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Propositions:
1. Microplastics pose a risk to benthic macroinvertebrates.
(this thesis).
2. The effects of nano- and microplastics on the growth and mortality of benthic
macroinvertebrates depend more on the characteristics of the species than on
plastic particle properties.

(this thesis).

3. When assessing the human health risks of chemicals in drinking water, not only
single chemicals but also chemical mixtures should be considered.

4. The scientific community would greatly benefit from a stronger training on a
single concept: statistical significance.

5. Scientists and science communicators have the role of reducing the distance
between perceived and actual risk.

6. Plastic isn’t waste until we waste it.

7. The people make the place, but the food and the weather make the people.
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General Introduction

General Introduction

1.1. The problem of plastic pollution. The release of plastic waste into the environment
has become one of the major water quality problems of the Anthropocene. Plastic is a
cheap, durable and versatile material with innumerable applications and benefits for
society.! Since the 1950s, the world plastic production has exponentially increased,
reaching about 360 million tons in 2018.23 This tremendous increase was followed by an
increase in the concentration of plastic waste detected in the open ocean.? Plastic waste
has not only accumulated in the open ocean, but also in freshwater and terrestrial systems,
shorelines and even in the deep sea.* From the plastics generated in 2015, 9% were
recycled, 12% were incinerated and 79% accumulated in landfills or were released into
the environment.’> As plastic is a very persistent material and constitutes 10% of the
discarded waste and 50 - 80% of marine litter, effective waste management measures may
help to avoid plastic release into the environment.* If preventive measures are not taken
and the current plastic production trend continues, 12,000 million tons of plastic waste
are expected to be found in the environment by 2050.5 As claimed by a great number of
scientists in the last three decades, plastic pollution could potentially impact biota and
human health.®"'? For these reasons, there is an urgent need to evaluate the environmental
and human risks of plastic debris.!!

1.2. Plastic classes by size, source, chemical composition, shape and density. With the
term “plastic” I refer to all polymers, including thermoplastics, elastomers and synthetic
fibres, as suggested by the scientific community.!? Plastics can be classified by their size,
source, chemical composition, shape and density.!3> When it comes to size, plastics can be
defined as nanoplastics (NP), with a size smaller than 0.1 pm; microplastics (MP), with
a size between 0.1 pm - 5 mm; and macroplastics, with a size larger than 5 mm.'* By
source, plastics detected in the environment can be divided into primary and secondary
plastics.!* Primary plastics are intentionally made with a specific size for cosmetical,
medical, pharmaceutical, and industrial purposes.!#!'7 Secondary plastics are formed due
to the fragmentation of larger plastics via physical and biological processes.!®2° The
chemical composition of plastics includes the polymer type and the additives, which will
provide each plastic product with specific properties depending on its function. From the
plastics produced in 2018, almost 30% were made of polyethylene (PE), which is used to
produce bags, food packaging, etc.> The second most commonly used polymer was
polypropylene (PP), followed by polyvinyl-chloride (PVC), polyurethane (PUR),
polyethylene-terephthalate (PET) and polystyrene (PS).> By shape, plastics are
commonly categorized as fragments, fibres, spheres, films, pellets, foams and flakes.?!
Fragmentation processes occurring in the environment will also play a role in the final
chemical composition and shape of plastics. Finally, plastics are often divided between
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positively and negatively buoyant if their density is lower or higher than the local water
density, respectively.?? If no other environmental factors play a role in the buoyancy of
the plastics (i.e., biofilm formation, vertical mixing due to wind, etc.), positively buoyant
plastics will float, while negatively buoyant plastics will sink.??

1.3. Fate and abundance of NP and MP in aquatic systems. Main pathways for the
entrance of primary plastics in freshwater systems are: wastewater treatment plant
(WWTP) effluents, soil erosion and runoff, shipping activities and atmospheric
deposition.?>?* Pathways for primary plastics in marine systems include: freshwaters,
which release between 1.2 and 2.4 million tons of plastic every year globally, soil erosion
and runoff, shipping activities and atmospheric deposition.?*?> The fate of plastics
depends on their properties (size, shape, chemical composition, density), but also on the
type of ecosystem, the biota present and the weather conditions.?52® These properties will
affect the sedimentation rates of individual particles and the formation of aggregates,
which might also enhance their sedimentation.”> When it comes to the ecosystem type,
the fate of plastics in freshwaters differs between lentic (lakes, ponds, ditches and canals)
and lotic (rivers and streams) systems.?3 The principal difference among them is the
higher flow velocity in lotic systems compared to lentic systems, which will affect the
sedimentation processes.?® Ditches may have an intermediate position: they flow slowly
in general, but may exhibit strong flow in times of heavy rainfall leading to transport of
sediment to other systems. Therefore, lentic systems and sedimentation areas in lotic
systems can act as a sink for plastics due to their longer water residence times.?>?” In
marine ecosystems, vertical transport will be determined by plastic buoyancy, while
horizontal transport will be driven by surface winds, creating regions of convergence (the
5 subtropical gyres) and divergence.???* The biota present in an environmental system
may ingest plastic particles and transport them to another location, or may increase the
density of plastics due to the formation of a biofilm on their surface, which will increase
their sedimentation rates.”> The weather conditions will affect the mixing of water and
the resuspension of plastics from sediments in freshwaters, and the accumulation of
plastics in the oceanic gyres and beach sediments due to surface currents.?32%30

Environmental concentrations of MP found for the aquatic environment strongly depend
on the sampling and polymer identification methods used.’! Sieves or nets used during
the sampling have mesh sizes between 20 and 333 um and polymer identification
techniques have detection limits between 1 and 1000 um.>?> Consequently, NP and sub-
micron MP (< 1 pm) are generally not included in the analysis.>?> Moreover, commonly
used polymer identification methods are not able to detect polymers with high black
carbon content, such as particles released from tires, which are expected to highly
contribute to MP pollution.'*3* For these reasons, MP abundance in the aquatic
environment is probably underestimated. Following recent systematic reviews, the
highest MP concentrations in freshwaters have been found in WWTP, being the highest
ever detected MP concentration found in a WWTP in Denmark, which contained 442,393
particles/l (in numbers) or 29.55 mg/g of water (in mass).>*3*> The highest MP number
concentrations detected in surface waters were found in the Snake River in the USA, with
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concentrations raging up to 5,405 particles/1.3%*7 Of the measured MP, 79.4% were
smaller than 500 pm, despite sizes below 100 um were not analysed due to the sampling
method used. In freshwater sediments, the highest MP number concentrations have been
found in sediments of the Wen-Rui Tang river in China, which ranged up to 74,800
particles/kg of sediment dw.3® Sediment samples taken from various locations within this
river contained between 73% and 95% of MP with sizes below 300 pm.*® This indicates
that smaller MP fractions might be more abundant than the bigger ones. Most common
polymer types sampled in freshwaters are PP, PE and PS and most abundant shapes are
fragments, fibres, films, foams, pellets and spheres.’**® In the marine environment, the
highest MP number concentrations were found in beach sediments in Asia, reaching
80,000 particles/m?.3%4 Highest MP number concentrations reported in marine sediments
were detected in a Belgian harbour, where 390 particles/kg sediment dry weight (dw)
were found.*! When it comes to NP, only one recent study was able to detect PVC, PET,
PS and PE NP in the North Atlantic Subtropical Gyre.*> When comparing freshwater with
marine abundance data, freshwaters seem to contain much higher MP concentrations.

1.4. Interactions between NP and MP and aquatic biota. As plastics are ubiquitous in the
environment, biota will likely encounter them and interact with them.** The nature of this
interaction will depend on the properties of the NP and MP, (size, shape, chemical
composition, density), the species traits, and the environmental conditions in which the
interaction occurs, as the formation of biofilms can increase the size and density of the
plastic particles and modify their shape.***> The interaction of NP and MP with the
exposed organism can be internal if particle properties and species traits allow for the
ingestion of the NP and MP.*¢ Also, NP and MP may externally interact with biota by for

instance adhering to the surface of the exposed organisms.*#7-53

In the field, MP have been detected in the digestive tract of invertebrates, amphibians,
fish, reptiles, birds, and mammals.’*%° All of these organisms do probably contain NP as
well; however, they cannot be detected with current techniques due to their small size.
Hence, the NP fraction in biota from the field is still unknown.?? In the laboratory,
ingestion of NP and MP has mostly been studied for fish and invertebrates.®' 7 After
ingestion, NP and MP could be transported along the digestive tract until excretion or
could accumulate in the gut, the digestive gland, the liver, and in oil storage droplets.5®-
70 Adverse effects of NP and MP have been reported at sub-organismal, individual and
population levels once critical effect threshold concentrations were exceeded.*® At the
sub-organismal level, NP and MP have been found to increase oxygen consumption,
cause inflammation, genotoxicity, neurotoxicity, oxidative stress, gut dysbiosis, alter the
ionic exchange and the enzymatic activity.®~7® At the individual level, NP and MP have
been found to affect survival, growth, feeding, reproduction, emergence, mobility, and the
embryonic development.®®78-% Effects of NP at population levels have never been
studied, while MP effects at population levels have only been studied for marine
invertebrates during a 3-months period, which were found to reduce their number and
biomass, and for the freshwater cladoceran Daphnia magna for 3 weeks, which was found
to reduce its biomass.®’* The mechanisms causing adverse effects of NP and MP on
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biota are still unclear, but several studies have attributed these effects to a physical
damage caused by the blockage of the food passage, which could lead to a feeling of
satiation, or a reduced feeding in the presence of NP and MP.33369 Other studies have
suggested that the effects found could be caused by specific NP and MP properties, such
as the surface groups, or the leaching of toxic chemicals.?3%%2 The external interaction
of NP and MP has also been considered as a potential mechanism explaining the detection
of adverse effects in aquatic species. For example, the reduction of the photosynthetic
capacity of Skeletonema costatum was related with the adsorption and aggregation of MP
to the surface of this diatom.*’ Also, the reduction in the feeding rate of Hydra attenuata
was linked to the adhesion of MP to the tentacles of this hydrozoan.>? It must be noted
that the quality of the data varied widely across the studies cited here, which affects the
weight of the evidence of the acclaimed mechanisms.

1.5. Environmental risks of NP and MP. To characterize an environmental risk of NP and
MP, exposure and effects need to be assessed. Exposure assessments focus on quantifying
the environmental concentrations of a specific stressor, while effect assessments describe
the relationship between exposure concentrations and the effects caused on the endpoints
studied.”® To conduct an environmental risk assessment for NP and MP, a tiered approach
can be followed, as commonly done for chemicals.!! Tiers 1 and 2 consist on the
development of single species test batteries with NP and MP and the comparison of the
generated data with ecotoxicity data from literature, respectively.”® Tier 3 englobes the
performance of field experiments to study the effects of NP and MP at population levels,
which is extremely relevant, as the detection of negative effects within this level could
trigger responses that can affect the whole community and because the effects found are
closer to what will happen in nature than those detected in laboratory studies.”®> The
Predicted No Effect Concentration (PNEC) will be calculated based on the outcome of
the effect assessment in each tier after dividing it by an assessment factor (AF), which is
a numerical value used to address the uncertainties in the extrapolation of experimental
data to the relevant environmental exposure situation. Then, the PNEC will be compared
with the Predicted Environmental Concentrations (PECs) or the Measured Environmental
Concentrations (MECs) derived from the exposure assessment.’*

To date, few studies have attempted to evaluate the risks of NP and/or MP in freshwater
and marine ecosystems.**%7 These studies created Species Sensitivity Distributions
(SSD), which are cumulative probability distributions of threshold effect concentrations
for a stressor, obtained from single species tests.”® This tool is often used in risk
assessment and belongs to the previously defined tier 2. It is used to calculate the
concentration where 5% of the species would be affected in an ecosystem, the so called
HCs, and to derive maximum allowable concentrations of a stressor.””® All of these
studies used available literature effect data and expressed the need to reduce the

uncertainties of the used data and to improve the quality of future SSDs. #0997

1.6. Implications for human health. Humans can be exposed to NP and MP through
drinking water, food, dermal contact and inhalation.'® MP have been detected in single
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use and reusable plastic and glass water bottles and in treated and untreated tap water.>
Humans can directly ingest MP through drinking water but also through their diet, as MP
have been detected in seafood, chicken gizzards, honey, sugar, beer, and salt.!®!-10
Humans could also accidentally ingest MP via personal care products that are known to
contain MP, such as toothpastes and facial scrubs.!”-1% After ingestion, NP and small MP
could potentially enter the intestinal mucus, or could translocate to the circulatory system,
as shown for rats exposed to NP and small MP.!971% Although dermal contact with MP
from clothes and cosmetic products is part of our daily life, MP uptake through the dermis
is not very plausible due to their big size.'® However, NP could potentially penetrate
human skin, as dermal uptake has been proven in mice exposed to gold nanoparticles.''”
Indoor and outdoor atmospheric fallout of synthetic fibres and fragments has been widely
demonstrated for MP.!!'-1'* Airborne MP could be inhaled by humans and be trapped by
lung tissues,'!® as demonstrated by Pauly ez al. (1998),''® who detected the presence of
MP fibres in 87% of the human lung tissues evaluated.!!® In addition, MP inhalation could
cause lung inflammation, as demonstrated for airborne tire particles with sizes smaller
than 10 pm.""” NP and MP cell internalization has been demonstrated in in vitro tests with
human cells, although it remains unclear whether these would occur in vivo.!'$1'° Inside
cells, MP do not bind to membranes and could potentially interact with intercellular
structures.''® While MP have been found to cause cytotoxicity and oxidative stress in
human cells,'?>!?! NP have been found to cause genotoxicity, cytotoxicity, oxidative
stress, inflammation and morphological changes.!!>!2® Nowadays, there is a scientific
debate about the contribution of each of these pathways to NP and MP incorporation by
humans.'?> Some studies consider that particle settling during food consumption or
contamination by food packaging might contribute more to NP and MP ingestion by
humans than the NP and MP already present in food.!'3!23 A recent study estimated that
the annual MP consumption through food in the USA ranged from 39000 to 52000
particles/person/year, while MP inhalation ranged between 35000 and 69000
particles/person/year.!?* In addition, MP intake via bottled water and via tap water could
increase MP consumption in another 90000 or 4000 particles/person/year, respectively.!?*

1.7. Knowledge gaps and challenges to assess the risks of plastics. Since scientists started
raising concerns about the potential impacts of plastic pollution on aquatic biota, a wide
number of studies has been published assessing the ecotoxicity of plastics. Still, 77% of
the ecotoxicological studies published until the end 0of 2017 focused on marine organisms,
while only 23% used freshwater organisms.'?* For this reason, and because freshwaters
are the main pathways for the entrance of MP to marine systems and contain higher MP
concentrations than marine systems, there was an urgent need to evaluate the effects of
MP on freshwater species when this thesis started. In freshwaters, assessing the effects of
MP on benthic species seemed particularly important, as MP can accumulate in sediments
and reach relatively high concentrations.3¥4° Also, available data at the start of the thesis
consisted of multiple MP types tested under very different conditions, making the
comparability among the outcomes of the published studies very complicated. For an
adequate assessment of the risk of a specific particle or chemical compound, the use of
standardized tests to compare results among species is required.'’** In addition, MP were

15



Chapter 1

16

generally tested under unrealistic conditions, for short time periods, using only one MP
type (one polymer, one size, one shape) and one very high concentration.!?® The
properties of the tested MP (e.g., size, shape, polymer type) were in general not well
characterized and the effects observed could almost never be attributed to a particle effect
only, as the removal or characterization of chemical additives or chemicals adsorbed to
the MP was not considered.!! Finally, MP uptake has been rarely quantified in exposure
assessments with aquatic biota and the methods used consisted mostly of the visual
identification of MP, which can lead to mistakes due to subjectivity or the leaching of the
fluorophore to tissues.'?” When it comes to NP, only few studies had evaluated their
uptake and effects at the time the present research started and even nowadays the available
data is still scarce. Nevertheless, it has been stated that effects of NP might be worse than
those caused by MP due to their smaller size and higher surface area, which makes them
more susceptible to be incorporated by cells and makes them capable of binding
chemicals more effectively.'?® Accordingly, evaluating the risks of NP on freshwater
systems should also be prioritized.

Besides the environmental risks of NP and MP, the potential impacts of NP and MP on
human health needed to be urgently assessed. Until the start of this thesis, most studies
had focused on the internalization and translocation of NP and MP and their cytotoxic
and oxidative stress in human cells, using very high unrealistic concentrations.'? As it
occurred in laboratory tests with aquatic species, no standard methods exist to assess the
effects of NP and MP on humans and studies done to date generally included one high
NP or MP concentration, from which effect thresholds could not be derived and where
the realism was lacking. Consequently, it is worth considering to what extent standard in
vitro tests commonly used for the screening of effects caused by chemicals in freshwater
samples could be applied for NP and MP. Moreover, environmentally realistic
concentrations need to be tested, as well as environmentally realistic matrixes which are
known to contain NP and MP, such as WWTP effluents.

1.8. Aim of this thesis. The general objective of this thesis is to assess threshold effect
concentrations of NP and MP in freshwater systems, and to provide guidance on how
such effects should be assessed in the context of risk assessment. To accomplish this, we
formulated seven main research questions:

1. To what extent do standardized low-tier single species tests allow for the detection
of effect thresholds for NP and MP at the individual level?

2. How to measure ingested, accumulated and egested number concentrations of NP
and MP, maximum ingestible sizes and how to calculate trophic transfer factors
(TTFs) to compare results across studies?

3. To what extent do high-tier outdoor tests allow for the detection of effect
thresholds of NP and MP at the community level?
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4. To what extent can in vitro tests with relevance for human health be used to detect
effects of NP?

5. What could be improved in effect tests when it comes to quality assurance?

6. Which effect mechanisms can be considered as demonstrated when strict quality
criteria are applied to the literature on MP studies reported to date?

7. Can we provide an estimate of the ecological risks of MP using the data generated
in this thesis and literature data, and which further recommendations can be made?

In order to answer the first research question, we assess the effects of polystyrene MP
fragments (Chapter 2), MP made from car tires (Chapter 3) and metal-doped NP on
freshwater benthic macroinvertebrates with different living and feeding strategies with
the aim of measuring their individual effect thresholds. To achieve this aim, standardized
28-days single species tests were performed. In Chapter 2, pre-washed polystyrene MP
fragments with sizes between 20 and 500 um were mixed with natural sediment at
concentrations ranging from 0 to 40% MP in sediment dw, including one environmentally
relevant concentration. Species selected were the amphipods Gammarus pulex and
Hyalella azteca, the isopod Asellus aquaticus, the worms Lumbriculus variegatus and
Tubifex spp. and the bivalve Sphaerium corneum. Endpoints assessed included survival,
growth and feeding activity of G. pulex, H. Azteca, A. aquaticus and Tubifex spp.,
reproduction, growth and feeding activity of L. variegatus and survival and growth of S.
corneum. In Chapter 3, MP were made by scraping the first 2 cm of five used tires and
grinding them until obtaining a size distribution of 10 to 585 um. Main constituents of
the MP were quantified with thermo-gravimetric analysis and gas chromatography - mass
spectrometry (GC-MS). Six MP concentrations ranging from 0 to 10% in sediment dw
were tested to evaluate the survival and growth of G. pulex. A. aquaticus, L. variegatus
and Tubifex spp.. In Chapter 4, the freshwater amphipod G. pulex was exposed to 228
nm irregularly shaped palladium-doped NP via natural sediment at six concentrations
raging from 0 to 3 % in sediment dw, with the aim of assessing their chronic effects on
survival and growth.

To tackle the second research question, in Chapter 2 we analysed the ingestion, retention
and egestion of MP for G. pulex and H. azteca using u-Fourier Transformed Spectroscopy
and provided maximum ingestible sizes and trophic transfer factors (TTFs) for G. pulex.
In Chapter 3, a method to quantify tread particles in organisms and faeces was developed
using image analysis, as the ingestion, accumulation and egestion of tread particles by
organisms had never been studied before. We also tested the resistance of tread particles
to the digestion’s fluids used, measured the maximum ingestible sizes and calculated
TTFs for G. pulex, which were compared with the TTF values obtained for G. pulex in
Chapter 2. In Chapter 4, NP concentrations were quantified based on palladium
concentrations measured with inductively coupled plasma mass spectrometry (ICP-MS)
in the body of the exposed organisms and in the faecal pellets excreted during a 24 hours
post-exposure depuration period. In addition, palladium-doped NP concentrations were
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measured in sediments and water to demonstrate the accuracy of the dosing and to
quantify the resuspension of NP from the sediment.

To answer the third research question, in Chapter 5 we evaluate the effects of a range of
NP or MP concentrations on the recolonization of a freshwater benthic macroinvertebrate
community after 3- and 15-months of exposure via natural sediment using an outdoor
ditch as experimental system. Hence, trays containing sediment and NP or MP at five
concentrations between 0 and 5% plastic in sediment dw, including two environmentally
realistic concentrations, were embedded at the bottom of the ditch containing a stable
donor community. Spherical PS NP with an average size of 96 nm and PS MP fragments
with sizes ranging from 20 to 516 um were used for the NP and MP treatments,
respectively. The donor community was allowed to colonize the trays and after 3 and 15
months, trays were retrieved, and species were identified and counted. Effects were
assessed on the community composition, population sizes and species diversity. In this
chapter, we present the first long-term community effect thresholds for freshwater benthic
macroinvertebrates exposed to NP and MP and compare them with environmental
concentrations measured in freshwater sediments.

With the aim of answering the fourth research question, in Chapter 6 we explore the

potential use of in vitro toxicity tests to evaluate the risks of NP on human health, in this
case with and without chemical mixtures originating from WWTP effluent and surface
water samples. Therefore, we evaluated the genotoxicity of two sizes of spherical PS NP
(50 nm and 500 nm) at four environmentally relevant concentrations (0, 2.5, 25 and 250
pg/l) in three matrices using the Ames fluctuation test, which has the purpose of detecting
base-pair and frameshift mutations in the genome of Salmonella typhimurium with and
without metabolic activation. We thereby assess the genotoxicity of the environmental
matrices, NP alone, NP in the presence of chemicals extracted from surface water, and
NP the presence of chemicals extracted from WWTP effluent. Finally, we provide
recommendations to increase the relevance of in vitro tests for the assessment of NP risks
for human health.

Following recently developed quality assessment methods for papers studying the
abundance of MP in biota and water samples,’!3> we address the fifth research question
in Chapter 7 by critically reviewing 105 papers that report MP effects on aquatic biota.
To this aim, 20 Quality assurance/Quality control (QA/QC) criteria were defined within
four main categories: particle characterization, experimental design, applicability for risk
assessment and ecological relevance. Based on our own analysis and practical experience
learnt in Chapters 2, 3, and 5, a guidance protocol for testing ecotoxicological effects of
MP for aquatic species is consequently provided. In addition, with the aim of detecting
knowledge gaps within effect studies with MP, we give an overview of the characteristics
of the reviewed studies with respect to the size, shape and polymer type of the MP used,
the tested species, the duration of the exposure, the endpoints studied and use or not of
effect thresholds to report the results.
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In addition, the answer to the sixth research question is also included in Chapter 7, where
demonstrated and suggested effects and effect mechanisms reported in the 105 reviewed
papers are summarized and discussed, with the results of the quality evaluation applied
to assess the overall weight of evidence regarding ecologically relevant effects with
applicability for risk assessment. Scores from the technical part of the QA/QC assessment
(particle characterization and experimental design) were used to assess the relative
credibility of adverse effects reported.

Finally, to answer the seventh research question, in Chapter 8 I bring all the answers to
the research questions together and develop an ecological risk assessment for MP using
the data generated in Chapters 2, 3 and 5 and data taken from the literature. Following
the tiered approach, I first compare MP effect thresholds obtained in Chapters 2 and 3
with environmental concentrations of the corresponding MP types measured in freshwater
sediments (tier 1). Then, two SSDs are created, one for water exposure data and one for
sediment exposure data using the effect thresholds obtained in Chapters 2 and 3 and MP
effect thresholds taken from the literature (tier 2). Here, a HCs is calculated. For tier 3, I
use the community effect thresholds obtained in Chapter 5 and compare them with field
measured concentrations. Finally, the implications of the results obtained in this thesis

are discussed and recommendations for future research are provided.
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Abstract

Now that microplastics have been detected in lakes, rivers, and estuaries all over the
globe, evaluating their effects on biota has become an urgent research priority. This is the
first study that aims at determining the effect thresholds for a battery of six freshwater
benthic macroinvertebrates with different species traits, using a wide range of
microplastic concentrations. Standardized 28 days single species bioassays were
performed under environmentally relevant exposure conditions using polystyrene
microplastics (20—500 um) mixed with sediment at concentrations ranging from 0 to 40%
sediment dry weight (dw). Microplastics caused no effects on the survival of Gammarus
pulex, Hyalella azteca, Asellus aquaticus, Sphaerium corneum, and Tubifex spp. and no
effects were found on the reproduction of Lumbriculus variegatus. No significant
differences in growth were found for H. azteca, A. aquaticus, S. corneum, L. variegatus,
and Tubifex spp. However, G. pulex showed a significant reduction in growth (ECio =
1.07% sediment dw) and microplastic uptake was proportional with microplastic
concentrations in sediment. These results indicate that although the risks of
environmentally realistic concentrations of microplastics may be low, they still may affect
the biodiversity and the functioning of aquatic communities which after all also depend
on the sensitive species.



Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates

Introduction

Microplastics (MP), defined as plastic particles with a size < 5 mm,’ have been detected
in both terrestial and aquatic ecosystems.>* While their abundance and distribution in the
marine environment have been found to be of great importance and have been covered
already for a decade, their presence in terrestial and freshwater ecosystems is only
recognized more recently.?*#?%12% Nevertheless, a wide range of MP has been identified at
different concentrations in water and sediment samples from lakes, rivers and estuaries

all over the globe 2426129

Key factors influencing the fate and transport of MP in freshwater systems are the type
of aquatic system, as well as the climate conditions and plastic sources in the area.?>26:27
Moreover, MP properties such as size, density or shape, have a direct effect on the
processes of biofouling and aggregation, affecting the sedimentation and resuspension of
particles and, thus, the abundance of MP in the water column and sediments.?>2%27 In fact,
particle size has been found to strongly affect the presence of MP hotspots along river
sediments, indicating that sediments can act as a sink for MP.?” Recent data shows that
the Rhine river contains the highest MP concentrations detected in all freshwater bodies
studied. Concentrations up to 4000 particles’kg or 1 g/kg (dw) were recorded in the
German Rhine river shore sediments, with the smallest MP fraction (63 - 630 um) being
the most abundant in numbers.'*° In the Dutch area, up to 4900 particles/kg (dw) were
accounted in the suspended particulate matter, in which 30% of the particles had a size

between 10 - 300 um and 70% were bigger.'*!

Understanding the interaction between MP and biota in freshwater systems has been
identified as a high priority research need?® and there is a general agreement on the idea
that an effect assessment should be performed to evaluate the risk of exposure to MP.!!
This is especially important in the case of freshwater benthic organisms, that seem to have
a higher risk of exposure due to the sinking of MP onto sediments.?’ Previous studies
have indeed demonstrated that MP are taken up from sediments by freshwater
species*®83:132-135 and that the capacity of freshwater invertebrates to ingest MP depends
on their feeding type.*® Moreover, this uptake was related to a decrease in the growth of
Gammarus  fossarum  exposed to polymethylmethacrylate (PMMA) and
polyhydroxybutyrate (PHB) MP.!3* Also, a reduction in the growth and reproduction of
Hyalella azteca was found after the exposure to polyethylene (PE) MP.®3 However, no
effects were reported on the survival, molting, metabolism and feeding activity of
Gammarus pulex after the uptake of polyethylene terephthalate (PET) MP.!3% MP uptake
did not cause any effects on the marine isopod Idotea emarginata'>® but did cause weight
loss and a reduced feeding activity on the marine lugworm Arenicola marina.**'3"-13¢ No
or limited effects have also been found for other marine invertebrates.®!-13* This suggests
that benthic macroinvertebrates are affected by the presence of MP but also that the
susceptibility could be species specific.
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Current studies have mainly focused on the ingestion of MP;'? however, the quality,
reliability and usability of the few ecological effect data published have been put into
question.!**14! The use of non-standardized laboratory bioassays and unrealistic exposure
scenarios hinders the understanding of the risks associated with MP.!1:140.141 Furthermore,
it remains unclear if adverse effects are caused by a physical impact of the particles
themselves, by chemical toxicity or by a combination of both.>* Moreover, an effect
assessment for MP should aim at detecting the effect thresholds for traditional endpoints
in ecotoxicology (i.e., LCsy or ECs),** and for this, sufficient doses and replication are
needed in order to fit dose-response models, which are commonly used in chemical risk
assessment.!!

In the present study we aim at determining the effect thresholds for a battery of freshwater
benthic macroinvertebrates with different species-specific traits, using a wide range of
MP concentrations. Standardized 28 days single species bioassays were performed under
environmentally relevant exposure conditions using polystyrene (PS) MP (20 - 500 pm)
mixed with sediment at concentrations ranging from 0 to 40% plastic in sediment dw. We
did not aim to assess chemical effects, as this has been dealt with in many earlier studies,
e.g. Besseling et al. (2013; 2017), Browne et al. (2013),'37:138.142 and because it has been
argued recently that chemical risks of MP should be separated from risks associated with
physical effects.!! We are not aware of earlier studies systematically assessing MP effect
thresholds for a range of organisms. Effects of PS MP on mortality and growth were
assessed for six benthic freshwater macroinvertebrates: Gammarus pulex, Hyalella
azteca, Asellus aquaticus, Sphaerium corneum, Lumbriculus variegatus and Tubifex spp..
Effects of PS MP on feeding activity was also assessed as feeding rate for G. pulex, H.
azteca and A. aquaticus and as egestion rate for Tubifex spp.and L. variegatus. Moreover,
for G. pulex and H. azteca, the presence of PS MP in the faecal pellets and in their bodies
after 24 hours defeacation was asessed in order to investigate if the differences in the
effects caused by the exposure to MP on both species were related with their ingestion
and egestion mechanisms. For all endpoints, environmentally relevant exposure
conditions were simulated by using natural sediments and by including the highest
concentration found in a freshwater sediment. PS, ground to a wide and environmentally
relevant range of sizes and shapes, was considered as a fair approximation to assess the
physical effects of ‘environmental MP’.1*% After all, PS density matches that of the
average environmental MP 20?7 (see calculation in Table A2.1) and polymer density has
limited impact on physical effects. Any potential additives present were removed from
the MP to eliminate any ambiguity concerning what caused the effect of the particles.

Materials and Methods

Microplastics. Trregular PS fragments were provided in a powdered form by Axalta
Coating Systems GMBH (Cologne, Germany). Particle size distribution (PSD), measured
with a Mastersizer 3000 (Malvern Instruments), revealed an unimodal distribution
spanning from 20 to 500 um, with a modus centred at 229 pm in volume and 36 um in
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number (Figure A2.1). To remove additives present, if any, the MP were washed with
methanol three times, shaken, filtered with a 20 pm metal sieve and dried for at least 2
days in a fume hood at room temperature. Polymer identity and purity were confirmed
with FTIR spectrometry (Nicolet iN10, ThermoFisher) and particle shape was confirmed
with an Olympus SZX10 stereomicroscope (Figure A2.2).

Test organisms. Species selected were the amphipods Gammarus pulex (Linnaeus, 1758)
and Hyalella azteca (Saussure, 1858), the isopod Asellus aquaticus (Linnaeus, 1758), the
bivalve Sphaerium corneum (Linnaeus, 1758), and the worms Lumbriculus variegatus
(Miiller, 1774) and Tubifex spp. (Lamark, 1816). These species are common members of
freshwater communities, are often used in laboratory experiments and differ in their living
and feeding strategies, as well as in their sensitivity to environmental pollutants.?3143:144
G. pulex, H. azteca and A. aquaticus are regarded as being mainly shredders while S.
corneum is classified as a facultative suspension feeder. S. corneum is an epibenthic
species that lives and feeds on the sediment, while G. pulex and H. azteca are also active
swimmers. L. variegatus and Tubifex spp. are both endobenthic deposit feeders, with L.
variegatus regarded as a bulk feeder while Tubifex spp. exhibits selectivity in its feeding
behaviour.'®

Following previously published procedures,'*1%® G. pulex, A. aquaticus and S. corneum
were collected from an unpolluted brook (Heelsum, The Netherlands), a ditch (Heteren,
The Netherlands) and a pond (Renkum, The Netherlands), respectively. H. azteca and L.
variegatus were obtained from Wageningen Environmental Research (Wageningen, The
Netherlands) and Tubifex spp. were obtained from a local pet shop. Prior to the
experiments, organisms were acclimatized for two weeks in aerated buckets with copper-
free Dutch Standard Water (DSW) inside a water bath at 16 + 1 °C while maintaining a
12:12 light:dark cycle. During the acclimatization, G. pulex, A. aquaticus and H. azteca
were fed with dry poplar leaves that were collected in the field and S. corneum, L.
variegatus and Tubifex spp. were fed with TetraMin® fish food pellets.

Sediments. Freshwater sediments were collected from a non-contaminated ditch in
Veenkampen (Wageningen, The Netherlands) using a standard dip net. Background
concentrations of XPAH and XPCBs were factors of > 8 and > 70 below toxicity
thresholds,'* whereas heavy metals were below negligible risk levels according to Dutch
sediment quality criteria (Table A2.2). Sediments were passed over a 2 mm sieve,
homogenized and placed in a freezer to kill any organisms present and to preserve the
Total Organic Matter (TOM) content. Prior to the experiments, sediments were thawed
and homogenized again. Four representative subsamples were taken to determine the %
TOM through loss on ignition (3 h, 550 °C), which was 31.6% + 3.5 (n = 4).

Experimental design. Bioassay experimental units consisted of 750 ml glass beakers filled
with 211 grams of wet sediment and 300 ml of copper-free DSW. Polystyene MP were
added to the sediment to obtain eight final uniform concentrations of 0, 0.1, 1, 5, 10, 20,
30 and 40% plastic weight in the total sediment mixture.
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Concentrations ranged from environmentally relevant (0 - 1% plastic weight in sediment
dw) to very high concentrations, to evaluate dose-response relations and to maximize the
chance of accurately detecting the effect threshold.!! Four replicates of each concentration
were made, except for H. Azteca, for which only three replicates were made and for which
the concentration of 5% was excluded. Beakers with the suspension of sediment and PS
were manually shaken to overcome the energy barrier to settling due to the surface tension
(if any), after which particles settled within 48 h. Two weeks prior to the start of the
experiment, beakers were placed in a water bath at a constant temperature of 16 £ 1 °C
and accomodated with aeration.

At the start of the experiment, 11 randomly selected individuals were placed in their
corresponding beakers. The size range of G. pulex, A. aquaticus and S. corneum was
between 4 and 7 mm and for H. azteca between 1 and 3 mm. Active adult worms with an
average wet weight of 3.2 and 12.4 mg per worm were selected for Tubifex spp. and L.
variegatus, respectively. The starting length and weight of 44 randomly selected
individuals from the initial population were assessed. During the experiments, 2 poplar
leaves discs with a diameter of 3 cm were supplied to the beakers of G. pulex, A. aquaticus
and H. azteca at day 0 and 14. Poplar leaves discs were previously conditioned with DSW
for 3 days. For S. corneum, a TetraMin® suspension of 0.5 mg per individual per day was
added every 3 days. No additional food was needed for L. variegatus and Tubifex spp.
due to the high organic matter content of the sediment. Dissolved oxygen (DO), pH,
temperature, conductivity, and NHz were measured in at least one replica of each
concentration at day 0, 3, 7, 14, 17, 21, 24 and 28. To keep water levels constant, DSW
was added weekly until the end of the experiment. Water quality variables remained
constant in all beakers along the experiment (Table A3.3), except for the treatments with
Tubifex spp. and L. variegatus, where pH approached values below the recommended
limits (6 - 9) at day 14 and 24, respectively.'#” This was solved by replacing 100 ml from
the surface water layer in the bioassay by fresh DSW. On average, the measured
temperature was 16 = 0.3 °C, pH was 7.3 £ 0.5, oxygen concentration was 8.9 £ 0.2 mg/1
and conductivity was 477 + 45 uS/cm. Unionised levels of ammonia decreased along the
experiment for all species, reaching an average of 0.002 + 0.001 mg NH3/L at the end of
the experiment. All unionised ammonia levels were always below the LCso values
available for these species. 43148150

Mortality and growth. After 28 days, each system was sieved and the surviving organisms
were collected, counted and transferred to clean DSW to depurate their gut for 24 h.
Thereafter, G. pulex, A. aquaticus and S. corneum were preserved in ethanol 80% and
their length was measured: shell lenght of S. corneum, body lengh of A. aquaticus, and
head capsule (HD in mm) of G. pulex, from which total length (TL) was calculated as TL
=-2.07 +9.82 HD.!! Growth was determined as the difference in mean length (in mm)
of the animals in each replicate at the end minus the mean length from 44 animals at the
start of the experiment. For H. azteca, L. variegatus and Tubifex spp., growth was
measured as a difference in dry weight (in mg) of the population at the start and at the
end of the experiment.
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Feeding activity of G. pulex, H. azteca, A. aquaticus, L. variegatus and Tubifex spp.
Feeding rates — The feeding rate (mg dw leaf/organism/d) of G. pulex, H. azteca and A.
aquaticus was calculated from the loss of the added poplar leaves using the following

equation:'*?

((L1xC)-L2)
FR = “mm—— )
CZ ot

where L1 is the initial and L2 the final dry weight of the Populus sp. disc (mg), Lil and
Li2 are the numbers of living organisms at the start and at the end of the experiment
(Lil=11 individuals), Cl is the leaching-decomposition correction factor, calculated by
dividing the initial dry weight by the final dry weight of the leaves in the control sample;
and t is the incubation time (days).

Egestion rates. The egestion rate of L. variegatus and Tubifex spp. was assessed in a
separate 15-day bioassay experiment following Leppanen and Kukkonen (1998)'53
assuming that the weight of the faecal pellets represents the feeding rate of worms.'>*
Another batch of experimental systems was made following the same procedure as for
the mortality and growth tests but now only three concentrations were prepared (0, 0.1
and 40%) in quadruplicate. After two weeks of acclimatization (with aeration, in a water
bath at 16 = 0.3 °C, with 12:12 light:dark cycle) to promote settling of particles, five
active worms were added to these bioassays. When all organisms appeared to be buried
in the sediment, a sand layer of 2 mm thickness and with a particle size between 0.5 — 1
mm was added. The egested pellets of the organisms were collected with a pipette at day
2,5,7,12, and 15 for L. variegatus and at day 1, 5, 7, 12, and 15 for Tubifex spp.. The
collected faecal pellets were kept at 5 °C until they were filtered with GF/F 0.7 um glass
filters and dried at 60 °C for 48 hours and weighed.?* At the end of the experiment, worms
were gathered and placed in clean DSW water to clear their gut content for 24 h. Finally,
wet weight (ww) and dry weight (dw) (heating at 60°C for 48 hours) were determined per
replicate. The egestion rate was calculated as the amount of faeces produced per worm
per hour (mg dw per worm per h). No mortality occurred during the 15 days experiment.

Ingestion, retention and egestion of polystyrene microplastic by G. pulex and H. azteca.
The presence of MP in bodies of G. pulex and H. azteca and in their faecal pellets was
checked at the end of the 28-day bioassays. Samples were digested with 30% H>O» and
incubated at 60°C in a water bath for 48 h'> following a protocol modified from Claessens
et al. (2013). Afterwards, samples were filtered through 25 mm Anodisc inorganic filter
membranes of 0.2 pm pore size, which were dried in an oven at 50 °C for at least 48 hours
and analysed with a u-Fourier Transform Infrared Spectrophotometer (#-FTIR; Nicolet
iN10, ThermoFisher) with a single MCT detector and ultra-fast stage. Following
Mintenig et al. (2016),3? four pre-determined and equally sized chemical maps covering
one third of the total filter area were made using an aperture size of 50x50 pm and
mapping stage step sizes of 20 pm. A correlation map between the analysed area and the
spectra from the original PS MP sample was made with the OMNIC PICTA Software to

27



Chapter 2

28

determine identity, number and size of the ingested and excreted particles. The number
of MP in the body of the organisms (retained MP) and the number of particles found in
their faecal pellets (egested MP) were calculated for each treatment replicate. Organisms
and faecal pellets from the 1% treatment, as well as one replica of the 30% treatment,
were used to optimize the extraction of MP and, therefore, their data were omitted from
further analysis. Organisms from four control beakers (exposed to sediment without PS
MP) were used as blanks and were also checked for the presence of any MP, which were
considered as contamination. The numbers of particles found in controls for the retained
and egested particles were subtracted from the numbers of particles found in each replica
of each PS treatment, and were 0.10 and 0.6 particles per organism, respectively.

Ingestion and egestion data were expressed on a MP particle number as well as on a
weight basis, per unit of weight of organism and sediment. MP number concentrations
were directly taken from the FTIR mapping data. Weight based data require a number to
weight conversion, for which we used an approximated volume of the particles, and the
default density of PS (1.05 g/cm?).!5¢ The approximate volumes (length x width x depth)
of the PS MP fragments were calculated as follows. First it was assumed that the particles
would prefer a flat position on the filter, such that their length and width dimensions
directly measurable from the 2D map top view, each are larger than the third (depth)
dimension, which is not observable from the 2D maps. This unknown third dimension
was assumed to be the smallest and was thus approximated as half of the second
dimension. We emphasise that this method is not accurate for individual particles, but
becomes robust when it concerns larger numbers of our irregularly shaped particles where
the distribution of the third (depth) dimension can be assumed to be symmetrical. The dry
weight (dw in mg) of the organisms of G. pulex was estimated based on their lengh (L in
mm) as dw = 0.00321xL233%9 157 The number of particles per gram of sediment was
calculated from the mass of PS per dose, PS density and the measured particle volume
distribution (Figure A2.2).

Data analysis. Survival data as quantal data were analysed using Generalized Linear
Model (GLMs) with a binomial distribution and probit model.'>® One-way Analysis of
Variance (ANOVA) and regression analysis were used to evaluate the effects of
increasing MP concentrations in sediment on the growth, feeding rate and MP retention
and egestion. Normality of the residuals and homogeneity of variances were tested with
a Shapiro-Wilk Normality test and Levene’s test, respectively. Repeated measures (RM)
ANOVA was used to determine the effects on the egestion rate over time. All statistical
data analyses were conducted using SPSS 23 (IBM Corp., NY, USA). When a significant
effect on an endpoint was found, a four parameter log-logistic dose-response model was
fitted;'>®
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where f(x,b,c,d,e) is the bioassay response variable, x is the MP concentration, e is the
median effect dose (ECso) and b,c,d are fitting parameters. In case parameter ¢ was zero,
Eq. 2 was reduced to a three-parameter model.'> The SD of the ECso was calculated as
the 95% confidence interval (C195) divided by 1.96, where CI95 was calculated according
to Draper and Smith (1981).!46:160 The EC,o was calculated by solving the parameterized
response model for a 10% effect dose.

Results and Discussion

Mortality. Mortality of L. variegatus could not be determined due to their reproduction
by fragmentation during the experiment. As the average number of surviving worms per
replicate in controls was increased by a factor of at least 1.8, the reproduction factor could
be calculated as the number of worms at the end of the experiment divided by the number
of worms at the beginning of the experiment.'#” Survival for the other species was higher
than 80% in controls, except for G. pulex, for which the average survival was 66%.

Chronic exposure to PS MP concentrations up to 40% in sediment dw caused no
significant mortality in G. pulex, A. aquaticus, S. corneum, H. azteca and Tubifex spp.
(Figure 2.1A-E) and no significant effects were found on the reproduction of L. variegatus
(Figure 2.1F). Same lack of effects on mortality has been reported in earlier studies with
benthic macroinvertebrates exposed to MP. For instance, survival of the freshwater
amphipods G. pulex and H. azteca were not affected by the exposure to PET and PE MP,
respectively 83135 Furthermore, no mortality was reported for the marine isopod Idotea
emarginata exposed to PE, PS and polyamide (PA) MP and the marine lugworm A4.
marina exposed to PE MP.!38

Growth. The effect of PS MP concentrations on the growth of the organisms was assessed
as a difference in length (in mm) for G. pulex, A. aquaticus and S. corneum, and as a
difference in dry weight (in mg) for H. azteca, Tubifex spp. and L. variegatus (Figure
2.2). One-way ANOVA and regression analysis showed no relation between PS MP
concentrations in sediment and the growth of A. aquaticus, S. corneum, H. azteca L.
variegatus and Tubifex spp.. However, individuals of G. pulex exposed to sediment
containing high MP concentrations (from 10 to 40%) showed a significant reduction in
size compared to controls (ANOVA, P = 0.002). The fit of the log-logistic model (Eq. 2)
was highly significant (P =2.27 x 10*) and resulted in an ECso value of 3.57% sediment
dw (% 3.22) and an ECi¢ value of 1.07% (Figure A2.3).
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Figure 2.1. Mean mortality (£SD.) for G. pulex (4), A. aquaticus (B), S. corneum (C), H. azteca (D), Tubifex
spp. (E); and Reproduction factor of L. variegatus (F) after a 28-day exposure to PS MP concentrations
ranging from 0 to 40% in sediment dw.

The CI95 of 3.22 in the ECso value reflects the rather high variability among replicates.
These outcomes reveal that a chronic exposure to PS MP results in a species specific and
dose-dependent effect of PS MP on the growth of the benthic macroinvertebrates tested.
However, while the growth of G. pulex was significantly reduced with increasing PS MP
dose in sediment, the growth of the five other organisms was not altered by the presence
of these particles at concentrations up to 40% plastic in sediment dw. Hence, the ECio
values for these species are higher than 40% plastic in sediment dw. Growth inhibition of
G. pulex by a chronic PS MP exposure from sediment has not been reported before.
However, chronic exposure of a closely related freshwater shrimp, G. fossarum, to
polymethylmethacrylate (PMMA) and polyhydroxy-butyrate (PHB) MP in water caused
a decrease in growth at a concentration of 100,000 MP particles per individual with a
similar size range.'3* H. azteca, another amphipod in the present study, showed no
reduction in growth after a 28-day exposure to PS MP concentration up to 40% in
sediment. In contrast, a previous study showed a decrease in the growth of H. azteca after
a 28-day exposure to PE MP in water at concentrations of 5000 and 10,000 PE MP
particles per ml.®* Such differences between study outcomes may relate to (a) differences
in the exposure medium, as the presence of natural particles seems to reduce the ingestion
of MP in freshwater invertebrates,*® and (b) to a higher bioavailability of particles in
suspension as compared to particles mixed in the sediment as in the present bioassays.
No effects were found on growth for the marine isopod /. emarginata exposed to PE, PS
and PA MP in water,'3¢ while weight loss of the marine lugworm A. marina was reported
at concentrations of 7.4% PS MP'37 and > 5% uPVC MP in sediment dw.”?
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Figure 2.2 Mean growth (£SD.) as length (in mm) of G. pulex (A), A. aquaticus (B), S. corneum (C); and

as dry weight (in mg) of H. azteca (D), Tubifex spp. (E) and L. variegatus (F) after a 28-day exposure to
PS MP concentrations ranging from 0 to 40% in sediment dw.

