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Abstract
For numerically small breeds, obtaining a sufficiently large breed-specific reference 
population for genomic prediction is challenging or simply not possible, but may 
be overcome by adding individuals from another breed. To prioritize among avail-
able breeds, the effective number of chromosome segments (Me) can be used as an 
indicator of relatedness between individuals from different breeds. The Me is also 
an important parameter in determining the accuracy of genomic prediction. The Me 
can be estimated both within a population and between two populations or breeds, as 
the reciprocal of the variance of genomic relationships. However, the threshold for 
number of individuals needed to accurately estimate within or between populations 
Me is currently unknown. It is also unknown if a discrepancy in number of genotyped 
individuals in two breeds affects the estimates of Me between populations. In this 
study, we conducted a simulation that mimics current domestic cattle populations in 
order to investigate how estimated Me is affected by number of genotyped individu-
als, single-nucleotide polymorphism (SNP) density and pedigree availability. Our re-
sults show that a small sample of 10 genotyped individuals may result in substantial 
over or underestimation of Me. While estimates of within population Me were hardly 
affected by SNP density, between population Me values were highly dependent on 
the number of available SNPs, with higher SNP densities being able to detect more 
independent chromosome segments. When subtracting pedigree from genomic rela-
tionships before computing Me, estimates of within population Me were three to four 
times higher than estimates with genotypes only; however, between Me estimates 
remained the same. For accurate estimation of within and between population Me, at 
least 50 individuals should be genotyped per population. Estimates of within Me were 
highly affected by whether pedigree was used or not. For within Me, even the small-
est SNP density (~11k) resulted in accurate representation of family relationships in 
the population; however, for between Me, many more markers are needed to capture 
all independent segments.
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1  |   INTRODUCTION

Numerically small breeds often have difficulties to com-
pete with larger and highly performing mainstream breeds, 
which endangers their existence (Addo et  al.,  2017; 
Hiemstra et  al.,  2010). These small breeds, however, are 
well worth preserving as they possess unique genetic di-
versity and show high adaptation to local environments. In 
other words, they can fulfil a sustainable role in the so-
ciety (Oldenbroek,  2007). To improve the long-term per-
spectives of small breeds, it is necessary to maintain their 
economic competitiveness and preferably enhance it. In re-
cent years, genomic prediction of breeding values, that is 
prediction based on marker data alone, revolutionized the 
field of animal breeding (Meuwissen et al., 2001). In dairy 
cattle breeding genomic selection significantly reduced the 
generation interval through selection of animals earlier in 
their life, which resulted in higher genetic gains per year 
(Bouquet & Juga, 2013; Pryce et al., 2011). Genomic se-
lection, therefore, can be used in small breeds to improve 
their competitiveness and economic perspectives for farm-
ers to use these breeds on their farms. In addition, methods 
such as genomic optimal contribution selection (Sonesson 
et  al.,  2012) can be applied to simultaneously assure ge-
netic improvement of the breed and the maintenance of its 
diversity.

The principle of genomic prediction is that the reference 
population, which consists of individuals that are both phe-
notyped and genotyped for thousands of single-nucleotide 
polymorphisms (SNPs), is used to estimate SNP effects. The 
estimated SNP effects are subsequently used to infer genomic 
estimated breeding values (EBVs) of selection candidates, 
who only have genotypes. Size of the reference population 
is one of the key parameters that affects accuracy of genomic 
prediction (Daetwyler et al., 2008; Meuwissen et al., 2001; 
VanRaden et al., 2009). For numerically small breeds, how-
ever, obtaining a sufficiently large breed-specific reference 
population for genomic prediction may be challenging or 
simply not possible, either because of limited resources 
available for genetic improvement of the breed, or simply 
because limited numbers of animals are available within the 
breed. Adding individuals from other breeds to the reference 
populations may help to overcome this issue. The benefit of 
reference individuals from another breed strongly relies on 
relatedness between the breeds, where higher increase in ac-
curacy is expected when closely related breeds are combined 
in the reference population, while no or only low increases 
in accuracy are expected when those breeds are more dis-
tant (Brøndum et al., 2011; Habier et al., 2007, 2010; Hozé 
et al., 2014). To prioritize among available breeds, the effec-
tive number of chromosome segments (Me) can be used as an 
indicator of relatedness between individuals from different 
breeds (Wientjes et al., 2016).

