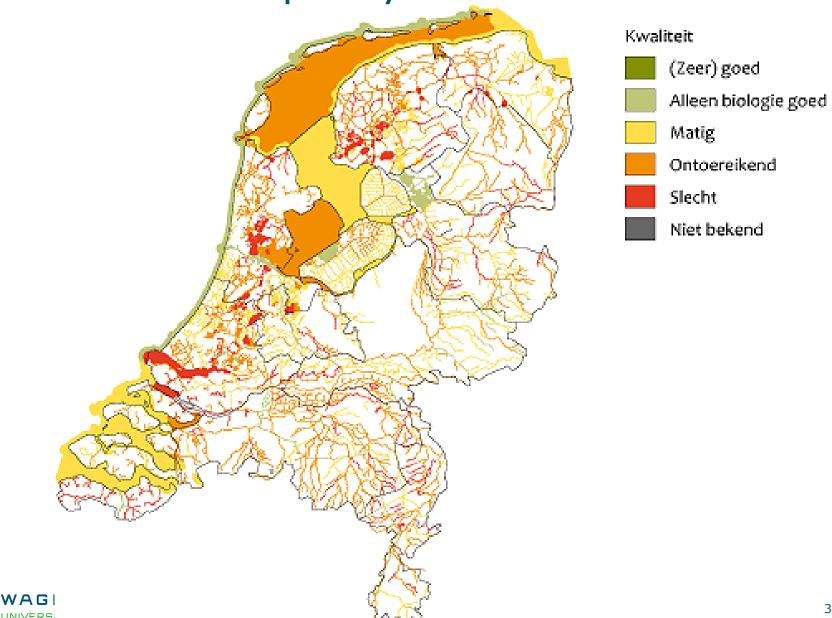
Hydro-economic modelling

Trade-offs in water quality policy

February 15, 2017, Vincent Linderhof



Outline

- Introduction
- Part 1
 - Water Framework Directive
 - Economic models with hydrology
 - Exercise I
- Part 2
 - Trade-off in policy making
 - Hydrological model for cost-effectiveness analysis
 - Exercise II

Status of water quality

Introduction – economy and water

Production

Consumption

Recreation

Water for nature

Shipping/transport

Introduction – economy and water

Production and consumption affect water quality!

Contaminated water

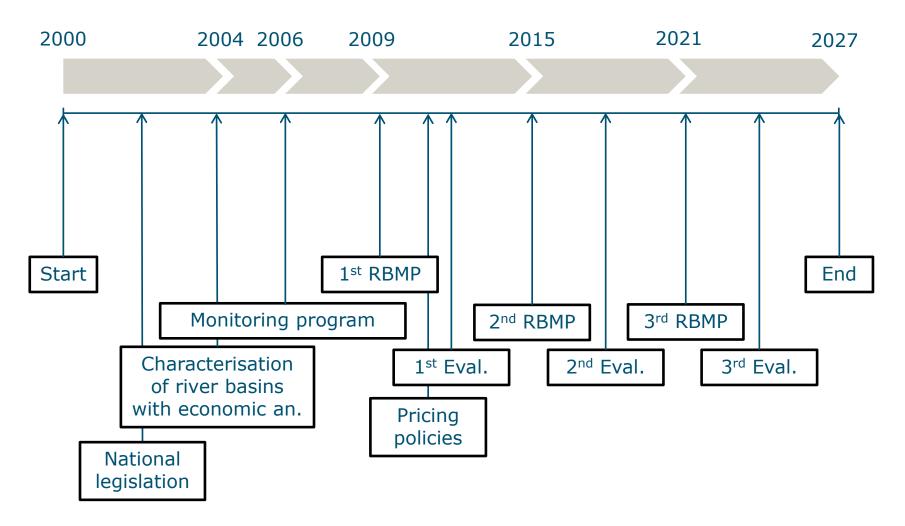
Solutions =>cheapest solution?

