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ABSTRACT 
The possibility to map vegetation types using imaging spectroscopy in a coastal area was investi-
gated. This landscape is under the influence of changing salt water inundation regimes, resulting in 
a heterogeneous composition of the vegetation structure. The species composition in the area of 
interest was described by means of vegetation relevees. A vegetation typology used in former 
studies was adopted to perform the hyperspectral image classification. The vegetation classes to 
be derived from image classification were identified as wet brackish dune valleys, dune shrub, 
beach grass dunes (white dunes) and grassy dunes (grey dunes). The commonly used maximum 
likelihood classification (MLHC) was used to classify a hyperspectral image, acquired by the AHS 
sensor. A new method of data reduction was explored, namely the redundancy analysis (RDA) in 
the software package CANOCO. The RDA was used to reduce the spectral data dimensionality 
and to determine which bands of the hyperspectral imagery had the most predictive power to dis-
tinguish the selected vegetation types. The band selection from the vegetation observation dataset 
was used to perform a MLHC and was then compared to a MLHC using a PCA transformation. A 
maximum classification accuracy of 64.8% was found when MLHC was employed for differentiation 
of the four vegetation types. The influence of soil background was an important source of variation 
in the hyperspectral dataset making separation of the different vegetation classes more difficult. 
Mapping and monitoring dune vegetation using hyperspectral imagery could further be enhanced 
when ancillary data (e.g. digital elevation models or multi-temporal imagery) is included in the 
analyses. 

Keywords: Remote sensing, imaging spectroscopy, vegetation mapping, dune vegetation.  

INTRODUCTION 
Vegetation monitoring is required to understand the dynamics of the biodiversity of a certain area 
and is often a baseline for ecological research. To be able to map or monitor vegetation, plant so-
ciological groups are classified into vegetation types. Local scale vegetation is clustered according 
to the similarity of plant species composition often followed by a vegetation typology. In order to 
classify and investigate plant species composition efficiently the two-way classification program, 
TWINSPAN (i) and the multivariate ordination program, CANOCO (ii) are generally used. The 
vegetation classification system, which is widely used across Europe (iii), and increasingly else-
where, is the Braun-Blanquet system. This system describes plant assemblages at different hierar-
chical levels namely, class order, alliance and association. Various methods exist to derive vegeta-
tion maps from vegetation observations, these include: Arial Photo Interpretation (API) (iv) interpo-
lation on the basis of (permanent) vegetation quadrats (e.g. kriging, (v)), simple interpolation using 
Thiessen polygons (vi), or even in field vegetation border determination on the basis of field maps.  



Proceedings 5th EARSeL Workshop on Imaging Spectroscopy. Bruges, Belgium, April 23-25 2007 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The location and border of the study site on the Wadden island Ameland in the North of 
the Netherlands. (Source: NLR Remote Sensing Department) 
 

Lately, depending on the purpose and scale, new methods of vegetation mapping and monitoring 
have been proposed using remote sensing techniques. Janssen et al. (iv) identified possibilities 
and problems using multispectral digital image manipulation. Schmidt & Skidmore (vii) found that 
hyperspectral sensors can improve the mapping of plant species (floristic composition of the vege-
tation) on salt marshes on the Wadden island Schiermonikoog. Thomson et al. (viii) made vegeta-
tion maps of dune vegetation with an approximate 70% accuracy with ground based data in the 
Westerschelde. 

The possibilities of the use of recent remote sensing techniques in vegetation mapping and moni-
toring are: (1) objective classification, as opposed to manual aerial photo interpretation (API) (iv 
and ix); (2) a quick and repeatable method to monitor change of spectral separable vegetation 
units (x) and (3) the possibility to extract information of vegetation over a full coverage in the region 
of interest (xi). Drawbacks are that: (1) a standard approach is currently lacking (xii) and (2) the 
atmospheric illumination effects and plant phenology vary over time, complicating comparison be-
tween different images (xiii). 