The Me is an important parameter in determining the ac-
curacy of genomic prediction in breeds with a single-breed 
(Goddard,  2009) or multi-breed reference population 
(Wientjes et al., 2016). The Me can be estimated both within 
a population and between two populations or breeds. The Me 
within a population describes the number of chromosome 
segments that are segregating independently in the popula-
tion. Effects for each of these segments need to be estimated 
in order to predict genomic breeding values of individuals 
from a given population (Meuwissen et al., 2013; Wientjes 
et al., 2016). The accuracy of genomic prediction increases 
as the number of segment decreases (Daetwyler et al., 2008). 
The Me within a population is directly related to the effective 
population size (Ne) (Brard & Ricard, 2015; Goddard, 2009; 
Lee et al., 2017). Low Ne is associated with higher related-
ness among individuals, higher extent of linkage disequi-
librium (LD) (Falconer & Mackay,  1996; Sved,  1971) and 
lower number of segregating chromosome segments. Hence, 
populations or breeds with similar selection history and LD 
structure are expected to have similar values of Me. The Me 
between populations gives insight in the consistency of LD 
between the two populations (Wientjes et al., 2016). Low Me 
between populations indicates high relatedness between two 
populations, while between populations that were split more 
generations ago usually a higher value of Me is observed (see 
general discussion in Wientjes, 2016).

In general, before all genotypes are available for both ref-
erence animals and selection candidates, a population param-
eter such as Me can be used to predict the anticipated accuracy 
of genomic selection (Goddard et  al.,  2011; Vandenplas 
et  al.,  2017; VanRaden,  2008; Wientjes, et  al.,  2015). The 
predicted accuracies can then help to decide whether imple-
mentation of genomic selection is expected to be beneficial. 
To keep initial costs minimal, the number of animals to gen-
otype to be able to estimate Me, and predict the accuracies 
of genomic selection, should preferably be as small as possi-
ble. Previous studies aiming to estimate within and between 
population Me used 100 or more individuals (van den Berg 
et  al.,  2015; Erbe et  al.,  2013; Wientjes, et  al.,  2015). The 
threshold for number of individuals needed to accurately esti-
mate within or between populations Me is currently unknown. 
It is also unknown if a discrepancy in number of genotyped 
individuals in two breeds affects the estimates of Me between 
populations.

The main objective of our study was to investigate number 
of individuals needed to accurately estimate Me within and 
between populations, and the size of difference in number of 
individuals in two breeds that allows for accurate estimation 
of between population Me. For this purpose, we simulated 
two populations that were separated by 100 generations. We 
evaluated how fast Me changes across generations after sep-
aration and we also investigated if the absence of pedigree, 
a frequent occurrence in small breeds, affects the value of 
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estimated Me. Finally, we studied the effect of marker density 
on the estimates of within and between population Me.

2  |   MATERIAL AND METHODS

2.1  |  Population structure

Two populations were simulated to reflect current domes-
tic cattle breeds, specifically in terms of size of population, 
selection history and LD structure. These populations were 
related through common ancestry, originating from a histori-
cal population. The historical population consisted of 8,000 
individuals in the base population. In the next 300 genera-
tions, population size gradually decreased (by ~25 individu-
als in each generation) to 400 individuals, and remained of 
such size for the following 20 generations, that is until gen-
eration 320. The bottle neck was used to achieve LD. From 
generation 320 until generation 340, the population size 
gradually increased to 5,000 individuals. Number of males 
in generation 340 was 50; number of females was 4,950. The 
genome consisted of 30 chromosomes, each of 100 cM. A 
total of 720,000 SNP markers were distributed equally and 
randomly over the chromosomes so that each chromosome 
contained 24,000 markers, similar to the high density Bovine 
BeadChip. As most traits of economic importance are quan-
titative traits, and to ensure a sufficient number of segregat-
ing QTL in the final data, the number of simulated QTLs 
was high, that is 9,000, which were equally distributed over 
the chromosomes, so that each chromosome contained 300 
QTLs. QTLs were randomly distributed across the genome 
and their effects followed a gamma distribution with a shape 
parameter of 0.4. SNPs and QTLs had equal allele frequen-
cies in the base generation of the historical population. The 
mutation rate of QTLs and markers was set to 2.5  ×  10–5. 
All markers and QTLs were segregating in the last historical 
population.

