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bed. However, such information needs to be coupled with distributions of benthic

under current trawling regimes. This study collated data from 13 diverse regions of

the globe spanning four continents. Within each region, we combined trawl intensity
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distributions and predicted abundance distributions of benthos groups with impact
and recovery parameters for taxonomic classes in a risk assessment model to esti-
mate benthos status. The exposure of 220 predicted benthos-group distributions to
trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%)
of abundance. However, benthos status, an indicator of the depleted abundance
under chronic trawling pressure as a proportion of untrawled state, ranged between
0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status
was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and
Gastropoda. Our results demonstrate that while spatial overlap studies can help infer
general patterns of potential risk, actual risks cannot be evaluated without using an
assessment model that incorporates trawl impact and recovery metrics. These quan-
titative outputs are essential for sustainability assessments, and together with refer-
ence points and thresholds, can help managers ensure use of the marine environment

is sustainable under the ecosystem approach to management.

KEYWORDS

1 | INTRODUCTION

Bottom trawling (such as beam, otter trawls and dredge; hereafter
“trawling”) is important for global food security, providing about 20
million tonnes of global catch (Amoroso et al. 2018). However, the
ecological impacts of trawling on the marine environment have been
aconcern across the globe (Jennings & Kaiser, 1998; Puig et al., 2012;
Pusceddu et al., 2014; Thrush & Dayton, 2002). Overall, there is lim-
ited large-scale quantitative evidence of the risks trawling pose to
the environment and to benthic organisms that encounter physical
contact with trawl gear (Mazor et al., 2017; Pitcher et al., 2017).
Ecosystem-based management (EBM) is an approach that is
being adopted around the globe for managing fisheries (Astles
et al., 2006; Pikitch et al., 2004). This management approach con-
siders the suite of interactions within a given ecosystem rather than
addressing issues in isolation (Holsman et al., 2017). Risk assessment
is an essential component of EBM and provides critical information
for prioritizing management interventions (Holsman et al., 2017;
Stelzenmiiller et al., 2015). In the absence of a quantitative approach,
there has typically been a reliance on qualitative risk assessments of
seabed trawl impacts, using expert opinion and stakeholder knowl-
edge, or rank scoring approaches to guide management decisions
(Astles et al., 2006; Fletcher, 2005; Lorance et al., 2011). However,
transparent evidence-based quantitative assessments are possible
with access to technologies that provide information on fishing ac-
tivity (e.g. Vessel Monitoring Systems (VMS) and satellite Automatic
Identification Systems (AIS) for fishery effort information) and ad-
vances in statistical modelling methods (Pitcher et al., 2017).
Recent efforts have synthesized our current understand-
ing of trawling extent and impacts around the world (Hiddink
et al., 2017; Amoroso et al., 2018; Sciberras et al., 2018). For

benthic invertebrates, ecosystem-based fisheries management, risk assessment, species

distribution modelling, sustainable fisheries, trawling

example, regional trawl footprint data were collated by Amoroso
et al., (2018), providing a broad-scale spatial coverage of current
trawl effort. The study found that 14.5% of the total studied area
(7.7 million km?) was trawled, but varied considerably among 24
regions of the world. Systematic review methodologies and me-
ta-analyses have been used to compile depletion and recovery
information of trawl fishing disturbances on seabed invertebrates
(Hiddink et al., 2017; Sciberras et al., 2018), highlighting those
species groups that are more sensitive to trawl impacts (e.g. long-
lived biota; Hiddink et al., 2019). Given these advances, they now
need to be applied to knowledge of spatial distributions of sea-
bed fauna to assess the impact and sustainability of benthos in
trawled regions.

Understanding the sensitivity of benthic invertebrates (ben-
thos) to trawling disturbance is of fundamental ecological impor-
tance because they perform essential ecosystem processes such
as reworking sediments, forming habitat structures and oxygen-
ating the seafloor (Solan et al., 2004). Furthermore, their status
is commonly used as an indicator for measuring ecosystem health
or disturbance (Hiddink, Jennings, & Kaiser, 2006; Przeslawski,
Ahyong, Byrne, Wérheide, & Hutchings, 2008). Despite their im-
portance, knowledge of benthos distributions across broad spatial
scales (>1,000 km?) is limited (Reiss et al., 2015); most likely at-
tributable to high costs of surveys, limits in taxonomic expertise,
and lengthy sample processing time (Fisher, Knowlton, Brainard,
& Caley, 2011). New methods have been proposed to predict and
expand knowledge of spatial distributions of benthos at regional
scales of 1,000’s of km? (e.g. Baltic Sea: Gogina and Zettler (2010);
North Sea: Reiss, Cunze, Kénig, Neumann, and Kréncke (2011);
Australian waters; Mazor et al. (2017)); these methods can be

coupled with known distributions of trawl intensity to compute
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benthos status (relative to an untrawled state—calculated from
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impact rates, recovery rates and exposure to trawling) and help
inform the extent to which trawling is sustainable in different
areas of the seabed (Mazor et al., 2017). Combined, the informa-
tion can be used assist managers in the choice of best practices
to minimize impacts and ensure sustainability in the local context
(McConnaughey et al., 2020).

