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Soils perform more functions than primary productivity. Examples of these functions are

the recycling of nutrients, the regulation and purification of water, the regulation of the

climate, and supporting biodiversity. These abilities are generally referred to as the soil

quality. Soil management that favors primary productivity may have positive and negative

impacts on the other functions, and vice versa, depending on soil and climatic conditions.

All these functions are under pressure, particularly in intensive agriculture. In the absence

of mandatory regulations, most European farmers give limited attention to other functions

than primary productivity in spite of recommendations by scientists, society and policy

makers to acknowledge the ecosystem services provided by soils. The present paper

analyses the underlying causes of this limited attention for the multi-functionality of soils

by farmers. It is concluded that their focus on primary productivity may stem from

(1) insufficient visible proof for soil degradation and benefits of preventive measures

over curative measures, (2) limited awareness or conviction of long-term synergies,

(3) insufficient remuneration of ecosystem services by society or compensation of yield

penalties in favor of these services, (4) lacking trustworthy knowledge about and support

for multi-functional soil management, and (5) absence of incentives and regulations on

soil management and their enforcement. All these shortcomings need to be addressed by

advisors, scientists, and policy makers, whilst acknowledging the need for underpinning

and differentiation of incentives and regulations.

Keywords: land management, primary productivity, soil health, soil quality, soil degradation, soil function,

ecosystem services

INTRODUCTION

Around 40% of the global land area is devoted to agriculture. In the European Union (EU), too,
this share amounts to 43% (FAO, 2018). Scientists and policy makers emphasize that this vast area
of land performs many functions in addition to primary productivity (Keestra et al., 2016) and
that this multi-functionality is under pressure (Stolte et al., 2016; EU, 2019). These other functions
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next to primary productivity (PP) include inter alia the
capacity of soils to (1) recycle nutrients from different kinds
of by-products (nutrient cycling, NC), (2) regulate the quantity
and quality of downstream water (water regulation, WR), (3)
regulate the global climate (climate regulation, CR), and (4)
provide habitats for soil life as well as aboveground biodiversity
(BD) (Schulte et al., 2014). Concerns about these functions and
the associated pressure on ecosystem services are reflected in
the EU Common Agricultural Policy (CAP), which has evolved
over time toward integration of a wider range of environmental
issues, including the need to tackle climate change and to manage
natural resources in a sustainable manner (EU, 2018a).

However, attention for themulti-functionality of soils remains
limited, at least in terms of farmers’ uptake and adoption
of alternative farming practices (Kertesz and Maderasz, 2014;
Virto et al., 2015; EU, 2017). Organic farming and conservation
agriculture exhibit a certain awareness of the multi-functionality
of soils [e.g., Hobbs et al. (2008), Sandhu et al. (2010)] but
currently amount to only 6 and 26% of the total European
agricultural area, respectively (Kassam and Friedrich, 2011;
Kertesz and Maderasz, 2014; FAO, 2017; EU, 2018b,c). The
preponderant prioritization of PP over other functions was
confirmed in 16 local workshops ran in 2015–2016 across Europe.
These workshops included 212 farmers, most of them (69%)
originating from Atlantic and Lusitanian environmental zones
(Metzger et al., 2005) and generally (74%) active as arable
farmers (O’Sullivan et al., 2018; Sturel et al., 2018; Bampa
et al., 2019). Each participant was asked to assign 15 points
to the aforementioned five functions of soils to which 177 of
them (83%) responded (Table 1). With the exception of a few
individuals, farmers prioritized PP. Attention for other functions
than primary productivity diminished in the order of WR, NC,
BD, and last CR. No distinct differences were observed between
environmental zones. The presence of livestock on farms did not
affect the prioritization (Table 1). The smaller attention to other
functions than to PP justifies a closer look at possible reasons
why farmers are reluctant to adjust the management of their
soils. We find it questionable to assume that multifunctional land
use brings only win-win’s to farmers and society, as recently
implied by a group of European scientists and endorsed by the
President of the European Commission (Veerman et al., 2020, p.
20).We feel that the need for nuances is even greater now that the
concept of soil quality is getting gradually replaced by the even
more unspecified concept of soil health. The aim of the present
paper therefore is to take stock of dilemmas and identify what is
needed for multi-functional management.

