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Abstract

Necrotizing soft tissue infections (NSTI) are
multifactorial and characterized by dysfunc-
tional, time dependent, highly varying hyper-
to hypo-inflammatory host responses
contributing to disease severity. Furthermore,
host-pathogen interactions are diverse and dif-
ficult to identify and characterize, due to the
many different disease endotypes. There is a
need for both refined bedside diagnostics as
well as novel targeted treatment options to
improve outcome in NSTI. In order to achieve
clinically relevant results and to guide preclin-
ical and clinical research the vast amount of
fragmented clinical and experimental datasets,
which often include omics data at different
levels (transcriptomics, proteomics,
metabolomics, etc.), need to be organized,
harmonized, integrated, and analyzed taking
into account the Big Data nature of these
datasets. In this chapter, we address these
matters from a systems perspective and yet
personalized approach. The chapter provides
an overview on the increasingly more frequent
use of Big Data and Artificial Intelligence
(AI) to aggregate and generate knowledge
from burgeoning clinical and biochemical
information, addresses the challenges to man-
age this information, and summarizes current
efforts to develop robust computer-aided clini-
cal decision support systems so to tackle the
serious challenges in NSTI diagnosis, stratifi-
cation, and optimized tailored therapy.

Keywords

Artificial intelligence · Big data · Clinical
decision support systems · Deep learning ·

Information management · Personalized
medicine · Semantic technologies

Highlights
• Systems, precision and personalized medicine

approaches are methods to facilitate and
improve contemporary diagnosis, accurate
stratification, and optimized tailored therapy
in NSTI.

• Big Data analytics and artificial intelligence
are increasingly allowing to uncover disease
mechanisms, giving a basis for patient
stratification.

• We have established a prototype of an
advanced platform for personalized medicine
in NSTI according to FAIR principles.

• We have developed the basis for a clinical
decision support system in NSTI.

12.1 Introduction: The Case
for a Systems and Personalized
Approach to NSTI

NSTI are complex multifactorial diseases that can
be caused by a variety of microbes. They are
frequently complicated by septic shock and
multi-organ failure. Despite modern medicine,
the mortality is high, often exceeding 25%, and
amputation is required in up to 15% of the cases
(Peetermans et al. 2020). Most patients affected
are individuals with co-morbidities,
e.g. cardiovascular diseases and diabetes mellitus,
but some patients are young immunocompetent
individuals. The fulminant, often rapid course of
these invasive infections (Kittang et al. 2010),
demands early diagnosis and immediate interven-
tion. However, misdiagnosis and subsequent
doctor’s delay is frequent (Goh et al. 2014), due
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to discrete and unspecific initial symptoms, scarce
clinical findings and lack of biomarkers in early
stages of many NSTI.

The cornerstones in the treatment of NSTI are
early aggressive surgical debridement and
appropriate antimicrobial therapy. Frequently
there is a need for advanced supportive
measures. There is clearly an urgent need for
refined bedside diagnostics and novel, targeted
treatment options to improve outcome in these
patients. Because of the multifactorial nature of
NSTI and sepsis, it is becoming increasingly
clear that individualized approaches are required
to improve outcome of these patients. These
infections are characterized by dysfunctional,
highly varying hyper- to hypo-inflammatory,
host responses contributing to disease severity
(Goldstein et al. 2007; Sarani et al. 2009;
Peetermans et al. 2020). Thus, individualized
therapeutic strategies targeting both pathogen
as well as the host response have great potential,
but require patient stratification based on disease
signatures.

Data are becoming available showing the
power of omics in identification of disease
signatures (Davenport et al. 2016), as well as in
providing the basis for patient stratification
through large-scale analysis of clinical data
(Hardt et al., in preparation), but fail to acknowl-
edge the complexity of the host-pathogen
interactions and the patient’s individual
responses to infection and its progression. In
this chapter, we address these problems from a
systems medicine perspective, provide an over-
view on the increasingly more frequent use of
Big Data and Artificial Intelligence (AI) to
aggregate, and generate knowledge from
burgeoning clinical and biochemical information
directing towards personalized approaches.
Moreover, we address the challenges to manage
this information and summarize current efforts
to translate this information into actionable
knowledge through the development of robust
computer-aided clinical decision support
systems (CDSS) to tackle the serious challenges
in NSTI diagnosis, stratification, and optimized
tailored therapy.

12.2 State of the Art: Systems,
Precision and Personalized
Medicine in NSTI

Current medical science is largely conducted
under a reductionist paradigm, which involves
the notion that complex phenomena like
mechanisms underlying onset of infectious
diseases, interactions between host and pathogens
and disease progression may be better understood
by breaking them down into smaller, simpler
components (Ahn et al. 2006).

However, given the complexity of the
conditions under study and the myriad of underly-
ing factors, this often leads to biased focus and
oversimplification (i.e. by focusing only on a hand-
ful of major factors with the biggest effect, while
the sum of minor factors may be considerable) and
generalization (i.e. assuming that a common cause-
effect relationship applies equally in all cases).

Such simplifications and generalizations often
limit our ability to understand how multiple
variables interact with one another to create emer-
gent effects and hamper not only our understand-
ing of the disease, but more importantly, our
capability of delivering better treatments. There
is clearly a need to address health and disease
from a systems perspective, that is, one that
accounts for all factors and interactions. For
instance, Chap. 12 illustrated the application of
such a systems (biology) approach for the identi-
fication of potential biomarker sets in NSTI. This
entailed the uncovering of metabolite–metabolite
association networks and analysis and deploy-
ment of machine learning methods (Afzal et al.
2020). These findings would not have been pos-
sible with a traditional, reductionist approach of
trying to identify potential biomarkers by stan-
dard approaches that are based, e.g. on simple
univariate analysis of datasets, as these fail to
account for the interrelatedness existing among
genes, proteins, and metabolites that behave in an
orchestrated way for what concerns regulation,
transcription, and translation (Rosato et al. 2018).
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12.2.1 Systems Medicine

Building upon the uncovering of biological
mechanisms as above and going beyond that,
“Systems medicine” applies systems biology
approaches to medical research and medical prac-
tice. Its objective is to integrate a variety of
biological/medical data at all relevant levels of
cellular organization using the power of compu-
tational and mathematical modelling, to enable
understanding of the pathophysiological
mechanisms, prognosis, diagnosis, and treatment
of disease (Auffray et al. 2010). Systems Medi-
cine involves iterative and reciprocal feedback
between the clinical practice and the research
carried on with computational, statistical, and
mathematical multiscale analysis and modelling
at both the epidemiological and individual patient
level (www.easym.eu).

