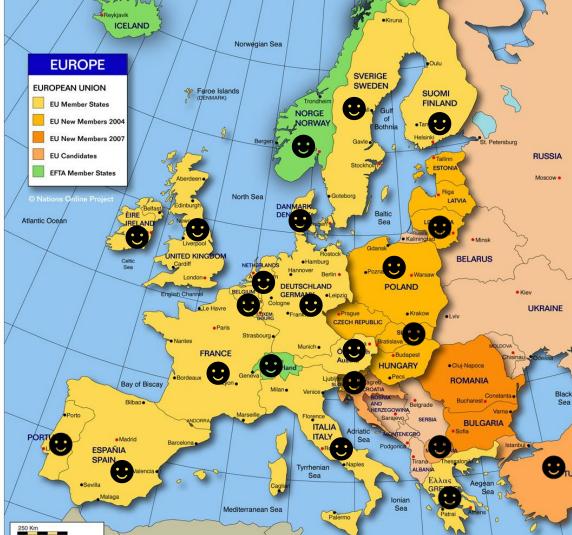
Large-scale methane measurements on individual ruminants for genetic evaluations

Yvette de Haas and Jan Lassen

METHAGENE

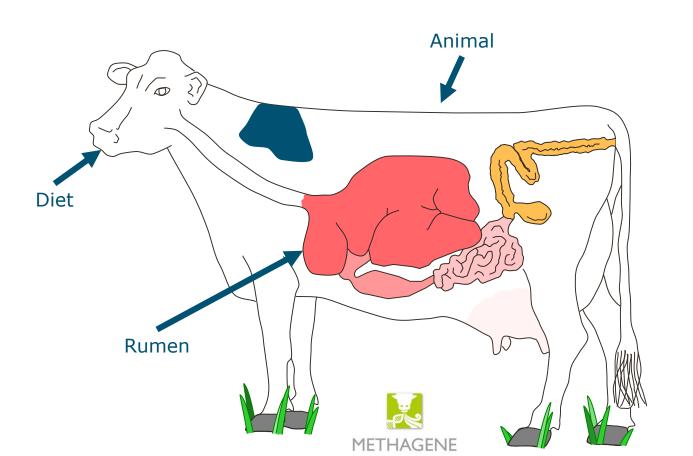
It all started in 2012 ©


COST is a unique means for European researchers, engineers and scholars to jointly develop their own ideas and new initiatives across all fields of science and technology through trans-European networking of nationally funded research activities

NETWORK PROJECT \neq **RESEARCH PROJECT**

www.cost.eu

Objectives of METHAGENE


- Describe methane determining factors and decide on best trait for methane emission;
- Identify proxies for methane emissions to be used for genetic evaluations;
- Harmonise protocols for large-scale methane measurements using different techniques; and
- Quantify benefits for producers when incorporating methane emissions into national breeding strategies.

What factors affect methane?

Methane-determining factors

1. Diet

- Dry matter intake
- Diet composition
 - Fiber
 - Ether extract
 - Lignin
 - Starch
 - Suger
 - Protein
 - Fat

- Grass:maize ratio
- Additives
 - Oil
 - Tannins
 - Nitrate

_ _ _

METHAGENE

• Enzymes

2. Rumen

- Microbial types
 - Protozoa
 - Fungi
 - Archaea
 - Bacteria
 - Virus

- Rumen volume
- Rumen size
- Rumen shape
- Retention time
- Passage rate
- Digestibility

3. Animal

- Body weight
- Body conformation
- Lungs

- Production level + composition
- Lactation stage
- Parity

- Genetics
- Breed

- Gender
- Immune system

4. Other

- Diurnal pattern
 - Feeding behaviour?
- Seasonal pattern
 - Diet?
 - Weather?
- Disease
 - Feed intake?