SYNERGIES AND CONFLICTS

Primary Productivity Vis a Vis Other
Functions
Even if PP is the farmer’s main concern, it is tempting to
think of a soil as a perfectly balanced, healthy, living organism
supplying water, aeration, nutrients and pest suppression to
crops, perfectly timed and in the required amounts, whilst
buffering adverse impacts on the surrounding air and water

(Doran and Zeiss, 2000; Brussaard et al., 2007; Kibblewhite et al.,
2008; EU, 2019). True, organisms need to be nurtured, and
the application of organic residues indeed stimulates soil life
that may suppress pests and liberate nutrients in support of
crops (D’Hose et al., 2018). Moreover, inputs of organic matter
into the soil could in the longer term help to enhance soil
organic carbon (SOC) sequestration, up until a new equilibrium
between the annual supplementation and decay is reached
(Johnston et al., 2009). Organic matter additions may also
improve soil structure and, consequently, the availability of water,
air and nutrients. Such changes may gain significance in view
of more frequent weather extremes under projected climate
change (Allan and Soden, 2008).

In this representation, PP, NC, WR, CR, and BD all appear
to mutually reinforce each other at first glance. From that
perspective, disruption of the soil structure by tillage, application
of pesticides, and the substitution of manures and other organic
amendments by mineral fertilizers appear to undermine the
delicate concert of functions. Refraining from intensive tillage
may indeed be beneficial for crop yields in environments where
there is a need for conserving water or protecting soils from
erosion through improved infiltration, but can reduce yields
elsewhere (Holland, 2004; van den Putte et al., 2010; Pittelkow
et al., 2015; Sandén et al., 2018). Reduced tillage helps to save
fossil fuel, but may require greater inputs of herbicides to
control perennial weeds (Chauhan et al., 2012). Meta-analyses
indicate that refraining from pesticides costs around 25% yield,
which cannot always be compensated by widening rotations and
applying other measures that may help to increase the resilience
of agroecosystems (de Ponti et al., 2012; Seufert et al., 2012).
In general, the use of pesticides apparently pays off for the farmer,
despite its negative side-effects on natural enemies and non-
target organisms and potential human health effects. There is
also little if any evidence in the scientific literature that pesticides
or tillage disrupt soil life to an extent that negatively affects the
decomposition of organic residues and, as a consequence, the
availability of nutrients to crops. To the contrary, switching-off
the activity of particular types of soil life by applying specific agro-
chemicals (such as nitrification inhibitors) may even improve the
availability of nutrients from organic residues (Edmeades, 2004),
whereas reduced tillage may, at least initially, reduce rather than
enhance the net mineralization from organic residues (van den
Bossche et al., 2009), despite its positive effect on the survival
of earthworms (Briones and Schmidt, 2017). Retention of crop
residues may be good for the maintenance of the SOC content,
nutrients and structure of soils (Lehtinen et al., 2014; Spiegel
et al., 2018), whether or not via stimulated soil life. It can at the
same time deprive farmers from income if they could have sold
these residues or used them as feed for livestock. Farmers are
fully aware of the need to replenish organic matter in soils [e.g.,
Sturel et al. (2018), Bampa et al. (2019)], but the positive effect of
organic matter on crop yields is limited and often questionable
(Loveland and Webb, 2003; Hijbeek et al., 2017) and there is a
limit to how much SOC can be stored (Castellano et al., 2015).
Farmers therefore know that there is no need to apply as much
organic matter as possible, regardless of the positive effects on
soil life and carbon (C) sequestration. Farmers also know that

Frontiers in Environmental Science | www.frontiersin.org 2 September 2020 | Volume 8 | Article 575466

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Schröder et al. Multi-Functional Land Use

TABLE 1 | Average prioritization of soil functions by 177 farmers across Europe, as reflected by their allocation of 15 points to primary productivity (PP), water regulation

(WR), climate regulation (CR), nutrient cycling (NC), or the provision of habitats for biodiversity (HP) (Sturel et al., 2018; source: O’Sullivan et al., 2018).

