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Parasitic wasps and their larval hosts are intimately connected

by an array of behavioral adaptations and counter-adaptations.

This co-evolution has led to highly specific, natural variation in

learning rates and memory consolidation in parasitoid wasps.

Similarly, the hosts of the parasitoids show specific sensory

adaptations as well as non-associative learning strategies for

parasitoid avoidance. However, these neuronal and behavioral

adaptations of both hosts and wasps have so far been studied

largely apart from each other. Here we argue that a parallel

investigation of the nervous system in wasps and their hosts

might lead to novel insights into the evolution of insect behavior

and the neurobiology of learning and memory.

Address

Laboratory of Entomology, Wageningen University, Droevendaalsesteeg

1, 6708 PB Wageningen, The Netherlands

Corresponding authors:

Haverkamp, Alexander (alexander.haverkamp@wur.nl), Smid, Hans M

(hansm.smid@wur.nl)

Current Opinion in Insect Science 2020, 42:47–54

This review comes from a themed issue on Neuroscience

Edited by Basil el Jundi and Antoine Wystrach

https://doi.org/10.1016/j.cois.2020.09.003

2214-5745/ã 2020 The Authors. Published by Elsevier Inc. This is an

open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).

Introduction
Primary parasitoids and their larval hosts are intertwined

in a constant arms race, which extends from immune

responses to different behavioral strategies [1,2]. Within

this evolutionary conflict, the ability to learn is of para-

mount importance for both sides [3], especially when the

behavior of the parasitoid or host changes due to climatic

or other man-made influences on natural and agro-eco-

systems [4].

Here, we will review recent studies on learning and

memory formation in parasitoid wasps and explore the

potential behavioral and neural plasticity in enemy-avoid-

ance strategies in their larval insect hosts. The different

steps in host–parasitoid interactions will be discussed

along four steps from approaching a resource to updating
www.sciencedirect.com 
memory, each time from the perspective of the host and

the parasitoid, as depicted in Figure 1.

A first approach

When herbivorous insect larvae initiate feeding, the

chance of being attacked by a parasitoid or predator

increases up to a hundred times as they have to give

up their hiding places and because feeding triggers the

release of volatiles, which are used by their natural enemy

to locate their victims [5,6] (Figure 1.1). Because of this

constant threat it has been argued that vigilance, that is,

responsiveness to cues predicting the presence of para-

sitoids or predators is a major reason for host-plant spe-

cialization and host-plant learning in insect herbivores [7].

A strong plant preference, either innate or learned, will

reduce the time required for choosing and ingesting food

and would, therefore, provide more time and neuronal

capacity for parasitoid avoidance and defensive behaviors

[7].

Many herbivorous insect larvae have a short time window

after emergence, in which their innate feeding preference

can be either further strengthened or changed toward the

acceptance of suitable, but novel host plants [8,9]. For

instance, Manduca sexta caterpillars have an innate pref-

erence for solanaceous plants, which is further strength-

ened when larvae feed initially on these plants to such a

degree that they will no longer accept other suitable but

non-solanaceous plants. However, if the caterpillars feed

initially on the suitable but non-solanaceous cowpea Vigna
sinensis, these plants will also later on be accepted,

although solanaceous plants will still be preferred [8].

This increased host-plant preference is at least partly due

to sensitization of specific taste neurons, which increase

their responses to indioside D, an important feeding

stimulus present in many solanaceous plants, but absent

in cowpea [10]. Such a sensitization of the taste neurons

could be mediated by serotonin, similar to what has been

shown in the blowfly Phormia regina [11]. Sensitization as

a non-associative form of learning (Box 1) might not only

help the host to avoid parasitoid enemies, but could also

play a role in the oviposition choice of the adult insect in a

phenomenon known as the Hopkins host selection prin-

ciple [12]; a learning mechanism in which the adult

oviposition choice is influenced by larval experiences.