The last generation of the historical population (i.e. gener-
ation 340) was randomly divided into two equally sized pop-
ulations (A and B), so-called founder populations, of each 
2,500 individuals. In the next generation, the size of both 
populations was increased to 5,000, and in each population, 
30 breeding males and 2,500 breeding females were available 
to produce 5,000 individuals for the next generation. Total 
number of individuals was kept constant for the following 
100 generations. Number of offspring per female was set to 
2, with 1:1 sex ratio. Throughout these 100 generations, both 
populations underwent selection based on EBVs, estimated 
from a best linear unbiased prediction method via an animal 
model, using phenotypic records and pedigree data. In each 
generation, 12 males and 500 females were replaced with in-
dividuals with the highest EBVs (a replacement ratio of 0.4 

for the males and of 0.2 for the females). Thus, overlapping 
generations were present in the data. Selected males and fe-
males were randomly mated to each other, keeping the num-
ber of matings per male on average ~83.

Simulations were performed using QMSim software 
(Sargolzaei & Schenkel,  2009) and consisted of 10 repli-
cates. Appendix S1 contains the QMSim parameter file, and 
Appendix S2 contains the seed file used for simulation.

2.2  |  Estimating Me

Different approaches can be applied to estimate within popu-
lation Me, relying on either Ne or on the variation in genomic 
relationships between the individuals (Goddard,  2009; 
Goddard et al., 2011; Hayes, Visscher, & Goddard2009). In 
this study, we used the latter (see Discussion). The within 
population Me was estimated using the following equation 
(Goddard et al., 2011; Wientjes et al., 2013) :

where Gij is the genomic and Aij is the pedigree relationship be-
tween individual i and j, and the variance is taken over all pairs 
ij in the population. In analogy to this equation, Me between 
populations can be estimated as follows (Wientjes et al., 2013):

where Gpop1i pop2j
 is the genomic relationship between individ-

ual i from population 1 and individual j from population 2, and 
Apop1i pop2j

 is the corresponding pedigree relationship, with the 
variance taken across all pairs of individuals from population 1 
and 2. Conceptually, two populations can be considered as one 
reference population and Me is estimated as the effective num-
ber of chromosome segments that are segregating in the com-
bined population (Wientjes et  al.,  2016). The genomic 
relationship between unrelated individuals is expected to be 0 
(Goddard et al., 2011).

The Me was estimated with calc_grm software (Calus & 
Vandenplas, 2016), using an exponential function to adjust 
G-A values to be on average 0 across the range of 
pedigree  relationship values (Wientjes et  al.,  2016). The 
matrix G was calculated using following equation  
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where G11 is a matrix with genomic relationships in popula-
tion 1, G22 is a matrix with genomic relationships in 
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population 2, while G12 and G21 are matrices with genomic 
relationships between population 1 and 2 (Wientjes 
et al., 2016). Z1 (Z2) matrix contains genotypes for all indi-
viduals from population 1 (population 2) at all loci, centred 
by subtracting twice the allele frequency per locus, and p1k 
(p2k) is the allele frequency of marker k in the population 1 
(population 2). Z1Z

′

2
 and Z2Z

′

1
 are matrices of genetic covari-

ance between the genetic values of two populations, divided 
by the SDs of the genotypes in each population √∑

2p1k (1−p1k) and 
√∑

2p2k (1−p2k).

2.3  |  Scenarios

To get insight into the effect of number of genotyped individ-
uals used on the accuracy of estimated within population Me, 
we tested five different sample sizes of 10, 50, 100, 500 and 
1,000 individuals, respectively. Me was also estimated for 
the whole population of 5,000 individuals using 720k SNPs, 
which was considered closest to the true within Me value, and 
was used for comparison with all other estimates. To test the 
effect of discrepancy in sample sizes from two populations 
on the accuracy of between Me, each sample size from each 
population was tested against each sample size from another 
population, resulting in 25 combinations in total. Similarly 
as for within Me, between Me was also estimated using all 
5,000 individuals from both breeds and 720k SNPs, and this 
estimate was used for comparison with all other estimates. 
All sampling of individuals was performed 50 times within 
each replicate, and the mean and standard deviation of 50 
estimates of within and between Me within a replicate were 
computed. Results are presented as averages of those means 
and standard deviations, across the 10 replicates. The esti-
mates of Me using all 5,000 individuals are presented as aver-
age values across the 10 replicates. The described estimation 
of Me was done at generation 10, 50 and 100, in order to infer 
changes of Me across generations. The pedigree consisted 

of 20,000 individuals that traced each population back four 
generations.