This new paradigm of Systems Science and
Medicine complements the traditional reduction-
ist approach (as exemplified in Fig. 12.1) and,
ideally, leads to the identification of mechanisms
related to disease pathophysiology, selection of
novel drug targets and biomarkers, patient strati-
fication, risk assessment, and optimized therapy.

As described in Chap. 1, the systems medicine
INFECT project (https://permedinfect.com/
projects/infect/) has generated comprehensive
knowledge of diagnostic features, causative

microbial agents, treatment strategies, and patho-
genic mechanisms (host and bacterial disease
traits and their underlying interaction networks)
by using the largest thus far patient cohort in the
world. Also, INFECT has proven the value of
systems medicine approaches in acute infectious
diseases to achieve improved diagnostics and
therapeutics to improve patient disease outcome.
In particular, the novel understanding of the dis-
ease mechanisms has resulted in changed clinical
practice related to antibiotic usage as well as use of
immunomodulatory treatments (Bergsten et al. 2020;
Madsen et al. 2018) (see also Chaps. 7, 8, and 9).

However, the insights gained also underscore
the need for patient stratification and implemen-
tation of tailored therapy. Despite considerable
progress, there are substantial hurdles to be over-
come related to the difficulties in accounting for
patient’s individual conditions, or intrinsic to
Systems Medicine itself.

12.2.2 Challenges in Systems Medicine
and How to Tackle Them

The recent transition to data-rich (i.e. molecular
characterization) applications, which followed
the omics revolution with the advent of high
throughput genomics, transcriptomics,
metabolomics, and all other omics disciplines,

Fig. 12.1 Schematic
illustration of the core
differences between
reductionism and systems
science, when analyzing the
properties of a system
(Tillmann et al. 2015).
Licensed under Creative
Commons
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have enabled Systems Medicine approaches
(Noble 2008). However, this data deluge is at
the same time an opportunity and a challenge.
An opportunity because it allows patient
phenotyping at different levels in an unprece-
dented manner, and a challenge because of the
heterogeneity observed in both data and patients.

There is an inherent data heterogeneity which
arises when different data types and different data
resources are integrated. This poses challenges
for both data handling and analysis which can
be addressed by vertical integration, i.e. when
different data informs on the same biological
level, or by horizontal integration, i.e. when mul-
tiple datasets inform on the same biological level
(Berthold et al. 2010). Both cases can be handled,
using FAIR data approaches (Findable, Accessi-
ble, Interoperable, Reusable) and semantics
technologies (Berthold et al. 2010) but, as a mat-
ter of fact, there are other inherent sources of
variability, which poses even greater challenges
to Systems medicine approaches.

Humans exhibit a great phenotypic diversity,
which originates from the complex interplay of
genetic, epigenetic, and environmental factors,
that affects both disease manifestations and
responses to therapy (Assfalg et al. 2008; Bernini
et al. 2009). Nonetheless, intra-individual
variability is less than half the inter-individual
variability, making personalized medicine possi-
ble (Hughes et al. 2015; Gruden et al. 2012).
Under this light, statistical and computational
characterization of individual and inter-individual
variability is pivotal to the deployment of systems
and personalized medicine approaches, which
will allow both higher sensitivity and specificity
of personalized assays and substantial new
insights into health and disease.

Characterization of phenotypic diversity in
both health and disease and underlying biomolec-
ular mechanisms should be carried out at different
levels. Examples could be developing new statis-
tical and computational methods, to exploit the
wealth of information obtainable at all omics
levels, or by developing and deploying multiscale
approaches to model how processes occurring at
widely different scales integrate, results in the
phenotypic variability observed in humans.

Multiscale modelling is another way to
approach the problem of phenotypic variability.
This includes bridging molecular and physiologi-
cal processes, even taking place at very different
time and spatial scales (Meier-Schellersheim et al.
2009). This could facilitate a better understanding
of the biology of health and disease, allowing us
to tailor models to individual patients
(e.g. genome-scale metabolic model constrained
by patient-specific data).

A key challenge is to select measurements and
data collected at the small scales and combine
them into informative metrics to be transferred
to a higher level. This is the realm of meta-
modelling, which is the statistical approximations
or predictions of the relationships between the
various model components. Meta-modelling has
been proposed as an efficient solution to link
models obtained at different scales, to link
modelling results and measured data, and to iden-
tify the most important metrics determining sys-
tem functionality at the various levels (Tøndel
et al. 2012).

Among statistical approaches derived from
multivariate analysis, multi-way analysis has
been proposed to retain the block-wise structure
of temporal data originating from nonlinear
dynamic models used to describe the systems at
different levels (Tøndel et al. 2012). However,
other solutions can be hypothesized that involve
other component methods: some examples are
principal component regression (Jolliffe 1982)
or partial least square regression (Wold and
Eriksson 2001) that can be used to model the
complex relationships between input parameters
and model outputs of nonlinear dynamic models
likely with embedded procedure for variable
selection to reduce dimensionality and complex-
ity of the parameter space (Tøndel et al. 2012).
Furthermore, parameter characteristics, such as
distributional properties, covariance, and correla-
tion patterns, could be inferred by stochastics
methods designed to deconvolute correlative or
noisy patterns: since signals can be separated
from background biological variability in data-
driven inference framework, this could ultimately
lead to a better definition of phenotype
characteristics.
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12.2.3 Precision and Personalized
Medicine

Personalized Medicine builds upon Systems
Medicine and is an emerging data-driven health
care approach that integrates phenotypic, geno-
typic, epigenetic, lifestyle, and environmental
factors unique to an individual. The goal of
personalized medicine is to facilitate diagnosis,
predict effective therapy, and avoid adverse
reactions specific for each patient (Nimmesgern
et al. 2017; Union 2015).

