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ABSTRACT

Supplementing a diet with nitrate is regarded as 
an effective and promising methane (CH4) mitigation 
strategy by competing with methanogens for available 
hydrogen through its reduction of ammonia in the 
rumen. Studies have shown major reductions in CH4 
emissions with nitrate supplementation, but with large 
variation in response. The objective of this study was 
to quantitatively investigate the effect of dietary nitrate 
on enteric CH4 production and yield and evaluate the 
variables with high potential to explain the heterogene-
ity of between-study variability using meta-analytical 
models. A data set containing 56 treatments from 24 
studies was developed to conduct a meta-analysis. Dry 
matter (DM) intake, nitrate dose (g/kg of DM), animal 
body weight, roughage proportion of diet, dietary crude 
protein and neutral detergent fiber content, CH4 mea-
surement technique, and type of cattle (beef or dairy) 
were considered as explanatory variables. Average DM 
intake and CH4 production for dairy cows (16.2 ± 2.93 
kg/d; 311 ± 58.8 g/d) were much higher than for beef 
cattle (8.1 ± 1.57 kg/d; 146 ± 50.9 g/d). Therefore, 
a relative mean difference was calculated and used to 
conduct random-effect and mixed-effect model analy-
sis to eliminate the large variations between types of 
animal due to intake. The final mixed-effect model for 
CH4 production (g of CH4/d) had 3 explanatory vari-
ables and included nitrate dose, type of cattle, and DM 
intake. The final mixed-effect model for CH4 yield (g of 
CH4/kg of DM intake) had 2 explanatory variables and 
included nitrate dose and type of cattle. Nitrate effect 
sizes on CH4 production (dairy: −20.4 ± 1.89%; beef: 
−10.1 ± 1.52%) and yield (dairy: −15.5 ± 1.15%; beef: 
−8.95 ± 1.764%) were significantly different between 
the 2 types of cattle. When data from slow-release ni-
trate sources were removed from the analysis, there was 

no significant difference in type of cattle anymore for 
CH4 production and yield. Nitrate dose enhanced the 
mitigating effect of nitrate on CH4 production and yield 
by 0.911 ± 0.1407% and 0.728 ± 0.2034%, respectively, 
for every 1 g/kg of DM increase from its mean dietary 
inclusion (16.7 g/kg of DM). An increase of 1 kg of 
DM/d in DM intake from its mean dietary intake (11.1 
kg of DM/d) decreased the effect of nitrate on CH4 
production by 0.691 ± 0.2944%. Overall, this meta-
analysis demonstrated that nitrate supplementation 
reduces CH4 production and yield in a dose-dependent 
manner, and that elevated DM intake decreases the 
effect of nitrate supplementation on CH4 production. 
Furthermore, the stronger antimethanogenic effect on 
CH4 production and yield in dairy cows than in beef 
steers could be related to use of slow-release nitrate in 
beef cattle.
Key words: beef, dairy, nitrate, meta-analysis, 
methane

INTRODUCTION

Livestock production makes up 14.5% of global green-
house gas emissions (Gerber et al., 2013), with enteric 
methane (CH4) production contributing about 2.1 Gt 
CO2 equivalent in 2010 (Smith et al., 2014). Methane 
emissions from enteric fermentation represented 39% of 
all greenhouse gas emissions from the livestock sector 
(Gerber et al., 2013). In addition, CH4 can be consid-
ered an energy loss of around 6% of ingested dietary en-
ergy (Niu et al., 2018). Therefore mitigation of enteric 
CH4 emissions will reduce the environmental impact of 
livestock if total number of animals remains constant.

Several feed additives that reduce enteric CH4 emis-
sions are increasingly being investigated worldwide 
(Hristov et al., 2013). Nitrate (NO3

−) is an inorganic 
anion and acts as an alternative hydrogen sink in the 
rumen competing with methanogens for hydrogen uti-
lization. The reduction of nitrate to nitrite (NO3

− + 
H2 → NO2

− + H2O; Gibbs free energy, ∆G = −130 
kJ/mol of hydrogen; Ungerfeld and Kohn, 2006) and 
the subsequent reduction of nitrite to ammonia (NO2

− 
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+ 3H2 + 2H+ → NH4
+ + 2H2O; ∆G = −124 kJ/mol 

of hydrogen; Ungerfeld and Kohn, 2006) yields more 
energy than the reduction of CO2 to CH4 (CO2 + 4H2 
→ CH4 + 2H2O; ∆G = −16.9 kJ/mol of hydrogen; 
Ungerfeld and Kohn, 2006). Thus, nitrate reduction 
is highly competitive with methanogenesis because it 
leads the utilization of hydrogen away from reduction 
of CO2 to CH4, which becomes emitted as enteric CH4 
(Olijhoek et al., 2016).