Part I

- Water Framework Directive
- Hydro-economic modelling

Water Framework Directive

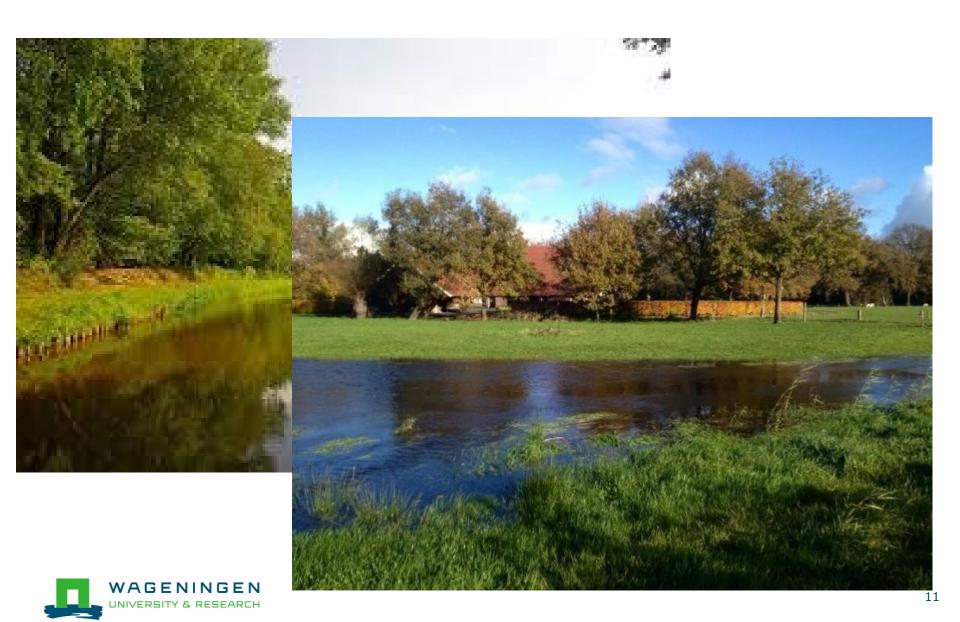
- Water Framework Directive (2000/60/EC)
 - Water quality objectives: good ecological status
 - Time horizon: 2027
 - List of priority substances
- Economic analyses => impact on the economy
- Disproportional costs



WFD – link with economics

- Article 5: economic analysis of water use
- Article 11&13: program of measures & RBMP
 - Article 5: cost-effectiveness analysis
- Article 9: cost recovery and pricing policies of water services
 - "polluter pays"-principle
 - production and distribution, collection and transport of waste water, waste water treatment, groundwater, water system management