Precision medicine is the concept of tailoring
disease treatment and prevention to account for
differences in genetic, environmental, or even
lifestyle factors specific to groups of people
(Bresnick 2018). Precision medicine takes
genetic and biochemical information unique to a
group of patients and uses that information to
develop more specific and streamlined
medications or treatments. The goal is to ensure
that each medication or treatment is best suited to
treat the individual, resulting in decreased side
effects and increased effectiveness (Hulsen et al.
2019).

Although the terms precision medicine and
personalized medicine are sometimes used inter-
changeably, generally speaking, “precision medi-
cine” seeks to create treatments that are applicable
to groups of individuals who meet certain
characteristics, whereas “personalized medicine”
implies individualized treatments available for
every unique patient (Erikainen and Chan 2019).

Precision and personalized medicine are in
their infancy in infectious diseases, in particular
acute diseases such as sepsis and NSTI (Lazăr
et al. 2019). As the patient populations in severe
infections are highly heterogeneous due to host-
microbe interactions governed by different host
factors and pathogens driving unique pathogenic
mechanisms, personalized and precision medi-
cine approaches may prove crucial. It is
recognized that a dysregulated host response to
infection is directly linked to severity and out-
come of severe infections, such as sepsis and
NSTI. Furthermore, the response profiles/disease
signatures can be highly variable, ranging from

hyper- to hypo-responses with different mediators
involved (Hotchkiss and Karl 2003; Anaya et al.
2005; Huang et al. 2011; Thänert et al. 2019).

The identification of disease signatures of
value for patient classification studies in well-
defined patient cohorts has been undertaken,
exploring host responses, pathogen profiles, and
their association with disease outcomes (Chella
Krishnan et al. 2016; Thänert et al. 2019). How-
ever, as for all biomarkers (see Chap. 12), these
findings must be validated by use of other patient
cohorts, as stated in a landmark position paper by
the European Society of Clinical Microbiology
and Infectious Diseases (Rello et al. 2018).
Accordingly, to advance on precision medicine
of NSTI and sepsis, two current multinational
projects have been designed and implemented
(PerMIT and PerAID, www.permedinfect.com).
These projects build upon the unique resources
created in the INFECT project, including clinical
expertise, patient registry, biobank, multi-omics
data, identified candidate disease signatures, data
stewardship resources, and basic science experi-
mental model systems.

These resources are currently being used to
test data-driven working hypotheses through
advanced preclinical and clinical studies com-
bined with Big Data integration and information
technology solutions, to develop patient stratifi-
cation schemes allowing for individualized ther-
apy in NSTI. The identified pathogenic
mechanisms and biomarkers linked to particular
NSTI disease signatures and clinical outcome are
being further validated in sepsis patients, a condi-
tion that, just like NSTI, is defined by the host’s
response to an infection. A major strength of
these on-going studies is that they resort on
well-defined patient cohorts, allowing for robust
conclusions linking host response signatures and
pathogenic mechanisms to clinical outcomes
encouraging translation of these findings into
future patient handling measures.

Interestingly as well, these two synergistic
projects envision that some stratification and clin-
ical trial designs will be shared for NSTI and
sepsis, whereas others will target more strictly
defined patient subgroups. For example, sepsis
patients with an immunosuppressive response
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profile might be targeted for an immune boosting
therapy, whereas NSTI and sepsis patients with a
hyperinflammatory profile will benefit from a
suppressive agent.

Undoubtedly, such insights will allow for
effective tailored treatments and development of
new tools and concepts for future clinical trials.
Crucially, however, for this potential to be ful-
filled, some further challenges have to be tackled,
in particular with regard to the handling of infor-
mation and translation to actionable knowledge.

Indeed, a key challenge in the personalized/
precision medicine field is the vast amount of
fragmented clinical and experimental datasets
that need to be organized, harmonized, and
integrated in order to achieve clinically relevant
results and to guide preclinical and clinical
research. This is also essential to enable fruitful
Big Data analytics to yield meaningful insights,
as well as for development of Clinical Decision
Support Systems (CDSS) to assist effectively and
efficiently in bedside decision.

12.3 Big Data, Machine Learning
and Deep Learning in Systems
Medicine

12.3.1 Big Data Definitions
and Characteristics

Big Data and the development of techniques to
handle it have the potential of enhancing our
ability to probe and understand which parts of
the biological machinery underlying the normal
functioning of the organism that may be or
become dysfunctional, given the pathophysiology
of a condition (Hulsen et al. 2019).

Big Data are characterized by the so-called
four V’s (Schroeck et al. 2012), which stands
for volume, variety, velocity, and variability.

1. Volume refers to the size of data, where size
indicates the physical occupancy of data files.
In Big Data applications exabytes, zettabytes,
and even higher amounts of data need to be
handled simultaneously. For what concerns

systems medicine applications, the volume of
the data is likely to be much smaller.

2. Variety refers to the heterogenous nature and
sources of data. In the biomedical field the
different types of data that can be collected,
mined, and analyzed are virtually endless.
Data comes not only in form of health records,
clinical data, to which data from omics
measurements can be added but also as medi-
cal imaging, including X-rays, CT, or MRI, or
images recorded on tissue samples, e.g. tissue
biopsies. These different data sources need to
be handled and integrated to be properly
analyzed, taking into account there are
structured data (e.g. data stored in excel for-
mat) and unstructured data (like doctor’s
notes). This is usually one of the most chal-
lenging tasks.