Detected levels of LD may be affected by marker density, 
such as SNPs compared to genome-wide sequence data (Erbe 
et  al.,  2013; Qanbari et  al.,  2014), which subsequently can 
effect estimates of Me. In the default scenario, we simulated 
720k SNPs at the last historical population, to reflect high 
marker density used in dairy cattle. To study the influence of 
different marker densities, we reduced the number of mark-
ers to subsets of 360, 180, 90, 45, 22.5 and 11.25k, which 
was achieved by selecting every 2x-th marker, where x ranged 
from 1 to 6.

Calculation of Me with Equations 1 and 2 requires pedi-
gree to estimate additive genetic relationships between pairs 
of individuals in the same or between different populations. 
When this information is missing, Me may be underestimated, 
especially for within population Me. For between Me, absence 
of pedigree may be less of an issue, since depending on the 
distance between the breeds, no or only a small number of 
individuals may have recent ancestry with individuals from 
another breed. We investigated the effect of pedigree absence 
on the estimation of Me at generation 10, 50 and 100 after the 
split of the two breeds.

3  |   RESULTS

3.1  |  Summary statistics

In the last historical population, all 720k SNPs and 9,000 
QTLs were still segregating. At generation 100 after the split, 
across 10 replicates, on average 7,256 (SD ± 684) SNPs in 
the population 1 and 7,299 (SD ± 791) SNPs in the popula-
tion 2 were not segregating. An effective population size of 

119 was estimated based on the sex ratio, Ne =
4×Nm×Nf

Nm+Nf

 

(Wright, 1990), where Nm is the number of breeding males 

SNP density

Without pedigree With pedigree

Gen 10 Gen 50 Gen 100 Gen 10 Gen 50 Gen 100

720k 298 (5)a  268 (7) 254 (7) 1,387 (69) 887 (26) 776 (44)

360k 298 (5) 268 (7) 254 (7) 1,385 (69) 885 (26) 775 (44)

180k 298 (5) 268 (7) 254 (7) 1,380 (68) 884 (26) 773 (44)

90k 298 (5) 267 (7) 254 (7) 1,370 (68) 881 (26) 770 (43)

45k 297 (5) 267 (7) 253 (7) 1,353 (66) 873 (27) 765 (43)

22.5k 295 (5) 267 (7) 252 (7) 1,315 (63) 860 (27) 754 (42)

11.25k 291 (5) 263 (6) 249 (7) 1,249 (57) 831 (26) 733 (36)

 aEstimates are presented as an average from 10 simulation replicates rounded to the closest number, and 
subsequently averaged over population 1 and 2, with standard deviation of a replicate between the brackets, 
also averaged over two populations. 

T A B L E  1   Estimates of within 
population Me with and without pedigree, 
across generations and SNP densities using 
all 5,000 individuals
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and Nf the number of breeding females. This value of Ne 
is close to those found in previous empirical cattle stud-
ies, where Ne was approximately 100 (Hall,  2016; Leroy 
et  al.,  2013). The squared correlation between pairs of 
SNPs (r2) (Hill & Robertson, 1968) had on average (±SD) 
a value of 0.22 ± 0.23 at pairwise distances of 20–30 kb and 
0.18 ± 0.20 at 60–70 kb for generation 100 for both popula-
tions, similar to observed LD patterns in real cattle popula-
tions (Qanbari et al., 2009, 2014). Allele frequencies of the 
SNPs followed the U-shape distribution.

3.2  |  Within population Me

Table 1 presents estimates of within Me in the whole popu-
lation, at different SNP densities and at generations 10, 50 
and 100. Since population 1 and 2 had similar estimates, 
because they had the same population history, one value 
was presented in the table, which was calculated as average 
within Me of the two populations, with the average standard 
deviation. Using the whole population of 5,000 individu-
als, 720k SNPs, and no pedigree, estimated within Me value 
across 10 replicates was 254 (SD ± 7) in generation 100. 
Regardless of the SNP density, similar values of Me were 
obtained when the number of sampled individuals was 50 
or higher; however, when the number of individuals was 10, 
within Me was overestimated, with average estimated value 
of 361 (Figure 1 and Table 2). In addition, with 10 individu-
als, across replicates the average standard deviation of the 
estimated Me was large, 189. Within Me was overestimated 
and showed high variation when number of individuals 
was 10, regardless whether Me was estimated at generation 
10, 50 (Appendix S3) or 100 generations after splitting the 
populations (Table 2). These results indicate that at least 50 
individuals are needed for accurate estimates of within Me 
and that decreasing SNP density had a very small effect on 
the estimated Me.

