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Abstract: Urbanization changes the land surface environment, which alters the regional climate
system. In this study, we took the Haihe River Basin in China as a case study area, as it is highly
populated and experienced rapid urbanization from 2000–2015. We investigated how land use
and cover change (LUCC) was driven by urban land development affects land-climate dynamics.
From 2000–2015, we collected data from the land use and cover database, the remote sensing database
of the Moderate Resolution Imaging Spectroradiometer (MODIS) series, and the meteorological
database to process and generate regional datasets for LUCC maps. We organized data by years
aligned with the selected indicators of land surface, normalized difference vegetation index (NDVI),
albedo, and land surface temperature (LST), as well as of regional climate, cloud water content
(CWC), and precipitation (P). The assembled datasets were processed to perform statistical analysis
and conduct structural equation modelling (SEM). Based on eco-climatology principles and the
biophysical process in the land-climate dynamics, we made assumptions on how the indicators
connected to each other. Moreover, we testified and quantified them in SEM. LUCC results found
that from 2000–2015 the urban area proportion increased by 214% (2.20–6.91%), while the agricultural
land decreased by 7.2% (53.05–49.25%) and the forest increased by 4.3% (10.02–10.45%), respectively.
This demonstrated how cropland intensification and afforestation happened in the urbanizing basin.
SEM results showed that the forest had both positive and negative effects on the regional hydrological
cycle. The agricultural land, grassland, and shrub had indirect effects on the P via different biophysical
functions of LST. The overall effects of urbanization on regional precipitation was positive (pathway
correlation coefficient = 0.25). The interpretation of how urbanization drives LUCC and alters
regional climate were herein discussed in different aspects of socioeconomic development, biophysical
processes, and urbanization-related atmospheric effects. We provided suggestions for further possible
research on monitoring and assessment, putting forth recommendations to advance sustainability via
land planning and management, including agricultural land conservation, paying more attention to
the quality growth of forest rather than the merely area expansion, integrating the interdisciplinary
approach, and assessing climatic risk for extreme precipitation and urban flooding.
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1. Introduction

Urbanization, industrialization, cropland intensification, and climate change are major
anthropogenic drivers that significantly alter land surface properties and processes of terrestrial
ecosystems [1–3]. The biophysics and chemical properties of land surface, characterized by land use
and cover change (LUCC), regulate atmosphere transportation and solar radiation processes, and thus
the heat-hydro environment [4,5]. Since the 1990s, uncovering the interaction between LUCC and
climate change has become a hot spot in earth system studies [6,7]. Two main directions in the research
of land-climate interaction are the impact of climate change on the land surface ecosystem processes
and the effects of land surface processes on the regional climate system [8–10]. The recent accumulation
of remote sensing databases released by European, US, and Chinese agencies, including hundreds of
environmental indicators at the global scale, offered new opportunities to investigate the relationship
between LUCC and regional climate systems over space and time [11,12]. However, previous studies
have mostly focused on the statistical relationships between specific pairs of variables [4,6,7]. In the
face of global changes, an integrated framework linking major factors of land-climate dynamics is
required to disentangle the complexity of such coupled systems and their underlying mechanisms.

Here, we focus on urbanization-driven LUCC, which may alter land-climate dynamics and
regional climate, which could potentially feedback to human society. Specifically, urbanization-related
land uses—including architecture building, farming, and afforestation—with the massive use of
artificial and natural materials at the large scale of landscape, could affect the spatial distribution of
land surface energy balance through the urban heat island effect [13,14]. Such land use changes can
also affect the regional hydrological cycle through evapotranspiration and the shaping of the wind
profile, water areas, and heat fluxes [15–17]. The heat-hydro environment in turn influences the societal
preference in living and producing as the regional climatic effect on human residence and movement.
Thus, urbanization-driven LUCC has the regulating function by altering regional climate, which can
be quantified and monetarized under the framework of ecosystem services for optimizing the land
ecological and economic benefits in land planning and management [14,18,19].