Here, we quantify the status of benthos in 13 case-study regions
from four continents (Australia, Europe, Africa and North America).
Each region was chosen based on the availability of trawl intensity
data and benthos survey data. To assess the status of benthos under
current trawling practices, we modelled their current-day abundance
distributions (based on recent survey samplings), and spatially com-
bined these with maps of trawling intensity (Amoroso et al., 2018)
and published recovery and depletion estimates derived from global
meta-analyses (Hiddink et al., 2017; Sciberras et al., 2018; Hiddink
et al., 2020), using a quantitative risk assessment method (Pitcher
et al., 2017). Our findings aim to advance understanding of the cur-
rent impacts and risks (to benthos) of trawling on the seafloor for
regions across the globe.

2 | METHOD
2.1 | Study regions

Thirteen large-scale study regions across the globe were selected
for analysis based on data availability (Table 1; Table S1). The
geographical extent of each region was bounded by the latitude,
longitude and depth range of the sites for which benthos data
from systematic surveys were available to avoid excessive ex-
trapolation of benthos predictions. For maps of study regions, see
Figures S1-S13.

2.2 | Trawl intensity

Trawl intensity data were acquired from Amoroso et al., (2018).
These data were calculated using VMS or fishing log-book data,
to produce a swept area ratio (SAR: the annual cumulative area
swept by trawl gear within a given grid cell of seabed, divided
by the area of that grid cell) of trawling within a grid cell (either
1 km?, 0.01° or 1 x 1 min grids of longitude and latitude), over
a 3- to 5-year period (typically 2008-2010). To ensure trawling
activity is representative, we only included regions where >70%
of trawling activity was accounted for (Amoroso et al., 2018). To
enable comparisons across regions where <100% of trawling ac-
tivity was reported, we scaled-up trawling effort (F by 100/cov-
erage%) for each region and by gear type to represent total trawl
intensity (i.e. 100% trawl activity for each region), and recalcu-
lated regional SARs and footprints. This scaling and recalculation
assumes that collated data are representative of the spatial dis-
tribution of the total.

2.3 | Benthos distributions
2.3.1 | Benthos data

Benthos data from seabed surveys were sought for regions
where trawl intensity data were available from Amoroso et al.,
(2018). Ultimately, data were collated from 13 of 24 regions.
Benthos abundances in surveys were recorded as counts or
weight and were standardized by sampled area. We included
surveys of both infauna and epifauna where possible and at-
tempted to match survey years to the trawl data. Survey
sampling gear varied among regions, but sampling was predomi-
nantly conducted using an otter trawl, benthic sled and/or grab
(Table 1).

Eight taxonomic classes of benthos were examined: Anthozoa
(i.e. sea anemones and corals), Ascidiacea (sea squirts), Asteroidea
(seastars), Bivalvia (bivalved shelled molluscs), Gastropoda
(sea snails and slugs (alt: coiled, conical or shell-less molluscs),
Malacostraca (crabs and shrimps), Ophiuroidea (brittle stars) and
Polychaeta (segmented worms). These classes were the subject of
meta-analyses in which depletion and recovery information have
recently been estimated (Hiddink et al., 2017; Sciberras et al., 2018;
Hiddink et al., 2020; Figure 1). Following Mazor et al. (2017), we
further divided taxonomic classes into benthos groups, that is,
groups of species/taxa within a class that have similar spatial distri-
butions and relationships with environmental variables. The clus-
tering approach uses Multivariate Regression Trees (MRT) to group
sites based on the sampled abundances of taxa and their relation
with environmental variables, and assigns taxa to these site groups
using the Dufréne and Legendre (1997) indicator-species metric
(DLI) (Mazor et al., 2017). Benthos groups were used because of
inconsistencies in the level of reported taxonomic hierarchy among
surveys and therefore serve as the lowest resolution of benthic

data considered for this study.