Most parasitoids are highly specialized on a certain insect

host species [13] (Figure 1.1), and consequently also have

an innate preference for plant odors induced by the

feeding of their hosts, so-called herbivore-induced plant
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Figure 1

Current Opinion in Insect Science 

Parasitoids and their hosts exploit a diverse array of associative and non-associative memory traits before, during and after their encounter.
volatiles (HIPVs). The composition of this volatile blend

is, however, influenced by multiple biotic factors such as

other herbivores [14] or abiotic factors such as drought

[15]. These variable circumstances make it particularly
Current Opinion in Insect Science 2020, 42:47–54 
challenging for naive parasitoids to find their host, espe-

cially as inexperienced wasps are often unable to discrim-

inate plants infested by hosts from plants infested by non-

hosts and even the presence of undamaged plants in the
www.sciencedirect.com
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Box 1 Overview of basic learning and memory types

Learning can be divided into two basic forms, associative and non-

associative learning [42]. In non-associative learning, habituation
occurs when a stimulus has no consequences after repeated expo-

sure and the animal, therefore, learns to reduce its response in order

to conserve resources. Sensitization occurs after a strong, mean-

ingful stimulus, such as noxious stimuli, host traces, food and so on;

the animal will increase its response level to that stimulus, but also to

other stimuli; therefore, sensitization has a broader effect than

habituation. From sensitization the animal learns that potential

harmful events may occur or that potential resources are available. If

such a stimulus is repeated without consequence, habituation can

occur; a stimulus can, therefore, induce both habituation as well as

sensitization.

In associative learning, an animal learns that a neutral, so-called

conditioned stimulus, CS, precedes another, innately meaningful

stimulus (the unconditioned stimulus, US), for instance an odor

stimulus as CS and a rewarding food stimulus as US. The US

induces a reflex, such as in proboscis extension reflex (PER) con-

ditioning. After conditioning, memory can be measured through the

occurrence of the Conditioned Reflex (CR) such as a PER, in

response to the CS. This is a form of Pavlovian, or classical con-

ditioning [43].

Another form of associative learning is operant learning, where an

animal learns about the consequences of its behavior, for instance a

wasp responding to plant volatiles induced by its host. When the

wasp is rewarded by an oviposition experience, it learns that its

foraging behavior in response to that odor leads to finding a suitable

host. Thus, in operant learning; a behavior, in response to a sti-

mulus, leads to a reinforcement (reward) or a punishment, resulting

either in an increase or decrease in the probability of that behavioral

response.

Learned information, either associative or non-associative, is stored

as a so-called memory trace in the brain [44]. Memories can be

divided in several different forms of short, mid and long-lasting

memory, which can exist simultaneously and together add up to the

observed memory retention levels in behavioral bioassays. The dif-

ferent memory forms can be discriminated from each other by

various specific inhibitors or treatments, such as protein-synthesis

inhibitors for long-term memory, and cold shock for short term

memory [45]. Existing memory can be forgotten, but can also be

temporarily inhibited by an extinction memory trace [46], formed after

experiences where the expected reinforcement did not occur, such

as when an expected host was no longer present on a plant that still

emits attractive volatiles and contains traces of the host.
surroundings of a host-infested plant may reduce the

foraging efficiency of these inexperienced wasps [16].

Early learning through contact with host cues such as

frass or silk during or right after emergence from their

pupae may help these wasps by inducing a more specialist

foraging modus [17,18].

In close proximity

Foraging is a risky and stressful activity for any parasitoid

female, costing not only valuable resources [19], but also

exposing the parasitoid to intraguild predators and aggres-

sively defending hosts, probably causing a state of stress

similar to the one they themselves induce in their hosts

[20–22].
www.sciencedirect.com 
After landing on a leaf the parasitoid will start searching

for cues produced by the host, such as caterpillar frass or

silk, indicating the potential presence of a suitable host,

by drumming its antennae on the leaf surface and probing

with the ovipositor (Figure 1.2). This first contact with

host-derived cues causes a general arousal in the wasp,

sometimes also called priming, which leads to an

increased sensitivity of the sensory systems [23,24] and

causes an intensive searching behavior of the parasitoid in

the close vicinity of the host traces [25]. Interestingly,

some parasitoids will already form associative memories

linking their searching responses to certain plant odors

after just a brief encounter with host cues, such as

caterpillar frass or silk, without actually encountering

the host itself [26]. These cues are likely detected

by gustatory neurons on the antenna and the ovipositor

[27–30]. The excitation of these neurons sufficiently

serves as an innate reward leading to associative memory

for the HIPVs (Box 1) lasting for 24 hours, but being less

stable as memories induced by a full oviposition experi-

ence [26,31].