The Haihe River Basin in China is a highly populated area, serving as the economic and
social development center of the nation. Over the past two decades, the basin has experienced
significant urbanization and population growth [20]. Moreover, massive afforestation projects have
been implemented to provide natural goods and services for the populated plain in the basin. The major
ecological projects—including the Three-North Shelter Forest Program and Afforestation Program
for Taihang Mountain—aimed to restore ecosystems and control desertification for protecting local
people from sandstorms, in addition conserving water resources and developing forestry to supply
food and other woody products to regional industries [21,22]. Evaluating the regional climatic effects
of urbanization-driven LUCC is important for understanding the ecosystem function of the basin and
for regional sustainable development.

In this study, we investigated the urbanization-driven changes in the land-climate dynamics in
the Haihe River basin by combining datasets of satellite imagery and meteorological assimilation.
In particular, we examined how urbanization-driven LUCC changes key indicators of land surface
characteristics and hydrological cycle, i.e., the normalized difference vegetation index (NDVI), albedo,
land surface temperature (LST), cloud water content (CWC), and precipitation (P). We aimed to answer
two questions: (1) how urbanization drives the LUCC and (2) how LUCC alter regional land-climate
dynamics. The original input datasets of the indicators cover range from 2000 to 2015 at the monthly
temporal resolution. We conduct structural equations to model and testify the effects of urbanization
on LUCC and land-climate indicators at the year-scale. We conclude with a discussion on the detailed
interpretations and implications of our results for regional land planning and management.
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2. Materials and Methods

2.1. Study Area

Haihe River Basin is a populated and developed zone in northern China, mainly covering Beijing,
Tianjin, the Hebei Province, as well as a part of the Inner Mongolia, Shanxi, and Shandong Provinces
(Figure 1a), including 26 cities. The area of the basin is 318,200 km2, which is ~3.3% of the whole China.
The topography is higher in the northwestern part and lower in the southeastern part (elevation ranges:
3.5~3061 m). The plateau and the mountainous areas count for approximately 60% of the whole basin
and the plain counts for ~40%. The climatic type of the area is Temperate East Asian Monsoon Climate.
The annual average temperature ranges between 4.4 and 14.6 ◦C, and the average annual precipitation
is about 535.7 mm [23,24].

Figure 1. Study area of the Haihe River Basin and the land use and cover pattern. On the legend:
A=agricultural land, B = bare land, F = forest, G = grassland and shrub, U = urban, W = waters and
wetland (a). The spatial patterns of the selected land surface and regional climate indicators (NDVI =

normalized difference vegetation index, LST = land surface temperature, CWC = cloud water content,
P = precipitation) (b).

The resources development and the LUCC of the basin were mostly driven by population growth
and urbanization in the plain area. Around Beijing, a megacity group of Jing-Jin-Ji (Beijing-Tianjin-Hebei)
has been developing and radiating its surrounding areas since the 1970s, which plays a critical role in
China and East Asia’s economic and social development [25,26]. The population was over 130 million in
2015, which is 10% of the national population. In the mid-1990s, across the river basin, national ecological
restoration and greening projects were implemented. Around 2008, Beijing and its surrounding cities
devoted efforts to improving their environmental conditions to host the Olympic Games. The national
and provincial economic areas have been established and developed in the basin. Following these
changes, the land use and policy has constantly changed, and urban environmental problems like heat
island effect and haze pollution have emerged [18].

2.2. Data Source and Data Processing

To obtain LUCC data in the Haihe River Basin, we selected a satellite imagery product from the
global land cover database, which was generated and released under the Climate Change Initiative
and European Space Agency. We downloaded the original dataset that covered the whole world
from 2000 to 2015 (one scene for each year) at a spatial resolution of 300 m from the online service.
The original land use and cover classification included 6 generalized categories, i.e., agriculture, forest,
grassland, wetland, settlement (urban), and ‘other’, as well as 22 sub-categories in the original spatial
dataset [12]. We applied the ‘extraction by mask’ tool on the vector shapefile of the Haihe River Basin
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profile to clip out the LUCC maps covering the range of our study area from 2000 to 2015. According to
the local situation, we then combined the sub-categories and adjusted the LUCC classification into 6
types, i.e., agricultural land, bare land, forest, grassland/shrub, urban, waters, and wetland, for the
following analysis.