2.3.2 | Environmental predictors for
modelling benthos

Thirty-four environmental variables previously reported to be asso-
ciated with distributions of a range of benthic invertebrates (Mazor
et al.,, 2017) were used to model the distributions of benthos in
each region (Table 2). All variables were available at a global extent
at various spatial scales and were processed into consistent grids
to match the resolution of the trawl intensity data provided for
each region. Environmental layers (e.g. data from the NASA Ocean
Biology Processing Group) were processed using R (R Core Team
2018; package “ncdf4”; Pierce, 2017, and package “raster” Hijmans
2019) to convert netCDF files into rasters. Annual averages for
environmental variables were calculated from the monthly means
of all available years. Seasonal range composites were calculated
from the range of January to December monthly means, averaged

across all years. All environmental variables (using raster format)
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FIGURE 1 Box plots by region (Table S1 for more details) of: a) the percentage of benthos-group abundance exposed to trawling (SAR
exposure), b) depletion values d, c) recovery parameters R, d) the relative status of benthos groups using mean values and lower confidence

interval for recovery. The black lines represent the median value

were transformed into the relevant projection and coordinate sys-
tem (to match the gridded trawl intensity data) with resampling
by cubic convolution to the desired cell size (either 1 km?, 0.01°
or 1 x 1 min grids of longitude and latitude). Rasters were then
clipped to the boundaries of each study region. Other environmen-
tal layers required three-dimensional interpolation to extract prop-
erties at the seafloor using a bathymetry layer (e.g. CSIRO Atlas of
Regional Seas; Ridgway, Dunn, & Wilkin, 2002). Predictors that did
not vary among surveyed sites (SD = 0) or contained missing data
for considerable parts of a region were excluded from individual
analysis. Where predictors were largely complete (>90% of grid),
na.spline (package “zoo”; Zeileis, 2019) was used to interpolate

missing predictor data.

2.3.3 | Predicting benthos distributions

Benthos-group abundance distributions were predicted for each re-
gion using R package “randomForest” (Liaw & Wiener, 2002). For each
region, we applied one of three methods to obtain a site-by-taxon ma-
trix following Mazor et al. (2017): i) a single-gear approach—benthos
were sampled by one device; abundance data were arranged into a
conventional site-by-taxon matrix, ii) multiple gear approach—benthos
were sampled by two different devices that sampled an overlapping
composition of benthos at the same sites; a multiplicative scaling fac-
tor was estimated for each taxon sampled by different gears (note
gear that targeted and predominantly sampled epifauna (e.g. trawls)

and infauna (e.g. grabs) were not combined), and iii) disparate data sets
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TABLE 2 Thirty-four environmental variables used to predict benthos abundance distributions

Variable

Temperature at seafloor
(°C)

Salinity at seafloor (psu)

Oxygen at seafloor (ml/I)

Silicate at seafloor (umol/I)

Phosphate at seafloor
(umol/1)

Nitrate at seafloor (umol/I)

Depth 1 arc-minute

Chlorophyll a
concentration (mg/m3)

Attenuation coefficient
(K490)

Particulate Organic Carbon
mg/m°® (POC)

Photosynthetically Active
Radiation (PAR)

Sea Surface Temperature
Night-time (SST_Night)

Sea Surface Temperature
Daytime (SST_Day)

Net Primary Production
(NPP)

Benthic Irradiance (BIR)

Export Particulate Organic
Carbon flux (EPOC)

Gravel
Sand

Mud

Values

Annual Average
Seasonal Range
Annual Average
Seasonal Range
Annual Average
Seasonal Range
Annual Average
Seasonal Range
Annual Average
Seasonal Range
Annual Average
Seasonal Range
Mean

Annual Average

Seasonal Range

Annual Average

Seasonal Range

Annual Average

Seasonal Range

Annual Average

Seasonal Range

Annual Average

Seasonal Range

Annual Average

Seasonal Range

Annual Average

Seasonal Range

Annual Average
Seasonal Range
Annual Average

Seasonal Range

Mean

Mean

Mean

Source

CSIRO Atlas Of Regional Seas (CARS 2009)

CSIRO Atlas Of Regional Seas (CARS 2009)

CSIRO Atlas Of Regional Seas (CARS 2009)

CSIRO Atlas Of Regional Seas (CARS 2009)

CSIRO Atlas Of Regional Seas (CARS 2009)

CSIRO Atlas Of Regional Seas (CARS 2009)

ETOPO Amante, C. and B.W. Eakins (2009)

NASA Ocean Biology Processing Group (OBPG)
Aqua-Modis Level 3 Browser, Standard Mapped
Image (SMI), Chlorophyll calculated with OC3
algorithm.

