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A B S T R A C T   

Local energy initiatives (LEIs) are communities of households who self-organize to meet their energy demand 
with locally produced green energy. They facilitate citizen participation by developing context-specific solutions, 
which calls for leadership and complex social dynamics. We present an agent-based simulation model to explore 
the formation of community energy initiatives from the bottom-up, accounting for social networks and evolution 
of opinions facilitating or hindering LEIs. Our novel model relies on well-established social theories and uses 
empirical data on community energy systems in the Netherlands and individual citizens’ preferences. Specif-
ically, our computational model captures behavioural drivers and social value orientations, and relates in-
dividuals behavioural traits to aggregated stylized facts about energy initiatives at the community level. The 
results indicate that when communities lack participants with cooperative orientation, altruistic citizens with 
prosocial social value orientations become essential for the creation of LEIs, revealing different pathways to 
achieve public good benefits. Our analysis systematically demonstrate that leaders can be a bottleneck in the 
LEIs’ formation and that an increase in initiators is conducive to the creation of LEIs. Therefore, policies aiming 
at increasing the number of community initiatives should target small groups and individuals with the leadership 
potential, who could lead projects, and explore synergies with wider community benefits.   

1. Introduction 

Enabling energy transitions towards decarbonised energy generation 
is one of the most pressing challenges of the 21st century. Affordable and 
clean energy is a prerequisite for countries to achieve their development 
plans as well as climate change mitigation targets [1]. Exploring the 
synergies between these goals is fundamental to ensure feasibility and 
social acceptance of solutions that aim to support the transition from 
fossil fuel-based technologies to low-carbon renewable energy systems 
[2]. Countries that are frontrunners in the renewable energy expansion, 
leverage on decentralised, citizen-driven initiatives to increase renew-
able installed capacity. These initiatives are laboratories for experi-
mentation and innovation that can generate knowledge for successful 
policy implementation, transferability, and scalability of solutions [3]. 

The importance of civil society groups and bottom-up energy ini-
tiatives in the energy transition is becoming more evident [4]. 

Consumers increasingly take active roles in shaping energy systems and 
seek new forms of engagement to influence their environment [5]. 
Although there is a vast cohort of literature on community energy ini-
tiatives, the current research focuses on their organisational structure, 
business and financing models, types of technology or the characteristics 
of members [6–8]. Yet, scientific knowledge on how local energy ini-
tiatives (LEIs) are initiated in the first place and how they evolve over 
time, is limited (e.g., [9–12]). 

Furthermore, the mainstream research method in the literature is to 
extrapolate results from individual cases to derive generalized results (e. 
g., [13–17]). Simulation models, especially if complemented with data 
can help generalize principles and support theory development [18]. 
Simulation approaches are valuable since experimentation with the 
environment (e.g., by changing technological or institutional settings) is 
not feasible due to pitfalls regarding the relatively new age of initiatives 
and the large variety of parameters. 

Abbreviations: ABM, agent-based model; LEI, local energy initiative; SVO, social value orientation; TPB, theory of planned behavior; PBT, payback time; SROI, 
social return on investment. 
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Among different simulation approaches, agent-based modelling is 
the key approach to study interactions and learning among heteroge-
neous actors over time in a quantitative manner. With growing appli-
cations in energy research, such computational agent-based models 
(ABMs) rely on solid theoretical and empirical grounds regarding indi-
vidual decision-making [19], behavioural biases [20] and institutional 
settings [21,22]. Designed for bottom-up analysis, ABMs help generate 
better understanding of LEIs dynamics and, consequently, better- 
targeted policy to stimulate them. However, as a recent review reveals 
[23], despite ABM proliferation in energy consumption, electricity 
markets and technological innovations, examples of community-driven 
energy models are scarce and specially focus on micro-grid and con-
trol aspects (e.g. [24–27]). 

The goal of this research is to use agent-based modelling to study the 
behavioural factors that influence the emergence of local energy ini-
tiatives. Its innovative contribution to the literature is two-fold. Firstly, 
by relying on theories of pro-environmental behaviour, leadership and 
cooperative orientation, we present a novel computational model that 
simulates the formation of LEIs. Second, we quantitatively explore the 
bottom-up formation of these initiatives by systematically varying fac-
tors that influence their creation. Our theory- and data-grounded ABM 
with social network dynamics traces feedbacks between actors and local 
energy initiatives, permitting us to answer research questions that 
require both a dynamic view and cross-scale interactions among diverse 
social actors that learn and adapt. Specifically, in this study, we seek to 
explore what role local leadership and cooperative orientation of com-
munity members play in the dynamic formation of LEIs. 

The article proceeds as follows. Section 2 presents a theoretical 
background underpinning the simulation model. We describe the 
method and data used in the model in Section 3. The ABM concept is 
presented in Section 4. The article ends with discussing the modelling 
results in Section 5 and drawing conclusions in Section 6. 

2. Theoretical background 

2.1. Defining local energy initiatives 

Community initiatives are often initiated by several actors who are 
motivated to pursue a community-wide goal. If these initiators are suf-
ficiently supported by community members, their projects take-off. We 
define an energy project as an LEI, if it is an organisation initiated, 
managed or financed directly by actors of the civil-society and if it 
presents goals associated with the energy sector [13,23,28]. These 
projects are usually multi-faceted: they combine behavioural measures 
by, for example, providing information on efficient energy use and by 
enabling joint procurement of renewable energy technologies [5,8]. 
They also help in more technical aspects such as development of micro- 
generation [7,8,29]. 

Local energy initiatives facilitate citizen participation by addressing 
sustainable energy issues, building on local knowledge and networks, 
and developing solutions appropriate to local contexts [8,30]. They help 
the strengthening of local communities and their autonomy while 
addressing climate change mitigation goals [31]. LEIs provide strong 
institutional structures for diffusing renewable and local energy pro-
duction [29]. 

From an energy transition perspective, the community-based 
approach can be understood using a multilevel perspective on techno-
logical transitions [32]. Technological transition occurs when there are 
linkages between multiple levels (landscape, regimes, and niches). 
Radical innovations spur from the niches level when the regime and the 
landscape levels provide an opportunity. 

Through time, technological niches can evolve and become part of 
the socio-technical regime [32]. The community-based approach shifts 
the identity of agents of change. The niches, which are local units, 
become responsible for radical innovations [32]. Therefore, until the 
new technology is part of the established regime, the technological 

transition has a local nature. The transition does not happen because of 
an abrupt regime shift, but through a step by step process of reconfi-
guration that results in behavioural changes among individual actors 
affecting the system level. Seyfang et al. [8], are optimistic that with 
appropriate support, initiatives can become key players in energy 
transition. They also attempt to understand the process of niche for-
mation by studying the development of LEIs in the UK [8]. Their work 
builds on theory and case studies to identify factors for the successful 
establishment of a renewable energy niche, addressing the civil-society 
nature and focusing on government support. Here, we focus on and 
expand the former factor. 

Once bottom-up initiatives are successful with their energy projects, 
they take the shape of community energy systems. In this article, we use 
the term “Local Energy Initiative” to emphasize the fact that we focus on 
the initiation of community energy systems. 

2.2. Behavioural drivers for initiating or joining an LEI 

There are many behavioural theories on actor motivation to join 
collective action (e.g. [33–35]). Since the body of literature on behav-
ioural drivers in community energy is rich, to build our ABM, we use 
theories and frameworks that are either specifically developed for LEIs 
or have already shown their usefulness in this area. 

In community energy literature, research has revealed no differen-
tiation among front-runners and ordinary members of community en-
ergy projects regarding their motivation [7]. Actors’ motivation is 
defined by a superposition of distinct goal-frames; some being dominant 
while others are in the background [7,8]. Moreover, Bauwens [14] has 
found that when a community logic prevails, members are more norm- 
driven, while in market relationships the goal shifts towards material 
incentives. 

To build our model, we use an existing framework for conceptual-
izing citizens’ willingness to participate in community energy project 
proposed by Kalkbrenner and Roosen [29]. This framework outlines 
three behavioural drivers rather than having a gain-orientation:  

1- Environmental Concern is related to people’s perception about the 
damage human activities cause to the environment. Pro- 
environmental behaviour is often a consequence of environmental 
concern [29]. 

2- Trust is the confidence that other parties will not exploit an in-
dividual’s vulnerabilities. Individuals are willing to accept their 
weaknesses since they have positive expectations about the behav-
iours of the people, they trust [29]. Trust is associated with volun-
teering behaviour and is shown as fundamental for financial 
decision-making in LEIs [36,37].  

3- Social Norms are the perception of social pressure to perform, or 
not, an action. Social norms manifest themselves through respect; if 
agents believe they would be more respected by others, the subjec-
tive norm would trigger them to join in an activity or behaviour [29]. 
Norms are usually associated with cooperative behaviour when 
people face social dilemmas [38]. 

From a holistic view, Personal Gain also motivates stakeholders to 
participate in community energy projects [3,7,8,39]. Personal Gain is a 
positive personal outcome resulting from engaging in a certain behav-
iour such as sharing costs and risks, having fun, saving money as well as, 
of course, profiting. In addition to Kalkbrenner and Roosen’s three 
proposed drivers, we use personal gain as the fourth driver for initiating 
or joining an LEI. 

