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We engineered a machine learning approach, MSHub, to enable 
auto-deconvolution of gas chromatography–mass spectrom-
etry (GC–MS) data. We then designed workflows to enable the 
community to store, process, share, annotate, compare and 
perform molecular networking of GC–MS data within the Global 
Natural Product Social (GNPS) Molecular Networking analysis 
platform. MSHub/GNPS performs auto-deconvolution of com-
pound fragmentation patterns via unsupervised non-negative 
matrix factorization and quantifies the reproducibility of frag-
mentation patterns across samples.

Given its ease of use and low operational cost, GC–MS has appli-
cations with broad societal effect, such as detection of metabolic 
disease in newborns, toxicology, doping, forensics, food science and 
clinical testing. The predominant ionization technique in GC–MS 
is electron ionization (EI), in which all compounds are ionized by 
high-energy (70-eV) electrons. Because fragmentation occurs with 
ionization, EI GC–MS data are subjected to spectral deconvolution, 
a process that separates fragmentation ion patterns for each eluting 
molecule into a composite mass spectrum.

The 70 eV for ionizing electrons in GC–MS has been the standard, 
making it possible to use decades-old EI reference spectra for annota-
tion1. There are ~1.2 million reference spectra that have been accu-
mulated and curated over a period of more than 50 years2. Many tools 
and repositories for GC–MS data have been introduced3–15; however, 
much of GC–MS data processing is restricted to vendor-specific  
formats and software8. Currently, deconvolution requires setting 

multiple parameters manually3–5 or posessing computational skills to 
run the software7. Also, the lack of data sharing in a uniform format 
precludes data comparison between laboratories and prevents taking 
advantage of repository-scale information and community knowl-
edge, resulting in infrequent reuse of GC–MS data8,11–15.

Although batch modes exist, deconvolution quality is currently 
not enhanced by using information from all other files. To leverage 
across-file information, improve scalability of spectral deconvolu-
tion and eliminate the need for manually setting the deconvolution 
parameters (m/z error correction of the ions and peak shape—
slopes of raising and trailing edges, peak RT shifts and noise/inten-
sity thresholds), we developed an algorithmic learning strategy for 
auto-deconvolution (Fig. 1a–f). We deployed this functionality 
within GNPS/MassIVE (https://gnps.ucsd.edu)16 (Fig. 1f–i). To pro-
mote analysis reproducibility, all GNPS jobs performed are retained 
in the ‘My User’ space and can be shared as hyperlinks.