The research for this study is done to evaluate possible improvements for making full coverage 
vegetation maps for dune vegetation on Ameland, the Netherlands. Ameland is one of the Dutch 
“wadden” islands and for a large part nature area (xiv) which is included in Natura 2000 program. 
In 2001 and 2004 field studies (v) were conducted to evaluate vegetation type transitions due to 
gas extraction and the subsequent soil subsidence. Vegetation sampling is an extensive and ex-
pensive part of that investigation and commissioners are interested in less expensive, objective 
and repeatable methods to achieve full coverage vegetation maps to map and monitor vegetation 
change. Since 1986, the effect of the gas extractions and the subsequent soil subsidence on vege-
tation has been monitored to secure a possible decline of biodiversity in the protected habitat of 
Ameland. Future vegetation sampling and mapping could be more effective (e.g. improved accu-
racy, objectivity or repeatability) if hyperspectral remote sensing is included in the sampling 
method.  
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METHODS 

Study site 

The study site is situated on the Eastern part of Ameland. Ameland is one of the Dutch barrier is-
lands in the Wadden, the northern part of the Netherlands (figure 1). The borders of the study area 
were taken from the study of Slim et al. (v). The size of the study site is approximately 70.2 ha. The 
present vegetation consists of almost bare dune sand, dune grass, dune shrubs and on the lower 
parts, salt marches. Vegetation in the lower parts of the area on the south eastern shore is regu-
larly inundated. These vegetation associations show clear transitions, the vegetation is mostly de-
pended on the height in the field and the resulting salt water influence. Yearly sedimentation and 
erosion is taking place causing a yearly shift of the vegetation types. The vegetation on Ameland is 
well described by ecological experts and botanists (e.g. (xiv)). The vegetation is characterised by 
rare vegetation associations caused by the influence of salt water and is of ecological importance 
to the Wadden area. The eastern part of Ameland is part of the nature protection program Natura 
2000. 

 

Vegetation sampling 

In August 2004, 140 vegetation relevees were described as part of a soil subsidence investigation 
and the possible effects on vegetation (v). The vegetation relevees are circular with area of 4m² (r 
= 1.13m) and all vascular plants and mosses were identified and their coverage estimated. Five 
different vegetation types were described to evaluate the effect of soil subsidence on the vegeta-
tion (Table 1, A – E). These vegetation types are described in Slim et al (2005). In order to make a 
full coverage vegetation map using (universal indicator) kriging they reduced the number of vegeta-
tion types to four clearly distinctive classes, including: (B) Wet and brackish valleys, (C) Rough and 
shrubby dunes, (D) Beach grass dunes (seaside) and (E) Grassy dunes. Vegetation type B is 
characterized as wet brackish dune valleys (salt marsh), the species with high coverage in this 
vegetation type are Juncus gerardi L. and Potentilla anserina L. Vegetation type B is found on the 
lowest parts of the research site and is influenced by saltwater. Vegetation type C is characterized 
as dune shrub, the species with high coverage species in this vegetation type are Salix repens L., 
Calamagrostis epigejos L., Hippophae rhamnoides L., and Urtica dioica L. Vegetation type C has a 
high vegetation cover and is characterized by a high percentage of shrubs in the vegetation. Vege-
tation type D also known as white dunes is located along the seaside and characterized by dune 
grass with an open structure. The species with high coverage species in this vegetation type are 
Ammophila arenaria L., and Carex arenaria L. Vegetation type E is characterized as grey dunes, 
the species with high coverage in this vegetation type is Hypnum cupressiforme s.l. species 
(moss). Vegetation type E has a more closed and grassy herb layer. 

Figure 2: The “unaligned systematic sampling” points of the vegetation dataset. 
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Table 1: Vegetation types and corresponding vegetation associations (source Slim et al. (v)). 

