Trade-offs in water quality policy

March 12, 2018, Vincent Linderhof

Outline

- Introduction
- Part 1
 - Pollution control in the NL
 - Water Framework Directive
- Part 2
 - Economic models with hydrology
 - Hydrological model for cost-effectiveness analysis

Pollution control in the Netherlands

Pollution control in the NL

Since the 1970s environmental law, namely

- Clean air policy (1976),
- Water policy (1969), and
- Nature conservation policy (1967/1998)
- Environmental Impact Assessment (1986)
- Environmental Management Act (1993); integration of policies; forming an integral general environmental licensing procedure.
- EU framework directives (several years)

Source: Environmental Policy in the Netherlands (Schiller, 2009)

Clean air policy

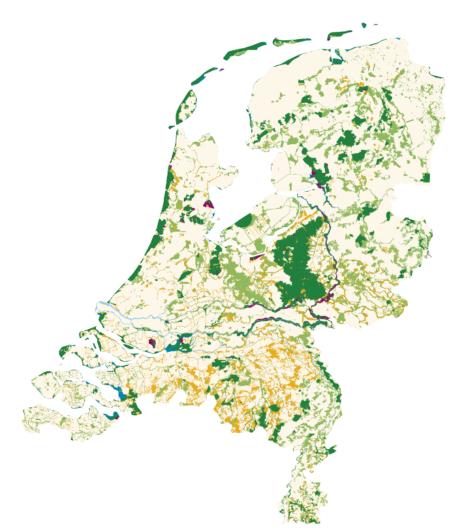
- I 1970 Air Pollution Act (APA) forms the legal framework for legislation on air pollution (emissions from point and diffuse sources)
- 1986 Environmental Impact Assessment Act
- 1993 Environmental Management Act (EMA); procedural regulations *integrated* into the EMA-procedure, forming an integral general environmental licensing procedure.
- 1998 EU framework directive Air Quality amending APA and EMA

Water policy (quality)

- 1969 Surface Water Pollution Act (SWPA); to prevent and to restrict the pollution of surface water by *direct* or *indirect* emissions into the water.
- 1983 Decree Water Quality Standards and Water Quality Monitoring fixing quality standards for drinking water, fishing water, bathing water, amongst others.
- 1986 EIA & 2003 EMA
- 1996 Decree Emission Urban Waste Water due to UWWTD (91/271/EEC)
- 2002 Regional Water Boards

Nature policy

1967/1998 Nature Protection Act


- the 'protected natural monuments',
- the 'protected landscapes',
- the 'areas for implementation of international obligations', and
- the provision of financial contributions.
- 1979/1991 EU Birds Directive (79/409/EEC) & 1991 Habitat Directive (92/43/EEC)

Nature policy

- 1998 Flora and Fauna Act (protection of endangered species)
- 1998 Natura 2000 areas (more than 160 areas in the NL)
 - Nature Management Plan per area
 - Including clean air policy (Program Approach Nitrogen)
 - Including water policy (WFD)
- Policy directed to provinces (2014)
- Nature 2000 areas and provincial nature conservation areas

Natuurnetwerk Nederland en Natura 2000-gebieden, 2015

Bron: IPO 2015 (NNN); EZ (Natura 2000); I&M (rijkswateren); Nota Ruimte – VROM en LNV (EHS2005);

Natuurnetwerk Nederland (NNN) èn Natura 2000-gebied

Water

Natuurnetwerk Nederland (NNN)

Natura 2000-gebied buiten NNN EHS 2005

WUR/aug16 www.clo.nl/nl142502

Pollution control in the NL- summary

- Laws are not rigid, lots of amendments; More substances/emissions, sectors, product and production
- Introduction of EU (framework) directives
- Monitoring and reporting
- Changing responsibilities such as
 - Water boards (surface water 2002)
 - Provinces (nature policy 2014)