Feeding activity. Feeding rate of G. pulex and H. azteca was calculated as the dry weight
(in mg) of Populus sp. leaves consumed per organism per day (Figure A2.4). No
differences were found on the feeding activity of G. pulex and H. azteca after a 28-day
exposure to PS MP concentrations up to 40% in sediment dw (Figure A2.4). These results
are in accordance with Weber et al. (2018), where no effects on the feeding activity of G.
pulex were found after an exposure to PET MP in water.'3* These findings indicate that
weight loss of G. pulex was probably not caused by a reduction in the consumption of
Populus sp. leaves during the experiment and that the presence of MP in the sediment did
not alter the feeding rate of these benthic amphipods. Similarly, while the growth of G.
fossarum was reduced after a 28-day exposure to PMMA and PHB particles, the feeding
rate was also unaffected.'??

The egestion rate of L. variegatus and Tubifex spp. was assessed as the dry weight of the
faeces egested (in mg) per organism per hour over a 15-day period (Figure A2.5). At the
end of the experiment, all L. variegatus and Tubifex spp. survived and no reproduction
was observed in the additional 15-d period experiment. The egestion rate of L. variegatus
increased during the first week of exposure and then decreased until the end of
experiment, while the egestion rate for Tubifex spp. increased over time until the end of
experiment (Figure A2.5). The average egestion rates of L. variegatus and Tubifex spp.
were 0.43 and 0.32 mg dry faeces per mg dry organism per h, respectively, and this
difference was significant along the sampling time (RM ANOVA; P < 0.05). However,
MP exposure had no negative effects on the egestion rate of the worms and the interactive
effect between MP exposure and sampling time was also not significant.
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Ingestion, Retention and Egestion of Microplastic. At the end of the 28-day exposure to
PS MP, organisms of G. pulex and H. azteca were allowed to clean their gut for 24 h.
Remaining faecal pellets as well as the body of the organisms were checked for MP,
separately. No MP were found in the body nor in the faecal pellets of H. azteca at any
concentration, indicating that these organisms did not ingest microplastic particles in the
size range of 20 to 500 um PS. This is consistent with the lack of effect found for this
species in the present 28-day exposure test.

In contrast to H. azteca, PS MP were found at all concentrations in the body of G. pulex,
as well as in their faecal pellets after a 24-hour depuration time. Size frequency
distribution of the MP found in the body of all organisms (n = 191) ranged from 22 to
165 pm, with an average size of 61 pm (Figure A2.6). The size frequency distribution of
the microplastics found in the faeces (n = 840) ranged from 16 to 165 pm, with an average
size of 57 um (Figure A2.6). MP with a size > 165 pm accounted for only < 0.01% of the
total amount (in number) and were considered to originate from an external source of MP
(i.e., particles attached to the external body of the organisms) and were removed from the
analysis. The total amount of ingested particles (retained + egested) (n = 1031) ranged
from 16 to 165 pm, with an average size of 58 um (Figure A2.6)

A linear regression revealed a significant, positive relation between the number of MP
inside the body of G. pulex and the number of MP in the sediment exposure medium
(Linear Regression; n = 23; P = 6.65x10%; Figure 2.3A). One of the concentrations was
designated as an outlier (Iglewics and Hoaglin's robust test) which was not taken into
account in the subsequent determination of the regression parameters. A linear
relationship was also found when mass-based concentrations were used (Linear
Regression; n = 23; P =3.97x107; Figure 2.3B).
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Figure 2.3. Mean PS MP concentration (n = 4) per individual of G. pulex (£SD) as a function of the PS
MP concentrations in sediment, as: (A) number of PS MP retained per organism by number of PS MP per
kg of sediment dw; (B) g/kg of PS MP retained per organism dw by g/kg of PS MP per sediment dw. Linear
regressions were based on the individual datapoints (n = 22) with omission of one suspected outlier (orange
marker).
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There was also a significant, positive relation between the number of PS MP in the faeces
egested by G. pulex and the number of PS MP in sediment (Linear Regression; n = 23; P
=6.63x10°%; Figure A2.7A). Similarly, the weight of PS MP egested per organism dw (g
/kg) also increased linearly with the weight of the PS MP in sediment dw (g/kg) (Linear
Regression; n = 23; P = 4.9x1077; Figure A2.7B).

These data show that up to a concentration of 40%, uptake by G. pulex (Figure 2.3) is
proportional to the concentration in the sediment, either expressed as number or as mass.
Given the demonstrated proportionality between exposure and uptake, the slope of the
line in Figs 2.3A and B can be interpreted as trophic transfer factors (TTF) with a value
of (4.47 £ 0.35) x10"!" (TTFqumber; Figure 2.3A) and (10.5 £ 1.3) x10 (TTFmass; Figure
2.3B). The TTF represents the ratio of the MP concentration in the organism and that in
the sediment exposure medium, which appears to be constant up to 40% sediment dw.
These TTF values are low, which can be explained by the fact that only a limited part of
the size range in the sediment is actually taken up, that is, the TTFs mechanistically reflect
transfer and size selection. When corrected for the 165 - 500 um bio-unavailable fraction,
pure estimates of net transfer are obtained, being TTF = (5.16 = 0.40) x10-!' (number)
and 0.028 £ 0.0036 (mass). As previously stated for other freshwater amphipods exposed
to MP, our results indicate that growth reduction of G. pulex was a sub-lethal effect caused
by a lower ability of these organisms to assimilate food due to the ingestion of PS
MP, #3133 a5 well as by the gut blockage by these particles due to a longer excretion time
needed to depurate their gut.®* Therefore, the observed constancy and magnitude of TTF
may still change over time. Based on MP excretion studies performed with other
freshwater amphipods exposed to different MP types,3*!3* G. pulex is expected to be able
to completely depurate if enough time is given and if the ingestion of particles concludes.
These findings indicate that MP uptake is size-dependent and that shape might affect the
ability of organisms to excrete them. This is in accordance with previous studies showing
that MP uptake by freshwater invertebrates is size-specific and feeding type dependent
and that irregularly shaped MP need a significant longer clearance time in comparison to
spherical MP.#633 Moreover, the high mobility of G. pulex'®! could have increased MP
uptake in comparison to the other epibenthic species, revealing the importance of species
specific traits in the effects of MP on benthic invertebrates.

General discussion

We showed that for a range of freshwater species with different traits exposed to PS MP
in sediment under the same environmentally relevant conditions, no effect was found for
five out of six species even at extremely high concentrations (40% sediment dw). Only
for one of the species, G. pulex, a significant reduction in growth was found, which is
likely to be explained by the demonstrated size-selective uptake of PS MP and their slow
excretion, leading to a depletion of energy reserves as found earlier for marine worms as
a result of MP ingestion.®?> As mentioned earlier, our wide range of PS particle sizes and
shapes can be considered as a fair approximation of environmental MP when it concerns

their physical effects. Field measured concentrations in freshwater sediments,>+26:129-131
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although often provisional due to methodological limitations, are far below the calculated
ECio or ECsg effect threshold values for G. pulex. This means that extrapolating these
results to the environment leads to small chances of such physical effects, and
consequently low current risk for the benthic community of freshwater systems.
However, MP concentrations are expected to increase in the environment,'®? which
implies that effects are not unthinkable in the future. Finding high effect thresholds for
most species does not rule out risks on the level of biodiversity or on the community
functioning, as these also depend on the performance of the most sensitive species, here
G. pulex. In fact, G. pulex plays a key role in the processing of coarse particulate organic
matter in streams,'® is an important prey for fish,'** and its feeding inhibition has shown
to alter the benthic macroinvertebrate community,'>?
community and ecosystem levels could occur over time. Eventually, the combination of
effect threshold data in species sensitivity distributions may represent a more refined
approach as part of a higher tier in the assessment of physical effects of MP.!! Moreover,
for G. pulex we demonstrated ingestion to be proportional to dose and we introduced the
concept of TTF accumulation factors for MP, which may be useful in exposure
assessments. If the observed ingestion behaviour would be confirmed to be general
among benthic invertebrates, uptake and exposure models may rely on using constant
ingestion rates or steady state TTFs for a wide range of MP concentrations in sediments.

which means that responses at
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Abstract

Micronized particles released from car tires have been found to contribute substantially
to microplastic pollution, triggering the need to evaluate their effects on biota. In the
present study, four freshwater benthic macroinvertebrates were exposed for 28 days to
tread particles (TP; 10 - 586 pm) made from used car tires at concentrations of 0, 0.1, 0.3,
1, 3 and 10% sediment dry weight. No adverse effects were found on the survival, growth
and feeding rate of Gammarus pulex and Asellus aquaticus, the survival and growth of
Tubifex spp., and the number of worms and growth of Lumbriculus variegatus. A method
to quantify TP numbers inside biota was developed and here applied to G. pulex. In bodies
and faeces of G. pulex exposed to 10% car tire TP, averages of 2.5 and 4 tread particles
per organism were found, respectively. Chemical analysis showed that, although car tire
TP had a high intrinsic zinc content, only small fractions of the heavy metals present were
bioavailable. PAHs in the TP-sediment mixtures also remained below existing toxicity
thresholds. This combination of results suggests that real in situ effects of TP and TP-
associated contaminants when dispersed in sediments are probably lower than those
reported after forced leaching of contaminants from car tire particles.
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Introduction

During the past decade, extensive research has been conducted to evaluate the emissions
and environmental concentrations of microplastics (MP) worldwide. A few studies
considered micronized particles released from car tires as part of MP pollution and
concluded that they constitute a significant global source of MP.!4165166 This fact,
together with the concerns raised by governmental institutions and the general public
about potential adverse effects of particles released from car tires, brings out the need to
quantify the amount of car tire particles in the environment and to evaluate their

bioavailability and effects on biota,!!1:165.167.168

Depending on the generation process and their composition, different car tire particle
types are formed. Tread particles (TP) originate from the grinding or abrasion of a tire
tread,'%? which include the finely crushed rubber particles made from old car tires that are
commonly used in synthetic turf fields.'®” Tire wear particles (TWP) can be released into
the environment as a result of the mechanical abrasion of car tires with the road surface.'”
Although rubber is the main constituent of car tires, sulphur and zinc oxide are added
during the vulcanisation process, black carbon or silica are added as fillers, and oil is
added to increase the wet grip performance.'® Besides these general additives, tires can
contain other additives depending on their specific properties defined by the
application.'!’-1%% In aquatic systems, chemicals may leach out into the aqueous phase at
different rates depending on the environmental conditions (temperature, pH and salinity)
and the composition and size of the particles.!'"!”1172 For instance, total zinc content has
been found to be three times higher in TP than in TWP.!®° Different release rates can lead
to differences in chemical bioavailability and to complex mixture effects.

TWP released from car tires and old tire TP used as infill in artificial turfs are the most
important sources for micronized rubber particles in the environment.'®> Whereas MP
detection methods have evolved considerably over the past decade,’? the methodology
used to quantify the amount of car tire particles in the environment is still limited. Car
tire particle concentrations in water and sediments are estimated based on chemical
markers, such as benzothiazoles or zinc, or the rubber type,'’! markers that are unable to
distinguish between TP and TWP, and may include chemicals from other environmental
sources.!'! Concentrations in biota have never been measured, probably because their
levels are below the detection limits. No laboratory studies on the ingestion of TWP or
TP are available either. Car tire particle concentrations have been measured in surface
waters (0.09 - 6.3 mg/l) and sediments (0.3 - 155 g/kg dry weight).!”3>"178 This indicates
that part of the car tire particles entering the surface water may sink to the sediment
compartment due to their higher density.?’

To date, effect studies done on aquatic biota have mostly focused on the evaluation of the
effects of car tire leachates, which were often extracted under conditions forcing chemical
release, such as high temperatures and low pH values.!”! Some of the leachates were
prepared using whole tires,!”13 while others were extracted from TP or TWP,!7%181-183
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which seem to be more toxic, probably due to a faster release of chemicals from smaller
particles.!”! Although studying the effects of elutriates extracted from car tire particles
may be useful for screening level assessments, evaluating the effects of car tire particles
in water or sediment under natural conditions is more environmentally realistic.'$* For
instance, earlier studies showed adverse effects of car tire TP on the development of Rana
sylvatica larvae at a concentration of 83.8 g/kg of sediment dry weight.!® In contrast, no
effects of 10 g of tire and road wear particles (TRWP) per kg of sediment dry weight were

found for the amphipod Hyalella azteca and the larvae midge Chironomus dilutus.'3*

Knowing that sediments accumulate settling car tire particles, their bioavailability and
effects on benthic macroinvertebrates should be evaluated. Moreover, for a proper
assessment of the risks of car tire TP, not only environmentally realistic conditions and
concentrations should be used, but also a systematic setup should be followed in order to
ensure the comparability among species. In the present study, chronic effects of car tire
TP were evaluated for four freshwater benthic macroinvertebrates: the amphipod
Gammarus pulex, the isopod Asellus aquaticus and the worms Tubifex spp. and
Lumbriculus variegatus. We used a standardized setup, previously used to evaluate the
effects of polystyrene (PS) MP on the same species (Chapter 2).!3¢ Effects were assessed
using a wide range of environmentally relevant concentrations of car tire TP, under
environmentally realistic conditions. Additionally, for the first time, tread particle
ingestion and egestion were investigated. This was done for G. pulex by quantifying the
number of particles in their body and in faeces at the end of the experiment. Here, G.
pulex was used as a model invertebrate species for ingestion, as it was demonstrated their
ability to ingest MP in an earlier work (Chapter 2).'3¢ We developed a method in order
to be able to assess TP particles inside organisms, which included testing the resistance
of TP rubber materials to animal tissue digestion fluids and developing an image analysis
approach for quantifying ingested TP particles.

Material and Methods

Preparation of the car tire tread particles. With the purpose of mimicking an
environmentally relevant scenario of car tire TP exposure, five second hand tires of
various brands were bought in Supervelg (Drunen, the Netherlands) (Table A3.1). Using
a metal grater, milimiter sized particles were scrapped from the first 2 cm of each tire.
After freezing the particles with liquid nitrogen to prevent them from burning, they were
ground and sieved over a 500 um sieve in an Ultra Centrifugal Mill ZM 1000 (Retsch,
Germany). A mixture was made by the combination of the five car tires particles at equal
weight proportions and this mixture was sieved again over a 500 um sieve to guarantee
any bigger particles being removed.

Characterization of the car tire tread particles. The particle size distribution (PSD) of the
car tire TP mixture was measured by laser diffraction using a Mastersizer 3000 (Malvern
Instruments), which is capable of measuring particle sizes between 0.01 — 3500 um.
Particle shape was examined under an Olympus SZX10 stereomicroscope. Main
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constituents of the car tire TP were quantified using thermogravimetric analysis
(TGA/DSC 3+, Mettler Toledo). Upon heating the sample, the mass loss was determined
allowing to distinguish between (i) volatile substances (e.g. plasticizers, that vaporize
between 30 — 300 °C), (ii) the actual polymer (300 — 600 °C), (iii) black carbon (600 —
850 °C), and the residue, which is composed of (iv) inorganic fillers (e.g. zinc oxide).!37:188
For the combustion of black carbon the gas was switched from nitrogen to air (50 ml min-
!, see Table A3.2 in the Appendix for instrumental settings). While heating from 300 to
600 °C, the evolved gases were trapped to further characterize comprised polymers. This
was done by coupling a cartridge filled with a hydrophilic-lipophilic balanced polymer
(HLB, Oasis Water Corporation, Massachusetts, USA) directly to the TGA. Trapped
decomposition products were extracted by flushing with 2 ml of Dichlormethane (DCM,
Honeywell Research Chemicals, USA) of which 2 ul were injected manually in a gas
chromatograph coupled to a mass spectrometer (GC-MS, Agilent Technologies, Table
A3.2). Characteristic mass spectra of the decomposition products (pyrolysates) of
polymers typically used in tire production were taken from literature (Table A3.3).!8%19
Their presence was used to identify polymers incorporated in the car tire TP. Finally, the
total amount of zinc was quantified. The inorganic residues (120 mg) were exposed to
microwave acid extraction using 13% nitric acid (Merck, Suprapur), heated under
pressure and kept at temperatures between 133 - 163 °“C for 30 minutes. Subsequently, the
sample was filtered and the total amount of zinc was determined using Inductively
Coupled Plasma Mass Spectrometry (ICP-MS) (X Series 2, Thermo Fisher Scientific)
(Table A3.2).

Sediments. Freshwater sediments were collected with a standard dip net at Veenkampen
(Wageningen, The Netherlands) in December 2016. Previous studies have shown that
PAH background concentrations at this location are below toxicity thresholds.!44191:192
Sediments were sieved, homogenized and placed in a freezer at -20° C. Prior to the
experiments, sediments were thawed and thoroughly homogenized again, and four
representative subsamples were taken to determine the percentage of Total Organic
Matter (TOM) through loss on ignition (3 h, 550 °C), which was 40 + 0.8% (n = 4). All
data are depicted with mean + standard deviation, unless otherwise stated.

Test organisms. Following previous procedures (Chapter 2),'**!3¢ G. pulex and A.
aquaticus were collected from a relatively unpolluted brook (Heelsum, The Netherlands)
and ditch (Heteren, The Netherlands). L. variegatus were obtained from Wageningen
Environmental Research (Wageningen, The Netherlands) and Tubifex spp. were
purchased at a local pet shop. Prior to the experiments, organisms were acclimatized for
one week in aerated buckets with copper-free Dutch Standard Water (DSW) inside a
water bath at 16 £ 1 °C while maintaining a 12:12 light:dark cycle. During the
acclimatization, G. pulex and A. aquaticus were fed with dry poplar leaves that were
collected in the field and Tubifex spp. and L. variegatus were fed with TetraMin® fish
food pellets.
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Experimental design. Sediments were spiked to achieve the concentrations: 0,0.1,0.3, 1,
3 and 10% of car tire TP dry weight in the total sediment mixture. These concentrations
correspond to 0, 1.0, 3.0, 10, 30 and 100 g/kg respectively, which are within the range of
measured car tire wear and tear particle concentrations in sediments.'%> Each experimental
unit consisted of a 750 ml glass beaker filled with 211 g of the corresponding car tire TP
— sediment mixture. For each concentration, 3 replicas were made. Two weeks prior to
the start of the experiment, beakers were placed in a water bath at a constant temperature
of 16 = 1 °C and aerated. Then, 11 randomly selected individuals from the corresponding
species were placed in the experimental units. The starting length of 33 randomly selected
individuals from the initial population was assessed as body lengh for A. aquaticus, and
head capsule (HD in mm) for G. pulex, from which total length (TL) was calculated as
TL =-2.07 + 9.82 HD.!'3! The average size of G. pulex and A. aquaticus was 4.6 = 0.8 mm
(n =33) and 4.5 £ 0.5 mm (n = 33), respectively. The starting dry weight of 33 active
adult worms from the initial population of Tubifex spp. and L. variegatus was determined.
The average dry weight per worm was 0.42 + 0.05 mg (n = 33) for Tubifex spp. and 1 +
0.08 mg (n = 33) for L. variegatus. During the experiments, 2 poplar leaves discs with a
diameter of 3 cm were supplied to the beakers of G. pulex and A. aquaticus at day 0 and
14. Poplar leaves discs were previously conditioned with DSW for 3 days. No additional
food was needed for Tubifex spp. and L. variegatus due to the high organic matter content
of the sediment. Temperature, dissolved oxygen (DO), pH and NH; were measured in all
beakers once a week, while conductivity (EC) was measured only at the start and at the
end of the experiment. To keep water levels constant, DSW was added weekly until the
end of the experiment. Water quality variables remained constant in all beakers along the
experiment (Table A3.4). Unionised levels of ammonia decreased along the experiment
for all species, reaching an average of 0.03 + 0.01 mg NHs/L (n =12) at the end of the
experiment. All unionised ammonia levels were always below the LCs, values available
for these species. 43149193

Analysis of heavy metals and PAHs in sediments mixed with car tire tread particles.
Especially heavy metals and polycyclic aromatic hydrocarbons (PAH) are relevant in
explaining potential chemical effects from sediments polluted with TP.!7!19419 Therefore,
sediments with TP mixed from all treatments were analysed for heavy metals and PAHs
at t = 0. Two extra beakers were prepared in the same way and at the same time as the
experimental units. After the 2 week acclimatization period, sediments from the two
duplicates were mixed and freeze dried. The total amount of Zinc (Zn), Sulphur (S),
Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), and Lead (Pb) were analysed
using microwave acid extraction with Inductively Coupled Plasma Atomic Emission
Spectroscopy (ICP-AES) and ICP-MS after destruction with HNO;-HCL.!*¢ Additionally,
the sediment-TP mixtures were extracted with 0.01 M CaCl, to determine the mildly
extractable concentrations as a proxy for bioavailable metal concentrations.!”” Following
earlier procedures,'* PAHs were extracted from the sediment-TP mixtures using
accelerated solvent extraction (ASE) and analysed by High Performance Liquid
Chromatography (HPLC) after sample clean-up. Clean-up recoveries for 14 PAH were
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91 + 6%, and ranged from 78 to 98%. Concentrations were corrected for blanks and
recoveries. For further details on PAH analysis, the reader is referred to the Appendix.

Effects on Survival, growth and feeding rate: After 28 days, the content of each
experimental unit was sieved over a 0.35 mm sieve. Surviving organisms were collected,
counted and transferred to clean DSW to depurate their gut for 24 hours, following
procedures from previous MP ingestion studies.’®'3!37 The number of worms per
replicate was used as endpoint for L. variegatus instead of survival, as they reproduced
by fragmentation during the experiments.'*® G. pulex and A. aquaticus were preserved in
70% ethanol until their length was measured, which was done in the same way as for the
starting population. Growth was determined as the difference in mean length (in mm) of
the animals in each replicate at the end minus the mean length from 33 animals at the start
of the experiment.The growth of Tubifex spp. and L. variegatus was determined as
biomass increase per replicate by subtracting the average dry weight of the starting
population from the average dry weight of the populations at the end of the exposure test.
Feeding rate (mg dry weight leaf/organism/d) of G. pulex and A. aquaticus was calculated
from the loss of the added poplar leaves using the equation from Maltby et al. (2002),
described in the Appendix.!>

Resistance of car tire TP to H,O, and ingestion by G. pulex.

Surviving individuals of G. pulex from controls (TP concentration of 0% sediment dry
weight) and the two highest exposure concentrations (3 and 10% car tire TP in sediment
dry weight), as well as the faeces excreted by these organisms during the 24-hour
defeacation period, were analysed for the presence of car tire TP using 30% H,O, to purify
the biota samples.

Resistance of car tire TP to H,O,. Prior to the purification of the samples, the resistance
of car tire TP to 30% H,0, was tested. For this, 80 car tire TP cut from the scrapped
sample were distributed in 8 porcelain cups and dried in an oven at 40 °C for 72h. The
mean dry weight of the particles from each cup (n = 10) was measured with a Cubis®
Micro balance (Sartorius, Germany). Pictures of each particle were taken with a CMEX
camera (Euromex, The Netherlands) under an Olympus SZX10 stereomicroscope and the
mean particle area (n =10) was measured using Imagel] Software. Four groups of ten
particles were added to glass beakers containing 30% H20O> and the other four were added
to glass beakers containing Milli-Q water. All glass beakers were placed in a New
Brunswick Scientific G25 shaking incubator at 45 °C and 80 rpm for 24 hours. After this
period, all particles were flushed with water and dried in an oven at 40 °C for 72h. Finally,
the mean weight of the particles was measured again and new pictures were taken to
calculate the mean particle area.

Ingestion of TP by G. pulex. Following the protocol by Loder er al. (2017) with

modifications,'” bodies and faeces of G. pulex were added to 10 ml of 30% H,O, and
placed in a New Brunswick Scientific G25 shaking incubator at 45 °C and 80 rpm for 24
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hours. The presence of car tire TP in bodies and faeces was studied separatelly, whereas
bodies and faeces from each individual replica were pooled and treated together. A
subsequent chitinase step was needed for the body samples to remove all chitine leftovers.
For this, to remove the 30% H,0, , each sample was filtered through a stainless steel filter
with a mesh size of 10 pm. The residues on the filter were rinsed with 15 ml of phosphate-
buffered saline (PBS) solution (pH 5) into a beaker in which 1 ml of chitinase (EC
3.2.1.14, ASA Spezialenzyme GmbH, Wolfenbiittel, Germany) was added. Samples were
placed in a New Brunswick Scientific G25 shaking incubator at 37 °C and 80 rpm for 5
days. Finally, samples were filtered through 25 mm aluminium oxide filters (Anodisc,
Whatman, UK) with a pore size of 0.2 pm, which were dried in an oven at 45 °C for at
least 48 hours. Note that Raman or Fourier Transform Infrared Spectroscopy (FTIR) used
to identify MP in biota, such as in Redondo-Hasselerharm et al. (2018) (Chapter 2), are
not applicable to black particles due to high IR absorption.?20! Therefore, all black
particles found on each of the filters were photographed with a CMEX camera (Euromex,
The Netherlands) under an Olympus SZXI10 stereomicroscope. Particle size was
measured using image analysis software (ImageJ). Only particles within the size range of
the original TP mixture were accounted. Finally, the number of black particles within the
size range of 10 - 586 pm found in each filter was divided by the number of surviving
individuals in the corresponding replicate at the end of the experiment to obtain the
number of particles per organism. Blanks were included (n = 3) to correct for
contamination by particles within the targeted size range. Size frequency of the particles
found in bodies and faeces of G. pulex at concentrations 3 and 10% were analysed after
measuring their length (in pm) in ImageJ. Following our previously published approach
(Chapter 2),'% the number of car tire TP per gram of sediment was calculated from the
mass of car tire TP per dose, TP density and the measured particle volume distribution.

Statistical analysis. Data analysis was done in SPSS 23 (IBM Corp., NY). Generalized
Linear Models (GLMs) were applied to study the effects of car tire TP on all endpoints
using the log-transformed concentration as covariate. GLMs were selected based on the
data distribution of each endpoint. One-way ANOVA (p < 0.05) were conducted to
determine the effects of car tire TP on the number of worms of L. variegatus, the growth
of G. pulex, A. aquaticus, Tubifex spp., and L. variegatus, and the feeding rate of G. pulex
and 4. aquaticus. One-way ANOVA was also used to study differences in the number of
car tire TP found in bodies and faeces of G. pulex at zero concentration (i.e. the blanks)
and the two highest concentrations. Residuals were tested for normality using Shapiro-
Wilk test (p > 0.05) and visualized with a Q-Q plot. Variances were tested for
homogeneity using Levene’s test (p > 0.05). Post hoc multiple comparisons were done
using Tukey’s and Bonferroni tests. If the assumption of homogeneity of variances was
violated, one-way Welch ANOVA (p < 0.05) was conducted. An independent t-test was
applied to compare the average dry weight (mg) and the average area (mm?) of the
particles before and after the H>O and the H>O treatments. The difference in dry weight
and area between the particles before and after each treatment was compared between
treatments as well.
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Results and Discussion

Characterization of car tire TP. Particle size distribution of the car tire TP mixture
showed an unimodal distribution spanning from approximately 10 pm to 586 um with a
modus centred at 239 um by volume (Figure A3.1A) and 10.5 um by number of particles
(Figure A3.1B). This size distribution included previously reported size ranges for TWP
and TP.'9-202 Particle shape was found to be generally angulated (Figure A3.2), as
described by Kreider et al. (2010) for TP.'®

TGA analysis revealed that the tire mixture contained volatile substances (7%), polymeric
substances (52.4%), black carbon (6.5%) and inorganic fillers (34.1%) (Figure A3.3). Car
tire TP were also analysed individually, revealing a similar composition for all tires used
(Figure A3.3). Thus, further analyses were only conducted for the car tire TP mixture.
The MS data were screened for the presence of decomposition products of polymers
typically used during tire production!3?2% after which methyl-butadiene and dipentene,
butadiene and styrene were confirmed (Figure A3.4). That implies that the car tire TP
consisted of blends of polyisoprene and styrene butadiene rubber (SBR) (Table A3.3).
Benzothiazole (indicator m/z 135), used as a vulcanisator during the tire production, was
identified too (Figure A3.4). The total amount of zinc, determined from the inorganic tire
residues (16.58 g/kg), was 5.65 g zinc/kg tire TP mixture.

Analysis of heavy metals and PAHs in sediments mixed with car tire tread particles.

Metal analysis. Concentrations of Zn, Cd, Cr, Cu, Ni, Pb and S in the sediment-TP
mixtures did not vary among treatments, except for Zn (Table A3.5). This implies that
the added TP did not contain sufficient quantities of these elements to cause a measurable
change in overall concentrations, except for Zn. The total concentration of Zn in
sediments was linearly correlated (R? = 0.99) with the nominal concentration of car tire
TP in sediment (Figure A3.5). The slope of this line represents the Zn added with every
extra 1% of TP, which translates into a tire TP mixture Zn content of 6.54 + 0.37 g/kg.
This is only slightly different from the value of 5.65 mentioned above, which is explained
from the different digestion and analytical method used. The linearity illustrates the
accuracy of the dosing and the mixing. The data show that by adding TP up to 10% dry
weight, the sediment background Zn concentration of 75 mg/kg was increased almost
tenfold to 735 mg/kg. The CaCly extractable (bioavailable) concentrations of Zn,
however, were a factor of 1000 times lower than the total amount (Table A3.5), and in
fact were below the detection limit and remained at least a factor 30 below the LCso values
for Tubifex spp. and L. variegatus (990.1 ug/kg and 2954 ug/kg, respectively).?042%5 As
for the other CaCls extractable elements, only S, Cr and Ni were detected. They also did
not increase with increasing car tire TP concentrations in sediment and also remained at
non-toxic concentrations. These chemical data already show that TP elutriate tests are not
likely to represent ecologically relevant results as they do not account for the limited
bioavailability of metals in the sediment mixture.!”>18!
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PAH analysis. PAH concentrations did not increase with increasing car tire TP
concentrations in sediment (Table A3.6), and PAH concentrations in controls (TP
concentration of 0% sediment dry weight) were similar to previously reported PAH
concentrations for the same sediment.'** Therefore, we conclude that PAHs did not leach
from the car tire TP to the sediment and did not contribute to the PAH concentration in
the systems. This is in agreement with previous studies that also reported a low
contribution of TP and TWP to PAH concentrations to the environment.'®*2% PAHs are
not easily extracted even under extreme environmental conditions and its bioavailability
is expected to be low.!"1% The Sum of PAHs (Y PAH) for all sediment-TP mixtures was
at least 2 times lower than the probable effect concentration (PEC) reported by
MacDonald et al. (2000), which is 22.8 mg/kg dry weight.?’” Note that outlying PAH
concentrations were observed for the lowest TP treatment (0.1%) with factor 10 higher
numbers than those for all other treatments and those previously reported for the same
sediment.'** We have no conclusive explanation for the outlier but an incidental
contamination may have played a role.

Effects on survival, growth and feeding rate. Survival in controls (TP concentration of
0% sediment dry weight) was on average 79%, 73% and 84% for G. pulex, A. aquaticus
and Tubifex spp., respectively. Data analysis with GLM revealed no significant
relationship between the survival of G. pulex, A. aquaticus and Tubifex spp. and
increasing car tire TP concentrations in sediment (GLM; Pg puiex = 0.063; P4 aguaticus =
0.654; Prubifexspp. = 0.692) (Figure 3.1). For L. variegatus, there was no significant
relationship between the number of worms and increasing car tire TP concentrations
(GLM; Pyr.variegaus = 0.380) and no significant differences were found between car tire TP
concentrations in sediment and the number of worms at the end of the experiment
(ANOVA; Pryariegans = 0.084) (Figure 3.1). No significant relationship between the
growth of G. pulex, A. aquaticus, Tubifex spp. and L. variegatus and increasing car tire
TP concentrations in sediment was found (GLM, Pgpuex = 0.554; P.aguaticus = 0.470;
Pruvifex spp. = 0.160; P variegas = 0.262). No significant differences between car tire TP
concentration in sediment and growth were found for G. pulex, A. aquaticus, Tubifex spp.
and L. variegatus (Welch, Pg. puiex=0.334; ANOV A P4.aquaticus = 0.143; Prupifexspp. = 0.054;
Prvariegarus = 0.441) (Figure 3.2). Mean feeding rates were 0.098 + 0.023 (n = 3) mg dw
per organism per day and 0.089 £ 0.029 (n = 3) mg dw per organism per day for G. pulex
and A. aquaticus, respectively (Figure A3.6). There was no significant relationship
between the feeding rate of G. pulex and A. aquaticus and increasing car tire TP
concentrations in sediment (GLM; Pg putex = 0.520; Py4. aquaticus = 0.336) and no significant
differences between car tire TP concentration and feeding rate were found for G. pulex
and A. aquaticus (ANOVA; P puiex = 0.26; pa.aquaricus = 0.595). No adverse effects were
found on the survival and growth of G. pulex, A. aquaticus and Tubifex spp., and the
number of worms and growth of L. variegatus. This means that neither the particles
themselves nor any of the associated chemicals were toxic at TP concentrations up to 10%
sediment dry weight, which complies to the low chemical bioavailability discussed in the
previous section. Interestingly, there seems to be a trend towards significance (GLM; P
= 0.063) between the survival of G. pulex and car tire TP concentrations in sediment.
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However, this could have been caused by the incidental high PAH level at 0.1% and lower
survival observed for this treatment.
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Figure 3.1. Survival of G. pulex, A. aquaticus and Tubifex spp. and number of worms of L. variegatus after
28 days of exposure to car tire TP at increasing concentrations in sediment. Error bars are mean + SD n
= 3, except for treatment 1% of Tubifex spp., where n =2.

Quantifcation of car tire TP in body and faeces of G. pulex.

Resistance of car tire TP to H>O>. Mean dry weight (in mg) and area (in mm?) of the car
tire tread particles before and after their addition to H>O» and H>O for 24 hours are shown
in Table A3.7. No significant differences were found between the mean dry weight (mg)
from all particles before and after the H-O, and H>O treatments (Independent t-test; Phoo2
= 0.995; Pu2o = 0.955). No significant differences were found between the mean area
(mm?) from all particles before and after the H,O, and H>O treatments (Independent t-
test; Pu2o2 = 0.968; Proo = 0.974). Furthermore, the difference in area and weight before
and after each treatment was not statistically different between H>O2 and H»O treatments
(Independent t-test, Pweight = 0.168; Parea= 0.385). These results indicate that the treatment
with H>O» did not affect mass and area of the TP, and thus is not expected to affect the
number of car tire TP found in the body and faeces of G. pulex.
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Figure 3.2. Growth of G. pulex, A. aquaticus, Tubifex spp. and L. variegatus after 28 days of exposure to
car tire TP at increasing concentrations in sediment. Error bars are mean + SD n =3, except for treatment
1% of Tubifex spp., where n =2.

Ingestion of TP by G. pulex. One-way ANOVA revealed significant differences in the
number of black particles with a size range of 10 - 586 um found per organism in the
body and faeces of G. pulex exposed to the control treatment (TP concentration of 0%
sediment dw) and 10% car tire TP in sediment (ANOVA; Pgody = 0.008; Pracces = 0.001)
(Figure 3.3). Significant differences in the number of particles with the same
characteristics were also found between organisms of G. pulex exposed to 3 and 10% car
tire TP in sediment dry weight (ANOVA; Pgody = 0.037; Pracces = 0.003) (Figure 3). After
correcting for the number of black particles with a size range of 10 - 586 um in controls
(TP concentration of 0% sediment dry weight), considering them as contamination of the
samples, an average of 2.5 and 4 car tire TP per organism were found in bodies and faeces
of G. pulex exposed to 10% car tire TP in sediment, respectively. Size frequency of the
particles found in bodies of G. pulex ranged from 14 to 272 um, with an average size of
66 um (Figure A3.7). Size frequency of the particles found in faeces of G. pulex ranged
from 14 to 555 pm and had a mean size of 65 um (Figure A3.8). Although the average
particle size found in bodies and faeces of G. pulex were similar to the ones reported for
PS MP, the upper size range was higher for car tire TP than for PS MP (Chapter 2).!3¢
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When calculating the number of car tire TP at 10% sediment dry weight, using the average
density given by Verschoor et al. (2017) for TWP (1.20 g/cm?), a value of 5.28 x 10%is
obtained.?®® If we calculate the Trophic Transfer Factor (TTF)?* for car tire TP at 10%
sediment dry weight as the number concentration in G. pulex divided by the number of
car tire TP in the sediment, we get a TTF of 4.7 x 10”. In an earlier study (Chapter 2),'86
we reported a TTF of (4.47 £ 0.35) x 10°'! for PS MP retained by G. pulex. This indicates
that the TTF for car tire TP is approximately 100 times higher than the TTF of PS MP. A
total of 1.4 and 5.9 PS MP per organism were retained and egested, respectively, at 10%
PS MP in sediment dry weight (Chapter 2).!8¢ This indicates that, although the number
of car tire TP retained by G. pulex was higher than the number of retained PS MP, the
total number of PS MP ingested was similar (1.4 + 5.9 = 7.3) as the total number of car
tire TP ingested (2.5 + 4 = 6.5). When comparing this value with the number of PS MP
found in the sediment at the same dose of 10%, which was 3.15x10'°PS MP, we realize
that at the same percentage, a lower number of car tire TP are found in the sediment. This
is due to the higher density of the car tire TP, as well as the presence of a higher number
of smaller particles (10 - 20 pm) in the car tire TP mixture in comparison to the PS MP
used before (Chapter 2).!3
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Figure 3.3. Number of black particles with a size between 10 and 500 um found per organism in the body
(white column) and faeces (stripped column) of G. pulex after the exposure to 0, 3 and 10% car tire TP in
sediment dry weight (dw) for 28 days. Error bars are mean + SD n =3.
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General Discussion and Implications

Our study showed that car tire TP, including chemicals associated with this material, did
not negatively affect four freshwater benthic invertebrates, even at concentrations of 10%
sediment dry weight. This implies that car tire TP effects can be more mild or even absent
under ecologically relevant conditions than suggested in elutriate tests.!”>17%182 As the
maximum Predicted Environmental Concentrations (PEC) in sediments range from 0.3 to
155 g/kg dry weight,'”" we can conclude that car tire TP pose a low risk to freshwater
benthic invertebrates. This is in agreement with previous studies evaluating the effects of
TRWP mixed with sediments on aquatic organisms.'3'%% However, potential long-term
effects caused by the slow release and gradual environmental increase of bioavailable
zinc and other substances caused by ageing of rubber particles are not expressed by these
experiments. For G. pulex, the ingestion of car tire TP was demonstrated after a 28-day
exposure to 10% car tire TP in sediment. An average of 2.5 and 4 car tire TP was found
in bodies and faeces of G. pulex at this concentration, respectively. This ingestion did not
lead to negative effects on its survival, growth or feeding rate. In contrast, in an earlier
work, the ingestion of another particle type (PS MP) was found to cause a reduction in
the growth of the same species, using the same methodology (Chapter 2).'%¢ In both
cases, particles ingested by G. pulex were found to have a similar average size (57 vs. 66
pum) (Chapter 2).'% This demonstrates that implications of particles probably may be
case-specific and that the probably multi-causal mechanisms underlying such effects need
further attention.
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Abstract

Because of the difficulty of measuring nanoplastics (NP), the use of NP doped with rare
earth metals has been proposed as a promising approach to detect NP in environmental
media and biota. In the present study, the freshwater amphipod Gammarus pulex was
exposed to palladium (Pd)-doped NP with a bumpy surface via natural sediment at six
spiking concentrations (0, 0.3, 1, 3, 10 and 30 g plastic/kg of sediment dry weight) with
the aim of assessing their uptake and chronic effects using 28 days standardized single
species toxicity tests. NP concentrations were quantified based on Pd concentrations
measured on digests of the exposed organisms and faecal pellets excreted during a post-
exposure 24 hours depuration period with ICP-MS. Additionally, NP concentrations were
measured in sediments and water to demonstrate the accuracy of the dosing and to
quantify the resuspension of NP from the sediment caused by the organisms. A significant
positive linear relationship between the uptake of NP by G. pulex and the concentration
of NP in sediments was observed, yet no statistically significant effects were found on
the survival or growth of G. pulex. A biodynamic model fitted well to the data and
suggested bioaccumulation would occur in two kinetic compartments, the major one
being reversible with rapid depuration to clean medium. Model fitting yielded a mass
based trophic transfer factor (TTF), conceptually similar to the traditional biota sediment
accumulation factor, for NP in the gut of 0.031. This value is close to a TTF value of
0.025 that was obtained for much larger microplastic in a previous study. Mechanistically,
this suggests that ingestion of plastic is limited by the volume of the diverse mixture of
plastic particles. We demonstrate that metal-doping provides opportunities for precise
quantification of NP accumulation and exposure in fate and effect studies, which can be
a clear benefit for NP risk assessment.
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Introduction

Plastic accumulation in the environment has been of great societal, political and scientific
concern in the last decade due to its ubiquity and ability to persist for long time periods.*
Once plastics are released into the environment, they go through physical and biological
degradation processes, resulting in the formation of both microplastics (MP; <5 mm) and
nanoplastics (NP; < 1 um).*!* Moreover, some pharmaceutical and cosmetic products
contain NP and MP, which can also enter marine, freshwater and terrestrial
ecosystems.!®210 Environmental concentrations of MP have been measured in water,
sediment and biota samples in all habitats worldwide.>>*’ In contrast, NP concentrations
in environmental matrices are still generally unquantified, as the sampling methods and
identification techniques available for particulate plastic generally have detection limits
> 1 um.*? The difficulty to detect NP is one of the major challenges in assessing their
proliferation and risk. Several methods have been proposed to detect them, even in natural
and complex matrices, such as the use of crossflow ultrafiltration coupled with field flow
fractionation and pyrolysis gas chromatography-mass spectrometry.*>#> However, to date
only one study has been able to detect NP of various polymer types in surface water
samples taken at the North Atlantic Subtropical Gyre.*> Because of the difficulties in
applying NP analytical methods to complex environmental matrices, no study has ever
measured NP concentrations in field sediments and biota samples.?'! NP abundance in
environmental ecosystems is expected to be high due to the aforementioned
fragmentation of larger plastics, which are found to degrade into NP after long-term
exposures to visible and UV light.!219:20210.212 NP are predicted to be particularly
abundant in freshwater sediments due to their retention caused by a fast hetero-
aggregation with natural solids, thereby posing an exposure route to benthic biota.?’-1?

The challenges for detecting NP in the environment limit the evaluation of their exposure,
but also the assessment of their effects and the risks they pose to biota and to human
health?!32211 Although the effects of NP on aquatic biota have been broadly investigated
for exposures in aqueous media, the mechanisms behind these effects are unclear due to
the aforementioned analytical difficulties, which hamper the determination of uptake by
biota.!>126¢ To date, many studies have used fluorescently-labelled plastics to assess
biological uptake of NP.67213:214 Some of these studies observed specific tissues or the
whole body of the organisms under a fluorescent microscope, while others measured the
fluorescent particles in the remaining solution with a fluorescence spectrophotometer
after digesting the samples.®”2!3214 The suitability of fluorescently-labelled NP to assess
ingestion was recently questioned, as Catarino e al. (2019) and Schiir et al. (2019)
demonstrated that the fluorescent dye can leach out of the NP and reach biological tissues
without the plastic.!?”-2'> In addition, cell auto-fluorescence is often not taken into account
by studies assessing the ingestion of fluorescent plastic particles.'?” Consequently, the use
of fluorescently-labelled NP to assess biological uptake could lead to misinterpretation of
the results.!?” Another method has been proposed to track NP in complex matrices, which
consists of the use of metal-doped plastics, which can be measured accurately with
sensitive analytical techniques such as inductively coupled plasma mass spectrometry
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(ICP-MS).2!'¢ This approach has also been successfully applied to study the fate and
behaviour of NP in complex environmental systems.?!7-218

Aquatic organisms are able to actively ingest NP or adsorb them to their surfaces and
transfer them into higher trophic levels.!>!?¢ The effects of NP on aquatic biota have
raised particular concerns over the last years due to their small size, which allows them
to be taken up by cells, affecting biota on a cellular level.!>!?® In fact, a recent review
concluded that NP caused more adverse effects on aquatic organisms than MP.!2¢ NP
have been found to cause deleterious effects on aquatic biota at the individual level,
affecting their growth, reproduction, mobility and feeding, and at the sub-organismal
level, causing oxidative stress and affecting their gene expression and immune system
among other effects.3485219222 Studies assessing the effects of NP generally use pristine
and smooth spherical particles.!? However, irregularly shaped NP could occur more often
in nature due to their formation through fragmentation and degradation of MP.?!! Hence,
testing irregularly shaped NP under more realistic environmental conditions should be a
priority, as effects of NP might be shape-dependent as it occurs for MP (Chapter 7).2%In
contrast to the abundant literature data on NP effects on aquatic biota upon aquatic
exposure, the effects of NP under sediment exposure conditions have only been studied
for a few organisms. Sediment assessments come with different complexities than the
aqueous ones, because exposure conditions are different. Moreover, the few studies
published used particle mixtures as exposures, rendering it impossible to distinguish
between NP and MP effects.’0%822¢ To date, we are aware of two articles that have
evaluated the effects of NP only on freshwater benthic species using sediment exposure
conditions (Chapter 5).22>22¢

The limited information with respect to effects of irregularly shaped NP on freshwater
benthic species, in combination with the susceptibility of their habitat to pollution with
NP, urgently calls for investigation. Moreover, due to the complexity and inaccuracy of
the existing methods for quantifying NP in sediments and biota samples, the use of metal-
doped NP as tracers in complex matrices needs to be explored.?!! In this study, we used
metal-doped NP to study the uptake and effects on the survival and growth of the
freshwater benthic macroinvertebrate Gammarus pulex using 28 days standardized single
species sediments toxicity tests. Individuals of G. pulex were exposed to 228 nm
polystyrene NP with a bumpy surface containing a palladium (Pd) core at concentrations
ranging from 0 to 30 g/kg NP in sediment dry weight (dw). We measured the
concentration of Pd in the body of the exposed organisms and in the faecal pellets excreted
during a 24-hour depuration period after the chronic exposure as a method to assess NP
uptake and bioaccumulation. Concentrations of Pd in sediments were quantified at the
start of the experiment and in water samples at the start and at the end of the experiment
to show the accuracy of the dosing. Data interpretation was assisted by biodynamic
modelling of the bioaccumulation of NP by G. pulex. For comparison, MP accumulation
data obtained from an earlier experiment were modelled as well (Chapter 2).'%
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Material and Methods

Nanoplastics. A solution containing metal-doped NP with a bumpy surface were
synthesized according to our previous work.??” Briefly, the NP consisted of a
polyacrylonitrile core with Pd doping (0.27% by weight) and a polystyrene shell, resulting
in a rough (bumpy) outer surface of the particles. The Pd tracer was chemically entrapped
in the core, and with the addition of the shell, it was demonstrated that minimal leaching
of the metal from the NP occurred over time in a variety of environmental and biological
conditions.??” The z-average size (nm) was measured by dynamic light scattering (DLS)
with a Zetasizer (Nano ZS, Malvern instruments), the shape was confirmed by scanning
electron microscopy (SEM) imaging and the solid content was measured with
Thermogravimetric Analysis. Average particle size was 227.6 + 1.47 nm (n = 3) as
measured by DLS, SEM images confirmed bumpy surface of the particles (Figure A4.1),
and the dry content was 8.55%.