With pedigree, estimated within Me was ~3x higher in both 
populations, 776 (SD  ±  44) on average, at generation 100 
when 720k SNPs were used. When pedigree was included, 
estimates of within Me were slightly more affected by SNP 
density (Table 1). With the smallest sample size, within Me 
on average had similar value as other sample sizes; however, 
variation around the mean remained high (Figure 1, Table 2, 
Appendix S3). Across generations, within Me values showed 
a decreasing trend in all scenarios (Figure 2).

3.3  |  Between population Me

The estimated Me between the two populations using all indi-
viduals, 720k SNPs and no pedigree, was 16,036 (SD ± 529) 
at generation 100 (Table 3). Unlike for estimation of within 
Me, where different SNP densities had small effect, between 
Me was highly influenced by number of available SNPs 
(Table 3). For example, at generation 100, using 45k SNPs 
between Me was underestimated by 23%, and the lowest 
SNP density of ~11k SNPs, often used to genotype cows, 
underestimated between Me by more than 46% (Figure  3, 
Appendix S4). Regardless of SNP density, when the number 
of sampled individuals was 50 or more in both populations, 
estimates of between Me were close to that of the whole popu-
lation. On the other hand, whenever one population had only 
10 individuals, between Me was on average overestimated 
with a large standard deviation (Figure  3, Appendix  S4). 
These results suggest that at least 50 individuals from both 
populations are needed for accurate estimation of between 
Me.

From generation 10–100, between Me increased by ~9,000 
when 720k SNPs were used. Increase of between Me is ex-
pected as populations diverge more in time, especially when 
there is no exchange of individuals, which was the case in our 
simulation. Since pedigree used had no shared ancestors in 
either 10 or 100 generations beyond the historical population, 
they effectively had pedigree based relationships of ~0, and 
between Me estimates were the same as those without pedi-
gree (results not showed).

4  |   DISCUSSION

In this study, we conducted a simulation that mimics cur-
rent domestic cattle populations in order to investigate how 
estimated effective number of chromosome segments (Me), 
within and between populations, is affected by number of 
genotyped individuals, SNP density and pedigree availability. 
Our results show that a small sample of genotyped individu-
als is expected to lead to overestimation of Me and therefore 
may not accurately represent population structure. Based on 
our findings, at least 50 genotyped individuals are needed for 

F I G U R E  1   Within population Me across different sample sizes 
in generation 100, estimated with 720k SNPs
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accurate estimation of both within and between population 
Me. While estimates of within population Me were hardly af-
fected by SNP density, between population Me values were 
highly dependent on the number of available SNPs, with 
higher SNP densities being able to detect more independent 

chromosome segments. When pedigree was used, estimates 
of within population Me were approximately three to four 
times higher than estimates with genotypes only; however, 
between Me estimates remained the same. Although the two 
populations used here had a similar population history, in 
term of implications of our results it may equally well rep-
resent situations where the reference population of a local 
breed is complemented with animals from another local or 
mainstream breed. This is because the effective population 
size of the simulated populations of 118 (calculated based 
on the numbers of breeding males and females) is close to 
estimates for local and mainstream breeds.

4.1  |  Within population Me

Estimated within Me using all individuals and no pedigree 
had a value of ~254 in both populations at generation 100. 