Several in vivo studies have investigated the effects of 
nitrate as a CH4 mitigation strategy in different types 
of ruminants such as beef steers (Hulshof et al., 2012; 
Troy et al., 2015; Alemu et al., 2019), dairy cows (Vene-
man et al., 2015; Klop et al., 2016; Meller et al., 2019), 
sheep (Sar et al., 2004; van Zijderveld et al., 2010), 
and goats (Zhang et al., 2019). In a meta-analysis, Lee 
and Beauchemin (2014) demonstrated that nitrate is 
a viable candidate feed additive that could be used to 
mitigate enteric CH4 emissions in ruminants. In a more 
recent analysis, van Gastelen et al. (2019) demonstrated 
that CH4 production was indeed consistently decreased 
when feeding nitrate to different types of ruminant. 
The same average proportion of the theoretical CH4 
production reduction potential of nitrate was reached 
for dairy cattle (72%), beef cattle (72%), and sheep 
(74%). However, both analyses did not investigate pos-
sible sources of variability in CH4 mitigation effect of 
nitrate other than nitrate dose (Lee and Beauchemin, 
2014) and ruminant type (van Gastelen et al., 2019). 
Some studies reported CH4 reduction through nitrate 
supplementation of up to 30% (e.g., Newbold et al., 
2014), whereas others found an increase of CH4 produc-
tion of 3.8% (Tomkins et al., 2018).

The objective of this study was to collate data on ni-
trate supplementation for CH4 mitigation and quantita-
tively evaluate the effects of dietary nitrate for enteric 
CH4 production and yield in dairy and beef cattle. In 
the present meta-analysis, we hypothesize that, in ad-
dition to nitrate dose, DMI, nutrient composition of the 
diet, BW, measurement techniques [respiratory cham-
ber, GreenFeed, and sulfur hexafluoride tracer (SF6)] 
for CH4 emissions, and type of cattle (dairy or beef) 
may explain a considerable proportion of the variabil-
ity in CH4 mitigation effect of nitrate. Therefore, this 
study quantitatively analyzed explanatory variables to 
account for the heterogeneity in CH4 mitigation poten-
tial of nitrate using a meta-analytic approach.

MATERIALS AND METHODS

Data Sources

A literature search was conducted using several 
sources including the Web of Science (Thomson Reuters 

