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A B S T R A C T   

Crop type mapping is relevant to a wide range of food security applications. Supervised classification methods 
commonly generate these data from satellite image time-series. Yet, their successful implementation is hindered 
by the lack of training samples. Solutions like transfer learning, development of temporal-spectral signatures of 
the target classes, re-utilization of existing inventories, or crowdsourcing initiatives are commonly applied to 
generate samples for thematically coarser classifications. These methods are rarely used for generating crop types 
samples. In this study, we leverage the phenology information of existing data inventories using Time-Weighted 
Dynamic Time Warping (TWDTW) to address the problem of automatic crop sample generation in two target 
areas. Resulting labeled samples are refined using proximity measures obtained from Random Forests (RF). 
Sentinel-2 time-series are used to obtain phenology information from two study areas. The proposed method-
ology achieved promising results for classes with a reduced inter-classes similarity such as sugar beets (user’s 
accuracy, UA, of 98% and producer’s accuracy, PA, of 100%) or grains (UA of 98% and PA of 90%). The crops 
with a high inter-classes similarity yielded less satisfactory results. Potatoes, for example, obtained a high PA of 
95%, but a UA of only 36% because of the spectral-temporal similarity with maize. The methodology works well 
for areas with balanced crop samples. Yet, it favors prevalent classes in areas with imbalanced crops at the 
expense of a low accuracy for the minority crops. Despite these shortcomings, the proposed methodology offers a 
viable option to generate crop samples in regions with few ground labels.   

1. Introduction 

Agriculture is an important economic sector. For instance, in the 
European Union (EU) alone, in 2018, 44 million jobs are related to food 
industries and agriculture, while the EU supported farmers with 58.82 
billion euros, of which 44.74 billion euros in income support (European- 
Union, 2018). Crop mapping and monitoring is required by many EU 
Member States to verify agricultural subsidies. As a result, EU databases 
are regularly updated with information on crops grown on agricultural 
land. In the global South on the other hand, there is a lack of incentives 
and such databases are non-existent or not regularly updated. Therefore, 
efficient methods for regularly generating reliable crop type information 
are required (Weiss et al., 2020). 

A broad variety of spaceborne sensors are now providing access to 
dense time-series data and high spatial and spectral resolution imagery. 
These data are vital for crop mapping and monitoring (Bégué et al., 
2018). Recent scientific and methodological developments enabled crop 
mapping at local (Belgiu and Csillik, 2018; Csillik et al., 2019; Li and 

Bijker, 2019), regional (Mohammed et al., 2020; Simoes et al., 2020), or 
continental scales (Xiong et al., 2017). Important methodological de-
velopments in this domain have been based on supervised machine 
learning methods (Weiss et al., 2020). However, these methods rely on 
training samples and collecting them through field campaigns is time- 
consuming and expensive (Maxwell et al., 2018). Therefore, we may 
benefit from alternative solutions to generate training samples. 

Previous research has proposed various ways to generate training 
samples, including transfer learning methods (Tuia et al., 2009; Tuia 
et al., 2011), crowdsourcing initiatives (Fritz et al., 2009), making use of 
the spectral and temporal signatures of the target classes (Malambo and 
Heatwole, 2020), or leveraging existing inventories to guide the labeling 
of the new training samples (Huang et al., 2020). Important work was 
dedicated to generating training samples automatically by inspecting 
the spectral and temporal signatures of the classes of interest. Malambo 
and Heatwole (2020), for example, used spectral-temporal trajectories 
extracted from multi-temporal Landsat images to create training data for 
burned areas. Globally applicable spectral signatures have been 
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investigated for forest changes monitoring over large areas (Woodcock 
et al., 2001), forest mapping (Pax-Lenney et al., 2001), tropical forest 
biomass estimation (Foody et al., 2003), urban areas mapping (Okujeni 
et al., 2018), sugarcane mapping using generalized spectral libraries 
generated from multi-annual data (Luciano et al., 2018), and land cover 
mapping on a regional scale using spectral libraries generated from 8- 
day MODIS data (Zhang et al., 2018). 

An increasing number of studies recommended the utilization of the 
already available samples for training supervised classifiers (Huang 
et al., 2020; Radoux et al., 2014). However, the available ground labels 
are often noisy. In addition, large variability in the phenology of crops 
caused by varying agricultural practices and different weather condi-
tions prevents the reusability of these labels from one geographic region 
to another and from one year to another (Belgiu et al., 2020; Wang et al., 

Fig. 1. Study areas located in the Netherlands. Source Area 1 (SA1) is located in Zeeland; Target Area 1 (TA1) is located in Flevoland; Target Area 2 (TA2) is located 
in Friesland. Normalized Difference Vegetation Index (NDVI) layers for May (red channel), June (green channel), and July 2018 (blue channel) are used for the 
visualization of the study areas, whereas crop fields were superimposed over the NDVI layers. Crop field data were retrieved from the Base Registration Crop Parcels 
agency in the Netherlands (www.PDOK.nl). 