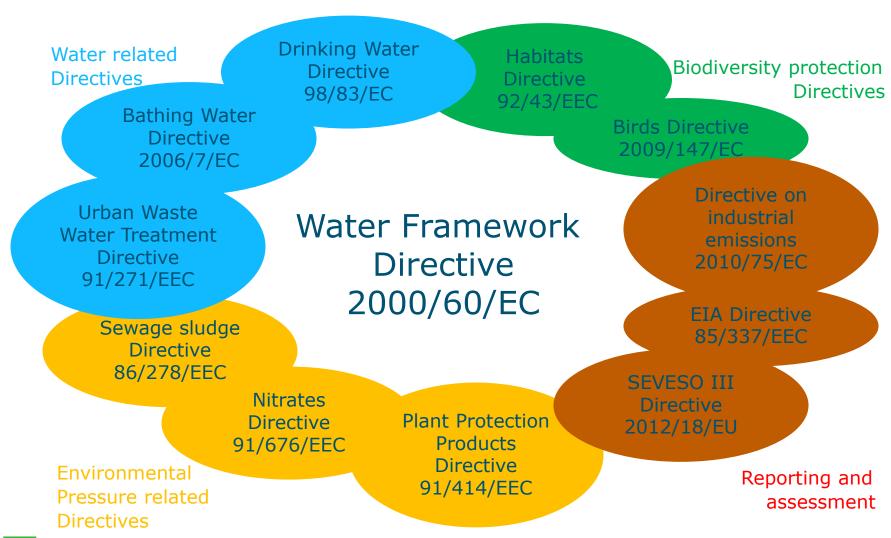
WFD - time line



Measures: fish passages

Measures: river restoration

Measures: WWTP improvements



Measures: manure and natural banks

WFD - Link with other directives

WFD - Basic vs. supplementary measures

Compliance to UWWT Directive

Compliance to WFD Directive

Waste water treatment plant municipality >2,000 inhabitants until 2017

Waste water treatment plant municipality <2,000 inhabitants after 2017

Basic measures in WFD

Part of baseline water use

Supplementary measures in WFD

Part of cost-effectiveness analysis

Both are part of the River Basin Management Plan

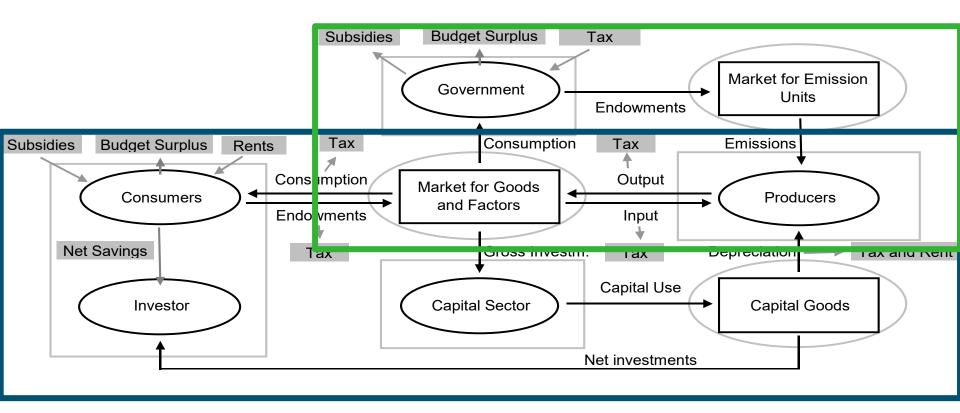
WFD - conclusions

WFD is the first water-related directive with economic analysis!

- How to relate water quality policy to economics?
- "Living with water" project 2005-2008

Linking economic and hydrology models

- How can we measure the economic impact of water quality policy?
- Hydro-economic models
 - National economic models (Brouwer et al., 2008; Dellink et al., 2011)
- Cost optimization models
 - Environmental costing model and SWAT Cools et al. 2011) for Nete river basin in Belgium (only N emissions)
 - WFD regiOptimizer (N and P concentrations)



Hydro-economic model (Brouwer et al., 2008)

- Applied General Equilibrium model (static)
- Focus on water-related environmental themes
- Sustainability standards to be met with
 - Abatement technologies (except for dehydration and soil contamination)
 - Emission permits
- Revenues of emission permits are recycled by either tax reduction or lump sum subsidies to households

Hydro-economic model

Source: Gerlagh et al. (2002); Brouwer et al. (2008)

Economics: bread in economic model

Sectors involved

Production process of bread

Consumer

Government

Retail/ whole sale

Food industry

Agriculture

VAT

Supermarket (labour and capital)

Bakery (labour and capital)

Water

Wheat flower

Salt

Farmer (wheat) (labour and capital)

Water/ land

Seeds

N & P

€2, for bread Consumer price

Environmental-economic link

- Tradeable environmental emission permits ("polluter pays principle")
- Measures to invest in (cost-effectiveness curves)
- Trade-off for producers to extend:
 - purchase permits or
 - invest in measures

Hydro-economic model

Table 1 – Social Accounting Matrix (SAM) and Net National Income in the Netherlands in 2000 (in billion euros)										
	Primary sector	Secondary sector	Tertiary sector	Capital	Abatement	Trade balance	Net investments	Consumption	Endowments	Sum
Primary sector	18.4	-10.3	-0.9	-0.6	0.0	-4.5	0.0	-2.1	-	0
Secondary sector	-5.5	170.4	-52.5	-59.6	-0.1	0.9	0.0	-53.7	-	0
Tertiary sector	-2.8	-56.9	313.2	-23.1	-0.1	-10.7	0.0	-219.8	-	0
Capital	-3.1	-18.0	-40.1	91.4	0.0	0.0	-30.1	0.0	-	0
Abatement	0.0	-0.1	0.0	0.0	0.2	0.0	0.0	-0.1	-	0
Labour	-1.9	-41.6	-122.7	0.0	0.0	0.0	0.0	0.0	166.2	0
Profits	-4.6	-26.6	-59.4	0.0	0.0	0.0	0.0	0.0	90.6	0
Taxes	-0.5	-17.0	-37.7	-8.1	0.0	0.0	0.0	-20.0	83.3	0
Sum	0	0	0	0	0	-14.3	-30.1	- 295.7	340.1	0

Source: Statistics Netherlands.

Table 3 – Emissions in the Netherlands in 2000									
	Primary sector	Secondary sector	Tertiary sector	Consumption	Total				
Eutrophication (million P-equivalents)	90.4	15.8	11.6	19.6	137.4				
Dispersion of toxic substances (billion AETP-equivalents)	8.0	61.7	7.8	17.9	88.3				

Source: Brouwer et al. (2008)

Hydro-economic model

Abatement cost curves

Fig. 2-Estimated abatement cost curves for eutrophication and the dispersion of toxic substances to water.