3. Velocity refers to rate of data sampling and
acquisition. Standard clinical measurements
and omics data are usually static or acquired
at a (very) low sampling rates. Differently,
health monitoring systems, including, but not
limited to, smartphones, smart watches, smart
bracelets/wristbands, connected sensors, and
wearable devices, enable continuous monitor-
ing of patient data by sensing and transmitting
measurements such as heart rate, blood pres-
sure, body temperature, respiratory rate, chest
sounds, and electrocardiogram (Vitabile et al.
2019) at high frequency, creating a flow of
data that often needs to be processed “on-the-
fly.”

4. Variability concerns the quality of the data
acquired and their inconsistency. For biomed-
ical and healthcare applications, data quality is
a very critical aspect, because erroneous infor-
mation can lead to erroneous diagnosis and
treatment. The problem of obtaining quality
data is complex and cross-disciplinary. Over
the years, several organizations have
contributed to defining the quality of various
products and services and identifying ways of
measuring such quality (Brighi 2018).
Handling and management of data inconsis-
tency, such those introduced by missing data,
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is of paramount importance for the exploita-
tion of Big Data.

Accordingly, Big Data are high-volume, high-
velocity and/or high-variety information assets
that demand cost-effective, innovative forms of
information processing that enable enhanced
insight, decision making, and process automa-
tion. This definition (www.gartner.com/it-glos
sary/big-data/), albeit stated in the context of
informatics, summarizes the challenges and the
gain that Big Data present and can offer to
Systems Medicine.

The ultimate goal of the collection and use of
Big Data in Systems Medicine is the possibility of
obtaining better description of both health and
disease profiles and to use them to build integra-
tive models that can be used to predict disease
onset and progression and to tailor better treat-
ment for each patient. Under this light, Big Data
approaches are fundamental for the development
of Precision medicine, which aim to integrate
phenotypic, genomic, epigenetic, and environ-
mental factors unique to an individual to facilitate
diagnosis, predict effective therapy, and avoid
adverse reactions specific for each patient. Thus,
precision medicine needs to operate on different
scales to gain other insights into health and disease,
utilizing and integrating data from cells, tissues,
organs, and ecosystems, e.g. those constituted by
microbial communities (Stacy et al. 2016).

12.3.2 AI in Systems Medicine

Artificial intelligence encompasses the use of
software and algorithms to emulate the human
cognition in the analysis of complex medical data.

AI is being successfully employed in several
medical fields. Models have been constructed that
enable to distinguish high-risk breast lesions
(HRL) diagnosed with image-guided needle
biopsy that require surgical excision from HRLs
that are at low risk for upgrade to cancer at sur-
gery (Bahl et al. 2018) or able to detect pneumo-
nia using chest X-rays with an accuracy level
exceeding practicing radiologists (Rajpurkar

et al. 2017). Using images, artificial intelligence
approaches have been used to describe the impact
of orthognathic treatment on facial attractiveness
and age appearance (Patcas et al. 2019). A semi-
nal study (Esteva et al. 2017) tested the perfor-
mance of AI to distinguish keratinocyte
carcinomas versus benign seborrheic keratoses
and malignant melanomas versus benign nevi,
training it on >15,000 biopsy-proven diagnostic
images, against 21 board-certified dermatologists,
and found AI to perform on par with all tested
experts across both comparisons, and other stud-
ies confirmed AI ability in identifying melanoma
from dermoscopic images with accuracy similar
to that of specialists (Phillips et al. 2019, 2020).

There are few applications of Big Data and AI
to systems medicine specific to NSTI. The man-
agement of NSTI is complex given that clinical
presentation is highly variable and range from
early sepsis with obvious skin involvement to
minimal cutaneous manifestations with a dispro-
portionate systemic response (Bosshardt et al.
1996). Classic signs like fever, diffuse crepitus,
and shock are late signs: once large blisters and
gangrene develop, the infectious process is
already at an advanced stage (Bosshardt et al.
1996). NSTI treatment must be aggressive and
rapid and essential elements of the treatment are
resuscitation, antimicrobial therapy, surgical
debridement, and supportive care (Anaya et al.
2005; Morgan 2010; Hakkarainen et al. 2014;
Stevens and Bryant 2017), and constant monitor-
ing is required to achieve fluid, electrolyte, and
hemodynamic stability (Bosshardt et al. 1996).
Hyperbaric oxygen treatment can also be used
as adjunctive therapy when infections involve
anaerobic bacteria, specifically the clostridial spe-
cies (Bakker 2012).

For instance, AI could be applied to the analy-
sis of microbiological findings. Identification of
the etiological agents can assist infection control
measures and antimicrobial therapy decision
making, and may offer prognostic information
(Anaya et al. 2005; Huang et al. 2011; Madsen
et al. 2019). The practical applicability of AI
methods for the analysis of microbiology finding
to aid diagnostic testing has been postulated and
discussed for the image analysis including Gram
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stains (Smith et al. 2020) which could be applied
also to NSTI microbiology (see also Fig. 12.2).
The role of radiologic imaging in diagnosis of
NSTI is debated (Leichtle et al. 2016; Fernando
et al. 2019) and several imaging options are avail-
able, such as plain radiographs, ultrasonography,
computerized tomography (CT), and magnetic
resonance imaging (MRI).

Although MRI images were previously not
used in Big Data context or analyzed with AI
methods, those could be easily applied to support
and aid clinical decision. For instance, supervised
algorithms could be trained on large datasets
containing MRI images of patients with NSTI
and related conditions, and these algorithms
could be applied instantly, contextually with
image acquisition and reconstruction, to provide
guided diagnosis that could be integrated with
other clinical information.

Kim et al. (2011) suggested that magnetic res-
onance imaging could be used to differentiate
between necrotizing and non-necrotizing fasciitis.
They compared MRI findings between the two
groups and found that patients with necrotizing
fasciitis had a significantly greater frequency of,

among others, thick (�3 mm) abnormal fascial
signal intensity on fat-suppressed T2-weighted
images, low signal intensity in the deep fascia
on fat-suppressed T2-weighted images. CT scan-
ning has also been proposed (Hietbrink et al.
2016) but MRI scanning proves to have the
highest sensitivity and specificity (Hietbrink
et al. 2016).