Environmental zone/presence of livestock Number of respondents Soil function

PP WR CR NC BD Sum

Atlantic and Lusitanian 122 4.1 3.1 2.3 2.9 2.6 15

Continental and Pannonian 32 4.3 3.2 2.3 3.0 2.3 15

Mediterranean 23 4.7 3.0 2.6 2.0 2.7 15

Without livestock 131 4.3 3.0 2.3 2.8 2.5 15

With livestock 46 4.0 3.2 2.5 2.6 2.7 15

TOTAL 177 4.2 3.1 2.4 2.8 2.6 15

crops themselves produce considerable amounts of residues rich
in organic matter, provided sufficient nitrogen (N) is applied.
They are aware that N fertilizers do not only increase marketable
yields but also the production of crop residues. Consequently,
N application generally increases organic matter additions to
soils and this contribution is only slightly counteracted by an
enhanced decay of that organic matter due to narrower C to N
ratios (Russell et al., 2009). Statements of Mulvaney et al. (2009),
suggesting that the mere use of mineral N fertilizer reduces
soil organic matter instead of increasing it, were criticized by
Powlson et al. (2010). The latter showed that Mulvaney’s dataset
was extremely biased. Liming, on the other hand, may stimulate
the oxidation of soil organic matter via pH effects, and may
thus offset the sequestration of SOC. This constitutes a dilemma
wherever crop yields are stronger limited by too low a pH than by
lack of organic matter.

The use of N as such, regardless whether derived from
mineral or organic sources, has a crucial role in the formation
of crop yields. Even when perfectly timed and positioned, no
individual crop or at least crop rotation as a whole can utilize
the total amount of N applied (Schröder et al., 2016). This
implies a principal conflict between crop production, and the
quality of nearby ground- and surface waters (particularly in
terms of nitrate-N), regardless of differences between crops, soil
types, and nutrient application methods (Erisman et al., 2011;
Schröder, 2014). Cover cropping also helps to retain soil mineral
N, but may, in some climates compete with following crops
for water and nutrients. Timely establishment of cover crops
may reduce the main crop’s field duration and thus its yield
potential, particularly in cropping systems that most need cover
crops to contain the risk of nitrate leaching (Schröder et al.,
1996; Vos and van der Putten, 1997). Water quality is generally
better where soils and subsoils are conducive to denitrification.
Refraining from artificial drainage would therefore help (Coyle
et al., 2016; Clague et al., 2019). Undrained soils, however, are less
productive and are more at risk of compaction due to trampling
by livestock or weight intensity of machinery, presenting yet
another dilemma. In drier climates, crop yields and the recovery
of nutrients by crops may benefit from irrigation rather than
from drainage. However, what is gained there in terms of yield
on one farm may be lost on farms downstream or for other
functions (e.g., attenuation of too high nitrate concentrations)
once water has been used upstream for PP. Calls to conserve

existing grassland, or to even extend the share of grass leys
in arable rotations constitutes another dilemma. Grasslands are
known for their ability to improve the performance of subsequent
arable crops [e.g., Nevens and Reheul (2002)], store SOC [e.g.,
van de Broek et al. (2019)], reduce N leaching [e.g., Schröder
et al. (2007)], and foster biodiversity [e.g., van Leeuwen et al.
(2019)]. There are, however, limits to the societal demand for
grassland-based components in human diets, particularly in view
of optimized human diets implying a diminishing need for
animal feed, at least in developed countries (van Zanten et al.,
2019). In conclusion, manymeasures with evident positive effects
on PP may have detrimental effects on other soil functions and
vice versa.

Dilemmas Beyond the Primary Productivity
Function
There are not only dilemmas between the required measures in
favor of PP and those needed for other soil functions but also
between needs within the suite of those other soil functions.
Recycling of nutrients in by-products, including manures, is
sooner or later an absolute must (Schröder, 2014). However,
using manures as a source of nutrients can be more detrimental
to the quality of air and water than using mineral fertilizers, as
revealed by their long term relative N replacement values below
100% (Schröder, 2014). The application of manures may, for
instance, be linked to a greater production of the greenhouse gas
(GHG) nitrous oxide (Christensen, 1985; Thompson, 1989; Ellis
et al., 1998; Rochette et al., 2000; Velthof et al., 2003; McGeough
et al., 2012; Bos et al., 2017). GHG emission in terms of CO2