2.3. Role of leadership in LEIs 

Individuals willing to take a leading position in LEIs will, as any 
other leading position, pass through a stage of reasoning and motivation 
before they are ready to act [40]. An expanded way of assessing 
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leadership decision-making is through the lens of the Theory of Planned 
Behaviour (TPB) [41,42] which has already been applied in community 
energy literature [29]. According to this theory, the behaviour of a 
leader, like any other actor, is preceded by intentions, which are influ-
enced by leaders’ global motives [41]. These global motives are: Atti-
tude, Subjective Norm and Perceived Control. Attitude is the way the 
leader feels towards a behaviour. Subjective Norm is the social pressure 
felt by the leaders when they need to develop a task. Perceived Control is 
a subjective measure of how easy it would be to act [41]. This 
perspective is particularly useful when understanding leaders’ decisions 
in the context of sustainable development since it elaborates the reasons 
a leader uses as drivers for decision-making [40]. 

Strong leadership is fundamental when projects need funding, new 
skills, or more engagement with stakeholders. There are numerous 
theories on the emergence of leadership (e.g., [43,44,45]) and leader 
decision making process (e.g., [40]). Here, we base our model on Mar-
tiskainen [6] work who has specifically focused on leadership in LEIs. 
They have identified processes that are correlated with effective lead-
ership behaviours that can foster the development of community energy 
projects:  

1. Articulation processes (learning): Articulating experiences and 
deriving relations stimulate a process of knowledge sharing. Leaders 
must, for example, be active in pursuing information about funding 
and technology options and be able to communicate them to others.  

2. Coupling of expectations: When a project is still immature and its 
advantages are not well-defined, differences in expectations can 
occur. Sharing expectations helps in mitigating implementation is-
sues. Leaders possess this ability and confidence to voice expecta-
tions about the project’s aim and vision.  

3. Network formation: When the new idea competes with existing 
ones, stakeholders may try to slow down the formation of an initia-
tive or even entirely block it. To be able to resist these forces, a new 
network is needed. Community leaders could become intermediaries 
and use their position in relation to their communities and in-
termediaries to trigger change. 

These three processes will be used to model leadership formation and 
decision making process. 

2.4. Classifying individuals in social dilemmas 

Although individuals might have personal drivers (outlined in Sec-
tion 2.2), they are bound by interpersonal relationships that alter 

behavioural preferences. This impacts their response to social dilemmas: 
people weigh possible outcomes considering the benefits for themselves 
and others [46]. Accordingly, the Social Value Orientation (SVO) 
framework, classifies individuals into four groups [47]: 

• Altruistic: Altruistic individuals are selfless: the opportunity of help-
ing other is their motivation. They are willing to sacrifice their own 
outcomes for the benefit of others.  

• Individualistic: Individuals with this orientation do not get involved 
with other group members. They may have an impact on others, but 
that is not part of their goals. They are concerned exclusively with 
the individual outcomes disregarding others.  

• Competitive: They aim for own outcome maximisation while striving 
to minimise others. Individuals with this orientation play to win and 
are indifferent regarding interpersonal relationships.  

• Cooperative: They aim to maximise other’s outcomes together with 
their own. People with this orientation prefer that everybody is even 
at the end of an interplay than to win by themselves. 

As a final theoretical basis for our ABM, we use the SVO categori-
zation of people to incorporate more heterogeneity in the population of 
individuals in the formation of an LEI. 

Fig. 1 summarises the theoretical stands we employ in our compu-
tational model of LEIs. We rely on personal drivers (trust, environmental 
concern, norm and personal gain) to model the decision-making 
behaviour of individuals for joining an LEI. We use the TPB [41] to 
model leaders decision making and apply Martiskainen’s leadership 
process [6] to model their vision building process. Finally, we use the 
SVO framework [47] to analyse which attitudes leading to energy 
community dynamics have positive outcomes at the community level. 

3. Method and data 

We use agent-based modelling to study the emergence of LEIs, as it 
has already been proven to provide valuable insights for studying 
emergence of other types of collective action [48,49,50]. This method is 
key in analysing choices of individuals represented as software agents 
with adaptive behaviour and social interactions, who are embedded in 
an environment [51]. Notably, the changes in the environment itself – 
spatial and/or institutional – are driven by the cumulative dynamics of 
individual preferences and choices. From here onwards, we refer to in-
dividuals as agents in our explanations, to ensure consistency. We use 
the statistical software R to build, calibrate, and analyse the model. 

Besides reports and data from Statistics Netherlands (CBS) [52], we 

Individual's motivation to join LEI [29]

- Environmental 
concern
- Trust
- Norm
- Personal gain

Social Value Orientation [47]

- Altriustic
- Individualistic
- Cooperative
- Compatitive

Leadership decision making (Theory of Planned 
Behavior) [41]

- Attitude
- Subjective norm
- Perceived control

Leadership visioning [6]

- Learning
- Aligning expectations
- Network formation

Fig. 1. Theoretical background of the computational model of the formation of LEIs.  
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use two other disaggregated data sources:  

1- Survey among 599 citizens in the Netherlands [53]: the survey data 
is relevant for designing the decision-making processes of agents in 
the ABM. In addition to demographic information, the survey in-
cludes data about individual preferences regarding collective action 
and renewable energy sources.  

2- Local Energy Monitor Report: this monitor reports surveys conducted 
among over 300 community energy projects in the Netherlands as 
part of HIER Opgewerkt. HIER Opgewerkt is the official Dutch platform 
for information about LEIs [54]. 

Below we provide a brief explanation of some of the data that is used 
for agent population, drivers, value-orientation, and subsidies. Complete 
information about other data sources that have been included in the 
model can be found in Appendix A. 

3.1. Data for determining agent population 

Each simulation experiment consists of a number of neighbourhoods 
which are independent of each other. Each neighbourhood is considered 
as a community where an LEI may emerge. Therefore, the size of the 
neighbourhood is the same size of a community and is predetermined 
according to the size of existing communities in the Netherlands. The 
size of an LEI, however, is emergent from the model and determined by 
the number of agents joining an initiative. 

To calculate the number of agents in the model, we use data on the 
number of communities and the size (i.e., population) of communities 
where LEIs can potentially emerge. In the Netherlands, the smallest 
community has 39 agents and the biggest almost 40,000 [55]. Therefore, 
considering the order of magnitude, the range is assumed to be from 100 
to 10,000 agents in each community. The average number of LEIs 
created every year in the Netherlands is 32.5 [55]. Therefore, the 
number of communities for the simulation is set at 30, implying that a 
maximum number of 30 LEIs can be initiated in each simulation 
experiment. The total number of agents is then calculated by multiplying 
the number of communities by the number of agents in each community. 

By assessing the distribution of technologies among the LEIs founded 
during 2011 and 2016 (Table 1), we define target values for the number 
of LEIs per technology in our ABM. 

Besides the size of the population, the shape of distribution is also 
determined using empirical data. The empirical distribution shows that 
80% of the communities have less than 200 people, and that the com-
munities’ size drops fast, indicating an exponential distribution for the 
community population [55]. Furthermore, our model assumes that only 
a part of the population of a community (i.e., neighbourhood) has their 

energy supplied by LEIs. To take that into consideration, we use the 
survey data regarding the level of interest to join an LEI. As a conser-
vative measure, only people that are very interested in joining an 
initiative (according to the survey) are considered in the calculation of 
the community population (Eq. (1)). 

CommunityPopulation =
C*CF

Con*HS*IPS
(1) 

Here C is capacity [kW|kWp], CF is conversion factor, Con is con-
sumption, HS is household size and IPS is interested people ratio. We 
assume that the conversion factor is the capacity factor times the 
number of hours in a year for wind projects, or the solar yield for solar 
projects. 

Table 2 summarizes the parameters for calculating the population 
using Eq. (1). 

3.2. Data used for agent drivers 

Based on the theoretical basis outlined in Section 2.2, there are four 
drivers for initiating or joining LEIs. Using survey data, we populate 
agents based on these four drivers. In the survey, there is a direct 
reference to Environmental Concern where actors are asked if they 
agree with certain statements using a 5-point Likert scale [53]. To 
instantiate the Trust distribution in a community in the model, we 
combine two survey variables: Community Involvement and Commu-
nity Trust (5-point Likert scale both). Appendix A.1 provides a more 
detailed overview of the data used for these drivers. 

The Personal Gain driver is based on the survey data and is 
modelled using the social return on investment theory (SROI) [56]. SROI 
accounts for resource allocation and value creation by attributing 
monetary values to distinct forms of investment [56]. It captures the 
idea that stakeholders (i.e., agents) employ money as well as time, when 
committing to LEIs. Using survey data, we calculate an SROI indicator 
per agent. Reversing the SROI calculation is equivalent to calculating a 
payback time (PBT) which will be used in the agent decision-making 
process (Eq. (2)). 

PBT =
1

SROI
=

MI + TI*5
YS

(2) 

Here MI is money investment, TI is time investment and YS is yearly 

Table 1 
Technology Distribution in Dutch LEIs in 2011–2016. Source [55].  

Technology % of LEIs database Target Number of Communities 

Solar Utility  5.32% 2 
Solar Rooftop  81.38% 24 
Wind  13.30% 4 
Total  100.00% 30  

Table 2 
Parameters for calculating agent population in a community.  