Hydro-economic model - results

Table 4 – The impact of the different emission reduction scenarios on Net National Income and their total economic cost (in billion euros; price level 2000)

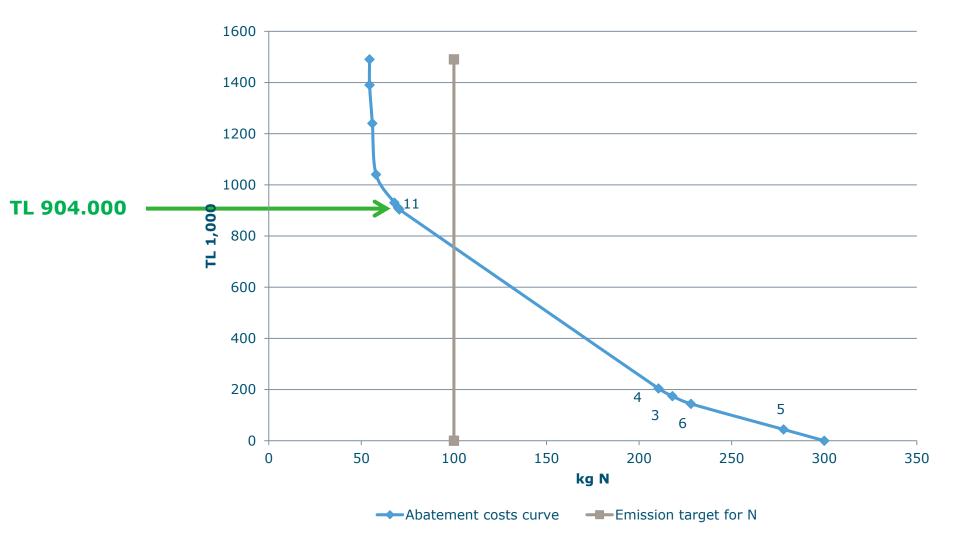
Variant		Variant 1		Variant 2			
Emission reduction scenario	10%	20%	50%	10%	20%	50%	
Net National Income Loss in NNI compared to baseline Relative change in NNI (%)	339.3 0.7 -0.2%	338.4 1.6 -0.5%	329.6 10.5 -3.1%	339.4 0.7 -0.2%	338.1 1.9 -0.6%	308.0 32.1 -9.4%	

Unilateral

Dutch water policy: goods with polluting production more imported. Multilateral

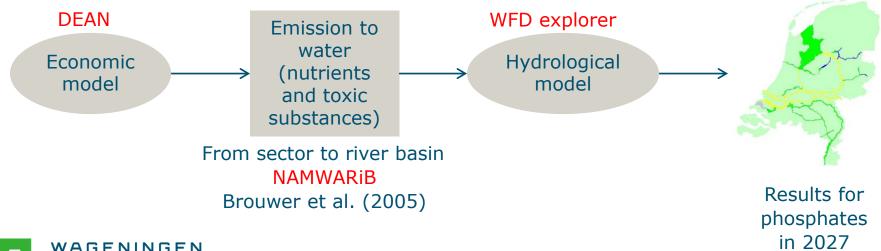
EU water policy: polluting production reduced.

Exercise I


Rank the measures based on cost-effectiveness

With which set of measures is a reduction of 20.000 kg N realised at minimum costs?

At what costs?


Exercise I

Static vs. dynamic hydro-economic model (Dellink et al., 2011)

- Not only two situations compared, but also the path from one to another
- The economic model is a forward-looking neo-classical growth model (based on DEAN)
- Linked to hydrological model WFD explorer

Dynamic model – additional features

- Trade off between years (measures/emission rights)
- Growth rates on
 - Economic growth
 - Technological change of abatement
 - Autonomous emission reduction
- Results on water quality at river basin level

Dynamic model - scenarios

Table 1
Policy scenarios and underlying assumptions.

Policy scenario	Domestic emission reduction	Year ^a	Water quality at the border
Baseline policy	0%	2015	Current concentration levels
Lenient unilateral policy	20%	2015	Current concentration levels
Strict unilateral policy	50%	2015	Current concentration levels
Lenient multilateral policy	20%	2015	MPC levels
Strict multilateral policy	50%	2015	MPC levels
Derogated strict policy	50%	2027	Current concentration levels

a Year by which emissions have to be reduced to the specified level.