NASA Ocean Biology Processing Group (OBPG)
Aqua-Modis Level 3 Browser, Standard Mapped
Image (SMI), Diffuse attenuation coefficient at
490 nm, KD2 algorithm.

NASA Ocean Biology Processing Group (OBPG)
Aqua-Modis Level 3 Browser,

Standard Mapped Image (SMI), Particulate Organic
Carbon, D. Stramski, 2007 (443/555 version)

NASA Ocean Biology Processing Group (OBPG)
Aqua-Modis Level 3 Browser,

Standard Mapped Image (SMI), Photosynthetically
Available Radiation, R. Frouin

NASA Ocean Biology Processing Group (OBPG)
Aqua-Modis Level 3 Browser,

Standard Mapped Image (SMI), SST 11 p night-time.

NASA Ocean Biology Processing Group (OBPG)
Aqua-Modis Level 3 Browser,
Standard Mapped Image (SMI), SST 11 u daytime.

Ocean Productivity - Oregon State University

Behrenfeld MJ, Falkowski PG (1997)
Photosynthetic rates derived from satellite-
based Chlorophyll concentration. Limnology and
Oceanography 42:1-20.

*Calculated in R

BIR = PAR xexp(-K490 x depth)

Calculated in R using the exponential decay model
Pace et al. 1987
EPOC = 3.523 x NPP xdepth %734,

Sediment from dbSEABED

Sediment from dbSEABED

Sediment from dbSEABED

Years

up to 2009

up to 2009

up to 2009

up to 2009

up to 2009

up to 2009

1940 to 2008
2002 - 2016

2002 - 2016

2002 - 2016

2002 - 2016

2002 - 2016

2002 - 2016

2002 - 2016

2002 - 2016

2002 - 2016

up to 2015

up to 2015

up to 2015

Scale

1/2°

1/2°

1/2°

1/2°

1/2°

1/2°

1 arc-minute

0.041° (4 km)

0.041° (4 km)

0.041° (4 km)

0.041° (4 km)

0.041° (4 km)

0.041° (4 km)

1/6°

0.041° (4 km)

0.041° (4 km)

0.01° where
present

0.01° where
present

0.01° where
present
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approach—benthos were sampled by multiple surveys disparate in one
or more of spatial extent, time, taxonomic resolution and identifica-
tion, sampling device and abundance metrics; in this case, random for-
est models predict taxa to unsampled sites combined with a scaling
approach that normalizes taxa data to represent the proportion of
abundance it contributes within its data sets.

Model performance was measured by the R? of overall fit of
predicted against observed values and by the cross-validated out-
of-bag (OOB) R? values (estimated internally using bootstrapped
samples that leave out about one-third of the data; Breiman, 2001).
Predictor importance was extracted from the models as per Mazor
et al., (2017) by obtaining the random forest predictor importance
measure (%IncMSE). Predictor importance across models was cal-
culated by scaling importance by its proportionate contribution to
model performance (OOB R?) for each benthos group. These propor-
tions were then averaged across all models, per region and per tax-
onomic class to estimate overall predictor importance. Models with
poor prediction performance (cross-validated OOB R? < 5%) were
excluded from the status assessment.

2.4 | Trawl SAR exposure of predicted benthos
distributions

We quantified trawl SAR exposure (i.e. proportion of benthos abun-
dance currently distributed in areas that are trawled) as a percent-
age, by spatially overlaying benthos-group distributions and trawl
intensity (SAR). Specifically, we summed the product of the pre-
dicted benthos-group abundance in trawled grid cells multiplied by
the trawl SAR of each cell and then divided by total group abun-
dance in all cells, as per Mazor et al., (2017). We note that SAR expo-
sure > 100% may occur for benthos abundance in cells with SAR > 1
which are repeatedly exposed and thus the repeated exposure can

be greater than the total abundance in all cells.