Chemical control. Styrene and acrylonitrile are volatile compounds that can be toxic to
aquatic organisms when effect threshold concentrations are exceeded.??$22° To remove
any potential remains of these chemicals from the particle synthesis process, the solution
was purged with clean air for 10 hours at 30°C with an airflow of 5 L/h. This purging
duration, together with subsequent aeration for 2 weeks, was a priori designed to cause >
99.99% removal based on air flow, the chemicals Henry’s Law constants and an assumed
chemical equilibrium between these chemicals in solution and bubbles rising over the
height of the water column. Nevertheless, some traces may have remained, and other
chemicals present in the solution could also potentially affect the tested organisms (i.e.,
surfactants SDS and KPE). To address these potential effects from co-exposure to the
chemicals involved in the NP synthesis, we calculated if the chemical concentrations in
the experimental design were below known effect threshold concentrations (provided in
the Appendix; Table A4.2, Figures A4.3, A4.4).

Test organisms. We selected the amphipod Gammarus pulex as test organism because of
its key role in aquatic ecosystems and its demonstrated sensitivity to MP (Chapter
2).163.164186 Following previous procedures conducted in our laboratories (Chapters 2
and 3),'44186230 G pulex were collected from a non-contaminated'** brook in Heelsum,
The Netherlands, in June 2019. Once in the lab, individuals were sorted by their narrow
body size, excluding the smallest and largest for use in the NP exposure tests. Organisms
were acclimatized in aerated buckets with copper-free Dutch Standard Water (DSW) in a
water bath at 15.5 £ 1 °C while maintaining a 12:12 light:dark cycle. During the
acclimatization period (14 days), organisms were fed with field dry poplar leaves.

Sediments. Following previous studies conducted in our laboratory (Chapters 2 and
3),186.220.230 gsediments were sampled from an unpolluted'** ditch in Veenkampen
(Wageningen, The Netherlands) with a standard dip and and sieved over a 2 mm sieve.
Sediments in the containers were allowed to settle overnight and the overlying water was

removed the morning after. Remaining sediments were homogenized with a hand drill
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and stored in a freezer to kill any living organisms and to preserve the sediment. Directly
before the start of the experiments, sediments were unfrozen and re-homogenized. Four
representative sediment subsamples were taken to determine the Total Organic Matter
(TOM) content, using the loss on ignition method (3 h, 550°C), which was 39.95 + 0.92
%.

Experimental design. A total of 11 individuals of G. pulex per experimental unit were
exposed to NP at concentrations of 0, 0.03, 0.1, 0.3, 1 and 3% of plastic in sediment dw,
which corresponds to 0, 0.3, 1, 3, 10 and 30 g of plastic per kg of sediment dw. For each
concentration, five replicas were prepared, from which three were used for the exposure
assessment and two were used to verify the concentration (in mass) of NP in sediment
and water at the start of the experiment (t = 0). Experimental units consisted of 750 ml
glass beakers containing 184.21 g of wet sediment, spiked with the corresponding NP
concentrations and a 350 ml copper-free DSW layer. To avoid NP homo-aggregation and
assure homogeneous mixing during the preparation of the amendments, the plastic
solutions were added drop by drop to sediment contained in a 2 L glass beaker placed
inside an ultrasonic waterbath. At the same time, the sediment was vigorously mixed with
a stainless steel hand mixer (Chapter 5).22%226 Sediment amendments were prepared per
concentration and were then divided into replicate beakers, to assure replicates to be as
identical as possible. After the addition of the sediment, beakers were allowed to settle
for 24 hours and subsequently DSW water was slowly added to avoid resuspension of the
particles into the water phase. Finally, beakers were randomly placed in a water bath and
acclimatized at 15.5 + 1 °C with a 12:12 light:dark cycle for two weeks prior to the start
of the experiment. After the acclimatization, 11 organisms were randomly introduced into
each of the beakers. In addition, another 66 randomly selected organisms were preserved
in 70% ethanol to assess the length of the starting population. Organisms were fed with
two 3 cm poplar leaf discs at days 0 and 14, which were previously soaked in DSW for 3
days. Aeration was supplied to the beakers and the top water layer was carefully renewed
weekly in all beakers to keep the water levels constant. Temperature, dissolved oxygen,
pH, electroconductivity, and ammonia levels (NH3) were measured once a week in one
replicate per exposure concentration. The mean (+SD) temperature, dissolved oxygen, pH,
electroconductivity and ammonia levels (NH3) along the experiment were 16.0 +0.17 °C,
9.5+£0.32 mg/l, 7.8 £0.12, 535 £ 33.7 uS/cm and 0.87 £ 0.98 mg/1, respectively.

Effects on survival and growth. At the end of the experiment, beakers were sieved over a
0.35 mm sieve and gently washed with tap water. Surviving individuals were counted,
rinsed and transferred to glass beakers containing 30 ml of clean DSW, where they were
allowed to depurate their gut content for 24 hours. Thereafter, G. pulex were placed in
70% ethanol until their length and that of the starting population was measured under
an Olympus SZX10 stereomicroscope. For this, the head capsule (HD) size was measured
and the total length (TL) was calculated following the equation: TL =—2.07 +9.82 HD.!3!
The growth was then calculated as the difference in the mean TL of the exposed
organisms per replicate minus the mean TL of the starting population. The average size
of the starting population was 5.37 = 0.91 mm (n = 66).
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Palladium analysis of the metal-doped NP in biota, faeces, sediment and water samples.
After measuring the length of the exposed G. pulex, organisms were dried in an oven at
40°C for 24 hours and weighted per experimental unit. Nanoplastic body burden was
assessed by total Pd concentration as a group per replica, as mg Pd/mg dw G. pulex. Glass
beakers containing 30 ml DSW with the faecal pellets depurated after the 28-day exposure
for 24 hours were freeze dried prior to the analysis of the Pd concentrations as pg Pd/ml
DSW.

For the analysis of Pd in sediments, at t = 0 beakers were taken out of the waterbath and
the overlying water was carefully removed with a syringe. All sediments in their original
beakers and 60 ml of the removed water from concentrations 0, 1 and 3% NP per sediment
dw placed in glass beakers were stored in the freezer until further analysis. In addition,
60 ml of water was taken from the three replicate beakers at concentrations 0 and 3% at t
= 28 d before sieving them in order to analyse whether Pd concentrations in water (as pug
Pd/ml DSW) increased over the exposure to G. pulex. Sediment samples of all
concentrations were freeze dried and homogenized with a stainless-steel spoon prior to
analysis. A total of 300 mg of dry sediment were weighed per replicate and Pd
concentrations were measured as pg Pd/mg dw of sediment.

All samples underwent microwave acid digestion prior to analysis by ICP-MS. Biota and
sediment samples were placed into Teflon digestion vessels with 6 ml of concentrated
HNO3 and 2 ml HCI. For the faeces and water samples, glass beakers were washed with
the HNO; and HCI, mixed with a pipette and added to the Teflon tubes. Immediately
after, tubes were closed and left overnight at room temperature (20 = 1°C). The morning
after, tubes were introduced into a microwave (CEM MARS 6) to allow the first digestion
step to take place (200°C for 60 min). Once the first digestion step was completed, the
sample was taken out and allowed to cool to room temperature. Then, two 0.75 ml
aliquots of H>O2 and 3.25 ml ultrapure water were added to the sample with a second
round of microwave digestion (175 °C for 15 min). Samples were then transferred into a
50 ml digiprep tube. The volume of the sample was made up to 50 ml by adding ultrapure
water. Pd concentration in the samples was measured using High Resolution ICP-MS
(Thermo Scientific, Element2). Control samples for every digestion matrix were
performed, with two replicate samples of the NP stock solution and two replicate samples
of a dissolved Pd standard (200 pg/l) spiked into the matrix. The Pd variation between
replicates in the three runs was 2.5% for NP stock solution and 1.5% for the Pd stock
standards. Recovery tests were performed using two Pd spiked sediment samples and one
Pd spiked G. pulex sample. Recovery of Pd from the spiked samples were 100.3 = 0.6%
and 102 % from the sediment and G. pulex, respectively.

Statistical analysis. Analysis of the data was done in SPSS 23 (IBM Corp., NY).
Generalized Linear Models (GLMs) were used to study the effects of the NP on the
survival of the tested organisms. One-way ANOVA (p < 0.05) were used to study the
effects of the NP on the growth of the tested organisms. The normality of the residuals
was first checked with the Shapiro-Wilk test (p > 0.05) and visualized on a Q-Q plot.
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Homogeneity of the variances was tested using Levene’s test (p > 0.05) and post hoc
multiple comparisons were done using Tukey’s and Bonferroni tests. If the assumption
of homogeneity of variances was violated, a one-way Welch ANOVA (p < 0.05) was
conducted. Kruskal—-Wallis test was used when data were not normally distributed. Linear
regressions were fit for the Pd concentrations measured in the plastic-sediment mixtures
at t=0 as a function of the NP concentrations in sediment. Linear regressions were fit for
the NP concentrations based on the measured Pd in bodies and faeces of G. pulex at the
end of the experiment and after a 24-hour gut depuration period as a function of the NP
concentrations in the sediment. All data are depicted with average + standard deviation,
unless otherwise stated.

Biodynamic modelling of the bioaccumulation of Pd-doped nanoplastics by G. pulex. The
bioaccumulation of NP by G. pulex between t = 0 and t = 28 days was modelled as a
function of NP dose and time (Equation 1) using a traditional first order two compartment
model allowing for irreversible uptake in the body and reversible transport to and from

the gut, under constant exposure conditions:?3!-232

K .
Ce.putex,t = Csep (FBkupt +(A-F)—[1-e ke“th]) (D

ketim
For the subsequent 1-day depuration phase, i.e., t > 28 days (Equation 2) was used:

Co.putext-28 = Ca.putext=2g X € Fetim*(728) ()
Here, Cg.puiex 1s the measured NP concentration in G. pulex (ug/kg), Csep is the measured
exposure NP concentration in sediment (ug/kg), ki is the uptake rate constant (pgxkg!
biota / ugxkg! sediment xday™), keim is the elimination rate constant (day! ), F is the
poorly or irreversible fraction accumulating in the body (dimensionless) and 7 is exposure
time (days). Note that the compartments are kinetically defined and that referring to the
reversible and irreversible particle reservoirs as ‘gut’ versus ‘body’ formally is a matter
of interpretation. The model was fitted to the experimental data by optimizing the
parameters kup, keim and Fp using a weighted relative least squares criterion.

Results and Discussion

NP in sediment and water samples. The concentration of Pd in the NP stock solution was
3.022 +£ 0.077 (n = 6) g/kg, which means that NP contained 0.302 wt% Pd. The average
measured background Pd concentration in sediment was 2.620 mg/kg (n = 2), which is
close to the value of the intercept (o0 = 2.259 + 0.1365) (Figure 4.1). At t = 0, measured
Pd concentrations in sediment were proportional to the nominal NP doses (R?>=1,n =
12), with a slope corresponding to a Pd content of 3.009 + 0.0105 g/kg (Figure 4.1). These
values of 3.022 and 3.009 are identical within error limits, confirming the adequate and
representative addition, mixing and analysis of the Pd-doped NP in the sediment matrix
(Figure 4.1) (Linear Regression (LR), P =2.2x109),
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Figure 4.1. Measured Pd concentrations in sediment dw (mg/kg) at t = 0 as a function of the nominal NP
concentrations in sediment dw (g/kg). The linear regression is based on 12 individual data points.

Following the same conversion between Pd and NP, average measured NP concentrations
in water at t = 0 were 0.251 + 0.056 mg/l and 1.390 = 0.037 (n = 2) mg/] for the nominal
NP spiking concentrations of 10 and 30 g/kg in sediment dw, respectively. Knowing the
concentration of NP in the overlying water, we calculated the proportion of NP which
were resuspended from the sediment at t = 0, which was 0.07 %. We hypothesize that this
resuspension was a result of either the system preparation procedure or the aeration of the
beakers during the acclimatization. At t = 28 d, the measured NP concentration in the
overlying water was 19.83 £ 3.94 (n = 3) mg/I for the nominal NP concentration of 30
g/kg in sediment dw. Att=28 d, 1% of the NP was found to be suspended, which suggests
that the exposures of NP in the sediment were close to their nominal spiking values.

Ingestion of NP by G. pulex. Pd concentrations were measured in the body of the surviving
organisms after the 28 days of exposure to the NP and a posterior 24-hour defaecation
period in DSW. Additionally, Pd concentrations in the excreted faeces were measured.
There was a linear relationship (LR, P = 3.46x1073) between the concentration of NP
measured in the body of G. pulex (mg/g) and the nominal NP concentration in sediment
dw (g/kg) (Figure 4.2A). A significant positive linear relationship (LR, P = 1.49x1077)
was found between the measured NP concentrations in faeces of G. pulex and the nominal
NP concentrations in sediment (Figure 4.2B). Because NP were measured in the body and
the egested faeces, the total ingested NP can be calculated as the sum of these
components. For this total ingested NP, a highly significant positive linear relationship
with dose is obtained (LR, P = 4.37x10) with a multiple R-squared of 0.89 (Figure
4.2C). As the datapoints have incremental intervals, we also provide the log-transformed
version of Figure 4.2 (Figure A4.2).
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Figure 4.2. NP concentration measured in A) the body of G. pulex (mg/g), B) faeces of G. pulex
per body weight (mg/g) and C) total NP ingested by G. pulex (mg/g) per body dw after summing
up the concentration of NP in bodies and faeces; after 28 days of exposure to NP concentrations
in sediment dw (g/kg). The linear regressions are based on 18 individual data points.
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A summary of the NP concentrations measured in body and faeces of G. pulex per body
dw, alone and combined as the total NP ingested, can be found in Table A4.1.
Interestingly, the relative errors (n = 3) were substantially smaller for the total NP ingested
in the highest two concentrations (10 and 30 g/kg sediment dw) compared to the errors in
the separate body and faeces concentrations. This indicates that defaecation as well as
body burden had higher variation than the total ingestion. The average proportion of NP
defecated by G. pulex was 58.62 = 23.15 (n = 12), including the four highest
concentrations (1 — 30 g/kg). The lowest exposure concentration (0.3 g/kg) was excluded
from the dataset as measurement values were below the ICP-MS detection limit.

Biodynamic modelling of the bioaccumulation of NP by G. pulex. Mass balance
calculations of NP in sediment, water and biota showed that after 28 days of exposure,
less than 1% of NP mass was lost from the sediment. This demonstrates that the model
assumption of constant exposure concentration was met. We fit the first order
bioaccumulation model (Eqgs. 1 and 2) with three parameters (p) to four triplicate
concentrations at two time points i.e. (p = 3, n = 24). The two lowest doses (0 and 0.3
g/kg) were omitted as Pd concentration measurements were below the detection limit.
The fit to the experimental data was always within 1 SD (Figure 4.3), which confirmed
the absence of dose dependency and was highly significant (ANOVA, P = 1.7x10777).
Model parameter optimization yielded an uptake rate constant (k) of 0.076 ugxkg™! biota
/ ngxkg! sediment x day!' and an elimination rate constant (kesin) of 2.44 day™!. Steady
state concentrations in the reversible (gut) compartment were reached within 2 to 3 days
(Figure 4.3). Subsequently, uptake in the irreversible (body) compartment steadily
increased, suggesting that accumulation would have continued beyond the time frame of
our experimental set-up. After 28 days, depuration rapidly removed part of the total
accumulated NP from the organism, but a poorly reversible fraction remained (Figure 4.3
insert), which illustrates the necessity of distinguishing between these two compartments.
A fraction of only 0.96% (F3 = 0.0096) of NP ingested were estimated to transfer from
the gut into the irreversible (body) compartment. However, even this small fraction
eventually leads to a considerable body burden after 28 days due to the lack of
(measurable) depuration from that reservoir.

Redondo-Hasselerharm et al. (2018) defined a MP steady state trophic transfer factor
(TTF) for the body of G. pulex as TTFsopy= Cg puies,poas/Csep (Chapter 2).3¢ This TTF
relates to the mass concentration of MP remaining in the organisms after gut depuration,
divided by the MP mass concentration in the sediment after 28 days. The value for the
TTFsopy for NP in the present study was 0.020 pgxkg'! biota / pgxkg™! sediment dw
(Table 4.1). Similar to TTFopy, an apparent TTF for the reversible (gut) compartment
can be calculated as TTFGur= Ca putex facces! Csep = Kkuplketim, which was 0.031 pgxkg! biota
/ ngxkg!' sediment dw. Consequently, the comparison between the modelled TTFgur and
TTFpopy reveals that after 28 days, 60.2% (100x0.031/[0.031+0.020]) of all ingested NP
reside in the gut, compared to 39.8% in the body (Table 4.1). These percentages derived
from the model are consistent with the 58.62 + 23.15 % observed to be defecated from
the gut in the experimental work.
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Figure 4.3. Measured (datapoints) and modelled (curves) uptake of Pd-doped NP by G. pulex
over 28 days of exposure to sediment amended with Pd-doped NP, followed by 1 day of depuration
in clean medium (insert). Data on measured NP concentrations (£ 1 SD) after depuration (see
insert) after 29 days were set apart for 0.05 day for better visibility of the datapoints on the x-
axis.

Comparison of accumulation kinetics and trophic transfer factors between NP and MP.
We have previously derived bioaccumulation data for MP using the same sediment, test
organism and experimental design as used in this present experiment. This calls for a
comparison between the two datasets, which we here provide by applying the same
modelling approach to the MP data (details provided in the Appendix; Figure A4.5). The
kinetic parameters, 28-day TTFcur and 28-day TTFror4. agree with parameters estimated
for NP within a factor of only two (Table 4.1). This is striking considering the large size
difference between the two test particles (0.23 um NP versus 20 — 165 um MP). This
would suggest a random ingestion of particles, dominated by species traits rather than
particle properties. It has been hypothesized that satiation in combination with dilution of
food is one of the main demonstrated adverse effect mechanisms upon ingestion of small
plastic particles (Chapter 7).22> This mechanism would imply that the mass-based
TTFcur values would be similar regardless of actual particle size, as long as particles
would be ingestible (Chapter 7).223233 The current finding that NP and MP with large
size differences yield very similar 77Fcur under the same exposure conditions supports
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this hypothesis. We emphasize that this value only applies to the 28-day time point.
TTFopy is likely to increase further after 28 days, but the current data do not allow us to
speculate on the actual trend. With a value of 0.092, the TTFsopy, reflecting accumulation
in the irreversible fraction, was 4.5 times larger for MP compared to NP. This can be
explained from MP particles being trapped in the gut, as opposed to NP particles that
would easily be defecated with other organic matter-based gut contents.

Table 4.1. Bioaccumulation kinetic parameters and sizes of apparent accumulation reservoirs for
nanoplastic (present study) and microplastic (remodelled from Redondo-Hasselerharm et al.,
2018) (Chapter 2)"* in Gammarus pulex.

Parameter Nanoplastic Microplastic Unit

Uptake rate constant (ki) 0.076 0.044 ugxkg! biota / pgxkg!
sediment x day!

Elimination rate constant (keiin) 2.44 4.61 day!

Irreversible (stored) fraction (F) 0.96 2.79 %

TTFsopy @ 0.020 0.092 mg/kg organism] /

mg/kg sediment]

[
[
TTFour @ 0.031 0.025 [mg/kg organism] /
[mg/kg sediment]
TTFroraL @ 0.051 0.116 [mg/kg organism] /
[mg/kg sediment]
Percentage in body ® 39.8 78.7 %
Percentage in gut @ 60.2 213 %

@ These TTF values and percentages are conditional; they depend on exposure time.

Effects on survival and growth. The average survival in controls was 86.4% + 9.5 (n = 6).
The exposure to NP had no significant effects on the survival of G. pulex (GLM, P =
0.577). No significant differences on the growth of G. pulex were found among the NP
concentrations ranging up to 30 g/kg sediment dw, nor among chemical concentrations
in the chemical solution (Figure 4.4).

To date, hardly anything is known about NP.!3 Heinlaan et al. (2020) assessed the effects
of 26 and 100 nm PS NP on the midge larvae Chironomus riparius and the ostracod
Heterocypris incongruens.””® No significant effects were found on the survival of C.
riparius after 48 hours of exposure and no significant effects were found on the survival
and growth of H. incongruens after 6 days of exposure.??> In Redondo-Hasselerharm et
al. (2020), the effects of 96 nm PS NP were evaluated on a freshwater benthic community
using outdoor tests (Chapter 5).2¢ While after 3 months of exposure, no effects were
found on the community composition, a reduction in the abundance of Naididae worms
was observed after 15 months of exposure at a concentration of 5% plastic per sediment
dw (Chapter 5).2%° The absence of shorter term effects (up to 3 months) of NP on
freshwater benthic organisms found in previous papers is therefore in accordance with
the results obtained in this study.
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Figure 4.4. Survival (%) and growth as length (mm) of Gammarus pulex as a function of the Log
NP concentration (g/kg sediment dw). Error bars are mean £ SD (n = 3).

Previous studies have stated that NP might pose a greater risk compared to MP due to
their smaller size, as they are more prone to getting lodged in small body structures.>3¢’
However, Redondo-Hasselerharm et al. (2018) found significant adverse effects on the
growth of G. pulex after a 28-day sediment exposure to irregularly shaped PS MP (size
range: 20 - 500 pm), with a median effect dose (ECso) of 3.57 + 3.22 % (Chapter 2).!8
The TTFur mass value found for the PS MP was 0.025, which is very close to the TTF
mass value found in the present study. However, the difference in effects found for both
particle types may be related with the higher T7F3opy found for the PS MP (4.5x higher,
see Table 4.1), which may reflect particles being trapped in the gut, leading to hindered
passage of food or other functions.

Conclusion and Prospect.

We used Pd-doped PS NP with a bumpy surface to assess uptake and effects on the
freshwater benthic amphipod G. pulex using single species tests with natural sediments.
Bioaccumulation was demonstrated, but no effects of the NP were found on the survival
and growth of G. pulex at concentrations up to 30 g/kg of sediment dw. Therefore, the No
observed Effect Concentration (NOEC) was equal to 30 g/kg of NP per sediment dw. The
model particles were used as a proxy for environmental NP, and we demonstrated that
metal-doping enabled us to accurately measure the NP in various highly complex
environmental matrices such as natural water, sediment and biota. This was very
advantageous, since currently direct NP analysis would not have been possible and thus
we would have only been able to report effects on the organisms. However, here we were
able to conduct a mass balance between all environmental and biological compartments,
as well as quantify NP uptake and depuration rates.
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Abstract

Given the societal concern about the presence of nano- and microplastics in the
environment, our nescience with respect to in situ effects is disturbing. Data on long term
implications under ecologically realistic conditions are particularly important for the risk
assessment of nano- and microplastics. Here, we evaluate the long term (up to 15 months)
effects of five concentrations of nano- and microplastics on the natural recolonization of
sediments by a macroinvertebrate community. Effects were assessed on the community
composition, population sizes and species diversity. Nano- and microplastics adversely
affected the abundance of macroinvertebrates after 15 months, which was caused by a
reduction in the number of Naididae at the highest concentration (5% plastic per sediment
dry weight). For some other taxa, smaller but still significant positive effects were found
over time, altogether demonstrating that nano- and microplastics affected the community
composition.
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Introduction

Nanoplastics (NP), with a size smaller than 0.1 pm, and microplastics (MP), with a size
between 0.1 um and 5 mm, comprise the smallest particle fraction of plastic debris
globally.' Although the accumulation of NP and MP is currently a major concern,'?
studies addressing their effects on single species are scarce and nothing is known about
their long-term effects at the community level.!>234235 Freshwaters are particularly
affected as sediments are known to accumulate NP and MP due to the vicinity of sources
and due to aggregation and biofouling processes and subsequent settling, which create
hotspot areas that might pose a risk for benthic organisms.?’

The ability of freshwater benthic macroinvertebrates to ingest MP depends on species
characteristics such as their feeding habit or developmental stage (Chapter 2),%6180
well as on plastic particle properties and environmental conditions.** Single-species

laboratory studies have found that the ingestion of MP by freshwater benthic
40,133,236

as

macroinvertebrates can cause adverse effects,
species. For instance, a reduction in the growth of the amphipod Gammarus pulex was
found after a 28-day exposure to polystyrene (PS) MP, while five other benthic
macroinvertebrates were not affected under the same experimental conditions (Chapter
2).186 Over time, these differences in sensitivity to MP particles may lead to changes in
the community structure, triggering disproportionate responses.?’’ For instance,
reductions in the abundance of shredders such as the amphipod G. pulex, have shown to
affect detritus processing.?*® Consequently, changes in benthic community structure can
have negative consequences for the functioning of ecosystems.?*® However, single
species laboratory tests cannot offer the ecological realism required to detect such
ecological implications. After all, they lack the ecological processes that drive community
change in the long term, such as community interactions, temperature and light variations,
flow dynamics, seasonality, aging, and reproduction. Therefore, the effects of MP should
be evaluated under field conditions and for much longer time periods to take all these
processes into account.

which also seems to differ among

The aim of this study was to evaluate the effects of NP and MP on a benthic
macroinvertebrate community located in an outdoor experimental ditch, for a long
exposure time of up to 15 months. Trays containing natural sediment mixed with NP or
MP at concentrations of 0, 0.005, 0.05, 0.5 and 5% plastic per sediment dry weight were
embedded in the sediment of a ditch that contained a well-characterized donor
community. This community is typical for standing water systems such as ditches, canals,
ponds and lakes. Deposition and accumulation of NP and MP may occur in such systems,
rendering their benthic communities to be particularly exposed to these particles.
Spherical PS NP with an average size of 96.3 + 1.85 nm and irregular PS MP fragments
with sizes ranging from 20 to 516 um were used for the NP and MP treatments,
respectively. Each NP and MP concentration was prepared in quadruplicate, and
concentrations were selected on the basis of measured environmental concentrations in
the Rhine river shore sediments, which were up to 1 g/kg (0.1% plastic per sediment dry
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weight).!3? The two lowest concentrations used in the present study (0.005 and 0.05%)
can therefore be considered environmentally realistic.'’® After 3 and 15 months of
colonization, trays were retrieved and species were identified and counted. The
contribution of plastic type, exposure time and concentration plus the interaction of time
and concentration, but also by block (spatial variation) and the interaction of block with
type of the plastic particles, were evaluated for the effect on abundance of benthic
macroinvertebrates, number of taxa, Shannon diversity index (H) and the number of
individuals of 21 taxa for both NP and MP treatments separately. We provide long-term
community effect thresholds for freshwater benthic macroinvertebrates and compare
them with environmental concentrations measured in freshwater sediments.

Material and Methods

NP and MP. Following earlier studies,?**?* spherical carboxylated PS NP were provided
by the Food and Biobased Department of Wageningen University (The Netherlands). Z-
average size (nm) was measured with a Zetasizer (Nano ZS, Malvern instruments) and
was 96.3 £ 1.85 nm (n = 3) for particles 100x diluted in Milli-Q water. NP were
synthesised from styrene monomers using 4,4'-Azobis (4-cyanopentanoic acid) as
initiator and sodium dodecyl sulphate (SDS) as surfactant. The dye Rhodamine B
methacrylate was provided by the Physical Chemistry and Soft Matter Department of
Wageningen University (The Netherlands) and added during the synthesis. The final
solution contained 41.91% dry weight of NP, 1.1% wet weight of SDS and 0.4% wet
weight of Rhodamine B methacrylate, which was covalently bound to the polymer,
preventing it to leach out. Repeated addition of initiator and other aspects of the
experimental design were tuned to achieve near-complete polymerization, leaving low
concentrations of styrene monomer and SDS used. It was calculated what would be the
eventual styrene and SDS concentrations during exposure in the experimental ditch based
on added sediment-bound masses of these compounds and an assessment of subsequent
desorption, dispersion and dilution (calculation provided in the ST). Concentrations were
at least a factor 29 lower than the short term and long term effect thresholds for these
chemicals provided by the European Chemical Agency (ECHA).?28240

Irregular PS MP fragments were obtained from Axalta Coating Systems GMBH
(Cologne, Germany). MP particle size distribution was measured with a Mastersizer 3000
(Malvern Instruments) and ranged from 20 to 516 um, with an average size of 227.7 +
6.01 (n = 4) in volume % and 32.7 £ 0.98 (n = 4) in number %. Following earlier
procedures (Chapter 2),'822 MP were thoroughly washed with methanol to remove
organic chemicals associated with the MP, if any. PS was chosen because its density

)?%186 and because it’s one of

matches that of the average environmental MP (Chapter 2
the most abundant polymer types found in freshwater systems.!3%2*! MP size and shape

ranges used in this study can also be considered environmentally relevant.!30-241

Plastic — sediment mixtures. Sediments were sampled from an adjacent ditch with similar
characteristics using a standard dip net. Sediments were passed through a 2 mm sieve,
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homogenized with a hand drill, collected in containers and frozen at -20 °C in order to
kill any remaining living organisms. Plastic was added to the sediment to achieve
concentrations of 0, 0.005, 0.05, 0.5 and 5% plastic in sediment dry weight. Such a wide
range also is needed to assess community level effect thresholds from dose-response
relationships.'! Knowing that environmental plastic concentrations are likely to increase
exponentially,'3°7 the higher ends of the concentration range used are likely to be realistic
in the future and, therefore, its potential effects should be included in prospective risk

assessments.'1%

To promote the formation of homogeneously dispersed hetero-aggregates of the NP with
the sediment particles as would occur in nature,?*? batches of 1.5 L NP-sediment mixtures
were first made in the laboratory while stirring vigorously. NP were added drop by drop
with a glass pipette to sediment contained in a 2 L glass beaker inside an ultrasonic bath
while using an electrical stainless-steel hand mixer at full speed. Once in the field, these
batches were added to a cement mill together with clean sediment and mixed for 30
minutes until a homogeneous NP-sediment mixture was created. To prepare MP-sediment
mixtures, MP were added in a powder form directly to the cement mill containing the
clean sediment. For each concentration, the plastic-sediment mixture was spread over
eight thoroughly pre-rinsed consumer-grade polypropylene trays (28 by 19 by 14 cm),
creating a sediment layer of 5 cm. Four of these eight trays were exposed to the donor
community for 3 months and the other four were exposed for 15 months.

Experimental design. Experiments were conducted from July 2016 until September 2017
in a ditch located at Sinderhoeve, an experimental field station of Wageningen University
(The Netherlands). The ditch is 40 m long, 3.3 m wide on the surface and 1.6 m at the
bottom, and 0.5 m deep. One week before the start of the experiment, rooted macrophytes
were removed from the ditch and reduced to a discontinuous central strip to facilitate the
placement of the trays (Figure AS5.1). At the start of the experiment, a total of 80 trays
(two plastic types x two time points x five concentrations x four replicas) were distributed
along the experimental ditch (Figure A5.1). Following a randomized complete block
design, the ditch was divided in four blocks of 10 m long (block A, 0 to 10 m, block B,
10 to 20 m, block C, 20 to 30 m, block D, 30 to 40 m). Each block was then divided in
northern line and southern line, leaving the discontinuous central strip of macrophytes
between them. One replica of each treatment was assigned to each block, having replicas
A, B, C, and D for each treatment. Within each block, the corresponding replicas of each
treatment were randomly embedded in the sediment of the ditch by submerging the trays
manually from a movable platform above the ditch. This way, any potential alteration of
the system was avoided.

After 3 and 15 months from the start of the experiment, one replica of each plastic
concentration was retrieved at each block. To prevent the resuspension of the sediment
during the retrieval, a thoroughly prewashed polyethylene plastic sheet of 50 by 50 cm
was first placed on top of the sediment layer. Immediately after, the tray was covered with
a lid and carefully lifted up to the water surface. Trays were then sieved over a 0.5 mm
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sieve and flushed with water until sediments were removed. The remaining sample was
placed in polypropylene trays, and organisms were sorted, fixed in 70 to 80% ethanol and
stored upon identification. Rooted macrophytes and overhanging branches were gathered
from each tray, dried at 60 °C for 24 hours and measured to obtain an estimate of
macrophyte biomass (in milligrams). At the start of the experiment and after 3 and 15
months, the macroinvertebrate composition of the donor system (i.e., outside the trays)
was assessed by taking transects between blocks A-B and C-D. For this, a standard dip
net was swept over the sediment from one bank to the other, using a platform to avoid
other disturbances in the ditch. Once in the laboratory, organisms from trays and transects
were identified to the lowest possible taxonomic levels by certified biologists specialized
in benthic invertebrate identification.

The colonization ratio was calculated as the number of individuals/m? and taxa in trays
retrieved after 3 months divided by the number of individuals/m? and taxa in the donor
system at the start of the experiment. Colonization ratios in terms of number of
individuals/m? were always higher than one because of the different sampling methods
used, which underestimated the number of individuals/m? of the endo-benthic taxa in the
donor community. In addition, reference community ratios were calculated as the number
of individuals/m? and taxa in trays retrieved after 3 and 15 months by the number of
individuals/m? and taxa in trays in the donor system at the same time points. Colonization
ratios for the number of individuals/m? and taxa are presented in Table 5.1. Reference
community ratios for the number of individuals/m? and taxa are presented in Table A5.1.

Table 5.1. Colonization ratios based on the number of individuals/m2 and based on taxa. Colonization ratio
for number of individuals was calculated as the number of individuals/m2 found in trays retrieved after 3
months divided by the number of individuals/m2 found in the donor system at the start of the experiment.
For taxa, this was performed similarly, i.e., the number of taxa in trays after 3 months divided by the number
of taxa at start. Means + SD correspond to n = 4, except for 0.05 and 0.5% (3 months), where n = 3; and

transects, where n = 2.

NP MP

Individuals/m® Taxa Individuals/m® Taxa
Mean SD Mean SD Mean SD Mean SD
0 4.35 1.14 0.87 0.11 3.51 1.03 0.86 0.12
0.005 4.19 1.38 0.82 0.18 5.14 1.17 0.88 0.13
0.05 5.23 0.99 0.86 0.06 5.41 1.52 0.72 0.15
0.5 4.03 0.96 0.76 0.09 4.90 1.27 0.79 0.02
5 4.69 1.02 0.73 0.09 3.51 0.47 0.74 0.11
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Temperature (°C), dissolved oxygen (DO) (mg/l), pH and electro-conductivity (EC)
(nS/cm) were measured with a Multi 3630 IDS (WTW) along the 15 months experiment.
Additionally, water samples were taken from three locations in the ditch to analyse NHy
(mg/1), nitrate (mg/1), total nitrogen (mgN/1) and total phosphorus (mgP/1) content. In the
first 3 months, measurements were taken at nine time points, to cover the potential
changes in the water quality variables derived from the macrophytes’ growth along the
ditch. After this period, measurements were taken once every 3 months. A summary of
the water quality variables measured throughout the experiment is shown in Table AS5.2.

Nominal versus actual NP and MP exposure. Three representative sediment samples were
taken from the plastic-sediment mixtures added to the trays (including the control) at time
zero. In addition, a representative sediment subsample was taken from each individual
tray after its removal from the system and before the sieving. Total organic matter (TOM)
content was analysed in these sediment samples using loss on ignition (3 h, 550 °C) to
determine the plastic content through thermal degradation. By subtracting the %TOM
obtained in controls from those in the treatment trays, nominal plastic concentrations
could be verified in the mixtures as the thermal degradation of PS occurs below 550 °C.2#3
The small relative error and good agreement with nominal concentrations for the four
most accurately measured doses (see the 0.5 and 5% data for NP and MP in Figure 5.1)
demonstrate the homogeneity and accuracy of the preparation of the plastic-sediment
mixtures added to the trays, and confirm that no losses occurred. Furthermore, the slopes
of the linear regressions between measured and nominal NP and MP concentrations in
sediment after 15 months of exposure had slopes of 0.960 + 0.037 (n = 16) (MP) and
0.993 £ 0.040 (n = 16) (NP) in ordinal scale (Figure 5.1). The linearity and the slopes
being virtually equal to 1 further illustrate the accuracy of the preparation of the plastic-
sediment mixtures added to the trays.

Statistical analyses. A linear model for the Shannon index and the weight of the
macrophytes and generalized linear models (GLM) for total abundance and for abundance
of 21 individual taxa were fit using a Poisson distribution with log link function and an
extra scale parameter to account for overdispersion. In all linear and generalized linear
models, the response was explained by the factors type of plastic, time and concentration,
and the interaction of time and concentration but also by block and the interaction of block
with type of plastic. The results from this model fitting were presented as analysis of
variance tables and analysis of deviance tables, showing per plastic type the main effects
and interaction of time and concentration, but also the effect of the block factor and its
interaction with type of plastic and an overall comparison between plastic types. Besides
the overall comparison between plastic types, means from each concentration were
compared between plastic types, which are shown in the lower row of the analysis of
variance or deviance tables. The hypothesis tests in the tables were performed using type
IT model comparisons. Tukey multiple comparison tests were used to compare the effects
of NP or MP concentrations per time point when the P value for the effect of plastic
concentration or plastic concentration in interaction with time was < 0.05. As
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Figure 5.1. NP (top) and MP (bottom) concentrations measured in the plastic-sediment mixtures at time
zero, and in trays retrieved after 3 and 15 months after subtracting the %TOM in controls from the
measured %TOM in trays as a function of the nominal NP concentration (top) and the nominal MP
concentration (bottom) (as % sediment dry weight). For the starting concentration, average + SD. (n = 3)
was based on three samples taken from the initial concentrations prepared. Values for 3 and 15 months
represent the average + SD. (n = 4), which correspond to each of the four treatment replicas distributed
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macrophyte dry weight appeared to highly depend on time for both NP and MP (ANOVA;
P iime < 0.001), macrophytes were not included in the analyses. Taxa with very low
numbers of individuals per tray were also omitted from the analysis. Linear regressions
were fit for the %TOM content measured in the plastic-sediment mixtures added to the
trays at time zero and in trays retrieved after 3 and 15 months as a function of the nominal
concentrations added. All statistical analysis and graphs were performed in R (version
3.5.2, R Development Core Team) and packages emmeans, car and ggplot2 were used.

Results

NP and MP effects on the abundance and diversity of the benthic macroinvertebrate
community. NP and MP concentrations had significant negative effects on the total
abundance of macroinvertebrates, which is the sum of all individuals of all taxa found in
trays (GLM; NPcone P = 0.04, MPone P=0.03) (Figure 5.2). Multiple comparison analysis
performed for each time point revealed no significant differences among concentrations
after 3 months exposure for both NP and MP. After 15 months, however, the abundance
of macroinvertebrates at the highest NP concentration (5%) was significantly lower than
at the second highest concentration (0.5%) and the lowest concentration (0.005%)
(Tukey; NP15540.5 P = 0.03, NP155/0.005s P = 0.002). After 15 months, the abundance of
macroinvertebrates at the highest MP concentration (5%) was significantly lower than the
second highest MP concentration (0.5%) (Tukey; MP155/.5 P = 0.02). In contrast to these
results, NP and MP concentrations did not affect the number of taxa (Figure 5.3) (GLM;
NPeone P = 0.34, MPone P = 0.31), nor the Shannon diversity index (H) (GLM; NP onc P =
0.56, MPcone P =0.57) (Figure 5.4).

When categorizing the number of benthic macroinvertebrates found in trays by class
(Figure A4.2), it appears that this reduction in macroinvertebrate abundance at the highest
NP and MP concentrations is mainly caused by the class Clitellata, which mostly
consisted of Naididae worms (Tables A5.3, A5.4). Again here, both NP and MP
concentrations had a significant negative effect on the abundance of this family of worms
(GLM; NPeone P = 0.008, MPcone P = 0.008) (Figure 5.5). Just like for the
macroinvertebrate abundance, the number of Naididae did not differ among
concentrations after 3 months exposure for both NP and MP. After 15 months, the number
of Naididae at the highest NP concentration (5%) was significantly lower than the second
highest concentration (0.5%) and the lowest concentration (0.005%) (Tukey; NP1554.5 P
=0.04, NP155/0.00s P = 0.001). After 15 months, the number of Naididae at the highest
MP concentration (5%) was significantly lower than the second highest concentration
(0.5%) (Tukey; MP1550.5 P =0.01).
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Figure 5.2. Total number of macroinvertebrates found in trays retrieved after 3 and 15 months with
increasing NP (top) and MP (bottom) concentrations (as % sediment dry weight (dw)). Error bars are
means +SE, n = 4, except for MP treatments 0.05 and 0.5% retrieved after 3 months and 0 and 5% retrieved
after 15 months, where n = 3.
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Figure 5.3. Total number of taxa found in trays retrieved after 3 and 15 months with increasing NP (top)
and MP (bottom) concentrations (as % sediment dry weight (dw)). Error bars are means + SE, n = 4, except
for MP treatments 0.05 and 0.5% retrieved after 3 months and 0 and 5% retrieved after 15 months, where
n=23
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Figure 5.4. Shannon diversity index in trays containing NP (top) and MP (bottom) at five concentrations
(0, 0.005, 0.05, 0.5 and 5% plastic per sediment dry weight) after 3 and 15 months. Error bars are means
+ SE, n = 4, except for MP treatments 0.05 and 0.5% retrieved after 3 months and 0 and 5% retrieved after
15 months, where n = 3.
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Besides Naididae, NP concentration had a significant positive effect on the number of
Valvata over time (GLM; NP.o.c P = 0.02) (Figure AS5.2). Tukey multiple comparisons
test showed however no significant differences among NP concentrations per time points.
NP had also a significant positive effect on the number of Orthocladiinae (GLM; NP onc
P =0.02) (Figure A5.3). As for Valvata, no significant differences among concentrations
were found per time point. MP had a significant positive effect on the number of
individuals of Hippeutis complanatus (GLM; MP.ouc P = 0.03) and Gyraulus albus
(GLM; MPcone P =0.002) (Figures A5.4, A5.5). Again, no significant differences among
NP and MP concentrations were found per time point. For the 16 other taxa analysed, no
effects of NP and MP concentrations were found.

The overall effects of NP on the abundance of macroinvertebrates, the number of taxa,
the Shannon Diversity Index (H) and the abundance of Naididae did not differ
significantly from those for MP. However, when comparing the means between the
two plastic types per concentration-time combination in one hypothesis test, a significant
difference was found for Valvata (GLM NPrenveenpiasic P = 0.03) and G. albus (GLM,;
NPoenweenpiasiic P =0.006). For Orthocladiinae and H. complanatus the difference in effects
between plastic types had P values of 0.08 and 0.05, respectively.

Discussion

After 15 months, the total abundance of macroinvertebrates, the number of taxa and the
number of Naididae worms were significantly higher than after 3 months for both NP and
MP treatments, confirming the colonization of the trays over time as intended. In contrast,
the Shannon Diversity Index (H) significantly decreased over time for both NP and MP
treatments, probably due to a higher abundance of the family Naididae, which dominated
all trays except for the ones with the highest NP and MP concentration (5%). A higher
diversity at the highest NP and MP concentration (5%) can be observed (Figure 5.3),
although effects of NP and MP on the Shannon diversity index (H) were not statistically
significant. It is possible that a decrease in the abundance of only one taxon i.e., the
Naididae, might not have been sufficient in this period of time to obtain statistically
significant effects on the Shannon diversity index (H), given that all other species affect
the index as well. It cannot be ruled out that effects on diversity would become significant
after a prolonged exposure. The spatial variation (block) had a significant influence on
the total abundance of macroinvertebrates, the number of Naididae and the Shannon
diversity index (H), revealing that the distribution of the organisms along the ditch was
not entirely homogeneous. This, however, is considered part of the targeted ecological
realism of the experimental design.

Despite the influences of time and spatial variation (block) on the total abundance of
macroinvertebrates and the abundance of Naididae worms, effects of NP and MP particles
were detectable. Community effects for other inert particles, such as activated carbon and
multi-walled carbon nanotubes, have been previously detected using a similar setup. 9224
For instance, a lower abundance of Lumbriculidae worms and Pisidiidae clams was found
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after 15 months of exposure to activated carbon via natural sediment.!? To the best of
our knowledge, this is the first time that effects of NP and MP are demonstrated in a
setting with such a high level of natural ecological variability (i.e. diurnal and seasonal
variation, spatial variation) and for an exposure time longer than 3 months. To our
knowledge, community effects have only been reported for MP in one earlier study, which
exposed a marine benthic community to 80 ng/l of polylactic acid and high density
polyethylene MP for 3 months using outdoor mesocosms.?’ MP affected the abundance
of periwinkles Littorina sp. and isopods Idotea balthica, and the biomass of the clam
Scrobicularia plana and the lugworm Arenicola marina.®® In the present study,
differences were observed over time, especially for the Naididae worms, where the
abundance increase allowed distinguishing differences among treatments. The number of
Naididae increased by a factor of 13 (from 37 to 466) and 70 (from 8 to 531) in the NP
and MP controls, respectively, while it only increased by a factor of 2 (from 90 to 160)
and 30 (from 9 to 279) at the highest concentration in a period of 1 year. For the other
taxa affected by the exposure to NP and MP, differences between 3 and 15 months were
much smaller, and their abundance was always below 40 individuals per tray, which
makes the conclusions less evident than for Naididae.