Table 1 
Weather data over 2018: monthly average temperature (Tav), monthly average of daily maximum temperature (Tmax), monthly average of daily minimum tem-
perature (Tmin), and total monthly precipitation for SA1, T1, and T2. Temperatures are in ◦C, precipitation in mm, Precipitation-P, based on data from the Royal 
Meteorological Institute (KNMI) for Vlissingen (SA1), Marknesse (TA1), and Leeuwarden (TA2).   

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov Dec. 

Tav SA1 6.20 4.60 4.48 11.29 15.38 16.77 21.00 19.25 16.29 13.53 8.23 7.06 
Tav TA1 4.93 0.39 4.07 11.82 16.68 16.70 19.76 18.15 14.58 11.93 6.34 5.92 
Tav TA2 4.62 0.22 3.55 10.86 15.63 15.93 19.09 18.00 14.65 12.17 6.43 6.06 
Tmax SA1 7.91 4.53 7.39 15.20 19.76 20.41 25.65 22.65 19.28 16.46 10.1 8.72 
Tmax TA1 7.13 3.63 8.12 16.96 22.77 21.24 26.51 23.43 19.25 16.54 9.21 7.85 
Tmax TA2 6.72 3.47 7.39 15.36 21.10 19.76 24.43 22.58 18.73 16.01 9.08 8.00 
Tmin SA1 4.39 0.21 2.14 8.25 11.64 13.76 17.29 16.41 13.44 10.96 6.32 5.34 
Tmin TA1 2.69 − 2.04 0.39 6.63 10.47 12.04 12.19 12.56 9.72 7.26 3.26 3.83 
Tmin TA2 2.29 − 2.90 − 0.28 6.37 9.71 12.01 13.09 13.38 10.50 7.98 3.44 3.81 
P SA1 69.70 35.70 35.70 86.10 82.30 31.60 0.70 13.90 82.20 57.80 67.7 20.2 
P TA1 83.00 16.70 55.60 61.40 52.60 20.30 3.50 100.90 50.60 43.00 28.9 101 
P TA2 103.30 19.00 42.80 73.50 34.20 19.60 11.00 88.40 37.00 38.40 26.3 111  
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2019). As the performance of supervised classifiers is influenced by the 
quality of the samples (Frénay and Verleysen, 2013), noisy labels may 
lead to the decrease of the classifier accuracy while increasing the 
complexity and training time (Miranda et al., 2009; Zhu and Wu, 2004). 
Different strategies have been proposed to improve the quality of the 
samples, including reclassification, or removal of samples, and their 
combination. Simoes et al. (2020), for example, used self-organizing 
maps (SOM) to assess the quality of the existing land cover-land use 
training samples by iteratively computing the probability of the avail-
able samples to belong to the created clusters. 

Most of the above-mentioned methods have been applied either to 
one-class classification problems (Malambo and Heatwole, 2020) or to 
thematically coarser classifications such as land cover classification 
(Simoes et al., 2020). The application of these methods to generating 
crop type labels is missing. 

Leveraging existing samples is an attractive solution to address the 
problem of the availability of crop labels for classification (Fowler et al., 
2020). Therefore, in this study, we will leverage the phenology infor-
mation of samples from one study area (referred to as source area) using 
Time-Weighted Dynamic Time Warping (TWDTW) (Maus et al., 2016) to 
generate labels in two target areas using Sentinel-2 time-series. Prox-
imity measures between samples, calculated with Random Forests (RF) 
(Breiman, 2001), are used to further refine the automated labeled 
samples. Breiman (2001) mentioned that the RF proximity measure is 
‘one of the most useful tools in RF’. Corcoran et al. (2013) used RF- 
derived proximities to find outliers in the labeled wetland data by 
identifying samples with small proximities relative to their classes. Yet, 
these proximity measures have not been used for further sample 
refinement purposes. The scientific contributions of this paper are 
summarized as follows: (i) we evaluate the potential of phenology in-
formation computed from Sentinel-2 time-series and TWDTW in a 
source area to generate samples for two different target areas; (ii) we 
apply RF-derived proximity measures combined with k-means clustering 
for refining of samples. 

2. Study area and datasets 

All three study areas are situated in the Netherlands, in major agri-
culture areas. Source Area (SA1) is located in the south-western part of 
the country in the province of Zeeland. Target Area 1 and 2 (TA1 and 
TA2) are situated in the northern part of the country, in Flevoland 
(Noordoostpolder) and Friesland provinces, respectively (Fig. 1). The 
distance between the SA1 and TA2, the farthest test area, is about 240 
km. All three areas are situated on young marine clay soils and located 
close to the sea, which gives them mild winters and cool summers. 