2.5 | Benthos status assessment model

Here we applied a quantitative risk assessment method derived from
the logistic population-growth equation (Pitcher et al., 2017) to esti-
mate “relative benthos status” (RBS):

RBS =1-F¢,

where F is the trawling SAR, d is trawl depletion rate per trawl
pass, and ris population growth/recovery rate. Depletion rate param-
eters, specific to taxonomic classes, were obtained from Sciberras
et al. (2018, for trawl gears only), and recovery rates were derived
from Hiddink et al., (2020), respectively (Table S2; see Supporting
Information methods for details of derivation). Depletion rates also
differ by trawl gear types and by habitats, and recovery rates also
vary with habitat types. To account for this, taxonomic class-level
average depletion and recovery rates were scaled according to gear
types and habitat types (see Supporting Information methods).
Absolute status, expressed as a proportion, was estimated from the
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product of RBS multiplied by the predicted abundance distribution
(grid-cell abundances) and divided by the total benthos-group pre-
dicted abundance. A status of 1 indicates a state where the benthos
population is not depleted by trawling and O being entire depletion.
We characterized the uncertainty range in the status estimate by
using the mean values for depletion and recovery, and by using the
lower 95% confidence interval (Cl) for recovery. We used the lower
95% Cl as it was considered more consistent with the concept of a
precautionary approach. It was sufficient to use just the Cl for re-
covery without uncertainty in depletion because the uncertainties
in these parameters are inversely related. Benthos status was also
calculated to consider only trawled areas (grid cells with F > 0) of our
study regions to examine how status may change by spatial extent
and specifically within trawled-only areas.

To investigate the relationship between trawl SAR exposure and
benthos status, we plotted the trawl SAR exposure, benthos status
and sensitivity (d/R) of each benthos group. Sensitivity d (trawl de-
pletion rate per trawl pass) and R (population growth/recovery rate)
was calculated as described in Supporting Information methods.

3 | RESULTS
3.1 | Benthos distributions

A total of 220 benthos-group distributions were modelled from
our 13 study regions and 8 taxonomic classes (Table 3; Table S3).
Average explanatory model performance across all benthos-group
models, measured by the R? of the overall fitted against observed
values, was 0.75 (median = 0.82), and the cross-validated R? of pre-
dicted against OOB values was 0.37 (median = 0.34). Model perfor-
mance varied greatly by region (Figure $14), but not by taxonomic
class (Figure S15). The most important predictors across all models
were the seasonal range of photosynthetically active radiation (PAR),
the average temperature at the seafloor (°C), the average salinity at
the seafloor (psu) and oxygen at the seafloor (ml/I) (Figures $16; S17).
The pattern of predictor importance was highly variable across re-
gions (Figure S16); however, some regions are particularly influenced
by sediments, such as the Gulf of Carpentaria and the Great Barrier
Reef. Predictor importance was less variable among taxonomic
classes (Figure S17). Different benthos groups had different orders
of predictor importance, but appeared more consistent across taxo-

nomic classes compared to regions.

3.2 | Trawl SAR exposure

Across all regions, the mean percentage of the predicted abun-
dance of benthos groups exposed to trawling was 36.63% (me-
dian = 8.90%), with a range between 0% and 209.90% (Figure 1). The
European regions, Kattegat/Western Baltic Sea and North Sea had
the highest overlap of trawl activity with distributions of benthos,

with an average exposure of 142.53% and 134.48%, respectively.
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TABLE 3 Number of derived benthos groups (method following Mazor et al., 2017) across region and per taxonomic class
Benthos
Region Groups Anthozoa  Ascidiacea  Asteroidea Bivalvia  Gastropoda Malacostraca  Ophiuroidea Polychaeta
Aleutian Islands 10 1 2 2 1 2 2
Bering Sea 23 4 2 4 1 3 5 2 2
Gulf of Alaska 17 3 2 3 1 4 2
West Coast 17 3 4 4 3)
USA
Kattegat/ 7 2 2 1 2
Western
Baltic Sea
North Sea 40 2 2 6 6 5 5
Benguela/ 18 2 1 4 2 4
Agulhas South
Africa
Namibia 3 8 3
Chatham/ 22 3 4 2 3 3
Challenger
New Zealand
Great Barrier 16 2 1 2 3 2 3 3
Reef
Gulf of 16 1 3 1 3 1 3 2 2
Carpentaria
South East 13 1 1 4 3 4
Australia
Western 18 2 1 2 2 4 2 5
Australia
Total Number 220 23 13 30 22 27 48 31 26

The regions with moderate overlap were the African regions,
Namibia (107.70%) and Southern Benguela and Agulhas ecoregions
of South Africa (37.57%). Regions with the least overlap of trawling
with benthos groups were Western Australia (1.13%), Gulf of Alaska
(2.32%) and Aleutian Islands (2.41%).

Among taxonomic classes, the range of trawl exposures
(Figure 2a) was less than that among regions (Figure 1a). Taxonomic
classes that had the highest mean percentage of their distributions
overlapping with trawling across all regions were Bivalvia (55.70%),
Gastropoda (53.58%) and Polychaeta (46.44%) (Figure 2). The
classes with the least trawl exposure were Anthozoa (20.52%) and
Ascidiacea (21.31).