The detected community effects of NP and MP could affect ecosystem functions. For
instance, the burrowing activity of worms causes mixing of particles and chemicals in the
sediment top layer, facilitates the oxidation of organic matter and reduces minerals in the
sediment thereby mobilizing nutrients and sulphide bound heavy metals from the
sediment back to the water layer.24324¢ In addition, worms are an easy and nutritious prey
for fish and other benthic invertebrates in the system.?*> This implies that these functions
could be impaired due to the reduction in the abundance of Naididae worms observed
here.

It has been hypothesized that for NP different and probably more severe effects may be
anticipated than for MP, due to a higher chance of translocation, systemic uptake and
subsequent particle toxicity effects.!??4” For MP, mainly physical effect modes of action
have been suggested.'>* The effects of NP on the abundance of macroinvertebrates, the
number of taxa, the Shannon diversity index (H) and the abundance of Naididae did not
differ significantly from those for MP. The similarity observed here relates to the effect
thresholds and to the identity of the primarily affected species, i.e., worms. We have no
conclusive explanation for this similarity; however, plausible explanations can be
provided. For instance, upon aging, biofouling, encapsulation and aggregation of the
smallest particles in the sediment,?*$24° they could lose behaviours that specifically relate
to the sub-micrometre scale, rendering them more similar to larger MP particles.
Formation of hetero-aggregates between the NP and sediment particles could strongly
reduce differences in bioavailability, uptake and particle-specific effects, such that only
the general effect of loss of habitat quality due to dilution of food remains. Accordingly,
the simultaneous presence of natural particles is essential when evaluating the effects of
NP and MP on benthic macroinvertebrates (Chapter 2).4>186:250
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As mentioned, this study was designed to detect community level impacts, and therefore
we are not able to demonstrate the exact mechanism that caused the lower abundance of
Naididae worms. MP ingestion has been previously demonstrated for Tubifex worms,
which belong to the family Naididae.'>* In a study by Hurley et al. (2017), Tubifex worms
were able to ingest MP fragments with a size between 50 and 4500 pm contained in
natural sediment, and were found to retain MP for longer time periods than other sediment
components.'3* A reduction in food intake due to the dilution of organic matter in the
sediment, together with the uptake and longer retention of MP by the Naididae worms,
could have caused a depletion of energy reserves over time, as previously found in
laboratory tests for other benthic invertebrates (Chapter 2).%%13318¢ For these worms, this
energy depletion might have taken longer than for other benthic invertebrates, as the
exposure of Tubifex worms to the same PS MP fragments used in the present study using
standard chronic laboratory bioassays, did not cause any effects on their survival, growth
nor feeding activity (Chapter 2).'% Therefore, exposure time seems to be an important
factor to take into account when evaluating the ecologically relevant effects of MP.
Standard laboratory tests might not be sufficient to detect NP and MP effects for all
organisms. When it comes to NP, filter feeders were found to be able to ingest NP
particles alone or as aggregates with natural particles.?’! Aggregates were more likely to
be ingested than NP alone, leading to a reduction in species feeding activity.

Implications

The exposure of a benthic community to NP and MP for 15 months led to a lower total
abundance of macroinvertebrates, which was correlated with a lower number of Naididae
worms. The number of Naididae found in trays after 3 months was low, probably due to
a low colonization of the systems, and did not significantly differ among concentrations.
In contrast, after 15 months of exposure, which included the growth season and was five
time longer, the number of Naididae significantly increased in all treatments, except for
the highest MP concentration (5%), where the number of Naididae was significantly
lower in comparison to lower concentrations. Next to the overall pattern in
macroinvertebrate and Naididae abundances, individual differences were also found for
NP and MP. In contrast to Naididae, differences among treatments per time point were
not detectable for these taxa, probably due to the low number of individuals found in trays
(< 40 individuals per tray), which makes the conclusions less evident than for Naididae.
While the overall effects of NP on the abundance of macroinvertebrates and Naididae did
not differ significantly from those for MP, significant differences between NP and MP
were found for the gastropods Valvata and G. albus. In the case of the dipteran
Orthocladiinae and the gastropod H. complanatus, although only one plastic type had a
significant effect on their abundance, the difference in effects between plastic types was
not statistically significant, with P values of 0.08 and 0.05, respectively.

Our present study does not aim for a full-fledged risk assessment; however, it is insightful
to provide a provisional comparison between some of the higher concentrations reported
for natural sediments, and the long-term effect threshold concentrations found here. Our
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effect threshold concentrations have weight % as measurement unit, and we thus use
environmental data with the same unit. For shoreline sediments of the Rhine river, MP
concentrations have been reported to range up to 0.1% plastic per sediment dry weight,
which we found to be the highest reported mass based concentration, to date.'*° The most
abundant particle sizes found in the Rhine River sediments were < 630 pum, which
matches the most abundant sizes within the range of the MP used in the present study (20
— 516 um), and thus implies that the comparison is not obscured by size differences. The
no observed effect concentration and the lowest observed effect concentration detected in
our present study for NP and MP were 0.5% and 5% plastic/sediment dry weight,
respectively. This means that our two environmentally realistic concentrations of 0.005
and 0.05% did not cause a community effect even after 15 months of exposure. These
concentrations are, however, expected to rise and perhaps may already occur at hot spot
locations.

When it comes to NP concentrations in freshwater sediments, no data are yet available
due to the present limitations in detecting them.3? Only one recent study by Ter Halle et
al. (2017) was able to demonstrate the presence of NP in a real environment.*? Therefore,
environmental concentrations of NP still need to be quantified, although they are expected
to be at least as abundant as larger plastic particles.?®. In the present study, the same
community effect thresholds are found for NP and MP, which is in accordance with the
results obtained by Besseling et al. (2019) after the elaboration of Species Sensitivity
Distributions for the exposure to NP and MP via the water phase.*’ They reported HCs
values for NP and MP to be similar, i.e. 5.4 and 1.67 pg/l with overlapping 95%
confidence intervals. Although relevant because NP and MP concentrations are expected
to increase in the near future due to ongoing emissions and fragmentation,'* community
effect thresholds found in this study were far higher than the highest concentrations
reported for freshwater sediments thus far. Nevertheless, given the wide recognition of
increasing exposures,”’ the here detected ecological effects should be taken into account
in future risk assessments of NP and MP.
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Abstract

Accumulation of nano- and microplastics in aquatic systems is currently a major concern
due to their potential threat to aquatic organisms and human health. Although in vitro
studies with plastic particles are relatively scarce, a few demonstrated genotoxic effects
of' nano- and microplastics on biota and human cells, but only at very high concentrations.
In the present study, we evaluated the genotoxicity of two nanoplastic sizes (50 and 500
nm) at four concentrations (0, 2.5, 25 and 250 pg/l) alone and in combination with
chemicals extracted from surface water and wastewater treatment plant (WWTP) effluent
using the Ames fluctuation test. No significant genotoxic effects of any nanoplastic size
were found in the absence of extracted chemicals. The interaction between medium and
high 50 nm nanoplastic concentrations and the high 500 nm nanoplastic concentration
with surface water chemicals caused significant genotoxicity in the bacterial strain TA98
without metabolic activation. In the bacterial strain TA100 with metabolic activation,
significant genotoxicity was found for the high 500 nm nanoplastic concentration in the
presence of surface water chemicals and for the medium 500 nm nanoplastic
concentration in the presence of WWTP effluent chemicals. Although cytotoxicity of the
solvent and the WWTP effluent extract may have influenced some test results, overall,
our results hint at adverse mixture effects with regards to mutagenicity of nanoplastics
with chemicals from surface waters as present in the environment.
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Introduction

Accumulation of nano- and microplastics in aquatic systems is currently a major concern
due to their potential threat to aquatic organisms and human health.!3:12323% Microplastics
(MP), with a size smaller than 5 mm,” have been detected in freshwater systems
worldwide.!® Although wastewater treatment plant (WWTP) effluents have been found
to contain significantly higher concentrations compared to other freshwater sources,’>3
WWTP concentration data still are scarce.?>3 Nanoplastics (NP), with a size below 1000
nm in at least one dimension,?->%*
techniques due to their small size.?® To date, no NP occurrence data in freshwater
systems have thus been published.!> However, due to the ongoing fragmentation of plastic
particles?!?
many products,>!® NP number concentrations in the environment are expected to be
considerable. Besides the chemical additives incorporated during their synthesis, NP and
MP will also adsorb hydrophobic organic chemicals (HOCs) and metals present in
surrounding media.?*>*>® The transfer of these HOCs from ingested MP into aquatic
organisms is expected to be negligible compared to the transfer of HOCs sorbed to
ingested natural food or prey items.?’’-2® However, the hazard associated with such

transfer may be more relevant for nano-sized polymer particles, which are known to
259

are an even more difficult target for current detection

and their direct spillage from different industrial sectors and release from

exhibit higher sorption affinities for HOCs*” and may be subject to systemic uptake. Such
chemical transfer might be relevant at sites where NP and chemicals accumulate, such as
WWTP influents and effluents.

NP can be easily taken up by aquatic organisms via food or water'>46!15 and can be
transferred into cells, organs and tissues.!>70.77:260-263 A Jarge number of in vivo studies
has in fact demonstrated that NP can cause adverse effects on the individual and sub-
individual levels for many aquatic organisms at relatively high concentrations alone, or
in combination with adsorbed chemicals.'??%* Humans are also exposed to NP via food
and drinking water, as well as through inhalation and dermal contact,'>!'> as recently
highlighted by the WHO.2% Traditionally, in vitro toxicity testing approaches have played
an important role in elucidating mechanisms of chemical toxicity and in providing
toxicity data relevant for environmental media.?®®>%7 However, there is little information
on the applicability of such tests for assessing effects of NP. A few in vitro studies on NP
so far have demonstrated that they can induce immune responses, inflammation or
oxidative stress.!>120268.26% Only few studies have focused on evaluating the genotoxic
effects of NP.27%27* No significant genotoxicity was found for the plant Vicia faba
exposed to 5 um PS MP, while the exposure of V. faba to 100 nm PS NP had significant
dose-dependent genotoxic effects.?’® When it comes to human genotoxic effects, PS NP
were found to cause significant genotoxic effects on the human pulmonary epithelium
and fibroblast foreskin cells, lymphocytes and macrophages.?’'2”3> However, the NP
concentrations at which genotoxic effects were found in these studies were higher than
what can be considered environmentally relevant.
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Here, we further explore the potential of in vitro toxicity testing to inform risk assessment
of NP, in this case with and without chemical mixtures originating from environmental
media such as surface water and wastewater. We evaluated the genotoxicity of 50 nm and
500 nm NP at four concentrations (0, 2.5, 25 and 250 pg/l) in three matrices using the
Ames fluctuation test, to detect base-pair and frameshift mutations in the genome of two
Salmonella typhimurium strains with and without metabolic activation.?”> The Ames
fluctuation test has been previously used for other nanoparticles, such as ultra-fine

276278 ext to its

particles (UFPs), diesel exhaust particles (DEPs) or metal nanoparticles,
common use to test environmental mixtures of synthetic chemicals.?’%%° Matrices
consisted of a DMSO solvent control, a surface water extract, and a WWTP effluent
extract, the latter extracts providing established proxies for contaminated environmental
media in which NP are known to reside.?®!?82 We thereby assessed the genotoxicity of a)
the environmental matrices, b) two sizes of NP alone, c) NP in the presence of chemicals
from surface water, and d) NP in the presence of chemicals from WWTP effluent. Finally,
we provide recommendations to increase the relevance of in vitro tests for the risk

assessment of NP.
Material and Methods

Environmental matrices. Surface water and WWTP extracts were prepared as proxies for

282,283 Tg this end, 32 L of surface water was

chemical contamination in these waters.
sampled from the Lekkanaal at Nieuwegein (The Netherlands) and placed in a 20 L clean
stainless-steel container and twelve cleaned 1 L glass bottles. In addition, 4 L of effluent
water were taken from the WWTP in Nieuwegein and placed in four cleaned 1 L glass
bottles. Both surface water and WWTP effluent samples were stored at 4°C in the dark
for a maximum time of one week before extraction. Following previously published
procedures,?®!28 surface water was extracted by solid phase extraction (SPE) (200 mg
OASIS® HLB 5cc LP Glass cartridge, Waters Corporation, Milford, USA) and
concentrated 10,000 times in dimethyl sulfoxide (DMSO), which were then distributed
into 14 1 ml conical glass vials with 80 pl each. Since undiluted WTTP effluent was
expected to be cytotoxic to the Ames test bacteria, an extract of surface water enriched
with WWTP effluent (referred to as “WWTP effluent extract’ hereafter) was prepared. To
this end, 75% surface water combined with 25% WWTP effluent was extracted by SPE
and again concentrated 10,000 times in DMSO and distributed into 14 1 ml conical glass
vials with 80 ul each. In addition, 14 1 ml conical glass vials were prepared containing
80 ul of DMSO as a solvent control. All 1 ml conical glass vials were stored at -20 °C
until use.

Nanoplastics. Spherical carboxylated PS NP with nominal sizes of 50 nm and 500 nm
were purchased from Polysciences Inc, (Warrington, PA, USA). Both stock solutions,
with a concentration of 25 mg/ml, were diluted 100, 1,000 or 10,000 times in Milli-Q
water. Then, 4 pul of the corresponding dilution was added using a microliter syringe with
a cemented needle to the 1 ml conical glass vials already containing 80 pl of surface water
extract, WWTP effluent water extract or DMSO solvent control. For the treatment
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without NP, 4 ul of Milli-Q water was added to the extract. Samples were kept overnight
at 4°C, vortexed and incubated at 37°C for a few minutes before use. Based on nominal
concentrations as provided by the supplier, exposure number concentrations were
3.64x10'°, 3.64x10"" and 3.64x10'> 50 nm NP particles/l and 3.64x107, 3.64x10% and
3.64x10° 500 nm NP particles/l for weight concentrations of 2.5, 25 and 250 ng/l,
respectively.

Ames fluctuation test. The Ames fluctuation test was performed as described previously
with minor modifications.?8! S. fyphimurium T98 and T100 strains, both with and without
metabolic activation by S9 enzyme mix, were obtained from Xenometrix GmbH
(Allschwil, Switzerland) and used instead of TAmix. Bacteria were exposed to the NP in
DMSO, surface water extract, or WWTP effluent extract in a final concentration of 0, 2.5,
25 and 250 pg/l. A negative control (NC), consisting of DMSO, and positive controls
(PC), being 20 mg/1 4-nitroquinoline N-oxide and 500 pg/ml 4-nitro-o-phenylenediamine
for TA98-S9, 5 and 20 ug/ml 2-aminoanthracene for TA98+S9 and TA100+S9
respectively, and 12.5 pg/ml nitrofurantoin for TA100-S9, were included. Besides
genotoxicity, cytotoxicity was tested to identify potential artifacts caused by effects on
cell survival and growth.?8! The exposure duration of the cells to each treatment was 48
hours for the evaluation of the genotoxicity and 3 hours for the evaluation of the
cytotoxicity. The Ames fluctuation test was performed twice in independent experiments
based on identical test conditions in two consecutive weeks (n = 2). All samples were
tested three times in each test condition in each independent experiment. A procedure
control for the extraction was not included, and genotoxic effects related to the extraction
procedure can thus not be excluded. However, these effects are unlikely, since
background genotoxic responses would then be observed in all samples processed, which
was not the case.

Data analysis. The triplicate Ames test measurements were averaged. To fulfil the quality
criteria, test results were considered valid if the NC yielded between 0 and 10 yellow
wells and the PC yielded in > 25 yellow wells.?®> A sample was considered cytotoxic
when the Optical Density (OD) at 595 nm was significantly different (with 95%
confidence) from the corresponding control, following a t-distribution. A sample was
considered genotoxic when the average number of yellow wells was significantly
different (with 95% confidence) from the corresponding control, following a yx>-
distribution, in at least one test condition (TA98 or TA100 with or without metabolic
activation) in two independent tests.
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Results and Discussion

The NC and PC always met the quality criteria (Figures A6.1, A6.2). The sections below
will describe the statistically significant genotoxic and cytotoxic effects found for
bacterial strains TA98+S9 and TA100+£S9 exposed to each treatment. Summaries of the
statistically significant genotoxic and cytotoxic effects are shown in Tables 6.1 — 6.3. A
more detailed description of the results can be found in the Appendix. A summary of the
overall results is shown in Table A6.1.

Effects of the environmental matrices. The surface water matrix without NP was
significantly genotoxic in TA100+S9 in both independent experiments in comparison to
the NC (Table 6.2) (Figure A6.2). However, compared to the DMSO matrix without NP
the surface water matrix without NP was significantly genotoxic in TA100+S9 only in
the second experiment (Table 6.2) (Figure A6.2). This could be due to the significant
cytotoxicity found for the DMSO matrix in TA100+S9, which could have hindered the
detection of significant genotoxic effects (Table 6.1). As the genotoxicity of surface water
was not proven significantly in both independent experiments for the rest of the strains in
comparison to the NC, we cannot unambiguously conclude that the surface water matrix
was on itself genotoxic to TA98+S9 and TA100-S9 (Table 2). For the same reason, the
DMSO and WWTP effluent matrices cannot be considered significantly genotoxic to any
bacterial strain in comparison to the NC (Tables 6.1, 6.3).

Table 6.1. Summary of the statistically significant genotoxic and cytotoxic effects (marked with black
stripes) for the DMSO control without NP compared to the NC and for three 50 nm and 500 nm NP
concentrations in DMSO compared to the DMSO control without NP. The upper and lower half per box
represent the first and second experiment, respectively, both calculated as the average of three
measurements. Detailed results can be found in the Appendix.

Control 50 nm 500 nm
Endpoint Strain 2.5 ug/L | 25 pg/L | 250 pg/L | 2.5 pug/L | 25 pg/L | 250 pg/L

TA98 —-S9

TA98 +S9

Genotoxicity

TA100 —-S9

TA100 +S9 AI“T[

TA98 —-S9

TA98 +S9
Cytotoxicity

TA100 -S9

TA100 +S9 m’"
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In some cases, the absence of significant genotoxic effects in one of the two independent
experiments may be explained by a significant cytotoxicity in the same experiment. This
occurred in TA100-S9 exposed to the surface water matrix in comparison to the NC
(Table 6.2) and in TA98+S9 and TA100+S9 exposed to the WWTP effluent matrix in
comparison to the NC and DMSO (Table 6.3). A detailed chemical characterization of
the surface water and WWTP effluent extracts was beyond scope of this study, so we
cannot confirm the presence or absence of potentially genotoxic chemicals in these
extracts. In previous studies, surface water extracts prepared from water samples taken at
the same location did show genotoxicity in TA98+S9,%? and mutagenicity of WWTP
effluent has been reported as well.®¢ The lack of reproducible genotoxic responses of
surface water in other strains than TA100+S9 and of WWTP in the present study may be
explained by temporal fluctuations in waste and surface water quality and responses
around the limit of detection of the test, since 80 pl of extract was used here instead of
100 pl used in previous studies.

Effects of nanoplastics. No significant genotoxic effects of 50 nm NP or 500 nm NP in
DMSO were found at concentrations of 2.5, 25 and 250 pg/l in any of the strains in both
independent experiments when compared to the DMSO matrix without NP or MP (Table
6.1). Cytotoxicity occurred for TA98-S9 at the lowest 500 nm NP concentration in both
experiments and could have caused the absence of genotoxic effects in the second
experiment (Table 6.1). A possible explanation for this absence of effects relates to the
specific types of genotoxicity, i.e., base pair and frameshift mutations, that are measured
in the Ames fluctuation test. PS NP showed other types of genotoxicity (e.g. double strand
breaks and micronuclei) in previous experiments,?’°2> which will not be visible in the
Ames fluctuation test. In addition, NP used in the present study are not exactly the same
as the ones used in previous studies, and they differ in characteristics such as the average
size, the surface properties or the manufacturer. Also, the cell types used in the present
tests differ from those studies in previous studies. It could be possible that the specific
NP used in this study do not cause base pair or frameshift mutations in Salmonella
bacteria. A last explanation could be our aim of using lower NP concentrations than the
ones used in previous studies showing genotoxicity in other cell types,?°?72273 which may
have caused genotoxic responses below the detection limit of the Ames fluctuation test.

Effects of nanoplastics in the presence of surface water chemicals. Significant
genotoxicity was found in both independent experiments at the medium and high 50 nm
NP concentrations in surface water in TA98-S9, as well as at the high 500 nm NP
concentration in surface water in TA98-S9 and TA100+S9 (Table 6.2). These significant
adverse effects are only found when compared to DMSO with the same NP concentration,
not when compared to the surface water matrix without NP. Only at the highest 50 nm
NP concentration in TA98-S9, significant cytotoxicity occurred in both independent
experiments, which could have masked the genotoxic effect of the highest 50 nm NP
concentration in surface water in comparison to surface water without NP (Table 6.2). As
the surface water matrix without NP was not significantly genotoxic in TA98-S9 in
comparison to the DMSO matrix without NP, it seems that the presence of medium and
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high 50 nm NP and high 500 nm NP concentrations in the surface water enhanced the
genotoxicity of surface water. In the bacterial strain TA100+S9, however, the surface
water matrix without NP was already significantly genotoxic in comparison to the DMSO
matrix, although cytotoxicity was observed for the DMSO matrix without NP, which may
have resulted in lower test responses, and therefore, significance was more easily reached
in this sample.

In a previous study by Paget et al. (2015), carboxylated PS NP of 50 nm did not cause
significant genotoxicity in human Calu-3 lung epithelial cells, while significant
genotoxicity was found in THP-1 macrophages at concentrations of 1,000 pg/l and
100,000 ng/1.2"* This difference in effects between cell types was explained by the much
stronger uptake of NP by the macrophages in comparison to the human Calu-3 lung
epithelial cells.?’”! Nanoparticle internalization by S. typhimurium TA98 strain cells with
and without metabolic activation has been previously demonstrated for metal oxide
nanoparticles.?’®2” ZnO and TiO2 nanoparticles were taken up after 60 minutes of
exposure in a dose-dependent manner from 8 to 8,000 pg/1.2’® The uptake of 500 nm NP
has never been studied for S. ryphimurium, but the internalization of 500 nm particles has
been demonstrated for the murine melanoma cell line B16-F10.22 Although in the present
study the uptake of NP was not evaluated, we argue that uptake of 50 nm NP at
concentrations 25 and 250 pg/l, which are the medium and high concentrations used in
the present study, could have occurred for the S. typhimurium TA9S strain. Uptake of the
lower concentration could have also occurred, but the level of genotoxicity might have
been too low to be detected in the Ames fluctuation test. These NP may transfer chemicals
sorbed from surface water into S. typhimurium TA98 strain cells, thereby stimulating a
genotoxic effect of the surface water that could not be observed in the absence of NP. The
same might have occurred with the highest S00 NP concentration, which might have been
taken up by S. typhimurium together with the sorbed chemicals from the surface water,
increasing the chemical concentration inside the bacteria and causing genotoxic effects.

Effects of nanoplastics in the presence of WWTP effluent chemicals. Significant
genotoxicity was found in TA100+S9 exposed to the medium 500 nm NP concentration
in WWTP effluent water in both experiments in comparison to the DMSO with the same
NP concentration (Table 6.3). Again, cytotoxicity was observed for the DMSO matrix
without NP in TA100+S9, which may have resulted in lower test responses, and therefore,
significance was more easily reached. No significant genotoxic effects of NP in WWTP
effluent water were found at concentrations of 2.5, 25 and 250 ng/l in TA98+S9 and
TA100-S9 in both independent experiments when compared to the DMSO with the same
NP concentrations or the WWTP effluent matrix without NP (Table 6.3). The results of
the treatments with NP in combination with WWTP effluent were however strongly
influenced by the growth inhibition in all strains (Table 6.3). This may have masked
potential genotoxic effects, and therefore no conclusion can be drawn with respect to
synergistic effects of NP and constituents of WWTP effluent.
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General Discussion and Conclusions

This first scoping study was designed to explore the potential genotoxicity of 50 nm and
500 NP at four concentrations, alone and in combination with a chemical mixture as
extracted from surface water and WWTP effluent samples using the Ames fluctuation
test. We found no significant genotoxic effects of NP alone in any of the strains tested,
with or without metabolic activation. In contrast to our results, several studies have
demonstrated the genotoxic capacity of NP.27%273 These differences might depend on the
type of test used, as the Ames fluctuation test is designed to detect base-pair and
frameshift mutations, the cell types and the NP studied. Moreover, the concentrations of
NP at which genotoxic responses have been found in previous studies are higher than the
concentrations selected in the present study. Therefore, following our results, we can
conclude that NP at lower and thus more realistic concentrations are not expected to cause
base pair and frameshift mutations.

For the bacterial strain TA98 without metabolic activation, a significant genotoxicity was
found at the medium and high 50 nm NP concentrations and at the highest 500 nm NP
concentration in combination with surface water chemicals. NP might have been taken
up by S. typhimurium together with the chemicals from the surface water, increasing
chemical concentrations inside the bacteria and triggering frameshift mutations. We
found that this effect disappeared in the presence of metabolic enzymes, which may be
either explained by metabolic transformation of surface water chemicals causing
frameshift mutations, or the aggregation of NP, including the sorbed chemicals, with the
proteins of the S9 mix, causing reduced bioavailability of the chemicals and reduced
mutagenicity. We can conclude that at low concentrations of 50 nm NP in combination
with surface water chemicals will not necessarily cause frameshift mutations in mammals.
For the bacterial strain TA100 with metabolic activation, significant genotoxicity was
found at the medium 500 nm NP concentration in the presence of WWTP effluent and at
the high 500 nm NP concentration in the presence of surface water extracts in comparison
to the DMSO with the same NP concentrations. These effects might have been influenced
by the cytotoxicity observed for the DMSO solvent control in this bacterial stain, which
may have resulted in lower test responses, and therefore, significance was more easily
reached. Therefore, we cannot conclude with certainty that environmentally realistic
concentrations of 500 nm NP in combination with chemicals have a synergistic mutagenic
effect in the TA100 test strain as well.

Although in the Ames fluctuation test the evaluation of the cytotoxicity of NP is only
meant to explain the absence of genotoxicity, a significant cytotoxicity was found in
TA98 without metabolic activation in both independent experiments at the lowest 500 nm
NP concentration. In the presence of surface water chemicals, significant cytotoxicity was
found in the same strain TA98 without metabolic activation when exposed to the highest
50 nm NP concentration as compared to surface water without NP, revealing a potential
cytotoxic effect of 50 nm NP with adsorbed chemicals. In the presence of WWTP effluent
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chemicals, all treatments were strongly influenced by the growth inhibition in all strains,
which was due to the use of a matrix which appeared to be cytotoxic in itself.

The sensitivity of the Ames fluctuation test to evaluate nanoparticle mutagenicity has
been questioned by Clift et al. (2013).2%7 In the present study, we observed that several
genotoxicity results were consistent among the two independent experiments.
Nevertheless, in some cases the genotoxic results from both independent experiments
differed. This could be explained by a response around the detection limit. Also, the
sorption of chemicals to the NP and to the walls of the well plates and aggregation of NP
could differ between replicates in a medium without a surfactant, leading to different
responses among replicates. Therefore, the assessment of the behaviour of the NP in the
tested medium and the use of a higher number of replicates might be necessary in order
to perform an accurate evaluation of the risks of NP when using the Ames fluctuation test
or other in vitro tests. For future risk assessments, including at least one environmentally
realistic concentration in the range of the tested concentrations is recommendable to
evaluate current risks.
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Abstract

In the literature, there is widespread consensus that methods in plastic research need
improvement. Current limitations in quality assurance and harmonization prevent
progress in our understanding of what the true effects of microplastic (MP) in the
environment are. Following the recent development of quality assessment methods for
studies reporting concentrations in biota and water samples, we propose a method to
assess the quality of MP effect studies. We reviewed 105 MP effect studies with aquatic
biota, provided a systematic overview of their characteristics, developed 20 quality
criteria in four main criteria categories (particle characterization, experimental design,
applicability in risk assessment, and ecological relevance), propose a protocol for future
effect studies with particles, and, finally, used all the information to define the weight of
evidence with respect to demonstrated effect mechanisms. On average, studies scored
44.6% (range 20-77.5%) of the maximum score. No study scored positively on all criteria,
reconfirming the urgent need for better quality assurance. Most urgent recommendations
for improvement relate to avoiding and verifying background contamination, and to
improving the environmental relevance of exposure conditions. The majority of the
studies (86.7%) evaluated on particle characteristics properly, nonetheless, it should be
underlined that by failing to provide characteristics of the particles, an entire experiment
can become irreproducible. Studies addressed environmentally realistic polymer types
fairly well; however, there was a mismatch between sizes tested and those targeted when
analysing MP in environmental samples. In far too many instances, studies suggest and
speculate mechanisms that are poorly supported by the design and reporting of data in the
study. This represents a problem for decision-makers and needs to be minimized in future
research. In their papers, authors frame 10 effects mechanisms as ‘suggested’, whereas 7
of them are framed as ‘demonstrated’. When accounting for the quality of the studies
according to our assessment, three of these mechanisms remained. These are inhibition
of food assimilation and/or decreased nutritional value of food, internal physical damage
and external physical damage. We recommend that risk assessment addresses these
mechanisms with higher priority.
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Introduction

In the last decade, the body of literature addressing the occurrence and impacts of plastic
debris has substantially increased.?®® Particular attention has been given to microplastic
particles (MP), generally defined as plastic particles 1 um - 5 mm’2!28-29 which have
been detected at a wide range of concentrations in various aquatic systems, from remote
marine to coastal zone and estuarine areas, as well as in freshwater lakes and
rivers.40:96293.294 Their ubiquity in aquatic systems and their small size has resulted in
concerns regarding their effects on aquatic biota for which ingestion has been observed

at all levels of biological organization.!2>29%-29

Characterizing and quantifying the environmental fate and transport of MP requires
insight into the influence of various environmental processes and pathways.?”#%4 The
release of MP into the environment can occur either directly, such as via primary
emissions from products during their manufacture and consumer-use life cycle, or
alternatively, can be generated from the degradation and fragmentation of mismanaged
plastic waste, commonly referred to as secondary MP, which results in a heterogeneous
mixture of particle types, shapes, and sizes released to the environment.?” It is generally
agreed that secondary sources represent the dominant source of MP.?® Primary sources
are estimated to contribute between 15 and 31% of all plastic in the environment.'%®

To assess the ecological risk associated with exposure to MP, there is a need to develop
robust toxicological dose-response relationships, which can effectively relate
environmentally relevant exposures with effects.* Because of the heterogeneous
presence of MP in the environment of varying concentrations of shapes, sizes, and
polymer composition, there is a need to better understand effect mechanisms and the key
factors triggering them. For instance, effects observed following exposure to MP on an
organism can either be initiated due to sorption of the particles on the external surface of
the organism or due to other mechanisms of action being triggered following their
ingestion.!?> Effects following exposure to MP, both external and internal, have been
assessed in laboratory studies for a wide range of species (Chapter 2).4730-2,53:186 The
ingestion and/or adsorption of MPs has been suggested to cause adverse effects on
toxicological endpoints at various levels of biological organization, generally observed in
laboratory test systems at relatively high exposure concentrations (Chapter
2).47:32,53.186.299 Fyrthermore, experimental work has suggested that effects of MPs can
occur at the community level (e.g. biodiversity, species composition) (Chapter 5),3%22¢
population level (e.g., abundance),’” individual level (e.g. survival, reproduction, growth,
feeding, emergence, embryonic development, mobility, and physiology) (Chapter
2),47:53,186.236 o1 gub-organismal level (e.g., inflammation, reduced lysosomal stability in
the digestive gland, reduced antioxidant capacity, DNA damage, neurotoxicity, oxidative
damage, gut dysbiosis and alteration of the genetic expression, the ionic exchange and
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enzymatic activity).6%90-96.288.299-302 Several studies have speculated that elevated MP
concentrations can cause physical damage (i.e., blockage of food passage), leading to a
feeling of satiation and a reduced feeding.3%!1333% Some studies have attributed the effects
to specific properties of the polymer composition, such as the availability of functional
surface groups,3*3% while other studies have assigned effects of MP to the leaching of
chemical additives and plasticizers or other hydrophobic organic pollutants.’%-90-305-307 A
limitation identified for studies testing ecotoxicological effects, however, is a lack of
consistency and standardization of test methods necessary to characterize dose-response
relationships for specific endpoints. Particularly problematic is the need for standard
methods in relation to the dosing of particulates, such as MP, an issue that can result in
ambiguous results and considerable speculation regarding the proposed mechanisms of
action representative of ecologically relevant exposures.*-*% Consequently, the weight
of the evidence supportive of a quantitative risk assessment for MP remains unclear.
Recent reviews have discussed the evidence regarding the occurrence of MP effects and
the underlying effect mechanisms.!?3%%310 However, in their evaluations of the literature,
the quality of studies was not taken into account, possibly leading to biased assessments.
While these reviews underline that the quality of effect studies should improve and call
for more ecologically and environmentally relevant exposure systems in order to better
assess the effect of MP on the environment, we argue that the quality of studies should
be assessed first, in order to be able to discard unreliable data.

A fundamental element of assessing ecological risk is the availability of a suite of
standardized test systems and analytical tools and methods, which enable the application
of dose-response relationships relating environmental exposure to effect threshold
concentrations that are consistent and of sufficient quality.3!'-!3 This also applies to the
relatively young field of MP risk assessment, where many studies have emphasized the
need to improve the quality of data needed to inform risks assessment(s).3!:3%-96,140.314-318
Efforts to assess the quality of data emerging from studies reporting on exposure
concentrations of MPs in biota and in surface and drinking water, adopting methods
similar to the existing Klimisch and CRED approaches,’!!*1? have recently been
developed and applied.’!*> Whereas these systems and aspects of these systems start to
be adopted and recommended in the literature,2%>319323 currently, a similar evaluation

method for assessing the quality of MP effect studies is lacking.

The aim of the present study is to critically review the literature reporting on
ecotoxicological effects of MP on aquatic biota, emphasizing quality assurance aspects
of studies, and assessing the weight of the evidence (WOE) the studies provide with
respect to the effect mechanisms that they report. This is done by first developing a
quantitative evaluation method for effect studies and methods employed to assess effects
of MP on aquatic biota. The evaluation method is subsequently applied retrospectively to
the reviewed studies. Average scores per evaluation criterion are used to prioritize and
provide guidance with respect to the analytical and test system protocol that would benefit
most from refinement. Based on our analysis, a guidance protocol for testing
ecotoxicological effects of MP for aquatic species is provided. Demonstrated and
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suggested effect mechanisms reported in the reviewed papers are summarized and
discussed, with the results of the quality evaluation applied as a method to assess the
overall weight of evidence regarding probable ecologically relevant effects of MP.

Methods

Literature search. Literature was retrieved from the database from the systematic review
underlying the SAPEA report.%® In addition, an extensive literature search accessing the
Natural Science Collection database available at ProQuest® was performed for
ecotoxicological effect studies with MP until November 2019. The following search
strings were used: (effect OR impact OR endpoint OR toxicity) AND (growth OR feeding
OR consumption OR survival OR mortality OR behaviour OR behaviour OR stress OR
response(s) OR activity OR reproduction OR inhibition) AND (microplastic(s) OR
microbead OR polyethylene (PE) OR polystyrene (PS) OR polyamide (PA) OR
polypropylene (PP) OR polyvinyl chloride (PVC)) AND (aquatic OR freshwater OR
marine OR estuarine) NOT (chemicals OR additives). Studies were only included when
at least one type of MP tested had a diameter between 1 um and 5 mm. To enable
interpretation of particle effects, studies explicitly aiming to study effects of plastic-
associated chemicals, or aiming to solely study accumulation, ingestion and/or egestion
of MP were excluded from the analysis.

Assessment of general study characteristics. A total of 10 characteristics were extracted
from each paper and summarized (Table A7.1): Size, Shape, Polymer type, Ecosystem
(fresh, marine, estuarine), Taxonomy categories (Class, Species), Exposure duration,
Endpoints studied, Endpoints affected and Effect threshold when reported (as either LCx,
ECx, LOEC or NOEC). When a size range was used, the upper and lower size ranges are
noted, however, if an average size was provided together with the range, the average is
also recorded. In instances when the average was not given, it is assumed that the particles
are uniformly distributed between the upper and lower size limit and that the average can
be estimated accordingly. For shapes, the terms “beads” and “spheres” are assumed to be
the same and are combined in a single category. As the definition of “irregular” is
ambiguous and could include any non-regular shape, it is included as a separate category.

For the analysis of the taxonomic groups we followed De Sé et al. (2018),'2° where classes
polychaeta and clitellata are combined in the category “annelida”, classes bivalvia and
gasteropoda are combined in the category “mollusca”, classes anthozoa and hydrozoa are
combined in the category “cnidaria”, classes branchiopoda, hexanauplia and
monogononta are combined in the category “small crustacea”, class malacostraca is
renamed “large crustacea” and class actinopterygii is renamed “fish”.!?> Additionally,
classes gammaproteobacteria and cyanophyceae are combined in the category “bacteria”,
classes bacillariophyceae, chlorophyceae, trebouxiophyceae, dinophyceaec and
mediophyceae are combined in the category “microalgae” and class liliopsida is renamed
“macrophyte”.
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Quantitative quality assessment. All of the 105 reviewed studies are evaluated based on
20 Quality assurance/Quality control (QA/QC) criteria in the following categories:
particle characterization, experimental design, applicability for risk assessment, and
ecological relevance. These categories are consistent with the principles of sound
ecotoxicology proposed by Harris et al. (2014), which represent fundamental elements
for ensuring quality and reproducibility and are thus critical when designing, applying
and reporting ecotoxicological effect studies for MP.32¢ A summary of the 20 QA/QC
criteria is shown in Table 7.1 and a detailed motivation for each criterion is provided in
the Appendix (methods continued). Building on the methods developed by both Hermsen
et al. (2018) and Koelmans et al. (2019), each criterion is assigned a score of either 2
(adequate), 1 (adequate with restrictions) or 0 (inadequate) points (Table A7.2).31:3 All
studies collated as part of this literature review are independently assessed by three of the
authors, with scores subsequently tabulated and discussed to reach consensus, sometimes
leading to adjustments of the original formulation of a criterion to decrease potential
ambiguities. The scores per individual study can be found in the Supporting Information
of the publication in Environmental Science and Technology.

31,35 we

Consistent with the approach adopted in previous method evaluation papers,
emphasize that the scores assigned for each study should not be perceived as a judgement
indicative of the relative value of a study, i.e. a paper scoring low on a certain criterion
could still provide valuable and reliable information regarding other potential insights.
Problem formulation is therefore an important element to understand, in that depending
on the purpose of an effect study the results may or may not help to inform the decision-
making process with respect to assessing risk. A WOE may be assembled, for instance,
regarding an effect mechanism, but the mechanism may not necessarily be ecologically
relevant (see Appendix, criterion 13, Endpoints, p11, methods continued). The primary
objective of the evaluation criteria developed and applied in this study is directed at
providing insight regarding those aspects of MP ecotoxicological effect studies that could
be improved in future studies in order to better inform the application of a quantitative
environmental risk assessment. The evaluation criteria, however, also provide the
opportunity to assess the current WOE of effect mechanisms.

Analysis of perceived versus demonstrated mechanisms explaining adverse effects.
Authors’ conclusions with respect to observed adverse effects and the mechanisms
explaining them are summarized in the Appendix (Table A7.3). In instances where the
discussion and conclusions included ambiguous terms, such as, ‘may’, ‘could’, ‘can’,
‘would’, ‘postulate’, ‘suggest’, ‘might’, ‘potentially’, ‘most likely’, ‘imply’ the reported
mechanisms are classified under the category ‘suggested’. If the discussion and/or
conclusion used more definitive terminology, such as, ‘demonstrate’, ‘observe’,
‘indicate’, ‘induce’, ‘provide’, and ‘evidence’, the reported mechanisms are classified
under the category ‘demonstrated’. When a combination of both ambiguous and definitive
terminology are used in the same sentence to describe an effect mechanism, the
mechanism is considered as ‘suggested’. Terms that imply a mechanism to be either
‘demonstrated’ or ‘speculated’ are reported in italic, whereas key words indicating the

106



Quality Criteria for Microplastic Effect Studies in the Context of Risk Assessment: A Critical Review

mechanism category are reported in bold. Finally, in addition to classifying effect

mechanisms as either ‘‘suggested’ or ‘demonstrated’, specific categories based on the
modes of actions proposed by authors are recorded and numbered accordingly.

Table 7.1. Summary of specific guidance proposed towards the adoption of Standardized Protocol for
testing the effects of MP in aquatic test systems for the purposes of strengthening the quality of data
generated with respect to quality assurance/quality control (QA/QC) criteria. A detailed motivation for
each criterion is provided in the Appendix (see methods continued).

GUIDANCE TO INCREASE THE TECHNICAL QUALITY OF EFFECT TESTS (1 -12)

Particle characterization

1. Particle size

2. Particle shape

3. Polymer type

4. Source of MP

5. Data reporting

Experimental design

6. Chemical
purity

7. Laboratory
preparation

8. Verification of
background
contamination

9. Verification of
exposure

10. Homogeneity
of exposure

Size is a crucial factor explaining effects of MP and thus should be reported.
If a range of sizes is used; a full (i.e., > 10 bins) size distribution is measured
and reported. If a single size is used, that size is measured with an indication
of measurement error and reported.

Shape is a crucial factor explaining effects of MP and thus should be
measured and reported. Shapes are measured with high resolution picture
and reported.

Polymer type can be a factor explaining effects of MP and thus should be
reported. Polymer identity confirmed with e.g., FTIR, Raman spectroscopy
or similar methods.

Specification on where MP stock or solution is bought and/or how it is self-
made maximizes reproducibility and thus should be reported. The origin
and/or production of MP in own laboratory is reported in detail.
Unambiguous units are required to ensure reproducibility of the experiment
and to make it possible to compare data across experiments. MP
concentrations are reported as mass as well as number concentration.

In order to test particle toxicity, the toxicity of other chemicals in solution or
mixture should be ruled out. This includes additives present in MPs,
chemicals associated with food particles and surfactants (e.g., Tween).
Chemical effects other than from the polymer or solution/mixtures are ruled
out. MPs are cleaned with organic solvent.

MP contamination arising from the laboratory (air, water and materials)
should be minimized.

- All materials used (equipment, tools, work surfaces and clothing)
should be free of MP. All materials used are thoroughly washed
with high quality water (e.g., Milli-Q water).

- Measures are taken to prevent MP contamination from air.

- Cotton lab coats were used to avoid microfibre contamination.

MP contamination of the exposure systems in the laboratory should be
assessed. Level of contamination evaluated and quantified, e.g., with FTIR,
Raman or similar method.

Not only the nominal concentration should be mentioned. The exposure
concentration should be measured. Measurement of exposure concentration
and evidence that at least 80% of the nominal concentration throughout the
test is maintained.
Verification of homogeneity is crucial for the MP characterization and the
assessment of bioavailability.
- Water as medium: Picture or measurement of MP in water that
demonstrated well mixed or dispersion in solution.
- Sediment as medium: Description of method used to obtain
homogenous exposure.
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11. Exposure
assessment

12. Replication

Exposure of the organism to MP should be verified by measurement.
Exposure of the organism to MP is measured quantitatively with e.g., FTIR
or Raman. In case MPs are ingested additionally a digestion step is included
(see criteria 9 and 10 Hermsen et al. 2018)*!

For statistical rigor in detecting effect thresholds (e.g., ECso or ECio),
sufficient replicates should be tested. 3 or more replicates

GUIDANCE TO INCREASE THE APPLICABILITY IN ECOLOGICAL RISK

ASSESSMENT (13-20)

Applicable for Risk assessment

13. Endpoints

14. Presence of
natural (food)
particles

15. Reporting of
effect
thresholds

16. Quality of
dose-response
relationship

Ecological relevance

17. Concentration
range tested

18. Aging and
biofouling

19. Diversity of
MP tested

20. Exposure time

Endpoints should be considered that inform ecologically relevant population
level risk assessment and clearly reported. Endpoints taken at the
community (e.g., bacteria and algae) or individual level (e.g., survival,
mortality, growth, development, reproduction).

The exposure conditions should be environmentally relevant. Natural
particles (at least food) are added to avoid force feeding of MP. Criterion not
applicable to algae or bacteria and hence these studies receive 2 points.

To enable PEC/PNEC types of comparisons, the effect threshold should be
assessed with error of uncertainty using dose- response relationships. Effect
thresholds are reported as L(E)Cx with error or uncertainty intervals.

For statistical rigor in detecting effect thresholds (e.g., ECso, ECio),
sufficient doses should be tested, including a treatment control, covering the
full shape of the effect curve and emphasizing the slope for parameter
estimation. Multiple doses, at least 6, including a treatment control.

Concentrations should be motivated (with a reference in the appropriate
unit) from measured environmental concentrations (MEC). More than 1
environmentally relevant concentration was used within the range tested.
Aging and biofouling is what occurs in the environment and could affect the
uptake of MP; therefore, it is crucial to consider this for an ecological
relevant experiment. MP particles should have undergone process to make
them more environmentally realistic, accounting for biofouling.
Additionally, pictures of altered particles are provided.
In the environment, MPs have a wide variety of shapes and sizes. This needs
to be taken into account for environmentally relevant effect assessment. A
wide range of sizes (order of magnitude), shapes and densities is used,
thereby approaching the diversity of environmental microplastic.
It is crucial to use appropriate exposure times to allow for the detection of
adverse effects.

- Bacteria and phytoplankton: 1 week or longer

- Zooplankton: 21 days or longer

- Benthic invertebrates: 28 days or longer

- Fish: 3 months or longer

- Macrophytes: 28 days or longer

Results and discussion

Study characteristics

Characteristics of the tested microplastics: size, shape, polymer type.