Pollution control - instruments

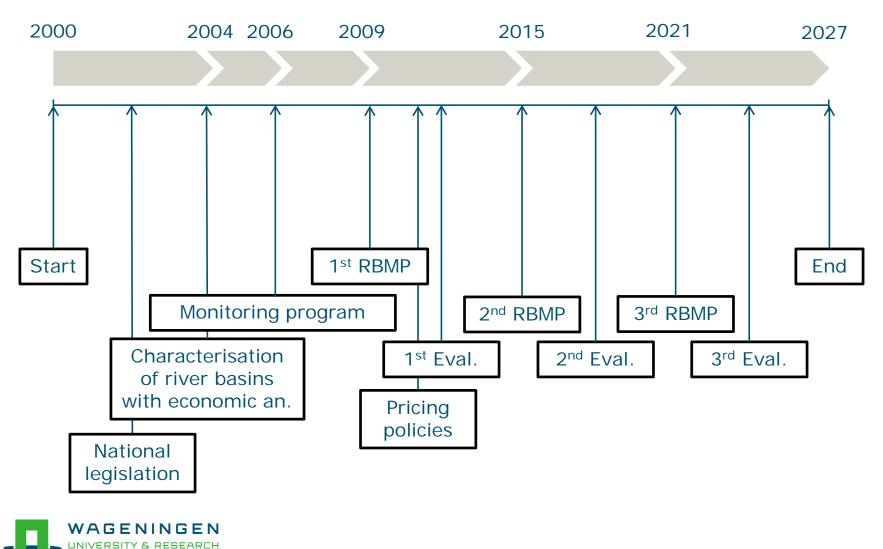
- Regulation (monitoring, standards of products, limits)
- Licensing for production/emission
- Permits system (non-tradable and tradable),
- Environmental Impact Assessment
- Subsidies/tax exemptions (promote clean technologies)
- Deposit-refund systems
- Management plans (nature areas)

Water Framework Directive

Water Framework Directive

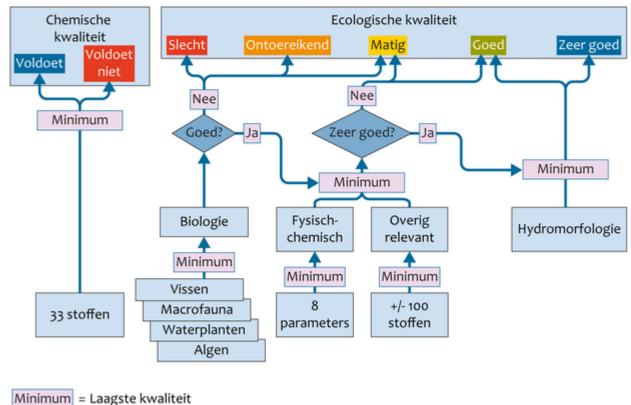
Water Framework Directive (2000/60/EC)

- Water quality objectives: good ecological status
- Time horizon: 2027
- List of priority substances
- Economic analyses => impact on the economy
- Disproportional costs



WFD – link with economics

- Article 5: economic analysis of water use
- Article 11&13: program of measures & RBMP
 - Article 5: cost-effectiveness analysis
- Article 9: cost recovery and pricing policies of water services
 - "polluter pays"-principle
 - production and distribution, collection and transport of waste water, waste water treatment, groundwater, water system management



WFD – time line

Assessment of water quality

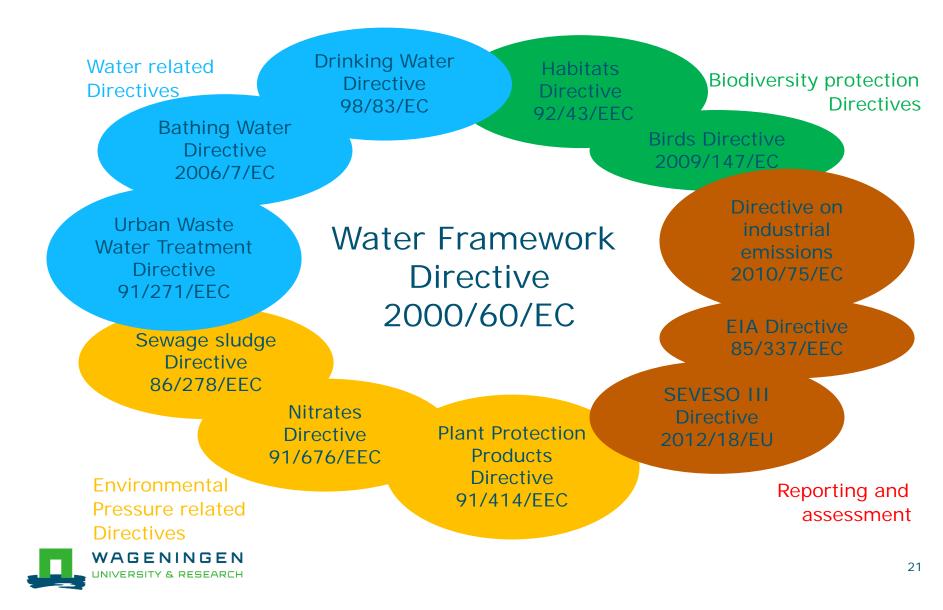
Beoordeling waterkwaliteit volgens Kaderrichtlijn Water