Science, New York, NY), Scopus (Elsevier, Amsterdam, 
the Netherlands), and Google Scholar online databases 
with all possible combinations of the key words “feed 
additives,” “nitrate,” “methane” (including variants 
of “CH4” and “greenhouse gas”), “cattle” (including 
variants of “dairy,” “beef,” “steer,” “cows,” and “rumi-
nants”). The period of the study covered from 1970 to 
2020. The search resulted in 45 references related to 
the effects of nitrate on enteric CH4 emissions in cattle. 
All articles were scrutinized by reading the abstracts, 
experimental design, and results carefully. To be in-
cluded in the database, the studies were required to 
meet the following criteria: (1) have a control treatment 
group that did not receive supplementary nitrate; (2) 
trials conducted in vivo using cattle; (3) measured (i.e., 
not estimated) CH4 emissions with standard deviation, 
standard error, or other relative data that can be used 
to calculate the standard error (e.g., least significant 
difference); (4) and other required variables described 
such as animal characteristics, DMI, dietary composi-
tion, and BW. Of the 45 articles, 24 articles and 56 
treatment means were selected in the final database 
after removal of articles for various reasons (2 were 
general summaries; 3 had abstracts only; 3 investigated 
the mitigation effect on CH4 of a mixture of nitrate and 
other feed additives, which did not contain a contrast 
with nitrate treatment group; 5 did not report CH4 
emissions; 5 did not provide sufficient information re-
garding dietary composition; and 3 were duplicates of 
references already included in the database). One treat-
ment from Lee et al. (2017b) was excluded based on the 
prescreening of CH4 reduction rate for extreme outliers 
that exceeded 1.5 interquartile ranges (IQR) below 
the first quartile (first quartile − 1.5 IQR) or above 
the third quartile (third quartile + 1.5 IQR) (Upton 
and Cook, 1996). A PRISMA statement according to 
Liberati et al. (2009) has been provided (Supplemental 
Figure S1, https: / / doi .org/ 10 .3168/ jds .2020 -18541). Of 
the 56 treatment means, 35 treatment means related to 
beef cattle (Hulshof et al., 2012; Newbold et al., 2014; 
Lee et al., 2015; Troy et al., 2015; Henry, 2017; Lee et 
al., 2017a,b; Capelari, 2018; Duthie et al., 2018; Tom-
kins et al., 2018; Alemu et al., 2019; Granja-Salcedo 
et al., 2019; Rebelo et al., 2019; Villar et al., 2020) 
and 21 treatment means related to dairy cattle (van 
Zijderveld et al., 2011b; Guyader et al., 2015a,b; Vene-
man et al., 2015; Klop et al., 2016; Olijhoek et al., 2016; 
van Wyngaard et al., 2018; Wang et al., 2018; Meller 
et al., 2019; van Wyngaard et al., 2019; Table 1). All 
beef cattle in the selected studies were steers except 
in Lee et al. (2015), which were beef heifers. Studies 
in 2 articles used beef cattle at the backgrounding 
phase (Lee et al., 2017a; Alemu et al., 2019), studies 
in 4 articles used cattle in the growing stage (Lee et 
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al., 2015; Capelari, 2018; Duthie et al., 2018; Rebelo 
et al., 2019), studies in 4 articles used cattle at the 
finishing phase (Troy et al., 2015; Lee et al., 2017b; 
Granja-Salcedo et al., 2019; Villar et al., 2020), 1 study 
used 2-yr-old steers (Tomkins et al., 2018), whereas 
3 articles did not report type of beef cattle (Hulshof 
et al., 2012; Newbold et al., 2014; Henry, 2017). Diets 
included grazing pasture in 4 studies (van Wyngaard et 
al., 2018; Granja-Salcedo et al., 2019; van Wyngaard 
et al., 2019), or feed delivered to cattle in housed pens 
and stalls (all others; 52 studies). Nitrate was provided 
in various forms. It was either mixed with concentrates 
and provided in pelleted form (Guyader et al., 2015a,b; 
van Wyngaard et al., 2018; van Wyngaard et al., 2019), 
mixed with molasses as a carrier (Henry, 2017; Tomkins 
et al., 2018), offered as encapsulated nitrate (Lee et al., 
2015; Henry, 2017; Lee et al., 2017a,b; Alemu et al., 
2019; Granja-Salcedo et al., 2019; Rebelo et al., 2019), 
or directly delivered with the diets (all others). In Lee 
et al. (2017a), 2 treatments had encapsulated nitrate, 
and 1 treatment used un-encapsulated nitrate; in Lee et 
al. (2017b), 1 treatment had encapsulated nitrate, and 
1 treatment had un-encapsulated nitrate. The respira-
tion chamber (16 studies; 9 for beef cattle and 7 for 
dairy cattle), GreenFeed (2 studies; 1 for beef cattle 
and 1 for dairy cattle), and SF6 tracer (6 studies; 4 for 
beef cattle and 2 for dairy cattle) techniques were used 
to measure CH4 emissions in the selected studies. If 
the control diet contained nitrate (e.g., nitrate in grass 
silage), the treatment level of nitrate was assumed to 
be the difference between the actual nitrate level and 
the control nitrate level. Data used in the analysis are 
provided in Supplemental Table S1 (https: / / doi .org/ 10 
.3168/ jds .2020 -18541).

Methane production was generally reported in grams 
per day and CH4 yield in grams per kilogram of DMI. If 
the values were reported in liters or moles per day, they 
were converted to grams per day assuming a molar gas 
volume of 22.4 L and a molar weight of 16.0 g. If only 
CH4 production or CH4 yield was reported, the other 
unit of CH4 emissions was calculated using the equa-
tion CH4 yield (in g/kg of DMI) = CH4 production (in 
g/d)/DMI (in kg/d). Summary statistics of feed intake, 
nutrient composition of the experimental diets, nitrate 
supplement, and CH4 emissions are given in Table 1.