 

The placement of the relevees locations was done according to a sample strategy called “un-
aligned systematic sampling” described by Oude Voshaar (xv) (figure 2). The sample strategy is 
based on the placement of a raster of regular squares across the investigated research site and 
starts with assigning a sample location to the first square in the upper left corner with a random X 
and Y coordinate. Thereafter, the sampling location of each square in the upper row gets the same 
X coordinate but a new randomly chosen Y coordinate. On the second row the sample location of 
the first square gets a new random X coordinate and the Y coordinate of the square above is main-
tained. The rest of the squares in the second row then get the same new X coordinate of the first 
square and the same Y coordinate of the square above. This is repeated on the subsequent rows 
till every sample locations in all squares have an X and Y coordinate. The above described sample 
strategy was repeated two times assigning two times 70 locations (in total 140 points) to the re-
search site. In this way the locations have a representative dispersion over the research site. The 
X and Y coordinates of the placed locations were precisely geo-referenced in the Dutch RD coor-
dinate system using RTK-DGPS. 

 

Hyperspectral imagery 

In 2005 on the 19th of June an airplane with the Airborne Hyperspectral Scanner (AHS-160) sen-
sor conducted a flight over Eastern Ameland and acquired a hyperspectral image of the research 
site. The pre-processing of the AHS-160 image included a geo-correction and an atmospheric cor-
rection. This image was prepared by VITO (xvi) in Belgium and has a spatial resolution of 3.5 by 
3.5 meter. VITO encountered some problems with the atmospheric correction of the MIR region of 
the AHS image due to irregular calibration of the sensor. The thermal bands have been acquired 
but were not used in this study. In table 2 the spectral bands of the AHS sensor are shown.  

 

Table 2: AHS-160 spectral bands used for the hyperspectral data acquisition over Ameland. 

Spectral region Wavelength interval (μm) Nr of bands 
Visible/NIR¹ 0.45 - 1.05 20 
Mid IR² 1.6 (one broad band) 1 
Mid IR² 2 - 2.5 42 

¹Near Infra Red, ²Infra Red. 

Type Name Corresponding vegetation association 
A Barren dune foot  Agropyro-Honckenyion peploidis 
B11 & B12 
B21 & B22 

Wet, brackish dune valleys 
Wet, brackish dune valleys (drier) 

Lolio-Petentillion anserinae, Amerion maritimae & 
Saginion maritimae 

C1 
C2 

Dune shrub 
Dune shrub (wetter) 

Salicion cinereae, Berberidion vulgaris & other 
shrubby vegetation 

D White dunes (seaside) Ammophilion arenariae, Ammophilion arenariae-
Carex arenaria [Ammophophiletea/ Koelerio-
Corynephoretea], Tortulo-Koelerion & Polygalo- 
Koelerion    

E Grey dunes Tortulo-Koelerion, Polygalo- Koelerion, Calama-
grostis epigejos-[Cladonio-Koelerietalia], Berberidi-
on vulgaris  
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Although, the vegetation relevees were taken a year before the time of the image acquisition, the 
dataset is used as the ground truth dataset because of the lack of a representative dataset at the 
time of the image acquisition in 2005. The changes are assumed to be fairly low. Slim et al. (v) 
reported a 14.3% change of one vegetation type into another vegetation type on the 70 locations, 
over three years, giving a predicted vegetation change of 4.8% over one year. This percentage 
was assumed to be small enough to make use of this dataset as ground truth data.  

The precisely georeferenced locations of the vegetation dataset of 2004 were transformed from the 
Dutch RD coordinate system to UTM WGS `84 coordinates (31W) and the locations were stored in 
a vector file. Comparison of the vegetation relevees and reflective response recorded by the AHS 
sensor includes a spatial resolution difference of 4m² (vegetation relevees) to 12.25m² (pixel size 
AHS).  

 