equivalents may also increase when tillage is reduced or totally
refrained from (Palma et al., 1997; Lehtinen et al., 2014; Spiegel
et al., 2014), although the over-all effects of manuring and tillage
on nitrous oxide losses are highly context specific, depending
on soil and climate conditions. Besides, from a GHG reduction
perspective it may be better to use organic residues such as cereal
straw as a biofuel than to use it as a soil amendment (Powlson
et al., 2011). As for N, the “slow release” character of organic
residues can be advantageous (e.g., under wet conditions, but can
just as well contribute to an untimely mineralization followed
by nitrate leaching losses). The consequent risks of these losses
can only partly be compensated for by the establishment of
cover crops (Schröder et al., 1996, 1997). As the kg’s N per kg
of phosphorus (P) in most organic residues are lower than the

Frontiers in Environmental Science | www.frontiersin.org 3 September 2020 | Volume 8 | Article 575466

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Schröder et al. Multi-Functional Land Use

required ratio of N and P from the perspective of crop demand,
too much P would be applied if input rates of (e.g., manures
were tuned to the N demand of crops). This would eventually
lead to P accumulation putting the quality of water bodies at risk
(Schröder, 2005), constituting a conflict between NC and WR.
To avoid that, supplemental N inputs by mineral N fertilizers
or biological N fixation (BNF) by leguminous green manures
are needed. The latter option claims additional land area at the
expense of wilderness and its associated biodiversity, at least in
temperate climates where leguminous cover crops grown after
main crops can rarely fix sufficient N to cover demands of the
whole rotation (de Notaris et al., 2019; Schröder, 2019). Major
synergies and conflicts, as discussed above, are summarized in
the right hand side of Table 2. The many dilemmas further
contribute to the complexity of multi-functionality.

Soil Quality?
It is evident that soil characteristics, climatic conditions and
management practices that are good for one function are not
always good for other functions. From this perspective, there is
no such thing as one unique soil quality providing all functions at
their highest level (Letey et al., 2003; Sojka et al., 2003; Bünemann
et al., 2018), not even at the individual field level, since it also
depends on the production system in focus. Therefore, any
suggestion of a categorical and ubiquitous synergy of functions
is too simplistic (Pilgrim et al., 2010; Power, 2010; Bünemann
et al., 2018; Sandén et al., 2018; Ten Berge et al., 2019). In general,
farmers will seriously weigh trade-offs when considering the
uptake of measures (Giller et al., 2009; Valbuena et al., 2012; van
den Broeck et al., 2013). Most farmers are aware of conflicts and
this may explain why they adhere to practices with a proven yield
promoting record and avoid measures that can jeopardize, let
alone limit their income (Bampa et al., 2019). This is particularly
the case as long as the resultant functions cannot be marketed in
the form of appreciated ecosystem services and unpaid trade-offs
are more forthcoming than long-term financial benefits.

FUNCTION LOSS: HOW MUCH AND
WHERE?

How Urgent Are Measures?
From a PP perspective, a soil can be qualified as good if it
provides sufficient water, aeration, nutrients, and if it suppresses
pests and diseases. Soils can lose these functions through,
for instance, compaction, erosion, acidification, organic matter
loss, or contamination with pests, heavy metals and organic
pollutants (Virto et al., 2015; Stolte et al., 2016; Ten Berge
et al., 2017; Rodriguez et al., 2018). Degradation tends to
take place slowly and without immediate effects, often eluding
observation. Unfortunately, returns on investments in soil quality
(i.e., noticeable improvements resulting from a more soil-
friendly management) also tend to come slowly. Moreover, if
deterioration of soil quality is discerned at all, farmers have
several options to compensate for that loss by technological
measures (e.g., deeper tillage, more irrigation, or artificial
drainage, and increased inputs of agro-chemicals, including
pesticides, fertilizers, and inhibitors). Apparently, the costs of

these measures are often believed to be lower than the costs of
preventive or conservation practices.