Model Development and Selection

Meta-analysis is a statistical methodology that com-
bines quantitative findings from various studies for the 
main purpose of synthesizing the evidence based on the 
available sources (Schwarzer et al., 2015). To prepare 
for the meta-analysis, effect size estimates and corre-
sponding sampling variances were obtained using the 
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“metafor” (version 2.1–0) and “robumeta” (version 2.1) 
packages in R (version 3.6.1, R Foundation for Statisti-
cal Computing, Vienna, Austria). The mean difference 
(MD) and standardized mean difference (SMD) were 
used to measure the continuous response variables of 
CH4 production and yield. The MD was calculated as 
nitrate treatment mean minus control treatment mean 
and each study was weighted by its corresponding 
sample variation (Viechtbauer, 2010). The SMD was 
expressed as dividing MD by the pooled standard de-
viation of the 2 groups and used to construct forest 
plots of response variables. The relative mean differ-
ence (RMD; RMD = MD/control treatment mean × 
100%), which is a dimensionless variable, was calcu-
lated for further analyses to eliminate the large varia-
tions and different measuring scales of DMI and CH4 
production from study to study.

General meta-regression methods require indepen-
dence of effect sizes. However, multiple nitrate treat-
ment groups may share a common control treatment 
group in some of the studies used in our database. To 
deal with the unknown correlations among these non-
independent effect sizes, a robust variance estimation 
(RVE) method (Tipton, 2015) was used to conduct 
the meta-analysis. Studies selected in the meta-analysis 
were not identical in methods and sample characteris-
tics, which may introduce variance of the true effect 
sizes. Therefore, RVE random-effects and RVE mixed-
effects models were fitted to estimate between-study 
variability (heterogeneity) that was assumed to be 
purely random (Tanner-Smith et al., 2016; Dijkstra et 
al., 2018) using the “robu” function in the “robumeta” 
package (version 2.1) in R (version 3.6.1). The RVE 
random-effects model was written as

 y eij j ij= + +β µ0 ,  

where for i = 1,…, kj effect sizes, and j = 1,…, m 
studies, yij is the ith effect size of the jth study, β0 is the 
average true effect, µj is the random effect at study level 
where µj ~N(0, τ2) and τ2 is the between-study variance 
component, and eij is the residual for ith effect size in 
the jth study where eij ~N(0, si

2) and si
2 is the error 

variance component. The between-study variance τ2, 
which reflects the amount of true heterogeneity in the 
correlated effects meta-regression model, is calculated 
using the method-of-moments estimator (Hedges et 
al., 2010). The I2 measures the inconsistency in meta-
analysis and is defined as the ratio of true heterogeneity 
to the total variability across the observed effect sizes. 
I2 values of 25%, 50%, and 75% are considered as low, 
moderate, and high heterogeneity, respectively (Higgins 
et al., 2003). For the RVE model, I2 was calculated as

 I
Q df
Q
E

E

2 100=
−

× %,  

where QE is the weighted residual sum of squares or Co-
chran’s heterogeneity, and df is the degrees of freedom 
(Higgins et al., 2003). To examine effect size modera-
tors and reduce heterogeneity, the RVE random-effects 
models can be extended to RVE mixed-effects models, 
which include variables with the potential to account 
for some of the observed variability. The RVE mixed-
effects model was written as

 y eij j ij ij= + + +β µ0 X β ,  

where β0, µj, and eij are as defined above, β = (β1,… 
βp) is a vector of unknown regression coefficients based 
on weighted least-squares estimates, and Xij is a vec-
tor of continuous or binary explanatory variables. The 
inverse variance weights of “correlated effects” used in 
RVE models were estimated following a method pro-
vided by Hedges et al. (2010):

 w
k

ij
j j

=
+( )
1

2υ.
,

τ
 

where wij is the ith inverse variance weight in the jth 
study, kj is the number of effect sizes for each study j, υ.j 
is the mean of within-study sampling variances (υij) for 
the kj effect sizes in the jth study, and τ2 is the between-
study variance component as defined previously, which 
describes the residual of heterogeneity that is not ex-
plained by the involved variables.