Image classification 

Maximum likelihood classification (MLHC) is a straight forward and common method for classifica-
tion of remote sensing images (xvii). In MLH classification, the spectral values of a pixel are classi-
fied according to the maximum likelihood for a corresponding class. Under the assumption of nor-
mality, the distribution of a category response pattern can completely be described by the mean 
vector and the covariance matrix (xviii). Based on these statistical parameters, we may compute 
the statistical probability of a given pixel value being a member of a particular class. To optimize 
the MLH classification, data reduction is often necessary, especially in hyperspectral data where 
the available number of bands exceeds the optimum number of bands for classification (xix). The 
limited band usage is because of two reasons; (1) more bands results in a higher uncertainty of the 
backwards prediction and (2) in order to obtain accurate values (to calculate the covariance) of the 
training set the number of pixels should be higher then the number of bands. In order to objectively 
obtain a limited number of bands a multivariate analysis was performed, where the species com-
position was explained by the spectral response. Canoco (ii) is a multivariate analyses ordination 
software program. The ordination method maximizes the part of the variation in species composi-
tion that can be expressed as linear combinations of predictor variables in this case reflectance 
(xx). The image pixel information for the sites of the observed vegetation was included as predictor 
variables. Because the response variables were assumed to be linear, the method of Redundancy 
Analyses (RDA) was chosen. A RDA ordination was performed on the on the 2004 vegetation ob-
servation data and their image spectra corresponding to relevee location in the image. All usable 
AHS bands (21 bands) were included as environmental variables. From the 21 bands, a forward 
selection was done to include the bands with the most predictive power. The criteria used were F-
value > 2; p-estimate < 0.05. From the 2004 spectra twelve bands were selected using these crite-
ria. The MLHC was performed and the accuracies were calculated. To compare the RDA band 
selection with other variable reduction methods, the MLHC was performed on the PCA transformed 
image and the accuracy was determined. 

 

 

 

 

 

 

 

Figure 3: NDVI image and the selected trainings areas for the MLH classification for the Ameland 
study area. Areas with a white color are indicative for a high NDVI value.  
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Trainingset 
The trainingset was determined from known locations in the field and with help of the kriged map in 
Slim et al. (v). In order to obtain the trainingset of the MLHC, the NDVI image of the study area 
(figure 3) was also investigated. Six sites with homogeneous vegetation types, of approximately 70 
pixels for each training class were manually selected. Vegetation type B and D have a great vari-
ability in soil influence and for the trainingset an open and a closed type was appointed. The NDVI 
image indicates where the vegetation reflectance dominates the spectra (white) and where the 
spectra have more soil influence (black) (figure 3). The upper part of the image has great influence 
of dune sand, which is mainly indicative for vegetation type D. On the right top of the image a dif-
ferent soil dominated feature (darker and wetter soil) can be seen which is related to vegetation 
type B and has a different reflectance. Both soil influenced (white sand and wetter darker soil) 
vegetation types are incorporated as extra class in the vegetation MLHC. This results in a total of 
six classes for the MLHC trainingset. 

 

Accuracy assessment 
The plot locations were used to calculate the confusion matrices and kappa statistic. Two confu-
sion matrices are obtained by the MLH classification, namely for the RDA band selection and the 
PCA transformed data. The confusion matrix is the most common method of accuracy determina-
tion of an image classification in remote sensing (xxi). The confusion matrix is a square assortment 
of numbers defined in rows and columns that represent the number of sample units (i.e. pixels, 
clusters of pixels or polygons) assigned to a particular category relative to the actual category as 
confirmed on the ground. Together with the confusion matrix and the overall accuracy, the Kappa 
statistic was calculated. The Kappa statistic also gives a measure of accuracy and takes into ac-
count the probability of randomly assigning correct classes to pixels. The Kappa coefficient is cal-
culated as follows: 

                 
accuracytionclassificaExpected

accuracytionclassificaExpectedaccuracytionclassificaOverall
K

−

−
=

1
ˆ

           (eq.1) 

 

The Kappa statistic (xxii) is a generally accepted accuracy measurement and serves as a more 
rigorous estimate of accuracy considering agreement that may be expected to occur by changes. 
Fleiss (xviii) suggested an ordinal Kappa scale from “poor” (<0.40), “fair” (0.4-0.75) to “excellent” 
(>0.75). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The averaged spectra of the manual selected trainingset derived from the AHS image. 
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RESULTS 
In figure 4 the mean spectra of the trainingset are shown. The spectra of B open and B closed as 
well as D open and D closed are quite distinct and showing the need for separation into an open 
and closed vegetation type. When validation was performed the classes of B open and B closed 
and of D open, D closed were merged into one vegetation type B class and one vegetation type D 
class.  