As far as the potential loss of multi-functionality is concerned,
it can be argued that loss of a function in one place (e.g.,
on agricultural land) can be seen as insignificant as long
as it is compensated elsewhere (e.g., off-farm), in particular
when considering that some fields and landscapes are better
suited for specific functions than others. Note, that this still
means that each spatial entity (field, farm, region, or country)
should probably provide an amount of less profitable soil
functions for a balanced provision of the total set of services,
rather than passing on the less lucrative services to other
places or to future generations. Note, that at local scale the
details and specifications of some soil functions may be so
strongly linked to other functions that it can be impossible to
substitute them elsewhere without losing the very benefits of
that function. Examples are aspects of WR for the benefit of
crop production itself (probably explaining the relatively high
appreciation of the WR function, Table 1), or meadow bird
conservation within grassland-based dairy systems (i.e., the need
to preserve grasslands), or soil life preservation in favor of natural
enemies of crop pests. In practice, this requires knowledge
on the quantitative relationships between soil functions and
management practices when society asks for an appropriate
provision of specific functions. The above considerations are
related to the sharing-sparing debate (Balmford et al., 2018;
Phalan, 2018). The spatial interchangeability of functions makes
it difficult to accurately assess to what extent there is a net loss or
not (Stürck and Verburg, 2017).

Evidence Base
At a global level, about 25% of all soils are deemed to suffer
from degradation as a result of compaction, erosion, loss of
organic matter, and contamination [e.g., FAO (2015)]. European
soils are also suspected of degradation (Montanarella, 2007).
It is challenging, however, to translate this multi-faceted and
qualitative concept of a gradually declining soil quality into
quantitative terms of crop yields and financial penalties for both
farmers and society as a whole (Bindraban et al., 2012). Both
tax payers and consumers will probably want to see evidence
before paying for alternative farming practices for the sake of
multi-functionality. The farmers themselves may want to see
some proof before being curtailed in their management options,
regardless whether they are financially compensated or not. The
indiscriminate nature of universal directives imposed on all
farmers based on a too rigid application of the precautionary
principle is questionable (Hanekamp et al., 2005), as is the
desire to create a so-called level playing field whilst disregarding
differences in local needs (Schröder et al., 2004). Undoubtedly,
there are plenty of local cases where soils are at risk of irreversible
degradation. However, upscaling these observations to a wider
area without additional validations can produce unsupported
conclusions (Bindraban et al., 2012), as demonstrated for erosion
risks in Europe [e.g., Cerdan et al. (2010)] or the perceived loss of
soil organic matter in The Netherlands (Reijneveld et al., 2009).
Besides, where a decline of soil organic matter is evident, policy
makers should make a distinction between changes resulting
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TABLE 2 | Links between threats of soil quality characteristics, management practices, and their estimated effect on soil functions (PP, primary productivity; WR, water

regulation; CR, climate regulation; NC, nutrient cycling; BD, provision of habitats for biodiversity) and potential indicators (RUSLE, Revised Universal Soil Loss Equation;

LULUCF, Land Use; Land-Use Change and Forestry; O.M., soil organic matter; PAC, polycyclic aromatic hydrocarbons) of these threats and functions (green, positive

effect of practice; red, negative effect; amber, variable effect; GHG, greenhouse gases; NUE, nutrient use efficiency).

from inadequate management (e.g., insufficient supplementation
of organic matter and/or practices promoting its decomposition)
within arable land use itself (Virto et al., 2015) and the changes
resulting from long-term land use change (e.g., conversion of
grasslands into arable land). Moreover, as far as the CR function
is concerned, the negative impact of the latter changes should be
weighed against the positive impact of reverse land use change
such as the afforestation of former agricultural land (Luyssaert
et al., 2010) or the restoration of wetlands (Erwin, 2009).

Soil compaction, too, is regarded as a serious soil threat
(Stolte et al., 2016; Ten Berge et al., 2019). This fear seems
justified in view of the increased machine weights and wheel
pressures (Chamen et al., 1992). Compaction induces a need
for increased inputs of nutrients and water to maintain crop
yields and increased energy requirements for tillage and the
harvest of lifted crops. Importantly, the environmental impact
of compaction extends beyond that of the compacted site, for
example through increased water pollution resulting from run-
off (Soane and Van Ouwerkerk, 1995). However, statements
on the extent of compaction in to which European soils
are compacted, are thus far largely based on the mapping
of risks and susceptibilities rather than detailed surveys
(Jones et al., 2003; Montanarella, 2007; Schjønning et al.,
2018). A more precise assessment of the present state is
therefore required.