Rakus-Andersson and Frey (Rakus-Andersson
and Frey 2016) trained a modified neural net-
work, to identify groups of NSTI patient with
good prognosis of recovering without HBO com-
pared to patients for which HBO could be benefi-
cial, in such a way as to support clinical decision
making. They used data from 13 patients admitted
to the Blekinge County City Hospital in
Karlskrona between 2006 and 2010. The input
data consisted of clinical data (non-disclosed)
and the results were satisfactory, with an accuracy
of 92%; however, these results were obtained on a
very limited sample size and have not been cross-
validated.

The use of Big omics data in the clinical
setting of NSTI to support diagnosis at the bed-
side is less immediate since these measurement

Fig. 12.2 Information management model for systems and personalized medicine. Figure from (Ganzinger and Knaup
2017), Licensed under Creative Commons
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platforms are usually not available in hospital
settings: sample work-up, preparation, acquisi-
tion, data cleaning, and processing may require
several days, which is a major hindrance, given
the severity of NSTI in critically ill patients
(Peetermans et al. 2020). A notable exception
is the use of nuclear magnetic resonance, which
requires minimal sample preparation to measure
metabolomics profiles of blood and tissues
samples collected in the operating theater and
that can provide almost real-time information to
the surgeons and to clinicians. Such a setting has
been implemented at St. Mary Hospital in
London (Nicholson et al. 2012).

The advent of new technologies is enabling
real-time sequencing of large genomes and it is
now possible to perform without delay sequenc-
ing and analysis of patient genetic information.
Implementations of automated phenotyping and
interpretation of genome sequencing by bead-
based genome library preparation directly from
blood samples and sequencing of paired 100-nt
reads obtained 15.5 h and used for fast
population-scale, provisional diagnosis of
genetic diseases of infants in neonatal and pedi-
atric intensive care units, have been reported
(Clark et al. 2019). They reported a prospective
100% precision and a mean time saving of 22 h
on diagnosis which subsequently affected
treatment.

If Big omics data are less applicable for bed-
side decision support due to technical limitations,
they are essential when defining strategies for
patient stratifications and individualized therapy
in NSTI. Indeed, the lack of stratification
strategies (one of the cornerstones of precision
medicine) is one of the biggest bottlenecks in
NSTI management. Omics data from NSTI
subjects (and possibly controls), such as
transcriptomics, proteomics, lipidomics, and
metabolomics profiles measured on blood and
tissue biopsies, could be analyzed in relation to
pathogens and clinical parameters using multivar-
iate statistics, machine learning, and reverse engi-
neering approaches to identify subgroups of
patients demonstrating a survival benefit or favor-
able response to given treatments.

12.4 Information Management

12.4.1 Personalized and Precision
Medicine

A key challenge in the fields of personalized and
precision medicine is to organize, harmonize, and
integrate the vast amount of fragmented clinical
and experimental datasets, in order to achieve
clinically relevant results and to guide preclinical
and clinical research.

Typically, data of different sources such as
electronic health record (EHR) systems, clinical
research databases, or biomedical knowledge
representations like (i.e. ontologies) have to be
reviewed and prepared. Furthermore, an often
overlooked weakness is the use of patient samples
and/or omics data despite lack of linked clinical
(meta)data, which greatly reduces the usefulness
of the studies. Thus, information management is
of paramount importance for systems and
personalized medicine in research as well as clin-
ical practice. To tackle these challenges, a variety
of approaches have been suggested and
implemented in different settings. One such
model is a three-layer information technology
architecture coupled to a cyclic data management
approach, as proposed by Ganzinger and Knaup
(2017). The generic high-level architecture of
such a three-layer model entails:

1. Data representation,
2. Decision support, and
3. User interface.

As for data representation (layer 1), data and
knowledge from different sources have to be
prepared and made available for use in systems
medicine. This includes data harmonization,
transformation, and storage. In decision support
(layer 2), the data and knowledge from layer 1 are
processed by applying decision support
approaches or systems biology models (see also
Sect. 12.3 on Big Data). Systems medicine
applications should be designed to assist and not
replace human decisions. Consequently, the user
interface for such an application (layer 3) must be
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carefully designed to support well-informed,
reproducible, clinical decisions in an appropriate
time frame. The core concept of this model is the
knowledge base, which contains patient and
disease-related data as well as formally
represented knowledge including a variety of
omics and biomedical data. The Decision Support
is suggested as case-based and rule-based
components (Ganzinger and Knaup 2017), see
also Sect. 12.5 below pertaining Decision Sup-
port. This model is shown schematically in
Fig. 12.2.

The complexity of the data management pro-
cess depends on the level of heterogeneity preva-
lent in the data sources. To achieve sufficient case
numbers it is often necessary to combine data on
the same entity types from different sources. For
example, in the multi-center approach hospitals
decide to collaborate and share clinical data on a
specific disease area to build a joint systems med-
icine application with a higher number of cases
and therefore greater statistical power. In most
cases, clinical documentation will not be based
on identical specifications. Thus, in a
harmonization step data definitions have to be
evaluated for each attribute, both on a syntactic
and semantic level.

12.4.2 The Case of NSTI

In the context of systems and personalized medi-
cine in NSTI, the most comprehensive endeavor
thus far is that being undertaken under the scope
of a series of national and international research
programs comprising teams from hospitals, med-
ical research, academia, and industry (see Chap. 1
and www.permedinfect.com). These programs
have built a platform for personalized medicine
in acute infectious diseases with focus on NSTI
and sepsis that form the basis for development of
tools and concepts for refined diagnosis, patient
stratification, and individualized treatment.

The various participating hospitals have made
substantial standardization efforts, so that clinical
partners provide patient cohorts, including both
clinical registries and associated biobanks, which
were used to populate a common information

platform. This required previous ethical approvals
and written informed consent from all patients
[and to be updated and amended as need arises].
It required as well full compliance on Data &
Ethics governance, Good Clinical Practice
guidelines, and European General Data Protec-
tion Regulations (GDPR) (Regulation 2016).
The data platform developed includes systems to
handle data in separated data domains and stores
to protect data ownership and privacy
requirements.