The principle of eco-climatology indicates that at the regional scale, the ecosystem succession
accumulates its effects on the atmospheric system by both spatial and temporal dimensions through the
cause-effect chain from basic land surface biophysical characteristics to the heat and hydrological cycle
distribution environment, which was theorized as the land-climate interaction [15,27]. Following the
eco-climatology principle, we first selected a set of relevant key variables including vegetation, land
surface physical structure, aerodynamic properties, solar radiation, thermal, and hydrological cycles
to analyze the land-climate compounding system of the study area. Then, based on considerations
of representativity, non-collinearity, data availability, and scale matchiness, we finally screened out
5 key indicators: NDVI, albedo, LST, cloud water content (CWC), and precipitation (P), to capture
the land-climate interaction (Figure 1b). NDVI represents the vegetation condition by monitoring the
growth quality of plants on the land surface; LST represents the surface heat environment as being
retrieved with the thermal infrared band reflectance; CWC represents cloud formation and the aerial
water condition; P represents the regional hydrological cycle. The datasets of these key indicators were
collected from different global or national databases (Table S1), including MOD13Q1.006 Terra for
NDVI (250 m spatial resolution), MCD43A1.005 BRDF for albedo (500 m spatial resolution), MODLT1M
for LST (1km spatial resolution), MOD08 V6 Atmosphere Monthly Global Product for CWC (1 arc
degree spatial resolution), and Global Land Data Assimilation System for P (0.25 arc degree spatial
resolution) [28,29]. The dataset of LST was downloaded from Geospatial Data Cloud platform. All other
datasets of the indicators, except LST, were preprocessed and downloaded from the Google Earth
Engine, which were unified and converted to be the monthly raster data. The quality assurance files
were used in the band combination and selection for the monthly dataset preparation. Using ArcGIS,
we overlaid the layers of LUCC and the five land-climate indicators to resample them to unify spatial
resolution as the same of the LUCC map (300 m) and then extracted the pixel values in the monthly
raster datasets. The annual averages of NDVI, albedo, LST, CWC, and annual sum of P were calculated
using different land use and cover types for demonstration and further analysis.

2.3. Statistical Analysis

With the above LUCC dataset, the area proportions of six land use and cover types (i.e., agricultural
land, bare land, forest, grassland and shrub, urban, water, and wetland) were calculated to exhibit the
dynamics of land surface from 2000 to 2015. With the annual average of the land-climate indicators,
we applied linear regressions to examine the temporal trend of each indicator by different land cover
types. The coefficient of variation (CV) was calculated to measure the variability of the indicators.
We performed structural equation modeling (SEM) to testify and quantify the relationship between
urbanization and indicators of LUCC, and land-climate (Table 1). Based on the eco-climatology
principle, we categorized the indicators into three-layer subsystems, i.e., LUCC, land surface indicators
(NDVI, albedo, and LST), and reginal climate indicators (P and CWC). Our hypothesized relationships
between these layers were explained below.

In the first layer (i.e., LUCC), we assumed the dynamics of land covers were basically driven
by urbanization. Following the process of urbanization, the urban construction takes space from
other types of land covers, including cropland, water/wetland, and natural vegetation [30,31]. In the
meanwhile, the increasing demand for food productivity and other ecosystem services changes the land
resource management, e.g., cropland intensification and afforestation [3]. In light of the Environmental
Kuznets Curve, urbanization decreased the forest area at the early stage of urbanization. At a certain
stage, urban expansion starts to be accompanied by increased forest area, thanks to the efforts for a
long-term regional sustainability and environmental quality improvement [32–36] (Figure 2). In the
Haihe River Basin, the massive afforestation embodied such a positive effect of urbanization-driven
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LUCC on the local forest. The multiple major afforestation projects following the state policy have been
implemented since the 1980s, including ‘Three-North Shelter Forest Program’ (1980), ‘Grain for Green
Program’ (2000), ‘Sandstorm Source Control Project’ (2002), ‘Urban Greenery for Hosting Olympic
Game’ (2003), ‘Afforestation in Plain’ (2012), ‘Natural Forest Conservation Program’ (2015), etc. [37,38].
Thus, in the LUCC layer, we assumed that urban land development positively affected forest area
(pathway 1O: +), but negatively affected agricultural land by pressing cropland space and cropland
intensification (pathway 3O: −) [31] (Figure 3). The bare land and water/wetland were not taken into
the SEM model because of their very low proportion (under 1.5% in total).