The primary response variables were the means of 
CH4 emissions in the control and nitrate treatment 
groups. Dry matter intake, BW, roughage proportion 
in the diet, dietary CP and NDF content (g/kg of DM), 
and nitrate dose (g/kg of DM) were selected as poten-
tial continuous explanatory variables. Type of cattle 
(dairy or beef) and CH4 measurement technique (respi-
ratory chamber, GreenFeed, or SF6 tracer) were used 
as categorical variables. Therefore, the vector β can be 
explained as the differences in true effect sizes accord-
ing to each unit changing in the continuous variables or 
between the 2 types of animals and different measure-
ment techniques. The RVE models were first fitted with 
each individual variable, and subsequently including 
one or more variables with the “robu” function in a 
stepwise manner until all explanatory variables were 
involved to construct full mixed-effect models (Dijkstra 
et al., 2018). Only the variables that showed significant 
effects (P < 0.10) were retained until the final model 
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was selected. Multicollinearity was investigated to ex-
amine the correlations among variables using the “cor” 
function in R (version 3.6.1), and highly correlated 
variables (|r| > 0.50) were not analyzed in the same 
model [e.g., DMI and CP (|r| = 0.60), and CP and NDF 
(|r| = 0.55)]. All explanatory variables (except for type 
of cattle and CH4 measurement technique) were first 
centered on their means. Potential variables such as GE 
content, ash content, fat content, and OM digestibility 
were also considered in data collection; however, due 
to the lack of information in most of the publications, 
they were not included in this analysis.

RESULTS AND DISCUSSION

The meta-analysis conducted in the current study 
aimed to evaluate the effects of nitrate as a feed addi-
tive to reduce CH4 production and yield in dairy and 
beef cattle. The mean daily DMI and CH4 production 
of dairy cows (16.2 ± 2.93 kg/d; 311 ± 58.8 g/d, re-
spectively) were greater than those of beef steers (8.1 
± 1.57 kg/d; 146 ± 50.9 g/d), whereas the means of 
supplemented nitrate dose were not different between 
dairy (16.6 ± 6.58 g/kg of DM) and beef cattle (16.8 ± 
5.22 g/kg of DM). On average, the effects of the mean 
nitrate dose resulted in greater RMD in CH4 produc-
tion and yield for dairy cows (−16.7 ± 7.83% and −15.4 
± 7.85%, respectively) than for beef steers (−12.2 ± 
8.93% and −9.0 ± 10.75%, respectively). Forest plots 
generated with SMD for CH4 production (Figure 1) and 
CH4 yield (Figure 2) indicate that nitrate mostly had 
an antimethanogenic effect, but that the size of effect 
varies across studies. Given the overall effect size that 
accounted for sampling variation within and between 
studies, at a mean nitrate dose of 16.7 g/kg of DM, 
the overall CH4 production (P < 0.001) and CH4 yield 
(P < 0.001) were reduced by 13.9 ± 1.17% and 11.4 ± 
1.36%, respectively, based on the random-effect RVE 
models (Table 2). Several other feed additives have 
also been shown to reduce CH4 emissions but mostly 
at a lower effectiveness. For example, Appuhamy et al. 
(2013) reported monensin reduced CH4 production by 
5.6% for dairy cows and 4.6% for beef steers. Eugène 
et al. (2008) investigated lipid supplementation and 
reported it reduced CH4 production by 9.0% in lactat-
ing dairy cows. Van Zijderveld et al. (2011a) observed 
a 10% decrease in CH4 emissions by supplementing 
mixed additives of lauric acid, myristic acid, and lin-
seed oil in dairy cattle. However, specific inhibitors of 
methanogenesis can cause a larger extent of decrease in 
methane production, such as Bovaer (formerly known 
as 3-nitroxypropanol), which showed 39% and 22% 
inhibition of CH4 production in dairy and beef cattle, 
respectively (Dijkstra et al., 2018).