The major crops cultivated in SA1 are beans, cauliflower, grassland, 
maize, onions, carrots, potatoes for consumption, seed potatoes, sugar 
beets, and grains. Similar to SA1, grains, grassland, maize, onions, po-
tatoes for consumption and potatoes for seeds, and sugar beets crops are 
also present in TA1. Apples and pears plantations are missing from SA1, 
and minor crops (i.e. referred to as other classes in this study) are mainly 

represented by chicory, winter carrots, lucerne, spinach, and flower 
bulbs. In TA2, grassland is the main cultivated crop in this study area. 
The remaining agricultural fields were cultivated with potatoes for 
consumption and for seeds, maize, sugar beets, and grains (summer 
wheat and summer barley). Minor crops represent a combination of 
winter carrots, onions, and flower bulbs. TA2 was selected to assess the 
impact of the class imbalance problem in labeling and refining training 
samples. 

According to the data of the Royal Meteorological Institute (KNMI), 
2018 was an exceptionally dry and warm year. In general, monthly 
average temperatures were slightly higher in SA1, mainly due to higher 
minimum temperatures. SA1 also received more rain than TA1 and TA2, 
especially during April, May, and June, while TA1 and TA2 received 
more rain during August when many crops were already ripening. The 
average humidity over the year in all three study areas was higher than 
80%. The crop growth and crop management were similar in all three 
areas, but differences in temperature and precipitation affected the 
phenological development of the crops. We intentionally selected areas 

Fig. 2. Acquisition dates for Sentinel-2 images used in this study for SA1, TA1, and TA2.  

Fig. 3. The number of samples in SA1 used to generate the temporal growth of 
the target crops. 
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at some distance and with differences in temperature and precipitation 
to test the robustness of our method to variations in phenological 
development between different areas (Table 1). 

For this study, we downloaded Sentinel-2 Level-2A data representing 
the Bottom-Of-Atmosphere (BOA) reflectance images. The images were 
acquired on different dates (Fig. 2). 

All three time series consist of images acquired at different dates 
throughout 2018 (Fig. 2). These differences are not expected to impact 
the results because previous studies emphasized the capability of 
TWDTW to perform well when temporal sequences of the target crops 
are misaligned on the time axis (Maus et al., 2016; Petitjean et al., 2012). 
We calculated the Normalized Difference Vegetation Index (NDVI) using 
band 4 and band 8 of Sentinel-2 images using Google Earth Engine (GEE) 
(Gorelick et al., 2017). Nationwide crop datasets are available for the 
Netherlands. The Agricultural Area Netherlands (AAN) supplies the 
parcel boundaries (polygons) of all land used for agriculture, including 
annual crops, grassland, and perennial crops. Each year, the Base 
Registration Crop Parcels (BRP) gives the (main) crop cultivated for all 
parcels in AAN. The farmers supply the information on the crops they 
cultivate. AAN and BRP are provided by the Ministry of Economic Af-
fairs and Climate via the Public Data on the Map initiative (PDOK) 
(www.PDOK.nl). 

Fig. 4. The number of samples per class generated randomly in TA1.  

Fig. 5. The number of samples per class generated randomly in the TA2.  
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3. Methodology 

The methodology proposed in this work comprises the following 
main steps: (1) generation of the temporal growth pattern of the most 
representative crops present in the SA1, (2) classification of samples in 
two target areas (TA1 and TA2) using TWDTW (Maus et al., 2016), and 
(3) refining classified samples using RF-based proximity measures. The 
prerequisite for applying this method is to have the same crop types in 
the source and target areas. 

3.1. Generation of samples in the source area and the two target areas 

We used the parcel information provided by AAN and BRP to 
generate 80 samples (pixels) per class using a stratified sampling 
method. In the next step, we discarded those samples that intersected 
with a buffer of 20 m around the boundary of the agricultural fields. In 
this way, we avoided the incorporation of mixed pixels located along the 
boundaries in the sample set. We merged the potatoes for consumption 
and the seed potatoes classes into one potato class, as the crop on the 
field does not show whether it is grown for consumption or seeds and 
shows a similar temporal profile. Also, the three grassland classes 
(permanent, temporary, and seeds) were merged into one grassland 
class. Temporary grassland is grown in alternation with a crop such as 

maize, but as we focus on a single growing season, this difference is not 
important and patterns are defined by mowing and grazing. The distri-
bution of the remaining samples in the source area is presented per class 
in Fig. 3. 

In the next step, we generated for each target area 800 randomly 
distributed samples (Figs. 4 and 5). Note that the grains class present in 
all three areas consists of summer barley and summer wheat. These two 
crops were merged because of their spectral-temporal similarity. 

3.2. Classification of unlabeled samples in target areas 

TWDTW was used to classify the crop samples in TA1 and TA2. 
Dynamic Time Warping (DTW) is a nonlinear warping algorithm that 
compares the similarity between two temporal patterns and finds their 
optimal alignment (Sakoe and Chiba, 1978). It is a time-flexible method 
ideal to compare two temporal growth patterns of crops because it 
considers possible temporal distortions of the time series, like amplitude 
difference, time shifting, shape changes, or noise in the data. The 
alignment between two sequences is done recursively by comparing 
each element of a sequence with all other elements of the other 
sequence, thus obtaining a DTW matrix. The last element of the matrix 
represents the degree of dissimilarity between the two compared se-
quences, with values closer to 0 representing very good matching of the 

Fig. 6. The temporal growth pattern of the crops from SA1 calculated from NDVI computed from eleven Sentinel-2 images.  
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sequences compared. However, in the case of crop mapping, computing 
the entire DTW matrix can be computationally intensive and can lead to 
misleading results, like matching a winter crop with a summer crop. This 
extreme warping can be avoided by adding a temporal cost when 
comparing two elements of the sequences, either using a linear or a lo-
gistic model (Maus et al., 2016). Therefore, we used the time-weighted 
DTW (TWDTW) to classify the crop samples in TA1 and TA2 based on 
the temporal patterns of crops from SA1. We used a logistic TWDTW that 
was shown to outperform a linear TWDTW (Maus et al., 2016) with a 
low penalty for time warps smaller than 50 days and a higher penalty 
otherwise. 