Size. A total of 178 different MP sizes have been tested in the 105 reviewed papers. The
cumulative distribution illustrates that about 75% of studies tested the effects for MP <
100 pm, or ‘small MPs’ 3329 (Figure 7.1), with approximately 30% of MP having sizes
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< 10 um. Of the 178 sizes tested, 58.4% corresponded to a size range, while 41.6%
consisted of one size only. Moreover, 16.3% of the tested MP included a size range
greater than one order of magnitude.
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Figure 7.1. Cumulative frequency distributions for MP particle sizes used in effect tests for aquatic biota.
The majority of studies tested a size range, which implies that separate cumulative distributions can be
plotted for the minimum (Min), the maximum (Max) and the average size tested across studies.

Species-specific traits, such as size selective ingestion of MP have been demonstrated for
aquatic organisms (Chapter 3).4653230303 Gjze gelectivity can potentially help
understanding effect mechanisms that influence the toxicological response of an
organism. Mechanistic insight, however, can only be demonstrated when an appropriate
range of particles sizes is used. Therefore, when evaluating the effects of MP of only one
size, the most detrimental sizes for a specific species may not be included in the analysis,
resulting in an underestimation of actual effects across the MP size range. Furthermore,
it can be assumed that effects of MP of a certain size will differ in the presence of other
sizes of MP, since there can be complex particle-particle interactions that may influence
exposure as well as complex organism-particle interactions that can be difficult to account
for when limiting testing to one size or narrow size range distributions. The observation
that effects testing of MP to date is dominated by particles < 100 pm (Figure 7.1) implies
that comparisons between MP sizes used in effect studies and sizes of MP found in the
environment are difficult to be made, particularly since the detection of MP <100 um
represents an ongoing analytical challenge.’® Nevertheless, we recommend the use of MP
size distributions that are appropriate for the species being tested, which can potentially
add greater insight between adverse effects and organism-particle interactions.
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Shape. The shapes of MP reported in the 105 studies are dominated by spheres/beads,
followed by irregular MP, fragments and fibres (Figure 7.2A). We assume that most of
the studies reporting the use of irregular MP have tested either fragments, films, foams
and sheets, or a combination thereof. Consequently, characterizing MP into distinct
categories includes a subjective, qualitative, element that is difficult to enable
differentiation, but which could result in greater refinement of shapes divided into more
categories that would provide opportunities for better mechanistic understanding.
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Figure 7.2. Number of studies reporting a particular shape (4) or polymer type (B) for the MP used in the
exposure tests (from a total of 124 records for shapes and 145 records for polymer types). PS = polystyrene,
PE = polyethylene, PVC = polyvinyl chloride, PP = polypropylene, PET = terephthalate, PA = polyamide,
N/A = not analysed, PLA = polylactic acid, PMMA = poly(methyl methacrylate), PC = polycarbonate, PE-
Acrylate = polyethylene-acrylate, EVA = ethylene-vinyl acetate, PHB = Polyhydroxybutyrate, ABS =
Acrylonitrile butadiene styrene, SAN = Styrene acrylonitrile resin, POMH = Polyoxymethylene
homopolymer.

When comparing the shapes used in different effect studies with those shapes commonly
observed in environmental samples, there is considerable inconsistency. While 58.1% of
effect studies have tested MP spheres/beads, this category only represents 6.5% of the
MP detected in water and sediment samples.?’ In contrast, only 8.1% of the tested MP in
effects studies were fibres, although they are the most abundant shape category detected
in water and sediment, typically representing about half of MP detected.?’ Therefore, the
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use of fibres in effects studies represents a significant opportunity for advancing
quantitative data for the purposes of assessing environmental risks.

An important factor to consider in future studies is how the shape of MP might influence
their ingestion and egestion by aquatic organisms,?327:328
their relative toxicity. Thus, the use of shapes representative of those detected in the
environment has the potential to benefit both the ecological relevance and mechanistic
understanding of risks associated with MP commonly encountered in the environment.

which can potentially influence

Polymer type. The most common polymer types used in the 105 effect studies reviewed
were PS and PE. Together they represent 62.3% of the MP types tested (Figure 7.2B).
The use of these two polymers is relatively consistent with the polymer types typically
observed in the environment, whereby the three most commonly detected polymers in
surface waters are PS, PE, and PP.* In effect studies, however, the inclusion of PP is
limited to only 5.5% of MPs tested. Given that the polymer type can influence the fate of
MP in both the test system and ecosystem, depending on its density, surface chemistry,
degree of crystallinity, and presence of chemical additives and plasticizers, it is important
to include as much detail as possible with respect to the polymer composition.**#3
Consistent with the need to advance the effects testing and mechanistic understanding of
MP with respect to size and shape, as discussed above, there is also a need to strengthen
understanding of the influence that the polymer composition may represent towards an
observed adverse effect on various species. Insight regarding the relationships between
size, shape and polymer composition is important for advancing environmental risk
assessment and helping to inform the decision-making process.

Exposed organisms, exposure duration, endpoints studied, and effect thresholds reported.

The organisms tested in the 105 studies evaluated consist of 52.4% marine, 42.9%
freshwater and 4.8% estuarine species. The most abundant organisms studied are small
crustaceans (which belong to the zooplankton category), followed by molluscs and fish
(Figure 7.3A). The most common exposure durations used were: 24 h, 96 h, 240 h (10
days), 336 h (14 days), 504 h (21 days) and 672 h (28 days) (Figure A7.2). The exposure
durations generally correspond to the recommended exposure durations of standard
ecotoxicity test guidelines for chemicals, implying that exposure durations are also
closely linked to standard effect endpoints, such as mortality, growth, and reproduction.
However, there is literature indicating that effects of MP can be time dependent (Chapter
5)226:329330 and standard test protocol guidelines applicable for chemicals may not be
applicable for the effect testing of MPs. Nevertheless, chronic effects testing of MP
adopting longer study durations does not appear to be well represented, with only 18% of
studies using an exposure time > 28 days, and < 2% (i.e., 2 papers) with exposure times
above three months. Consequently, it is recommended that future effects testing include
greater emphasis on assessing longer term effects.
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Figure 7.3. Number of studies evaluating the effects of MP on organisms of a certain taxonomic group (4)
and on a particular endpoint (B) (from a total of 134 records for organisms and 252 records for endpoints).

Effects of MP on growth are observed to be the most often studied (25.4%), followed by
sub-organismal endpoints (21.4%), survival (14.7%), feeding (11.5%), and reproduction
(9.9%) (Figure 7.3B). Population-level endpoints correspond to only < 4% of the total
endpoints studied. From the 105 papers, only about 10% reported effect thresholds (as
either LCy, ECx, LOEC or NOEC). Of all the studies providing effect thresholds, 33.3%
report them as number concentration (i.e., particles/l), 50% as weight concentration (i.e.,
mg/l), and 16.7% in both units. In order to assess the environmental risks of MP, effect
thresholds are fundamental, preferably in both units, which will also further enable
comparisons between studies for use in developing quantitative WOE with respect to
effects and risks.

Quality assessment
The results of the scoring based on the quantitative quality assessment proposed in this

study imply that substantial improvements can be made in how MP effect studies are
designed and conducted (Figures 7.4 and 7.5). As previously stated, the scores obtained
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should not be interpreted as an absolute value of judgment, but as a guide for identifying
and prioritizing study-design components that would benefit most in improvement for the
purposes of assessing environmental risks. Consequently, we suggest that those studies
with relatively high scores represent the most reliable and useful in the context of risk
assessment (Figure 7.5). Individual studies, however, often had other objectives, which
were not necessarily consistent with information needed to support an assessment of risk.
It is important, therefore, to assess each of the specific criteria and to compare them with
other studies rather than simply evaluating the studies based on how they rank on their
total score. The first subset of criteria (criteria 1 — 12) enable the evaluation of the general
technical quality of an effect test study. Here, the average score across all studies is 11.3
(range 5 to 18), of a maximum possible score of 24. In this first subset there are no studies
for which positive scores on all quality criteria is assigned. The second set of criteria
(criteria 13 - 20) relates to the relevance of the papers for their use in environmental risk
assessment. For these criteria, the average score across all studies evaluated is 6.6 (range
0 to 14) of a maximum potential score of 16. Again, no studies had positive scores for
each of the ecological relevance quality criteria defined. Finally, the total scores combine
both the technical quality and ecological relevance evaluation criteria, whereby the total
score can be used as part of a quantitative WOE approach in the context of risk
assessment. The average total score is 17.8 (range 8 to 31), from a maximum possible
score of 40, indicating that results from effect studies assessing MP are often not fully
reliable and/or reproducible. All studies included in this review were assigned a criterion
value of 0 in at least one criterion, implying that important QA/QC criteria are
consistently poorly addressed in the design and reporting of MP effect studies. With
respect to the general technical quality of the effect studies evaluated, 34.8% of the
criteria in studies are assigned a value of 0, whereas 50.1% of studies receive the same
poor-quality score with respect to their ecological relevance. Average scores per criterion
ranged from 0.06 to 1.79 (Figure 7.4). Those criteria that are typically evaluated high
across all studies include the reporting of the source of the MP, the use of replicates,
reporting on ecologically relevant endpoints and the inclusion of food particles within the
test study. A more detailed evaluation of each category is provided below.

Particle characterization. The category with the highest average score is “particle
characterization” (Figure 7.4). Overall, the majority of studies evaluated are observed to
provide satisfactory reporting on particle characteristics (scores > 1). Only a limited
number of studies (13.3%) fail to report on either one of these specifics. Improvements,
however, are suggested, such as related to efforts towards the confirmation of size, shape
and polymer type, as opposed to simply relying on information from the manufacturer.
Nonetheless, by failing to provide characteristics of the particles, an entire experiment
can become irreproducible. Lastly, it should be noted that approximately 60.0% of studies
either don’t report a concentration or limit reporting to a mass or number concentration,
which further complicates comparison across studies. It is thus suggested that with
relatively limited resource towards addressing the shortcomings identified, substantial
improvements can be realized within this quality criteria category..
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Figure 7.4. QA/QC quantitative system scores from n =105 studies. Average scores per criterion with
categories “particle characterization”, “experimental design”, “applicable for RA” and “ecological
relevance”. Each criterion is assigned a score of either 2 (adequate), 1 (adequate with restrictions) or 0
(inadequate) points.

Experimental design. As a general observation, the majority of studies scored poorly
within the category of experimental design (Figure 7.4). Concern is particularly apparent
with respect to the quality evaluation criteria of “laboratory preparation” and “verification
of background contamination”, with average scores of 0.18 and 0.06, respectively. While
MP are often said to be ubiquitous in the environment, including indoor (laboratory)
air,?® only 3.8% of the reviewed studies thoroughly report how they minimized potential
contamination arising from air, water and all materials used during the experiment.
Additionally, only 4.8% of the reviewed papers verified the background contamination
(visually).

Only a few, 6.7%, of the evaluated studies included a protocol specifically used to pre-
clean MP with an organic solvent. Additionally, 20% of studies took measures to ensure
chemical purity. For instance, Karami ef al. (2017) and Romano et al. (2018) measured
certain chemical contaminants associated with the MP;331-332 however, this still does not
exclude chemical effects from experimental results. Some studies include a solvent
control, but do not account for chemical contaminants that might be present in the MP
themselves.!** Importantly, the majority of studies (73.3%) do not mention the potential
for chemical contaminants influencing observed adverse effects, making it difficult to
disentangle particle toxicity from a potential chemical toxicity.
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The criteria “verification of exposure” and “homogeneity of exposure” also are observed
to score low, with average scores of 0.45 and 0.68 (n = 105), respectively. These criteria
are critical for enabling the reproducibility of study results, which further increase the
uncertainty associated with reported effect thresholds. Finally, the criterion “exposure
assessment” (average value of 0.84) is generally unsatisfactory in the studies evaluated.
While most studies (78.1%) include a description verifying that MP have been ingested
by test organisms, verification is often (72.4%) demonstrated in either a separate
experiment, qualitatively, visually or without a digestion step.

While it is acknowledged that the resources needed to address the shortcomings identified
with the criteria falling under the category of ‘experimental design’ are likely to be high,
failing to address the various criterion results in studies with greater uncertainties and
which thus fail to add value to broader scientific understanding as well as for
strengthening opportunities to assess environmental risk. It is therefore prudent to
carefully consider experimental design in future effect studies, with the development and
application of standard test protocols applicable to MP identified as an urgent need to
better guide researchers.

Applicability to risk assessment. An important implication of data reported from
ecotoxicity effects studies is their role in assessing environmental risks. Consequently,
suggestions for improvement made under this category are perceived to have implications
for the regulatory decision-making process. Results from the studies evaluated under the
criteria related to applicability for risk assessment imply the need for improvements to
“reporting of effect thresholds” and “quality of dose-response relationship”, where
average scores of 0.25 and 0.48 were assessed, respectively. As mentioned above, a
limited number of studies (10.5%) are observed to explicitly report on effect thresholds
with an indication of error. Moreover, only 30.5% of the 105 studies include a sufficient
number of concentration doses to ensure statistical rigor in detecting these effect
thresholds. The majority (86.7%) of reported endpoints for MP effects, however, are
informative to the risk assessment process, with 84.8% including a source of food to avoid
the artefact of force-feeding MP to test organisms.

Ecological relevance. Apart from the criterion “exposure time’, which shows an average
score of 1.11 and was thus evaluated as satisfactory among the 105 studies, all other
criteria in this category score low. The criterion “diversity of MP”, with an average of
0.30, is of particular concern. Only 33% of the studies included at least one
environmentally realistic concentration, raising concerns regarding the relationship
between laboratory-based observations of adverse effects and ecological risks. Most
studies (71.4%) assessed the effects of MP using a single MP type or MP with a limited
range of characteristics. Only one study used a mixture in their experiment representative
of environmental exposure.333 Only two studies included the influence of biofouling when
assessing the effects of MP, subsequently characterizing the microbiology of the
biofilm,333:334
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Weight of evidence for mechanisms explaining adverse effects of microplastic to
aquatic biota

Currently, the knowledge on effect mechanisms for MP is limited and there is a need to
increase mechanistic understanding of toxicological modes-of-action.!'!*33336 Criterion
#11 “exposure assessment of organism” aims at improving the strategic design of effect
testing that might enable results to differentiate between intrinsic physicochemical
properties of the MP themselves and how those interact with species-specific biological
and physiological traits to influence an observed adverse effect (see Appendix, methods
continued). Acknowledging that MP represent a complex mixture of particles (shape, size
and type), incorporating strategies that enable effect-assessment to move from a
‘substance-based’ approach to a ‘mechanism-based’ approach may add considerable
value in assessing environmental risk, not just for MP but for any other particle-stressor
organisms may encounter.’3>33 Knowledge on effect mechanisms will enhance the
strategic application of species sensitivity distributions for distinct categories of effects.
Finally, advancing scientific understanding of particle effect mechanisms, such as those
associated with exposure to MP, will aid in the development of effect models.?’

Given the importance of advancing the scientific weight-of-evidence with respect to the
effect mechanisms following exposure to MP, each of the 105 studies is reviewed with
respect to the mechanisms that authors used to explain the adverse effects they observed.
The analysis is based on four considerations. Firstly, we verified whether authors refer to
the mechanisms they described using terms such as ‘suggested’ versus ‘demonstrated’
(see Table A7.3 in the Appendix). If authors themselves described a mechanism as
‘demonstrated’, the WOE is perceived to be stronger. Secondly, the frequency of
reporting certain mechanisms was assessed (Table 7.2). The more often a mechanism is
reported in the literature, the stronger the perceived WOE can be considered to be, in that
consistency between studies in relation to observed effect mechanisms is assumed. Third,
the relative strength of the WOE supportive of an effect mechanism is further scrutinized
based on the criteria #6 “chemical purity”, #14 “addition of food” and most importantly
#11 “exposure assessment of organism”. While all 20 criteria are crucial in order to ensure
quality and reproducibility of data from effect studies, the latter three criteria are
specifically important in order to successfully assess the mechanisms behind adverse
effects. Fourth and finally, the scores from the QA/QC assessment are used to assess the
relative credibility of effect mechanisms reported.

Suggested versus demonstrated mechanisms for adverse effects. From the 105 studies
evaluated in this review, 10 separate effect mechanisms are identified as ‘suggested’,
whereas 7 mechanisms are identified to be ‘demonstrated’, the latter including: 1)
inhibited food assimilation and/or decreased nutritional value 2) internal physical
damage, 3) external physical damage, 4) oxidative stress, 5) disturbance of essential
processes that affect physiology, 6) adjustment of energy metabolism to cope with MP
and 7) microbial imbalance (Table 7.2). Three additional mechanisms are reported as
speculated only: 8) leaching of additives or chemicals, 9) (cellular) stress and effects of
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10) surface properties. While 100 times studies describe an effect mechanism as
“suggested”, only 34 times studies describe an effect mechanism as “demonstrated”. The
most frequently suggested mechanisms are “inhibited food assimilation and/or decreased
nutritional value” and “internal physical damage” with a frequency of 32 and 20
suggested occurrences, respectively. However, it is notable that only 9 and 7 studies have
reported these mechanisms as demonstrated, respectively.

Table 7.2. Tiered weight of evidence (WOE) approach for effect mechanisms reported in 105 studies, by
number of studies that (a) frame a mechanism as ‘suggested’, (b) frame a mechanism as ‘demonstrated’,
(c) fulfil the three quality assurance criteria (score > ) considered most relevant to identify effect
mechanisms (#6, #1 1, #14), and (d) average score according to QA/QC of studies that fulfilled those three
quality assurance criteria.

Number of Average score

D ipti f
escription o studies that of studies that

hani
r:;claz:;;m Suggested® Demonstrated® fulfil criteria fulfil criteria
" advel:)rse efffct #6, #11 and #6,11 and 14
#14¢ QA/QC?

Inhibited food

1 assimilation and/or 32 9 5 21.4
decreased
nutritional value

) Internal physical 20 7 3 21.0
damage

3 External physical 3 4 2 24.0
damage

4 Oxidative stress 6 8 1 16.0
Disturbance of

5 essential processes 3 3 0 _
that affect
physiology
Adjustment of

6 energy metabolism 1 2 0 N
to cope with MP

7 Microbial imbalance 2 1 0 -

8 Leaching additives 14 0 _ _
or chemicals

9 (Cellular) stress 8 0 N -

10 Effects .of surface ) 0 - -
properties

Total 100 34 11
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1) Inhibited food assimilation and/or decreased nutritional value. Within the studies that
report on “inhibited food assimilation and/or decreased nutritional value” as
demonstrated, there are 5 studies that meet the crucial criteria “chemical purity”,
“addition of food” and “exposure assessment of organism” and have therefore reliably
concluded on the demonstrated effect explaining the adverse effect, scoring 21.4 points
QA/QC on average (Chapter 2).5%136213,304306 Bor instance, Blarer and Burkhardt-Holm
(2016) visually quantified the presence of PA fibres in the digestive tract of Gammarus
fossarum and showed inhibition of food assimilation.3%4

2) Internal physical damage. Of the 7 studies that report on the demonstrated mechanism
of “internal physical damage”, there are 3 studies that also comply with the
aforementioned crucial criteria (#6, #11 and #14) (Chapter 2).7>136338 The studies by
Redondo-Hasselerharm et al. (2018) (Chapter 2), Qiao et al. (2019) and Von Moos et
al. (2012) are assigned a score of 31, 16 and 16 in the QA/QC assessment, respectively.
75,186,338 Wang et al. (2019), scored relatively high with 25 points.3* Moreover, they were
able to verify the exposure of MP to organisms, and also avoided potential system-
dependent artefacts by including a protocol for adding food during their experiments.3*°
However, they do not include measures to ensure chemical purity, resulting in some
caution when interpreting the mechanism as ‘demonstrated’.>3°

3) External physical damage. Although not one of the most often speculated (8 times),
the mechanism “external damage,” is concluded to be demonstrated in 4 studies.???-340-342
Among these, there are 2 studies that fulfilled the crucial criteria (#6, #11 and #14). The
one with the highest QA/QC score is Ziajahromi ef al. (2017) with 30 points, who
observed malformations on the carapace of Ceriodaphnia dubia.** Additionally, with a
score of 18, Kalcikova et al. (2017) showed that microbeads with sharp edges affected
the root growth and reduced viability of root cells of Lemna minor.** This study
qualitatively assessed the adsorption of MP onto root surface and took measures to ensure
chemical purity.

4) Oxidative stress. Oxidative stress has frequently been framed as a demonstrated
mechanism for the effects observed (8 times). There is, however only one study that
complied with the three criteria crucial to reliably assess a demonstrated mechanism (i.e.
#6, #11, #14). Qiao et al. (2019) observed inflammation and oxidative stress in the gut of
Danio rerio.>*® Besides qualitatively assessing MP in the gut, they also took measures to
ensure chemical purity, and fish were fed daily. This study however, scored relatively low
on QA/QC (16 points), rendering the results less reliable. Oxidative stress is a molecular
mechanism and can be defined as an imbalance in the production of free radicals and the
ability of organisms to deal with them.>*' As oxidative stress is also an endpoint, it is
likely that it has often been considered as demonstrated. Moreover, oxidative stress is one
of the most commonly measured biomarkers.33334 It is, however, not clear if oxidative
stress is a response to another MP toxicity mechanism or that the MP toxicity directly
works at the molecular level 392336 Elucidating on this aspect will aid in choosing relevant

endpoints to use within risk assessment frameworks.33¢
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5) Disturbance of essential processes that affect physiology. The mechanism “disturbance
of essential processes that affect physiology” is claimed to be demonstrated 3 times.*+
346 No studies, however, comply with the criteria to credibly ascertain the demonstrated
mechanism.

6) Adjustment of energy metabolism to cope with MP. While the mechanism “adjustment
of energy metabolism to cope with MP” is suggested once, it is reported as ‘demonstrated’
two times.*>”” Seoane et al. (2019) showed that MP caused a slight decrease in the growth
rate of the marine diatom Chaetoceros neogracile, but also a significant decrease in the
esterase activity and the lipid reserves of MP-exposed cells.* While scoring relatively
well on the overall QA/QC scores (20 points), this study did not take any measures to
ensure chemical purity, rendering the result less reliable. Additionally, Watts et al. (2016)
showed that crabs were able to overcome minor effects on ion exchange by minor
physiological regulation, however did not meet criteria #6 and #14.77

7) Microbial imbalance. Two studies speculate that adverse effects are caused by
microbial activity or the presence of bacteria on the MP.¥-3%7 Additionally, there is one
that has framed this mechanism as demonstrated.”> However, no measures were taken to
ensure chemical purity or assess MP exposure to the organisms.”?

8) Leaching of additives or chemicals. In 14 studies, leaching of additives or adsorbed
chemicals from MP was speculated to be an explanation for the observed effect of MP;
however, this mechanism has never been framed as demonstrated. Demonstrating this
mechanism can be achieved by simply washing MP with organic solvent thoroughly and
repeatedly, subsequently enabling to distinguish particle from chemical toxicity of MP.
Interestingly, Cole et al. (2019) only suggested that leaching of chemicals could have
played a role, i.e., not claiming the mechanism to be demonstrated. However, they
received maximum score of 2 on this criterion (#6), meaning that in our view they
adequately addressed the issue actually rendering the mechanism to be demonstrated.’*’

9) Cellular stress. As “cellular stress” is a broad term, hard to specify and hence not easily
measurable, it is likely that for this reason it has never been framed as a demonstrated
mechanism.

10) Effects of surface properties. Only two studies speculate that adverse effects
measured in their studies are due to the surface properties of MP.#3304 No study, however,
claims to have demonstrated an effect of surface properties.

Overall final WOE assessment of mechanisms explaining adverse effects of MP - When
comparing the demonstrated mechanisms according to studies it is apparent that
“inhibited food assimilation and/or decreased nutritional value” has been demonstrated
most often with relatively high overall QA/QC scores (average = 21.4). Most importantly
5 out of 9 studies comply with the crucial criteria to reliably assess a mechanism, making
it a plausible mechanism to explain adverse effects with high overall WOE.
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Additionally, the mechanism “internal physical damage” has a relatively high overall
WOE. Of the 7 studies that managed to demonstrate this mechanism, 3 fulfilled the crucial
criteria (#6, #11, #14) with an average score of 21.0 points. While the mechanism
“external physical damage” has been demonstrated less often, effects have been measured
with higher reliability than for other demonstrated mechanisms. The 2 out of 4 studies
that comply with the crucial criteria to reliably assess a mechanism, score an average of
24 QA/QC points, thus also making it a plausible and high WOE mechanism explaining
adverse effects.

Perspective and outlook

Research on the effects of MPs on biota in aquatic and other environmental compartments
is a relatively new discipline in the environmental sciences. As a result, approaches to
assess these effects vary widely across research groups, with both the nature of effects
testing and analytical methods developing rapidly over time. Here, we evaluate the quality
of 105 studies that report on the ecotoxicological effects of MPs for aquatic biota. The
evaluation includes studies of organisms at various functional groups, such as
phytoplankton, macrophytes, zooplankton, benthic invertebrates, and fish. The evaluation
criteria developed as part of the evaluation can be used as guidance towards best practices
to assess exposure, effects and effect threshold concentrations for MPs, and can provide
a quantitative quality assessment of studies reporting adverse effects of MPs on aquatic
organisms. Lastly, we summarize and discuss the characteristics of the tests that have
been performed thus far (e.g., particle size ranges, concentrations, polymer types, particle
shapes, species, endpoints, test duration) in order to detect knowledge gaps within effect
studies, and use information gained from the review of the literature to assess the WOE
with respect to the effect mechanisms most likely influenced by exposure to MPs.

When adopting strict quality criteria, an overall lack of reliability is observed in the
studies evaluated in this review, particularly for how data from available effect studies
can be used to help inform the risk assessment process. This is partly related to technical
shortcomings in the experimental design, such as not ensuring chemical purity,
prevention and verification of MP contamination in the laboratory, and partly to
limitations in the relevance of studies, for instance when studies do not use ecologically
relevant particles or testing conditions. This implies that based on the current state-of-
the-science, the WOE for ecological effects is very limited and the environmental risk of
MPs is difficult to assess. The lack of clear evidence for ecological effects in nature due
to relatively poor-quality effects studies available for the risk assessment process is
worrying, particularly given concerns raised by the public and decision-makers to provide
a quantitative assessment of the risks for MPs. The purpose of the present study is
therefore to provide timely guidance on best practices needed to improve and standardize
effects testing protocols. This includes the need for access to standardized test methods
using reference MPs that can be used between research groups in an effort to strengthen
both replication and inter- and intra-laboratory reproducibility. We recommend that at
least one of these reference materials is an environmentally realistic mixture of particles,
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i.e., having a realistic range of sizes, shapes, densities and ages. This way, organisms
themselves select the fraction from the mixture that is bioavailable and relevant for them.
This would mimic the situation in nature better than tests with single type materials. The
adoption of standardized test methods and use of environmentally relevant reference
materials would help reduce uncertainties inherent in the effects data and strengthen both
environmental risk assessment and mechanistic understanding of the ecotoxicity of MP.

Based on our review of study characteristics, it appears that particle type ‘fibres’ and
polymer type ‘polypropylene’ are understudied in effect studies. Ideally, the MP tested
should be as realistic as possible, thus representing a broad range of sizes, shapes,
densities and polymer types. The ecological relevance of tests should be increased by
extending exposure times, as chronic tests are rarely performed. In order for effect tests
to be more informative for risk assessment, the reporting of thresholds effect
concentrations should be made more accurate and explicit, preferably as either LCx, ECx,
LOEC or NOEC values, with the use of both mass and particle unit concentrations.

Based on the evaluation of the WOE pertaining to effect mechanisms associated with
exposure to MPs, we observe that the WOE is strongest for the mechanisms related to
‘inhibition of food assimilation and/or decreased nutritional value’, ‘internal physical
damage’ and for the mechanism ‘external physical damage’. To increase the WOE of
ecological effects and effect mechanisms we recommend that the guidance provided in
this evaluation study be used to develop studies that explore the mechanistic nature of
both MPs and generic particle effects on aquatic organisms more broadly.
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8.1. Introduction. The release of plastic waste into the environment and its transport and
accumulation along all habitats globally have raised concerns regarding the impacts
plastic could have on biota and humans.*”!3?¢ Plastics, including thermoplastics,
elastomers and synthetic fibres, are produced with different chemical compositions, sizes,
shapes and densities, depending on their purpose.!*!% Once they enter the environment,
plastic properties will be modified by physical and biological processes, such as wind,
UV radiation or the formation of biofilms.* Plastics are commonly classified by their size
as nanoplastics (NP), microplastics (MP) and macroplastics. Following the general
consensus established to define engineered nanomaterials, NP are sometimes defined as
plastics with a size < 100 nm.**®3* However, other studies defined NP based on the
conventional units of size, being NP all plastics with sizes in the nanometre scale (1 —
1000 nm).2!254 MP are plastics with sizes < 5 mm, with a lower size limit determined by
the chosen NP definition, and macroplastics comprise all plastics with sizes > 5 mm.”!3
Since the first scientists alerted about the great amount of plastic detected in the open
ocean, a wide number of studies have been published addressing the fate, sources,
abundance and effects of nano- and microplastics (NMP) in the marine environment.®3
Nevertheless, in recent years, a few studies highlighted the need to fill the same
knowledge gaps for freshwater ecosystems, as they constitute major sources for the
entrance of plastic in the marine environment, and also can act as a sink for NMP and
thereby affect freshwater organisms.?%!2° In freshwaters, concentrations of MP have been
quantified in water, sediment and biota samples, while NP concentrations are still not
known, as sampling and analysing them is extremely difficult.>?> NP concentrations in
freshwaters are however expected to be high due to the fragmentation of MP over time,
as demonstrated in laboratory studies.'®?'? The fate and abundance of NMP depend on
the ecosystem type, the climate conditions and the sources, as well as on plastic
properties.?’?® MP number concentrations in surface waters and freshwater sediments
vary strongly among ecosystems and within ecosystems, ranging up to 5,405 particles/l
for surface water and 74,800 particles/kg sediment dry weight (dw).’¢3% MP mass
concentrations are rarely provided, with the highest concentrations reported being 563
g/km? for surface waters and 1 g/kg dw for sediment.’”-!30351 When including small
macroplastics as well as MP, mass concentrations detected in sediments range up to 36.23
g/kg in sediment dw.3>
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In the environment, biota will likely encounter plastics and interact with them internally
or externally, depending on the particle properties and species traits.*> It has been
demonstrated that the exposure of aquatic organisms to NMP can lead to adverse effects
at sub-organismal, individual and population levels once critical effect threshold
concentrations are exceeded.®’® The mechanisms behind these effects have been rarely
demonstrated, but several studies have attributed them to internal or external physical
damages, reduced feeding, and specific NMP properties (i.e., surface groups, chemical
leachates).8*86:9092 Because MP are ubiquitous in freshwater environments while
knowing that they can cause adverse effects on the surrounding biota, there is an urgent
need to assess their environmental risks.!! The same applies for NP, even though their
concentrations in freshwaters are not known and can only be estimated with models.*°

To characterize the risks of NMP in the freshwater environment, exposure and effect
assessments need to be conducted.!' In retrospective exposure assessment, NMP
concentrations are measured in the environment. For this, several sampling and detection
protocols have been developed to measure MP abundance in water and sediments.?>7
Alternatively, for prospective exposure assessments, models can be used.”’>%* In the
effect assessment, the relationship between exposure concentrations and threshold-effect
concentrations is studied for specific endpoints using laboratory and outdoor tests.’> Data
on effects of MP in the literature include a wide variety of polymer types, sizes and
shapes, tested under several approaches, hindering the comparability of the data obtained,
and resulting in a poor understanding of MP effects.'*? Therefore, in order to characterize
the risks of NMP in freshwater ecosystems, standardized tests need first to be performed
to measure effect-threshold concentrations. It has been proposed that a tiered approach
may be adequate to assess the effects of NMP, where effect-threshold concentrations are
measured at the individual level in lower tiers and at the community level in higher tiers.!!
These tiers are related with the biological levels of organization that are relevant in
environmental risk assessment, which are the individual, population and ecosystem
biological levels (Figure 8.1). Individual effect thresholds are measured for the individual
and population levels, while community effect thresholds are determined at the ecosystem
level. In addition, the accumulation of NMP in the tested organisms should be analysed
after the exposure when possible to unravel effect mechanisms, maximum ingestible sizes
and potentially transferable concentrations to higher trophic levels. Moreover, a guidance
protocol should be developed for MP effect studies, emphasizing on their quality
assurance, and applied to the current literature to assess the weight of evidence of the
effects and mechanisms reported.

Finally, although this thesis is mainly focused on the environmental risks of NMP, human
risks of NP also need to be urgently assessed. Humans are exposed to NMP via drinking
water, food, inhalation and dermal contact and the few in vitro studies available have
demonstrated the existence of severe effects of NP on human cell lines, such as the
induction of immune responses, inflammation or oxidative stress.!% As it occurs with the
literature on the ecotoxicological effects of NMP, no standard methods exist to assess
effects on human health, and studies generally included only one high concentration, from
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which effect thresholds cannot be derived and where the realism was lacking.
Consequently, standard in vitro bioassays commonly used for the screening of human-
linked effects caused by chemicals in freshwater samples should be explored as tools to
assess threshold-effect concentrations for NP.

ECOLOGICAL RELEVANCE

Feeding activity

Larval development

Subindividual Individual Population Ecosystem
Mortality Fecundity Community composition
Growth Offspring viability Population sizes

Species diversity

Figure 8.1. Levels of biological organization for which threshold-effect concentrations can be measured.
Those biological levels with relevance in an environmental risk assessment are highlighted in colours.
Examples of endpoints that can be assessed at these levels are given (adapted from SAPEA et al. (2019))."

The overall objective of this thesis was to assess the effects of NMP in freshwater
ecosystems within a risk assessment context. To this aim, we formulated the following
research questions: /) To what extent do standardized low-tier single species tests allow
for the detection of effect thresholds for NP and MP at the individual level? 2) How to
measure NP and MP uptake? 3) To what extent do high-tier outdoor tests allow for the
detection of effect thresholds of NP and MP at the community level? 4) To what extent
can in vitro tests with relevance for human health be used to detect effects of NP? 5) What
could be improved in effect tests when it comes to quality assurance? 6) Which effect
mechanisms can be considered as demonstrated when strict quality criteria are applied
to the literature on MP studies reported to date? 7) Can we provide an estimate of the
ecological risks of MP using the data generated in this thesis and literature data?

In this final chapter (Chapter 8), based on our achievements I will answer to these aims
and research questions as originally outlined in Chapter 1. This is done by providing
guidance and recommendations for the use of risk assessment tools to evaluate the effects
of NP and MP, including: standardized single species tests to detect individual effect
thresholds (section 8.2), outdoor experiments to detect community effect thresholds
(section 8.3), and tests in vitro with relevance for human health (section 8.4). I will discuss
the advantages of the quantitative scoring system developed to assess the quality of MP
studies and will reflect on the demonstrated mechanisms explaining the effects assessed
(section 8.5). Lastly, we will perform a tiered effect assessment of MP for freshwaters
using the data generated in this thesis and data taken from the literature (section 8.6). The
risk of MP will be characterized for freshwater sediments by comparing Measured
Environmental Concentrations (MECs) obtained from literature with the calculated
Predicted No Effect Concentrations (PNECs) in each of the tiers.
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8.2. Guidance for single species standardized testing with NMP. For the characterization
of the environmental risks of NMP, their effect thresholds need to be assessed on biota at
different ecological levels.!! Individual effects thresholds are determined in the laboratory
using single species tests with organisms of various taxonomic groups with relevance for
a specific ecosystem.” To answer the first two research questions listed in Chapter 1 To
what extent do standardized low-tier single species tests allow for the detection of effect
thresholds for NP and MP at the individual level?; and, How to measure NMP uptake?,
we designed and conducted single species tests with freshwater benthic macro-
invertebrates exposed to NMP via sediment to measure their individual threshold-effect
concentrations. Benthic macroinvertebrates were exposed to: (a) polystyrene (PS) MP
fragments with a size range between 20 and 500 um at 8 concentrations from 0 to 40% in
sediment dw (Chapter 2); (b) MP made by scraping and grinding second-hand tires with
a final size distribution of 10 to 585 pum at 6 concentrations between 0 to 30% in sediment
dw (Chapter 3); and (c) raspberry-shaped PS NP with a palladium-core and an average
size of 227.6 + 1.47 nm at 6 concentrations ranging from 0 to 3% in sediment dw
(Chapter 4). The tested benthic macroinvertebrates included the amphipod Gammarus
pulex, who was exposed to all NMP; the isopod Asellus aquaticus, the worm Lumbriculus
variegatus and the worm Tubifex spp., who were exposed to both MP types; and the
amphipod Hyalella azteca and the bivalve Sphaerium corneum, who were exposed to the
PS MP only. As no guidelines for the testing of NMP were available at the start of this
thesis, several considerations were taken during the assessment of the effect thresholds to
increase the reliability of the results and facilitate their use in risk assessment. These are
described below:

Experimental design and standardization. To adequately assess concentration-response
relationships of any stressor, the use of a sufficient number of doses is recommended
(Chapter 7).22 However, most effect studies from the literature include less than five
plastic doses in their experimental design, leading to a lack of statistical rigor in the effect
thresholds reported (Chapter 7).%3 This is particularly important when no effects are
found and No Observed Effect Concentrations (NOEC) are derived, as the use of a few
concentrations and/or only low concentrations may not reflect well the real sensitivity of
the species to the stressor in a risk assessment. In addition, the number of replicates in the
experimental design should suffice to increase the statistical rigor, but also to compensate
for the uncertainties derived from potential inhomogeneous particle exposures along the
water column or sediments. The probability of the exposed organisms to encounter NMP
in the system, potentially leading to the appearance of adverse effects, will depend on the
properties of the plastic (density, size, shape), on exposure conditions (e.g., use of
aeration, shaking, biofilm formation) and the species traits (e.g., feeding behaviour,
bioturbation).*> One major current problem faced by risk assessors is the difficulty of
comparing the results across studies testing NMP. The available effect thresholds reported
in the literature belong to plastic particles of different sizes, shapes and polymer types,
which have been tested under diverse conditions. To allow for the comparability of the
results among species, standardized tests should be performed. In this thesis, we always
used 350 ml glass beakers as bioassays, Dutch Standard Water, sediment sampled at the
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same location, equal test conditions (water temperature, aeration systems light:dark cycle)
and the same bioassay acclimatization (14 days) and exposure durations (28 days). Future
studies should ideally aim at testing a battery of organisms under the same conditions to
detect the most sensitive species and therefore evaluate the risks of the tested NMP.
However, only very few studies to date have tested more than two species with the same

plastic material under the same test conditions (Chapter 7).!81,184.223,354-356

Particle characterization and composition. Plastic particle properties have been found to
influence their chances of being ingested and the appearance of adverse effects after their
exposure.® Therefore, a proper characterization of the size, shape and polymer type of
the tested plastic material is key to unravel the effects of NMP. In this thesis, we measured
the Particle Size Distribution (PSD) of the MP and NP. To characterize the shape, pictures
of the NP and MP were taken with a scanning electron microscope (SEM) and a
stereomicroscope, respectively. Polymer identity was confirmed with Thermogravimetric
analysis (TGA) for NP and the MP released from car tires and with u-Fourier Transform
Infrared spectrometry (FTIR) for the PS MP. In addition to the characterization of the
tested material, it is essential to guarantee the use of chemically clean plastic when the
aim is to assess the particle effects. Chemical additives such as flame retardants,
plasticizers or fluorescent markers, are often added during the synthesis of plastics to
provide them with specific functions.>” Chemicals can also be present in the solution
where particles are contained to keep them in suspension, such as surfactants, or due to
an incomplete synthesis of the polymers during the polymerization, such as styrene
monomers. When using plastic particles in powder form, which are big enough to not
homo-aggregate in a solution, cleaning the particles with a solvent to remove the potential
presence of chemicals is a good solution to disentangle particle from chemical effects. In
Chapter 2, MP were washed with methanol three times, shaken, filtered with a 20 um
metal sieve, rinsed with Milli-Q water and dried at room temperature. Removing
chemicals for NP or MP in solution can for instance be reached using dialysis purification
steps, ultrafiltration or by purging the solution with clean air.'27:219:220225.239 When
removing all chemicals from the NMP is not feasible, leachates or added chemical
controls are sometimes used to discern among particle and chemical effects or the
unlikeliness of chemical effects can be assessed by calculation. In Chapter 4, the NP
solution was purged with clean air and then aerated during the acclimatization to promote
the release of the volatile chemicals. The MP made from tires used in Chapter 3 were
not cleaned and the original material was tested, as our aim was to assess the combination
of the particle and chemical effects and compare them with previous studies testing
chemical leachates only, extracted under extreme conditions. In this case, all constituents
were quantified using TGA and a gas chromatograph coupled to a mass spectrometer
(GC-MYS).

Environmental realism. The need of using environmentally realistic concentrations in the
tests with NMP has been emphasized by several scientists, which is indeed very valuable
to understand the effects at current concentrations.!#%!4! Including higher concentrations
is important as well, as some organisms are able to tolerate MP weight concentrations up
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to 70% in sediment, and because environmental concentrations are expected to increase
in the future.''*3? In the case of NP, realistic concentrations are still unknown due to the
size limits of the available polymer detection techniques. However, Kooi and Koelmans
(2019) demonstrated that MP size distributions are fairly constant and showed how this
can be used to extrapolate across size classes.” We can therefore expect that
environmental mass and number concentrations of NP will be at least equal to those
reported for MP. Besides the environmentally realism of the concentrations used, the
NMP used in the tests do not often reflect well the plastic particle mixtures that are found
in nature. Most effect studies use a small sub-set of all possible plastic particle
characteristics (i.e. one size), while environmental plastic particles consist of mixtures of
different sizes, shapes and polymer types (Chapter 7).2>3 Using a limited size, shape or
polymer type may provide valuable information on how specific properties can influence
uptake and effects, and the selection of these properties will in the end be linked with the
purpose of the study. However, using environmentally realistic MP with a diversity of
particles that approximates distributions for the physicochemical properties of MP, will
enable better environmental realism in MP effects testing. Moreover, the properties of the
tested plastic materials in laboratory studies seem to strongly mismatch with the plastics
found in the environment (Chapter 7).'>!126223 For instance, while 58.1 % of the effect
studies with MP used spherical particles in their tests, spheres only represent a 6.5% of
the MP samples in water and sediments (Chapter 7).2%3 In Chapter 2, we used PS, whose
density matches that of the average environmental plastic,'3¢ ground to a wide range of
environmentally relevant sizes and shapes, as one of our aims was to study the physical
effects of the MP on the affected species (ingestion, excretion and bioaccumulation) and
to assess the maximum ingestible sizes and trophic transfer factors (TTFs) for a specific
polymer type. In Chapter 3, we made MP from five second-hand tires of various brands
ground to a wide range of sizes and shapes. Future effect studies should aim at using
diverse and environmentally realistic MP mixtures, as done by Binelli et al. (2020), who
tested MP collected from lakes.>3® The use of more environmentally realistic NP in effects
studies is more challenging, as the commercially available NP are typically polymerized
with one size and a spherical shape.!> Obtaining a range of sizes and shapes requires the
self-polymerization of the NP or their formation via the degradation of bigger plastic
particles. To our knowledge, only one study has evaluated the effects of NP produced
from the abiotic degradation of MP.2!” In Chapter 4, we used raspberry-shaped NP which
were designed with the purpose to increase the environmentally realism of the particles.??’
Finally, in the environment, NMP will undergo abiotic and biotic processes that modify
their physical properties and affect their uptake and effects.>® Therefore, the use of
environmentally relevant test conditions, such as natural water and sediment or long
system acclimatization periods before the exposure, will increase the ecological relevance
of the study, and the results found in the laboratory tests will be closer to what will happen
in the field due to the incorporation of naturally occurring factors. In all our single species
tests we used natural sediment, and the NMP were embedded in sediments for 14 days
prior to the start of the exposure, allowing for the formation of biofilms.
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Exposure assessment. In order to understand the mechanisms behind the detected adverse
effects for NMP, it is essential to measure their uptake by the exposed organisms. Most
studies assessing both uptake and effects have done it in separate experiments, often under
different conditions (e.g., different exposure times, various food conditions). Even though
this provides information with respect to the ability of the organisms to ingest NMP, the
test conditions and the species’ developmental stage may influence their uptake.*6%° For
instance, Ziajahromi et al. (2018) found that polyethylene MP with a size range of 100 —
126 pum significantly affected the emergence of Chironomus tepperi after 10 days of
exposure.®® However, they assessed the ingestion of these MP after 5 days of exposure
only, finding no uptake, and therefore suggested that the exposed organisms might have
been able to ingest them in the last 5 days due to their increase in size.?° This was based
on the findings of Scherer et al. (2017), who found a relationship between the life stage
and the sizes of the MP ingested for a similar species, Chironomus riparius.*® For this
reason, our experiments were designed with the purpose of quantifying the NMP inside
the body of the exposed organisms at the end of the 28-day exposure, after a 24 hours gut
depuration period. We measured the concentrations of NMP in the body of the organisms,
as well as in the faeces, in order to discern among the retained and the excreted NMP.

Various methods are used in the literature to detect NMP in biological samples, which
mainly depend on the size of the particles and the biological matrix of the species. Some
methods are based on the visual detection of fluorescently-labelled NMP using a
fluorescent microscope, which can lead to misinterpretation of the results due to leaching
of the fluorescent dye from NMP to the biological tissues.'?” Non-fluorescent MP are
often visually sorted under a microscope after purifying the samples, which may leave
out the small and light-coloured MP and include inorganic particles that have not been
removed well during the purification process.! As suggested in the critical review on
analytical methods assessing MP in biota samples by Hermsen et al. (2018), without
formal evidence of polymer identity using u4-FTIR spectroscopy or RAMAN, a particle
cannot be reported as being a MP.3! Thus, to accurately assess the MP ingested by the
exposed biota, these techniques should be applied when possible. In Chapter 2, 4-FTIR
spectroscopy was used to quantify the number and sizes of the PS MP in the body and
faeces of G. pulex. For Chapter 3, 4-FTIR spectroscopy could not be used due to the
high IR absorption of the TP, and the particles were visually assessed in the body and
faeces of G. pulex under a stereomicroscope. In both cases, organisms exposed to all
concentrations were previously purified and the measured concentrations in controls were
subtracted from the rest of the concentrations to account for potential contamination and
the presence of inorganic particles in the visually analysed particles. Quantification of NP
concentrations in complex matrices remains a challenge, as u-FTIR spectroscopy or
RAMAN have detection limits > 1 pm.3? A recent method has however been developed
to measure NP in complex matrices, which is based on the use of metal-doped NP, and
can therefore be measured with ICP-MS.2'227 This has been successfully applied for
waste water samples as well as biological samples.?'??” We applied this method in
Chapter 4 to measure the concentration of palladium-doped NP in the body and faeces
of G. pulex.
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When NMP concentrations in the exposure medium and in the biota after gut depuration
are measured, operationally defined trophic transfer factors (TTFs) or bioaccumulation
factors (BAFs) can be calculated by dividing the concentration of the NMP in the biota
by the concentration of the NMP in the exposure medium (Chapters 2 - 4),186:230,360,361
These factors allow for the comparison among different plastic particles and species,
revealing which NMP are more easily bioaccumulated and which organisms will transfer
more NMP to higher trophic levels. For instance, the TTFs for G. pulex exposed to PS
NP and PS MP via sediment were 0.031 and 0.025 pgxkg-1 biota / pgxkg-1 sediment
dw, respectively, revealing that both NMP were similarly incorporated and accumulated
on a mass basis (Chapter 4). Verifying actual NMP concentrations in the exposure
medium when possible is highly recommended to demonstrate the accuracy of the dosing
and to obtain solid factors.!#® Moreover, reporting the results in both number and mass
concentrations will facilitate the comparison across studies.*> While the actual PS MP
concentrations were not measured due to the laborious methods needed to quantify MP
in sediments, actual concentrations of the MP made from tires and PS NP in sediments
were rapidly assessed by analysing the zinc and palladium concentrations in sediments,
respectively, at the start of the exposure (Chapters 3 and 4). In both cases, the linearity
of the measurements demonstrated the accuracy of the dosing.