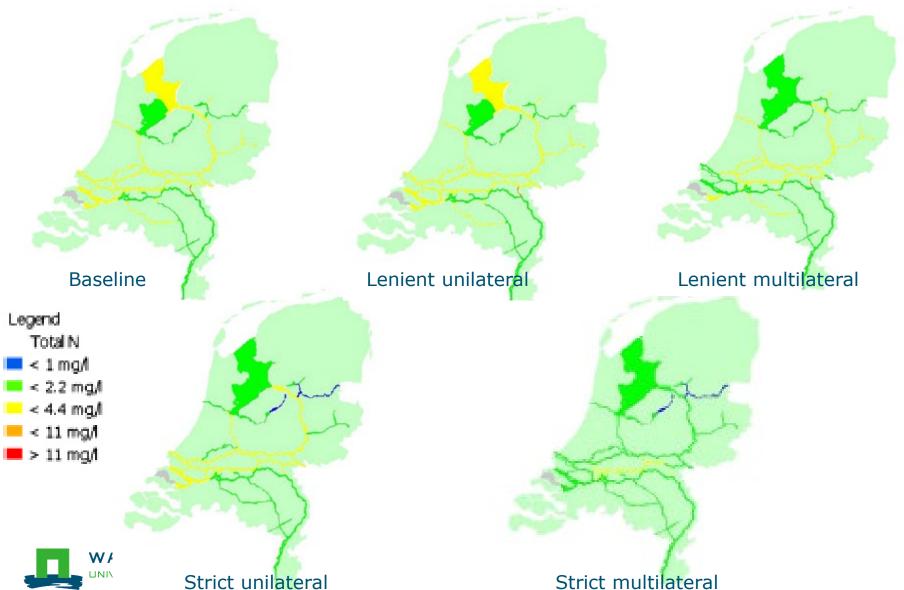
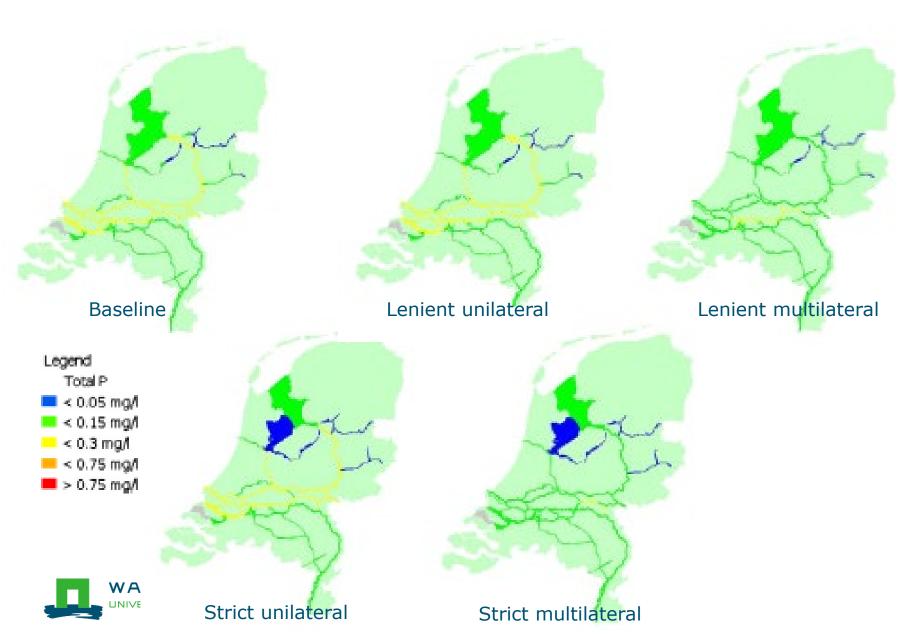

Dynamic model – economic results

Table 2
Main model results for the different policy scenarios.


Key indicators	lenient policy				Strict policy			
	2010	2015	2020	2030	2010	2015	2020	2030
Macroeconomic results (%-change compared to ba	edine project	tion)						
Gross Domestic Product	-0.03	-0.03	-0.03	-0.04	-0.19	-0.75	-0.77	-0.80
Net National Income	-0,03	-0,03	-0,03	-0,04	-0,02	-0.76	- 0,78	-0.82
Total private household consumption	-0.02	-0.02	-0.02	-0.03	0.25	-0.14	-0.16	-0.19
Total production	-0.04	-0.04	-0.04	-0.04	-0.19	-1.44	-1.46	-1.49
Capital investment	-0,02	-0.03	-0.03	-0,03	-1.03	-0.68	-0.70	0.73
Sectoral results (%-change compared to baseline pr	ojection)							
Private household consumption Agriculture	-0.11	-0.12	-0.12	-0.12	-0.01	-3.00	-3.01	-3.02
Private household consumption Industry	-0.03	-0.03	-0.04	-0.04	0.13	-0.83	-0.84	-0.86
Private household consumption Services	-0.01	-0.01	-0.01	-0.01	0.22	0,21	0.19	0.16
Production Agriculture	-1.36	-1.47	-1.47	-1.47	-1.97	-33,25	-33,22	-33,18
Production Industry	-0.08	-0.09	-0.09	-0.10	-0.53	-4.08	-4.10	-4.13
Production Services	0.04	0,04	0,04	0.04	0.05	1.36	1.34	1,31
Production Abatement services	2492	27,99	27,98	27,97	38,13	93,71	93,67	93,60
Environmental results (%-change compared to baseline projection)								
Emission of nutrients (N, P)	000	0,00	0,00	0.00	-13.65	-36,40	-36,40	-36,40
Emission of metals (Cd, Cu, Ni, Zn)	-3.56	-9.49	-9.49	-9.49	-16.29	-43,43	-43,43	-43,43
Prices (baseline index = 1.00, constant 2000 prices)								
Wage rate index	1.00	1.00	1.00	1.00	1.00	1.01	1.01	1.01
Exchange rate index	1,00	1.00	1.00	1,00	1,00	1.02	1.02	1.02
Price index of abatement services	0.95	0,93	0,90	0.86	0,95	0,92	0,90	0.86
Price index nutrients permits	1,55	1,71	1,89	2,30	1,26	1,56	1,56	1,56
Price index metals permits	1.54	2,09	2,31	2.82	1.85	175,09	174,67	173,99