The RVE random-effect models showed that a large 
proportion of the total variability in nitrate effects on 
CH4 production (I2 = 99.99%) and CH4 yield (I2 = 
99.99%) was attributable to heterogeneity. Potential 
explanatory variables were included individually to 
conduct mixed-effect RVE models to further under-
stand and improve the random-effect models (Table 2; 
1 explanatory variable). The effectiveness of nitrate in 
reducing CH4 production was positively associated with 
nitrate dose (P < 0.001). A 1 g/kg of DM increase in 
nitrate dose from its mean (16.7 g/kg of DM) enhanced 
the nitrate antimethanogenic effect on CH4 production 
by 0.904 ± 0.1461%. For RMD in CH4 production, 
the categorical variable measurement technique (P = 
0.101) and the continuous variables BW (P = 0.289), 
NDF content (P = 0.783), CP content (P = 0.714), 
roughage proportion of diet (P = 0.796), and DMI (P 
= 0.259) were not significant, whereas type of cattle 
(P = 0.055) tended to be significant. For RMD in CH4 
yield, BW (P = 0.170), NDF content (P = 0.662), CP 
content (P = 0.997), roughage proportion of diet (P = 
0.774), and measurement technique (P = 0.120) were 
not significant either, whereas type of cattle (P = 0.014) 
and nitrate dose (P = 0.002) were significant and DMI 
tended to be significant (P = 0.072). A 1 g/kg of DM 
increase in nitrate dose from its mean (16.7 g/kg of DM) 
resulted in 0.719 ± 0.1994% decline in CH4 yield (Table 
2, model I). The heterogeneity was reduced by includ-
ing one explanatory variable for both CH4 production 
(τ2 = 60.6 vs. 30.4) and CH4 yield (τ2 = 52.8 vs. 30.7; 
Table 2). These results agree with Lee and Beauchemin 
(2014) who reported a linear reduction in CH4 yield 
with increasing nitrate dose. Nitrate mitigation effects 
on CH4 yield in dairy and beef cattle were −15.4 ± 
1.71% and −9.00 ± 1.817%, respectively, which were 
significantly different from each other (Table 2; model 
II). This indicates that nitrate has a stronger CH4 yield 
mitigating effect for dairy cattle than for beef cattle, 
and that a higher nitrate dose is required for beef cattle 
to obtain the same CH4 yield mitigation compared with 
dairy cattle. The efficacy of nitrate utilization appears 
to be greater and the potential of the nitrate inhibitory 
effect seems enhanced in dairy cattle, perhaps through 
a more complete nitrate reduction. Another explanation 
for the greater mitigating effect in dairy cattle com-
pared with beef cattle is related to the form in which 
nitrate is supplied. Nitrate provided in encapsulated 
form was given to only beef cattle in our database. 
Slow-release nitrate might have a lower capacity to de-
crease CH4 emissions because it may have been washed 
out of the rumen before the nitrate is released to be 
reduced to ammonia, contributing to differences in type 
of cattle. The effects of individual type of cattle on CH4 
production (P = 0.205; data not shown) and yield (P 
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= 0.164; data not shown) were no longer significant 
after removing all experiments with slow-release nitrate 
(15 treatments from 7 articles) from the meta-analysis, 
which indicated that the use of slow-release nitrate in 
beef cattle may explain the type of cattle effect in CH4 
emissions. In comparison with the mixed-effect model 
(1 explanatory variable) that did contain slow-release 
nitrate, the model without slow-release nitrate had a 
greater overall effect size (CH4 production, −15.0 ± 
1.12%; CH4 yield, −13.2 ± 1.46%) and a slightly smaller 
slope value (CH4 production, −0.883 ± 0.1564%; CH4 
yield, −0.687 ± 0.2014%). Mixed-effect models with 2 

or more explanatory variables based on data excluding 
slow-release urea are presented in Supplemental Table 
S2 (https: / / doi .org/ 10 .3168/ jds .2020 -18541).

Upon adjusting the RVE mixed-effect model to in-
clude 2 explanatory variables, nitrate dose and type of 
cattle were selected for CH4 production and yield (Table 
2; 2 as explanatory variables; model I). When adjusted 
for the effect of nitrate dose, the CH4 production and 
yield mitigating effect of nitrate was larger in dairy 
cattle (16.9 ± 0.97% and 15.5 ± 1.15%, respectively) 
than in beef cattle (12.2 ± 1.33% and 8.95 ± 1.764%, 
respectively). A 1 g/kg increase in nitrate dose from 

Feng et al.: ANTIMETHANOGENIC EFFECT OF NITRATE IN CATTLE

Figure 1. Forest plot showing nitrate dose (g/kg of DM) and standardized mean difference (MD) in CH4 production (g/d) and its 95% CI 
for beef and dairy cattle from selected studies. The dotted line represents a reference of 0 standardized MD. The black squares represent the 
power of its corresponding studies. (Note: A larger box indicates a greater sample size and a smaller CI).

https://doi.org/10.3168/jds.2020-18541
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its mean enhanced the mitigating effect of nitrate on 
CH4 production by 0.910 ± 0.1481% and yield by 0.728 
± 0.2034%. Compared with the single explanatory 
variable mixed-effect model, the mixed-effect model 
containing both type of cattle and nitrate dose further 
reduced the heterogeneity for CH4 production and yield 
(τ2 = 30.4 vs. 30.1, and 30.7 vs. 30.1, respectively).