T A B L E  2   Estimates of within population Me at generation 100, across different sample sizes and SNP densities

SNP density

Without pedigree (generation 100) With pedigree (generation 100)

Sample size

10 50 100 500 1,000 10 50 100 500 1,000

720k 364 (192) 260 (26) 258 (15) 254 (5) 254 (3) 791 (253) 750 (63) 761 (39) 779 (16) 781 (10)

360k 363 (192) 260 (26) 257 (15) 254 (5) 254 (3) 791 (253) 749 (63) 760 (39) 778 (15) 780 (10)

180k 363 (191) 260 (26) 257 (15) 254 (5) 254 (3) 789 (252) 748 (63) 759 (39) 777 (15) 779 (10)

90k 362 (190) 259 (25) 257 (15) 254 (5) 253 (3) 786 (250) 745 (63) 756 (39) 774 (15) 775 (10)

45k 362 (190) 259 (25) 256 (14) 253 (5) 253 (3) 781 (247) 740 (62) 750 (39) 768 (15) 770 (10)

22.5k 359 (186) 258 (25) 255 (14) 252 (5) 252 (3) 770 (241) 731 (61) 741 (38) 758 (15) 759 (10)

11.25k 354 (181) 256 (25) 252 (14) 250 (4) 249 (3) 750 (234) 711 (58) 720 (36) 736 (14) 738 (10)

Note: Estimates are averages over 10 simulation replicates, averaged over population 1 and 2. Within each replicate sampling and Me estimation has been repeated 50 
times, and average Me and standard deviation of a replicate have been calculated.
Standard deviations of a replicate are given in brackets as an average over 10 simulation replicates, averaged over population 1 and 2.
Appendix S3 contains estimates of within population Me for generation 10 and 50.

F I G U R E  2   Within population Me across generations on the 
example of 720, 45 and 11.25k SNPs, estimated with (a) and without 
(b) pedigree and using the whole population
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T A B L E  3   Estimates of between population Me, across 
generations and SNP densities using all 5,000 individuals

SNP density

Without pedigree

Gen 10 Gen 50 Gen 100

720k 7,117 (383) 11,874 (265) 16,036 (529)

360k 7,054 (376) 11,704 (252) 15,755 (492)

180k 6,926 (363) 11,367 (242) 15,134 (449)

90k 6,687 (338) 10,741 (199) 14,096 (386)

45k 6,258 (296) 9,682 (159) 12,351 (339)

22.5k 5,542 (228) 8,065 (109) 9,852 (246)

11.25k 4,505 (150) 6,044 (71) 6,988 (167)

Note: Estimates are presented as an average of estimates from 10 simulation 
replicates rounded to the closest number, with standard deviation of a replicate 
between the brackets.
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In previous studies on cattle populations, within Me values 
varied significantly depending on the breed and the method 
used to estimate within Me (Brard & Ricard,  2015). When 
formulas based on Ne were used, within Me ranged between 
800 and 8,000, based on the results from 76 studies (Brard 
& Ricard,  2015). Back-solving Me from deterministic for-
mulas for genomic prediction accuracy, after equating those 
to empirical cross-validation accuracies for milk yield and 
somatic cell score, yielded within Me of ~1,000–2,000 for a 
Holstein Friesian population, and Me values of 150–400 for 
Brown Swiss (Erbe et al., 2013). As Me is linked to effective 
population size, it is expected that breeds with lower genetic 
diversity have smaller Me values. In a recent study that ana-
lysed five numerically small Dutch Red cattle breeds, within 
Me ranged between 100 and 300, corresponding to values in 
our simulation (Marjanovic et  al.,  2018). From generation 
10–100, within Me in our study decreased by ~50, which is 
expected since artificial selection reduces genetic variation 
and increases relatedness among individuals. Hence, empiri-
cal estimates of within Me are expected to strongly depend on 
the selection history of the population.

When within Me was estimated using pedigree, the values 
increased approximately fourfold at generation 10 and three-
fold at generation 100 in both populations. Estimated Me of 
similar magnitude (~1,390 at generation 10) has been re-
ported for a Holstein Friesian population, where Me was com-
puted using the same approach as in our study (Wientjes 
et al., 2016). Considering the computation using Me =

1

Var (G��−A�� )
,  

it is worthwhile noting that all variance in the genomic rela-
tionships is likely also present in the pedigree relationships, 
since E (G|A) = A (Goddard et al., 2011), meaning that Var 
(Aij) may be a lower limit of E (Cov (Gij; Aij)). Assuming 
E (Cov (G�� ;A��)) ≈ Var (A��) for simplicity, we get: 
Var (G�� − A��) = Var (G��) − 2 Cov (G�� ;A��) + Var (A��) ≈ Var (G��) − Var (A��), 

and Me ≈
1

Var (G�� ) − Var (A�� )
. Within livestock populations rela-

tively high relationships, such as those between full- and half-
sibs, parent–offspring, and parent–grand offspring, are 
abundant. The presence of such relationships will consider-
ably add to the variance across all relationships in the popu-
lation. The above reformulated equation for Me clearly shows 
that the subtraction of the pedigree from the genomic rela-
tionships will considerably reduce the variance of the denom-
inator, and thus increase the estimated Me.