Table 1. The main qualitative assumptions of the pathways in the structural equation modelling.
(U = urban, F = forest, A = agricultural land, G = grassland and shrub, NDVI = normalized difference
vegetation index, LST = land surface temperature, CWC = cloud water content, P = precipitation).

Subsystem Pathway Process Relationship References

LUCC
1O U→F Afforestation − [3,32,33,35–38]
3O U→A Crop intensification + [3,30,31]

LUCC→land
surface

LUCC→regional
climate

4O F→NDVI Vegetational biomass
growth + [39]

5O U→albedo Land surface roughness
change +/− [16,42,43]

6O A→LST, 7O
G→LST

Land surface energy
balance +/− [4,27,39–41]

8O F→P Eco-hydrological process +/− [45,46]

Land
surface→regional

climate

9O NDVI→P, 10O
NDVI→CWC

Evapotranspiration
promoting the regional

hydrological cycle
+ [27,44]

13O LST→P, 14O
LST→CWC

Land surface heating
drying the regional air − [15,39]

Figure 2. Conceptual diagram illustrating how urbanization drives regional forest increase by
afforestation after a certain stage of economic development (indicated by the vertical dashed line) under
the framework of the Environmental Kuznets Curve (adapted from [35]).

We then considered how LUCC were linked with land surface indicators (e.g., NDVI, albedo,
and LST), i.e., between the first and second layers. Because forests have higher NDVI compared
to the other land covers (e.g., agricultural land, grassland/shrub) [39], we assumed that the forest
area positively affected regional NDVI (pathway 4O: +). Previous studies suggested that forest had
the effects of stabilization and buffering on regional LST, which diminishes LST change [27,39,40].
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Compared to forests, agricultural land, grassland, and shrub have a lower heat capacity due to their
much lower biomass and water storage volume per unit area [40]. Because the total average area
of agricultural land and grassland/shrub is approximately 8.1 times the average area of forest in
our study area, the change in LST should be mainly driven by the area change of agricultural land,
and grassland/shrub [4,39,41] (pathway 6O and 7O: +/−). Besides, albedo indicates the land surface
roughness and radiation reflectance, which can be jointly determined by many types of artificial and
vegetational landscape [16,42,43]. Since we assumed urbanization as a major driving force on LUCC
types in the intensively developed area, we made a direct link from urban area proportion to albedo
(pathway 5O: +/−).

Figure 3. The hypothesized structural equation modelling urbanization-driven changes in land-climate
interaction in the Haihe River Basin, with the assumed pathways (the gray single-arrow lines) and
correlation pairs (the light gray double-arrow dashed lines). (U = urban, F = forest, A = agricultural
land, G = grassland and shrub, NDVI = normalized difference vegetation index, LST = land surface
temperature, CWC = cloud water content, P = precipitation).

Between the second and third layers, we constructed all potential links to quantify the interaction
between land surface indicators (NDVI, albedo, and LST) and regional climate indicators (P and CWC).
Among these links, we assumed that NDVI had the positive effects on P and CWC (pathway 9O and
10O : +) because the evapotranspiration of vegetation promotes the regional hydrological cycle [27,44].
In contrast, we assumed that LST had the negative effects on P and CWC (pathway 13O and 14O : −) by
heating land surface and drying air water [15,39]. Moreover, because forest ecosystems play a vital
role in the regional hydrological cycle [45,46], we added a direct link from forest area proportion to the
regional P (pathway 8O: +/−).

All statistical analyses were conducted with the software R. The hypothesized SEM model was
visualized below (Figure 3) and was fitted using the package of ‘piecewiseSEM’ [47]. We calculated the
net effects of urbanization by summing up direct and indirect pathways.

3. Results

3.1. Land Use and Cover Change

From 2000 to 2015, the urban area increased from 2.2% to ~6.9%. Following the process of
urbanization, different land cover types exhibited different temporal trends (Figure 4; Table S2).
The agricultural land decreased from 53.1% to 49.3%. The forest area increased in the first years but
reached a plateau of ~10.5% since 2004. Grassland/shrub gradually went down from 33.3% to ~32.0%.
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The waters and wetland area decreased gradually from 1.5% to 1.4%. The bare land remained steady
at a level around 0.01%.