3.3. Refining automatically labeled samples using Dynamic time Warping 
(DTW) similarity values and Random Forest-based proximity measures 

TWDTW-based classified samples were further refined by removing 
the samples whose similarity with the SA1 samples are one standard 
deviation above the mean. In this way, we discarded the samples that are 
less similar to the temporal pattern of the crop class they were assigned 
to. 

RF is a popular classifier used in different remote sensing applica-
tions because of its robustness to noise in the training sample set, a 
reduced number of parameters that require user’s input, multi-class 
handling capacity, and availability of built-in capability to assess the 
importance of the input variables (Belgiu and Drăguţ, 2016). RF is an 
ensemble of decision trees created through bootstrapping. The classifier 
is sensitive to two parameters: Ntree parameter defining the number of 
decision trees to be built and the Mtry parameter that refers to the 
number of variables used to split the tree nodes. Based on previous 
studies (Belgiu and Drăguţ, 2016), Ntree was set to 1000 and Mtry was 
defined as the square root of the total number of variables. 

Besides the above-mentioned characteristics, RF allows the calcula-
tion of proximity values, i.e. similarity, between samples. Proximities 
between all samples (including the out-of-bag samples) generated an N 
× N matrix, denoting the similarity between each pair of samples. The 
(n,m) element of the proximity matrix was calculated by the fraction of 
the number of trees in which the elements n and m ended up in the same 
terminal node of the decision trees created in the RF model. For 
example, if Ntree = 1000 and a pair of samples ends up in the same 

terminal node in 300 of the 1000 trees, then the proximity value is 0.3. 
Therefore, similar samples should be in the same terminal node more 
often than dissimilar samples (Liaw and Wiener, 2002). The inverted 
proximity matrix (1-proximity) denoting the distance between samples 
was mapped into a Cartesian space using multidimensionality scaling 
(MDS) (Cox and Cox, 2008). MDS is a common method to visualize the 
proximities between samples in two dimensions (Buja et al., 2008). The 
proximity of samples is proportional to their similarity. 

In the next step, we used k-means to cluster the samples using the 
proximity measures. K-means is an unsupervised clustering method that 
generates k number of clusters by iteratively measuring the Euclidean 
distance between input samples and assigning them to the nearest 
cluster centroid. It has been commonly used for land cover classification 
(Gómez et al., 2016) and, more recently, for crop type mapping (Wang 
et al., 2019). The number of clusters (k) was determined using the gap 
statistic method proposed by Tibshirani et al. (2001). Gap statistic is a 
data-driven method that compares the within-cluster dispersion with a 
null reference distribution of the data, i.e. there is only one cluster (Eqs. 
(1) and (2)). 

Gap(k) =
1
B
×
∑

B
log(W*

b(k)) − log(W(k)) (1)  

where B is the number of reference datasets, W(k) is the within-cluster 
sum of squares (with k cluster) and W*

b(k) is the within-cluster sum of 
squares of the reference datasets. 

The number of optimal clusters is chosen when: 

Gap(k) ≥ Gap(k+ 1) − sk+1 (2)  

where sk+1 is the estimate of the standard deviation of log(W*
b(k+1)). 

The labeled samples representing the same crop might be clustered 
into more than one cluster. In this case, the cluster is selected to which 
the majority of samples are assigned. The remaining samples were 
distributed over the classes with the majority of missing samples 
assigned to the other clusters. For example, samples of class A might be 
clustered into three clusters: two samples as cluster 4, 46 samples as 
cluster 7, and three samples as cluster 10. Cluster 7, with the majority 
samples, is retained, whereas the other samples were allocated to the 
sample sets assigned to clusters 4 and 10, respectively. 

On the other hand, samples representing different crops might be 
assigned to the same cluster. To address this misclassification, we re-ran 
the RF classification to obtain the proximity measures for the crops 
assigned to the same cluster as input and applied k-means clustering 
using the resulting proximity values. By using this iterative method, we 
refined the samples until the majority of samples of one crop class were 
assigned to a unique cluster, i.e. no other class had its majority samples 
assigned to this cluster. 

3.4. Assessement of the quality of the generated reference data 

The quality of the labeled reference was assessed using the following 
metrics: overall accuracy (OA), user’s accuracy (UA), and producer’s 
accuracy (PA) (Congalton, 1991). 