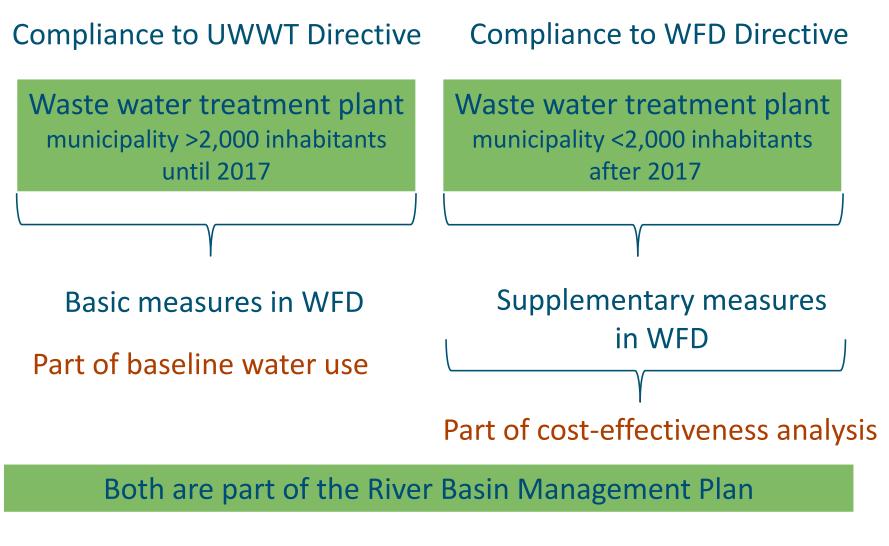
is bepalend

Measures: fish passages

Measures: river restoration

Measures: WWTP improvements


Measures: manure and natural banks

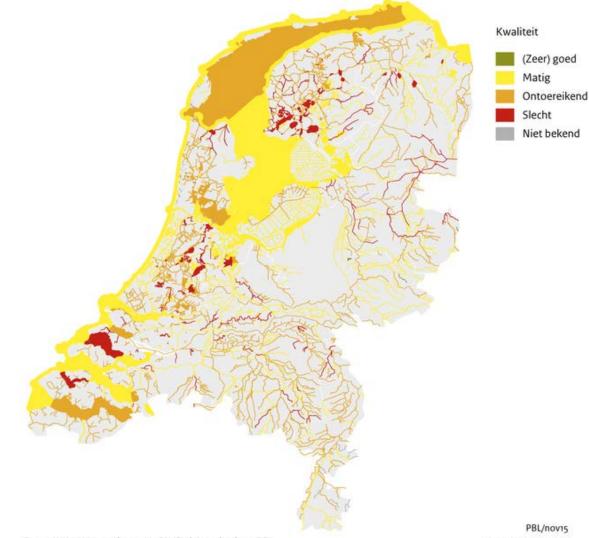


WFD – Link with other directives

WFD - Basic vs. supplementary measures

WFD – conclusions

- WFD is the first water-related directive with economic analysis!
- How to relate water quality policy to economics?
- "Living with water" project 2005-2008


Part II

- Hydro-economic modelling
- Cost optimization models

Status of water quality

Beoordeling ecologische kwaliteit, Kaderrichtlijn Water, 2015

Introduction – economy and water

Production

Consumption

Recreation

Water for nature

Shipping/transport

Introduction – economy and water

Production and consumption affect water quality!