This user-independent ‘automatic’ parameter optimization is 
accomplished via fast Fourier transform (FFT), multiplication and 
inverse Fourier transform for each ion across an entire data set, 
followed by an unsupervised non-negative matrix factorization 
(NMF) (one-layer neural network). Then, the compositional con-
sistency of spectral patterns for each spectral feature deconvoluted 
across the entire data set can be summarized as a ‘balance score’. The 
balance score (mathematical definition in the Methods) quantifies  
reproducibility of the deconvoluted fragmentation patterns across 
the data, which, in turn, gives insight into how well the spectral 
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Fig. 1 | The processing pipeline and performance. a, Spectra are aligned and binned; noise is filtered and (b) baseline corrected. c, Common profile across 
the data set and peaks in RT dimension are aligned using FFT-accelerated correlation. d, Generation of both peak integrals for all samples and their common 
fragmentation patterns. e, Separation of overlapping peaks with patterns across samples using NMF. f, Peak integrals for all samples and canonical fragmentation 
patterns. NIST, National Institute of Standards and Technology. g, Annotation with public or private libraries. RTI, retention time index. h, Molecular networks. 
i, Data and results are shared between users. j, Linear dependence of the MSHub processing time. k, Distributions of library matching scores with an increased 
volume of data (data sets with known spiked compounds, Test1–Test11; Supplementary Table 1) for all matches and (l) for the spiked compounds only. m, FDR for 
annotations (Test11) of the top match and (n) top ten matches. o, Number of library matches for spiked compounds. p,q, Cosine improves as higher volume of 
the data enhances deconvolution quality for the top match of biological samples: breath (non-derivatized, ICL1–ICL11; Supplementary Table 1) (p) and human and 
mouse blood serum, adipose tissue and cerebrospinal fluid (silylated, data sets UCD1–UCD16; Supplementary Table 1) (q). r, The unique annotations across data 
sets ICL1–ICL11 and (s) data sets UCD1–UCD16; no balance score filtering applied. t,u, Quantitative comparison of XCMS (t) and MSHub (u). RT, retention time.
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Fig. 2 | Analysis and molecular networking of GC–MS data. Annotated spectra (a) without filtering and (b) with a 65% balance score filtering. c, Global 
network containing 35,544 nodes from 8,489 files in 38 GNPS data sets. The size of the node is proportional to the number of nodes that connect, and the 
edge thickness is proportional to the cosine score (Supplementary Fig. 6). The annotation is the top match with cosine above 0.65. d, Zoomed-in region. 
e, Cluster of compounds from dart frog skin samples—all nodes are alkaloids. f, Human surface volatilome visualized with ‘ili19. Molecular distributions for 
squalene; (g) hexanoic acid, a malodor molecule; (h) globulol, common in perfume; and (i) phenylene dibenzoate, common in skincare products.
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feature is explained by the available data. Thus, the balance score 
provides an orthogonal metric of deconvoluted spectral quality. We 
refer to the data set spectral deconvolution tool within the GNPS 
environment as ‘MSHub’.

All MSHub algorithms use efficient HDF5 technologies. The 
Fourier transform with multiplication improves MSHub’s effi-
ciency, resulting in deconvolution times that scale linearly with the 
number of files (Fig. 1j and Supplementary Figs. 1a, 2 and 4). We 
achieved this performance using out-of-core processing, a tech-
nique used to process data that are too large to fit in a computer’s 
main memory (RAM): MSHub uploads files one at a time into the 
RAM module; data are then processed and deleted from memory, 
iteratively. Because only one sample is stored in the memory, the 
load is constant (Supplementary Fig. 2a–f). As machine learning 
approaches gain improved performance with increased volumes 
of information, including more data into analysis leads to better 
scores of spectral matches (Fig. 1k,l and Supplementary Fig. 1b). 
The spectral library match scores increase, and their distributions 
become narrower, indicating better quality of results (Fig. 1p,q). 
More files deconvoluted in MSHub leads to fewer chimeric spec-
tra, resulting in higher-quality spectral features, and an increase in 
the number of annotations with improved scores (Fig. 1r,s). MSHub 
performs as well or better as other deconvolution tools (Fig. 1t,u 
and Supplementary Figs. 3–5). Linear scaling for MSHub makes 
it the only tool amenable to repository-scale operation in its pres-
ent form (Supplementary Table 2). GNPS saves deconvoluted data 
as a summary file, so the deconvolution step does not need to be 
re-performed for any future analyses.

Once the summary file is generated by GNPS-MSHub or 
imported from another deconvolution tool, the spectra can be 
searched against public, private or commercial libraries. Matches 
are narrowed down based on user-defined filtering criteria, such as 
number of matched ions, Kovats index, balance score, cosine score 
and abundance. We provide freely available reference data of 19,808 
spectra for 19,708 standards, a ~29% increase of free public libraries. 
All annotations should be considered level 3 (a molecular family) 
annotation17. When multiple annotations can be assigned, GNPS 
provides all candidate matches within the user’s filtering criteria.