When approaching a potential host patch by flying or

walking, even the stealthiest parasitoid will cause fine

vibrations through its wings or feet and many hosts have

evolved specific mechanosensory neurons in their chor-

dotonal organs or sensory hairs on their body to detect

these slight disturbances [32�,33] (Table 1). These

mechanosensors provide a major alarm system for the

host, being precisely tuned to the wing-beat frequency of

their air-borne predators of about 150 Hz [34,35].

Thereby they trigger a general increase in arousal and

serve as an aversive stimulus during learning, as it has also

been shown that hosts can learn to avoid odors associated

with specific sound frequencies [36]. In addition, hosts

might be able to detect specific olfactory cues emitted by

their parasitoids. Larvae of different Drosophila species

for example, which are under strong selection pressure by

wasps of the genus Leptopilina, can detect the main

pheromone compound of these wasps and quickly

migrate away from the site of the odor encounter. This

pheromone compound is detected through a single,

highly specialized olfactory receptor in the antenna of

the larvae (Or49a), which is conserved across different

Drosophila species that are attacked by parasitoids of this

genus [37]. Potentially such parasitoid infochemicals, but

also alarm pheromones released by conspecifics, could

also cause a sensitization of the host’s sensory system,

preparing the host for future attacks (Figure 1.2). In

addition to sensitizing the host’s peripheral receptors,

the detection of parasitoid cues also increases levels of

the stress neuromodulator octopamine in the hemolymph

of M. sexta, causing a state of ‘hypervigilance’ [38]. In this

state the caterpillars devote more resources to growth

early in life, while later on more energy will be devoted to

fight-or-flight responses. This will, however, delay the

time to pupation and thereby extend the time a caterpillar
Current Opinion in Insect Science 2020, 42:47–54
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Table 1

Proximate factors involved in a neuronal arms-race between parasitoids and their larval hosts

Parasitoid Ref. Host Ref.

Before encounter

Genes 225 ORs, 10 IRs (N. vitripennis) [66]

23 ORs, specifically Or49a

(D. melanogaster)

[37]

21 ORs, 10 IRs (M. sexta) [67]

Neurons

190 glomeruli (Cotesia sp.)

[29,68,69]

20 ORNs (M. sexta) [70]

220 glomeruli (M. croceipes) 21 ORNs (D. melanogaster) [71]

100 glomeruli (T. evanescens)

Initial detection Genes GRs? ? PAINLESS, NOMPC,

NANCHUNG, INACTIVE (D.

melanogaster)

[33,72]

Neurons 24 gustatory neurons (L. heterotoma) [30]

24�32 md neurons/

segment (M. sexta)

[47]

30 md neurons/segment (D.

melanogaster)

[73]

During the encounter (in addition to

those involved in initial detection)

Genes dunce, Octß2R, aPKC, dDA1, GCH-1 [58,74] Ddc [75]

Neurons (per

hemisphere)

35�36 octopaminergic neurons (N. giraulti

and N. vitripennis) 9 octopaminergic (T.

evanescens)

[60,76] 39 octopamine neurons (D.

melanogaster)

[77]

114�129 dopaminergic neurons (N. giraulti

and N. vitripennis) 15 dopaminergic

neurons (T. evanescens)

[59�,76] 80 dopaminergic neurons

(D. melanogaster)

[78]

Abbreviations: OR = Olfactory receptor; IR = Ionotropic receptor; ORN = Olfactory receptor neuron; mdN = multidendritic neuron.
is exposed to its enemies [38–40]. Non-lethal predator

attacks will also alter the immune system of the host in

preparation of a potential infection [38]. Notably, changes

in the immune system of the host also alter the sensitivity

of nociceptive neurons, even though the exact mecha-

nisms of this crosstalk between the immune system and

the central nervous system are still unknown [41�].

The encounter

When being attacked by a parasitoid, caterpillars defend

themselves by rapid and powerful head-strikes and oral

secretion, resulting in repelling or even killing of the

parasitoid (Figure 1.3) [21,22]. Similarly, Drosophila larvae

can escape from their parasitoid enemies by fast crawling

and vigorous rolling [34]. Both fly larvae and caterpillars

detect nociceptive stimuli such as the sting of a parasitoid

ovipositor with multidendritic neurons in their body wall,

which are crucial for eliciting nocifensive behaviors

[34,47]. In the caterpillar M. sexta, these neurons are also

modified by both sensitization and habituation depending

on the present threat to the animal [47–49]. This sensiti-

zation is not due to changes in the sensory neuron

directly, but occurs centrally in the local ganglia [50�]
and is even generalized along the body of the caterpillar,