Parameter, Source Value used in LEI-ABM 

Average Capacity Factor [59] 22% 
Average Solar Yield [60] 1158 kWh/kWp 
Average Population in a Household [61] 2.17 
Average Consumption per Capita [62] 6,713 kWh 
‘Very Interested’ People Ratio [53] 8%  

Table 3 
Solar financial parameters.   

Rooftop Utility Unit 

Subsidy Period 15 [64] 15 [64] Years 
Subsidy 9.0 [65] 5.7 [59] cents/kWh 
Investment Period 25 [67] 25 [67] Years 
Investment Share 100 [55] 30 [55] % 
Electricity Price 3.7 [68] 3.7 [68] cents/kWh 
Investment Costs 1,072 – 1,381 [59] 919 – 1,072 [59] EUR/kWp  

Table 4 
Wind financial parameters.  

Parameter Wind Energy Unit 

SDE + Period 15 [63] Years 
SDE+ 5.7 [63] cents/kWh 
Investment Period 20 [55] Years 
Investment Share 30 [55] % 
Electricity Price 3.7 [68] cents/kWh 
Investment Costs 900 – 1,900 [59] EUR/kW 
Fixed O&M 30.58 [69] EUR/kW 
Variable O&M 0.0118 – 0.0148 [69] EUR/kWh  
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savings with bonus1. 
The time investment is arbitrarily limited to five years to capture the 

idea that people lose motivation to work on community projects as years 
pass. Each participant in the survey, specified their PBT threshold. By 
comparing the calculated payback time with the threshold, it is possible 
to parametrize an indicator ranging also from 0 to 10. More information 
regarding the personal gain driver can be found in Appendix A.1. 

For the final driver – Social Norm – we do not have direct survey 
data for parameterization. Therefore, we rely on the standard opinion 
dynamics model to estimate the evolution of social norms driven by peer 
interactions as described in Section 4.3 and Appendix A.2. 

3.3. Data on Agents’ social valuation orientation 

The SVO of the agent is used post-factum to analyse the results of our 

simulation. We use the survey data to create social value orientation for 
the agents in the model. We first identify altruistic and individualistic 
orientations based on the scores each person gave to the reasons (R) to 
join an LEI (Eq. (3)). 

ΔR =
(
Renvironmental +Rcommunity

)
− (Rfinancial + Rindependence) (3) 

If the agent has a higher score for environmental and community 
reasons than for financial and independency reasons it is 
altruistic(ΔR > + 1), otherwise it is individualistic(ΔR < − 1). 

If the value of ΔR is between these values, the agent is evaluated on 
whether it is cooperative or competitive. For that, the information in our 
survey about the willingness to work with the community is used as an 
indication of cooperative behaviour. Appendix A.3 provides a more 
detailed account for SVO parametrization. 

The values for various agent attributes (Invest, PBT limit, Wind 
discomfort, Solar discomfort, Responsibility) that are derived from the 
survey data are distributed among agents based on their SVO values 
(Appendix A.3) 

Fig. 2. Overview of the sequences of steps towards a local energy initiative formation simulated in the agent-based model.  

1 A random bonus is added to the savings and may range from 0 to 50% of 
their energy bill. This is an attempt to include other social benefits like 
enhancing citizen well-being or the feeling of belonging to the community since 
these cannot be quantified in this work. 
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3.4. Data on subsidies and technologies 

Subsidies are considered fundamental tools for small scale projects 
like LEIs [29,31,57,58]. Based on the Dutch regulations supporting LEIs, 
we model two subsidies: postal code regulation (appropriate for smaller 
projects) and SDE+ (solar panels with a capacity >15 kWp and wind 
technology of all size). These subsidies enable the creation of more 
viable business plans [63,64,65], although they are not necessary. For 
this model, we assume that all projects use subsidies for the maximum 
possible period of 15 years [66]. 

The technology parameters in the model follow the distribution 
observed in Dutch LEIs. We use the HIER Opgewerkt platform to collect 
all projects’ data – names, year when operation started, financing 
structure and size, for wind in kW and solar in kWp – in one database. 
For wind projects we consider those that started their operation before 
2012 because that is when the SDE + programme started influencing 

projects [55]. 
Dutch LEIs invest in solar energy via photovoltaic (PV) panels in both 

residential scale, on rooftops, and, utility scale [55]. The main distinc-
tion between decisions regarding residential and utility PV panel in this 
model is the subsidy option. For rooftop projects, the choice is the Postal 
code regulation that gives 9.0 cents/kWh produced as a tax reduction 
[64] and is valid up to 15 years [63]. For utility scale, the option is 
SDE+, with a contribution of 5.7 cents/kWh. The financial parameters 
related to solar technology are summarized in Table 3. 

Similar to solar energy, the data used for wind projects are summa-
rized in Table 4. For wind energy only the SDE + subsidy is considered 
given the size. 

4. An agent-based model of LEI formation 

In this section, we explain the conceptualization and implementation 

Fig. 3. Sequences of steps in the decision-making of the Leadership board and the Supporters in the agent-based model.  
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details of our ABM. The assumptions that guide the development of this 
model are either theory-driven or data-driven as explained in Sections 2 
and 3. All assumptions are listed in Table B.1 with reference to their 
origin. We will refer to Table B.1 in the following text while addressing 
the assumptions. For a limited number of parameters that we will 
explain later, the values were not supported by data. Therefore, we 
conducted a sensitivity analysis to explore the full range of values and 
their potential influence on model outcomes. 

4.1. General model overview 

To explore the process of LEI formation, we develop an ABM that 
simulates the initialization phase of an LEI. The model consists of a 
number of communities (i.e., neighbourhoods) (Table B.1). Each agent 
in the model belong to one community where an initiative may emerge. 

Each agent can decide to take the role of an initiator or a supporter of 
an LEI based on its attributes (Appendix A.3, e.g., invest) and drivers 
(Appendix A.1, e.g., personal gain). The initial values of the drivers are 
data-driven but these drivers change throughout the simulation as they 
are influenced by other agents in the community. 

Every week (one timestep, Table B.1) agents (re)consider if they 
would like to become an initiator or a supporter of a project. To deter-
mine their motivation, the driver values are checked sequentially per 
agent; if agents have a high enough environmental concern, their trust in 
the community is assessed, and finally an ex-ante assessment of their 
personal gain is calculated. The fourth driver, i.e., the norm, is not 
directly considered in the decision making of the agent but indirectly 
incorporated through the social network and the influence the agents 
have on each other (Section 4.3). 

If the agents are sufficiently motivated based on the criteria above, 
and if there is no leadership board in the community and the agent is 
willing to take management responsibility (agent attribute, Table B.1), 
the agent becomes an initiator. After four weeks (1:4 timesteps, 
Table B.1), if there are sufficient initiators (Table B.1), the leadership 
group is established. If not, the agents continue to make the same de-
cision regarding joining the initiative in the next time steps until 1) the 
simulation period is over, 2) the investment of the initiators is sufficient 
for an initiative and there is no more need for supporters, or 3) the board 
is established. The board then makes a proposal for the technology and 
the other agents in the community assess if they support the board or 
not. 

To make an LEI proposal, the leadership board, as a single entity, 
assesses the community size and the profit of each technology to make 
the technology decision. Each community member compares the 
payback time and the technology chosen by the board with their ex-
pectations; if both match their preferences, they join the initiative and 
become supporters of the plan (Section 4.2.3). 

The LEI is established if the sum of the agents’ investment contri-
butions exceeds the required initial investment. Alternatively, an LEI is 
formed whenever a solar on rooftop project is small enough so that the 
investment of initiators is sufficient. In this case, the LEI forms even 
before the establishment of the leadership board. This case is rare but 
represents the only possibility for an LEI to be created without the ex-
istence of a leadership board. Fig. 2 presents the overall model dy-
namics, which is discussed in detail below. 

4.2. Leadership vision and member support 

By considering the needs and history of the community, the leader-
ship board creates a vision for the LEI [6]. The members then decide 
whether they are supporters of this vision or not. Fig. 3 provides an 
overview of both board vision building, as well as members’ decision to 
support. 

By collecting information about financing options, technological 
options, costs, and revenue, the leadership group fulfils part of its 
learning task [70]. Additionally, by incorporating different discount 
rates and assessing the population size of the community, the leader can 
fulfil and align expectations of various community members [70]. Dis-
count rates not only reflect diversity of individual and social preferences 
but could also cause a pre-disposition to technologies (Appendix B.2). 

4.2.1. Financial decision 
In practice leaders assess financing options and projects’ viability 

(Fig. 3). In the model, each LEI board calculates the Net Present Value 
(NPV) of a project (Eq. (4)). The discount rate is used as a calibration 
variable and discussed in Section 4.4. 

NPV =
∑T

t=1

Ct

(1 + r)t − C0 (4)  

where Ct is the net inflow during period t, C0 is the total investment 
costs, r is the discount rate, and T is the number of time periods. The 
investment costs, as well as the net inflow, depend on the system’s ca-
pacity, i.e., number of supporters. The discount rate varies among 
technologies and is calibrated based on technological availability in the 
Netherlands (Appendix B.2). 

4.2.2. Technology choice 
The leadership board decides what technology is more suitable for 

the community based on community size [50]. By assessing the distri-
bution of electricity consumption per capita in the Dutch municipalities 
[77], it is possible to determine the electricity consumption for the 
initiative as shown in Eq. (5). 