One of the developments that enabled finding structural relation-
ships within mass spectrometry data is spectral alignment, which 
forms the basis for molecular networking18. GNPS has now expanded 
to include GC–MS-specific molecular networking16. GNPS-based 
GC–MS analysis enables data co- and re-analysis, as the processing is 
agnostic to the data origin. To showcase this ability, we built a global 
network of various public GC–MS data sets and applied a balance 
score of 65% (Fig. 2a,b and Supplementary Fig. 6) to ensure that only 
good-quality deconvoluted spectra are matched against the refer-
ence library (Fig. 2c–e and Supplementary Figs. 9 and 10). Molecular 
networking can further guide the annotation at the molecular family 
level by using information from connected nodes rather than focus-
ing on individual annotations (Supplementary Figs. 7 and 8). One can 
visualize aspects such as derivatized versus non-derivatized, candi-
date compound class or subclass and instrument type or other meta-
data and inspect individual clusters of nodes (Supplementary Fig. 9). 
For example, we observed a cluster that belonged to dart frogs from 
the Dendrobatoidea superfamily, whereas the long-chain ketones 
are found in cheese and beer (Fig. 2e and Supplementary Fig. 10a). 
The output from GNPS can be exported for use in statistical analysis 
environments and for data visualization (for example, Supplementary 
Figs. 7–10), including molecular cartography19 (Fig. 2f–i).

GNPS/MassIVE lowers the expertise threshold required for 
analysis and encourages Findable, Accessible, Interoperable and 
Reusable (FAIR) practices20 by promoting re-use of GC–MS data. 
To highlight the broader utility of GNPS GC–MS-based analysis, 

videos were created (Supplemental Videos 1–6). This work aims 
to democratize scientific analyses. GC–MS is often the only mass 
spectrometry method in non-metabolomics laboratories or labora-
tories with fewer resources, including those in developing countries. 
GNPS-based GC–MS allows free access to data and reference data 
and to powerful computing infrastructures.
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Methods
Tutorials and general note. The tools are accessible through http://gnps.ucsd.edu. 
The documentation to use the GC–MS interface can be found at https://ccms-ucsd.
github.io/GNPSDocumentation/gcanalysis/.

The tutorials for the deconvolution can be accessed at https://ccms-ucsd.
github.io/GNPSDocumentation/gc-ms-deconvolution/, and the library search and 
molecular networking instructions can be found at https://ccms-ucsd.github.io/
GNPSDocumentation/gc-ms-library-molecular-network/.

The tutorial for spectral libraries upload can be found at https://ccms-ucsd.
github.io/GNPSDocumentation/batchupload/.

The GNPS workflows can be launched with recommended default settings or 
adjusted according to user needs. The ranges and effect of settings are described in 
the tutorial.

The results can be inspected and quality filters applied according to user criteria.
The tutorial also describes how users can use various other aspects of GNPS 

functionality that include:
•	 Data upload and storage
•	 Data sharing
•	 Sharing analysis by sharing workflows
•	 Reproducing analyses
•	 Saving and sharing reference spectra
•	 Using GNPS analysis links for publishing
•	 Using GNPS/MassIVE repository for providing access to data along with the 

publication when required by the journal
The video tutorials for GNPS use for GC–MS data and examples of networking 

application videos can be accessed as follows:
Tutorial for the use of GNPS for analysis of GC–MS data: https://www.youtube.

com/watch?v=KIOim2h8i64
GNPS for GC–MS in breathomics: using molecular networking to combine 

different data sets: https://www.youtube.com/watch?v=bDZj7NI-ZGw
GNPS for GC–MS in petroleomics: using molecular networks to find incorrect 

annotations: https://www.youtube.com/watch?v=r7DSsL03Hbk
GNPS for GC–MS in biology: using molecular networks for compound 

discovery in dart frogs: https://www.youtube.com/watch?v=eNLPrAjuX6w
GNPS for GC–MS in microbiology: using networks to explore the chemistry of 

cheese: https://www.youtube.com/watch?v=fWus3zhKbOA
GNPS for GC–MS in biochemistry: use of networking to discover antifungals 