In figure 5 the RDA bi-plots of the species the vegetation dataset and their associated spectral 
band values are shown. The bands selection was done according to an F-value of 2 or higher and 
a predicted α of 0.05 or lower. The classification of the RDA dimension reduction was performed 
using the twelve selected bands form the vegetation observation locations. To evaluate the per-
formance of band selection a comparison was made with PCA transformation/data reduction was 
performed to generate a MLH classification from the PCA bands. The first four PCA bands were 
chosen after investigating the eigenvalues plot of the PCA transformation. 

The species Potentillia ansenaria L. and Juncus gerardi L. are indicative for vegetation type B, 
species Salix repens L., Hippophae rhamnoides L. and Calamagrostis epigejos L. indicative for 
vegetation type C, species Ammophila arenaria L. and Carex arenaria L. indicative for vegetation 
type D and Hypnum cupressiforme s.l. species (moss) indicative for vegetation type E. Festuca 
rubra L. is the only species which is present in vegetation type C, D and E and could thus cause 
difficulties because of similar reflective response over all three vegetation types.  

The obtained classification accuracy results are 64.7% using RDA data reduction and 64.8% using 
PCA data reduction. The confusion matrices are show in table 3. In figure 6 the classified image of 
the RDA selected bands from the vegetation observations is shown. Vegetation type B had the 
lowest accuracy in all performed classifications and was often misclassified as vegetation type C. 
Vegetation types D and E had overall the highest accuracies. The classification with the RDA data 
reduction yielded similar accuracies then the classification with PCA.  
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Figure 5: Biplot of the RDA of the 2004 vegetation relevees, with the twelve selected bands as pre-
dictor variables. (Forward selection: F-value > 2, p < 0.05).  
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DISCUSSION AND CONCLUSIONS 
Figure 6 shows the classified image for the six classes using the twelve RDA selected bands. The 
mapped vegetation patterns correspond to the actual field situation, although vegetation type B is 
underestimated whereas vegetation type C is somewhat overestimated (Table 3). In addition, a 
slight misclassification between both the soil influenced classes (open B and open D) can be de-
tected.  

MLH classification is a widely used method and can be used for both multi- and hyperspectral im-
agery. When using MLH classification for hyperspectral data analyses, it is important to reduce the 
data dimensionality (xix). Common methods for data reduction are PCA (xviii) and Minimum noise 
fraction (MNF) (xxiii). In this study a method used in ecological analyses, RDA was used to objec-
tively reduce the number of bands (with the F-value and α) and compared to the PCA data reduc-
tion method (commonly used for the MLH classification). The chosen bands from the RDA maxi-
mized the variation of returned spectra (pixels) of the locations of the plant observations in the field 
(figure 5) for a limited number of bands.  

Table 3: Confusion matrix of the MLHC using the selected twelve spectral bands. 

 

The data reduction of the MLH classification using RDA (redundancy analyses) of the software 
package CANOCO compared to the commonly used PCA data reduction yielded similar classifica-
tion accuracy (Table 3). The RDA analyses can improve objective band selection and explains 
spectral response for specific species composition, excluding the variance caused by other reflec-
tance (e.g., soil) in the imagery. The RDA method as new method for reduction of data dimension-
ality is also able to select bands which directly explain the spectral response of the species com-
position. The bands which are selected have the most variance in vegetation reflectance and are 
most distinctive in feature plot space and in addition, RDA also minimizes the double information of 
the spectral response (e.g. high correlation between bands). Future analyses on multi-temporal 
images could employ the same set of bands which can be selected from an objective method and 
which directly explains the difference in vegetation spectral response rather then making use of 
“image dependent” PCA transformations.   