Con = N*ph*ipr*con (5) 

Here Con is Consumption, N is the number of households, ph is the 
population per household, ipr is the interested people ratio and con is 
consumption per capita. 

The leaders generally do not attempt to fulfil the full electricity de-
mand of the community. However, if the project gets more supporters 
than initially assumed, it could be scaled up. The LEI board checks if the 
community is big enough (since 95% of the solar rooftop projects are 
smaller than 400 kWp [55], this value is used as the threshold for the 
technology choice) for wind or utility solar project. If not, it opts for the 
rooftop solar following the financial specifications (Fig. 3). The leader-
ship board considers the financial part using the net-present-value 
calculation [71] as illustrated in Eq. (4). 

4.2.3. Decision to support the board 
Potential supporters make the decision based on their own prefer-

ences using a multi-criteria decision-making strategy (Fig. 3). First, they 
will assess if the technology chosen by the board matches their prefer-
ence. Agents accepts or rejects a technology based on their own attri-
butes that signals to what extent a specific technology is disturbing or 
not (according to the survey, Table B.1). Then, they will consider if the 
project adopted by the board is financially attractive for them, by 
calculating the PBT. 

Based on the agent’s investment (parameterized using the surveys’ 
distribution) and the vision of the leaders, it is possible to calculate the 
actual PBT (see Table B.1 and Eq. (2)). The investment share of each 
agent is calculated dividing the amount he/she is willing to invest in the 
LEI by the capital costs of the technology chosen by the board. The profit 

Table 5 
Summary of driver distributions (normalized).  

Driver Average SD Variance Mode Median 

Environmental Concern  8.34  1.77  3.15 10 9 
General Trust  6.31  1.79  3.22 7 6 
Personal Gain  5.97  1.83  3.36 6 6  
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of each agent is then calculated annually considering this share. Every 
year, the total amount earned up to that point is compared with the 
initial investment to calculate the payback time. If this estimated 
payback time is smaller than the limit (parameterized using survey 
data), the agent becomes a supporter. 

4.3. Networks, trust and norms 

In the model, agents interact with other agents only within their 
community. For each community, all agents are put in a network which 
is created using the Watts-Strogatz method for small-networks, common 
in the literature, also in the context of renewable energy [72–74]. 

Trust is closely related to the social network of agents. Therefore, we 
incorporated the trust values coming from the survey data to build the 
social network of the agents. The trust of a community is the average 
value of the trust driver of its agents. The networks in the model are 
generated based on trust percentiles using three parameters: network 
size (number of agents in the community), neighbourhood, and rewiring 
probability (to simulate changing community trust) (see Table B.1). In 
the ABM, the higher the level of trust, the more agents are connected in a 
community. In other words, the denser a network and the shorter the 
average diameter is, the higher the level of community trust. For each 
community, the trust percentile is used to assign distinct values of 
rewiring probabilities. The higher the community ranks in the trust 
percentile, the higher the rewiring probability in the Watts-Strogatz 
method. Therefore, the number of weak ties is higher and, conse-
quently, the average diameter of the network is shorter. More details 

about the network can be found in Appendix A.2. 
To implement the “norm” driver of agents, the agents are influenced 

by other agents in the network. We do not have survey data to param-
eterize social norms directly. Hence, we rely on the standard opinion 
dynamics models: each time step, a random agent interacts with one of 
the neighbours in its social network and is influenced by it (leans 10% 
(see Section 4.4.3) towards the neighbours’ values of the other 3 
behavioural drivers) [75]. In other words, if the agent’s drivers (Envi-
ronmental Concern, Trust and Personal Gain) are not above the 
threshold for joining an initiative, they will be updated leaning towards 
the selected neighbour’s opinion, this being for better or for worse. This 
form of opinion dynamic is used at the beginning of each simulation step 
to update the values of Environmental Concern, Personal Gain and Trust 
in the community for each agent (Fig. 2). 

4.4. Parameter setup and sensitivity analysis 

In Table B.1 we have specified all parameters of the model and their 
value ranges. While many of these values were driven by real-world 
data, for some, parameter ranges had to be assigned due to unavail-
ability of real-world data. In this section, we explain our parameter 
calibration and sensitivity analysis for the latter case. 

4.4.1. Driver threshold sensitivity 
The formation of LEIs is most sensitive to driver thresholds, or the 

minimum value of a driver an agent needs to have for that driver to be 
considered fulfilled (Table 5). We define three distinct model scenarios 
to capture driver thresholds levels: Business-As-Usual (Standard) and 
two extremes (Progressive and Conservative scenarios). We parametrize 
these scenarios based on averages values per driver in our survey dataset 
(Appendix A.1). 

To evaluate how the driver threshold impacts the final number of LEIs 
created, we run simulations varying the thresholds in each simulation. 
The threshold for each driver was set as the average value for the driver 
multiplied by a factor (25%, 50%, 60%, 75%, 90% and 100%). 

On the one hand, the closer to the average the threshold is, the harder 
it is for an agent to fulfil that driver. In the simulation experiments, the 
number of LEIs created drops significantly as the threshold for each 
driver gets close to the reference value, or 100% of the average. We 
define 100% of the average as the Conservative scenario. On the other 
hand, at a certain point, any further decrease in the threshold value does 
not lead to the creation of more LEIs; this point is at 60% of the average. 
We define 60% of the average as the Progressive scenario. Finally, the 
Standard scenario is the middle point: the threshold value where the 
average number of LEIs created is between the Conservative and the 
Progressive scenarios. This central point is at 92%, rounded to 90% 

Table 6 
Number of LEIs Created in the model in Distinct Threshold scenarios.  

Situation Threshold Average number of LEIs created 

Standard Threshold 90%  14.00 
Conservative Threshold 100%  1.92 
Progressive Threshold 60%  22.80  

Table 7 
Simulation results for neighbour influence percentage.  

Dynamics Percentage Number of LEIs 

10%  14.00 
20%  17.60 
25%  18.07 
33%  20.80 
50%  21.87 
100%  22.73  

Fig. 4. Count of leadership boards formed (left) and LEI projects initiated (right) over time, for each simulation run (out of 15 repetitions) under the baseline 
scenario. Each coloured curve represents one simulation run. 
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(Table 6). 

4.4.2. Network sensitivity 
As explained in Section 4.3, the social network is created using the 

Watts-Strogatz method for small-networks. This method has been long 
utilised for the study of social network, even in the context of the 
renewable energy [72–74]. Nonetheless, it does not take into consider-
ation the fact that agents are more likely to connect with other agents 
that already have multiple connections, meaning that this method ne-
glects the effect of preferential attachment. Therefore, we performed 
sensitivity analysis to test whether using other types of network struc-
tures has any impact on our experiments. The results indicate no sig-
nificant statistical difference between the average number of LEIs 
created using other networks structures. Therefore, the fact that the 
Watts-Strogatz method does not contemplate the preferential attach-
ment does not impact the creation of LEIs. The details of our network 
sensitivity analysis can be found in Appendix B.3. 

4.4.3. Opinion dynamics sensitivity 
In our model, the agents lean towards their neighbours’ opinions 

regarding their motivation to join an initiative (through driver values) 
following the voter’s model. In this part of the sensitivity analysis, the 
influence percentage (i.e., intensity of neighbours’ opinion influence) is 
modified to assess the impact of this parameter in the model. The driver 
threshold is kept constant and equal to 90% (i.e., standard scenario) 
throughout this analysis. The results of this sensitivity experiment are 
presented in Table 7 which indicate that increasing the percentage of the 
opinion influence increases the number of LEIs created. 

This analysis shows that the variation in the number of LEIs created 
under different opinion dynamic scenarios is equivalent to the variation 
under the distinct driver threshold scenarios. For a fixed driver 
threshold, it is possible to define values for the dynamics percentage to 
obtain the same results as in the three threshold scenarios defined in 
Section 4.4.1. Therefore, as the impact of these two parameters is 
equivalent, we assume that the scenarios defined for the driver thresh-
olds are sufficient to capture the uncertainty range and decided to 
maintain the initial assumption of 10% for the opinion dynamics. 

Table 8 
Summary of driver threshold results.  

Threshold % of LEIs % of Initiators % of Supporters 

60% – Progressive  78.9%  2.7%  50.8% 
90% – Standard  47.3%  1.9%  26.4% 
100% – Conservative  6.9%  0.4%  1.0%  

Table 9 
Average values for characteristics of communities, with and without established 
LEIs based on technology type of established LEIs.  