Dynamic model – results for N in 2015

Dynamic model – results for P in 2015

Hydro-economic model - conclusions

- National scale
- Links economic model with hydrological model
- Takes into account economic interactions

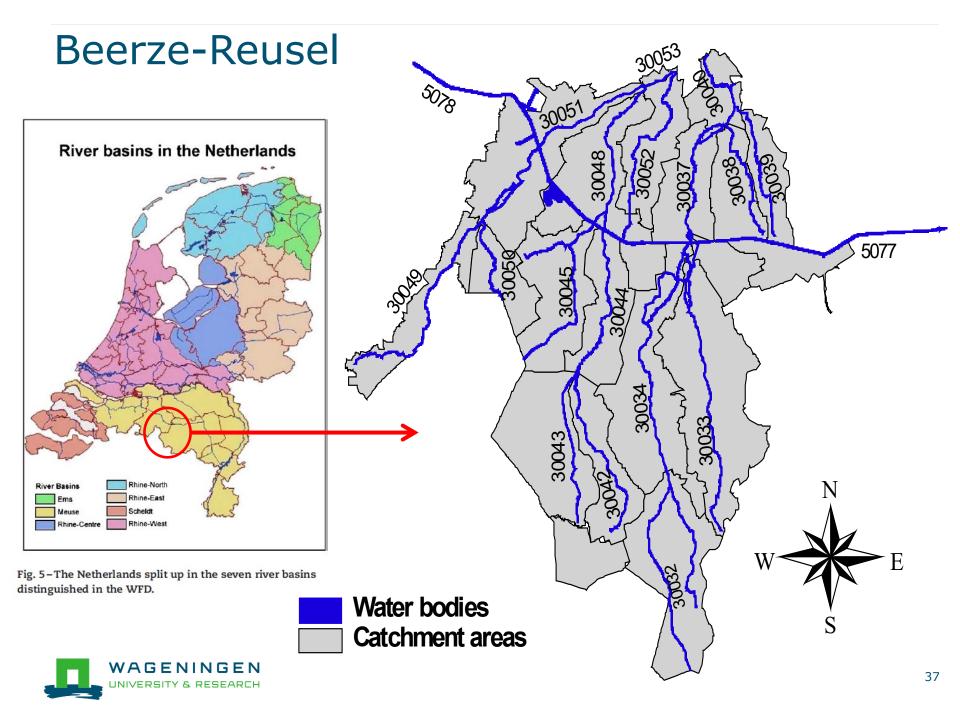
- Abatement cost curves rather inflexible
 - Not sector specific
 - No regional differences (or diffuse sources)

Part II

Trade offs in policy

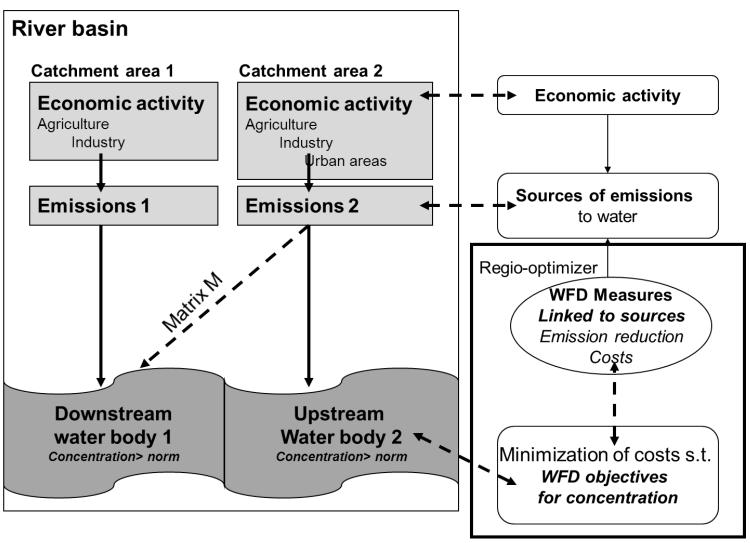
Hydrological model – cost-effectiveness analyses