In numerically small breeds, pedigrees may be incom-
plete or not available, which could result in underestimation 
of Me and therefore overestimation of genomic prediction 
accuracy. In such cases where the aim is to predict the accu-
racy of within breed genomic prediction, it would be advis-
able to derive the pedigree from genotypic information, and 
use this to build the pedigree relationship matrix. Although 
such approach may result in incomplete pedigree if not all 
relationships are reconstructed. With incomplete pedigree, 
some pedigree relationships will incorrectly be considered 
zero, and therefore not appropriately corrected in G-A, lead-
ing to increase in var(G-A) and decrease in Me. The majority 
of small breeds, however, may require a multi-breed refer-
ence population, which requires also the Me values between 
breeds. Those are, however, not influenced by pedigree infor-
mation unless recent introgression occurred, and in general 
can be safely computed while ignoring pedigree information.

We tested the effect of five different sample sizes on the 
estimates of within Me. When the number of genotyped indi-
viduals was more than 50, the estimates varied only slightly 
across 50 replicates, and average Me corresponded to that 
from the whole population, both for scenarios with and with-
out pedigree. However, when the sample size was 10, aver-
age Me was substantially overestimated when pedigree was 
not used. A possible explanation is that with 10 animals, the 
relative contribution of high pedigree relationships to the 
term Var (G�� − A��) is greater than when a larger number of 
animals is selected, which inflates the Me but gets corrected 
with the pedigree. Nevertheless, even when using the pedigree 
relationships, there was a large standard deviation of the Me 
across iterations, suggesting that a single estimate based on 10 
animals could still deviate considerably from the true value.

The within Me value can be computed using different for-
mulas. In our study, the within Me was based on the variance 
of genomic relationships, and in some scenarios, the additive 
genetic relationships were used as well (Equation 1). This 
approach has two important benefits. Firstly, it can be ex-
tended to two breeds, allowing for computation of between 
Me, necessary for across-breed prediction, which is not pos-
sible with other formulas. Other frequently used approaches 
rely on effective population size (Ne) and size of the genome 
(L), for example Me =

2NeL

ln (4NeL)
 (Goddard,  2009) and 

Me  =  2NeL (Hayes, Visscher, & Goddard2009) and eigen 

F I G U R E  3   Estimates of between population Me (with standard 
deviations of a replicate) across different sample combinations in 
generation 100, using 720k. For a comparison, figure also includes 
estimate of between population Me using all individuals (5000_5000) 
and 720k SNPs
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value decomposition of the genomic relationship matrix 
(Misztal, 2016; Pocrnic et al., 2016). The estimates from dif-
ferent formulas can vary considerably, consequently affect-
ing predicted accuracy of genomic selection (Brard & 
Ricard, 2015). In addition, equations based on Ne introduce 
another variation, as Ne can be estimated in several different 
ways (Leroy et al., 2013; Wang et al., 2016). Secondly, com-
puting Me based on the variance of relationships enables to 
consider specific characteristics of a population, such as pop-
ulation structure, as disclosed by observed genotypes of the 
population. In a recent study by van den Berg et al. (2019), 
authors have found that prediction accuracy using within Me 
from genomic relationship matrix resulted in overestimation 
of the accuracy. It should be noted, however, that Me is not 
the only parameter affecting the accuracy of GP 
(Goddard, 2009; Wientjes, et al., 2015). Nevertheless, in the 
study by van den Berg et al. (2019), the true within Me may 
have been underestimated due to close relationships among 
some animals in the reference population, which could also 
be expected in numerically small breeds. However, using 
breed-specific allele frequencies, as done in our study, re-
duced overestimation for between Me.