8.3 Opportunities to use outdoor tests to detect NMP effect thresholds at the community
level. In the effect assessment of NMP, higher-tier approaches consist of the
determination of community effect thresholds using semi-field experiments.!! For this, a
pelagic or benthic community is exposed to a range of NMP doses via water or sediment,
respectively, using outdoor mesocosms. At the beginning of this research, community
effect thresholds had never been measured for NMP, and therefore we framed a third
research question: How to perform high-tier outdoor tests to detect effect thresholds of
NMP at the community level? To address it, we followed previous studies assessing
community effect thresholds for other inert particles, such as activated carbon and multi-
walled carbon nanotubes.'?>?# Experiments consisted on the long-term exposure of a
well-established donor benthic invertebrate community inhabiting a semi-artificial
outdoor ditch to trays containing PS NP or PS MP at five concentrations ranging from 0
to 5% plastic/sediment dw (Chapter 5).22¢ Organisms were allowed to colonize the trays,
and four replicates per treatment were retrieved after 3 months, while four others were
retrieved after 15 months, in order to evaluate the effects of NMP on the community
composition, population sizes and species diversity.

As done for the detection of individual effect thresholds for NMP, a sufficient number of
doses, including environmentally realistic concentrations as well as higher ones, is needed
to measure dose-response relationships at a community level. Outdoor experiments are
ecologically relevant (Figure 8.1), which is one of the advantages of performing high-tier
tests. The environmental variables will influence the detection of effect thresholds, and
therefore, the use of a sufficient number of replicates is particularly important to account
for the variation given by the environmental factors. Moreover, to account for the spatial
variation in the outdoor system, the use of a randomized block design is recommended,
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which should be studied in the statistical analysis as a separate factor. In our experiments,
we studied the effect of time as well in the obtained results and found clear time-related
effects. Colonization ratios' were between 4 and 5.4 for the individuals/m? and 0.72 and
0.88 for the taxa, confirming a high tray colonization over this period. However, no
effects on the community were found after 3 months of exposure to NP or MP. One year
later, a statistically significant and substantial effect on benthic macroinvertebrate
abundance was found for the highest NP and MP concentrations. Time was a key factor
influencing the detection of community effect thresholds and outdoor tests should thus
last long enough to allow for the appearance of such effects. Despite the influence of
spatial variation and time on the total abundance of macroinvertebrates, effects of the
NMP were detectable, which illustrates the effectivity of the developed method to assess
their community effect thresholds.

A substantial reduction in the number of macroinvertebrates was found after 15 months
of exposure, which was mainly caused by the reduction of the most abundant family of
species. Other taxa were slightly affected, but their abundance was always below 40
individuals per tray, which shows that a sufficient abundance is required in order to detect
highly significant community effect thresholds. The growth of the populations cannot
however be controlled in these tests, and it will mainly depend on the donor community,
the ecosystem and the climate conditions. This is one of the challenges of using long-term
outdoor experiments, together with the difficulties of identifying the mechanisms behind
the effects found, as these become more complex when predator-prey interactions are
considered over more than one generation. Finally, verifying the concentrations of NMP
at the start and at the end of the exposure is needed when using open experimental units,
such as trays, which will increase the ecologically realism of the study even more in
contrast to closed experimental units.

Since the start of this thesis, several critical reviews and reports have claimed the lack of
available data with respect to the ecological impacts of NMP.!323% Nevertheless, no other
community effect thresholds have been published for NP or MP than those reported in
Redondo-Hasselerharm et al. (2020) (Chapter 5).22° Only in Green (2016) and Green et
al. (2017), the effects of MP were evaluated over 60 and 50 days, respectively, on two
marine bivalves and their associated benthic communities.®®%° For this, polypropylene
buckets were filled with intact sediment cores collected from the field and placed onto an
outdoor table with flow-through seawater.®®%° Five replicas per dose were made,
adequately covering the variations per concentration; however, only three MP doses were
tested, including the control, impeding the determination of reliable community effect
thresholds. Although some environmental realism was considered by using natural
sediment and seawater and by locating the trays outside the laboratory where they could
be affected by the climate conditions, the exposed organisms were still confined in the
buckets. As explained by the authors in the paper, these systems were a good compromise
between the highly controlled laboratory systems and field experiments.3%%

1 Colonization ratios were defined as the number of individuals/m? (or taxa) in trays retrieved after 3 months divided by the number
of individuals/m? (or taxa) in the donor system at the start of the experiment.
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8.4. Opportunities to use in vitro assays to inform the risk assessment of NP. Humans can
be exposed to NMP and little is known about the potential impacts on human
health.!3115265 Several studies have been published where the effects of NMP have been
evaluated using in vitro bioassays. Although these are commonly used as a screening tool
to monitor water quality, their results can be used in risk assessment.3*? They are able to
detect the effect of all active known and unknown chemicals in a sample, can account for
mixture effects and are animal-protective. However, as it occurs for the laboratory and
outdoor effect tests, no standard methods exist to assess the effects of NMP on humans.
For this reason, we formulated the fourth research question: To what extent can in vitro
tests with relevance for human health be used to detect effects of NP?

To answer this research question, in Chapter 6 we evaluated the genotoxicity of
nanoplastic particles of two sizes (50 and 500 nm) at four concentrations (0, 2.5, 25 and
250 pg/l) alone and in combination with chemicals extracted from surface water and
wastewater treatment plant (WWTP) effluent water using the Ames fluctuation test. This
test is a cost effective alternative to mammalian genotoxic testing (e.g., micronucleus and
comet assay), designed to detect base-pair and frameshift mutations in the genome of two
Salmonella typhimurium strains with and without metabolic activation.?”> No significant
genotoxic effects of any NP size were detected in the absence of extracted chemicals. In
contrast, adverse mixture effects were found with regards to mutagenicity for NP in
combination with chemicals from surface waters. To date, other types of genotoxicity (i.e.
double strand breaks and micronuclei) have been demonstrated for NP using in vitro
bioassays with relevance for human health.2”!-?7? These could not be visible in the Ames
fluctuation test, which is only able to detect base pair and frameshift mutations.?”>
Therefore, each in vitro test is very specific on an endpoint, meaning that a battery of tests
should be done to cover all types of genotoxicity. Additionally, environmental NP are
highly diverse with respect to sizes, shapes, polymer types and surface characteristics.
This means that NP characteristics might influence the effects found.

The Ames fluctuation test has been previously conducted to test the genotoxicity of other
nanoparticle types, such as multi-walled carbon nanotubes (MWCNTs), diesel exhaust
nanoparticles (DEPs), ultra-fine nanoparticles (UFPs) or metal nanoparticles.?’6-278:363
However, the suitability and sensitivity of this test to evaluate nanoparticle mutagenicity
has been put into question.?®’ Clift ez al. (2013) showed that various nanoparticles were
able to penetrate S. ryphimurium without inducing a significant mutagenicity through the
Ames test.”” In contrast, some of these nanoparticles induced a significant mutagenic
effect using an in vitro mammalian cell system, suggesting that the Ames test may not be
a good indicator for nanoparticle mutagenicity.?®’ Based on their outcomes, NP uptake
by S. typhimurium does not seem to be directly related with mutagenic effects in the Ames
test.?8” In Chapter 6, we found a lack of reproducible genotoxic responses in the two
independent experiments conducted with NP in combination with surface and WWTP
effluent water, which might be caused by temporal fluctuations in surface and wastewater
or by having responses around the detection limit. The sorption of chemicals to the NP
and the well-plates walls, as well as the aggregation of the NP could differ among
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replicates. For this reason, studying the behaviour of the NP in the tested medium and the
use of a larger number of replicas might be needed to increase the accuracy of the test
results. This will compromise the number of doses that can be tested, reducing the
statistical rigor in detecting effect thresholds for the evaluation of NP risks. In summary,
the Ames fluctuation test does not seem to be a suitable bioassay to assess the risks of NP
alone and together with chemicals extracted from surface water and WWTP effluent.

8.5. A quantitative scoring system to evaluate the quality of MP effect studies and to
identify demonstrated mechanisms for MP effects. Since the beginning of this thesis, an
increasing number of studies has been published reporting the effects of MP on aquatic
biota using single species tests. Figure 8.2 shows the number of papers reporting effects
of MP and/or NP on aquatic species, with or without sorbed contaminants, additives,
metals or other engineered particles, published since the first one available in 2008. The
figure was made using 305 papers assessed in recent reviews (Chapter 7).'3125126 The
number of publications reporting effects of MP and NP is exponentially increasing and is
about 2x higher for MP than for NP. Even though the number of papers reporting effects
of MP on aquatic organisms is increasing over time, the usability of the results in risk
assessment is still low, as there is a lack of consistency and standardization among the
test methods followed due to the absence of guidelines for the assessment of MP effect
thresholds. Moreover, even though some studies are able to demonstrate mechanisms
behind the effects found, most of them suggest mechanisms that are poorly supported by
the experimental design or the results obtained. This has led to considerable speculation
regarding to the effects and effect mechanisms reported, which represents a problem for
risk assessment and decision-makers. To address these issues, we framed the two final
research questions: What could be improved in effect tests when it comes to quality
assurance?; and, Which effect mechanisms can be considered as demonstrated when
strict quality criteria are applied to the literature?

To answer them, in Chapter 7,72° we first assessed the quality of the data from studies
reporting effects of MP, adopting similar existing methods (e.g., Klimisch and CRED
approaches),’!?!2 which were recently applied to address the quality of exposure
concentrations of MP in biota and surface water. For this, we designed a scoring system
based on 20 quality criteria (QA/QC) included in four categories and applied it to 105 MP
effect studies. The results obtained allowed us to identify which categories had been
addressed best and which ones need to be revised by future studies in order to conduct
reliable ecotoxicity tests. Many studies to date have stated the need to harmonize the
methods and to improve the quality of MP exposure and effect studies. In fact, since the
publication of the quality criteria on the analysis of MP in biota samples by Hermsen et
al. (2018), several publications have considered it to elaborate the experimental design
and ensure the quality of the study.’¢*3% This indicates that guidelines addressing the
quality of the literature are acknowledged by the scientific community and that future
approaches may be more consistent across research groups, leading to a better
understanding of MP effects on aquatic organisms.
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Figure 8.2. Number of publications per year reporting effects of micro- and nanoplastics on aquatic biota,
alone or with sorbed contaminants, additives, metals or other engineered particles. Papers of the year 2020
were collected for the first half of 2020 and were multiplied by 2. A total of 305 publications were used,
from which 16 tested both particle types.

Next to the scoring, we noted the demonstrated and suggested effect mechanisms reported
by the 105 reviewed papers. There were 10 effects mechanisms identified as suggested
and 3 additional ones reported as speculated only. While these studies described an effect
mechanism as suggested 100 times, they only claimed a demonstrated effect mechanism
in 34 occasions. This shows that the experimental design of a great number of these papers
did not aim to explain the adverse effects observed. Then, scores obtained in three crucial
quality criteria were used as a quantitative weight of evidence (WOE) approach to assess
the relative strength of an effect mechanism. The criteria were chemical purity, addition
of food, and exposure assessment of the test organisms. Finally, the total QA/QC score
obtained by each of the studies was used to assess the relative credibility of mechanisms
underlying adverse effects reported. Outcomes of Chapter 7 revealed that the WOE was
strongest for the following mechanisms: inhibition of food assimilation and/or decreased
nutritional value of food, internal physical damage and external physical damage.

Although this is the first quality criteria developed based on a quantitative scoring system
for MP effect studies, other critical reviews have addressed their flaws and have suggested
approaches for improving their protocols.!**!4! Also, several recent reviews performed
meta-analysis with literature data and discussed the evidences regarding the occurrence
of MP effects and the underlying effect mechanisms.!26-399310.367 However, the quality of
the studies was not taken into account, which could potentially bias the results obtained.
For instance, Bucci et al. (2020) stated that the most evident mechanism underlying
growth reduction was MP ingestion, which lead to a lower food assimilation.3?® Similarly,
a decreased reproductive output was attributed to a reduced feeding, affecting the energy
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allocation for reproduction.?” These conclusions are in agreement with the mechanisms
identified in Chapter 7 following a WOE approach.??> Another described mechanism
was the presence of chemicals in the MP, which could affect the endocrine system and
increase organism’s reproduction.’*® Nevertheless, without taking the quality criteria of
chemical purity into account, it is unclear whether the studies using this mechanism to
explain an effect discerned between particle and chemical effects. In fact, based on the
results of our scoring, only 20% of the studies ensured chemical purity (Chapter 7).22
Finally, Kogel et al. (2020) summarized nine determining factors behind MP toxicity on
aquatic biota based on the literature, which are concentration, particle size, polymer type,
polymer condition (shape, weathering, surface modifications), food availability, exposure
time, background contamination, species, sex and developmental stage.!?6 These are
directly related with the effects and effects mechanisms found for MP and should be
addressed by future studies in their experimental design in order to have a better
understanding on the toxicity of MP on aquatic organisms.

8.6. Current risks of MP in freshwater sediments. In Chapters 2 - 5, we determined the
individual and community effect thresholds for freshwater benthic invertebrates exposed
to MP via sediment. In this section, the results obtained in previous chapters are used
together with literature data to conduct an effect assessment for MP in freshwater
sediments following the tiered approach (Figure 8.3). The tiered approach is commonly
used to assess the effects of chemicals but also can be applied to evaluate MP effects.!!
Due to the absence of guidelines to assess the risks of MP, the EFSA guidance on tiered
risk assessment for chemicals was followed.’®® In a tiered effect assessment, Predicted
No Effect Concentrations (PNECs) are calculated for the different levels of ecological
relevance and complexity. Then, PNECs are compared with Predicted Environmental
Concentrations (PECs), which are calculated using mathematical models, or Measured
Environmental Concentrations (MECs), which are calculated using field concentrations
measured for the ecosystem under consideration, or reported in the literature for similar
ecosystems, with the PEC- or MEC- to PNEC ratio used as an indicator of risk.*0-%4
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Figure 8.3. Schematic overview of a tiered approach in an environmental risk assessment. In each tier, a
predicted no effect concentration (PNECs) is calculated, which can then be compared with predicted
environmental concentrations (PECs) or measured environmental concentrations (MECs) to assess the
risks (adapted from Diepens et al., 2014).3%°

8.6.1. Exposure assessment: MECs in freshwater sediments. To calculate measured
environmental concentrations (MECs) in freshwater sediments for the risk
characterization of MP, we compiled the number concentrations (particles’kg dw) for 20
water bodies reported by eleven peer-reviewed studies (Table AS8.1). Then, to solve the
non-alignment of the MP concentration data given by the studies that targeted different
MP size ranges, data were rescaled following the methodology described in Koelmans et
al. (2020).233 For each of the reported size ranges, the number concentration was rescaled
to match a common range of 1 to 5000 pm. For the risk characterization, the minimum,
maximum and mean MECs reported for these 20 water bodies are plotted as a cumulative
frequency distribution and compared with the PNECs obtained in each tier (Figure AS8.1).

8.6.2. Tier 1: Effect assessment using standard single species tests. In tier 1, threshold-
effect concentrations are measured for a variety of species belonging to different
taxonomic groups using standard single species tests. To calculate the risk
characterization ratio (RCR), the MEC is divided by the PNEC derived after applying the
corresponding assessment factor (AF).%>3% In Chapter 2, we tested six freshwater
benthic invertebrates: G. pulex, H. azteca, A. aquaticus, Tubifex spp., and L. variegatus,
and S. corneum.'®® Using the same experimental design, Clokey et al. (2020) tested three
additional freshwater benthic species: Procambarus acutus, Pacifastacus leniusculus and
Potamopyrgus antipodarum.’’® Finally, two freshwater macrophytes were tested for the
same sediment and MP mixture: Myriophyllum spicatum and Elodea spp. From this total
of eleven species, only G. pulex showed a reduction in growth when exposed to PS MP
fragments with a size range between 20 and 500 pm, with an ECio of 3.37x10°
particles/kg dw, which corresponded to 1.07% sediment dw (Chapter 2). To calculate
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the PNEC based on this effect threshold in tier 1, an AF of 10 was chosen following
Diepens et al. (2015).> A PNEC of 3.37x10® particles/kg dw, which corresponded to
0.107% sediment dw was thus obtained for tier 1. With the aim of comparing the obtained
PNEC with the rescaled MECs, the PNEC was rescaled for the bioavailable MP fraction
following Koelmans et al. (2020). For this, we used the size of the biggest MP ingested
by G. pulex in Chapter 2, which was 165 um. The rescaled to 1 - 165 um PNEC was
7.77x10"! particles/kg dw. When visually comparing the rescaled PNEC with the rescaled
MECs, we observe that all MECs are below the PNEC obtained in tier 1 (Figure A8.2).
Additionally, the RCRs calculated for all water bodies are below 1, indicating no
immediate risk of MP to freshwater sediments at tier 1.

8.6.3. Tier 2: Effect assessment using Species Sensitivity Distributions. In tier 2, the
ecotoxicity data generated in tier 1 and additional ecotoxicity data taken from the
literature are combined in Species Sensitivity Distributions (SSDs). In these SSDs, a HCs
value is calculated, which is the value where 5% of the species would be affected in an
ecosystem. A PNEC is then derived from the HCs value after applying the corresponding
AF, which can be then compared with the MEC to assess the RCR.%37! To construct the
SSD, we used the data from tier 1 in combination with literature chronic effect threshold
concentrations for freshwater benthic species exposed to MP via sediments. A summary
of the data used in the SSD is provided in Table A8.2. Only chronic exposures (> 10 d)
were used and the ecotoxicological endpoints selected were survival, growth,
reproduction and emergence. Following Adam ef al. (2019), LOECs were extracted only
if no LCx or ECx values were reported and the highest NOEC was used only if no other
endpoints were provided. Dose descriptors ECx and LOECs were converted to NOECs
using an AF of 2, according to the ECHA guidelines.3”' Again, following Koelmans et
al. (2020), to develop an SSD consistent with the rescaling concept applied for MECs,
effect thresholds were converted into volume equivalent threshold-effect concentrations
for environmental MP, which were meant to solve the non-alignment with respect to the
sizes, shapes and densities of the MP used in the tests. Then, we calculated actual
exposure concentrations using the maximum ingestible sizes for the tested freshwater
benthic species (Table A8.3). As for some of the species no data on MP ingestion was
given in the studies reporting the effect thresholds, we defined them based on maximum
ingestible food sizes or mouth opening size obtained from the literature. For the
macrophytes, the bio-unavailable fraction was assumed to be negligible.?3* The bivalve
S. corneum was excluded from the SSD because the maximum ingestible particle and
food sizes found in the literature were always < 20 um, which was the smallest MP used
in the effect test.*>*7> The SSD with the rescaled threshold-effect concentrations plotted
as a cumulative distribution is shown in Figure 8.4.
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Figure 8.4. Species Sensitivity Distribution (SSD) for freshwater benthic species exposed to microplastics
via sediment using single species tests (R? = 0.844; HCs = 1.13x10° particles/kg dw). Values are corrected
for the bioavailability and polydispersity of the microplastics. Grey curves relate to 95% CIL.

The HCs obtained from the SSD is 1.13x10° particles/kg dw, with the 95% low and high
confidence interval (CI) boundaries being 1.61x10% and 8.01x10% particles’kg dw,
respectively. Following Diepens et al. (2015), we addressed the remaining uncertainty in
the HCs caused by the wide CI by applying an AF of 4 and obtained a tier 2 PNEC of
2.84x103 particles/’kg dw, with 4.01x10? and 2.00x108® particles’kg dw as the low and
high CI. Most sensitive organisms to MP pollution seem to be diptera larvae from the
genus Chrironomus, which were severely affected at low MP concentrations,?*?3¢ and the
macrophytes M. spicatum and Elodea spp., which can be affected by the whole MP size
continuum,??® which increases their sensitivity. The least sensitive organisms are the snail
P. antipodarum, the amphipod H. azteca and the worms L. variegatus and Tubifex spp.
To assess the risk of MP in tier 2, the MECs as well as the PNEC and low 95% CI are
plotted in Figure 8.5. When looking at the maximum MECs reported and using the PNEC
based on the median HCs, we observe that MECs exceed the maximum measured PNECs
for three water bodies. These water bodies are the Wen-Rui Tang River in China,*® the
Amsterdam Canals in The Netherlands,!?! and the Elbe River in Germany,3”? for which
RCR of 1.64, 1.38 and 1.14 are calculated with the maximum MECs reported,
respectively. The RCR in the Wen-Rui Tang River is above 1, indicating that there is a
risk. Therefore, we can conclude that MP pose a risk for the benthic biota living and
feeding in freshwater sediments of 15% of the water bodies studied, according to this risk
assessment approach. In addition, it should be noted that all MECs exceed the lower 95%
CI of the PNEC (Figure 8.5), indicating that we cannot assure that any location could not
experience a risk.
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Figure 8.5. Cumulative frequency distribution of rescaled to 1-5000 um measured exposure concentrations
(MECs) in 20 water bodies from Europe, Asia and Africa compared to the predicted no effect concentration
(PNEC) obtained in Tier 2 based on the HCs calculated from a species sensitivity distribution (SSD) for
freshwater benthic species. MECs are based on the minimum, maximum and mean concentrations reported.
Labels: 1) Wen-Rui Tang River in China; 2) Amsterdam Canals in The Netherlands; 3) Elbe River in
Germany.

This is the first SSD made for freshwater benthic biota exposed to sediment-MP mixtures.
It includes twelve benthic species of various taxonomic groups (five crustaceans, two
annelids, two insect larvae, two macrophytes, and one mollusc), meeting the minimum
requirement of ten species set by the European Chemicals Agency (Table A8.2).3"!
Current data available on MP effect thresholds measured for freshwater benthic biota and
MECs of MP in freshwater sediments are limited, making the conclusions of the observed
risks assessment based on a tier 2 PNEC preliminary. Moreover, the rescaling concepts
applied here,?*? are provisional and need further validation with empirical data. To obtain
a robust SSD for sediment-dwelling species exposed to MP, effect thresholds should be
measured on a larger number of species and for the species already present in the SSD
exposed to other MP types. Finally, MP concentrations should be measured in a wider
number of freshwater ecosystems globally to have a better view on current environmental
concentrations of MP. This is particularly important due to the demonstrated risks in this
preliminary SSD.
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To date, 5 studies have evaluated the risks of NP and/or MP in marine and/or freshwater

40.95-97 Everaert et

ecosystems by constructing SSDs with data available in the literature.
al. (2018) performed a risk assessment for marine biota exposed to MP (size: 0.001 — 5
mm);’” Burns & Boxal (2018) and VKM (2019) combined marine and freshwater effect
thresholds from organisms exposed to MP (size: 10 um — 5 mm) to increase statistical
power due to the low number of data available to build separate SSDs;?®37* Besseling et
al. (2019) also combined marine and freshwater ecotoxicity data for the same reason but
made two separate SSDs based on the size of the particles: one for NP (size: 1 — 100 nm)
and one for MP (size: 1 pm — 5 mm);* Adam et al. (2019) created an SSD for freshwater
data combining NP and MP in the same SSD.*® These studies also stated the preliminary
character of their SSDs due to the low number of data available and expressed the need
to improve the quality of the data. It is important to mention that, although the taxonomic
groups included in the published SSDs for NP and MP belonged to pelagic and benthic
species, they included water exposure data only. While Burns & Boxal (2018) and
Everaert et al. (2018) found no risks of MP at current measured and predicted
environmental concentrations,’®’” Besseling et al. (2019), Adam et al. (2019) and VKM
(2019) found indications of risks at some locations where MP concentrations were
measured.**2>374 These differences may be explained by the improvement of the methods
used to detect MP in water samples, which has allowed recent publications to quantify
MP with smaller particle sizes, which often seem to be present in high numbers.?>37*
Besseling et al. (2019) stated that risks of MP could occur at near-shore marine surface
waters,** Adam et al. (2019) showed 0.12% of the global MECs had a RCR > 1,” while
VKM (2019) demonstrated that the RCR was above 1 in 5% of the sampled locations,
including marine and freshwater ecosystems.?’* Therefore, based on tier 2 PNECs, risks
of MP in marine and freshwater ecosystems cannot be excluded.

8.6.4. Tier 3: Effect assessment based on outdoor ecosystem level tests. In tier 3, semi-
field experiments are carried out to measure effect thresholds at the community level. A
PNEC is then derived after applying the corresponding AF and compared to MECs. The
only study published to date assessing effect thresholds for freshwater benthic
communities is Redondo-Hasselerharm et al. (2020) (Chapter 5).2%¢ Here, a mass based
NOEC of 0.5% of MP per sediment dw was obtained after exposing a freshwater benthic
community to PS MP fragments via sediment for 15 months.??® Following Redondo-
Hasselerharm et al. (2018) (Chapter 2), a mass based NOEC was calculated using the
mass of PS MP per dose, the density of PS (1.05 g/cm?) and the measured particle volume
distribution. A number-based NOEC of 1.58x10° particles’kg dw was thus obtained.
According to the Water Framework Directive (WFD)?”>, we used an AF of 5 to account
for the variation in the NOEC, obtaining a tier 3 PNEC of 3.15x108 particles/kg dw. No
rescaling was applied to this value because ingestion was not assessed for the community.
When plotting the MECs together with the tier 3 PNEC, we observe that the PNEC is
much higher than the maximum MP concentrations detected in freshwater sediments
(Figure A8.2). Thus, we can conclude that MP do not pose a risk for freshwater benthic
communities at current environmental concentrations.
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8.6.5. Tiered risk assessment for nano- and microplastic: Limitations and
recommendations. Following the outcomes of tier 1 in the environmental risk assessment
provided in the previous section, we could conclude that MP are not expected to cause
significant effects on benthic species via a sediment exposure (Figure A8.2). However,
the predicted no effect concentration (PNEC) calculated in tier 1 is based on the results
of eleven species exposed to the same PS MP under equal laboratory conditions.
Therefore, even though tier 1 is a good first step to understand what effects PS MP could
have on a particular freshwater ecosystem, we should aim at increasing the environmental
relevance of the risk assessment by moving on to a higher tier (Figure 8.3). In tier 2, the
data from tier 1 are compared with individual effect thresholds reported for other benthic
species using a Species Sensitivity Distribution (SSD). In contrast of the results obtained
in tier 1, in tier 2 we observe that MP could pose a risk for the most sensitive benthic
species in highly polluted freshwater sediments (Figure 8.5). Nevertheless, it should be
noted that the diptera larvae Chironomus tepperi is the only species below the HCs value
in the SSD (Figure 8.4.), which would thus be affected by the MP exposure in these highly
polluted ecosystems.?® This data point (C. tepperi) is actually based on the results of one
study only where significant adverse effects were found for the diptera larvae when
exposed to low PE MP concentrations.® In this paper by Ziajahromi et al. (2018),%° which
scored 18 out of 40 in our QA/QC (Chapter 7),%? the chemical purity of the MP was not
addressed and the measured effect threshold was based on one MP concentration only.®
Therefore, we should be careful when claiming that MP could pose a risk for freshwater
benthic species and consider these outcomes as preliminary. To improve the accuracy of
the measured HCs, individual effect thresholds need to be measured for a larger number
of benthic organisms and for the species already present in the SSD exposed to other MP
types, ideally following a QA/QC to ensure the reliability of the data. For NP, as
mentioned earlier, insufficient data is available for such an assessment.

Future laboratory studies should also aim at unravelling the mechanisms behind the
effects found. In de Ruijter et al. (2020) (Chapter 7),>* we observed that three
mechanisms were the most evident after applying a weight of evidence approach.??*> One
of them, which was the inhibition of food assimilation and/or decreased nutritional value
of food, was used to explain the reduction in growth found for G. pulex in Redondo-
Hasselerharm et al. (2018) (Chapter 2).'%¢ In Chapter 4, G. pulex of a similar size range
were exposed to metal-doped NP using the same experimental design and the same
sediment as in Chapter 2 and no effects of NP on the growth of G. pulex were found, as
opposed to the MP. We modelled the bioaccumulation of MP and NP in G. pulex and
observed that both particle types yielded very similar mass-based trophic transfer factors
for the gut at the end of the 28 days of exposure. However, the mass-based trophic transfer
factor for the body of G. pulex, reflecting accumulation in the irreversible fraction, was
4.5 times higher for the MP than for the NP. This suggests that MP might be trapped more
easily in the gut in comparison to NP. Therefore, determining the mechanisms and factors
behind the effects observed in laboratory tests with NP and MP should be considered by
upcoming studies.
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When looking at the results of tier 3, where the ecological relevance of the data increases
(Figure 8.3), we observe that the PNEC derived from the community effect threshold for
MP was several orders of magnitude above the MECs in freshwater sediments (Figure
A8.2). In this case, we conclude that MP do not seem to pose a risk for freshwater benthic
communities at current concentrations. To date, no other study assessed the effects of MP
on a freshwater benthic community and the results of tier 3 are only based on Redondo-
Hasselerharm et al. (2020) (Chapter 5)%%°. Here, the total number of Chironomini, which
is the tribe where the genus Chironomus belongs to, was generally low after 3 and 15
months (averages < 30 organisms per system), hindering the detection of statistically
significant effects. Future studies should aim at evaluating community effect thresholds
for MP using outdoor ecosystems to have a better understanding of the ecological risks
of MP. Short term laboratory-controlled systems are useful to learn about the effects and
effect mechanisms of MP on biota; however, they neglect relevant factors such as time,
which affects the ecological interactions that occur in real habitats and the evolution of
multiple generations. Moreover, in the single species tests performed in the laboratory,
organisms are confined to a small environment where they are continually exposed to the
MP. In contrast, in open outdoor tests as those used in Redondo-Hasselerharm et al.
(2020) (Chapter 5), organisms are able to enter and leave the trays, better mimicking
what would occur in real ecosystems. Therefore, future efforts should be put on evaluating
the risks of MP at tier 3, with a focus on the species that have already shown to be sensitive
to the presence of MP in sediments.

8.7. Concluding remarks. Plastic production has exponentially increased since the 1950s,
leading to an augmented presence of plastic waste in marine and freshwater ecosystems
over time.>*’° In a recent study, a MP-time curve was made by using the sedimentary
record from an urban lake in China.3’® They found that MP abundance increased from
741 to 7707 particles/kg over the past 60 years.’’”® Nowadays, plastic production is still
increasing and, therefore, MP concentrations are expected to also be higher in the future.?
For this reason, MECs need to be measured in a wider range of freshwater bodies around
the globe to have a broader overview on current environmental MP concentrations, but
also predicted environmental concentrations should be estimated using mathematical
model to assess prospective environmental risks of MP. In their risk assessment, for
instance, Everaert et al. (2018) predicted a 50-fold increase in the total MP mass in the
ocean between 2010 and 2100.°7 Similar predicted environmental concentrations should
be calculated for freshwater sediments and compared with the predicted no effect
concentrations derived in this thesis. The results of this preliminary freshwater sediment
risk assessment for MP, as those MP risk assessments already available in the literature
for marine and surface waters,**>*°7374 could be used by public authorities to establish
permissible exposure limits to guarantee the wellbeing of the ecosystems in the future.
Finally, the issue of nanoplastic remains one of the largest knowledge gaps, which calls
for urgent attention.
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Appendix of Chapter 2

Table A2.1. Calculation of the weighted average density for environmental microplastics based on data
provided by Andrady et al. (2011).

Table A2.2. Background elemental concentrations of Zn, Cd, Cr, Cu, Ni and Pb in the Veenkampen
sediment using a) Extraction with HNOs-HCI; b) Extraction with 0.01M CaCl,, compared to the Dutch
Sediment Quality Criteria (SQC) based on Target values.

Table A2.3. Water Quality Parameters (Mean+SD.).

Figure A2.1. Particle Size Distribution (n = 3) of the original microplastic mixture in: a) Volume %; b)
Number %.

Figure A2.2. Light microscope pictures of the irregularly shaped particles (Olympus SZX10
Stereomicroscope).

Figure A2.3. Growth of G. pulex as a function of polystyrene microplastic dose.

Figure A2 4. Mean feeding rate (+SD) as mg dw of Populus sp. leaves consumed per organism per day
during the 28-day exposure to PS microplastic concentrations ranging from 0 to 40 % in sediment (dw) for
a) G. pulex; b) H. Azteca; c) A. aquaticus.

Figure A2.5. Mean egestion rate (+SD) as mg dw of faeces egested per organism per day during a 15-d
exposure to PS microplastic concentrations ranging from 0 to 40 % in sediment (dw) for a) Tubifex spp, b)
L. variegatus.

Figure A2.6. Size Frequency of a) Retained Microplastics; b) Egested Microplastics.

Figure A2.7. Mean microplastic concentration (n = 4) per individual of G. pulex (+SD) at increasing
microplastic concentrations in sediment as a) number of microplastics egested per organism by number of
microplastics per kg of sediment (dw); b) g kg!' of microplastics egested per organism dw by g kg of
microplastics per sediment (dw).
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Table A2.1. Calculation of the weighted average density for environmental microplastics
based on data provided by Andrady et al. (2011).2°

a) Calculation assuming a density of 1 g/cm? for the rest fraction of 6%.

Plastic type Density Fraction Weighted
(g/em?)? Produced? (g/cm?)
LDPE 0.92 0.21 0.1932
HDPE 0.94 0.17 0.1598
PP 0.84 0.24 0.2016
PS 1.05 0.06 0.063
PET 1.37 0.07 0.0959
PVC 1.38 0.19 0.2622
REST* 1 0.06 0.06
WEIGHTED AVERAGE DENSITY ¢ 1.0357

a according to Table 1 in Andrady et al. (2011)*
b for the REST fraction of 6% a density of 1 g/cm® was assumed
¢ the weighted average density is the average density of environmental microplastic,

assuming all produced plastic types contribute to microplastic with weights equal to their
production fraction

152



Appendices

Table A2.1, continued

b) Calculation neglecting the unknown rest fraction by scaling the sum of the
fractions for the known polymers to 100%

Plastic type Density Fraction Weighted
(g/cm?)? Produced® (g/cm?)
LDPE 0.92 0.21 0.1932
HDPE 0.94 0.17 0.1598
PP 0.84 0.24 0.2016
PS 1.05 0.06 0.063
PET 1.37 0.07 0.0959
PVC 1.38 0.19 0.2622
WEIGHTED AVERAGE DENSITY"® 1.0380

2 according to Table 1 in Andrady et al. (2011)%°
b the weighted average density is the average density of environmental microplastic,

assuming all produced plastic types contribute to microplastic with weights equal to their
production fraction
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Table A2.2. Background elemental concentrations of Zn, Cd, Cr, Cu, Ni and Pb in the
Veenkampen sediment using A) Extraction with HNO;-HCI; B) Extraction with 0.01M
CaCl,, compared to the Dutch Sediment Quality Criteria (SQC) based on Target values.

a)
Zn Cd Cr Cu Ni Pb
[mg/kg] [mg/kg
[mg/kg] [mg/kg] [mgkg] [mgkg] 1
Detection limit 5 0.05 0.8 3 1.6 0.3
Veenkampen 75
sediment 0.47 475 26 31.7 319
Dutch SQC* 140 0.8 100 36 35 85
b)
Zn Cd Cr Cu Ni Pb

[mg/kg] [mg/kg] [mgkg] [mgkg] [mgkg] [mgkg]

Detection limit

Veenkampen
sediment

Dutch SQC*

300 3 5 400 6 20
11

1 14 6 16 0

140 0.8 100 36 35 85

2 Values giving an indication of the benchmark for environmental quality in the long term
on the assumption of negligible risks to the ecosystem (background concentration of
metals (Cb) presented in Table 6.2 in Lijzen et al., 2001) .37
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Table A2.3. Water Quality Parameters (Mean+SD)

Species pH 0, EC T NH,
[mg/1] [nS/m] [°C] [mgN/]
G. pulex 7.7+0.1 8.8+0.1 474£17 1624006 0.04+0.01
H. azteca 74+0.1 9.2+0.2 409+15 16.0£0.04 0.04+0.01
A. aquaticus 7.3+0.1 9.0+0.1 562+110 15.8+0.09 n.a.
S. corneum 7.3+0.2 8.8+0.2 473x16  16.7+0.08 0.02+0.003
L.variegatus 7.2+0.1 8.7+0.2 478+28  15.840.04 n.a.
Tubifex spp. 7.1£0.1 8.8+0.2 46625  15.9+0.04 n.a.

n.a.= not analysed
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Figure A2.1. Particle Size Distribution (n = 3) of the original microplastic mixture in: a)
Volume %; b) Number %.
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Figure A2.2. Light microscope pictures of the irregularly shaped particles (Olympus
SZX10 Stereomicroscope).
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Gammarus pulex
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Figure A2.3. Growth of G. pulex as a function of polystyrene microplastic dose. The red
curve relates to the best fit of the log-logistic response model (Eq. 2 in the main
manuscript). The 50 % effect (ECs) is fitted at a dose of 3.57% dw. The EC,, was
obtained by solving Eq 2 for the dose at 10% of the observed effect (1.07 % dw).
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a) Gammarus pulex
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Figure A2 4. Mean feeding rate (+SD) as mg dw of Populus spp. leaves consumed per
organism per day during the 28-day exposure to PS microplastic concentrations ranging

from 0 to 40 % in sediment

(dw) for a) G. pulex; b) H. Azteca, c) A. aquaticus.
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a) Tubifex spp.

Egestion rate
{mg dw faeces/mgdw worm/h)

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1 —e—0 % (Control)

1 —e—0.10%

b 40%

I ¥

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Time (day)

b) Lumbriculus variegatus

Egestion rate
(mg dw faeces/mg dw worm/h)

1.0

0.9 -
0.8 -

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

—e—0 % (Control)

—8—0.10%
b 40%
e | | 1
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time (day)

Figure A2.5. Mean egestion rate (+SD) as mg dw of faeces egested per organism per day

during a 15-d exposure to PS microplastic concentrations ranging from 0 to 40 % in
sediment (dw) for a) Tubifex spp, b) L. variegatus.
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Figure A2.6. Size Frequency of a) retained microplastics; b) egested microplastics; c)
total ingested microplastics (sum of a and b).
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b)
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Figure A2.7. Mean microplastic concentration (n = 4) per individual of G. pulex (+SD) at
increasing microplastic concentrations in sediment as a) number of microplastics egested
per organism by number of microplastics per kg of sediment (dw); b) g kg' of

microplastics egested per organism dw by g kg'! of microplastics per sediment (dw).
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Appendix of Chapter 3

Table A3.1. Car tires used for the manufacturing of TP.
Table A3.2. TGA, GC-MS and ICP-MS instrumental settings to analyse car tire TP.
Table A3.3. Polymer pyrolysates detected in the used car tire tread particles by TGA coupled to GC-MS.

Table A3.4. Mean (£SD) temperature (°C), pH, DO (%) and EC (uS/cm) in each treatment for all species
tested.

Table A3.5. Measurements of Zn, S, Cd, Cr, Cu, Ni and Pb concentrations at six car tire TP concentrations
in sediment dw (0, 0.1, 0.3, 1.0, 3.0 and 10 %) using: a) extraction with HNOs-HCL; b) extraction with
0.01M CaCla.

Table A3.6. Concentration of PAHs (in mg/kg) at six car tire TP concentrations (0, 0.1, 0.3, 1.0, 3.0 and 10
%) in sediment dw.

Table A3.7. Mean dry weight (in mg) and area (in mm?) of ten car tire tread particles per replicate (in
quadruplicate) before and after their addition to H2O2 and H2O for 24 hours.

Figure A3.1. Particle size distribution of the car tire TP determined by a) volume of particles b) the number
of particles.

Figure A3.2. Pictures of the car tire TP mixture taken with a CMEX camera (Euromex, The Netherlands)
under an Olympus SZX10 Stereomicroscope.

Figure A3.3. Weight loss (%) of individual car tire TP and their mixture using thermogravimetric analysis.
Figure A3.4. Pyrogram of the analysed car tire TP represented by the total ion current.

Figure A3.5. Nominal Zinc (Zn) concentration in sediment (X-Axis) against measured Zinc (Zn)
concentration in TP-sediment mixtures (Y-Axis).

Figure A3.6. Feeding rate (mg dw leaf/organism/d) of G. pulex and A. aquaticus after 28 days of exposure
to car tire TP at increasing concentrations in sediment.

Figure A3.7. Size frequency of the total number of car tire tread particles measured in the body of G. pulex
at concentrations 3 and 10%.

Figure A3.8. Size frequency of the total number of car tire tread particles measured in facces of G. pulex at
concentrations 3 and 10%.

PAHs analysis

Feeding rate
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Table A3.1. Car tires used for the manufacturing of TP.

Sidewall-

Nr Brand Tire Type? DOT-code®?  markings
1 Goodyear  Ultragrip 7 w H30F 2FOR  205/55R1691 T
2 Michelin Energy Radial s DU8X 2201  175/65R14 82T
3 Dunlop SP Sport 2000 s K55F 12W  195/55R1585V
4 Dunlop SP Sport 07 s NSHRJCIR 175/70R14 84 T
5 Continental ContiEco s CNU4 PVB9 195/50R1582T

4 w=winter tire s=summer tire

b DOT=Department of transportation; DOT-codes provide information on production

date and location.
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Table A3.2. TGA, GC-MS and ICP-MS instrumental settings to analyse car tire TP.

TGA Instrument TGA/DSC 3+, Mettler Toledo
Temperature program 30 to 850 °C, at a constant heating rate of 20 °C
Purge gas 30 to 600°C: Nitrogen (50 ml min™')

600 to 850 °C: Air (50 ml min™")

Sample mass Approximately 3 mg
Sample holder (cup) Aluminium oxide, 70 pl

GC Instrument GC (7820A), Agilent Technologies
Sample injection Manual, 2 ul
Injector Split-splitless
Mode Split ratio 7:1
Temperature 250
Flow 1 ml min-1
Temperature program 50 = 300 at 8.5 degrees min-1

MS Instrument MS (5977B), Agilent Technologies
Ionization energy 70 eV
Scan rate 8.6 scans sec-1
Mass range 35-330

ICP-MS | Instrument X Series 2, Thermo Fisher Scientific

Forwarded Power 1200 W
Nebuliser Gas Flow 0.9 L min-1
Auxiliary Gas Flow 0.8 L min-1
Cool Gas Flow 13.0 L min-1

CCT Gas He/H Mixture (with 7% H)
CCT Gas Flow 5.2 ml min-1
Dwell Time 100 ms
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Table A3.3. Polymer pyrolysates detected in the used car tire tread particles by TGA

coupled to GC-MS.

Target ion Present retention
Original polymer type®  Pyrolysate® (qualifiers) time©
Polyisoprene Methyl-butadiene (monomer) 67 (68,53,39) 6.8 min
Dipentene (dimer) 68 (93, 136) 6.8 min
Styrene butadiene rubber Butadiene (monomer) 39 (54,53) 4.1 min
(SBR) Styrene (monomer) 104 (103,78, 51) 4.3 min
Benzothiazole Benzothiazole (vulcanisator) 135 (108) 10.9 min

(vulcanisator)

(a) Polymers used during tire production '*.

(b) Pyrolysates of the polymers used during tire production (i.e. indicated under (a), '%°, identified in

the present study.
(¢) GC-MS retention times assessed in the present study, see also Fig S4.
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Table A3.4. Mean (£SD) temperature (°C), pH, DO (%) and EC (uS/cm) in each treatment
for all species tested. All parameters were measured in the 3 replicates at 5 time points
along the experiment, except for EC, which was only measured at the start and at the end

of the experiment.

G. pulex
T(°C)
pH
DO (%)
EC (uS/cm)
A. aquaticus
T (°C)
pH
DO (mg/l)
EC (uS/cm)
Tubifex spp.
T (°C)
pH
DO (mg/1)
EC (uS/cm)
L. variegatus
T(°O)
pH
DO (mg/1)

EC (uS/cm)

0%

15.6 £0.06

8.14 +£0.08

96.2 +2.67

694.8+79.9

0%

15.6 £ 0.04

8.14+£0.07

96.9+0.77

640.0 + 62.4

0%

15.6 +0.09

8.13+0.14

96.5+2.6

669.8 +72.0

0%

15.6 +0.09

8.20+0.10

97.0+0.84

674.0+91.4

0.1 %

15.6 +0.05

8.15+£0.13

96.1+2.70

700.7 £91.6

0.1 %

15.6 +0.04

8.13+0.14

96.5+1.25

782.3 +152.0

0.1 %

15.6 +0.09

8.10+0.16

97.0 +0.83

639.3+50.3

0.1 %

15.7+0.31

8.12+0.08

96.2+1.23

607.7 +34.9

0.3 %

15.6 £0.07

8.15+0.12

97.2+1.04

1%

15.6 +0.05

8.24 £ 0.08

97.6+1.29

677.8+144.6 | 744.7+114.9

0.3 %

15.6 +0.03

8.14+£0.08

96.6 +0.92

6152+422

0.3 %

15.7+0.04

8.10£0.16

97.0+0.93

622.8 +£48.2

0.3 %

15.6 £0.04

8.20+0.12

96.6 +1.59

657.7+84.3

1%

15.6 +0.06

8.23+0.07

96.4+1.71

851.7+162.0

1%

15.6 +0.06

8.17+0.14

93.8+9.14

596.7+41.9

1%

15.6 +0.06

8.19+0.09

97.5+0.81

612.3 +44.7

3%

15.6 +£0.06

8.23 £0.08

96.1+1.44

762.8 +135.4

3%

15.6 £ 0.06

8.29+0.08

97.1+1.07

700.8 £ 70.1

3%

15.6 +0.06

8.31+0.08

96.3 +1.49

624.0 £ 64.0

3%

15.6 £0.08

8.29+0.13

96.1 +3.00

639.7 +65.2

10%
15.6+£0.04
8.43+0.1
96.7+£0.71
623.3+789
10%
15.6 +0.03
83+0.1
93.6+7.78
724.7+139.4
10%
15.6 +0.05
8.42+0.14
96.9 +0.96
674.8+82.8
10%
15.6 +0.05
8.45+0.12
96.6 £1.23

640.1 + 80.0
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Table A3.5. Measurements of Zn, S, Cd, Cr, Cu, Ni and Pb concentrations at six car tire
TP concentrations in sediment dw (0, 0.1, 0.3, 1.0, 3.0 and 10 %) using:

a) Extraction with HNO3-HCL.