Technology Variable (averaged) Possible 
Range 

Without 
LEI 

With 
LEI 

Utility Solar Population size 100 – 10,000 917 875 
Consumption 2.30–3.90 2,970 3,077 
Income 1–5 3.73 4.11 
Environmental 
Concern 

1–10 7.02 8.28 

Trust 1–10 5.31 5.78 
Gain 1–10 5.31 5.02 
Capacity Factor % 20.3% 20.5% 
Solar Yield kWh/kWp 918 935 

Rooftop 
Solar 

Population size 100 – 10,000 301 429 
Consumption 2.30–3.90 3,065 3,062 
Income 1–5 3.94 3.79 
Environmental 
Concern 

1–10 7.12 8.11 

Trust 1–10 5.31 5.73 
Gain 1–10 5.24 5.03 
Capacity Factor % 20.9% 21.1% 
Solar Yield kWh/kWp 819 861 

Wind Population size 100 – 10,000 740 926 
Consumption 2.30–3.90 3,197 3,060 
Income 1–5 4.14 4.20 
Environmental 
Concern 

1–10 6.53 7.88 

Trust 1–10 5.13 5.63 
Gain 1–10 5.44 5.07 
Capacity Factor % 21.3% 21.4% 
Solar Yield kWh/kWp 661 674  

Fig. 5. Evolution of agents state distribution per group over time within simulation runs.  
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As explained earlier, the model covers 30 neighbourhoods [55]. We 
repeat each simulation experiment 15 times with the same parameter 
configuration, to take into account the limited number of random values 
(See Table B.1). We report average values for all 15 runs, unless 
mentioned otherwise. For all experiments we run the ABM for 40 
timesteps [76], each one equivalent to one week (see Table B.1). 

5. Results and discussion 

We discuss the results obtained from our simulation experiments in 
steps. First, Section 5.1 presents the baseline scenario (‘Standard 
Threshold’ in Table 6). In this baseline scenario, the formation of LEI is 
discussed at three different levels: (1) aggregated dynamics of macro 
variables such as the total number of communities that initiated LEIs, (2) 
community variables, revealing the relationship between successful 
creation of LEIs and community characteristics, and (3) the dynamics at 
the level of agents. 

Second, we explore the role of Cooperative Orientation (Section 5.2) 
and the role of Leadership in the formation of LEIs (Section 5.3). For the 
former, we hypothesize that the existence of agents with cooperative 
orientation positively influences the creation of community energy 
projects. Hence, an increase in the number of cooperative agents en-
hances the likelihood of an LEI being created. For the latter, the hy-
pothesis is that the more people are willing to take responsibility in the 
incubation of an LEI (i.e., initiators in ABM), the more likely is the 
formation of an LEI in the community. 

5.1. Baseline scenario 

5.1.1. Aggregated dynamics 
Fig. 4 illustrates the time evolution of the number of communities 

with leadership boards and established LEIs. The maximum number of 
leadership boards created in a simulation run was 18, while the mini-
mum was 10, resulting in, on average 61.8% of all communities estab-
lishing a leadership board. For the number of LEIs, the highest and 

lowest are 19 and 9, respectively, resulting in an average of 47.3% of all 
runs succeeding in establishing an initiative. A 93% correlation was 
obtained between the curves of each round. Although this result may 
seem trivial since the leadership board precedes the LEI, it is not a 
requirement for it. Nonetheless, if a board is created, it is highly likely 
that an LEI will also be established. Given the strong correlation, from 
here onwards, we only investigate the creation of an LEI from now 
onwards. 

A summary of results considering the different driver threshold 
scenarios is presented in Table 8. In the progressive scenario, 78.9% of 
the communities created LEIs, 2.7% of the community population were 
initiators and more than 50% were supporters. In the conservative sce-
nario, only 6.9% of the communities created LEIs. Initiators were 0.4% 
of the population and only 1.0% were supporters. These results serve 
further to compare the LEI formation outcomes and cooperative 
behaviour. 

5.1.2. Community-level dynamics 
In the model, all LEI boards develop a technological and financial 

plan (Fig. 3). Nevertheless, only the ones that find supporters realise 
them. Table 9 summarises the characteristics of communities with 
established boards per technology type in the model. Communities that 
opted for utility solar have a higher solar yield as compared to those 
opting for wind. 

We perform t-tests comparing the value of these variables (averaged 
across the 15 runs for each threshold scenario) between the two groups – 
Communities with and without LEIs. The only variables that returned a 
p-value lower than 0.05 are the average population and the behavioural 
drivers. For all the other variables, there was no statistical difference 
between the two groups. This implies that the size of the community 
matters, but as Table 9 reveals in contrast to intuition, smaller com-
munities might be more likely to form LEIs in some cases, which makes 
the analysis inconclusive. In addition, since the behaviour drivers also 
stand between success or failure of LEIs, we dive into dynamics at the 
agent level. 

Fig. 6. The distribution of agent states during LEI formation among various social value orientations. Here the starting point is an agent in the simulation who has 
not yet met the requirements to become a supporter nor an initiator. 
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5.1.3. Agent-level dynamics 
Agents update their opinion regarding their drivers throughout our 

simulations. This opinion dynamics may push some agents over the 
driver thresholds and, if other requirements are met, these agents 
become initiators or supporters. For the sake of analysis we define 7 
different states that the agents can be in as illustrated in Fig. 5: initial 
starting point, having environmental concern, having trust in the com-
munity, becoming an initiator, becoming a supporter, becoming a po-
tential supporter but disagreeing with the board’s financial or 
technological proposal, and becoming supporter without the existence 
of a leadership board. 

Approximately 10% of the agents are part of communities where no 
leadership board was created (therefore, no LEI) – supporter without 
leadership group. The number of supporters and potential supporters 
(agents that want to support an LEI but disagree with the board sug-
gestion about technology or financial terms of the project) maintain a 
steady growth until the end of the simulation runs. These groups com-
bined represent, in the end, around 35% of the total population. At the 
end of the runs initiators represent 1.85% of the total population on 
average. 

Both environmental concern and community trust driver thresholds are 
satisfied for an increasing number of agents by the end of the simula-
tions. In order to become initiators or supporters, the agents need to pass 
the threshold for personal gain as well. However, personal gain is the 
hardest driver to satisfy. Meeting this driver threshold will probably 
become easier in the future since it is associated with the perception 
agents have about their potential financial gain. With the existence of 
more projects and higher return on investment, people would see better 
financial prospects. 

Finally, Social Value Orientation is linked to the final status of the 
agents (Fig. 6). Since the SVO of agents was not directly taken into 
consideration in their decision-making processes, it is interesting to see 
that the final states can actually be categorized based on their orienta-
tion. The difference between the pro-social (Altruistic and Cooperative) 
and pro-self (Individualistic and Competitive) orientations is significant. 
Initiators and supporters mainly have altruistic and cooperative orien-
tations and there are no competitive initiators. Individualistic and 
competitive agents do not pass the driver thresholds necessary to join 
the local energy initiative. As Fig. 6 shows, pro-self agents also disagree 
more rather than agree with the leadership board. 

These results suggest that policy strategies should target pro-social 

individuals or cultivate the development of these social value orienta-
tions. People that participate in LEIs seem to do so because they either 
seek to contribute to the public good or to directly bring benefits to 
others. 

5.2. The role of cooperative orientation 

It is commonly accepted that cooperative action is the cornerstone of 
LEIs [3,17]. Nevertheless, the fact that stakeholders work together does 
not mean that they have a cooperative orientation. It only elucidates 
that they choose to cooperate to achieve a certain goal, perhaps because 
it also satisfies individual goals. Therefore, it is relevant to understand 
what type of agents engage in cooperative action in LEIs (see Section 
5.1) and to assess the relationship between cooperative social value 
orientation and the establishment of these initiatives. 

We formulate hypotheses to test the positive effect of cooperative 
SVO in the creation of LEIs:  

• H0: The mean number of LEIs created is the same when there is an 
increase in the share of cooperative agents.  

• HA: The mean number of LEIs created is higher when there is an 
increase in the share of cooperative agents. 

Table 10 summarizes the results for the three driver threshold sce-
narios, indicating how difficult it is for agents to meet the necessary 
behavioural driver thresholds – from progressive (easy) to conservative 
(hard). 

These results suggest that increasing the share of cooperative agents 
has a positive impact on the establishment of LEIs in a situation where 
the community threshold is Standard or Progressive. However, increasing 
the share of cooperative agents does not have an impact on the creation 
of LEIs in the Conservative threshold scenario. This means that in highly 
connected communities with a high level of environmental concern, 
trust and personal gain, increasing the number of cooperative agents 
leads to the creation of more initiatives. Or, in other words, in com-
munities where the population is already aware of the benefits of an LEI, 
cooperative agents might catalyse the creation of LEIs. 

It is important to know if having fewer cooperative agents can have a 
negative impact. Our two hypotheses here are:  

• H0: The mean number of projects created is the same when there is a 
decrease in the share of cooperative agents.  

• HA: The mean number of projects created is lower when there is a 
decrease in the share of cooperative agents. 

The t-test indicates no significant difference in the scores of the 
normal and reduced share of cooperative orientation; t(28) = 2.09, p 
0.98. This suggests that reducing the share of cooperative agents does 
not affect the success of established LEIs, independently of the threshold 
value of the drivers (Table 11). 

An increase in cooperative orientation is associated with an increase 
in the number of projects in the Progressive and Standard threshold 
scenarios but not necessarily in the Conservative one. Nevertheless, when 
no cooperative agents are present, an LEI is still established with no 

Table 10 
Difference in the number of LEIs created given the enhanced cooperative 
orientation, across 3 model scenarios.  

Agent Driver 
Threshold 

Baseline Mean 
(st.dev.) 

Enhanced Cooperation 
Mean (st.dev.) 

p-value 

60% – Progressive 23.67 (1.63) 26.87 (1.46) t(28) = 5.66, 
p < 0.005 

90% – Standard 14.13 (2.53) 17.80 (2.86) t(28) = 3.72, 
p < 0.005 

100% – 
Conservative 

1.67 (1.29) 1.33 (0.72) t(28) = 0.87, 
p = 0.81  

Table 11 
Difference in the number of LEIs created given the reduced cooperative orien-
tation, across 3 model scenarios.  