so that an attack to one body segment still sensitizes the

response at least two segments further away [51�]. This

type of non-associative learning lasts for at least 19 hours

in M. sexta caterpillars and involves muscarinic acetylcho-

line receptors (mAChRs) during acquisition as well as

cyclic nucleotide-gated channels (HCN), which are acti-

vated by cAMP or cGMP during memory consolidation

[50�,51�]. These mechanisms are highly similar to the
Current Opinion in Insect Science 2020, 42:47–54 
processes involved in long-term memory (LTM) forma-

tion in other invertebrates and also in mammals [52,53].

Although this long-term sensitization is obviously adap-

tive in the acute presence of a predator, it also comes with

both a physiological cost for protein synthesis as well as

with ecological costs due to a prolonged developmental

time [37,52]. It will, therefore, be interesting to assess the

fitness of animals with a different preparedness for the

formation of long-term sensitization in different ecologi-

cal settings similarly to what has been done in parasitic

wasps [52,54].

Having overcome the host’s behavioral defenses, the

female parasitoid inserts her ovipositor into the host

and quickly injects her eggs (Figure 1.3). This oviposition

experience provides a strong reward to the wasp and

induces an associative memory between the reward

and the odor-guided foraging behavior preceding this

event [26]. Some parasitoid species readily form LTM

after a single oviposition experience, while other, closely

related species form LTM only after several repeated

learning trials [5]. This variation in learning may correlate

to the variation in distribution or quality of the host as

both the larval parasitoid Cotesia glomerata as well as the

egg parasitoid Trichogramma brassicae formed LTM after a

single oviposition on a gregarious host, but not on a

solitary host [52].

The difference in memory strength between frass-

induced and oviposition-induced memories parallels

the reward value of sweet taste versus caloric value in

Drosophila [55]. In the fly, the short lasting memories of a
www.sciencedirect.com
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sweet sugar reward are reinforced through octopaminer-

gic neurons acting upon the dopaminergic system of the

mushroom bodies, while the caloric value of nutritional

sugar rewards, that result in an increase in hemolymph

sugar levels, is mediated by dopaminergic neurons alone

[56]. It is conceivable that detection of frass and the

internal signals of egg laying, are similarly mediated by

octopamine and dopamine in the wasp. Indeed, dopa-

mine and octopamine receptor antagonists impaired 24

hour olfactory memory with oviposition reward in female

Nasonia vitripennis wasps, and injections of dopamine but

not octopamine could substitute for the oviposition

reward [57�]. Furthermore, a study on learning-induced

gene expression comparing heads of the fast learning C.
glomerata and slow learning Cotesia rubecula showed a

downregulation of dopamine biosynthesis genes in C.
rubecula as well as changes in the expression of octopa-

mine receptors [59�]. A similar comparison of gene

expression between a inbred strains of the parasitoid

wasp N. vitripennis that learns fast, and the closely related

species Nasonia giraulti, which learns slow, showed a

downregulation of dopamine receptors as well as changes

in the expression of genes involved in the dopamine

biosynthesis [58]. On a morphological level, it has been

shown that N. vitripennis has more dopaminergic neurons

in clusters, known to be involved in memory formation in

Drosophila [59�], than N. giraulti. In contrast to this, no

such differences in the octopaminergic neurons were

detected in these two Nasonia species [60]. One reason

for this difference might be that octopamine is more

involved in the formation of short term memories, as it

has been shown in Drosophila, whereas the inter-specific

and intra-specific differences in memory formation in

parasitoid wasps were found rather in LTM formation

[45,61–63]. Another reason might be that the octopamine-

system has a broad effect on insect physiology and adap-

tations to oviposition learning might, therefore, be more

prone to correlated, nonspecific responses [64,65�]. For

instance, artificial selection on visual oviposition learning

ability resulted in correlated responses to olfactory learn-

ing and male sexual learning [65�]. Thus, the specificity of

the selection pressure has to be high, in order to result in

specific adaptive changes in memory formation according

to differences in host distribution.