produced by Bacillus subtilis: https://www.youtube.com/watch?v=cNPW6V3RJY4

Use of the GNPS GC–MS workflows. GNPS GC–MS environment. The GNPS 
leverages the repository infrastructure and now has expanded to include 
GC–MS-specific deconvolution, reference spectra matching and molecular 
networking tools. The new analysis workflows not only solved the scaling of 
analysis, but are also configured to promote data analysis reproducibility, as an 
analysis performed in GNPS is retained in the account-specific job tab and can 
be shared as a hyperlink. The user’s own or someone else’s shared analysis can be 
precisely reproduced by clicking the ‘clone’ button. In addition, we have enabled 
the community to upload and share reference spectra that then continuously 
accumulate, leading to continuous improvements of annotations. GNPS also gives 
the ability to explore all public data sets together with studies in one’s private space 
for a particular research problem (for example, drug discovery). There are no other 
GC–MS deconvolution and annotation infrastructures that also work with the data 
in a repository. The scalability, reproducibility, capture of knowledge and ability 
to efficiently reuse data in the public domain make the GC–MS infrastructure in 
GNPS unique compared to other existing open or commercial resources. GNPS 
promotes FAIR use practices for mass spectrometry data20.

The community infrastructure can be accessed at https://gnps.ucsd.edu under 
the header ‘GC–MS EI Data Analysis’.

Deconvolution. Currently, 1D EI GC–MS data are amenable. We recommend 
using a minimum of ten files in the data set for deconvolution with MSHub. If the 
user only has fewer than ten files, spectral deconvolution and alignment should 
be performed using alternative methods (for example, MZmine, OpenChrom, 
AMDIS, MZmine/ADAP, MS-DIAL, BinBase, XCMS/XCMS Online, MetAlign, 
SpecAlign, SpectConnect, PARAFAC2, MeltDB or eRah). After using one of 
those tools, molecular networking can be performed in the same fashion as for 
MSHub (a detailed description is given in the Supplementary Notes), as the library 
search GNPS workflow accepts input from other tools into the GNPS/MassIVE 
environment. GNPS directly supports deconvolution output from MZmine/ADAP 
and MS-DIAL. The quantitative table of the deconvolution output can be used for 
statistical analysis with external tools.

Library search. Once the .mgf file is generated by GNPS-MSHub or imported from 
another deconvolution tool, the spectral features can be searched against public 
libraries (currently GNPS has Fiehn, HMDB, MoNA and VocBinBase) or the user’s 
own private or commercial libraries (such as NIST and Wiley) and the freely available 
reference data of 19,808 spectra for 19,708 standards released with this manuscript. 
Users can also upload their own libraries to GNPS as well as share them with the 

community. Although the possible candidate annotations can be further narrowed 
by retention index (RI), they should still be considered level 3, a molecular family, 
annotation according to the 2007 Metabolomics Standards Initiative17. Calculation of 
RIs is enabled and encouraged but not enforced. When multiple annotations can be 
assigned, GNPS provides all candidate matches within the user’s filtering criteria.

Filtering the results. The balance score is a new metric that will be available when 
MSHub deconvolution is used. A fragmentation pattern of a compound found 
to be the same in different measurements would result in a high balance score. 
Missing or chimeric peaks would change randomly across files and would result in 
a low balance score. Even when a compound is present in few samples, as long as 
the spectral patterns (irrespective of compound abundances) are conserved across 
samples, it would result in a high balance score.

Cosine and balance score should be jointly used as spectral matching filters for 
processing of the final results. The effect of filtering can be seen in Fig. 1m–o and 
Supplementary Fig. 3d,e. For the test data set shown in Fig. 1m,n, the lowest false 
discovery rate (FDR) of the top match is achieved with the combined threshold 
values of cosine >0.9 and balance score >60% (Fig. 1m). A more conservative 
balance score value of >80% essentially ensures the lowest observed FDR, even 
for poor cosine scores (here referred to as match scores). Conversely, even the 
high match score by itself might still result in unacceptably high FDR if the 
balance score is poor (Fig. 1m,n). The high match score reflects that a library 
spectrum exists that is similar to the query spectrum, whereas a high balance score 
is reflective of the high confidence in deconvolution of the spectral pattern. A 
well-deconvoluted pattern, as defined by the balance score, is more likely to give 
better matches against the spectral library. Selecting higher values of both metrics 
ensures that the best spectra are used and are matched to most likely annotations. 
The ‘optimal’ thresholds—that is, the values that minimize mis-annotations 
without being excessively restrictive—are data specific, but we recommend using 
the above values as a good starting point.