Best methane phenotype

Definitions of methane phenotypes

Trait	Definition	Strength	Weakness
Methane	Methane production	The pure trait that	Highly correlated to
production	per day (l or g/d)	we want to improve	feed intake and
			production level
Methane	Methane production	The phenotype of	Ratio trait so selection
intensity	per kg kg milk or	interest for the user	can be hard to
	live weight		incorporate properly
Methane	Methane production	The phenotype of	Ratio trait so selection
yield	per DMI	interest for the user	can be hard to
			incorporate properly
Residual	Difference observed	Nice statistical	Can be hard to explain
methane	and predicted	properties.	for users
production	methane production	Corrected for traits	
		that influences	
		methane production	

Design of the experiment

Multitrait I = Milk + ↓ Methane

Ratio I = Milk + ↓Methane/Milk

Residual Methane I(Methane) = Milk + \downarrow (μ + β Milk)

- r_g and r_e between CH₄ and Milk = 0.30
- Genetic gain (ΔG) for milk was kept constant at 65.8 kg

Table 1. Expected genetic gainmethane (in L) for the three selectionindexes, in scheme calibrated to keep $\Delta G_{milk} = 65.8 \text{ kg}$

Indexes	CH ₄
Multitrait	24.8
Ratio	27.1
Residual Methane	27.3

 ΔG_{meth} was most favourable for the Multitrait index, when keeping the Δg_{milk} constant (65.8 kg)

Table 2. Estimated genetic and residualcorrelations between traits

	Milk	Meth	ResM	Ratio
Milk	-	0.30	-0.002	-0.97
Meth	0.30	-	NA	-0.082
ResM	-0.10	NA	-	-0.083
Ratio	-0.98	-0.12	-0.13	-

 r_g between Methane and Ratio are small, implying that selection for the ratio wouldn't be effective in reducing methane emissions.

Zetouni et al. (2017) - J. Anim. Sci. 95:1921–1925 METHAGENE

Larissa's conclusion

In order to improve a trait defined as a ratio, selecting for its component traits brings higher genetic progress

Zetouni et al. (2017) - J. Anim. Sci. 95:1921–1925 ETHAGENE

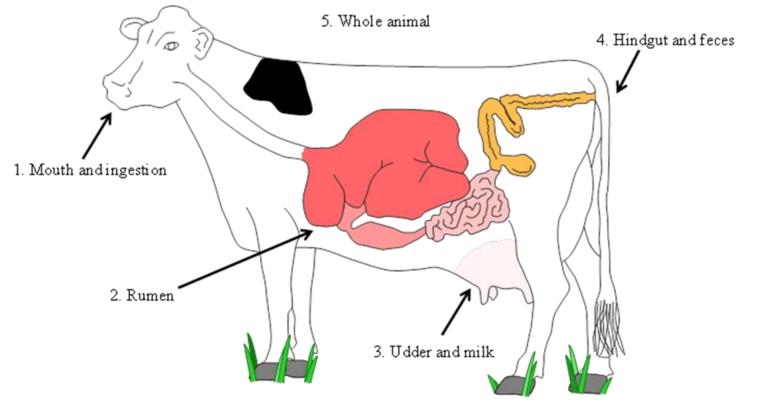
Conclusion of METHAGENE consortium

Best methane phenotype

It depends!

How you express it, depends:

- On the audience
- On the purpose
- On your discipline


But for all you need methane production

Which proxies for methane?

Proxies for methane

Negussie et al. (2017) - J. Dairy Sci. 100:2433-2453

1. Mouth and ingestion

Dry Matter Intake

Rumination time

Feeding behaviour

Rumen microbiome Methanogens

Rumen volume

Protozoa

Retention time

3. Udder and milk

Milk yield and composition

Milk fatty acids

MIR spectra

4. Hindgut and faeces

Faecal ether lipids

Digestibility

Body weight – conformation traits

Lactation stage

Animal type

Conclusion of METHAGENE consortium Best proxy

It depends!

- No single proxy was found to accurately predict CH₄
- A combination of two or more proxies is a better solution
 - Combining proxies can increase the accuracy of predictions by up to 15 - 35%
 - Different proxies describe independent sources of variation in CH₄ and one proxy can correct for shortcomings in the other(s)

Negussie et al. (2017) - J. Dairy Sci. 100:2433-2453

How to record methane?

Measuring equipments (1/3)

Respiration chamber Gold standard!