4. Results 

4.1. Temporal profiles of the investigated crops in all three study areas 

Grains had a similar temporal profile in all three areas, reaching the 
highest peak in June-July (Figs. 6–8). The phenological pattern of 
grassland differed across the three study areas since the growth cycle of 
this class is highly influenced by mowing, grazing, or harvesting of the 
seeds. 

Maize and potatoes crops reached the highest NDVI value in July- 
August in all study areas. Onions differed between SA1 and TA1 in 

Fig. 7. The temporal growth pattern of the crops in TA1 calculated from NDVI 
computed from eleven Sentinel-2 images. 
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Fig. 8. The temporal growth pattern of the crops in TA2 using the NDVI from eleven Sentinel-2 images.  

Fig. 9. Boxplots based on TWDTW distances between labeled samples from SA1 and unlabeled samples from TA1.  

M. Belgiu et al.                                                                                                                                                                                                                                  



International Journal of Applied Earth Observations and Geoinformation 95 (2021) 102264

8

terms of the values of their NDVI-based peaks. Sugarbeets showed two 
peaks, in July and October, with a slight valley between them. While for 
SA1 the peak in October was higher than in July, for TA1 and TA2 the 
peak in July was the highest. The green-up stage of the Apples/Pears 
Plantation class showed similarity with the temporal profile of 
grassland. 

4.2. Spectral-temporal distances between crop types 

The distributions of spectral-temporal distances between labeled 
samples from SA1 and unlabeled samples from TA1 and TA2 calculated 
using TWDTW are presented in Figs. 9 and 10. We discarded the outliers 
with one standard deviation above the mean. This increased the overall 
accuracy of the classification, as compared to the scenario in which no 
samples were removed at this stage (Table A.1.1 in Annex 1). 

The samples were assigned to different crop types based on the 
lowest dissimilarity values. The boxplots showed that onions, potatoes, 
and sugar beets from TA1 and TA2 presented a higher similarity with the 
same crops in SA1. On the other hand, cauliflower and grains had the 
highest dissimilarity values in both areas. Cauliflower was one of the 
crops present in SA1 that was missing in TA1 and TA2. In TA2, the 
grassland class presented a large dispersion of the dissimilarity values. 
This might happen because this class consisted of different types of 
grassland. 

4.3. Samples classification results obtained by applying the Random 
Forest-based refinement method 

Although we had nine crops in SA1, the gap statistic method esti-
mated ten clusters for both samples set from TA1 and TA2. Clustering 
was performed using the distances computed between all training 
samples that ended up in the same terminal node (i.e. 1-proximity 
values). Visualizing the k-means clusters using the MDS plots revealed 
a clear overlap between resulting clusters in both target areas (Fig. 11). 
The samples that were not assigned to any clusters were discarded from 
the samples set. Note that the MDS plot depicted the arrangement of 
samples from TA1 and TA2 in two dimensions in which the proximity of 
samples to one another is proportional to how similar the samples were 
to each other. It is important to mention that the axes themselves have 
no real meaning. 

The majority of samples of potatoes, maize, onions, and other classes 
in TA1 were assigned to the same cluster. This happened because of the 

similarity between their temporal profiles and, hence, the similarity of 
proximity values that ended up in the same cluster. Therefore, these 
samples were iteratively re-clustered based on the RF proximity mea-
sures until the majority of samples of each class belonged to a cluster 
different than the clusters other classes were assigned to. In the case of 
TA2, six classes were assigned to the same cluster because of their 
similarity in the spectral-temporal domain as identified by TWDTW: 
grains, potatoes, carrots, maize, cauliflower, and beans. 

Beans, cauliflower, and carrots were present in the SA1 but were 
missing from TA2. All samples assigned to these classes were considered 
as ‘other classes’ in the confusion matrix. As already reported in the 
literature, the combined class ‘other classes’ obtained a lower accuracy 
because of the high intra-class heterogeneity. The apples/pears planta-
tion (orchards) were present in TA1 but were absent from the samples 
set of SA1. Therefore, these samples were also included in the confusion 
matrix as ‘other classes’. 

We obtained an OA of 69% in TA1. The best-classified classes were 
sugar beets, potatoes, and grains, which obtained a PA of 100%, 95.12%, 
and 90.38%, respectively. The UA of potatoes was low (35.77%) because 
of the high overlap with the maize (24 potatoes samples misclassified as 
maize) and onions (30 samples misclassified as onions) (Fig. 12 and 
Table A.1.3). 

Onions obtained a rather low PA (57.17%) because of the confusion 
with the potatoes class. This happened because onions in SA1 looked 
more like fallow/idle crop, whereas onions in TA1 had a more promi-
nent peak in the temporal profile, being similar to potatoes from SA1. 
The UA of onions was 82.98%. Grassland achieved a UA of 85.71% and a 
low PA (62.07%) because of the confusion with the other class. The 
lowest PA was obtained by maize (7.41%) because of the confusion with 
potatoes. 