12.4.3 Integrating Heterogeneous
Data with FAIR Principles

A key feature and goal of such multinational,
multi-center projects like INFECT, PERAID,
and PerMIT is to ensure that all data resources
(both institutions’ own and public) are properly
integrated into a common framework. A
distributed data lookup and retrieval service
allow users to select relevant datasets for inclu-
sion in analysis based on not only matching meta-
data but importantly clinical and biological rele-
vance and this adds a vital level of quality control
ensuring that only clinically relevant datasets are
included. These encompass also demographics,
clinical, and treatment aspects.

Strict clinical case definition criteria, as well as
source of infection and severity scores such as
simplified acute physiology score (SAPS) and
sequential organ failure assessment (SOFA) are
used for precise patient classifications, whereas
microbiological results will be documented and
allow for stratification according to etiology and
virulence properties. A key component is the
inclusion of heterogeneous omics and biochemi-
cal datasets, which are ultimately essential for
establishing the mechanisms underlying clinical
conditions. The carefully curated studies/datasets
are integrated with a minimal data model for
meta-data exposure using a Resource Description
Framework (RDF) model (Lassila and Swick
1998), which is further empowered by using
distributed search and indexing technologies
such as Apache Lucene (Białecki et al. 2012).
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Data fusion and standardization is ensured
throughout the use of specialized data fusion
algorithms and well-functioning interactions
among participating institutions.

The use of a RDF data model to manage data
provenance and storage ensures that data comply
with the FAIR guidelines for data management.
Minimum information checklists are used to facili-
tate interpretation and reproducibility of results
ensuring the inclusion of the relevant meta-data.
All data types are (should be) to be represented in
ontologies so that they can be integrated and remain
interoperable as the types and size of data increase.

A systematic treatment of the data is ensured
by the use of ontologies devoted to clinical and
disease-related terms, such as Systematized
Nomenclature of Medicine-Clinical Terms
(SNOMED CT) (Cote 1986; Lussier et al.
1998). The structure of the underlying data
resources is assessed using tools such as
RDF2Graph (van Dam et al. 2015) to ensure
that newly integrated datasets readily fulfill the
quality standards and indicators.

Operation of the www.permedinfect.com plat-
form enables both handling of heterogeneous data
and the standardization of operating procedures,
data, and models, as well as their storage and
stewardship.

The structure and workflows comply with
those required by the European Union on data
management of research (European Commission
2016). The platform itself aligns with interna-
tional data stewardship infrastructure such as the
ESFRI ELIXIR (elixir-europe.org) or Nordic
e-Infrastructure Collaboration (NeIC) program
(https://neic.no/).

12.4.4 Laying the Basis
for Computer-Assisted Decision
Support

Any CDSS has to rely on a data platform (see, for
instance, the HUNT platform, www.ntnu.edu/

hunt/data which inform the PerAID and PerMIT
data projects), allowing different layers with dif-
ferent level of access and different levels of gran-
ularity at the data level.

At the first level, a close interaction between
the clinicians and support personnel exists. The
interaction on the electronic devices is
optimized using the state-of-the-art technology
to monitor and to optimize human-computer
interfaces.

The second level prepares anonymized
databases from level 1 using software that can
process various types of data such as patient
records, data collected in various forms, and
biobank data to a format that can be included in
the RDF databases through previous
standardization. This software is to be used within
the hospitals in a protected environment and only
the anonymized data will be transferred to the
second level. This data is then to be further
digitalized and abstracted to the third level that
will represent a statistical view on the
original data.

The first and second level are unique for a
particular clinical center, while data at the third
level will be pooled across centers. The three-
layered data structure helps to overcome the
main limitations of medical support systems,
which are usually not scalable and not
interconnected. Data are translated to standard
English vocabulary while keeping the original
granularity of the data and third layer data will
be shareable between different clinical sites.

This allows the CDSS to be scalable and
used in other studied and countries by account-
ing for local language requirements (see Sect.
12.5). Then the third layer, containing highly
processed data, can be made public and used to
predict treatment outcomes and contributing to
best practice management of the disease. The
CDSS will therefore combine the information
of all patients in the patient cohorts, thereby
allowing for interoperability and scalability of
the system.
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12.5 Clinical Decision Support
Systems for Soft Tissue
Infections

12.5.1 The Need to Enhance Medical
Decisions

The quantity and quality of clinical data are
expanding rapidly, including EHRs, disease
registries, patient surveys, and information
exchanges. Also, burgeoning amounts of data
are becoming available for each patient, as is the
increasing body of medical and basic sciences
evidence. Hence, clinicians need tools to help
them make rational decisions based on all these
information (Wasylewicz and Scheepers-Hoeks
2019).

Big Data and digitalization, however, does not
automatically mean better patient care. Several
studies have shown that only implementing an
EHR and computerized physician order entry
(CPOE) has rapidly decreased the incidence of
certain errors, introducing, however, many more
(Magrabi et al. 2016). Therefore, high-quality
clinical decision support is essential if healthcare
organizations are to achieve the full benefits of
EHR and CPOE.

In the current healthcare setting, healthcare
providers often do not know that certain patient
data are available in the EHR, do not always
know how to access these data, do not have the
time to search for them, or are not fully informed
on the most current medical insights when facing
a decision. It is said the healthcare providers often
drown in the midst of plenty (Mamlin and Tierney
2016; Frost and Sullivan 2015; Bresnick 2016).

Moreover, decisions by healthcare
professionals are often made in conjunction
with/as part of direct patient contact, ward rounds,
or multidisciplinary meetings. This means that
many decisions are made in a matter of seconds
or minutes. This way, their quality depends on the
healthcare provider having all patient parameters
and medical knowledge readily available at the
time of the decision. Consequently, current
decisions are still strongly confounded by experi-
ence and knowledge of the professional.