4.2  |  Between population Me

At generation 100, between population Me had a value of 
16,036 (529) when all individuals and 720k SNPs were used. 
This value is ~63 times larger than Me within population com-
puted without pedigree, and ~21 times larger than within Me 
estimated with pedigree. Larger between population Me com-
pared to within Me is expected, since LD structure, upon which 
Me is dependent, is at least partly different between the two 
populations, as generally observed between different breeds 
(De Roos et  al.,  2008; Wientjes, Calus, Goddard, & Hayes 
2015; Wientjes, et al., 2015). Indeed, between Me in a study 
on Groningen White Headed, Holstein Friesian, and Meuse-
Rhine-Yssel (MRY) breed, was 10× higher than within Me, 
and ranged between 18,000 and 24,000 (Wientjes, et al., 2015). 
The between Me value in our study increased by ~9,000 from 
generation 10–100, indicating that closely related breeds, that 
is those that have split recently, are expected to have smaller 
between Me . Our recent study showed that Me between MRY 
and Deep Red breed, which was derived from MRY, was 
~3,600 but ~17,000 between these two breeds and distantly 
related Groningen White Headed (Marjanovic et al., 2018).

SNP densities used to compute between population 
Me substantially affected its value, with higher number 
of SNPs giving higher between Me value. This finding is 
related to the number of independent segments, which is 
much larger between breeds, than within the breed; hence, 
many more markers are needed to capture all independent 
segments.

4.3  |  Implications

One of the challenges of numerically small breeds is that 
in terms of performance, they may be lagging behind com-
pared to mainstream breeds. In that respect, their survival 
can significantly be aided by using genomic selection to 
speed up genetic gain in those breeds, as an alternative to in-
creasing revenues for instance by focusing on specific niche 
markets. Whether or not implementation of genomic selec-
tion for small breeds is cost-effective, depends not only on 
the achieved additional genetic improvement, but also on 
the costs of the implementation. It has been suggested that 
genotype costs can be shared across multiple applications, 
including use in conservation programs to manage genetic 
diversity and control inbreeding (Fernández et  al.,  2016), 
and parentage and pedigree verification (Berry et al., 2016). 
Also, based on continuously dropping costs of genotyping, 
it has been envisaged that entire cattle populations, or at 
least large proportions thereof, may be routinely genotyped 
in the near future (Boichard et al., 2015). Aiming to over-
come the limited additional genetic improvement due to the 
reference population size being restricted by limitations to 
investments or numbers of available animals within a small 
breed, in recent years a lot of research has been dedicated to 
the use of a multi-breed reference population as an attrac-
tive approach to increase the accuracy of genomic predic-
tion for numerically small populations (Hayes, Bowman, 
Chamberlain, Verbyla, & Goddard 2009; Hozé et al., 2014; 
Lund et al., 2016). In general, reliabilities of across-breed 
predictions tend to be lower than within–breed genomic 
prediction, due to differences in LD structure, allele fre-
quencies and independent chromosome segments between 
the breeds (De Roos et al., 2009; Wientjes, Calus, Goddard, 
& Hayes 2015). Close family relationships between the 
breeds are often missing, which further affects the reliabili-
ties. High SNP density gives more accurate representation 
of consistency of LD phase across populations, which at 
short distances are expected to be conserved across pop-
ulations (De Roos et  al.,  2008), possibly resulting in an 
increased accuracy. Our study showed that accurate com-
putation of between Me does require a SNP density higher 
than the common 50k. Genotyping individuals with high 
density SNP chips is more expensive compared to com-
monly used 50k SNP chip. Alternatively, if possible, in-
dividuals could be genotyped with lower SNP density and 
imputed to higher density, albeit the impact of using im-
puted genotypes on the estimated Me is currently unknown. 
Nevertheless, high density genotyping will likely become 
more affordable in the coming years. Based on our results, 
no more than 50 individuals are required to be genotyped 
per population, to enable assessing the potential benefit of 
genomic selection for this population, which should help 
keeping the costs down.
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5  |   CONCLUSIONS

In conclusion, our results showed that for accurate estimation 
of within and between population Me, 50 or more animals 
should be genotyped per population. Pedigree information 
was not relevant for between Me in our simulation, which is 
expected to be also true for real populations, unless recent in-
trogression occurred. Estimates of within Me were highly af-
fected by whether pedigree was used or not. For numerically 
small breeds, pedigree may often be absent, in which case a 
pedigree relationship matrix could be built using a pedigree 
derived from genotypic information. For within Me, even the 
smallest SNP densities resulted in accurate representation of 
family relationships in the population; however, for between 
Me, many more markers are needed to capture all independ-
ent segments. Presented findings can be used as guidelines 
for studies investigating possibilities for genomic predication 
in numerically small populations.
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