The proposed methodology yielded an OA of 75% for TA2. Similar to 
TA1, we grouped the samples classified as onions, carrots, beans, and 
cauliflower as other classes. These crops were present in the source area 
but were missing in this target area. Grassland yielded the best classi-
fication results with a PA of 98.46% and UA of 92.75% (Fig. 13 and 
Table A.1.5). There was a large confusion between maize and potatoes 
classes, which led to low PA and UA values for these two classes. 

Maize, for example, yielded a PA of only 24.16% because of the 
confusion with potatoes. Both potatoes and other classes were mis-
classified as maize and, therefore, the UA of maize was only 43.75%. 
Potatoes had a UA of only 26.06% and a PA of 56.24%. Sugar beets were 
misclassified as grassland and obtained a PA of 64.51%. The UA of this 

Fig. 10. Boxplots based on TWDTW distances between labeled samples from SA1 and unlabeled samples from TA2.  
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class was relatively low (76.92%) because a relatively large number of 
maize, other classes, and potatoes samples were misclassified as sugar 
beets. The grains class obtained a low PA (65.51%) and UA (50%) 
because of the high confusion with potatoes, grassland, and other clas-
ses. The classification results obtained using TWDTW without RF-based 
refinement are presented in Annex 1 (Tables A.1.2 and A.1.4). 

5. Discussion 

In this study, we evaluated the effectiveness of TWDTW and RF- 
derived proximity measures to label and refine crop samples in two 
target areas situated in the Netherlands. To perform the labeling, we 
used reference data available from a similar area, referred to as the 
source area in our study. The proposed methodology is purely data- 

driven and can be adapted to different areas including developing 
countries that are confronting with serious food security challenges and, 
therefore, need access to up-to-date and reliable information on crop 
types for implementing efficient and sustainable intervention programs. 

By measuring the spectral-temporal similarity between phenology of 
labeled samples from source areas and those unlabeled from target 
areas, we achieved promising results for classes with a reduced inter- 
classes similarity, such as sugar beets or grains in TA1 and grassland 
in TA2. The crops with a high inter-classes similarity yielded less satis-
factory results. Potatoes, for example, obtained a PA of 95% in TA1, but 
a UA of only 36% because of the spectral-temporal similarity with 
maize. The classification results of potatoes and maize might be 
improved by using textural features that proved to be an efficient input 
variable for crop classification (Kwak and Park, 2019). 

Fig. 11. Samples clustering in TA1 and TA2. The clustering was performed using proximity measures as input and by applying k-means with 10 predefined clusters.  
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Fig. 12. Assessment of the sample classification and refining results in TA1. The correlations between classes read like this: e.g. 30 samples classified as potatoes 
were actually onions, while 3 samples classified as onions should have been classified as potatoes. 39 samples of potatoes were correctly identified.”. 

Fig. 13. Assessment of the sample classification and refining results in TA2.  
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Some crops showed differences in patterns between the three areas. 
We could not directly explain this from the difference in temperature or 
precipitation (see Table 1). Also, over the winter period, differences can 
be seen. This may be due to different management practices in winter, 
with or without a second crop or green manure. The phenological 
pattern of grassland is mainly influenced by mowing, grazing, or har-
vesting of the seeds, which varies between fields. 

The proximity-based clustering results provide useful information on 
the possible classification errors. For example, some potato samples and 
the great majority of maize samples were assigned to the same cluster in 
both target areas. Such cluster overlapping could be automatically 
flagged as an error and, therefore, the concerned samples would be 
further investigated through ground truth campaigns. 

Our methodology performed well for study areas with a balanced 

Table A.1.1 
Assessment of the sample classification obtained in TA1 without removing the samples those spectral-temporal similarity with SA1 labels as computed by means of 
TWDTW is one standard deviation above the mean.   

Potatoes Sugar Beets Grassland Maize Grains Onions OC Total UA (%) 

Potatoes 37 9 0 51 1 45 16 159 23.27 
Sugar Beets 0 53 0 0 0 0 0 53 100 
Grassland 0 0 31 0 0 0 0 31 100 
Maize 0 2 0 4 0 0 0 6 66.66 
Grains 0 7 0 0 84 2 9 102 82.35 
Onions 23 0 0 0 0 58 4 85 68.23 
OC 2 4 24 1 2 10 75 118 63.55 
Total 62 75 55 56 87 115 104 554  
PA (%) 59.67 70.66 56.36 7.14 96.55 50.43 72.1   
OA (%)         61.73  

Table A.1.2 
Assessment of the sample classification results obtained by applying TWDTW in TA1. UA – User’s Accuracy, PA – Producer’s Accuracy, OA – Overall Accuracy, OC – 
Other Classes.   

Potatoes Sugar Beets Grassland Maize Grains Onions OC Total UA (%) 

Potatoes 50 0 2 1 1 25 9 88 56.81 
Sugar Beets 20 80 4 7 17 1 33 162 49.38 
Grassland 0 0 39 0 11 0 28 78 50 
Maize 82 3 1 5 0 0 2 93 5.34 
Grains 1 0 0 0 90 0 2 93 96.77 
Onions 50 0 0 0 2 62 17 131 47.32 
OC 24 0 2 1 11 10 107 155 69.03 
Total 227 83 48 14 132 98 198 800 54.15 
PA (%) 22.02 96.38 81.25 35.71 68.18 63.26 54.04   
OA         54  

Table A.1.3 
Assessment of the sample classification results obtained by applying TWDTW and Random Forest refining methodology in TA1.   