Trade-off methodologies in water policy making


- Social cost benefit analysis, for WFD (PBL, 2008) or for Marine Strategy (LEI, 2013)
 - Societal costs and benefits
 - Changes in economic behaviour through prices
 - Society (larger scale)
- Cost-effectiveness analysis
 - Cost minimization given environmental targets
 - Maximize environmental pressure reduction given budget
 - Net costs (cost minus benefits)
 - Technical measures

Hydrological model – CEA (Linderhof et al. 2010)

- Hydrological structure (WFD Explorer)
- Programmes of measures cost effectiveness analysis
- Small scale (part of river basin)
- Low level
 - Water bodies (part of water system)
 - Catchment areas



Hydrological model - CEA

- Cost minimization of program of measures
- Subject to water quality targets (concentration)
- Measures
 - Related to one or more substances (N and P)
 - Measures linked to water bodies (WWTP) or catchment areas (agriculture)

Scheme

Exercise II

- Is the presented set of measures the most cost-effective one to achieve two objectives:
 - Reduction of nitrogen (N) by 75.000 kg and
 - Reduction of pesticides by 1.500 kg?
- What can you tell about the cost-effectiveness of measures in the table?

Exercise II

No, it isn't

	Costs	Emission reduction		Cost-effectiveness		Cumulative		
Measure	cost per year	Nutrient	Pesticides	Nutrient	Pesticides	Sum nutrients	Sum pesticides	Sum costs
	TL 1,000	1,000 kg	1,000 kg	TL/kg N	TL/kg N	1,000 kg	1,000 kg	TL 1,000
Train farmers on improved	30	7.5	0.3	4	100	7.5	0.3	30
Enforce laws by inspectors (water, fertiliser, pesticides)	20	2.0	0.2	10	100	9.5	0.5	50
Improve chain management of	100	0.0	1.0		100			
Training (knowledge) of staff at industrial WWTP	100	50.0	0.0	2		59.5	0.5	150
Reuse of treated wastewater in	44	22.0	0.0	2				
Enforce use of advanced treatment facilities In Zones	30	10.0	0.0	3		69.5	0.5	180
Buffer strips along waterways	110	11.0	1.0	10	110	80.5	1.5	290
Limit fertilizer & pesticide use sensitive & protected areas	200	20.0	1.0	10	200			

Model

$$Minimize \sum_{j \in J} \sum_{k \in K} X_{jk} C_{jk}$$
 (1)

Subject to

Emission levels:
$$E_{ks} = E_{ks}^0 \left(\prod_{j \in J} 1 - \varepsilon_{jks} X_{jk} \right)$$
 (2)

Sum of emissions:
$$E_{is} = \sum_{k \in K} E_{ks} Y_{ik}$$
 for k and s (3)

Changes in water quality:
$$Q_{is} = Q_{is}^0 \left[1 - \sum_{i' \in I} M_{ii's} \left(\frac{E_{i's}^0 - E_{i's}}{E_{i's}^0} \right) \right]$$
(4)

Water concentration target:
$$Q_{is} \le \tau_{is}$$
 (5)

$$0 \le X_{jk} \le 1 \tag{6}$$

i is water body/catchment area, *j* is measure; k is emission source, s is substance. X is implementation degree, E is Emissions, E is Concentration, E is costs, E is transport matrix, and E is target of concentration

Relative reduction

- Measure 1: 20% emission reduction
- Measure 2: 50% emission reduction
- Suppose emissions are 100 units
- Measure 1 reduces 25%=> 20 units removed and 80 units left
- Measure 2 reduces 50%=> 40 units removed and 40 units left
- Total reduction is then: 60 units or 60% (100x.2+80x.5)

Transport matrix for N

		\	Water	bod	lies fo	or wat	er qu	ality	meas	suren	nent		
			5077	5078	30032	30033	30034	30037	30038	30039	30040	30042	
Water	30032				63		32	16			9		
Bodies	30034				$\overline{}$		32	16			9		
	30037		(60)			32		7.6	9		
sources	30039			$\stackrel{\checkmark}{\longrightarrow}$						76	9	_	
Catchment	300032				37		19	9			5		
areas	300033	Up-dov	vnstre	am v	vater i	oddlee		6			4	_	
	300034						17	9			5		
	300035		50										
	300036		50										
	300037							12			7		
	300038							7	100)	4		
	300039	D	irect li	nk ca	atchme	ent-wa	ter bo	dy 🖊		24	3		
	300040										35		
	300042											100	
	300045												
	300046			20									
	300047			20									
	Total		100	100	100	100	100	100	100	100	100	100	