Figure 4. The area proportion dynamics of land use and cover in Haihe River Basin from 2000 to 2015.

3.2. Temporal Trends of the Land Surface and the Regional Climate Indicators

The annual average NDVI of the basin increased from 0.34 in 2001 to 0.38 in 2004, and had
since fluctuated around the latter level (Figure 5). The annual average albedo exhibited an overall
decreasing trend from 2000 to 2015. The annual average LST decreased in the first four years (i.e., from
2000 to 2003) and then got steady around the level of 17.4 ◦C since 2004. The CWC and P showed
similar temporal dynamics, both peaking in 2003 and reflecting the accordance in the atmospheric
hydrological cycle indicators. The trends of these five indicators in each land use and cover type
are summarized in Table 2. The results showed that the natural vegetation, including forest and
grassland/shrub, experienced significant trends in NDVI (increasing), albedo (decreasing), and LST
(decreasing). The urban area showed a significant increase in both NDVI and albedo.

Figure 5. The dynamics of the land-climate indicators, normalized difference vegetation index (NDVI)
(a), albedo (b), land surface temperature (LST) (c), cloud water content (CWC) (d), and precipitation (P)
(e), by the different land cover types over the period of 2000–2015 in the Haihe River Basin.
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Table 2. The temporal trends, mean, and coefficient of variation (CV) of the land-climate indicators by different land use and cover types over the period of 2000~2015
in the Haihe River Basin.

Indicators Statistical Index
Different Land Use and Cover Types Average of All Land

Use and Cover TypesAgricultural Land Bare Land Forest Grassland and Shrub Urban Waters and Wetland

NDVI

R2 ↑0.29 ↓0.26 ↑0.57 ↑0.55 ↑0.39 ↑0.41 0.14↑
p-value 0.032 * 0.045 * 0.0007 *** 0.001 ** 0.0096 ** 0.007 ** 0.15
Mean 0.39 0.22 0.46 0.36 0.35 0.20 0.32

CV 3.3% 17.2% 3.5% 4.2% 3.9% 4.3% 3.42%

albedo

R2 ↓0.026 ↓0.23 ↓0.34 ↓0.56 ↑0.44 ↑0.002 0.26↓
p-value 0.55 0.06 0.018 * 0.0009 *** 0.005 ** 0.86 0.044 *
Mean 0.15 0.18 0.11 0.14 0.14 0.11 0.14

CV 1.3% 9.7% 2.1% 2.4% 1.6% 2.4% 2.53%

LST
(◦C)

R2 ↓0.088 ↓<0.001 ↓0.39 ↓0.33 ↓0.15 ↓0.085 0.13↓
p-value 0.27 0.98 0.0099 ** 0.019* 0.14 0.27 0.16
Mean 20.39 16.36 15.41 17.43 21.20 16.78 17.93

CV 5.5% 15.5% 9.1% 8.9% 6.0% 8.3% 7.67%

CWC
(g/m2)

R2 ↓0.0037 ↓0.096 ↑0.074 ↑0.022 ↓0.0014 ↓0.0043 0.003↓
p-value 0.82 0.24 0.31 0.59 0.89 0.81 0.85
Mean 204.37 199.24 206.27 207.97 200.27 200.32 202.07

CV 6.3% 13.0% 6.8% 7.8% 6.9% 8.3% 6.72%

P
(mm)

R2 ↑0.071 ↑0.16 ↑0.22 ↑0.18 ↑0.18 ↑0.19 0.18↑
p-value 0.32 0.13 0.08 0.10 0.10 0.09 0.10
Mean 585.63 437.99 561.98 518.61 564.81 572.77 540.30

CV 12.6% 16.3% 10.4% 10.8% 11.9% 13.2% 11.57%

↑: increasing trend; ↓: decreasing trend; marks for significance level: * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.3. Urbanization Drives Land-Climate Dynamics