3.3 | Benthos status

Across all benthos groups in all regions, the average status was
0.9878 (mean) and 0.9759 (lower Cl) (Figure 1,2). However, for in-
dividual benthos groups, status ranged from 0.9110 to 1 (mean),
and 0.8592 to 1 (lower Cl). The North Sea region had the lowest
average status of 0.9538 (mean) and 0.9097 (lower Cl), followed
by the Kattegat/Western Baltic Sea (0.9554 mean; 0.9189 lower
Cl) (Figure 1d,3). These regions also had the largest range of sta-

tus (max-min). The majority of regions (8 of 13) had an average

status > 0.99 (both mean and lower Cl values; Figure 3), whereas
for taxonomic classes, only half of the benthos groups had an aver-
age status > 0.98 (both mean and lower Cl values; Figure 2d). The
class Bivalvia had the lowest average status (0.9738 mean; 0.9587
lower Cl), followed by Malacostraca (0.9841 mean; 0.9742 lower
Cl) and Gastropoda (0.9895 mean; 0.9718 lower Cl). Similarly to
regions, taxonomic classes with the lowest average status also
had the largest range of values. Benthos status when calculated
for only trawled areas (grid cells with SAR > 0) of our study re-
gions (Figure S18; Table S3) were slightly lower (range from 0.8754
to 0.9999, and lower Cls from 0.8020 to 0.9999; average status
0.9807 and 0.9610 (lower Cl)) compared to benthos status for our
entire study regions (Figure 1) (means ranging from 0.9110 to 1,
and lower Cls from 0.8592 to 1).

We found that higher trawl SAR exposure was related to a
lower benthos-group status (“lower” in relation to our results—
where status 0.98 was the lower confidence interval) (Figure 4).
Benthos status also depended on the sensitivity (d/R) of the
benthos group to trawling impacts and their ability to recover.
Sensitivity ranged from 0.0076 to 0.0697, and higher sensitivity
to trawling (dark points on Figure 4) was related to a lower ben-
thos status. However, this relationship did vary and some groups
in Europe with higher sensitivity have greater exposure to beam

trawls and dredges; the spatial footprints of these gear types are
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FIGURE 2 Box plots by taxonomic class (Table 3 for more details) of a) the percentage of benthos-group abundance exposed to trawling
(SAR exposure) b) depletion values d, c) recovery parameters R, d) the relative benthos status using mean values and lower confidence

interval for recovery. The black lines represent the median value

narrower than those of otter trawls and thus contribute less to
cell SAR but lead to higher depletion rates (d). Other factors that
prevent a strict relationship with sensitivity are that distributions
of benthos groups and of trawling (and different gear types) are

complex and differ with sediment distributions.

4 | DISCUSSION

This study presents a large-scale assessment of the status of seabed
invertebrate communities and provides insight into the sustainability
of bottom trawling in regions across the globe. Unlike other large-

scale assessments that have examined trawl footprints (Amoroso

et al., 2018), or status of sedimentary habitats in relation to trawling
(Pitcher et al., in review), this work incorporates sampling data from
surveys of benthos enabling a more direct quantification of trawl
impacts on different types of benthos. Our results indicate that ben-
thos groups may have up to 210% of their distribution exposed to
trawl activity (as SAR intensity), yet the lowest benthos status at a
regional scale was 0.86, decreasing to 0.80 within trawled footprint
areas (Figure S18). In 11 of our 13 case-study regions, all benthos
groups had a status > 0.95, and only a quarter (22%) of benthos
groups had a status < 0.95 (i.e. reduced by 0.05-0.14 owing to trawl-
ing activity). Overall benthos status was relatively high (mean sta-
tus = 0.99; lower confidence interval = 0.98; mean status in trawled

areas = 0.98; lower confidence interval in trawled areas = 0.96).
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Hence, regional-scale impacts of trawling on the seabed commu-
nities assessed in this study seemed less than might be expected
from results of previous studies (Hiddink et al., 2017; Amoroso et al.,
2018; Sciberras et al., 2018).