There is less reason to doubt the degraded state of agro-
environments, when it comes to biodiversity. Biodiversity decline
is not just a local phenomenon needing local management
adjustments, but undeniably a pan-European issue (Donald et al.,
2001; Kleijn et al., 2009; Stoate et al., 2009; van Dyck et al., 2009).
The previous references pertain to aboveground biodiversity. It
is plausible that the less visible belowground biodiversity has in
many cases also declined (Tsiafouli et al., 2015). The implications

of this loss for soil services other than biodiversity as a goal in
itself, i.e., the intrinsic value of nature, is, however, not yet fully
understood e.g., Setälä et al. (2005). There is thus a considerable
need for up-to-date evidence, convincing society and farmers
of the necessity to change management whenever the intrinsic
value of biodiversity is not sufficiently persuasive to pursue
its preservation.

CARROTS AND STICKS

Decision making on multifunctional land management is
extremely challenging, also because it is getting more and more
difficult to distinguish between objective and tainted information
nowadays. In an attempt to assist farmers in long term sustainable
management of their soil and land the Soil Navigator decision
support system for assessing and optimizing soil functions was
recently developed in the Horizon 2020 LANDMARK project
(Debeljak et al., 2019). For each of the five soil functions multi-
criteria decision models featuring a set of attributes, integration
rules and threshold values were developed, calibrated, and
validated using expert knowledge and data mining (Sanden
et al., 2019; Trajanov et al., 2019; van de Broek et al., 2019;
van Leeuwen et al., 2019; Wall et al., 2020). Subsequently, the
five models were integrated into a decision support system.
The Soil Navigator helps to visualize synergies and trade-offs
and gives management recommendations. However, farmers
also need incentives for adjusting their management in favor
of multi-functionality beyond that of the PP function, unless
they would benefit from these adjustments via increased yields,
reduced costs or other benefits in lieu, such as reduced labor
requirements. The disintegration of originally mixed farming
systems into subsystems where the production, processing
and consumption of crops by livestock and direct human
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consumption have become spatially separated (captured in words
such as specialization, upscaling, urbanization, and globalization)
is probably neither conducive to internalizingmulti-functionality
and carefully weighing the possible macro-financial benefits of
a more integral approach. Disintegration allows many arable
farmers, for instance, to decline organic fertilizers and improve
their own farm’s apparent resource use efficiency by using
mineral fertilizers instead, be it at the expense of nutrient
use efficiency at higher spatial scales and violation of the
need to close nutrient cycles (Schröder, 2019). Specialized
arable farmers do not consider nutrient recycling as self-
evident without financial compensation, as opposed to mixed-
farmers for whom the presence of organic fertilizers is a daily
reality. Landless livestock farmers, in turn, prefer the purchase
of grain-based concentrates to feed their animals over less
digestible by-products. In more general terms, disintegration
provides stimuli to leave particular services to society as
a whole.

Where additional institutions (“markets”) and compensations
(“carrots”) fail to acknowledge and appreciate the multi-
functionality of soils, deterrents (“sticks”) in the form of
directives and regulations may work. Violation of prescribed
management practices is then penalized through additional taxes
or fines. Lack of “sticks” may thus be another reason why farmers
have as yet not embraced multi-functional land management.
Carrots and sticks are generally linked to amandatory application
of preferred practices (“do’s”) and banning of undesired practices
(“don’ts”), and not to quantifiable abatement of threats or
to measurable functionalities. Enforcement thus relies on
means-oriented indicators (the “management practices” column
in Table 2) rather than goal-oriented indicators (the “soil
function” columns in Table 2). Goal-oriented indicators offer
more clear motivations for farmers and directly reflect the
basic rationale behind policies. However, the measurement of
goal-oriented indicators often takes serious efforts and will
generally reveal where measures make sense and where they
do not. There is often also a lag-time of many years before
changes in management result in measurable effects on key
soil quality or environmental indicators. In contrast, means-
oriented indicators are often part of existing farm data and can
address several underlying goals simultaneously. Unfortunately,
their effectiveness in terms of fulfilling the ultimate targets is
affected by uncertainties due to disregarded factors including
weather, and interactions between factors. However, means-
oriented indicators respond fast, often instantaneously, they
can be easily recorded if not already available, and are thus
directly attributable to a particular field or farm and the ones
in charge of managing that field or farm (Schröder et al.,
2004). Livestock density is a typical example of such a blunt
indicator. It is at best a proxy of the likelihood of other services
provided, but not a guarantee. Burton and Schwartz (2013)
therefore criticize activity-oriented remuneration schemes
and propose a framework for result-oriented schemes instead.
Farmers, however, may dislike the principle uncertainty
of their efforts in terms of measurable results and, thus,
financial compensation. Where the measurement of results
is hard to achieve, model-based predictions of results may