The RDA selected bands correspond to specific vegetative reflectance and absorption features, 
hereafter described. The bands: 455, 484 and 513nm are associated with plant pigment absorption 
maxima of Chlorophyll b, α-Carotene and β-Carotene. Band 542nm is associated with green light, 

Vegetation Type 
PCA 

Type B 
(%) 

Type C 
(%) 

Type D 
(%) 

Type E 
(%) 

Producer accuracy (good 
classified pixel/all pixels) 

Type B 50.0 4.8 9.4 0 50% (12/24) 
Type C 37.5 56.1 0 11.9 56.1% (23/41) 
Type D 8.3 4.9 84.4 21.4 84.4% (27/32) 
Type E 4.2 34.2 6.2 66.7 66.7% (28/42) 
Users accuracy 
(good classified 
pixel/all pixels) 

70.6 
(12/17) 

62.2 
(23/37) 

67.5 
(27/40) 

62.2 
(28/45) 

Overall accuracy =  64.8%  
Kappa statistic  =  0.52 

Vegetation Type 
RDA 

Type B 
(%) 

Type C 
(%) 

Type D 
(%) 

Type E 
(%) 

Producer accuracy (good 
classified pixel/all pixels) 

Type B 45.8 0 0 0 45.8%(11/24) 
Type C 37.5 53.7 3.1 16.7 53.7% (22/41) 
Type D 8.3 12.2 93.8 19.1 93.8% (30/32) 
Type E 8.3 34.2 3.1 64.3 64.3% (27/42) 
Users accuracy 
(good classified 
pixel/all pixels) 

100% 
(11/11) 

56.4% 
(22/39) 

66.7% 
(30/45) 

61.4% 
(27/44) 

Overall accuracy =  64.7%  
Kappa statistic  =  0.52 
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here vegetation has a slight increased reflective response. Band 659nm corresponds to a pigment 
absorption maximum of Chlorophyll b and is located at the begin of the red-edge, bands 718, 746 
and 774 are sensitive for the red-edge region. Bands 804, 918, 948, 1004 and 1622 are in the NIR 
region and give increased reflectance with increased vegetation structure.  

Vegetation spectral reflectance in the research site is highly influenced by the soil (figure 3). The 
degree of vegetation cover in relation to the exposure of the soil is the predominant factor influenc-
ing which classes can be distinguished (viii). The influence of soil in the spectra was an important 
source of variation in the dataset. This caused difficulties when the vegetation was classified solely 
on vegetation specific reflectance for the MLH classification. In order to obtain an accurate classifi-
cation with the MLHC, the vegetation classes were split into an open and a closed vegetation vari-
ant in two of the four vegetation classes (Vegetation type B and D).  

Although the appointing of classes to locations is more objective using remote sensing, the choice 
of trainingset still remains subjective. Experts still have to appoint representative vegetation 
classes to be able to make use of training areas. The usage of spectral libraries with endmembers 
(e.g. pure reflective response of one vegetation type) established outside of the image is a possi-
bility to improve the objectivity. However the difference in spatial resolution and the difference in 
atmospheric correction are the major causes of failing to establish a spectral library from the field 
spectrometer measurements. 

The 2004 dataset had a time lack of one year compared to the acquisition of the hyperspectral 
imagery. This could have caused vegetation transitions in the year in-between the field sampling 
and the image acquisition, which cannot be traced. However, the changes were assumed to be 
relatively small (Slim, pers comm.). The dataset still proved to be useful for accuracy determination 
and the unaligned systematic sample strategy gave a representative distribution of observation 
points over the research site.  

The validation of the dataset was done by vegetation classes observed in the field, these observa-
tions had a sampled area of 4m² .The difference in the sampled area of the vegetation observa-
tions (4m²) and the pixel sizes (12.25m²) could include that pixels have more than one vegetation 
type. In this study the classified vegetation type of the vegetation observation datasets were used 
as ground truth for the whole image pixels. In future field data collection for image validation, the 
pixel sizes should be taken into account in order to improve the estimation of the accuracy of the 
classification. 

Next to the difficulties of the sample strategy, there were some difficulties with the calibration of the 
AHS sensor in the MIR region (2000nm to 2500nm). Therefore only 21 bands in the visible and in 
the NIR region where used. Some vegetation types could be more accurately separated by classi-
fication methods when the MIR bands where included in the analyses, therefore the obtained accu-
racy could have been slightly lower then when the MIR bands were included in the analyses.  

 

Figure 6: MLH classified image using the selected twelve RDA selected bands for the Ameland 
study area. 
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