 SF_6

Measuring equipments (2/3)

Measuring equipments (3/3)

Butter boxes

Features of equipments

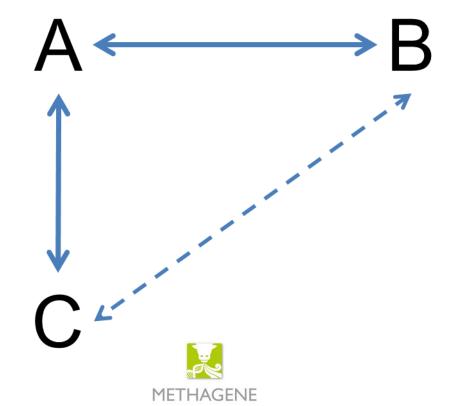
- Robustness
- Intrusiveness
- Costs of 1 measurement
- Throughput

- Labour intensity
- Automated matching with animal ID (risk on mistakes)

Total time in life that animal can be recorded

- Flow / Flux
- Concentration

Conclusion of METHAGENE consortium Best device


It depends!

- No method is completely ideal for large scale monitoring
- Need to be aware of limitations
- All methods (used properly) provide valuable information
- All methods provide variable information
- Can we combine data sets from different methods?

Can we link methods?

How well do methods correlate?

	Mass Flux Methods			Concentration Methods						
	Chamber	SF ₆	GF	LMD	NDIR Peaks	NDIR CO ₂ tracer1	FTIR CO ₂ tracer1	PAIR CO ₂ tracer2		
Respiration Chamber	1									
SF ₆	0.87	1								
GreenFeed	0.81	0.40 ^B	1							
LMD			0.77	1						
NDIR Peaks	0.89 ^A				1					
NDIR CO ₂ tracer1	0.72 ^A		0.64	0.56	0.58	1				
FTIR CO ₂ tracer1				0.60	0.53	0.97	1			
PAIR CO ₂ tracer2	0.80 ^{AB}							1		

METHAGENE

Actual correlations

How well do methods correlate?

	Ma	ss Flux Metho	ods	Concentration Methods					
	Chamber	SF ₆	GF	LMD	NDIR Peaks	NDIR CO ₂ tracer1	FTIR CO ₂ tracer1	PAIR CO ₂ tracer2	
Respiration Chamber	1								
SF ₆	0.87	1							
GreenFeed	0.81	0.40 ^B	1						
LMD	(0.41 - 0.71)	(0.32 - 0.62)	0.77	1					
NDIR Peaks	0.89 ^A	(0.36 - 0.74)	(0.24 - 0.82)	(0.36 - 0.96)	1				
NDIR CO ₂ tracer1	0.72 ^A	(0.08 - 0.81)	0.64	0.56	0.58	1			
FTIR CO ₂ tracer1	(0.31 - 0.76)	(-0.26 - 0.71)	(0.48 - 0.70)	0.60	0.53	0.97	1		
PAIR CO ₂ tracer2	0.80 AB	(0.44 – 0.80)	(0.18 - 0.80)	(0.16 - 0.89)	(0.59 - 0.85)	(0.01 - 0.83)	(-0.23 - 0.83)	1	

Inferred correlations

How well do methods agree?

	Ma	ss Flux Metho	ods	Concentration Methods					
	Chamber	SF ₆	GF	LMD	NDIR Peaks	NDIR CO ₂ tracer1	FTIR CO ₂ tracer1	PAIR CO ₂ tracer2	
Respiration Chamber	1	0.30	0.41	(0.10 - 0.69)	0.88 ^A	0.38	(0.09 -0.49)	0.70 ^A	
SF ₆	0.87	1	0.34	(0.07 - 0.56)	(0.09 - 0.55)	(-0.14 - 0.68)	(-0.25 - 0.53)	(0.06 - 0.84)	
GreenFeed	0.81	0.40 ^B	1	0.18	(0.04 - 0.51)	0.14	(-0.29 - 0.55)	(0.06 - 0.66)	
LMD	(0.41 - 0.71)	(0.32 - 0.62)	0.77	1	(0.31 - 0.86)	0.18	0.20	(0.31 - 0.67)	
NDIR Peaks	0.89 ^A	(0.36 - 0.74)	(0.24 - 0.82)	(0.36 - 0.96)	1	0.14	0.15	(0.32 - 0.65)	
NDIR CO ₂ tracer1	0.72 ^A	(0.08 - 0.81)	0.64	0.56	0.58	1	0.79	(0.11 - 0.74)	
FTIR CO ₂ tracer1	(0.31 - 0.76)	(-0.26 – 0.71)	(0.48 - 0.70)	0.60	0.53	0.97	1	(-0.29- 0.75)	
PAIR CO ₂ tracer2	0.80 AB	(0.44 – 0.80)	(0.18 - 0.80)	(0.16 - 0.89)	(0.59 - 0.85)	(0.01 - 0.83)	(-0.23 - 0.83)	1	