Agent driver 
threshold 

Baseline Mean 
(st.dev.) 

Reduced Cooperation 
Mean (st.dev.) 

p-value 

60% – 
Progressive 

23.67 (1.63) 20.47 (1.64) t(28) = 5.35, 
p = 1.00 

90% – Standard 14.13 (2.53) 12.20 (2.54) t(28) = 2.09, 
p = 0.98 

100% – 
Conservative 

1.67 (1.29) 1.93 (1.10) t(28) = 0.61, 
p = 0.27  

Table 12 
Difference in the number of LEIs created given the enhanced leadership, across 3 
model scenarios.  

Agent Driver 
Threshold 

Baseline Mean 
(st.dev.) 

Enhanced Leadership 
Mean (st.dev.) 

p-value 

60% – Progressive 23.67 (1.63) 30.00 (0.00) t(28) = 15.00, 
p < 0.005 

90% – Standard 14.13 (2.53) 23.80 (1.86) t(28) = 11.92, 
p < 0.005 

100% – 
Conservative 

1.67 (1.29) 7.33 (2.19) t(28) = 8.62, p 
= 0.005  
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significant statistical difference as compared to when cooperative agents 
are in the community. These results suggest that cooperative orientation 
is not a necessary requirement for the creation of LEIs. In such circum-
stances, altruistic agents tend to represent a higher share among initi-
ators and supporters: when cooperative agents are absent, altruists take 
their role. Hence, it is not a requirement that agents personally benefit 
from an LEI provided that the community benefits from it. 

5.3. Leadership and its role in LEI formation 

Leaders or initiators are key agents in the creation of LEIs. These 
agents are willing to take responsibility and to share their time and 
expertise to run local energy projects. They bring information from 
outside their communities, paving the way for supporters to join. 

In our standard scenario (Section 5.1), 21% of the population on 
average disagrees with the vision of the board; 11% on average is ready 
to support an LEI but is not able to do so due to the lack of a leadership 
board in their communities. To test the role of leaders, we increase the 
number of possible initiators in a community to assess its impact on the 
number of projects. The results are measured using t-tests for two in-
dependent samples. 

The number of possible leaders is the number of people who are 
willing to take significant responsibility, e.g. being a part of the foun-
dation/leadership board. This concept is modelled through the re-
sponsibility parameter (Section A.3), which we modify here to explore 
the role of leaders. Our null and alternative hypotheses, respectively, 
become:  

• H0: The number of projects created is the same when there is an 
increase in the share of possible initiators. 

• HL: The number of projects created is higher when there is an in-
crease in the share of possible initiators. 

In the base scenario, the agents’ value distribution for the re-
sponsibility parameter is (based on survey): No interest in joining an LEI 
(25%), Little Responsibility (30%), Not Organizational (37%) and Lead-
ership (8%). In the experiment, we triple the share of leaders while 
maintaining the relationship among the other responsibility levels. The 
distribution in the simulation runs for all driver threshold scenarios for 
this enhanced leadership experiment is therefore: No interest in joining an 
LEI (21%), Little Responsibility (25%), Not Organizational (30%) and 
Leadership (24%). 

A summary for all scenarios in this experiment is presented in 
Table 12. 

These results suggest that increasing the number of initiators posi-
tively effects the creation of LEIs in all cases, irrespectively of the 
threshold scenarios for the behavioural drivers. Hence, focussing on 
initiators is advisable due to several reasons. First, while enhancing 
cooperative orientation was not useful in the Conservative scenario with 
high driver thresholds, increasing the number of initiators raises the 
number of LEIs formed in all driver threshold scenarios. Second, most of 
the non-realized projects in our ABM fail due to the lack of leaders. 
Finally, a strong correlation between the creation of a leadership board 
and an LEI exists which highlights that community support is usually 
found after the board is created. 

6. Conclusions and policy implications 

Community energy initiatives represent a significant change in how 
people interact with energy systems due to their decentralized and 
citizen-lead nature. LEIs increase societal acceptance of renewable en-
ergy technologies, speed up their adoption and scale of implementation. 
Therefore, LEIs are valuable enablers for energy transition. 

This research aimed to explore factors that influence the formation of 
LEIs in a dynamic context, thereby considering social networks and 
opinion dynamics that play a decisive role in such settings. To address 

this goal, we presented the design and simulation results of a theory- and 
data-grounded agent-based model permitting us to trace the formation 
of LEIs from the bottom-up. We employ a wide array of data – ranging 
from individual surveys to statistical databases in the Netherlands – to 
represent environmental concerns, trust, norms and personal gains as 
well as social value orientation for simulating agents’ behaviour in the 
model. Specifically, we focused on simulating factors that influence the 
formation of LEIs in communities and generated insights into the role of 
behavioural aspects of various agents in this process. 

As a typical virtual social science laboratory, this ABM enables 
experimentation with relevant behavioural attributes, focusing on 
leadership and cooperative orientation. Our results reveal that leader-
ship is fundamental for the creation of LEIs and that cooperative 
orientation contributes positively to their development. However, the 
simulation results demonstrate that higher cooperative orientation does 
not necessarily increase the number of LEI projects in situations where 
the community is not receptive (conservative scenario). Therefore, 
cooperative orientation is not a necessary condition for the formation of 
LEIs. Both cooperative and altruistic agents constitute a significant part 
of supporters or initiators. When communities lack participants with 
cooperative orientation, altruistic citizens replace them. This substitu-
tion does not lead to a significant reduction of successful LEI projects. 
Therefore, prosocial social value orientations are essential for the 
establishment of community energy projects. This result supports the 
assumption that agents engage in community energy for the benefit of 
the public good and of others. 

The modelling results demonstrate that an increase in leadership 
impacts the creation of these initiatives positively, irrespective of other 
key model settings. Our simulation experiments show that leaders can 
be the main bottleneck for the establishment of LEIs. When a board 
is created, it is likely that it finds support provided that the leadership 
takes the characteristics of the communities into account when deciding 
on technology and size of the project. Governments or third parties 
interested in the development of community energy systems could 
support the creation of community leadership practices to support 
reducing initiators’ workload. These could include guidelines concern-
ing applications and permits, or tools to facilitate decision making. 
Providing this information in a centralised and organised way is 
paramount. 

These modelling outcomes have implications for policies aimed at 
supporting LEIs. Policies should target small group of individuals who 
can lead a project. These results highlight the role of initiators and how 
important it is that these individuals feel safe to come forward and voice 
their vision to their communities. If anything, this shows that the power 
for change is in the hand of people from the community. 

This research faced some limitations. First, due to limits in compu-
tational power, the number of experiments that were explored were 
limited. Furthermore, one of the important roles of the leadership is 
networking. The leaders are still able to interact with the community 
after they become part of the leadership board. So, as individuals, they 
are still interacting and enhancing the likelihood of other agents sur-
passing the drivers’ thresholds. Nonetheless, networking in an organ-
isational level was not considered. The leadership board as a single 
entity does not interact with agents or other organisations. Therefore, an 
area worth further investigation is to assess if leadership interaction 
with SMEs or the government, for example, may impact agent’s 
perception of the LEI and its creation. 

Another limitation of the model is that the agents share their drivers 
to join an LEI. However, agents may also share their opinion on the 
technology or on the amount of money they are willing to invest. The 
focus of this research was on dynamics of behavioural drivers, never-
theless, experimentation with those factors would enhance the 
comprehension of how other variables impact the creation of LEIs. 

A final consideration here is the time dependency aspect. In this 
model, all communities start evolving simultaneously. Also, the net-
works are considered static in time. People do not make or break 
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connections during the simulation timespan, which is unlikely. Since the 
time dependency is not considered, it is harder to assess the cumulative 
effect of LEIs in society. By enabling the board to interact with other LEIs 
and triggering the start of the dynamics in a community by factors 
associated with neighbouring communities or policy changes, the role of 
networking and time on the emergence of these initiatives can be further 
studied. 

Finally, we would like to stress that the model presented in this 
research was extensively driven by Dutch data. We believe that the 

model at its core can be applied to other cases around the world given its 
theoretical underpinning, provided that it is recalibrated with the data 
of that country leading to tailored insights. 
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Appendix A Data 

A.1 Driver values and thresholds 

The agent drivers (environmental concern, trust and personal gain) for joining or supporting an initiative are populated with data from the 
empirical survey [53]. In this dataset, there is direct reference to the Environmental Concern: individuals were asked if they agree with certain 
statements using a 5-point Likert scale. The statements are: 

Fig. A1. Environmental Concern Distribution.  

Fig. A2. Trust Distribution.  
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I. “I think CO2 reduction is important”.  
II. “I think it is important that the use of fossil fuels is reduced”.  

III. “I think climate change is a major problem”.  
IV. “I would like for my energy consumption (electricity and heating) to be independent of big energy companies”. 

Two of these statements are directly related to Environmental Concern, these being I and III. By summing the answers of statements I and III, 
considering 1 as totally disagree and 5 as totally agree, an indicator ranging from 2 to 10 is obtained. The result is presented in Fig. A.1. 