Potatoes Sugar Beets Grassland Maize Grains Onions OC Total UA(%) 

Potatoes 39 0 0 24 0 30 16 109 35.77 
Sugar Beets 0 43 0 1 0 0 0 44 97.73 
Grassland 0 0 18 0 1 0 2 21 85.71 
Maize 0 0 0 2 0 1 0 3 66.66 
Grains 0 0 0 0 47 0 1 48 97.92 
Onions 3 0 0 0 0 39 5 47 82.98 
OC 0 0 11 0 4 3 31 49 63.27 
Total 41 43 29 27 52 72 55 319  
PA (%) 95.12 100 62.07 7.41 90.38 54.17 56.36   
OA         69  

Table A.1.4 
Assessment of the sample classification results obtained by applying TWDTW in TA2.   

Potatoes Sugar Beets Grassland Maize Grains Other class Total UA (%) 

Potatoes 27 2 4 8 12 3 56 48.21 
Sugar Beets 18 29 12 1 0 0 60 48.33 
Grassland 1 1 467 2 6 1 478 97.69 
Maize 32 10 0 19 0 0 61 31.14 
Grains 9 0 5 2 40 2 58 68.96 
OC 37 4 12 7 20 6 86 6.976 
Total 124 46 501 39 78 12 800  
PA (%) 21.77 63.04 93.21 48.71 51.28 50   
OA (%)        73.5  
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number of crop samples (TA1). Yet, it favors prevalent classes in areas 
with an imbalanced number of samples at the expense of low accuracy 
for the marginal crops. In TA2, for example, the major crop, i.e. grass-
land, achieved the highest accuracy (PA and UA of 98% and 93%, 
respectively). Misclassification of potatoes, sugar beets, grains, and 
other classes was much more severe because these crops represent a 
smaller proportion of the sample sets. These results confirm the findings 
of previous studies that showed that sample noise removal strategies are 
biased towards the majority classes (Seiffert et al., 2014; Van Hulse and 
Khoshgoftaar, 2009). Existing balancing methods such the synthetic 
minority oversampling technique (SMOTE) might be used to reduce the 
errors caused by class imbalance (Waldner et al., 2019). Furthermore, 
the sample-refining strategies reduced considerably the number of 
samples. For example, we removed 481 samples from TA1 and 368 
samples for TA2 (see Tables A.1.2–A.1.5 in Annex 1). We see this is as 
one of the disadvantages of these strategies as already reported in the 
literature (Miranda et al., 2009). 

RF is a fast and efficient supervised classifier that has been used 
successfully in different remote sensing applications (Belgiu and Drăguţ, 
2016), including classification of crops from time-series datasets (do 
Nascimento Bendini et al., 2019). This study took advantage of the 
proximity measures capability of RF to refine the sample set. It can also 
be used as a proxy for the presence of several subclasses within the same 
generic class, e.g. different grassland, potatoes, or maize types (Touw 
et al., 2012). 

Previous studies used DTW and its variations for land use-land cover 
mapping (Maus et al., 2016; Petitjean et al., 2012) or crop mapping 
using either pixels (Li and Bijker, 2019) or objects (Belgiu and Csillik, 
2018; Csillik et al., 2019) as the smallest units of analysis. Xue et al. 
(2014) used DTW to assess the quality of land cover samples identified 
through visual interpretation. We used DTW because of its recognized 
capability to address the classification challenges caused by the presence 
of gaps and shifts in the available time-series (Petitjean et al., 2012). All 
three time-series available for SA1, TA1, and TA2 consist of images 
acquired at different dates (Fig. 2). 

Before applying RF-based proximity measures, we removed the 
outliers from the distribution of the spectral-temporal dissimilarity 
values. Previous studies excluded the outliers from spectral signatures 
using probabilistic iterative trimming such as the χ2 test on Mahalanobis 
distance between the samples and computed distribution (Desclée et al., 
2006; Radoux et al., 2014). We also evaluated the performance of the 
proposed methodology without removing outliers from the training 
sample set. Yet, the results were less satisfactory (see Table A.1.1). These 
results contradict the findings in Zhu et al. (2016) that concluded that 
there is no need to remove the outliers from the training sample set. 

The dependence on existing samples in the source area might limit 
the application of this method in areas lacking these data (Malambo and 
Heatwole, 2020). To address this limitation, samples from previous 
years (Huang et al., 2020). Although phenological development will 
vary over the years because of different weather conditions, we expect 
our method will be able to deal with these inter-annual variations, which 
we plan to test as part of future work. Since the spectral-temporal 

characteristics of the crops from different countries could vary signifi-
cantly, samples of crops cultivated in the same agro-ecological zones 
might be a promising solution to this challenge as shown by Li et al. 
(2020) in a study dedicated to land cover mapping in Africa. 