Computer technology and algorithms can assist
by generating case-specific advice for clinical
decision making. The systems used are usually
referred to as CDSS, and are thus intended to
improve health care delivery by enhancing medi-
cal decisions with targeted clinical knowledge,
patient information, and other molecular or health
information (Wasylewicz and Scheepers-Hoeks
2019).

12.5.2 What Are CDSS What Is
Their Use

A traditional CDSS is comprised of software
designed to be a direct aid to clinical decision
making, in which the characteristics of an indi-
vidual patient are matched to a computerized
clinical knowledge base. Patient-specific
assessments or recommendations are then
presented to the clinician for a decision (Sutton
et al. 2020). From a historical point of view,
medication-related CDSS has been used for a
long time and is still the most advanced (Garg
et al. 2005). CDSSs today are primarily used at
the point-of-care, for the clinician to combine
their knowledge with information or suggestions
provided by the CDSS. However, there are CDSS
being developed with the capability to leverage
data and observations otherwise unobtainable or
uninterpretable by humans (Wasylewicz and
Scheepers-Hoeks 2019).

Current CDSS often makes use of
web-applications or integration with EHR and
CPOE systems. They can be administered not
only through desktop, tablet, smartphone but
also through other devices such as biometric
monitoring and wearable health technology.
These devices may or may not produce outputs
directly on the device or be linked into EHR
databases (Dias and Paulo Silva Cunha 2018).
The scope of functions provided by CDSS is
vast, including diagnostics, alarm systems, dis-
ease management, prescription, drug control,
and much more. CDSS ranges from personal dig-
ital assistant applications customized by a single
clinician to multihospital mainframe-based sur-
veillance systems meant to assure care for
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thousands of patients (Pusic and Ansermino
2004). They can manifest as computerized alerts
and reminders, computerized guidelines, order
sets, patient data reports, documentation
templates, and clinical workflow tools.

Regarding the nature of the interaction with
the clinician, CDSS may be categorized into those
that entail solicited information (e.g. a clinician
asking for specific advice for a given condition)
or unsolicited information (deliver information or
knowledge that beneficially can alter clinical
decision making (Pusic and Ansermino 2004)).
Such applications can be particular useful if
CDSS builds upon robust and flexible data inte-
gration and includes a wide variety of data ana-
lytics. Such data analytics, in particular those
based on AI, Machine Learning, and other

modelling tools, can be essential for rapid diag-
nosis, stratification, and assistance on decision
regarding disease treatment and intervention
strategies to be applied.

The benefits of CDSS, possible pitfalls, and
evidence-based mitigation strategies to overcome
have been published recently by Sutton et al.
(2020) and discussed as well by Pusic and
Ansermino (2004) and (Wasylewicz and
Scheepers-Hoeks (2019).

12.5.3 CDSS in NSTI

Algorithmic procedures to handle NSTI patients
have been defined (Hietbrink et al. 2016;
Peetermans et al. 2020), see Fig. 12.3, but there

Fig. 12.3 Clinical algorithm for suspected fasciitis, as
suggested by Hietbrink and co-workers (Hietbrink et al.
2016). The algorithm is used for gate specialties in patients
with suspected necrotizing fasciitis. It consists of aware-
ness, early surgical exploration, and early initiation of
treatment. When incision biopsy is indicated, the patient

is transported to the operation room for further treatment.
Treatment and aftercare are multidisciplinary. Analysis of
frozen section, microbiological findings, and biopsy could
be supported by AI technologies. Figure and caption from
Hietbrink et al. (2016), Licensed under Creative Commons
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are currently no CDSS or modules thereof dedi-
cated to NSTI. Such modules or built-in tools
would possibly be very useful for a range of
uses, including those that could be included in
CDSSs or applications routinely used by general
practitioners, as these are often the first point of
entry of potential patients, which are frequently
misdiagnosed due to lack of familiarity with the
disease (Goh et al. 2014).

Indeed, due to the fast progression of the dis-
ease, NSTI management requires fast decisions to
determine the most appropriate course of action.
Such decisions, or part of them, could be
performed or supported by trained algorithms,
e.g. aiding in the main diagnostic problem, that
is to differentiate a lesion requiring surgery from a
lesion for which conservative treatment will be
sufficient. Furthermore, tasks like selection of
antibiotic therapy and adjunctive therapy could
be performed or optimized by dedicated
algorithms, as suggested in the closely relating
field of sepsis management (Komorowski 2020).
Simple algorithmic procedures are already rou-
tinely applied in the management of NSTI. An
example of this is the LRINEC (Laboratory Risk
Indicator for Necrotizing Fasciitis) score which is
generated from six routinely performed labora-
tory tests including the analyses of patients´
C-reactive protein, white blood cell count, hemo-
globin, sodium, creatinine, glucose. Wong et al.
(2004) proposed a tool to distinguishing NSTI
from the other severe soft tissue infections. How-
ever, recently its performance was evaluated in a
prospective cohort study and data were displayed
discouraging its use (Hsiao et al. 2020). An older
study within the National Surgical Quality
Improvement Program (NSQIP, USA) was used
to determine data on the incidence, treatment, and
outcomes of NSTIs (Mills et al. 2010). Partly on
the basis thereof, a 30-day postoperative mortality
risk calculator for patients with NSTI was devel-
oped and validated using a cohort of 1392
identified NSTI cases, of which 42%were female,
median age was 55 years, and median body mass
index was 32 kg/m2 (Mills et al. 2010). Thirty-
day mortality was 13%. Seven independent
variables were identified that correlated with mor-
tality: age older than 60 years, functional status,
requiring dialysis, American Society of

Anesthesiologists class 4 or higher, emergent sur-
gery, septic shock, and low platelet count. The
receiver operating characteristic area was 0.85
(95% CI 0.82-0.87), reflecting a reasonably
strong prediction. Using bootstrap validation,
the optimism-corrected receiver operating charac-
teristic area was 0.83 (95% CI 0.81–0.86), which
was used to develop an interactive risk calculator
for future patients. Although not a CDSS, this
correlation was nevertheless useful for stratifica-
tion, according to the authors.