Molecular networks. No matter how the spectral library is searched in GC–MS, 
owing to the absence of a parent mass, a list of spectral matches is more likely to 
contain mis-annotations, both related (isomers and isobars) or, less frequently, 
entirely unrelated compounds1. However, to spot mis-assignments at the molecular 
family level, we propose exploring deconvoluted GC–MS data via molecular 
networking, a strategy that has been effective for liquid chromatography with 
tandem mass spectrometry (LC–MS/MS) data16. In the case of EI, unlike in LC–
MS/MS where the precursor ion mass is known, the molecular ion is often absent. 
For this reason, the molecular networks are created through spectral similarity of 
the deconvoluted fragmentation spectrum without considering the molecular ion. 
We explored molecular networking patterns for the EI data (Supplementary Fig. 
7) and observed that the EI-based cosine similarity networks are predominantly 
driven by structural similarity based on chemical class annotations (Supplementary 
Fig. 7a). These EI networks can be used to visualize chemical distributions 
and guide annotations (Supplementary Fig. 8). Some examples of molecular 
networking applications are discussed in the Supplemental Videos.

Three-dimensional mapping of volatilome. The sample collection and 
GC–MS analysis are described in the “Skin volatilome analysis” section of the 
Supplementary Notes. Feature tables from the deconvolution jobs for head space 
and liquid injection were downloaded from GNPS and combined into a single 
table. The coordinates for the three-dimensional model were picked for all of 
the sampled spots and added into the feature table as described in the tutorial 
(https://ccms-ucsd.github.io/GNPSDocumentation/gcanalysis/). The chemical 
distributors were then visualized using ‘ili19. The chemical annotations of features 
have been cross-referenced from the library search jobs as described in the tutorial. 
Using balance filters at 50% and >0.9 cosine, we arrived at annotations that, once 
visualized, revealed the distributions of skin volatiles (Fig. 2f–i). For example, 
squalene was found on all locations but less on the feet. Hexanoic acid was most 
abundant on the chest and armpits. Globulol, a perfume ingredient that this 
individual used on the chest, was most intense on the chest, whereas phenylene 
dibenzoate, a skincare ingredient, was found on the face and hands.

The three-dimensional model, the feature table used for mapping and the 
snapshots shown in Fig. 2f–i are available at https://github.com/aaksenov1/
Human-volatilome-3D-mapping-.

Generation of molecular networks. The data were collected across multiple 
studies as described in the Supplementary Notes. All of the data sets 
(Supplementary Table 1) were processed on the GNPS MSHub deconvolution 
workflow as described in the tutorial. The figures were generated as described in 
the Supplementary Notes.

Testing and validation. All modules were tested and validated individually to 
determine possible fail points and the results validated by manually reviewing 
the annotations that are obtained. The full pipeline was also tested for a variety 
of data sets, including those collected for this study (the ‘GC–MS analysis for 
validation studies’ section of the Supplementary Notes) and data from several 
previously published studies and unpublished public data. A variety of GC–MS 
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data are represented, including different types of mass analyzers (both high- and 
low-resolution instruments), different modes of sample introduction and analysis 
of both derivatized and non-derivatized samples. The goal was to ensure that both 
feature finding and library matching workflows are operational for all of these 
scenarios and that the results are consistent with those expected. We manually 
verified that the molecules that are known to be present in the data set are indeed 
identified and reported by the workflow. The testing information is summarized in 
Supplementary Table 1.