Treatment
Zn S Cd Cr Cu Ni Pb
[mg/kg]l  [mgke] [mgkg] [mgkg] [mgkg] [mgkg] [mgke]

Detection limit 5 30 0.05 0.8 3 1.6 0.3
0% 75 13711 0.47 47.5 26 31.7 31.9
0.10% 84 14441 0.53 49.1 26 33.1 33.4
0.30% 143 14267 0.49 46.8 25 313 32.1
1.0% 97 14292 0.53 47.5 25 31.8 33.0
3.0% 277 14086 0.52 47.0 26 31.9 325
10% 735 13253 0.54 42.1 24 27.7 29.1

b) Extraction with 0.01M CaCl..

Treatment

Zn S Cd Cr Cu Ni Pb

[mgke]  [mg/kgl [wgkel [ugkel [ughkel [ughkel [ugkel

Detection limit 300 0.6 3 5 400 6 20
0% n.d. 251 n.d. 14 n.d. 16 n.d.
0.10% n.d 254 n.d. 13 n.d. 16 n.d.
0.30% n.d 261 n.d. 13 n.d. 17 n.d.
1% n.d 206 n.d. 12 n.d. 16 n.d.
3% n.d 218 n.d. 12 n.d. 17 n.d.
10% n.d 170 n.d. 13 n.d. 16 n.d.

n.d.: lower than detection limit
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Table A3.6. Concentration of PAHs (in mg/kg) at six car tire TP concentrations (0, 0.1,

0.3, 1.0, 3.0 and 10 %) in sediment dw.

0% 0.1% 0.3% 1% 3% 10%
Fluorene 0.00 8.30* 0.79 0.40 0.00 0.36
Phenanthrene 0.45 13.07* 0.39 0.48 0.41 0.47
Anthracene 0.12 4.06* 0.09 0.13 0.10 0.09
Fluoranthene 1.81 29.48* 1.38 2.04 1.53 1.48
Pyrene 1.40 22.73* 1.24 1.65 1.67 2.26
B(a)anthracene 0.78 12.82% 0.60 0.95 0.64 0.49
Chrysene 0.74 14.96* 0.63 0.85 0.62 0.54
B(e)pyrene 0.67 6.37% 0.47 0.74 0.58 0.54
B(b)fluoranthene 0.94 9.12% 0.65 1.03 0.75 0.58
B(k)fluoranthene 0.39 4.19% 0.27 0.44 0.32 0.23
B(a)pyrene 0.75 7.83* 0.51 0.84 0.60 0.47
Db(ah)anthracene 0.52 4.51* 0.36 0.58 0.51 0.49
B(ghi)perylene 0.09 0.95% 0.05 0.10 0.09 0.08
Ind(123)pyrene 0.62 5.45% 0.37 0.61 0.49 0.34
YPAH 9.29 143.84* 7.82 10.83 8.32 8.42

* QOutlier
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Table A3.7. Mean dry weight (in mg) and area (in mm?) of ten car tire tread particles per
replicate (in quadruplicate) before and after their addition to H>O» and H>O for 24 hours.

Treatment = Replica Dry Weight (mg) Area (mm?)

Before After Difference Before After Difference

1 11,592 11,643 -0,051 6,244 6,343 -0,099
2 15,466 15,34 0,126 6,208 6,109 0,098
H202 3 14,79 14,823 -0,033 7,733 7,755 -0,022
4 11,296 11,301 -0,005 5,481 5,571 -0,089
1 13,665 13,601 0,064 6,398 6,374 0,024
2 16,509 16,382 0,127 6,718 6,706 0,012
H-0 3 14,259 14,22 0,039 6,672 6,683 -0,011
4 11,868 11,784 0,084 5,359 5,322 0,037
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Figure A3.1. Particle size distribution of the car tire TP determined by a) volume of
particles b) the number of particles. Both graphs contain three repeated measurements.
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500 pm

i

500 pm

Figure A3.2. Pictures of the car tire TP mixture taken with a CMEX camera (Euromex,
The Netherlands) under an Olympus SZX10 Stereomicroscope.
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Figure A3.3. Weight loss (%) of individual car tire TP and their mixture using
thermogravimetric analysis to distinguish between (i) volatile substances (that vaporize
between 30- 300°C), (ii) the actual polymer (300- 600°C), (iii) black carbon (600- 850°C),
and the residual (iv) inorganic fillers.
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Figure A3.4. Pyrogram of the analysed car tire TP represented by the total ion current
(Total ion chromatogram, TIC, 1% Panel). Second — fifth panel: Ion chromatograms and
mass spectra of identified polymer pyrolysates (see Table A3.3).
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Figure A3.5. Nominal Zinc (Zn) concentration in sediment (X-Axis) against measured
Zinc (Zn) concentration in TP-sediment mixtures (Y-Axis).
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Figure A3.6. Feeding rate (mg dw leaf/organism/d) of G. pulex and A. aquaticus after 28
days of exposure to car tire TP at increasing concentrations in sediment. Error bars are

mean = SD n = 3.
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Figure A3.7. Size frequency of the total number of car tire tread particles measured in the
body of G. pulex at concentrations 3 and 10%.
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Figure A3.8. Size frequency of the total number of car tire tread particles measured in
faeces of G. pulex at concentrations 3 and 10%.
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PAHSs analysis

PAHs were extracted from the sediment-TP mixtures using accelerated solvent extraction
(ASE) with a mixture of n-hexane and acetone (1:1, v/v) at 100 °C, heat time 5 min., static
time 5 min., 2 cycles. The extractions were passed through a 10 % aluminium oxide
column to remove polar components The solution was concentrated on a modified
Kuderna-Danish apparatus followed by evaporation to 1 ml under a gentle flow of
nitrogen. Subsequently the sample was eluted with 30 ml of hexane over a column with
4 g of aluminium oxide (10% water), followed by evaporation to 1 ml under a gentle flow
of nitrogen.. Samples were exchanged to acetonitrile, after which 2-methylchrysene was
added as an internal standard. PAHs were analysed on a Agilent 1100 High Performance
Liquid Chromatograph (HPLC) equipped with 250 x 4.6 mm Vydac guard analytical
reverse-phase C18 columns (201GD54T and 201TP54), with methanol/water as mobile
phase. After each run, the columns were rinsed with acetonitrile. PAHs were detected on
an HP 1100 multiwavelength fluorescence detector.

Feeding rate'>?

where L1 is the initial and L2 the final dry weight of the Populus sp. disc (mg), Lil and
Li2 are the numbers of living organisms at the start and at the end of the experiment
(Lil=11 individuals), Cl is the leaching-decomposition correction factor, calculated by
dividing the initial dry weight by the final dry weight of the leaves in the control sample;
and t is the incubation time (days).
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Appendix of Chapter 4

Table A4.1. Mean + SD nanoplastic concentration per body dw of Gammarus pulex (mg/g) in body, facces
and the sum of both; and nanoplastic concentration in body and faeces with respect to the total ingested
nanoplastics (%) at nanoplastic concentrations in sediment of 0.3, 1, 3, 10 and 30 g/kg of sediment.

Figure A4.1. Images of the Pd-doped NP taken under a FEI Magellan 400 scanning electron spectroscope
illustrating the raspberry-like shape of the particles.

Figure A4.2. Log NP concentration measured in A) the body of G. pulex (mg/g), B) faeces of G. pulex per
body weight (mg/g) and C) total NP ingested by G. pulex (mg/g) per body dw after summing up the
concentration of NP in bodies and faeces; after 28 days of exposure to Log NP concentrations in sediment
dw (g/kg).

Assessment of the likeliness of effects caused by chemical residues from nanoplastic synthesis

Table A4.2. Numbers calculated for the different steps in the assessment of the likeliness of effects
from the background chemicals originating from NP synthesis.

Figure A4.3. Styrene removal by gas purging.

Figure A4.4. Styrene removal during acclimatization.

Figure A4.5. Measured and modelled uptake of MP by G. pulex over 28 days of exposure to
sediment amended with MP, followed by 1 day of depuration in clean medium.
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Table A4.1. Mean + SD nanoplastic concentration per body dw of Gammarus pulex (mg/g) in
body, faeces and the sum of both (grey); and nanoplastic concentration in body and faeces with
respect to the total ingested nanoplastics (%) (blue) at nanoplastic concentrations in sediment of
0.3, 1, 3, 10 and 30 g/kg of sediment.

NP
concentration
in sediment

(g/kg)
0.3

3
10
30

Average %

NP concentration per body dw of
Gammarus pulex (mg/g)

BODY

Mean + SD

N.D.

0.053 £0.031

0.328 +0.300

0.246 + 0.160

0.541 £ 0.415

FAECES

Mean + SD

0.034 +0.026

0.054 +£0.026

0.228 £ 0.098

0.285+0.173

1.073 £0.423

TOTAL

Mean + SD

0.030+0.030

0.107 £0.057

0.556 + 0.351

0.532 +0.020

1.614+0.138

% of NP in body and faeces

of the total ingested NP

BODY FAECES
Mean Mean
39.57 60.43
47.79 52.21
45.18 54.82
32.99 67.00

41.38+23.15 58.62 +23.15
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Figure A4.1. Images of the Pd-doped NP taken under a FEI Magellan 400 scanning electron
spectroscope (50,000x and 100,000 x magnification) illustrating the raspberry-like shape of the
particles.
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Figure A4.2. Log NP concentration measured in A) the body of G. pulex (mg/g), B) faeces of G.
pulex per body weight (mg/g) and, C) total NP ingested by G. pulex (mg/g) per body dw after
summing up the concentration of NP in bodies and faeces; after 28 days exposure to Log NP
concentrations in sediment dw (g/kg). Linear regressions (Poody= 1.94x107%; Prieces= 2.87x10°;
Prow=1.02x10") are based on 12 individual data points for the body due to the loss of the control
and lowest concentration values after log-transforming the data; and 15 individual data points for
the faeces and total NP ingested, due to the loss of the control values after the log-transformation.
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Assessment of the likeliness of effects caused by chemical residues from
nanoplastic synthesis

The concentrations of the chemicals used in the synthesis of Pd-doped NPs change due
to (incomplete) polymerization, dilution upon transfer of the spiked volume to the
bioassay systems, sorption to sediment, and volatilization due to purging, either prior to
the experiment, or during acclimatization prior to exposure. The concentrations during all
of these steps are summarized in Table 4.2. Ultimately, margins of exposure (MOE) were
larger than 1 for all chemicals.

Table 4.

2. Numbers calculated for the different steps in the assessment of the likeliness of effects

from the background chemicals originating from NP synthesis.

1 2 3 4 5 6 7 8 9 10
Chemical | Weight | Yield | Ctotal | Cresidual | Chioassay,ror |  Kp Chioassay,total | Cerit | MOE
g % g/l g/l g/l I/kg mg/l mg/l ()
Water 627.43
. ’ 913.5
Acrylonitrile 50 95 79.69 3.98 9,42x10° 5 73.6 2.00 ®
1x10'8
Styrene 22.5 95 35.86 1.79 4,24x10°2 50 11.1 1.90 ®
DVB 1.18 95 1.88 0.09 2,22x100 778.1 4,98x1002 0.69 | 13.85
SDS 2.46 90 3.92 0.39 9,27x10% | 2700.0 | 6,08x102 1.8 29.60
KPS 3.30 95 5.26 0.26 6,22x10°0 1.0 5.89 92 15.63
KPE 1.50 90 2.39 0.24 5,65%10% 2700 3.71x102 | 0.18" 4.85
K>PdCl4 0.76 99 1.21 0.01 2,86x10% 1000 5.02x10% | 0.063 | 12.56
1. Chemical abbreviations: DVB = divinylbenzene. SDS = sodiumdodecylsulphate, KPS =
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potassium persulphate, KPE = poly(ethyleneglycol)4-nonlpheyl 3-sulfopropylether
potassium salt. K,PdCls = Potassium tetrachloropalladate(II).

Weight used in the synthesis of Pd-doped NP.

The polymerization and encapsulation of monomer, intitiator and surfactants is virtually
complete. Still conservative yields < 100% were used in order to obtain a worst case
assessment of chemical effects.

Original aqueous concentration prior to polymerization, i.e. at start, the concentration of
acrylonitrile is 50/627,43 = 79.69 g/1

The residual concentration after polymerization taking the yield into account.
Concentration in the bioassay, calculated from the spiked volume of the NP disperson
and the water volume in the bioassay.

The sediment to water partition coefficient (literature value)

The aqueous concentration during the bioassay, assuming equilibration with sediment,
calculated from the volume of water, the mass of sediment,m the Kp and the quantity of
Cresidual
1+[SED]*Kp

the sediment (kg/1) concentration of the sediment.

The threshold effect concentreation for chemical toxicity, based on literature values. For
KPE no threshold effect concentration could be found. For this chemical we used a worst
case scenario and set the threeshold value at 10% of that for the other surfactant, SDS.

added chemical: Chioassay.ToT = with [SED] is the mass to liquid ration of
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10. The Margin of exposure (MOE), calculated as MOE = Cuit / Chioassay,total- An MOE larger
than 1 means that no chemical effect can occur. For the volatile chemicals acrylonitrile
and styrene, the value for Chiassay,otal Was refined by taking into account the removal due

to purging the systems prior to exposure and during the acclimitization period (Figs S3
FxHxt

and S4). The effect purging was calculated using: [C] = [Co] * e~ Vv with C and CO
are chemical concentrations at start (Co) and during purging (C), F is flow rate (L/h), H
is Henry’s law constant, t is time (h) and V is water volume.
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Figure A4.3.In 2-3 hours, any styrene left in the water is removed completely by gas purging.
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Figure A4.4. In 8 hours of gas purging (blue line), followed by two weeks of acclimatization
under continuous aeration prior to the experiment (orange line), the initial acrylonitrile
concentration decreases with 4 to 5 orders of magnitude.
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Figure A4.5. Measured and modelled (Egs. 1 and 2) uptake of MP by G. pulex over 28 days of
exposure to sediment amended with MP, followed by 1 day of depuration in clean medium
(insert). Data on measured NP concentrations (+ 1 SD) after depuration (see insert) after 29 days
were set apart for 0.05 day for better visibility of the datapoints on the x-axis. Data from Redondo-
Hasselerharm et al. (2018) (Chapter 2).'* The model was highly significant (P = 4.4x10),
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Appendix of Chapter 5

Calculations of styrene and SDS concentrations in the experimental ditch

Table A5.1. Mean abundance (£SD) per taxon in transects and NP trays.

Table A5.2. Mean abundance (+SD) per taxon in transects and MP trays.

Table A5.3. Reference community ratio based on the number of individuals/m? and based on taxa.

Table A5.4. Temperature (°C), dissolved oxygen (mg/l), pH, electro-conductivity (uS/cm) measured at two
locations (meters 10 and 30) in the experimental ditch at the start of the experiment (0) and after 1, 2, 3, 5,

6,7,11, 12,24, 36, 48 and 60 weeks.

Figure A5.1. Number of individuals per class found in trays retrieved after 3 months (M3) and 15 months
(M15) for nanoplastics (upper panel) and microplastics (lower panel) treatments.

Figure A5.2. Valvata abundance in trays retrieved after 3 and 15 months with increasing NP (upper panel)
and MP (lower panel) concentrations (as % sediment dry weight).

Figure A5.3. Orthocladiinae abundance in trays retrieved after 3 and 15 months with increasing NP (upper
panel) and MP (lower panel) concentrations (as % sediment dry weight).

Figure A5.4. Hippeutis complanatus abundance in trays retrieved after 3 and 15 months with increasing NP
(upper panel) and MP (lower panel) concentrations (as % sediment dry weight).

Figure A5.5. Gyraulus albus abundance in trays retrieved after 3 and 15 months with increasing NP (upper
panel) and MP (lower panel) concentrations (as % sediment dry weight).
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Calculations of styrene and SDS concentrations in the experimental ditch

Following principles published previously,??® here we calculate the background
concentrations of styrene monomer and SDS that can be expected in the ditches based on
(D) the dimensions, i.e. weights and volumes of sediment and water compartments in the
ditch, (II) quantities of styrene and SDS added to the ditch via the addition of nano-
polystyrene dispersion, (IIT) well-established principles of sediment water partitioning.
Subsequently, the resulting concentrations are compared to known effect thresholds for
these chemicals.

I. Weights and volumes of sediment and water in the ditch

Water volume of the ditch = [(132 x 0.5) + (64 x 0.5)]/2 =49 m? = 49000 L
Sediment volume of the ditch (without sediment in trays) = 64 x 0.25 = 16 m* = 16000 L
Total weight of the sediment in the ditch =16 x 1600 = 25600 kg.

I1. Quantities of styrene and SDS added to the ditches, via the embedded trays.

a) Styrene

Volume of Nano-PS spike solution in 1 highest dose (5% PS) tray = 0.16883 L

The 2 L of Nano-PS spike solution contained at most (styrene at start minus polystyrene
at end) =~ 900 - 838.9g = 61.1 g un-polymerized styrene monomer left. This means that
in 1 tray with 0.16883 L Nano-PS spike solution added, we have 0.16883 x 61.1/2=15.158
g styrene.

There are 8 of such trays with maximum dose, 8 with 10x lower dose, 8 with 100x, and 8
with 1000x lower dose. Therefore, the total quantity of styrene added to the entire ditch
is:

8 x (140.14+0.01+0.001) x 5.158 = 45.844 g styrene.

As styrene is a volatile chemical, the actual concentration will be (much) lower. However,
here we use this original concentration as a worst-case scenario.

b) SDS

The 2 L of Nano-PS spike solution contained ~ 23.3g dissolved SDS. This means that in
1 tray with 0.16883 L Nano-PS spike solution added, we have 0.16883 x 23.3/2 = 1.9669
g SDS.

There are 8 of such trays with maximum dose, 8 with 10x lower dose, 8 with 100x, and 8

with 1000x lower dose. Therefore, the total quantity of styrene added to the entire ditch
is:
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8 x (1+0.1+0.01+0.001) x 1.9669 = 17.482 g SDS.

II1. Realistic calculation of styrene and SDS concentration in the water of the ditch taking
into account steady state sorption to the sediment

General method to calculate sediment-water partitioning

It is assumed that the total concentration of chemical in the water (CT) is split in a truly
dissolved concentration (Cw) and a part which is sorbed to the sediment. Then the
following mass balance equation holds:

CT=Cw + Csedx[SED] [1]

In which CT is the total concentration of chemical in the ditch (gxL-'), Cw is the free
aqueous concentration (gxL!), Csed is the chemical concentration sorbed in sediment

(mgxkg™") and [SED] is the concentration of sediment in the system (kgxL").

Due to sediment water exchange from the trays, turbulent and diffusional mixing, a steady
state can be assumed. At equilibrium, Csed is related to Cw, via:

Csed=KdxCw [2]

in which Kd is the sediment-water distribution coefficient for the chemical (Lxkg™).
Combination of equations [1] and [2] yields

CT=Cw x (1+Kdx[SED]) [3]
which now can be solved for Cw if [SED] is known:

Cw=CT/(1+Kdx[SED]) [4]

Calculation for SDS

In the ditch, the sediment to water solid to liquid ratio [SED] is [SED]= 25600/49000 =
0.52245 kg/1

For SDS the total concentration CT is CT= 17.482/49000 = 0.000356837 g/l = 0.356837
mg/1

A literature value for the Kd for sediment in freshwater’’® is 2700 Ixkg™!
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Therefore, for SDS: Cw = 0.356837 / (1+ 2700%0.52245) = 0.00025279 mgxL"' = 0.25
ngxI”!

Calculation for Styrene

Styrene is volatile and can be expected to steadily dissipate from the ditches to reach zero
concentration. Still, we here provide a calculation to estimate the aqueous phase

concentration in case styrene would be conservative.

For styrene the total concentration CT is CT= 45.844/49000 = 0.00093559 g/l = 0.93559
mg/l

A literature value for the Koc for sediment is 10?9 Ixkg™! 228
With a %TOM of about 5 to 10% (see Table A5.1), this would give a Kp of Kp =50 l/kg.
Therefore, for styrene Cw = 0.93559 / (1+ 50x0.52245) = 0.0345 mgxL"! = 34.49 pgxI!

As mentioned, this is a worst-case concentration due to the fact that styrene is volatile
and will have reached (much) lower concentration.

Effect thresholds for SDS and styrene

Short term LCso and ECso values for aquatic invertebrates with SDS are between 1.20 and
14.40 mg/1.2** NOEC values from chronic toxicity tests of aquatic invertebrates with SDS
are between 0.88 and 5.76 mg/1.240

Short term LCso and ECso values for aquatic invertebrates with styrene are between 4.7
and 9.5 mg/1.228 The NOEC value from chronic toxicity tests of aquatic invertebrates with
styrene is 1.01 mg/1.228

Concentrations calculated above thus are at least a factor 29 lower than the short term and
long-term effect thresholds for these chemicals provided by European Chemical Agency

(ECHA).228’240

This means that these chemicals are not expected to have contributed to the community
effects found in this study.
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Table A5.3. Reference community ratio based on the number of individuals/m? and based
on taxa. Ratio for number of individuals was calculated as number of individuals/m?
found in trays retrieved after 3 months (3M) and 15 months (15M) divided by the number
of individuals/m? found in the donor system at the same time points. For taxa, this was
done similarly, i.e. number of taxa in trays after 3 months (3M) and 15 months (15M),
divided by the number of taxa in the donor system at the same time points. Mean = SD
correspond to n = 4, except for 0.05 and 0.5% (3M), where n = 3; and transects, where n
=2.

Nanoplastics 3M Microplastics 3M
Individuals/m? Taxa Individuals/m? Taxa
Mean SD Mean SD Mean SD Mean SD
0 12.79 3.34 0.77 0.10 10.32 3.04 0.76 0.11
0.005 12.31 4.05 0.73 0.16 15.11 3.44 0.78 0.11
0.05 15.37 2.93 0.76 0.05 15.92 4.47 0.64 0.13
0.5 11.86 2.82 0.67 0.08 14.42 3.73 0.70 0.02
5 13.78 2.99 0.65 0.08 10.33 1.38 0.66 0.09
Nanoplastics 15M Microplastics 15SM
Individuals/m? Taxa Individuals/m? Taxa
Mean SD Mean SD Mean SD Mean SD
0 6.36 4.65 0.73 0.08 7.37 3.32 0.77 0.03
0.005 9.70 5.09 0.72 0.07 7.40 3.03 0.67 0.06
0.05 7.17 2.26 0.69 0.04 6.35 4.11 0.68 0.06
0.5 8.30 2.37 0.81 0.06 8.59 4.65 0.70 0.07
5 4.08 1.04 0.68 0.06 5.01 221 0.69 0.04

193



Appendices

Table A5.4. Temperature (T) (°C), dissolved oxygen (DO) (mg/l), pH, electro-
conductivity (EC) (uS/cm) measured at two locations (meters 10 and 30) in the
experimental ditch at the start of the experiment (0) and after 1, 2, 3, 5, 6, 7, 11, 12, 24,
36, 48 and 60 weeks. NH4 (mg/l), NOs (mg/l), Total Nitrogen (N) (mgN/l) and Total
Phosphorus (P) (mgP/l) analysed from water samples taken at three different locations
(meters 10, 20 and 30) in the experimental ditch at the start of the experiment (0) and after
1,2,3,5,12, 48 and 60 weeks.

Week 0 1 2 3 5 6 7 11 12 24 36 48 60
T (°C) 10m 206 223 259 249 213 245 240 228 20 7.0 136 213 14
30m 207 226 269 248 213 232 241 220 201 68 135 213 14

DO 10m 80 85 75 115 138 138 96 128 131 124 125 137 84
(mgl)  30m 76 82 7.1 98 122 118 84 119 121 121 123 127 7.0
pH 0m 69 78 72 81 97 99 91 94 94 79 93 93 80
30m 70 77 71 75 94 95 89 93 93 75 90 90 80

EC 10m 94 98 101 94 77 8 78 8 79 90 8 80 104
(uS/em) 30 m 94 98 101 9% 73 79 78 8 79 92 80 80 104

NH,4 10m 015 0.10 024 0.08 0.08 0.07 0.05

(mg/l) 20m 007 0.2 024 na (]2 na na na (005 na na 010 0.06

30m 010 0.14 031 0.13 0.08 0.07 0.03

NO; 10m 001 0.02 0.06 0.02 0.02 0.08 0.05
(mg/1) 20m 0.0l 002 004 na (002 na na na (0l na na 001 0.0l

30m 001 002 005 0.02 0.01 0.01 0.00

TotaIN 10m 056 0.61 0.95 0.97 0.39 026 3.02
(mgN/)  20m 052 041 08 na 035 na na na (033 na na 072 191

30m 059 041 099 0.67 0.58 0.63  2.56

TotalP  10m  0.07 0.05 0.05 0.05 0.04 0.03 0.14

(mgP/l)  20m 006 005 006 na 003 na na na (03 na na 003 0.15

30m 006 005 0.05 0.18 0.03 0.04 036
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Figure A5.1. Number of individuals per class found in trays retrieved after 3 months (M3)
and 15 months (M15) for nanoplastics (upper panel) and microplastics (lower panel)
treatments. Colours in the legend represent the different classes of invertebrates found in
trays.
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Figure A5.2. Valvata abundance in trays retrieved after 3 and 15 months with increasing
NP (upper panel) and MP (lower panel) concentrations (as % sediment dry weight). Error
bars are mean = SE n = 4, except for MP treatments 0.05 and 0.5% retrieved after 3
months and 0 and 5% retrieved after 15 months, where n = 3.
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Figure A5.3. Orthocladiinae abundance in trays retrieved after 3 and 15 months with
increasing NP (upper panel) and MP (lower panel) concentrations (as % sediment dry
weight). Error bars are mean + SE n =4, except for MP treatments 0.05 and 0.5% retrieved
after 3 months and 0 and 5% retrieved after 15 months, where n = 3.
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dry weight). Error bars are mean + SE n = 4, except for MP treatments 0.05 and 0.5%

retrieved after 3 months and 0 and 5% retrieved after 15 months, where n = 3.
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Figure A5.5. Gyraulus albus abundance in trays retrieved after 3 and 15 months with
increasing NP (upper panel) and MP (lower panel) concentrations (as % sediment dry
weight). Error bars are mean + SE n =4, except for MP treatments 0.05 and 0.5% retrieved
after 3 months and 0 and 5% retrieved after 15 months, where n = 3.
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Figure A5.6. Pictures of the experimental ditch with the trays embedded in the sediment.
Photo Credit: Albert A. Koelmans, Wageningen University.
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Appendix of Chapter 6

Effects of the environmental matrices

Effects of nanoplastics

Effects of nanoplastics in the presence of surface water chemicals

Effects of nanoplastics in the presence of WWTP effluent chemicals

Table A6.1. Summary of the significant genotoxic and cytotoxic effects found.

Figure A6.1. Ames fluctuation test results with TA98-S9 and TA98+S9 in DMSO, Surface water (SW) and
SW + WWTP effluent water (WWTP) extracts for both experiments.

Figure A6.2. Ames fluctuation test results with TA100-S9 and TA100+S9 in DMSO, Surface water (SW)
and SW + WWTP effluent water (WWTP) extracts for both experiments.

Figure A6.3. Ames fluctuation test results with TA98-S9 and TA98+S9 in DMSO with increasing NP
concentrations (2.5, 25 and 250 pg/1) for both experiments.

Figure A6.4. Ames fluctuation test results with TA100-S9 and TA100+S9 in DMSO with increasing NP
concentrations (2.5, 25 and 250 pg/l) for both experiments.

Figure A6.5. Ames fluctuation test results of TA98-S9 in DMSO and surface water (SW) with increasing
NP concentrations (2.5, 25 and 250 pg/l).

Figure A6.6. Ames fluctuation test results of TA98+S9 in DMSO and surface water (SW) with increasing
NP concentrations (2.5, 25 and 250 pg/l).

Figure A6.7. Ames fluctuation test results of TA100-S9 in DMSO and surface water (SW) with increasing
NP concentrations (2.5, 25 and 250 pg/l).

Figure A6.8. Ames fluctuation test results of TA100+S9 in DMSO and surface water (SW) with increasing
NP concentrations (2.5, 25 and 250 pg/l).

Figure A6.9. Ames fluctuation test results of TA98-S9 in DMSO and WWTP effluent water with increasing
NP concentrations (2.5, 25 and 250 pg/l).

Figure A6.10. Ames fluctuation test results of TA98+S9 in DMSO and WWTP effluent water with
increasing NP concentrations (2.5, 25 and 250 pg/l).

Figure A6.11. Ames fluctuation test results of TA100-S9 in DMSO and WWTP effluent water with
increasing NP concentrations (2.5, 25 and 250 pg/l).

Figure A6.12. Ames fluctuation test results of TA100-S9 in DMSO and WWTP effluent water with
increasing NP concentrations (2.5, 25 and 250 pg/l).
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Effects of the environmental matrices

The DMSO matrix without NP was genotoxic in TA100-S9 (%% P = 3.12x101%) and
TA100+S9 (x% P =0.049) in the first experiment in comparison to the NC (Figure A6.2,
SI). The DMSO matrix without NP was cytotoxic for all strains in the second experiment
(t-test; Prags-so=2.75%1073, Praogeso=0.01, Praioo_so=3.26%10*, Praigosso=3.77%x1073), and
in TA100+S9 also in the first experiment (t-test; P = 0.02) in comparison to the NC (Table
A6.1). The SW matrix without NP was genotoxic in TA98-S9 (x2; P =0.01) (Figure A6.1)
and TA100-S9 (3% P =4.84x10"") (Figure A6.2)in the first experiment and in TA100+S9
in both experiments (%2; Pexp1 = 6.34%1073; Pexp, = 1.38%102) (Figure A6.2) in comparison
to the NC. When compared to the DMSO matrix without NP, the SW matrix without NP
was genotoxic in TA98-S9 (y? P =4.7x107%) (Figure A6.1) in the first experiment and in
TA100+S9 (y? P=0.01) (Figure A6.2) in the second experiment. The SW matrix without
NP was cytotoxic in TA98+S9 and TA100+S9 only in the second experiment when
compared to the NC (t-test; Praosiso=0.02, Prajoo_so = 2.11%10, Pragssso = 0.01) and was
never cytotoxic when compared to the DMSO matrix without NP (Table A6.1). The
WWTP effluent water matrix without NP was genotoxic for TA100-S9 (x?; P = 0.04) and
TA100+S9 (%% P =9.67%10%) in the first experiment in comparison to the NC and only
for TA100+S9 (%2 P = 0.02) when compared to the DMSO matrix without NP (Figure
A6.2). The WWTP effluent water matrix without NP was cytotoxic in both experiments
in TA98+S9 (t-test; Pexpi = 1.75%103, Pexp, = 1.43x107%) (Figure A6.1) and TA100+S9
(t-test; Pexp; = 3.76x10*, Pgxp, = 2.12x107) in comparison to the NC (Figure A6.2). The
WWTP effluent water matrix without NP was cytotoxic in TA98-S9 only in the second
experiment (t-test; P = 5.99x10) and in TA100-S9 only in the first experiment (t-test; P
=7.07x10°) in comparison to the NC (Table A6.1). When compared to the DMSO matrix
without NP, the cytotoxicity in TA98-S9 (t-test; P = 1.69%10+), TA98+S9 (t-test; Pexpi =
2.47%10%3, Ppxp, = 3.04x10%) and TA100+S9 (t-test; Pexpi = 2.47x107%; Pexp, =1.79%104)
remained the same, while in TA100-S9 the first experiment was significant (t-test; P =
0.01) and the second was not significant anymore (Table A6.1).

Effects of nanoplastics

Significant genotoxicity was found only in the second experiment in TA100+S9 when
exposed to the two lowest NP concentrations (%2 Pas g1 = 4.3%X107, Pys o= 1.7x10-%) and
the lowest 500 nm NP concentration ()% P,s,e1 = 0.01) in comparison to DMSO without
NP (Figure A6.4). Moreover, significant genotoxicity was found in TA98-S9 in the first
experiment at the lowest and highest 500 nm NP concentrations (%2 Pasen = 0.01, Pasoen
= 0.02) (Figure. S5.3). Significant cytotoxicity was found in TA98-S9 at the lowest 50
nm NP concentration in the first experiment (t-test; Praos s = 0.04) and at the lowest 500
nm NP concentration in both experiments (t-test; Pexp; = 0.03, Pexpr = 0.04) in comparison
to the DMSO matrix without NP (Table A6.1).
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Effects of nanoplastics in the presence of surface water chemicals

50 nm nanoplastics. Medium and high 50 nm NP concentrations in SW had significant
genotoxic effects on TA98-S9 in comparison to DMSO with the same NP concentration
in the first experiment (Y% Pas uen = 3.61x10°%, Pasy uen = 1.46x107%) and in the second
experiment ()2; Pas ugn = 2.53%1073, Paso uen = 1.97%107%) (Figure A6.5). When compared to
SW without NP, only the medium 50 nm NP concentration in the first experiment
remained significant (x%; P = 0.01) (Figure A6.5). Low and medium 50 nm NP
concentrations in SW had significant genotoxic effects on TA98+S9 (¥ Pas yen =
4.50%1073, Pys on = 4.91x107) (Figure A6.6) and TA100+S9 (% Pasuen = 8.85%10%, Pys
wen = 2.56x10%) (Figure A6.8) with respect to DMSO with the same 50 nm NP
concentration, but only in e first experiment. When compared to SW without NP,
significant genotoxicity was found only in TA100+S9 at the medium 50 nm NP
concentration in the first experiment (x> P = 0.01) (Figure A6.8). In TA100-S9,
significant genotoxicity was found at the lowest 50 nm NP concentration in the first
experiment (% P =4.26x107) and at the highest in the second experiment (y? P = 0.03)
in comparison to DMSO with the same concentrations, while no significant genotoxic
effects were found in comparison to SW without NP (Figure A6.7). Significant
cytotoxicity was found in TA100+S9 at the medium and high 50 nm NP concentration in
the second experiment (t-test; Pas g1 = 0.01, Pasg,en = 0.01) in comparison to DMSO with
the same NP concentration (Table A6.1).

500 nm nanoplastics. Medium and high 500 nm NP concentrations had significant
genotoxic effects on TA98-S9 in the first experiment (X% Posuen = 8.22%X103, Poso yen =
1.22x10*) and only the high 500 nm NP concentration had significant genotoxic effects
on TA98-S9 in the second experiment (x> P = 5.88%10) in comparison to DMSO with
the same NP concentration (Figure A6.5). Low and medium 500 nm NP concentrations
in SW had significant genotoxic effects on TA98+S9 (X2 Pasuen = 2.50%1073; Pos yon =
0.02) in comparison to DMSO with the same NP concentration, but only in the first
experiment (Figure A6.6). Low and high 500 nm NP concentrations in SW were
genotoxic to TA100+S9 in comparison to DMSO with the same NP concentration in the
first experiment (%% Pas o1 = 8.85%10, Pasy uen = 6.20%10%) and only the highest 500 nm
NP concentration in SW was also genotoxic to TA100+S9 in the second experiment (x?;
Poso uen = 6.20%103) (Figure A6.8). For 500 nm NP, only the high concentration was
genotoxic for TA98-S9 (3% P = 6.35x10*) (Figure A6.5) and TA100+S9 (¥ P =0.01)
(Figure A6.8) in the first experiment in comparison to SW without NP. Significant
cytotoxicity occurred in TA98-S9 in the second experiment at the low 500 nm NP
concentration (t-test; P = 2.86x107) and in both experiments at the high 500 nm NP
concentration (t-test; Pexp; = 0.04, Pexp; = 0.02) in comparison to the SW matrix without
NP. (Table A6.1).
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Effects of nanoplastics in the presence of WWTP effluent chemicals.

50 nm nanoplastics. Medium and high 50 nm NP concentrations in WWTP effluent water
had a significant genotoxic effect on TA98-S9 in comparison to DMSO with the same
NP concentration (%% Pas yen = 1.38%1073, Pysg uen = 4.91x107%), but only in the first
experiment (Figure A6.9). Both treatments remained significantly genotoxic in
comparison to WWTP effluent water without NP (%?; Pas 1 = 0.04, P2so uen = 0.02) (Figure
A6.9). No significant genotoxic effects were found for TA98+S9 at any 50 nm NP
concentration (Figure A6.10). Significant genotoxic effects were found in the second
experiment for TA100-S9 at the medium 50 nm NP concentration (y% P = 1.65x10%)
(Figure A6.11) and for TA100+S9 at the high 50 nm NP concentration ()% P = 6.20x10
5) (Figure A6.12) in comparison to DMSO with the same NP concentration. When
compared to WWTP effluent water without NP, only the genotoxicity in TA100+S9 at
the high 50 nm NP concentration remained significant ()?; P = 1.37x10*) (Figure A6.12).
Significant cytotoxic effects were found at the lowest 50 nm NP concentration in WWTP
effluent water in both experiments for TA98+S9 (t-test; Prxpi = 6.75%1073, Pexpr =
8.70x107%), TA100-S9 (t-test; Pexp; =0.01, Pexp, =2.19%1073) and TA100+S9 (t-test; Prxp:
=2.31x1073; Ppxpr = 2.53%10%) in comparison to DMSO with the same NP concentration
(Table A6.1). Significant cytotoxic effects were found at the medium 50 nm NP
concentration in WWTP effluent water in both experiments for TA98-S9 (t-test; Pexpi =
1.80%1073, Pgxpr = 2.23x10*) and TA100+S9 (t-test; Pexp; = 0.01, P gxpr = 3.88%x10%) in
comparison to DMSO with the same NP concentration (Table A6.1). Significant
cytotoxic effects were found at the highest 50 nm NP concentration in WWTP effluent
water in both experiments for TA98-S9 (t-test; Prxpi = 9.32%1073, Ppxpr = 4.34%10%),
TA98+S9 (t-test; Prxp; = 0.02, Pexpo = 0.046) and TA100-S9 (t-test; Ppxp; = 2.24%x104,
Prxp2 = 0.03) in comparison to DMSO with the same NP concentration (Table A6.1).

50 nm nanoplastics. Significant genotoxic effects were found at the medium 500 nm MP
concentration in TA98-S9 in the first experiment (%% P = 0.04) (Figure A6.9) and in
TA100-S9 in the second experiment (y? P =2.94x1073) (Figure A6.11) in comparison to
DMSO with the same NP concentration. No significant genotoxic effects were found for
TA98+S9 and TA100+S9 at any 500 nm NP concentration (Figures A6.10, A6.12).
Significant cytotoxic effects were found at the lowest 500 nm NP concentration in WWTP
effluent water in both experiments for TA98-S9 (t-test; Pgxpi = 0.03, Pexp, = 2.45%107%)
and TA100+S9 (t-test; Pexpr = 0.01; Pxp> = 0.04) in comparison to DMSO with the same
NP concentration (Table A6.1). Significant cytotoxic effects were found at the medium
500 nm NP concentration in WWTP effluent water in both experiments for TA98-S9 (t-
test; Pexpr = 1.16x1073, Pexpo = 3.70%10), and at the highest 500 nm NP concentration in
WWTP effluent water in both experiments for TA98+S9 (t-test; Pgxpi = 0.02; Pexpr =
8.90%1073) in comparison to DMSO with the same NP concentration (Table A6.1).
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Table A6.1. Summary of the significant genotoxic and cytotoxic effects found.

TA98-S9 TA98+S9 TA100-59 TA100+89

DMSO @ -I(-) /() +() /()
SW @ +- /) +) +(+)
Sw ® +- - i o+
WWTP @ 1) ) +) 4/6)
WWTP ® 1) () - B
50 nm NP 2.5 pg/1 ® )- -I- /- -+
50 nm NP 25 pg/1 ® -/~ - - I+
50 nm NP 250 pg/1 ® /- -I- -I- /-
50 nm NP 2.5 pg/l + SW © /- +- +- +/-
50 nm NP 25 pg/l + SW © +HH +- - +0)
50 nm NP 250 pg/l + SW © +H A -1+ ()
50 nm NP 2.5 pg/l + SW @ () A - -
50 nm NP 25 pg/l + SW @ +- A A +-
50 nm NP 250 pg/l + SW @ 6 /- /- -
50 nm NP 2.5 pg/l + WWTP © - /) OO /6
50 nm NP 25 pg/l + WWTP © ) - -1+ Y
50 nm NP 250 pg/l + WWTP © ) (816 e oY)
50 nm NP 2.5 pg/l + WWTP © - - - n
50 nm NP 25 pug/l + WWTP © +- /- - -
50 nm NP 250 pg/l + WWTP © +- - -- -+
500 nm NP 2.5 pg/1 ® e -I- /- -+
500 nm NP 25 pg/l ® -/ A - -
500 nm NP 250 pg/1 ® +/- -I- -I- -
500 nm NP 2.5 pg/l + SW © /- +- /- +/-
500 nm NP 25 pg/l + SW © +- +/- - -
500 nm NP 250 pg/l + SW © " n n T
500 nm NP 2.5 pg/l + SW @ /- -/ -I- -
500 nm NP 25 pg/l + SW @ -1 A /- -
500 nm NP 250 pg/l + SW @ +- /- - +-
500 nm NP 2.5 pg/l + WWTP © Ve -I() -I- e
500 nm NP 25 pg/l + WWTP © ) -I- -1+ +H(+)
500 nm NP 250 pg/l + WWTP © - (e -I- -+
500 nm NP 2.5 pg/l + WWTP © - - - i
500 nm NP 25 pg/l + WWTP © -/ A -I- 1+
500 nm NP 250 pg/l + WWTP © -/ -/ A -1+

(a) In comparison to the NC

(b) In comparison to DMSO matrix without NP
(c) In comparison with DMSO and the same NP concentration

(d) In comparison to SW matrix without NP

(e) In comparison to WWTP effluent matrix without NP

+ indicates a significant positive response, — a negative response, (+) a possible false statistically significant positive response due to

cytotoxicity and (-) a possible false negative response due to cytotoxicity.
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Figure A6.1. Ames fluctuation test results with TA98-S9 (upper panel) and TA98+S9
(lower panel) in DMSO, Surface water (SW) and SW + WWTP effluent water (WWTP)
extracts for both experiments (EXP1 and EXP2). Results of a negative control (NC) and
a positive control (PC) are also shown. Bars represent average values (n = 3) for two
independent experiments + standard deviations. Asterisks show significant differences
between the environmental matrices and the NC in each of the experiments. Hashes show
significant differences between the SW and WWTP effluent water matrices and the
DMSO matrix in each of the experiments.
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Figure A6.2. Ames fluctuation test results with TA100-S9 (upper panel) and TA100+S9
(lower panel) in DMSO, Surface water (SW) and SW + WWTP effluent water (WWTP)
extracts for both experiments (EXP1 and EXP2). Results of a negative control (NC) and
a positive control (PC) are also shown. Bars represent average values (n = 3) for two
independent experiments + standard deviations. Asterisks show significant differences
between the environmental matrices and the NC in each of the experiment. Hashes show
significant differences between the SW and WWTP effluent water matrices and the
DMSO matrix in each of the experiments.
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Figure A6.3. Ames fluctuation test results with TA98-S9 (upper panel) and TA98+S9
(lower panel) in DMSO with increasing NP or MP concentrations (2.5, 25 and 250 pg/l)
for both experiments (EXP1 and EXP2). Bars represent average values of two
experiments + standard deviations (n = 3). Asterisks show significant differences between
the treatments with NP concentrations and the DMSO matrix without NP in each of the
experiments. No positive wells were found for the medium 500 nm NP concentration in
DMSO in TA98-S9 in the first experiment.
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Figure A6 4. Ames fluctuation test results with TA100-S9 (upper panel) and TA100+S9 (lower
panel) in DMSO with increasing NP concentrations (2.5, 25 and 250 pg/1) for both experiments
(EXP1 and EXP2). Bars represent average values of two experiments + standard deviations (n
= 3). Asterisks show significant differences between the treatments with NP concentrations and
the DMSO matrix without NP in each of the experiments.
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Appendix of Chapter 7

Methods continued - Detailed motivation for each criterion used in the quality evaluation.
Table A7.1. Study characteristics.

Table A7.2. Explanation of the quantitative scoring system proposed to evaluate the studies testing the effects of
MP on aquatic biota using the (QA/QC) criteria.

Figure A7.1. Size ranges used in the scored studies. Lines represent the size range reported and data points
represent the reported or calculated average size.

Figure A7.2. Exposure duration in hours for n =105 studies.
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Methods continued - Detailed motivation for each criterion used in the quality evaluation.