We performed SEM analysis to investigate how urbanization drives changes in land-climate
dynamics (Figure 6). Over our study period, urbanization resulted in a reduced area of grassland/shrub
and agricultural land, as the area proportion expanding of the urban area. In contrast, the forest area
proportion increased with urbanization in the basin. These land cover changes further altered the land
surface and hydrological cycle indicators. Specifically, the increment of forest area improved NDVI,
which in turn promoted a higher P. The forest area proportion, however, had a negative direct effect on
the regional P. Urbanization led to the decrement of albedo, which in turn had a negative effect on P.
The decrease of the grassland/shrub area resulted in a reduced LST, but the decrease of agricultural
land increased LST. The LST in turn had a negative effect on the regional P. After combining these
pathways, the overall effect of urbanization on P was positive (Table 3). In addition, the SEM results
indicated that there was no significant direct relationship with CWC between NDVI, albedo, and LST,
even though CWC and P had a significant correlation with each other.

Figure 6. The results of the structural equation modeling for the annual land-climate dynamics driven
by urbanization. (The solid blue single-arrow lines mean the positive effect pathways testified at the
significance level of p < 0.05; while the grey ones mean the negative. The dashed blue double-arrow
lines mean the positive correlation testified at the significance level of p < 0.05; while the grey ones
mean the negative.) (Global goodness of model fit: Fisher’s C = 43.36, p = 0.186).

Table 3. The overall effect of urbanization on the regional precipitation based on the path coefficients
of structural equation modeling.

Pathway Coefficient Product

U→F→NDVI→P 0.30
U→F→P −0.59

U→albedo→P 0.20
U→G→LST→P 1.13
U→A→LST→P −0.79

Total U→P 0.25
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4. Discussion

4.1. Urbanization Drives the Land Use and Cover Change in the Haihe River Basin

Our results showed that urbanization decreased the area of cropland and grassland/shrub
(pathways 2O and 3O in the SEM), but increased the forest area (pathway 1O). To understand the
latter, we need to take into account the local economic development as an intermediate variable.
Whereas urbanization generally promotes the economic development, the forest area may first decrease
but then increase through the process of economic development in light of the Environmental Kuznets
Curve (Figure 2). To further verify our hypothesis, we collected information from the China National
Socioeconomic Big Data Platform and used the annual census data in 26 cities in the Haihe River Basin to
test the relationship between urbanization (i.e., urban population ratio), economic development (gross
domestic product (GDP) per capita per area), and afforestation area [48,49]. Our results showed that
the GDP per capita per area increased with the urban population ratio and the afforestation area ratio
exhibited a U-shaped curve as the GDP per capita per area increased (Figure S1). These preliminary
analyses are consistent with our hypothesis, although future research is needed for a more rigorous
test with improved data.

Across our study region, the grassland/shrub are mainly located in two places, i.e., the northwestern
plain of the basin adjacent to the Inner Mongolia and the medium- and high-altitude mountain area in
the western and northern part of the basin (Figure 1). As previous studies show, grassland in the plain
area had partially been transferred for urban infrastructure and architecture under the pressure of
regional population growth [50] (pathway 3O). For the other part of grassland/shrub in the high-altitude
mountainous areas, a small proportion was transformed to forest following natural succession [19]
thanks to the more favorable regional climate, e.g., increasing air temperature and atmospheric CO2

concentration [51].

4.2. The LUCC Alters the Rigional Climate

Our SEM revealed both direct and indirect effects of urbanization-induced LUCC on land-climate
dynamics. First, the regional NDVI increased due to an increased forest area. Whereas forest growth
and its area expansion both promote land surface greenness and thereby increase regional NDVI
(pathway 4O), they may have contrasting effects on the net effect of forests on the regional hydrological
cycle [46,52]. The NDVI reflects vegetation quality so a higher NDVI means better vegetation growth,
which has a more intensive transpiration process and biomass volume (more heights and canopy).
In the vertical direction, the land surface vegetation with more intensive transpiration generates more
atmospheric water and absorbs near-ground heat, facilitating condensation and formation of clouds
in a wetter and cooler atmosphere. In the meanwhile, tree heights and forest canopy can reshape
regional land surface roughness to increase atmospheric dynamic turbulence and transport water
vapor to higher positions, making more atmospheric water saturation in the cloud layer [45,53,54].
Both of these ways promote forests for the regional vertical precipitation (pathway 4O to 9O). In the
horizontal direction, vegetation has the detention effects of near-ground water vapor via their leaves
and branches, which prevents gaseous water in the air from rising up and detaching from vertical
rainfall [55] (pathway 8O). The eco-hydrological effects of forests have been broadly controversial due
to the complexity in terms of multi-dimensionality and multi-scale [56]. Our study provided binary
angles with the empirical evidence to rethink this issue, i.e., the quality growth and the area expansion
under the regional progress of afforestation.