European regions (the North Sea and Skagerrak/Kattegat) have
trawl footprints covering > 50% of their continental shelf (Amoroso
et al.,, 2018) and had the lowest average benthos status between
0.95-0.96 (Figure 3). Regions of Africa with trawl footprints
of ~ 10%-30% of their continental shelves (Amoroso et al., 2018)
displayed an average benthos status between 0.97-0.99 (Figure 3).
Regions, such as North America and Australia, with lower trawl foot-
prints (<10%) displayed higher benthos status (i.e. >0.99). Although
average benthos status per region relates to the overall trawl SAR
exposure, there are differences for particular benthos groups due to
their sensitivity to trawling (Figures 1, 4). For example, average ben-
thos status for the North Sea region was 0.95, but one Bivalvia group
had a lower status of 0.92 due to higher trawl exposure (174.64%)
and sensitivity (0.04) (Figure 5a).

Spatial overlays of human activities on habitats or species
distribution maps are often used to infer threats and risks (Evans
et al.,, 2011; Trebilco et al., 2011) and can be informative for pri-
oritizing areas where there is greater potential risk of impact, and
for indicating where more information is needed (Ban, Alidina, &
Ardron, 2010). However, our results show that while there is a gen-
eral trend that greater overlaps of benthos distributions with trawl-
ing result in lower benthos status (Figure 4), the rates of impact and
the recovery rates (sensitivity; Table S3) of organisms are also im-
portant (Pitcher, 2014). Simple spatial overlap analyses that do not
consider these dynamics are problematic for determining specific
management actions (Tulloch et al., 2015). For example, Benguela/
Agulhas South Africa's Asteroidean group has considerably higher
trawl exposure (129.32%) than the Great Barrier Reef Malacostraca
group (15.19%), yet their status is relatively similar (0.9864 and
0.9849, respectively; Figure 5). This similarity is due to the higher
recovery (R = 1.81) and thus lower sensitivity (0.01) to trawl impacts
for Benguela/Agulhas South Africa's Asteroidea in comparison to
the higher sensitivity ( 0.03) for Malacostraca in the Great Barrier
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calculated as described in Supporting Information methods

Reef. Thus, when quantifying risks, the dynamics of biological pro-
cesses (e.g. the depletion and recovery component in our assessment
model) need to be incorporated, as presented in this study, to avoid
misdirecting management actions and to ensure effective outcomes.

Comparisons across regions and taxa are complex when differ-
ent quantities and sources of data are used. For instance, our study
indicates that the taxonomic class Bivalvia has a slightly lower ben-
thos status than other classes. However, this may be related to the
higher number of bivalve groups located in heavily trawled regions
of Europe. Likewise, for Namibia, our results are based only on three
Malacostraca groups, as these were the only taxa for which data
were available for the region. It is likely that the average benthos sta-
tus calculated for this region is not representative of other benthos
taxa. Species distribution model performance also ranged widely
among regions, with poorer performance in some regions such as
the Aleutian Islands and Kattegat/Western Baltic Sea (Figure S14).
Differences in performance are possibly related to the range of taxa
or environmental variables in each region, where model perfor-
mance has been found to be higher for taxa with narrower environ-
mental gradients compared to those with larger areas of occupancy
(Grenouillet, Buisson, Casajus, & Lek, 2011). Other caveats of this
study include the spatial scale of benthic surveys, where some coun-
tries sampled the same or similar spatial extents to that of their trawl
fishery grounds, while others have used a broader regional approach
(Figures S1 - S13). This may lead to indications of greater relative
trawl exposure and lower status in the former and the opposite in
the latter, simply due to study extent. To address this issue, we also

provided benthos status for trawled-only areas (only for grid cells

with SAR > 0) and found comparable results with only a slight de-
crease of benthos status within trawled-only areas in comparison to
our full study area extents (Figure 518). Lower benthos status may
also occur if this study attempted to predict relative to a pristine pre-
trawled baseline as many regions have had long histories of trawling
which is likely to have modified benthic community composition and
distribution. It is important to note that we have only considered
eight common taxonomic classes and have not included biogenic
habitats or most types of colonial organisms (e.g. bryozoans, porifera
and hydrozoans). These organisms are expected to be more sensitive
to trawling (Althaus et al., 2009; Collie, Hall, Kaiser, & Poiner, 2000)
and, depending on how they are distributed in relation to where
trawling occurs, would likely have a lower benthos status than the
classes of biota assessed in this study. For example, Anthozoa and
Ascidiacea had lower trawl exposure as such species are commonly
found on hard substrata that are less exposed to trawling (Lambert,
Jennings, Kaiser, Hinz, & Hiddink, 2011; Pitcher et al., 2016). Benthos
data in this study were predominantly sampled in unconsolidated
habitat types that are conducive to survey by trawl gears; thus, our
outcomes will not reflect benthos in hard ground habitats which
may be more sensitive (Lambert et al., 2011). Nevertheless, some
limitations are inherent when conducting broad-scale, multiregional
studies, that are dependent on existing available data.