Characterisation of Beerze-Reusel

Table 1 Different nutrient emission sources in the river basin

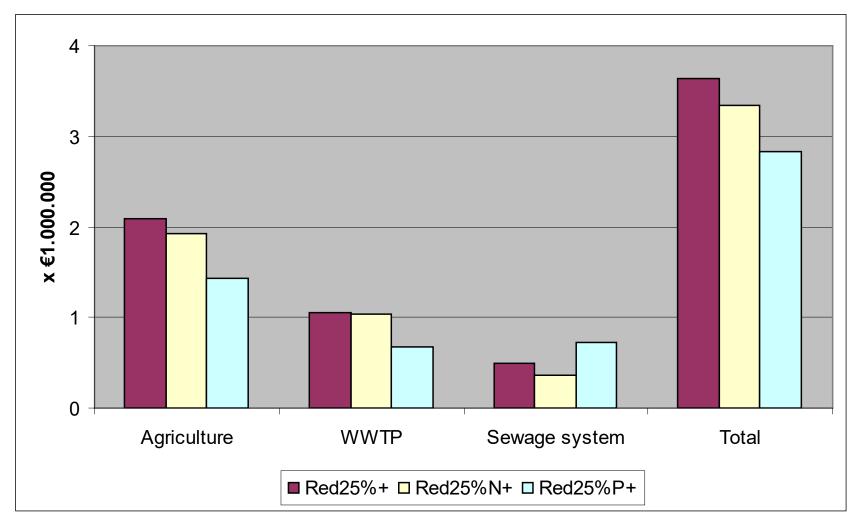
	Number of sources	Emiss (kg per N		Share emission N	
Total Agriculture Construction Industry WWTP Sewage system Shipping Atmospheric deposition Inflowing water from	112	1,606.7	119.1	100.0	100.0
	21	114.2	9.0	7.1	7.5
	21	6.0	0.8	0.4	0.7
	1	6.7	1.7	0.4	1.4
	4	579.8	59.5	36.1	49.9
	21	32.3	33	2.0	2.8
	17	1.7	0.3	0.1	0.2
	21	128.6	0.0	8.0	0.0
Belgium/other River basins Inflowing water	5	407.4	11.4	25.4	9.5
	1	330.0	33.3	20.5	27.9

Program of measures

Type of measure	Emission reduction capacity (%)	Number of measures
Agriculture and atmospheric deposition (catchments)		
Manure free corridor	5	21
Buffer strips (crop free corridors) special crops	5	21
Crop free corridors with paths open for public	10	21
Buffer strips (crop free corridors) grassland	8	21
Buffer strip (crop free corridors) arable land	8	21
Helofytefilters with reed	5	21
Natural banks (5 meters wide)	5	21
Subtotal Agriculture		147
Upgrade of WWTP (four WWTP)	0.0	
Fourth stage of WWTP	90	4
Helofytefilters with reed (additional stage) *	5-8	4
Additional N-filters*	56-90	3
Additional chemicals to remove P emissions*	20-55	3
Additional P filters*	14-89	3
Subtotal WWTP		17
Sewer improvements (catchments)	0.0	21
Separate sewage system for rain water	80	21
Sewer improvement: decoupling of stormwater overflow	50	21
Reconstruct stormwater overflow facilities	75	21
Sewer improvement: larger storage settling tanks	50	21
Sewer improvement: increasing the flowing of rain water	50	21
Subtotal Sewer		105
Total number of measures		269

Results

- Policy 25% reduction of concentrations in river basin
- Inflow of N and P from Belgium remains constant.


■ 25% reduction of N is almost as expensive as reducing N

and P by 25%

	Costs	Additional costs Difference in costs with RED25%	Total costs of RED25%
	€ mln	€ mln	€ mln
RED25%N	53.6	0.4	54.0
RED25%P	10.2	43.8	54.0

Results

Results

- Policy 25% reduction of concentrations in river basin
- Inflow of N and P from Belgium is reduced.
- 25% reduction of N is almost as expensive as reducing N and P by 25%
 - Multilateral=> € 4 mln vs. unilateral=> € 54 mln

	Costs	Additional costs Difference in costs with RED25%+	Total costs of RED25%+
	€ mln	€ mln	€ mln
RED25%N+	3.2	0.4	3.6
RED25%P+	2.9	0.7	3.6

Conclusions

- Water relates to many economic activities.
- Policy decisions more and more based on (economic) trade-offs!
- Hydrological models do not take into account economic changes due to interventions in the water system.
- Hydro-economic models can take into account economic aspects such as
 - Feed backs between economic sectors
 - Price changes (polluter pays principle)
 - Minimum cost for society of policies

End

Thank you for your attention!

More information:

vincent.linderhof@wur.nl