METHAGENE

Conclusions – comparing and harmonizing

- Generally good correlation between methods
- Concordance is less good, but generally positive
- Combining predictions shows promise, but reveals some biases
- Combining data for genetic analysis does it require perfect agreement?

The genetic component of methane

Is there a genetic component in methane?

Heritabilities:

Sheep

- MeP: 0.29 (0.05)
- MeY: 0.13 (0.03)

Pinares-Patino et al., 2013

Beef

- MeP: 0.40 (0.11)
- MeY: 0.19 (0.10)

Donoghue et al., 2013

METHAGENE

Dairy

- MeP: 0.21 (0.06)
- MeI: 0.16 (0.04)

Lassen et al., 2016

- Predicted methane
 - MeP w DMI: 0.35

De Haas et al., 2012

• MeP w MIR: 0.12

Kandel et al., 2013

Is there a genetic component in methane?

Genetic correlations (MeI) Milk yield and content • ~ -0.6, -0.1, -0.4 Fertility: 0.3 BSC: 0.3 Longevity: -0.1 Kandel et al., 2014

Genetic correlations (MeP) Milk yield • 0.1 Body weight: -0.2 Lassen et al., 2016 ■ RFI: 0.3 De Haas et al., 2012

Selection index with methane

Starting from current total merit indices in
UK, ES, NL

Scenario 1: Including CH₄ in current breeding goals

METHAGENE

- Scenario 2: Including CH₄, whilst restricting the genetic gain of CH₄ to zero
- Scenario 3: Including CH₄, whilst assigning an economic cost to CH₄ (3 shadow prices were investigated)

Scenarios

	Sce	nario 1	Scena	ario 2	Scen	ario 3
		Genetic gain CH ₄				
UK	£85.2	8.48g/d/y				
ES	€91.9	7.30g/d/y				
NL	€228.3	3.93g/d/y				

Scenarios

	Scenario 1		Scen	ario 2	Scenario 3
	Index value	Genetic gain CH ₄	Total Percentage change change		
UK	£85.2	8.48g/d/y	-£12.85	-14%	
ES	€91.9	7.30g/d/y	-€11.09	-12%	
NL	€228.3	3.93g/d/y	-€7.23	-3%	

Scenarios

	Sce	nario 1	Scen	ario 2	Scenario 3		
	Index value	Genetic gain CH ₄	Total change	Percentage change	Carbon price (lit)	Carbon price (high)	
UK	£85.2	8.48g/d/y	-£12.85	-14%	-0.59	-1.75	
ES	€91.9	7.30g/d/y	-€11.09	-12%	-0.63	-1.85	
NL	€228.3	3.93g/d/y	-€7.23	-3%	-0.31	-0.88	

Conclusion of METHAGENE consortium

Benefit for producers

It depends!

Breeding is a mitigation tool

• Heritabilities 0.1-0.4

 Benefit for producers depends on incentives and carbon taxes/prices
Climate change means meat taxes are 'increasingly probable'

By Matt Mace | edie.net

🋗 15 dec. 2017

Advertisement

Conclusion – METHAGENE

Within METHAGENE we have come a long way

- Good discussions
- New insights
- Clear guidelines

METHAGENE

genetics

proxies

factors

methane

Thank you!

Yvette.deHaas@wur.nl