No further variables were found to be significant in 
the final step for predicting CH4 yield; therefore, the 
final mixed-effect model for RMD in CH4 yield (Table 
2) included type of cattle and nitrate dose. For CH4 
production, the τ2 further decreased from the mixed-

effect model with 2 explanatory variables (τ2 = 30.1) 
to 3 explanatory variables [τ2 = 26.3 (model I) and τ2 
= 27.8 (model II)] (Table 2). In model I of the mixed-
effects model with 3 explanatory variables for CH4 pro-
duction, after adjusting for type of cattle and DMI in 
the mixed-effect model, nitrate-induced CH4 mitigation 
was −0.911 ± 0.1407% (P < 0.001) per 1 g/kg of DM 
increase in nitrate dose from its mean (16.7 g/kg of DM; 
Table 2), which is similar to the effect of nitrate dose 
observed in the individual and 2 explanatory variables 
mixed-effect models. After centering nitrate dose on its 
mean, an increase in DMI decreased (P = 0.033) the 

Feng et al.: ANTIMETHANOGENIC EFFECT OF NITRATE IN CATTLE

Figure 2. Forest plot showing nitrate dose (g/kg of DM) and standardized mean difference (MD) in CH4 yield (g/kg of DMI) and its 95% 
CI for beef and dairy cattle from selected studies. The dotted line represents a reference of 0 standardized MD. The black squares represent the 
power of its corresponding studies. (Note: A larger box indicates a greater sample size and a smaller CI).
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CH4 production-mitigating effect of nitrate by 0.691 
± 0.2944% for every 1 kg/d increase in DMI from its 
mean (11.1 kg/d). At mean DMI, the antimethanogenic 
effect of nitrate was stronger (P = 0.005) in dairy cows 
(−20.4 ± 1.89%; P < 0.001) compared with beef cattle 
(−10.1 ± 1.52%; P < 0.001).

Similarly, at mean nitrate dose (16.7 g/kg of DM) 
and BW (477 kg/cow) in the mixed-effect model II 
with 3 explanatory variables, nitrate mitigated CH4 
production to a greater extent (P = 0.001) in dairy 
cows (−18.3 ± 1.19%; P < 0.001) than in beef cattle 
(−11.3 ± 1.33%; P < 0.001). The greater efficacy in 
dairy cattle may be related to the use of slow-release 
nitrate only in beef cattle diets, and furthermore to 
the differences in the levels of feed intake (dairy: 16.2 
kg of DM/d, beef: 8.1 kg of DM/d; Table 1). Higher 
feed intake levels increase rumen concentrations of 
fermentation products, including VFA and hydrogen. 
Although hydrogen appears not to thermodynamically 
control methanogenesis by archaea, oxidation of NADH 
in rumen microorganisms, and consequently the type 
of VFA formed, does appear to be controlled by hydro-
gen partial pressure (van Lingen et al., 2016). Hence, 
greater feed intake levels in dairy cattle than in beef 
cattle may be associated with relatively (i.e., per unit 
of feed fermented) greater alternative hydrogen sinks 
for ruminal methanogenesis.

A 1-kg increase in BW from its mean (477 kg) de-
creased the CH4 production mitigating effect of nitrate 
(P = 0.041; Table 2) by 0.0183 ± 0.00832%. This re-
duced mitigating effect is most likely due to the rela-
tion between BW and both rumen volume and feed 
intake level. As explained above, increased feed intake 
levels may be associated with relatively (i.e., per unit 
of feed fermented) greater alternative hydrogen sinks 
for ruminal methanogenesis. The heterogeneity was 
greater for model II (τ2 = 27.8) compared with model I 
(τ2 = 26.3). Therefore, the final mixed-effect model for 
CH4 production was expressed by model I with type of 
cattle, nitrate dose, and DMI as explanatory variables.

CONCLUSIONS

Results from this meta-analysis indicate that nitrate 
supplementation reduced CH4 emissions (production in 
g/d as well as yield in g/kg of DMI) in dairy and beef 
cattle in a dose-dependent manner. The mitigating ef-
fect of nitrate on CH4 production and yield was greater 
in dairy than in beef cattle. However, effect of type 
of cattle appears to be related to slow-release nitrate 
use in beef cattle. A greater nitrate dose enhances the 
nitrate mitigating effect on CH4 production and yield, 
whereas an increased DMI reduces the mitigating effect 
of nitrate on CH4 production.
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