Because grassland/shrub have far fewer biomass per unit areas than agricultural land,
grassland/shrub have weaker water storage ability, transpiration, and lower heat capacity than
cropland. The area increasing grassland/shrub means the area developing into more open space and
receiving more direct solar radiation with less absorption of the energy input, leading to more surface
heating processes and higher LST [15,39]. This situation is contrary to the land surface with crops,
as there are more cooling effects on agricultural land. In addition, we inferred the regular irrigation
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contributed to cooling down the LST for cropland. Such opposite relationships between the land
area and the LST for grassland and cropland in the basin (pathway 6O and 7O of SEM) reflected these
differences in the biophysical process.

Overall, there was a positive effect of the urban area expansion on the regional P in the basin.
Apart from the vegetational land covers effects as discussed above, it could be explained by the following
three possible causes from the angle of urban environmental changes itself. First, the enlarged scale of
the city landscape building, including the concrete infrastructure, the intensively-developed residential
communities, and the air-condition-equipped commercial skyscrapers, exacerbate the urban heat
island effect in a mega-city area. The previous study pointed out that the urban heat island effect
encourages near-ground convection and brings more frequent precipitation to the region [14,57].
Second, the vertically growing dimension of cities increases aerodynamic resistance and reshapes the
wind profile by decreasing albedo with more land surface obstacles that enhance dynamic turbulence,
which can uplift water vapor and promote regional precipitation (pathway 5O and 11O). Third, due to
local energy consumption structure and population and transportation development, urbanization
in the Haihe River Basin inevitably brought massive air pollution. This pollution was especially bad
in the 1990s and even heavier from 2000–2015 [18,58]. We inferred that an abundance of pollution
particles acted as condensation nuclei and contributed to cloud formation and precipitation increase.
In the specified investigations on the East Asian tropospheric aerosols and their impact on regional
clouds and precipitation, based on more rigorous and detailed analysis, we concluded that aerosols
suppress light rain while enhancing heavy rain. Thus, rainfall becomes more inhomogeneous and
more extreme in heavily air polluted urban regions [59]. All aforementioned processes explained were
summarized in the following conceptual diagram (Figure 7).

Figure 7. The conceptualized summary diagram of the three sub-systems to demonstrate key processes
and effects enhanced in the land-climate dynamics under the land use and cover change (LUCC)
driven by the urbanization in the Haihe River Basin. (The abbreviations of processes or effects:
Cl = crop intensification, Af = afforestation, HC = horizontal condensation, Ht = land surface heating,
Co = land surface cooling, AP = air pollution emission, UHI = urban heat island, AC = atmospheric
convection, AT = atmospheric turbulence, Tr = transpiration, CF = cloud formation, P = precipitation,
(+) = increasing, (−) = decreasing).

In the results of the land surface and climate indicators by different land use and cover types,
we noted that variations of indicators on the bare land was significantly higher than on every other
land cover (through paired T-test, p < 0.05), which is visually reflected in Figure 5. The bare land
with very low vegetation coverage had a lower heat capacity and water retention ability, and so land
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surface energy and water environment on bare land is easier to alter through solar radiation and
reflection [27,39]. That is why it has higher variability in the land surface and climate indicators than
other land covers. Among different land surface and climate indicators, the variation of albedo was
significantly lower than every other indicator, and the variation of P was significantly higher than every
other indicator (through paired T-test, p < 0.05). This can be explained by how albedo reflects land
surface microtopography and texture in building and vegetation landscapes in the local geographic
system with relatively lower temporal variability. However, for P, it is in the open environment
atmospheric hydrological cycle and largely influenced by the global climate system. Thus, it naturally
has higher temporal variability [15].

4.3. The Recommendations on the Land Planning and Management

Based on the results and discussion in our study, we provide several recommendations for regional
environmental sustainability from the macroscopic perspective of land planning and management.