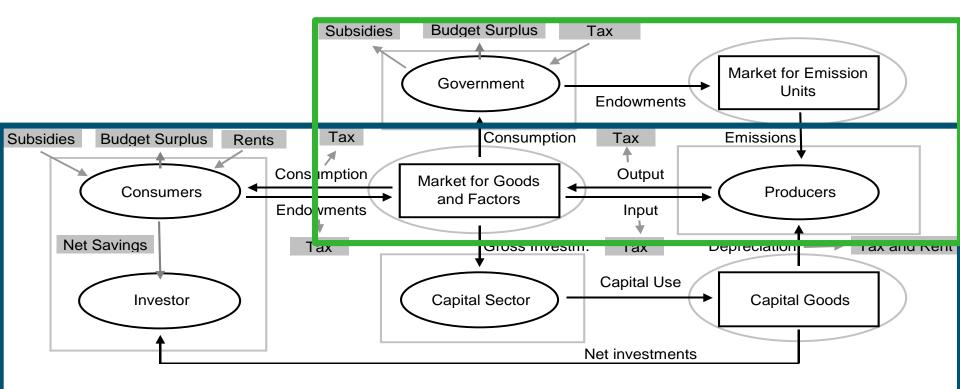
Contaminated water

Solutions =>cheapest solution?

Linking economic and hydrology models

- How can we measure the economic impact of water quality policy?
- Hydro-economic models
 - National economic models (Brouwer et al., 2008; Dellink et al., 2011)
- Cost optimization models
 - Environmental costing model and SWAT Cools et al. 2011) for Nete river basin in Belgium (only N emissions)
 - WFD regiOptimizer (N and P concentrations)

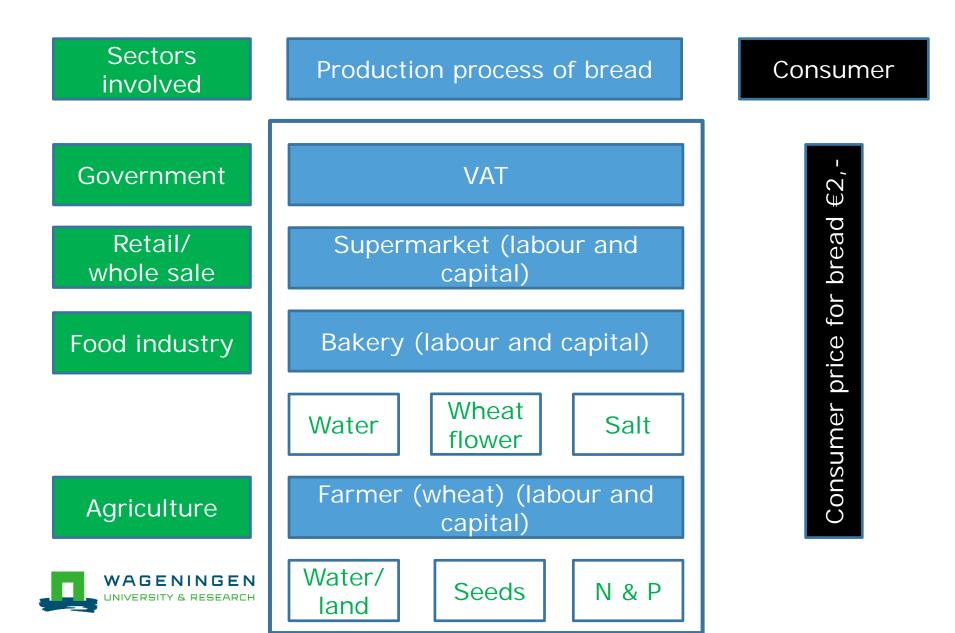
Trade-off methodologies in water policy making


- Social cost benefit analysis, for WFD (PBL, 2008) or for Marine Strategy (LEI, 2013)
 - Societal costs and benefits
 - Changes in economic behaviour through prices
 - Society (larger scale)
- Cost-effectiveness analysis
 - Cost minimization given environmental targets
 - Maximize environmental pressure reduction given budget
 - Net costs (cost minus benefits)

Hydro-economic model (Brouwer et al., 2008)

- Applied General Equilibrium model (static)
- Focus on water-related environmental themes
- Sustainability standards to be met with
 - Abatement technologies (except for dehydration and soil contamination)
 - Emission permits
- Revenues of emission permits are recycled by either tax reduction or lump sum subsidies to households

Source: Gerlagh et al. (2002); Brouwer et al. (2008)



Environmental-economic link

- Tradeable environmental emission permits ("polluter pays principle")
- Measures to invest in (cost-effectiveness curves)
- Trade-off for producers to extend:
 - purchase permits or
 - invest in measures