It is important to notice that a large part of the population (86.3%) has environmental concern above average. 
It is also necessary to set up Trust in the community, in a similar fashion as Environmental Concern. To assess the trust distribution of the 

community two variables of the survey are combined, Community Involvement and Community Trust. Individuals were asked to rank from 1 to 5 their 
involvement and trust in the community, so, their sum can be a value between 2 and 10. 

Differently from environmental concern, which is clearly shifted in the direction of higher values, trust has a shape closer to a normal distribution 
as illustrated in Fig. A.2. Still, around 70% of the population possess trust above average. A high level of trust is related to a high level of involvement. 

The Personal Gain dimension can be modelled using the social return on investment theory (SROI) [56]. In the survey, participants were asked to 
state the amount they can invest and, also the range of hours they are willing to work with the LEI. The average value of these ranges is used for the 
calculations except for the latest, in which the floor value is used. The distribution obtained from the survey is presented in Table A.1. 

More than 95% of the survey respondents are willing to invest less than 2 h a week in the LEI. There is a clear peak in the range of investment raging 
from €2,000 to €5,000, 43% of the respondents are contained in this group. Also, by making an analysis of the level of income of the respondents, no 
correlation was found between income and investment. 

The hours invested must be converted into monetary value, this is done by considering the income of the household and the usual workload of the 
participant. Also, since one household has, on average, more than one person with income, the income of the household must be adjusted. This 
correction factor is 1.7 [77]. 

Costhour =
YearlyHouseholdIncome

YearlyWorkload*1.7
(A.1) 

By considering the average number of hours the participant is willing to invest in an LEI and the cost of their hour, the time investment is converted 

Fig. A3. Average Scenario Ratings.  

Fig. A4. Personal Gain Distribution.  

Table A1 
Investment Availability vs Time Availability.  

Money availability 0 h 0–1 h 1–2 h 2–4 h +5 h 

0 – €2.000  16.25%  7.16%  1.55%   
€2.001 – €5.000  7.74%  22.24%  12.38%  0.77%  0.19% 
€5.001 – €10.000  2.13%  10.25%  9.28%  2.32%  0.19% 
+€10.000  1.16%  3.09%  2.71%  0.39%  0.19%  
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into a monetary value (Eq. (A.1)). 
To calculate the return on investment, the 4 ranked scenarios in the survey are used (Fig. A3). The participants were asked to rank the following in a 

10-point scale:  

I. SCENARIO 1: Based on an investment cost of 5,000 euros, employment of 10 h setting up the LEI in a month with 50% energy savings.  
II. SCENARIO 2: Based on an investment cost of 10,000 euros, employment of 10 h setting up the LEI in a month with 80% energy savings.  

III. SCENARIO 3: Based on an investment cost of 5,000 euros, employment of 30 h setting up the LEI in a month with 80% energy savings.  
IV. SCENARIO 4: Based on an investment cost of 10,000 euros, employment of 30 h setting up the LEI in a month with 50% energy savings. 

Table A2 
Parameters for Social Network Specification – Watts-Strogatz.  

Variable Variable Value Target Final 

Neighbourhood 5  0.03  0.03 
Rewiring Probability 0.028 * Trust Percentile  6.00  5.95  

Fig. A5. Social Value Orientation.  

Fig. A6. SVO Distribution.  
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Scenario 1 is the most well ranked (6.43) and it assumes energy savings of 50% while scenario 3 is the second best (5.97) assuming saving of 80%. 
Both scenarios assume the same monetary investment and differ considering the number of hours the person would be willing to employ in the project. 
While the difference between these scenarios, in terms of rating, is relatively low, scenario 3 is based on an hour commitment of 30 h a month, this is 
not realistic considering participants’ availability presented above. Considering that, the return is assumed to be 50% of their energy costs that are also 
presented in the survey2. 

Furthermore, to include some other possible benefits everyone may have from the participation in the LEI a random bonus is added to the savings 
and may range from 0 to 50% of their energy bill. The threshold value of 50% was defined because 50% of savings would cover the time investment of 
the majority of the population surveyed. This is an attempt to other social benefits like enhancing citizen well-being or the feeling of belonging to the 
community since these cannot be quantified in this work. 

The time investment was arbitrarily limited to five year to consider the fact that people lose motivation with time to work on these types of projects 
with the passing of years. Also, each participant, in the survey, chose which is their PBT threshold. By comparing the calculated payback time with the 
threshold, it is possible to design an indicator ranging also from 0 to 10 as illustrated in Fig. A.4. 

A.2. Social network parametrisation 

Every agent has an intrinsic environmental concern, a level of trust in the community and a perception of their personal gain. But, since they are 
embedded in a network, they are also subject to opinion dynamics. This is one alternative to model social norms by looking at peer interaction. It is 
possible to calculate the trust percentiles to generate the random network. Three parameters need to be defined: network size, neighbourhood, and 
rewiring probability. 

The number of actors in the community defines the network size. To implement the concept of trust in the social network to use both the diameter 
and the density. We keep the neighbourhood variable constant and use the trust percentile to define the rewiring probability. The neighbourhood 
variable is adjusted to obtain an average density of 0.03, which is the survey obtained a density of 60 villages [78]. The rewiring probability is used to 
simulate the community trust and is defined to maintain the thumb rule of 6 degrees of separation, that states that everything in the actor’s world in 
within six steps of him/her [79]. Which implies that the mean diameter considering all networks in the simulation should be 6. Table A.2 summarizes 
the key values. 

The minimum diameter is 2.99 while the maximum is 10.79. The minimum and maximum densities are 0.065 and 0.0952, respectively. 

A.3 Data for social value orientation 

To use the SVO framework there is need to classify our individuals into one of the four groups. Although the data was not specifically collected for 
this purpose, in this work, it is enough for a proxy using a multi-stage classification method. 

The first step is based on the identification of altruistic and individualistic orientations. This is done by using the scores each agent gave to the 
reasons to join an LEI. It is assumed that if the agent has a higher score for environmental and community reasons than for financial and independency 
reasons he is altruistic, if the opposite happens than he is individualistic. It is important to state that there is no scale within the group, an individual 

Table A3 
Level of Investment Distribution per SVO.  

Category 0 – €2.000 €2.001 – €5.000 €5.001 – €10.000 +€10.000 

ALT 18% 64% 91% 100% 
COOP 16% 65% 90% 100% 
IND 36% 74% 96% 100% 
COMP 69% 95% 98% 100%  

Table A4 
PBT Limit Distribution per SVO.  

Category 1–5 years 5–10 years 10–15 years 15–20 years 20–25 years 

ALT  29.78%  82.58%  98.31%  100.00%  100.00% 
COOP  30.95%  82.74%  97.02%  98.81%  100.00% 
IND  46.72%  86.89%  98.36%  100.00%  100.00% 
COMP  72.73%  96.36%  100.00%  100.00%  100.00%  

Table A5 
Agent’s Level of Acceptance of Wind Technology.  

Category 1.0 1.5 & 2 2.5 & 3 3.5 & 4 4.5 & 5 

ALT  3.37%  23.08%  60.58%  86.06%  100.00% 
COOP  14.06%  34.90%  67.19%  90.63%  100.00% 
IND  16.06%  40.88%  69.34%  87.59%  100.00% 
COMP  16.13%  45.16%  75.81%  93.55%  100.00%  

2 One important remark is that some respondents did not know their level of income of energy monthly expenses. These participants will result in an SROI with 
value zero and are excluded when calculating the indicator. 
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cannot be more altruistic/individualistic than other (see Eq. (3)). 
Moving to the second step, the variable that contains information about the willingness to work with the community is assessed, since this is an 

indication of cooperative behaviour. If the agent is willing he is classified as cooperative, otherwise competitive. The results of the classification are 
presented in Fig. A.5. 

As it can be seen most of the population in this community presents prosocial orientation, amounting to 67% of the total number of participants in 
the survey. 

It is also expected, considering the pro-self group, that individualistic orientation is more significant than competitive in this context. In a com-
munity, an individual will not benefit directly from a negative outcome for others, which can be different in a business context. This said, if an in-
dividual is pro-self, it is more likely that he will be individualistic than competitive. 

All in all, it is assumed that these results support the use of this proxy methodology to classify the agents into the four groups of social orientations 
presented above and this information can be used to add heterogeneity to the agents in the model. To combine the information of social value 
orientation and the behavioural drivers, a different distribution is used for each SVO. 

The first step is to give the agents their social value orientation by using the distribution in Fig. A.6. 
Most individuals are altruistic (34.7%) or cooperative (32.1%), which are prosocial orientations. This is assumed to have a positive impact on the 

formation of LEIs. The remaining agents are individualistic (22.9%) or competitive (10.4%); pro-self orientations. The SVO of the agent is not used in 
the decision-making process. This attribute is responsible for giving heterogeneity to the agents, enabling further description of results and 
experimentation. 