Another cohort study was reported (Hua et al.
2015) that included 109 patients with a confirmed
diagnosis of NSTI, a median follow-up of
274 days (range 2–6135 days) and of which
31 (28%) died. On multivariate analysis, indepen-
dent risk factors of mortality were age older than
75 years, multifocal NSTI, severe peripheral vas-
cular disease, hospital-acquired infection, severe
sepsis, and septic shock on hospital admission.
Although a retrospective cohort, which disallows
a precise record of the delay between diagnosis
and surgery, these analyses could help building
information to develop a true CDSS and help
clinicians stratify NSTI severity at clinical course
onset.

A triple diagnostic procedure has been pro-
posed to manage NSTI (Hietbrink et al. 2016)
which combines the analysis of microscopic
findings on tissue biopsies together with Gram
staining to assess the presence, gram staining,
characteristic arrangements, and morphology of
microorganisms and analysis of fresh frozen
sections to detect necrosis of the superficial fascia
with fibrinous thrombi of arteries and veins
located in the fascia. The algorithmic procedure
is described in Fig. 12.3, in which many steps
could be replaced or supported by AI- and Big
Data-informed decision.

12.5.4 Current and Future
Developments in Relation
to Dedicated CDSS for NSTI

Specific efforts to develop and deploy innovative
clinical support tools for patient stratification and
bedside decisions suitable for the emergency and
intensive care setting for NSTI are currently being
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undertaken in a series of national and interna-
tional research projects comprising teams from
hospitals, medical research, academia, and indus-
try (see permedinfect.com). One specific task is
the development of Machine Learning and AI
models for the prediction of different outcomes
in NSTI, such as risk of sepsis, septic shock, or
amputation, using a combination of clinical
parameters including SAPS and SOFA severity
scores and biomarkers that can be measured dur-
ing the acute stages (e.g. in the emergency room),
thereby enabling rapid bedside decisions.

The same data approach is being used to iden-
tify an optimized scoring of NSTI patients, to
overcome some of sensitivity issues identified
with the severity score LRINEC indicated above
(Hansen et al. 2017).

Development of automatic calculations of
such severity score is part of the basis for
applications offering personalized decision sup-
port. Considering that different hospitals have
their own sepsis alert system, such automatic
calculations linked to the patients charts and

sepsis alarm are considered as a means to achieve
a more rapid and optimized identification of
patients. This type of systems can help
prioritizing severe cases and thereby reduce the
clinical burden and efficient use of hospital beds.

An effective and efficient CDSS is of particu-
lar importance for the stratification of patients and
personalized therapy in NSTI. Several dedicated
modules are currently under development (www.
permedinfect.com) for: (1) the integration of a
variety of quantitative or qualitative models
(i.e. statistical models, algorithms, etc.) to enable
a CDSS to perform data analytics (see previous
chapter and section on AI and Big Data above);
(2) aggregation of reasoning processes from the
domain and inference capabilities (e.g. rule-base
and case-based systems) to handle the data/infor-
mation (i.e. clinical and experimental
parameters); and (3) user interfaces to match the
need of practitioners in the clinic.

The software architecture model for the NSTI-
dedicated CDSS, the representation of interoper-
able clinical knowledge, and inference engine are
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Fig. 12.4 Simplified representation of a CDSS for NSTI under development in the scope of the projects PerAID and
PerMIT (Figure reproduced from permedinfect.com, author’s copyright)
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being designed to form a base for a CDSS frame-
work of wider applicability. The CDSS
functionalities are being iteratively developed
through requirement-adjustment-development-

validation cycles using enterprise-grade soft-
ware-engineering methodologies and
technologies. The CDSS prepares views for the
clinicians and supports personnel with data that
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Fig. 12.5 Representation of a simple mobile app for use
by clinicians as a front-end of a CDSS for NSTI
(LifeGlimmer GmbH). It enables data mining, querying

databases, calculating specific scores, predicting outcomes
and generally supports the clinician for decisions
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ar”predicting “death after 1 yea

PredictEnter data

Fig. 12.6 Example of the use of the app as support to
beside decision. Based on over 2000 current clinical
parameters and by using Machine Learning algorithms
(tested in the INFECT patient cohort), it predicts severity

(e.g. 90 days mortality) of NSTI patients with high accu-
racy, supporting thereby patient stratification for
differentiated treatment (LifeGlimmer GmbH)

12 Systems and Precision Medicine in Necrotizing Soft Tissue Infections 203



allow patient stratification and individualized
therapy in NSTI/sepsis. In addition to individual
patient data, the system provides information of
patient classification into groups with similar dis-
ease status and comparable clinical and biological
parameters, which are of great value for
continued research. A simplified representation
of the envisaged CDSS for NSTI is shown in
Fig. 12.4.

An example of an initial prototype for a front-
end app to be directly used by a clinical practi-
tioner is depicted in Figs. 12.5 and 12.6 (www.
lifeglimmer.com).

These modules are currently under develop-
ment and testing and it is expected that they will
be eventually implemented in the clinical prac-
tice, with potentially substantial benefits for the
patient and disease management.

12.6 Conclusion and Perspectives

The clinical and biochemical research progress
over the last decades have provided a burgeoning
body of information on the possible mechanisms
underlying NSTI, on the clinical manifestation of
this fast-developing disease, and on
individualized patient characteristics. The organi-
zation and translation of this information into
actionable knowledge requires concerted, multi-
disciplinary efforts and accessible computational
systems that assist decision making. Altogether,
the efforts, platforms, and variety of modules
herein described for systems and personalized
medicine in acute infectious diseases form the
basis for development of tools and concepts for
refined diagnosis, patient stratification, and
individualized treatment. Thereby, such
approaches hold great promise for accurate and
rapid diagnosing and improving outcome in
NSTI, as well as potential to increase cost-
efficacy, as it will promote optimized tailored
therapy.
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