Comparison of deconvolution tools. We compared the deconvolution 
performance of MSHub alongside MZmine2/ADAP3 and MS-DIAL4. These tools 
were chosen because they satisfy the following criteria: they are open, specifically 
designed for GC–MS data, can perform multi-file processing, are being routinely 
used by the metabolomics community and are actively being developed and 
maintained. Detailed descriptions of the procedure and parameters are given in the 
Supplementary Notes.

Generating input files with the alternative workflows. The MZmine2/ADAP and 
MS-DIAL workflows are the alternative options to perform spectral deconvolution 
on GC–MS data explicitly supported to be compatible with the GNPS library search 
workflow. For better integration, we added a new module to MZmine (version 2.52 
and later) to export the quantification table (.csv) and the spectra summary file 
(.mgf) for the GNPS GC–MS workflow. Furthermore, a new MZmine module was 
also developed to enable the creation of the Kovats RI marker file compatible with 
the GNPS workflow. Detailed directions are given in the GNPS documentation: 
https://ccms-ucsd.github.io/GNPSDocumentation/gc-ms-deconvolution/.

Generation of plots. All plots were generated in Python 3.7.3, using NumPy 
1.16.4, Pandas 0.25.0, RDKit 2019.03.4 and lxml 4.3.4 for data analysis purposes 
and Matplotlib 3.1.0 and Seaborn 0.9.0 for visualization purposes The detailed 
description is given in the Supplementary Notes.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the data used in the preparation of this manuscript are publicly available 
at the MassIVE repository at the University of California, San Diego Center 
for Computational Mass Spectrometry website (https://massive.ucsd.edu). The 
data set accession numbers are: #1 (MSV000084033), #2 (MSV000085136), 
#3 (MSV000084034), #4 (MSV000084036), #5 (MSV000084032), 
#6 (MSV000084038), #7 (MSV000084042), #8 (MSV000084039), #9 
(MSV000084040), #10 (MSV000084037), #11 (MSV000084211), #12 
(MSV000083598), #13 (MSV000080892), #14 (MSV000080892), #15 
(MSV000080892), #16 (MSV000084337), #17 (MSV000083658), #18 
(MSV000083743), #19 (MSV000084226), #20 (MSV000083859), #21 
(MSV000083294), #22 (MSV000084349), #23 (MSV000081340), #24 
(MSV000084348), #25 (MSV000084378), #26 (MSV000084338), #27 
(MSV000084339), #28 (MSV000081161), #29 (MSV000084350), #30 
(MSV000084377), #31 (MSV000084145), #32 (MSV000084144), #33 
(MSV000084146), #34 (MSV000084379), #35 (MSV000084380), #36 
(MSV000084276), #37 (MSV000084277) and #38 (MSV000084212).
All of the GNPS analysis jobs for all of the studies are summarized in 
Supplementary Table 1.

Code availability
The source code of the MSHub software, including low- and high-resolution 
data processing versions, is available online at Github (version used in GNPS) 
(https://github.com/CCMS-UCSD/GNPS_Workflows/tree/master/mshub-gc/
tools/mshub-gc/proc) and at BitBucket (standalone version in MSHub developers’ 
repository, both high and low resolution: https://bitbucket.org/iAnalytica/
mshub_process/src/master/). Scripts used to parse, filter, organize data and 
generate the plots in the manuscript are available online at Github (https://github.
com/bittremieux/GNPS_GC_fig). Script for merging individual .mgf files into a 
single file for creating global network is available at Github (https://github.com/
bittremieux/GNPS_GC/blob/master/src/merge_mgf.py).
The three-dimensional model, the feature table with coordinates used for the mapping 
and the snapshots shown in Fig. 4a–d are available at https://github.com/aaksenov1/
Human-volatilome-3D-mapping-. The GC–MS-adapted MolNetEnhancer code with 
an example Jupyter notebook can be found at https://github.com/madeleineernst/
pyMolNetEnhancer. Source data are provided with this paper.
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