Economics: bread in economic model

Table 1 – Social Accounting Matrix (SAM) and Net National Income in the Netherlands in 2000 (in billion euros)														
	Primary sector	Secondary sector	Tertiary sector	Capital	Abatement	Trade balance	Net investments	Consumption	Endowments	Sum				
Primary sector	18.4	-10.3	-0.9	-0.6	0.0	-4.5	0.0	-2.1	-	0				
Secondary sector	-5.5	170.4	- 52.5	-59.6	-0.1	0.9	0.0	-53.7	-	0				
Tertiary sector	-2.8	-56.9	313.2	-23.1	-0.1	- 10.7	0.0	-219.8	-	0				
Capital	-3.1	-18.0	-40.1	91.4	0.0	0.0	-30.1	0.0	-	0				
Abatement	0.0	-0.1	0.0	0.0	0.2	0.0	0.0	-0.1	-	0				
Labour	-1.9	-41.6	-122.7	0.0	0.0	0.0	0.0	0.0	166.2	0				
Profits	-4.6	-26.6	- 59.4	0.0	0.0	0.0	0.0	0.0	90.6	0				
Taxes	-0.5	-17.0	- 37.7	-8.1	0.0	0.0	0.0	-20.0	83.3	0				
Sum	0	0	0	0	0	- 14.3	-30.1	- 295.7	340.1	0				

Source: Statistics Netherlands.

Table 3 - Emissions in the Netherlands in 2000

	Primary sector	Secondary sector	Tertiary sector	Consumption	Total
Eutrophication (million P-equivalents)	90.4	15.8	11.6	19.6	137.4
Dispersion of toxic substances (billion AETP-equivalents)	0.8	61.7	7.8	17.9	88.3

Source: Brouwer et al. (2008)

AETP = aquatic eco toxicological potential ³⁴

Abatement cost curves

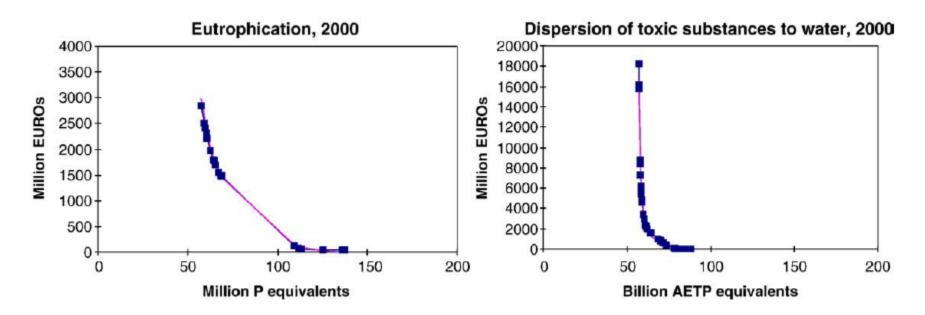
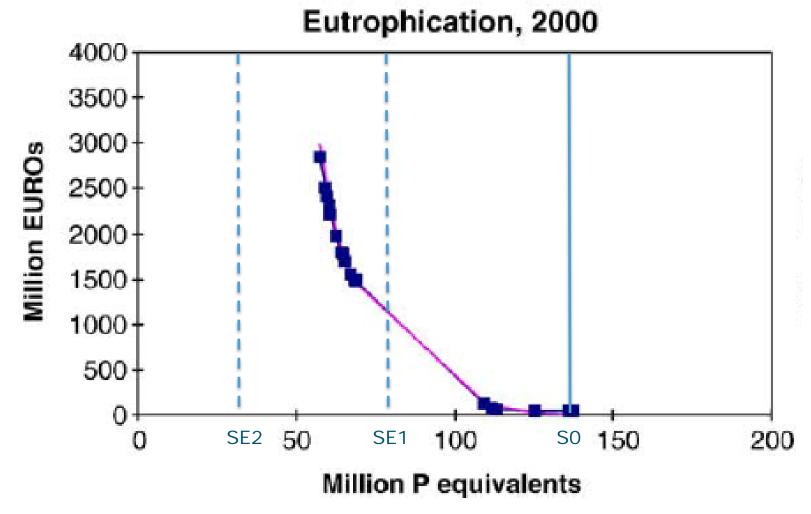



Fig. 2-Estimated abatement cost curves for eutrophication and the dispersion of toxic substances to water.