Memory updating: habituation and extinction

Because of the variability and complexity of their envi-

ronment, parasitoids need to constantly update their

memories on whether certain innate or learned odor-

guided behaviors are still reliably predicting suitable

hosts (Figure 1.4) [79�]. When the parasitoid Trissolcus
basalis was repeatedly exposed to traces of its host, the

stink bug Nezara viridula, without providing an oviposi-

tion reward, the wasp showed progressively shorter search

times for the next 48 hours [80�]. Interesting, this habit-

uation effect could not be blocked using cold shock

anesthesia, ATPase inactivators (ethacrynic acid), and
www.sciencedirect.com 
protein synthesis inhibitors (anisomycin), indicating that

this form of non-associative memory might involve less

known memory pathways [53] or might be due to direct

modulations of the olfactory pathway. Findings in Dro-
sophila demonstrated that olfactory habituation is mainly

driven by inhibitory local interneurons in the antennal

lobe [81]. It has been suggested that these inhibitory

neurons are themselves modulated by different biogenic

amines [82], which might also be important in the habit-

uation of the wasp olfactory system. Independent of the

physiological mechanism, this example highlights the

important role which non-associative memories also play

in the foraging behavior of the parasitoid. In addition to

this habituation learning, the encounter of host traces in a

parasitoid that already had an oviposition experience on a

certain plant, will lead to a temporary extinction of

memories that have previously been formed, if the

encounter is not followed by an oviposition reward on

the same plant [83]. However, two to four hours after such

a negative experience, the original reward memory

recovers. This recovery indicates that underlying memo-

ries were not erased, but rather that an additional memory

trace called ‘extinction memory’ is formed that exists in

parallel to the original association, rendering this associa-

tion more ambiguous [46,84]. In addition, secondary

negative experiences can also help to sharpen the original

rewarding association, if this negative experience takes

place on a different plant. If the wasp Aphidius gifuensis, for

example, first encountered a host on wheat and was

thereafter placed on a wheat plant without a host, an

extinction memory was formed. However, if the negative

experience took place on a bean plant, the preference of

the wasp even for uninfested wheat was enhanced in

comparison to the unrewarding plant [85]. Hence, the

combination of habituation and extinction memory forms

a crucial evaluation system that helps to maintain the

foraging efficiency of parasitoids also in complex envir-

onments. Further investigations into the underlying

mechanisms involved in habituation and memory extinc-

tion in the interaction between host and parasitoids could

benefit from combining these ecological findings with

neurobiological results from Drosophila [82,84].

Having successfully repelled or escaped a parasitoid

attacker, the host will soon need to resume feeding

and switch its metabolism back from defense to growth

by readjusting its neurohormonal levels, in order to mini-

mize any costs on its development (Figure 1.4) [38].

Resources are further preserved by a quick habituation

to weaker stimuli that are perceived as non-threatening

by the host, such as other herbivorous insects or moving

plant parts. Habituation has been demonstrated for the

nociceptive neurons of M. sexta caterpillars [47], but has

been most intensely studied in the caterpillar proleg-

withdrawal-reflex. This reflex, which is triggered by

the deflection of a sensory hair on the prolegs, habituates

after repeated stimulation of the sensory hair without
Current Opinion in Insect Science 2020, 42:47–54
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further noxious events. Interestingly, habituation is not

due to a decreasing activity of the involved sensory or

motor neurons, but likely due to modulation by local

interneurons, similar to those involved in the processing

of noxious stimuli [34,86]. This tight interplay between

sensitization and habituation within the same local neu-

ronal network will help the host to strike the optimal

balance between growth and defense, in addition to the

more decentralized effects caused by biogenic amines

and other neuromodulators [87].

Conclusions
Throughout this review, we have presented various adap-

tations in the learning and memory system of parasitoids

as well as their hosts. In parasitoids, specific adaptations in

memory formation to their host’s behavior are very appar-

ent and have been studied in much detail [54]. In contrast

to this, parasitoid avoidance learning in the host has been

studied to a far lower degree, even though recent studies

and reviews highlight the potential importance of non-

associative forms of learning for the defensive behavior of

the host [51�,52]. To this extent, the application of

molecular tools to ecological model-systems [88] will

enable a direct investigation of how memory formation

in parasitoids and hosts have shaped each other. Investi-

gating these mechanisms in an ecological setting will,

therefore, not only allow an exploitation of these specific

adaptations for a sustainable crop-protection [42,89], but

will also help to better understand the function of the

nervous system in different animals based on its evolu-

tionary context.
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