For future work, we will focus on the generation of spectral-temporal 
libraries for crops in the Netherlands and use them to regularly update 
crop data. The completeness of these libraries is important to avoid 
situations when not all crops from target areas are represented in the 
source area sample set. In addition, phenology-based labeled training 
samples will be further refined using spatial filters such as morpholog-
ical filters defined for different window sizes (Radoux et al., 2014) and 
tested on robustness against inter-annual variability. If successful, the 
method can be expanded to countries in the global South, where agri-
cultural fields are often smaller and more heterogeneous and, therefore, 
more challenging to map. 

6. Conclusions 

High-quality crop samples are essential for accurate supervised 
classification. This paper proposed an automatic generation of labeled 
crop datasets in two target areas by leveraging the spectral-temporal 
characteristics of crops from a similar area. Spectral-temporal dis-
imilarities between labeled samples from the source area and those 
unlabeled from target areas were measured using TWDTW. The quality 
of the automated labeled samples was improved by computing the 
proximity values between all samples using the RF classifier. Proposed 
method worked well for sugar beets and grain crops. Yet, it obtained less 
satisfactory results for the potatoes and maize crops because of their 
similarity in the spectral-temporal domain. Further investigations and 
improvements of the proposed methodology are required in areas with 
an imbalance in the area or number of fields per crop, where minority 
crops obtained less satisfactory results. 

Supplementary materials 

The R code used for refining labeled samples and sample data are 
available at https://github.com/mbelgiu/LabelingTrainingSamples as 
supplementary material. 
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Table A.1.5 
Assessment of the sample classification results obtained by applying TWDTW and Random Forest refining methodology TA2.   

Potatoes Sugar Beets Grassland Maize Grains OC Total UA (%) 

Potatoes 18 1 0 14 6 30 69 26.09 
Sugar Beets 1 20 0 3 0 2 26 76.92 
Grassland 2 10 256 0 2 6 276 92.75 
Maize 4 0 0 7 1 4 16 43.75 
Grains 4 0 3 0 19 12 38 50.00 
OC 3 0 1 0 1 2 7 28.57 
Total 32 31 260 24 29 56 432  
PA (%) 56.25 64.51 98.46 29.16 65.51 3.57   
OA (%)        75  
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Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: a review of applications 
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. 

Belgiu, M., Zhou, Y., Marshall, M., Stein, A., 2020. Dynamic Time Warping for crops 
mapping. Int. Arch. Photogram., Remote Sensing Spatial Inform. Sci. 43, 947–951. 

Breiman, L., 2001. Random forest. Mach. Learn. 45. 
Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L., 2008. Data 

visualization with multidimensional scaling. J. Comput. Graph. Stat. 17, 444–472. 
Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely 

sensed data. Remote Sens. Environ. 37, 35–46. 
Corcoran, J., Knight, J., Gallant, A., 2013. Influence of multi-source and multi-temporal 

remotely sensed and ancillary data on the accuracy of random forest classification of 
wetlands in Northern Minnesota. Remote Sensing 5, 3212–3238. 

Cox, M.A., Cox, T.F., 2008. Multidimensional scaling. Handbook of data visualization. 
Springer, pp. 315–347. 

Csillik, O., Belgiu, M., Asner, P.G., Kelly, M., 2019. Object-based time-constrained 
dynamic time warping classification of crops using Sentinel-2. Remote Sensing 11. 

Desclée, B., Bogaert, P., Defourny, P., 2006. Forest change detection by statistical object- 
based method. Remote Sens. Environ. 102, 1–11. 

da Nascimento Bendini, H., Garcia Fonseca, L.M., Schwieder, M., Sehn Körting, T., 
Rufin, P., Del Arco Sanches, I., Leitão, P.J., Hostert, P., 2019. Detailed agricultural 
land classification in the Brazilian cerrado based on phenological information from 
dense satellite image time series. Int. J. Appl. Earth Obs. Geoinf. 82, 101872. 

European-Union, 2018. Agriculture. In. 
Foody, G.M., Boyd, D.S., Cutler, M.E., 2003. Predictive relations of tropical forest 

biomass from Landsat TM data and their transferability between regions. Remote 
Sens. Environ. 85, 463–474. 

Fowler, J., Waldner, F., Hochman, Z., 2020. All pixels are useful, but some are more 
useful: efficient in situ data collection for crop-type mapping using sequential 
exploration methods. Int. J. Appl. Earth Obs. Geoinf. 91, 102114. 

Frénay, B., Verleysen, M., 2013. Classification in the presence of label noise: a survey. 
IEEE Trans. Neural Networks Learn. Syst. 25, 845–869. 

Fritz, S., McCallum, I., Schill, C., Perger, C., Grillmayer, R., Achard, F., Kraxner, F., 
Obersteiner, M., 2009. Geo-Wiki. Org: the use of crowdsourcing to improve global 
land cover. Remote Sensing 1, 345–354. 
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