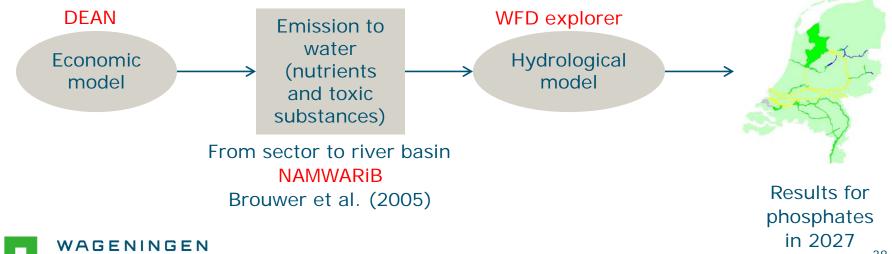
UNIVERSITY & RESEARCH

Hydro-economic model - results

Table 4 – The impact of the different emission reduction scenarios on Net National Income and their total economic cost (in billion euros; price level 2000)

Variant		Variant 1			Variant 2		
Emission reduction scenario	10%	20%	50%	10%	20%	50%	
Net National Income Loss in NNI compared to baseline	339.3 0.7	338.4 1.6	329.6 10.5	339.4 0.7	338.1 1.9	308.0 32.1	
Relative change in NNI (%)	-0.2%	-0.5%	-3.1%	-0.2%	-0.6%	-9.4%	

Unilateral


Dutch water policy: goods with polluting production more imported. Multilateral

EU water policy: polluting production reduced.

Static vs. dynamic hydro-economic model (Dellink et al., 2011)

- Not only two situations compared, but also the path from one to another
- The economic model is a forward-looking neo-classical growth model (based on DEAN)
- Linked to hydrological model WFD explorer

Dynamic model – additional features

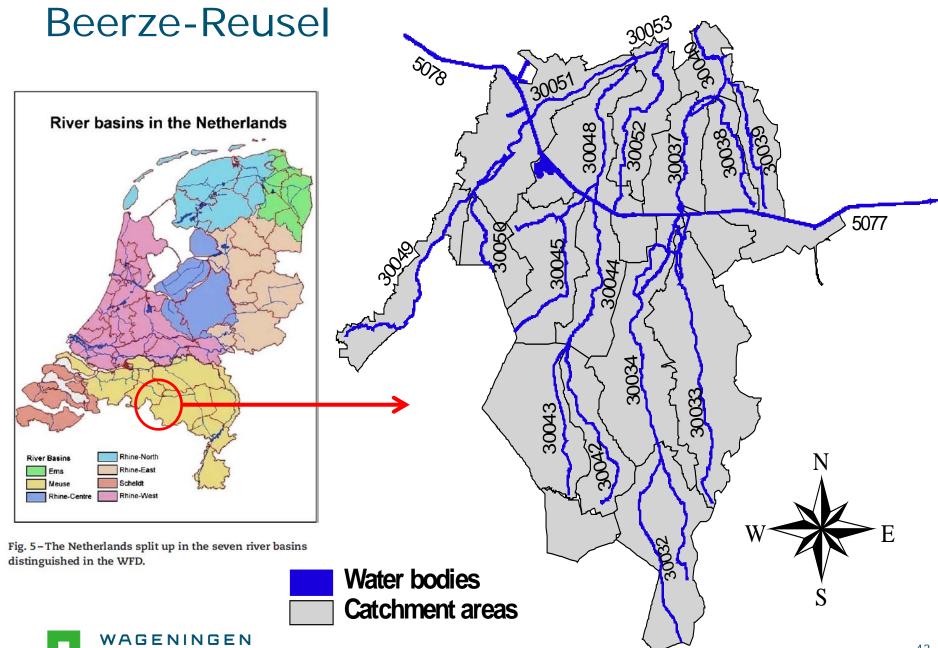
- Trade off between years (measures/emission rights)
- Growth rates on
 - Economic growth
 - Technological change of abatement
 - Autonomous emission reduction
- Results on water quality at river basin level

Hydro-economic model - conclusions

- National scale
- Links economic model with hydrological model
- Takes into account economic interactions
- Abatement cost curves rather inflexible
 - Not sector specific
 - No regional differences (or diffuse sources)