Overall, our study presents the most comprehensive and exten-
sive quantitative synthesis of information regarding the status of
benthos invertebrate communities in multiple regions worldwide.
We highlight the importance of quantifying benthos status for envi-

ronmental risk assessments in comparison to simpler spatial overlap



MAZOR ET AL.

(@)

[} ()
3 E
- 5
< 4
14 148 152
Longitude
(o] (o]
© ©
3 =1
= =
=} =}
S S

-1e+06 -Be+05 -6e+05 -de+05 -2e+05 0e+00 2e+05

Longitude

Impact

152

148
Longitude

Latitude

Latitude

-3400000

-3800000

Status
P

0.00000 0.00010 0.00020

Predicted abundance (kg/ha)

148 150
Longitude

P
0.00000 0.00010 0.00020
Predicted abundance (kg/ha)

o

T T T T T T T
-1e+06 -8e+05 -6e+05 -4e+05 -2e+05 0e+00 2e+05

Longitude

g
§ =
¥
-1e+068 -8e+05 -6e+05 -4e+05 -2e+05 0e+00 2e+05
Longitude
0e+00  1e-05 2e-05  3e-05  de-05

Predicted abundance (kg/ha)

Latitude
Latitude

Latitude

Longitude

Longitude

Longitude



MAZOR ET AL.

—— 13
FISH and FISHERIES = “=-=AVVA | LEYJ—

FIGURE 5 Three case-study examples of benthos groups a) North Sea bivalve group (infauna) (trawl SAR exposure 174.64%, benthos
status 0.92), b) Benguela/Agulhas South African asteroidean group (trawl SAR exposure 129.32%, benthos status 0.99), c) Great Barrier

Reef malacostraca group (trawl SAR exposure 15.19%, benthos status 0.98). For each region showing (left to right) the predicted abundance
distribution of the benthos group, distribution of impacted abundance, and predicted benthos status distribution. Figure appears in colour in

the online version only

only approaches. Our results demonstrate that, while there is a broad
relationship between trawl SAR exposures and benthos status, expo-
sure alone is not sufficient to account for benthos status or for imple-
menting risk assessments and management decisions at regional or
local scales, where adequate benthos distribution and sensitivity data
(trawl impact and recovery) are available. Our study encompasses
multiple regions across the globe where trawling occurs at a range of
intensities and extents. However, other regions where trawl intensity
is known to be higher, such as the Mediterranean Sea and South East
Asia (FAO 2014; Amoroso et al., 2018; Suuronen et al., 2020), could
not be included due to lack of available benthos survey data. For such
regions where data (benthic or otherwise) are limited, are of poor
quality (e.g. low resolution) or their acquisition is difficult, we may
need to rely on coarser methods of estimating trawl risks. For ex-
ample, using the broader patterns observed by spatial overlap stud-
ies, trawl exposure measures, maximum sustainable yield reference
points (Fmsy), habitat status assessments (Pitcher et al., in review)
or regional SARs (ratio of total swept area trawled annually to total
area of region; Amoroso et al., 2018). Ideally, more benthos surveys
in heavily trawled regions are needed and integrated approaches
where multiple stakeholders (e.g. governmental, academic, indus-
trial) contribute to marine benthic monitoring (Barrio-Frojan et al.,
2016) may offer a possible solution for better quantifying the state
of the seabed in trawled areas of the world's oceans.

Findings from this study, and broader application of the ap-
proaches used in this study, will enable environmental managers to
identify which regions and taxa are at greatest risk of unsustainable
trawling regimes. ldeally, these assessments will need to be coupled
with reference points and thresholds that indicate risk (e.g. Lambert
et al., 2017). For example, is a regional benthos status of 0.95 ac-
ceptable to stakeholders and the wider community? What are the
cascading effects of such a status on the wider marine ecosystem?
Reference points for benthic invertebrates are undeveloped and
will require further research to determine them, which will likely be
specific to a given region (Couce, Engelhard, & Schratzberger, 2019;
Lambert et al., 2017). However, the specificity of the status infor-
mation provides useful quantitative guidance for implementing
management measures to mitigate the impacts (McConnaughey
et al., 2020). We suggest that such topics need to be the focus of
future research to support the growing commitment for countries
around the globe to implement ecosystem-based management
(EBM) principles and practices, and to manage fisheries in a manner

that is sustainable for marine ecosystems.
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