Particle characterization

Criterion 1. Particle size. Species-specific physiological and behavioural traits can strongly
influence the relative size of particles ingested by an organism, including MP 4633186303 Gj7¢
selectivity depends on the morphology and feeding strategy of a species, which determines the
upper size limit for the food they can ingest, as well as for the ingestible size of MP.2%7:379:380
For instance, in a study assessing the ingestion of MP by seven Cladocera species, the maximum
size of MP ingested increased proportionally with the body size.’” The upper size limit will
differ between species at varying trophic levels, but can also show significant variation within
species depending on their developmental stage.*>%* Based on species traits, size preferences
have been demonstrated for a few organisms, being some MP sizes ingested in higher quantities
than others.!8¢3% Particle shape and polymer identity also affect the probability of MP to be
encountered and ingested, thereby affecting the bioavailability of MP.*® Furthermore, the
residence time of MP in the body of the organisms has also been related with the size of the
particles.’?® The relative relationship between the ingestion and retention of MP can result in
decreased nutritional value and/or physical obstruction in the digestive tract, which have been
proposed as two of the mechanisms underlying observed adverse effects for organisms exposed
to MP 8392186303304 Ag the ingestion and effects of MP can be size-dependent, the size
distribution of the MP selected in an effect study can directly influence the occurrence and
severity of the effects observed and therefore requires analytical characterization.
Consequently, studies that report the full particle size distribution of the tested MP are assigned
a criterion value of 2. The distribution, however, should be provided with sufficient resolution,
ideally with 10 bins or more. If only one size is reported instead of a range, a study receives 2
points when the size reported is supported by analytical characterization and reported with a
measurement error. MP sizes should ideally be characterized analytically using dynamic light
scattering or laser diffraction methods or alternatively estimated using high resolution
microscopy of the MP with a scale in combination with imaging analysis software. When the
particle size/sizes are reported but not supported by analytical characterization, based on
information provided in material safety data sheets or size separation using sieves, a study is
assigned a criterion value of 1. Finally, studies that did not report the size of the MP used in
their experiments are assigned a criterion value of 0.

Criterion 2. Particle shape. For several species, selective ingestion, gut retention, and effects
of MP have been found to depend on their shape.®*327328 For instance, fibres were more lethal
than spheres for the amphipod Hyalella azteca.®® Authors report that fibres resulted in longer
gut retention times, speculating that fibres may have aggregated in the gut.?3 Additionally, Piarulli
et al. (2020) showed that the MP analysed in six different benthic invertebrate species collected from
salt marshes, were mostly fibres (98.5%). MP fragments are also reported to be associated with
longer gut retention times in the cladoceran Daphnia magna in comparison to spherical MP.3%7
It has been suggested that the rounded shape of spherical MP facilitates their transport through
the digestive system of organisms, resulting in less severe effects than for other shapes of MP.%3
Given several observations reporting on the relative influence of the shape of MP on effect
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endpoints, the evaluation criterion related to characterizing MP shape is seen as an important
factor when interpreting ecotoxicological effects data. The shapes of MP have been defined in
many ways, such as e.g., fragment, fibre, film, foam, pellet, sphere, line, bead, flake, sheet and
granule.?!332%! Different shape categories can be found even within these categories; for
instance, MP fragments can be further characterized as rounded circular or edgy rectangular
shapes.'® Further complicating shape characterization is the observation that the dimensions of
MP vary along continuous scales and therefore do not lend themselves well to discrete
categories of characterization.??” Consequently, we consider the term “irregular MP” as an
ambiguous definition of the shape, as it includes the potential to reflect several shape categories.
Moreover, for a complete characterization of the shape, it is necessary to include at least one
high-resolution photo illustrating each of the shapes included in the MP tested. Therefore,
studies that provide an image obtained from a high-resolution microscope of the MP tested are
assigned a criterion value of 2. Studies that limit the reporting of the shape of MP to the
definitions of Rochman et al. (2019) or their synonyms (sphere vs. bead), based on the
information obtained from material safety data sheets but without a visual confirmation by the
authors are assigned a criterion value of 1. Finally, studies that do not report the shape of the
MP used or reported shapes that did not fall within the definitions described by Rochman et al.
(2019), are assigned a criterion value of 0.

Criterion 3. Polymer type. The fate, bioavailability, uptake and thus potential effects of MP can
be also influenced by the composition of the polymer representing the MP, which determines
the density of the particles in aqueous systems.*** In a sterile system without potential
biofouling of the particles and in the absence of agitation, positively buoyant MP will float on
the water surface, while negatively buoyant MP will remain in the water column until they sink
to the bottom of the system.** The fate of the MP in the water column thus influences their
bioavailability and therefore the polymer type, as a proxy for density, needs to be characterized
and reported. Additionally, knowing the polymer type will allow comparisons with field data
on the occurrence, abundance and physical properties of the same polymer type, and possibly
linking it with certain products and product emissions. Currently, elaborate techniques for
polymer identification are available and widely applied in MP research, such as ATR-FTIR,
micro-FTIR, Raman spectroscopy, pyrolysis GC-MS or similar methods *%2. For studies that
analytically characterize the polymer type using one of these methods, a criterion score of 2 is
assigned. When the polymer type is reported following the information given in the material
safety data sheet and not confirmed by the authors, the study is assigned a criterion value of 1.
Finally, studies that did not report the polymer type of the MP used are assigned a criterion
value of 0.

Criterion 4. Source of MP. Reporting the source of where the MP were obtained is essential in
order to better interpret the data the MP relate to, and to strengthen data reproducibility in future
studies. Some studies, for instance, use in-house manufactured MP, following ad-hoc
procedures which may not lend themselves well to reproducibility. In these instances it is
imperative that detailed descriptions of the protocol used in producing the MP is provided (e.g.,
Korez et al., 2019). Results of effect studies on MP published to date show a wide variety of
responses for different organisms.’® Even for the same species, different results can be obtained,
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which could be attributed to differences in the source(s) of MP.!3>18¢ Therefore, when MP are
purchased from a commonly available supplier and where specifics of the provider is provided
in the main text or in the Appendix, a study is assigned a criterion value of 2, as this scenario
lends itself best to reproducibility. For those studies where MP are prepared in-house using
commercially available plastic products, we also assign a criterion value of 2 when the name of
that plastic product is provided as well as a detailed protocol for the preparation or extraction
of the MP. For instance, Jemec Kokalj, Kunej and Skalar (2018), extracted MP from a facial
cleanser and made MP from a plastic bag. Polymers were characterized using FTIR, particle
size distributions were measured by laser diffraction, and images of the MP were taken with a
field emission scanning electron microscope. However, they do not provide the name of the
facial cleanser nor the precedence of the plastic bag. Consequently, when the information given
on a MP source is incomplete and thus not fully reproducible, a criterion value of 1 is assigned.
Finally, studies that do not provide any information on the source of the MP are assigned a
criterion value of 0.

Criterion 5. Data reporting. 1t is widely acknowledged that inconsistency in how
concentrations are reported make it difficult to compare between effects studies.’®!40-294
Concentrations of MP can be presented as a particle number concentration, like the number of
MP particles per L or per Kg of sediment, food or weight of the organism; or mass
concentration, like grams of MP per L or per Kg of sediment, food or weight of the organism.*
Some studies quantify the number of MP in a specific volume or weight using a
haemocytometer, a flow cytometer or a coulter counter.8%-29-213250 Other studies estimate the
number of MP manually using a stereomicroscope combined with image analysis software,
applicable for MP.80-230339 Moreover, some studies convert mass concentrations to number
concentrations or vice versa based on assumptions that correlate the size of a particle to its
volume, for which MP characteristics such as size distribution, shape and density are
required.”® 186385 A few other studies make reference to the conversion provided by the supplier
of the MP 303386387 Thys, the reporting and conversion of concentrations between particle
number and mass concentration units can be done using a variety of methods, and should be
clearly described in the study in order to facilitate comparisons across studies. Since the units
of concentration represent a fundamental parameter to assess risk, which compares
environmental concentrations to effect threshold concentrations, consistency in units is
therefore of paramount importance.'*? Studies that report concentrations in particle number as
well as in mass concentrations are thus assigned a criterion value of 2, as they provide the
greatest opportunity to compare between studies and for use in assessing environmental risk.
Studies that limit the reporting of concentrations to only either particle number or mass
concentrations, are assigned a criterion value of 1. Finally, studies where concentrations of MP
are not reported receive a criterion value of 0.

Experimental design

Criterion 6. Chemical purity. Studies that aimed to investigate the interactive effects of MP
and chemicals are not included in this study but are reviewed elsewhere.’®3%8:3%9 Persistent
organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and organochlorine
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pesticides are ubiquitous in the environment and will partition into any organic carbon,
including MP.!! Experiments measuring the partitioning behaviour between MP and organic
chemicals are relevant for determining sorption/desorption coefficients and/or sorption kinetics.
However, from the perspective of assessing risk it is more relevant to evaluate the toxicity of
plastic-associated chemicals in the absence of MP.!! Assessing the adverse effects of the
chemical stressor in the absence of the MP individually first, can provide an effective strategy
for developing more complex test systems aimed at assessing multiple chemical and non-
chemical stressors, and help address the immediate challenges of assessing the environmental
risks of MP themselves.!! This reasoning also applies for the diversity of chemical additives
and plasticizers commonly associated with plastic.” Moreover, disentangling the effect
assessment associated with chemical stressors from the non-chemical particle stressor can
strengthen overall understanding of the mechanisms that influence MP toxicity. For instance,
studies by Martinez-Gomez et al. (2017) and Pikuda et al. (2019) have shown that the toxicity
from leachates derived from additives are more harmful than the inert polymer material,
highlighting the importance of washing MP before the start of an experiment, if insight
regarding the effects associated with the particles themselves is the main objective 3%
Otherwise, the chemical stressor overwhelms the effects that might be associated with the
particles, preventing the ability to distinguish between the two. Additionally, the artificiality of
an exposing test organisms to MP containing chemical additives within a closed system
represents a worst-case scenario that is not representative of an environmentally relevant
exposure. In the environment, organic chemicals, including POPs, chemical additives and
plasticizers are widely dispersed as a consequence of their use in manufacturing and consumer
products, and partition into all environmental media, resulting in various exposure pathways to
exist. Consequently, assessing chemical exposure requires an understanding of the multimedia
behaviour of organic chemicals, whereby exposure via MP likely represents a negligible
pathway as compared to other sources.’®32 Therefore, in order to disentangle the effects
associated with the particle stressor from confounding chemical effects, the toxicity of
background chemicals should be minimized. This includes minimizing exposure to chemical
additives and plasticizer that might be present in MP, but also chemicals associated with food
particle surfactants (e.g., Tween) and markers (fluorescence). Minimizing chemical exposures
in MP effects studies, however, represents a major challenge. For instance, a recent study by
Cole et al. (2019) extensively measured chemicals in MP, and reports that a wide variety of
unknown chemicals are used in MP, making it nearly impossible to confirm conclusively that
all relevant chemicals have been assessed.>*” Therefore, it is preferred to repeatedly wash the
particles with an organic solvent(s) in an effort to minimize effects associated with a chemical-
associated contaminant. It is notable, however, that this could have the undesired effect of
altering the properties of the particles themselves, consequently care is required with respect to
which organic solvents are used as well as the conditions of cleaning. Alternatively, several
studies have demonstrated that it is possible to minimize the influence of the chemical stressor
by providing evidence that the mass of chemical in the test system is at an exposure that remains
below a chemical toxicity (e.g., Bellingeri et al., 2019; van Weert et al., 2019; Redondo-
Hasselerharm et al., 2020) (Chapter 5).22%-22623% [n summary, studies that report the inclusion
of methods to thoroughly clean MP by washing with an organic solvent are assigned a criterion
value of 2, since the observations of adverse effects could be more confidently allocated to a
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particle-associated effect. If a certificate from the manufacturer was used or measurements were
taken to subsequently use a control for the chemicals or the toxicity of chemicals was calculated
based on LCx or ECx from literature, the study is assigned a criterion value of 1. Finally, studies
that did not address the potential influence of a chemical stressor on observed adverse effects
when testing MP are assigned a criterion value of 0.

Criterion 7. Laboratory preparation. The importance of preventing contamination when
testing MP is emphasized in several recent papers and critical reviews.31-33:314:315.393.394 Catarino
et al. (2018), for instance, quantified atmospheric fall-out within households, which, when
rescaled to the surface area of a representative experimental test system of e.g. 20 x 25 cm?,
would imply a flux of 8333 particles per test system per day. The amount of natural fall-out of
MP likely differs between locations within a laboratory and among laboratories. Catarino et al.
(2018), emphasized the need to account for atmospheric deposition during experiments, even
in instances where relatively high concentrations are tested.!'> We argue, therefore, that the
uncertainty related to contamination with MP during MP effects studies, also requires care in
mitigating the potential for deposition and with respect to characterizing and quantifying the
nature of the contaminants. This is because the nature of the MP-contaminants may be
significantly different than those used in the test system, in that they may contain chemical
additives that can strongly influence observed effects, negating test results. This is particularly
relevant to the control test-system, meant to have zero MP concentration, or very low dosed
systems, for which greater sensitivity would be anticipated due to the influence of MP-
contaminants. Some studies thoroughly report measures taken to prevent MP-contaminates,
such as wearing cotton lab coats, rinsing of equipment, covering the test systems or avoiding
the use of plastic materials during the experiment.??+236343 Consequently, a criterion value of 2
is assigned for those studies adopting measures aimed at avoiding contamination from air, water
and all materials used during the experiment. Studies adopting limited measures are assigned a
criterion value of 1. Finally, studies that do not report the use of any measure to prevent
contamination are assigned a criterion value of 0.

Criterion 8. Verification of background contamination. Whereas the previous criterion
focuses on the measures taken to mitigate background MP-contaminants, the present criterion
evaluates the extent to which studies verify that such measures are successful or alternatively
that the adoption of taking no action to reduce background contamination is needed because the
potential for MP-contaminants is demonstrated to be minimal. In this case, verification implies
the use of methods that characterize and analytically measure MP concentrations in exposure
systems. A study by Welden and Cowie (2016), for instance, observed a fibre in the foregut of
one of their control animals, underlining the importance of including method verification in MP
effects test studies.>® A few studies, on the other hand, have limited verification of background
contamination to the reporting of visual observations.?36342343 Visual inspection, however, is
generally considered inaccurate, as there is a high probability of missing small and transparent
MP 3135 Moreover, reliance on the use of visual observations is susceptible to false positives.s?
Based on these considerations, a criterion value of 2 is assigned to studies measuring
background contamination with analytical detection methods, such as by FTIR or Raman. For
studies that limit the verification of background MP-contaminants to a visual inspection, a
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criterion value of 1 is assigned. Finally, for studies that do not report on background
contamination of MP, a criterion value of 0 is assigned.

Criterion 9. Verification of exposure. In order to obtain accurate dose-effect relationships,
exposure concentrations in the test systems must be quantified. Test concentrations are typically
prepared by adding particles to the test medium, occasionally followed by dilution and
homogenization steps. There are several reasons why the actual exposure concentration can
deviate from the nominal concentration estimated from the initial preparation. First, human
error can occur in the initial calculations or laboratory manipulations of glass ware and
equipment can lead to deviations in the concentration. Secondly, the test system itself can
influence exposure, whereby particles can stick to container walls and/or become unevenly
distributed across test systems when homogenization is insufficient. Actual concentrations can
also be higher than nominal concentrations due to background MP-contaminants, as discussed
in the previous criterion.'!'33%® These factors can propagate and substantially influence initial
estimates of test concentrations. Furthermore, the dynamic behaviour of the particles
themselves can cause significant changes in exposure during the test. While less important for
sediment-test systems, the behaviour of particles in aqueous test systems can result in settling,
floating or aggregation of the particles, changing the actual exposure conditions over time.?’
Fundamentally, the exposure of the stressor in an ecotoxicity test system should be constant
over time and reproducible for each test. Demonstrating consistency in the exposure
concentrations for the duration of the test is thus important to develop accurate dose-effect
relationships, and the quantification of the exposure concentration should therefore be verified.
A criterion value of 2 is assigned to studies that verify the exposure concentration of MP and
ensure that at least 80% of the nominal concentration is maintained throughout the test 37-3%,
Studies that measure the exposure concentration, but without verifying that at least 80% of the
nominal concentration is maintained throughout the test are assigned a criterion value of 1.
Studies that only report the nominal concentration or limit the verification of the concentration
to the stock solution are assigned a criterion value of 0.

Criterion 10. Homogeneity of exposure. The previous criterion evaluates the extent to which
the exposure concentration is verified. However, unlike the fate of dissolved chemicals in
ecotoxicological effect testing, solid particles are prone to inhomogeneity of exposure as they
tend to settle or float depending on a variety of factors, such as the difference in their density
compared to that of the medium they are dispersed in.67:123:141399-403 Therefore, especially for
aqueous test systems, MP that have a higher density than water may settle when the dispersion
is not well mixed, whereas buoyant particles may tend to reside at the surface of the test system
only. Presence of air pockets or biofilm layers may change over time and influence exposure as
a result of settling or causing differences in particle-particle interactions and settling velocities
as a function of time, thus questioning the assumption of exposure homogeneity. These
inhomogeneities can strongly influence the bioavailability and thus the exposure of the
particles, resulting in a lack of control and reproducibility of test results. Methods for addressing
heterogeneity in test systems assessing particle stressors include the use of ultrasonic agitation,
and other physical mixing techniques (circular, wrist action shaking, plankton wheels) prior or
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during exposure, or by simply reporting the absence of such problems based on visual

observations 338,347,385,404-406

Natural sediments are comprised of a mixture of particles with densities spanning a wide range,
as compared to that of the solid polymeric particles that have been tested. MP mixed in sediment
are ‘held’ in the sediment matrix and progressively encapsulated when biofilms form and test
particles form hetero-aggregates and — agglomerates with the natural particles in the sediment
matrix. This implies that exposure in effects test systems of MP mixed in sediment are
homogeneously distributed. Many studies have recognized the need for homogeneity and have
described in detail how MP were mixed in the exposure medium and sometimes also how
homogeneity of exposure was verified (Chapter 5).2264%7 For aqueous exposures, a criterion
value of 2 is assigned to studies that verify that MP were homogeneously distributed through
the use of microscopy photos and/or apply analytical tools to demonstrate that the MP were
well mixed or dispersed in the solution. In instances where the method used to generate a
homogeneous exposure is described but not verified, a criterion value of 1 is assigned. Effect
testing of MP in sediment test systems, for which the verification of homogeneity is deemed to
be not crucial, results in a criterion score of 2 for all studies that describe the method by which
the MP are homogeneously mixed with the sediment, in detail. Studies that do not address the
issue of homogeneity, or that observed an inhomogeneous exposure, are assigned a criterion
value of 0.

Criterion 11. Exposure assessment of organisms. To be able to understand and interpret effect
data, it is important to be able to causally link an observed effect to actual exposure data. The
question ‘what is an organism exposed to?’ however can have different answers for different
organisms, particles and/or test conditions. The metric used to quantify the effect should be
ecologically relevant and should be the same as the one used to quantify exposure.!!
Microplastics can have multiple of such environmentally relevant metrics (ERMs). They can
be characterized on the basis of known species- and particle-specific effect mechanisms. Hence,
it is the actual effect mechanism which defines how microplastic particles and test organisms
interact and how actual exposure should be assessed. Exposure then can be seen as
accumulation at the receptor site, i.e., where the interaction takes place, and which is considered
as the target for the microplastic effect under consideration. We illustrate the principle with
three examples. For instance, one of the more well understood effect mechanisms, is the
deterioration of food quality due to the dilution of nutritious food particles caused by an
elevated exposure to low-caloric, non-digestible MP that are co-ingested with food.”>186
Therefore, for a study that would ascribe observed effects to this mechanism, demonstrating
ingestion would be a crucial criterion. Instead, studies that ascribe sub-organismal effects to
damage at the cell level should ideally demonstrate systemic uptake and/or penetration of MPs
and should demonstrate that these cells are reached.338-346:408499 Ag 5 final example, studies that
explain growth inhibition in algal cultures from a decrease in photosynthesis, should verify the
presence of MPs at or in between algal cells in the culture.*’*> A detailed overview and analysis
of such reported effect mechanisms is provided in section 3.3 of his review. In the majority of
instances, effects related to the ingestion of MP are reported as the most relevant exposure
pathway, implying that the quality criteria to detect and quantify MP ingested by biota are of
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critical importance. Exposure due to translocation and cell penetration also requires detection
and quantification of MP in biota tissue and is thus also important in defining the quality criteria.
These criteria have been reported in a previous study,’! for which criteria related to tissue
digestion, particle detection and polymer identification are all applicable. For adverse effects
influenced by external exposure of MP, i.e., from MP just being present in water or sediment,
as in the example for algae, criteria for the analysis and quantification of MP in water are most
relevant. It is widely understood that visual sorting of MP is insufficient to detect the small and
often light-coloured MP against a background of e.g., animal tissue. Therefore, following the
QA/QC criteria suggested by Hermsen et al. (2018), a criterion value of 2 is assigned to studies
that report the detection of MP quantitatively using e.g., FTIR or Raman imaging, to support
statements of MP ingestion and/or penetration into cells of biological tissues that have been
appropriately digested and filtered.?' Studies demonstrating exposure of organisms to MP based
on qualitative or visual observation, or citing results from a separate experiment, or in the
absence of a digestion step, are assigned a criterion value of 1. Studies that do not report data
on exposure, are assigned a criterion value of 0.

Criterion 12. Replication. In every effect assessment, an adequate experimental design requires
a sufficient number of replicates in order to ensure statistically reliable results.3'24!0 Studies
should therefore clearly explain the degree of replication of each treatment.*! Some studies,
however, fail to report on the use of replicates in their experimental design®**3*> while other
studies report the use of replicates, but which are not actual replicates but better characterized
as pseudo-replicates.®!-67330 For instance, Jovanovié¢ et al. (2018) considered as replicates the
15 fish exposed to MP in the same tank.*!' As each replicate should be an independent
experimental unit, with the experimental unit here being the tank, the exposure of all fish via
the same tank should thus be better defined as multiple measurements taken one experimental
unit.*!2 In contrast to soluble chemicals, which can be homogenously distributed in the test
system, the severity of the effects detected in MP studies can be attributed to the relative extent
of bioavailability of the particles and the probability of encountering them in the test system.
Therefore, in the case of MP, it is especially important to have several replicates to compensate
for the uncertainties associated with the potential for inhomogeneous exposure associated with
the test system. Studies were assigned a value of 2 when they included results from a minimum
of three replicates. A criterion value of 1 is assigned to studies using only two replicates. Finally,
studies that do not include any replicates or do not report the number of replicates used are
assigned a criterion value of 0.

Applicable to risk assessment

Criterion 13. Endpoints. Effect studies with MP use a wide variety of endpoints, sometimes
even within studies. We argue that when data from such studies are to be used in ecological risk
assessment, the ecological relevance of the selected endpoint represents an important criterion
to consider. From a risk assessment perspective, endpoints such as survival, growth and
reproduction are considered ecologically relevant, because these endpoints directly relate to a
population-level effect. These endpoints are preferred over e.g. sub-organismal or behavioural
endpoints, which are generally less relevant in assessing population-level responses, unless
there is a clear demonstrated causal relationship between these responses and a higher level
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effect e.g. population effect.!4%413 For instance, de S4 et al. (2015) speculated that reduced food
intake caused by the ingestion of MPs adversely affects both the individual and population-
level fitness of a species.*!* The endpoints studied, however, are attributed to the predatory
performance and efficiency of the species, which does not necessarily translate to an
ecologically relevant population level effect. Whereas it has been suggested that sub-organismal
endpoints such as biomarkers can be representative of early warning signals and are thus more
sensitive indicators than the traditional endpoints used in risk assessment,*34!° they can also
be perceived as being susceptible to type I and II error, due to under-replication and pseudo-
replication in ecotoxicological bioassays, which could lead to false alarms or undetected
effects.*!>41¢ Moreover, there is no evidence that sub-organismal endpoints are more sensitive
than endpoints taken at higher organismal level responses, particularly for MP effects studies.
Additionally it is possible that effects seen at the sub-organismal level merely resemble reaction
to decreased nutritional intake.*? Furthermore, endpoints at these sub-organismal levels are not
likely to be useful predictors since they have complicated time- or dose-dependent responses,
which makes it difficult to extrapolate correlations to higher levels of biological organization.*'
Still, in carefully controlled studies e.g. biomarkers can be useful for elucidating mechanisms
of toxic action.*'® In summary, a criterion value of 2 is assigned to studies where endpoints at
either community or individual level of biological organization (e.g. survival, growth,
development or reproduction) are used. If sub-organismal endpoints are used, for which a causal
relationship with effects on higher levels of biological organization is demonstrated, a criterion
value of 1 is assigned to the study. Finally, studies that use endpoints that cannot be
unambiguously linked to a threat at the individual or population level are assigned a criterion
value of 0.

Criterion 14. Presence of natural (food) particles. 1t is important to note that the natural
environment is not free of particles and that organisms have adapted various species-specific
traits in relation to strategies for interacting with particles. While MP are ubiquitous in the
aquatic environment, the amount of natural particles is typically greater than the concentrations
of MP that have been reported in the environment.?®3% Therefore, when designing an
experiment meant to simulate natural conditions it is important to consider the response of
organisms to both naturally occurring particles as well as a MP-stressor exposure.'40-392
Exposure to naturally occurring particulates, for instance, can represent an important food
source to an organism or may otherwise form part of their natural habitat, such as sediment or
suspended solids (Chapters 2 and 5).'3%22¢ The inclusion of food and other particulates is
needed because ecotoxicological effects of MP on organisms has been demonstrated to be
influenced by the presence of naturally occurring particulates.*®7417418 Observations that the
co-exposure of both naturally occurring particulates and MP can mitigate toxicity implies the
relative importance of a species ability to selectively feed and therefore reduce the risks
associated with MP under environmentally relevant conditions.3?> We argue that without taking
natural (food) particles into account, the observed adverse effects represent a system-dependent
artefact that does not lend itself to risk assessment purposes. An exception, however, is made
for algal studies, as their food source are nutrients and light, and therefore the addition of other
naturally occurring particles is less likely to influence adverse effects.*!®
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It is further noted that there are several studies that adopt standard test protocol guidelines for
acute toxicity testing, which are applicable to soluble chemicals.”®7%-384420 In such experiments
the test guidance is not to feed the organisms, which is logical when testing soluble chemicals
as the food particles may influence the bioavailability of the test chemical and the presence of
food does not represent a limiting factor due to the short duration of the acute study. However,
this guidance is not applicable to experiments aimed at assessing the acute response of MP,
because the adverse effects can also potentially be influenced by the presence of food particles
302 Therefore, when natural particles (at least food) are added to avoid an exposure that might
be perceived as analogous to ‘force feeding’ the organisms with MP, a criterion value of 2 is
assigned to the study. Studies that add food, but in which the food is not optimally available to
the organisms are assigned a criterion value of 1. Finally, studies that do not include any
naturally occurring or food particles are assigned a criterion value of 0.

Criterion 15. Reporting of effect thresholds. To date, the majority of effect studies report
adverse effects for MP at a single or limited number of test concentrations.3!:8%-304414:421 Thege
observations are beneficial in demonstrating the potential adverse effects that MP can have on
biota. It remains unclear, however, the threshold concentration above which the adverse effect
initiates. For the purposes of risk assessment, where the ratio of exposure concentrations to that
of effect threshold concentrations are derived, accurate estimates of effect threshold
concentrations, such as derived from dose-response relationships in the form of L(E)Cy, (or the
generally less preferred NOEC or LOEC),**>#* are required. Given the paucity of dose-
response threshold effects data for MP, the need for effect threshold concentrations to help
inform the risk assessment process has been widely recognized.!340¢ Therefore, given the
relative importance of this criterion regarding applicability in risk assessment, effect studies
aiming at reporting effect thresholds are assigned the greatest value. To be effective it is notable
that effect threshold concentrations must be accompanied with estimates of error or uncertainty,
in order to evaluate that differences in exposure concentrations are statistically meaningful.
Based on this reasoning, we assign a criterion value of 2 to studies that report threshold effects
data using L(E)Cx derived from dose-response relationship modelling, with error data (95%
confidence interval, standard error or standard deviation). If other metrics like NOEC or LOEC
are used, or when no error data are provided, the data are still considered useful and a criterion
value of 1 is assigned. Studies that do not explicitly provide data on threshold concentrations
for the reported effects are assigned a criterion value of 0.

Criterion 16. Quality of the dose-response relationship - Effect threshold concentrations, such
as ECso or LCso, are typically obtained by fitting a logit or probit model to dose-response data,
159 in which ECso or LCso is a model parameter. This implies that the statistical significance of
the resulting ECso or LCso value depends on the quality of the fit to the data, and on the number
of parameters fitted, compared to the number of data points in the dose-response relationship.
In standard ecotoxicity test systems it is generally suggested to assess effects using a minimum
of six different exposure dose concentrations, including the control, to obtain an accurate ECso
or LCso value.'® Ideally, the exposure concentrations used are representative of the full range
of effects, i.e. from low effect to near-maximum effect, such that an ECso or LCso value can be
derived without extrapolation. Intuitively, replication of test results at each exposure

228



Appendices

concentration will also contribute to more accurate ECso or LCso values. Since replication is
already covered by criterion 12, only the number of exposure concentrations used in an effect
study is evaluated under this criterion. Studies that use the recommended minimum of six
exposure dose concentrations or more, including a treatment control (zero microplastic
concentration), are assigned a criterion value of 2, and a criterion value of 1 if five different
concentrations are used. For studies reporting dose-response relationships using less than five
concentrations, a criterion value of 0 is assigned.

Criterion 17. Concentration range tested. Recent studies have drawn attention to the need to
better define ecologically relevant concentration ranges for effect testing of MP.2*4425 As
previously discussed, studies reporting adverse effects for MP often use unrealistically high
exposure concentrations, which has resulted in suggestions for future studies to assess effects
using lower, more environmentally relevant, concentrations.!'*?> However, if studies limit
assessing effects to low concentrations, it is possible that derivation of effect threshold
concentrations may not be possible. Consequently, we argue that studies must follow standard
principles adopted in assessing the risks of chemicals, such as through the use of quantitative
dose-effect relationships to obtain an assessment of effect threshold endpoints typical of
ecotoxicology (i.e., ECso or LCso) with sufficient quality. To meet this requirement, effect
testing can include both high and low concentrations, as long as the results are used to
quantitatively derive the appropriate threshold values. For example, if an effect observed in an
ecotoxicity test system occurs only at concentrations that exceed environmentally relevant
exposure concentrations by several orders of magnitude, the end result would be supportive of
demonstrating low risk. Nevertheless, there can also be strong arguments that support the use
of environmentally realistic, low concentrations in ecotoxicity effects tests. This is because the
reported effects occurring at high concentrations may be linked to an effect associated with a
decrease in food quality, resulting from either the ingestion of inert non-digestible particles or
due to an overwhelming number of particles in the test system that results in a decreased
potential for the test organisms to find food particles. This type of effects occurs with any type
of particle of low nutritional value and may be perceived as an artefact of the test system design,
not an effect that is intrinsic to the MP themselves'“3% and is therefore better understood as a
non-specific particle effect. This exposure scenario typically results in the test organisms
suffering from starvation prior to any other modes of action that the MP may cause effects that
might occur at lower concentrations following a chronic exposure (Chapter 5).8722 In other
words, at environmentally relevant concentrations, it is unlikely that food dilution represents a
mechanism of ecological significance, but that more subtle effect mechanisms (related to
behaviour, avoidance, reproduction, particle toxicity) are likely of greater relevance to assess
and for which long term chronic effects testing would be beneficial. For this reason, some
studies intentionally assess the effects associated with lower test concentrations (Chapter
2).186.33% In summary, environmentally relevant concentrations should be given priority for
effects testing of MP, which forms the basis of a legitimate criterion for the ecological relevance
associated with chronic ecotoxicity test system design. Note that exposure duration is evaluated
below, in a separate criterion, and only the ecological relevance of the concentration is
evaluated under this criterion. Thus, studies that use two or more environmentally realistic
concentrations in the exposure concentration doses tested, supported by credible literature data,
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are assigned a criterion value of 2. If the test system uses only a single environmentally relevant
concentration, supported by credible literature data, a criterion value of 1 is assigned. Studies
that acknowledge that concentrations are far above environmentally relevant concentrations, or
that do not evaluate their exposure concentrations with environmental monitoring data, are
assigned a criterion value of 0.

Criterion 18. Aging and biofouling. Under environmentally relevant conditions, MP undergo
abiotic and biotic processes that alter their shape, size, structure and eventually their
bioavailability.3'® Vroom e al. (2017) demonstrate that the aging of MP promotes their
ingestion by marine zooplankton. As the surface of MP functions as a substrate for biofilm to
grow, ingestion of biofouled MP potentially represents an additional energy source for test
organisms.*?® This implies that ecotoxicity tests that assess pristine particles may potentially
underestimate the ingestion rates that may occur in the environment, whereby the potential to
ingest aged and biofouled particles may be higher. Since MP undergo both aging and biofouling
in the environment, it would thus be beneficial to consider how such processes influence
ecotoxicity results and would further strengthen aims directed at ecological relevance.
Consequently, studies that include aging of MP to make them more environmentally realistic
and also characterized the MP for aging and biofouling, for instance by scanning electron
microscope (SEM), are assigned a criterion value of 2. Studies that have only aged the MP but
do not characterize them (e.g., Zettler, Mincer and Amaral-Zettler, 2013) are assigned a
criterion value of 1. Finally, studies that limit testing to only the use of pristine MP and/or
conditions that prevent the formation of a biofilm are assigned a criterion value of 0.

Criterion 19. Diversity of MP tested. To date, most studies assessing the effects of MP limit
observations to a relatively small sub-set of all possible characteristics. For instance, studies
testing MP based on a single or limited range of particle sizes, shapes and polymeric type may
provide valuable information on how specific particle characteristics influence uptake and
effects, but under ecologically relevant conditions, organisms will encounter a wide variety of
characteristics, of which size, shape and density often are considered the most important
properties influence the transport, fate and bioavailability of MP.!320.27 Species-specific
biological and behavioural traits can also play an important factor in determining which
properties of MP found in the environment will most likely result in an exposure for the
individuals of a species (Chapter 2).'>!3¢ The ecotoxicological effects related to the properties
of the relevant fraction of MP for a species, may also be influenced by the presence of either
other MP or of naturally occurring particles. Simulating species-specific responses to exposures
of environmentally relevant heterogeneous mixtures of both MP and naturally occurring
particles represents a significant challenge in MP effects testing. Recently, Kooi and Koelmans
(2019) reviewed the ranges and distributions of the characteristics of environmentally relevant
MP and observed relative similarity across datasets taken from different locations, with respect
to their physicochemical characteristics.?”” Given the recent awareness associated with this
criterion, we suggest that future studies adopt the use of distributions in physicochemical
properties of MP as a standard approach to enable better environmental realism in MP effects
testing. Consequently, studies that use MP with a range of sizes, shapes and densities in one
mixture exposure, and which attempts to simulate the diversity of environmental MP, are
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assigned a criterion value of 2. If the diversity related to only one or two of the physicochemical
characteristics and/or a limited distribution, a criterion value of 1 is assigned. Studies that
limited effect testing to a single type of MP were assigned a criterion value of 0.

Criterion 20. Exposure time. Standard test protocol guidelines for the ecotoxicity testing of
chemicals recommend the application of defined exposure times for each of the endpoints
assessed. While these guidelines are also routinely adopted in the effects testing of MP, some
studies highlight the need for longer exposure times, due to the detection of time-dependent
effects (Chapter 5).757%:87226,329.330.428 For instance, the effects of MP on the freshwater coral
Lophelia pertusa differed between exposure times of 7, 20 and 47 days.’*® While the coral
growth rate decreased over time, effects on capture prey and polyp activity disappeared after
47 days, revealing that both positive and adverse effects of MP can differ with time.33°
Furthermore, observations for the marine mussel Mytilus edulis, report the formation of
granulocytomas and the destabilization of the lysosomal membrane increased significantly with
longer exposure times when exposed to MP.”> Moreover, adverse effects of MP on the growth
of the cladoceran Daphnia magna were only found after 25-31 days of exposure.’?° For D.
magna, another study demonstrated that their immobilization increased over time when
exposed to MP.”® Generational effects following exposure to MP have also been reported, as in
the case of the copepod Tigriopus japonicus.**® Therefore, the importance of exposure duration,
which can influence the detection of adverse effects that might differ between chemicals and
MP is emphasized within this evaluation criterion. Exposure duration is of particular
importance for endpoints that seem to be time-dependent, such as growth, reproduction and
long term community effects (Chapter 5).226310 Additionally, increasing the exposure time can
be perceived as adding greater environmental relevance to the effect study, explaining the logic
for why this criterion is in the ecological relevance category. Thus, for studies that include a
minimum exposure time of 7 days for bacteria or phytoplankton, 21 days for zooplankton, 28
days for benthic invertebrates, macrophytes or fish larvae and 3 months for adult fish, the study
is assigned a criterion value of 2. For studies that use an exposure time between 1 and 7 days
for bacteria or phytoplankton, between 4 and 21 days for zooplankton, between 7 and 28 days
for benthic invertebrates, macrophytes or fish larvae and between 1 and 3 months for adult fish,
a criterion value of 1 is assigned. Finally, studies that use substantially shorter exposure times,
specifically < 1 day for bacteria and phytoplankton, 4 days for zooplankton, 7 days for benthic
invertebrates, macrophytes or fish larvae and 1 month for adult fish, are assigned a criterion
value of 0, except in instances where multigenerational studies are performed, where a criterion
value of 1 is assigned.
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Figure A7.1. Size ranges used in the scored studies. Lines represent the size range reported and data
points represent the reported or calculated average size.
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Appendix of Chapter 8

Table A8.1. Mean, minimum and maximum microplastic number concentrations (particles/kg of sediment
dw) and their size ranges reported for freshwater sediments in water bodies from Europe, Asia and Africa.

Table A8.2. Microplastic effect thresholds reported for benthic species using chronic single species tests
with sediments.

Table A8.3. Maximum ingestible sizes for the freshwater benthic species used in the Species Sensitivity
Distribution (SSD).

Figure AS8.1. Cumulative frequency distribution of rescaled to 1 — 5000 um measured exposure
concentrations in 20 water bodies based on the minimum, maximum and mean concentrations reported.

Figure A8.2. Cumulative frequency distribution of rescaled to 1 — 5000 um measured exposure
concentrations (MECs) in 20 water bodies compared to the predicted no effect concentration (PNEC)
obtained in tier 1 based on single species tests with freshwater benthic species.

Figure A8.3. Cumulative frequency distribution of rescaled to 1 — 5000 um measured exposure
concentrations (MECs) in 20 water compared to the predicted no effect concentration (PNEC) obtained in
tier 3 based on semi-field experiments with a freshwater benthic community.
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Figure AS8.1. Cumulative frequency distribution of rescaled to 1 — 5000 um measured exposure
concentrations in 20 water bodies based on the minimum, maximum and mean concentrations reported.
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Figure AS8.2. Cumulative frequency distribution of rescaled to 1 — 5000 um measured exposure
concentrations (MECs) in 20 water bodies compared to the predicted no effect concentration (PNEC)
obtained in tier 1 based on single species tests with freshwater benthic species. MECs are based on the
minimum, maximum and mean concentrations reported.
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Figure AS8.3. Cumulative frequency distribution of rescaled to 1 — 5000 um measured exposure
concentrations (MECs) in 20 water compared to the predicted no effect concentration (PNEC) obtained in
tier 3 based on semi-field experiments with a freshwater benthic community. MECs are based on the
minimum, maximum and mean concentrations reported.
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After the general introduction in Chapter 1, Chapters 2 - 4 focus on the development of
standard single species tests to detect individual effect thresholds of environmentally
relevant NP and MP. Then, in Chapter 5, we measure the effect thresholds of NP and
MP at the level of community using an ecologically relevant outdoor experimental
system. Chapter 6 aims at evaluating the suitability of in vitro tests commonly used for
chemical screening in drinking and WWTP effluent waters to detect the mutagenicity of
NP and MP alone and in combination chemicals extracted from surface and WWTP
effluent waters. In Chapter 7, we provide a guidance protocol for effect testing, identify
knowledge gaps with respect to study characteristics and define the weight of evidence
for demonstrated effects and effect mechanisms. Finally, in Chapter 8 we answer the
research questions formulated in the introduction, develop a tiered approach risk
assessment using the data generated in this thesis and literature data and we provide
recommendations for future research. Detailed summaries of the research approaches
used to address the above research questions can be found below:

In Chapter 2, we assess the effects of MP on six freshwater benthic macroinvertebrates
with different living and feeding strategies with the aim of measuring their individual
effect thresholds. For this, standard 28-days single species tests were performed using
pre-washed PS MP fragments with sizes between 20 and 500 pm at concentrations
ranging from 0 to 40% MP in sediment dw, including one field measured concentration.
Species selected were the amphipods Gammarus pulex and Hyalella azteca, the isopod
Asellus aquaticus, the worms Lumbriculus variegatus and Tubifex spp. and the bivalve
Sphaerium corneum. Endpoints assessed included survival, growth and feeding activity
of G. pulex, H. Azteca, A. aquaticus and Tubifex spp., reproduction, growth and feeding
activity of L. variegatus and survival and growth of S. corneum. In addition, we analysed
the ingestion and egestion of MP of G. pulex and H. azteca using u-Fourier Transformed
Spectroscopy and provide trophic transfer factors (TTF) for G. pulex. Finally, we
compare the effect thresholds obtained with MP environmental concentrations measured
in freshwater sediments.

Similarly, in Chapter 3 we provide individual effect thresholds for a battery of benthic
macroinvertebrates, this time exposed to MP released from car tires. As mentioned
before, car tire particles seem to greatly contribute to plastic pollution in aquatic
systems,!163
as they contain high concentrations of sulphur and zinc. Therefore, MP were made by
scraping the first 2 cm of five second-hand tires and grinding them until obtaining a size
distribution of 10 to 585 pum. Main constituents of the MP were quantified using
thermogravimetric analysis (TGA) and gas chromatography - mass spectrometry (GC-
MS). Using standard 28-days single species tests we assessed the effects of six MP
concentrations ranging from 0 to 10% in sediment dw on the survival and growth of G.

causing their risk potentially to be higher due to their chemical composition,

pulex. A. aquaticus, L. variegatus and Tubifex spp.. Moreover, ingestion and egestion of
TP were investigated for G. pulex. To this aim, we developed a method to quantify MP

301



Summary

released from car tires in organisms and faeces of G. pulex, which included testing the
resistance of these MP to the digestion’s fluids used. Finally, we calculated the TTF for
G. pulex and compared them with the ones obtained in Chapter 2, and we evaluated the
risks of TP by comparing them with field measured concentrations in sediments.

In Chapter 4, we evaluated the effects of 228 nm raspberry shaped palladium-doped NP
on the survival and growth of the freshwater amphipod G. pulex. Organisms were exposed
to the NP via natural sediment at six concentrations (0, 0.03, 0.1, 0.3, 1 and 3 % sediment
dw) under 28-day laboratory standardized single species toxicity tests. In addition, NP
concentrations were quantified based on palladium (Pd) concentrations measured
with inductively coupled plasma mass spectrometry (ICP-MS) in the body of the exposed
organisms and in the faecal pellets excreted during a 24 hours post-exposure depuration
period. In addition, palladium-doped NP concentrations were measured in sediments and
water to demonstrate the accuracy of the dosing and to quantify the resuspension of NP
from the sediment. Moreover, TTF were calculated for the body and gut of G. pulex using
a biodynamic model. For comparison, MP accumulation data obtained in Chapter 2 were
modelled as well.

Then, in Chapter 5, we evaluate the effects of a range of NP or MP concentrations on a
freshwater benthic macroinvertebrate community after 3- and 15-months of exposure via
natural sediment using an outdoor ditch as experimental system. For this, trays containing
sediment and NP or MP at five concentrations between 0 and 5% plastic in sediment dw,
including two environmentally realistic concentrations, were embedded at the bottom of
the ditch containing a stable donor community. Spherical PS NP with an average size of
96 nm and PS MP fragments with sizes ranging from 20 to 516 um were used for the NP
and MP treatments, respectively. The donor community was allowed to colonize the trays
and after 3 and 15 months, trays were retrieved, and species were identified and
counted. Effects were assessed on the community composition, population sizes and
species diversity. In this chapter, we provide the first long-term community effect
thresholds for freshwater benthic macroinvertebrates exposed to NP and MP and compare
them with environmental concentrations measured in freshwater sediments.

In Chapter 6, we explore the potential use of in vitro toxicity tests to inform the
assessment of the risks of NP and MP for human health, in this case with and without
chemical mixtures originating from WWTP effluent and surface water samples. For this,
we evaluated the genotoxicity of spherical PS NP with an average size of 50 nm and
spherical PS MP with an average size of 500 nm at four environmentally relevant
concentrations (0, 2.5, 25 and 250 pg/l) in three matrices using the Ames fluctuation test,
which has the purpose of detecting base-pair and frameshift mutations in the genome of
Salmonella typhimurium with and without metabolic activation. We thereby assess the
genotoxicity of the environmental matrices, NP or MP alone, NP or MP in the presence
of chemicals extracted from surface water, and NP or MP in the presence of chemicals
extracted from WWTP effluent. Finally, we provide recommendations to increase the
relevance of in vitro tests for the assessment of NP and MP risks for human health.
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Following recently developed quality assessment methods for studies reporting
abundance of MP in biota and water samples,®'*> in Chapter 7 we critically review 105
papers reporting MP effects on aquatic biota. For this, 20 Quality assurance/Quality
control (QA/QC) criteria were defined within four main categories: particle
characterization, experimental design, applicability for risk assessment and ecological
relevance. Based on our analysis and practical experiences from Chapters 2, 3, and 4, a
guidance protocol for testing ecotoxicological effects of MP for aquatic species is
consequently provided. In addition, with the aim of detecting knowledge gaps within
effect studies with MP, we provide an overview of the study characteristics of the
reviewed studies with respect to the size, shape and polymer type of the MP used, the
tested species, the duration of the exposure, the endpoints studied and use or not of effect
thresholds to report the results. Moreover, demonstrated and suggested effects and effect
mechanisms reported in the reviewed papers are summarized and discussed, with the
results of the quality evaluation applied as a method to assess the overall weight of
evidence regarding probable ecologically relevant effects.

In Chapter 8 we bring all the answers to the research questions together and develop a
tiered approach ecological risk assessment for MP using the data generated in Chapters
2,3 and 5 and data taken from the literature. Following the tier approach, we first compare
MP effect thresholds obtained in Chapters 2 and 3 with environmental concentrations of
the corresponding MP types measured in freshwater sediments (tier 1). Then, we create
two Species Sensitivity Distributions (SSDs), one for water exposure data and one for
sediment exposure data using the effect thresholds obtained in Chapters 2 and 3 and MP
effect thresholds taken from the literature (tier 2). Here, a HCso is calculated. For tier 3,
we use the community effect thresholds obtained in Chapter 5 and compare them with
field measured concentrations. Finally, we discuss the implications of the results obtained
in this thesis and provide recommendations for future research.
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