Cost optimization model

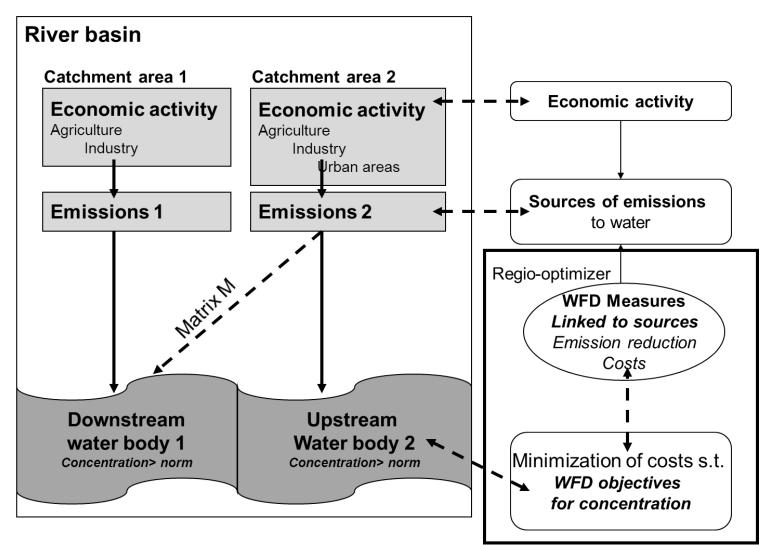
- Cost optimization on water quality (Linderhof et al. 2010) for the Beerze-Reusel basin (the Netherlands), N and P
- Environmental costing model (Cools et al. 2011) for the Nete basin (Belgium) linked to water flow model, only N



Cost optimization model

Hydrological model – CEA (Linderhof et al. 2010)

- Hydrological structure (WFD Explorer)
- Programmes of measures cost effectiveness analysis
- Small scale (part of river basin)
 - Water bodies (part of water system)
 - Catchment Areas


NIVERSITY & RESEARCH

Hydrological model - CEA

- Cost minimization of program of measures
- Subject to water quality targets (concentration)
- Measures
 - Related to one or more substances (N and P)
 - Measures linked to water bodies (WWTP) or catchment areas (agriculture)

Scheme

Model

$$\text{Minimize} \sum_{j \in J} \sum_{k \in K} X_{jk} C_{jk}$$

Subject to

Emission levels:
$$E_{ks} = E_{ks}^0 \left(\prod_{j \in J} 1 - \varepsilon_{jks} X_{jk} \right)$$
 (2)

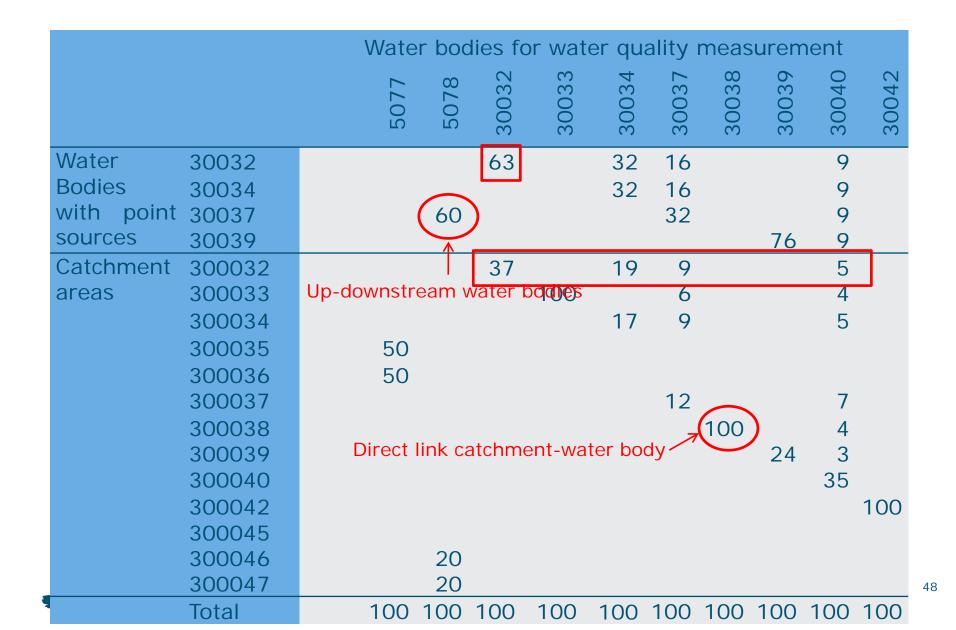
Sum of emissions:
$$E_{is} = \sum_{k \in K} E_{ks} Y_{ik}$$
 for k and s (3)