For each SVO a different distribution of drivers and attributes is given. Besides the drivers discussed in detail previously: Community Trust, 
Environmental Concern and Personal Gain, other important attributes are assigned to the agents in this step. These are given below with their 
description and running total percentage per SVO:  

o INVEST: Amount the agent is willing to invest in a Local Energy Initiative (Table A.3)  
o PBT_LIMIT: Maximum amount of time an agent is willing to wait to have their return on investment (Table A.4)  
o WIND: To which extent is the agent disturbed by wind energy technologies, considering both sight and noise factors. This indicator ranges from 1 

(very disturbed), to 5, (not disturbed at all). Since noise and sight factors were considered separately in the survey, the average value was taken in 
the model (Table A.5)  

o SOLAR: To which extent is the agent disturbed by the sight of solar panels. This indicator ranges from 1, very disturbed, to 5, not disturbed 
(Table A.6).  

o RESPONSIBILITY: the level of responsibility an agent is willing to take after joining a Local Energy Initiative (Table A.7) 

Finally, after assigning these attributes that are dependent on the SVO, the income is assigned to the agents. There are five possible income values. 
The lowest household income is Bijstandniveau, or Assistance, meaning that the agent’s only income comes from governmental assistance, this group 
represents 3% of the population and is assumed to have an annual income of €16,800, based on the maximum income of € 1,404 per month [80]. The 
second group represents 5% of the community and ranges from Assistance to Average, or Modaal. The average income value was given in the question 
and is taken as €28,500 per year. The other three levels are defined based on the average. The third level is Average (12%), the fourth from Average to 
Twice Average (29%), and the fifth Above Twice Average (51%)3. 

Table A6 
Agent’s Level of Acceptance of Solar Technology.  

Category 1 2 3 4 5 

ALT  5.77%  15.38%  31.25%  60.10%  100.00% 
COOP  4.17%  17.19%  35.42%  61.46%  100.00% 
IND  7.30%  16.79%  35.04%  54.01%  100.00% 
COMP  11.29%  22.58%  45.16%  66.13%  100.00%  

Table A7 
Level of Responsibility and Agent is Willing to take in an LEI.  

Category No interest Little Responsibility Not organizational Considerable Responsibility 

ALT  16.3%  54.3%  89.4%  100.0% 
COOP  14.6%  48.4%  91.7%  100.0% 
IND  32.1%  55.5%  92.7%  100.0% 
COMP  74.2%  80.6%  100.0%  100.0%  

3 Agents that did not provide income information were filtered in the analysis. 
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Appendix B: Assumptions, Parameter Setup and Calibration 

B.1 Assumption and parameter values 

Table B.1 summarizes the employed parameter values in the ABM of LEI formation. To avoid duplication, we omit here the financial information 
about solar and wind energy calculations already summarized in the main text. 

B.2 Calibration of discount rate 

The relationship between the discount rates of wind and utility solar is altered to replicate the distribution of these technologies. Both wind and 
utility solar, in the NPV calculation, start being discounted using the current inflation rate in the Netherlands, 1.1% per year [81]. Wind energy is, in 
general, more profitable. In order to avoid wind power from winning over utility solar in all runs and also, to try to encompass social elements into the 
leadership board’s technological decision, the discount rate is adjusted. The discount rate is increased for wind energy, while decreased for utility 
solar. The starting value of the factor is 0.00 and is increased by 0.01 in every loop until the wind energy has twice the number of communities of 
utility solar. 

This simulation runs 1,000 times for the calibration of the exponential factor and the discount rate factor. The exponential factor parameter 
specifies how fast the probability drops with the possible size of the community. The results are presented together with the standard deviation of the 
value distribution in Table B.2. 

The discount rate is attributed to the communities using a normal distribution with the same average and standard deviation4 presented above. 

Table B1 
ABM settings: Parameters’ Summary.  

Parameter Type Value Source Comments 

Number of 
Communities 

Numeric 30 [55] Total number of communities in a simulation. 

Population Range Range 100–10,000 [55] Factors defining the exponential probability distribution to attribute the population size. 
Exponential Factor Numeric 0.0035 Sensitivity 

analysis 
The exponential parameter specifies how fast the probability drops with the possible size of the 
community. 

# Altruistic % 35 Survey Social Value Orientation assigned randomly (using these percentages) among the total number of agents 
in a simulation 

# Cooperative % 32 Survey Social Value Orientation assigned randomly (using these percentages) among the total number of agents 
in a simulation 

# Individualistic % 23 Survey Social Value Orientation assigned randomly (using these percentages) among the total number of agents 
in a simulation 

# Competitive % 10 Survey Social Value Orientation assigned randomly (using these percentages) among the total number of agents 
in a simulation 

Environmental 
Concern 

Distribution 1–10 Survey The environmental concern of an agent. It is dependent on the SVO with average of 8.34. 

Trust Distribution 1–10 Survey The trust an agent has in the community. It is dependent on the SVO with average of 6.31. 
Personal Gain Distribution 1–10 Survey Contains the perception of personal gain based on a preliminary PBT calculation. It is dependent on the 

SVO with average of 5.97. 
Invest Distribution 1,000–10,000 Survey Amount, in euros, an agent is willing to invest. It is dependent on the SVO and has four possible values. 
Payback time Limit Distribution 5–25 Survey Maximum time, in years, an agent is willing to wait to have his/her investment returned. It is dependent 

on the SVO and has five possible values. 
Wind Discomfort Distribution 1–5 Survey 5-point Likert scale containing the level of discomfort an agent has with wind technology. It is dependent 

on the SVO. 
Solar Discomfort Distribution 1–5 Survey 5-point Likert scale containing the level of discomfort an agent has with PV technology. It is dependent 

on the SVO. 
Responsibility Distribution 1–4 Survey Attribute containing the level of responsibility an agent is willing to take, ranging from not interested in 

participating (1) to management responsibility (4). Depends on the SVO. 
Income Distribution 1–5 Survey 5 categorical groups containing the level of income of the agent ranging from 16,800 to 57,000 per year. 
Consumption per 

Capita 
Distribution 2,300–3,900 [77] 9 groups containing the level of consumption per capita in the Netherlands. 

People in a 
household 

Numeric 2.17 [61] Average number of people living in a household for community consumption calculations. 

Inflation Rate Factor % 
% 

1.11 
0.13 

[78] Factors used to define the discount rate in the NPV calculation for the board technology decision. 

Neighbourhood Numeric 5.00 [78,79] Used by the Watts-Strogatz method to obtain a mean network density of 0.03. 
Rewiring 

Probability 
Numeric 0.028 [78] Used by the Watts-Strogatz method to obtain a network mean diameter of 6. 

Thresholds % 60, 90, 100 Sensitivity 
check 

Percentages applied to the average of each driver distribution to contemplate unusual situations for 
opinion dynamics. 

Weeks Numeric 40 [76] Timespan of the simulation, in weeks. One week is one tick 
Dynamics 

Percentage 
% 10 Sensitivity 

check 
How much an agent leans towards the opinion of a neighbour he/she interacts at each time step. 

Agents in the board Numeric 5 [8] Minimum number of agents for a leadership board to be created. 
Weeks until meeting Numeric 4 [76] At the end of every month (4 weeks) the community gathers and checks for the existence of a leadership 

board.  

4 The discount rate for solar rooftop is only the current inflation. 
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B.3 Network sensitivity analysis 

It is possible to use other methods than Watts-Strogatz to build the social network; one well-established algorithm is the Barabási-Albert one. The 
mechanism behind is simple; it adds new connections using the number of links one actor already possess to elevate the probability to connect to that 
agent. It simulates the fact that, in a social network, new players tend to link to the more connected ones. While, in random networks, like the Watts- 
Strogatz, agents randomly choose their interaction partners [82]. 

At each time step, the algorithm adds a new node with m connections to other nodes, the higher the number of connections the higher the density of 
the network. Also, the final network has a degree distribution that obeys a power law with degree exponent γ, which impacts the mean diameter of the 
network. Therefore, a similar calibration to the one performed for the Watts-Strogatz is done using a method with preferential attachment in Table B.3. 

The simulation ran 1,000 times to calibrate each item. The number of links and exponent degree were changed to obtain the target values for 
network density and diameter. The simulation is executed using the parameters defined in Table B.3. That is done to assess if the application of a social 
system with a preferential attachment would impact the results. It is noteworthy that the social network created by this new method has the same 
density and diameter as the ones before. Therefore, the only difference is in the structure of the social network with hubs. Table B.4 summarises the 
results using a Barabási-Albert network. 

The results in Table B.4 show the mean number of LEIs created per threshold situation. There is no significant statistical difference between the 
average number of LEIs created using distinct networks structures. All comparisons resulted in a p-value higher than 0.05 in a two-sample t-test. 
Therefore, the fact that the Watts-Strogatz method does not contemplate the preferential attachment does not impact the creation of LEIs. 
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Table B2 
Calibrated parameters to match technology distribution.  

Parameter Average Standard Deviation 

Exponential factor  0.0024  0.0003 
Discount rate factor  0.1301  0.1429  

Table B3 
Parameters for Social Network Specification – Barabási-Albert.  

Item Control Variable Control Variable Value Item Target Item Final 

Density Number of Links  4.00  0.03  0.03 
Diameter Degree Exponent  1.25  6.00  6.04  

Table B4 
Comparison Watts-Strogatz vs Barabási-Albert.  

Situation Threshold Number of LEIs Watts-Strogatz Number of LEIs Barabási-Albert p-value1 

Standard Threshold 90%  14.00  14.20  0.82 
Conservative Threshold 100%  1.92  1.91  0.56 
Progressive Threshold 60%  22.27  22.80  0.50  

1 The condition of homogeneity of variance and independence are satisfied in all three cases and the data is assumed to follow a normal distribution. 
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