First, agricultural land shrinkage (pathway 2O) or the so-called ‘cropland loss’ has been previously
attributed to societal modernization under rapid urbanization [31,60]. However, considering that
cropland has a cooling effect and contributes to regional precipitation (pathway 6O to 13O), maintaining
such ecosystem functions to regulate the regional climate, a certain area of cropland in the rural area and
city outskirt should be conserved and planned to keep the balance with urban land development. Since
2014, in regional environmental management practices, the Chinese central government introduced
the permanent basic farmland conservation policy to protect both food and ecosystem security under
constant pressure of urban expansion [61]. In the Haihe River Basin, the Beijing and Hebei provinces
delineated redlines of local permanent basic farmland in 2016 and 2017, respectively.

Second, we suggest paying more attention and investment to the quality of afforestation rather
than mere area expansion. On the one hand, as urbanization and economic development promote
sustainable forestry and afforestation in the surrounding area, it is good to embrace such benefits from
urbanization, especially considering its positive effect on precipitation via improving land surface
greenness, or the increasing NDVI. On the other hand, rapidly expanding the forest area with limited
forest tending and growth quality management, or inadequate planting design for optimizing the
eco-hydrological function, would probably cause negative effects on the regional hydrological cycle,
like distracting the water from the cloud formation and precipitation.

Third, the current remote sensing approach applied in this study had the uncertainty and limitation
in terms of seasonality in the land-climate dynamic, because the biophysical process depends on the
phenological change of surface vegetation [62]. In addition, since land-climate dynamics involve
socioeconomic causes, atmospheric physical and chemical processes cannot be fully reflected through
remote sensing data only. To explore the relationship and process in the land-climate relationship
requires further integrated analysis and simulations within the multi-source data in temporal and
spatial dimensions.

Fourth, the Haihe River Basin is located in the Northern Plain of China, where regional climate is
relatively drought-prone, so promoting urbanization on the regional hydrological cycle is beneficial for
the water supplies in the local ecosystem (i.e., cropland, forest) and for moisturizing the atmospheric
and soil environment. Simultaneously, as cited above, haze pollution introduced by rapid urbanization
can cause more frequent extreme rainfall [18,59], leading to secondary disasters like flooding, mudslide,
and soil erosion. We should keep vigilant on this double-edged sword of precipitation increasing and
be aware of the tipping point of the land-climate system change. To enhance the regional climate risk
analysis, land development planning and strategic environmental assessment is highly recommended
as responses to extreme precipitation and urban flooding. These are widely shared trends in modern
city planning and regional environmental governance [63,64]. Such analysis and assessment on
climate change potential requires the adequate length of precipitation monitoring data, considering
its periodicity at different scales. How to effectively merge ground records and the limited-period
remote sensing products to develop more reliable and fine assimilation, as well as prediction models
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for regional precipitation to cover the continuity of temporal and spatial dimensions is urgent for
meteorologists and data scientists [65].

5. Conclusions

Urbanization changes the land surface environment, which profoundly impacts the regional
climate system. In this study, we took the Haihe River Basin in China as a case study area, a location
that has experienced rapid urbanization in the past several decades. Additionally, we investigated
LUCC effects on the land-climate dynamics driven by urban area expansion. From 2000 to 2015, we
collected the land use and cover classification dataset, as well as aligned key macroscopic indicators
of land surface and regional climate (i.e., NDVI, albedo, LST, CWC, and P) to analyze and quantify
dynamics and effects among factors with different land covers. The results showed that, in the
basin, regional urbanization decreased agricultural land through cropland intensification. Meanwhile,
urbanization promoted the forest to increase as it brought local economic development to enhance
ecological conservation, which can be explained by a relevant theory of environmental economics.
An increase in forest area had both positive and negative effects on the regional hydrological cycle.
The agricultural land and grassland/shrub had indirect effects on P via different biophysical functions
of LST. The overall effects of urbanization on regional precipitation was positive. The possible
contributions from urbanization were herein discussed (i.e., convection of the urban heat island effect,
turbulence via surface roughness change, air pollution, and regional precipitation promoting). Based
on the main results and interpretations, we provided suggestions for future research on monitoring
and assessment, and also gave recommendations to advance sustainability in further land planning
and management.
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