Changes in water quality:
$$Q_{is} = Q_{is}^0 \left[1 - \sum_{i' \in I} M_{ii's} \left(\frac{E_{i's}^0 - E_{i's}}{E_{i's}^0} \right) \right]$$
 (4)

Water concentration target: $Q_{is} \leq \tau_{is}$

(1)

$$0 \le X_{jk} \le 1 \tag{6}$$


i is water body/catchment area, *j* is measure; *k* is emission source, *s* is substance. X is implementation degree, *E* is Emissions, *Q* is Concentration, *C* is costs, *M* is transport matrix, and τ is target of concentration WAGENINGEN UNIVERSITY & RESEARCH

Relative reduction

- Measure 1: 20% emission reduction
- Measure 2: 50% emission reduction
- Suppose emissions are 100 units
- Measure 1 reduces 20%=> 20 units removed and 80 units left
- Measure 2 reduces 50%=> 40 units removed and 40 units left
- Total reduction is then: 60 units or 60% (100x.2+80x.5)

Transport matrix for N

Characterisation of Beerze-Reusel

 Table 1
 Different nutrient emission sources in the river basin

	Number of sources	Emissions (kg per day)		Share of emissions (%)	
		N	Р	Ν	Р
Total	112	1,606.7	119.1	100.0	100.0
Agriculture	21	114.2	9.0	7.1	7.5
Construction	21	6.0	0.8	0.4	0.7
Industry	1	6.7	1.7	0.4	1.4
WWTP	4	579.8	59.5	36.1	49.9
Sewage system	21	32.3	33	2.0	2.8
Shipping	17	1.7	0.3	0.1	0.2
Atmospheric deposition	21	128.6	0.0	8.0	0.0
Inflowing water from					
Belgium/other River					
basins	5	407.4	11.4	25.4	9.5
Inflowing water	1	330.0	33.3	20.5	27.9

Program of measures

Type of measure	Emission reduction capacity (%)	Number of measures
Agriculture and atmospheric deposition (catchments)		
Manure free corridor	5	21
Buffer strips (crop free corridors) special crops		21
Crop free corridors with paths open for public		21
Buffer strips (crop free corridors) grassland	8	21
Buffer strip (crop free corridors) arable land	8	21
Helofytefilters with reed		21
Natural banks (5 meters wide)		21
Subtotal Agriculture		147
Upgrade of WWTP (four WWTP)	0.0	4
Fourth stage of WWTP	90 5-8	4
Helofytefilters with reed (additional stage) * Additional N-filters*	56-90	4 3
Additional chemicals to remove P emissions*	20-55	3
Additional P filters*	20-55 14-89	ა 3
Subtotal WWTP	14-89	3 17
Sewer improvements (catchments)		
Separate sewage system for rain water	80	21
Sewer improvement: decoupling of stormwater overflow		21
Reconstruct stormwater overflow facilities		21
Sewer improvement: larger storage settling tanks		21
Sewer improvement: increasing the flowing of rain water		21
Subtotal Sewer		105
Total number of measures		269

Results

- Policy 25% reduction of concentrations in river basin
- Inflow of N and P from Belgium remains constant.
- 25% reduction of N is almost as expensive as reducing N and P by 25%

	Costs	Additional costs Difference in costs with RED25%	Total costs of RED25%
	€mln	€mln	€mln
RED25%N	53.6	0.4	54.0
RED25%P	10.2	43.8	54.0

Results

- Policy 25% reduction of concentrations in river basin
- Inflow of N and P from Belgium is reduced.
- 25% reduction of N is almost as expensive as reducing N and P by 25%
 - Multilateral=> € 4 mln vs. unilateral=> € 54 mln

	Costs	Additional costs Difference in costs with RED25% +	Total costs of RED25%+
	€mln	€mln	€mln
RED25%N+	3.2	0.4	3.6
RED25%P+	2.9	0.7	3.6

Conclusions

- Water relates to many economic activities.
- Policy decisions more and more based on (economic) trade-offs!
- Hydrological models do not take into account economic changes due to interventions in the water system.
- Hydro-economic models can take into account economic aspects such as
 - Feed backs between economic sectors
 - Price changes (polluter pays principle)
 - Minimum cost for society of policies

If you want to convince a politician, you have to talk in euros!

End

Thank you for your attention!

More information: <u>vincent.linderhof@wur.nl</u>