represent an preferable alternative (Bartkowski et al., 2019).
The combination of means-oriented (activity-based) and
goal-oriented (result-based) indicators might well be a way
forward to overcome disadvantages of too much focus on
either activity-based or result-based indicators. Bünemann
et al. (2018) feel that there is still unexploited room to improve
the informative power of soil quality indicators, underlying
means-oriented and goal-oriented indicators. However, Ten
Berge et al. (2019) argue that soil quality-related indicators
have only limited value for decision making and evaluation,
given their relatively weak relationship with aspired ecosystem
services. Examples in the present paper confirm the position of
Ten Berge et al. (2019).

Vrebos et al. (2017) showed that the limited availability
of effective sticks and carrots and their attendant indicators
is indeed an additional explanation for the restricted
implementation of multi-functional land management
by farmers in Europe. A possible solution could be to
integrate payment for sustaining soil functions in national
or supranational agricultural support schemes, such as the
green direct payments or the agri-environment schemes of
the CAP and use locally adapted and validated soil function
models to document the effect of applied management practices
(Bartkowski et al., 2019; Schulte et al., 2019). Whatever
the character of eventual regulations will be, a much better
interaction between scientists, policy makers, and stakeholders
is key for full adoption of multifunctional soil management
(Bouma, 2019).

CONCLUSIONS

Agricultural land use in Europe pays limited attention to multi-
functionality. Many farmers seem not concerned about the
long-term ability of their soils to produce crops, let alone
the production of other services. And if they are, they are
reluctant to change the management as long as they are
not forced to or financially rewarded for these additional
services and the potentially negative implications for crop
yields. But even then they may feel in the dark about
what exactly to do. Actions directed at soil quality and soil
health then remain long shots, unless farmers have access to
reliable information.

The existing literature shows that it is not possible to
manage agricultural soils in a way that all soil functions will
be simultaneously delivered at the highest locally attainable
level. Likewise, it is not easy to quantify the long-term
implications of land management and soil degradation for
soil functions, amongst which is primary productivity. This
constitutes a challenge to influence the management beyond
that providing short-term benefits for farmers in terms of
crop yield and income. It also makes it difficult to assess
the remuneration that the society should offer to farmers for
producing additional services. Advice and assessments directed
at such multi-functional land management are currently often
tentative and, almost inevitably, expressed in terms of do’s and
don’ts, instead of the ultimate goals. Policies including these do’s
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and don’ts tend to limit the management options for farmers.
It is therefore up to scientists to fortify the evidence base
showing the causality between farming practices, soil threats
(i.e., specification of “soil quality” and “soil health” and the
need for their conservation), soil functions and soil services,
including trade-offs and synergies. In parallel and founded
on a corroborated evidence base, it is up to policy makers
to pave the way for incentivisation through a set of policy
measures and criteria aiming at a better consideration of the
multi-functionality of soils. Considering the differences across
Europe in soils and climate, “one size fits all” regulations are
inappropriate. Differentiation of regulations would acknowledge
that specific practices are simply not needed or inapplicable
in one place, whereas they are a precondition elsewhere.
Underpinned differentiation could increase the support by
farmers and challenge them to contribute to services that suit
them best in view of local soil characteristics, landscapes, climate,
markets, the availability of equipment, sources of information
and capital.
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