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2 Introduction

1.1 Mapping spatial soil- and agronomic variables

Many of today’s global challenges, such as mitigating the climate crisis, protecting biodi-
versity and guaranteeing food safety partly rely on soils (Keesstra et al., 2016; McBrat-
ney et al., 2014), and thus on human’s knowledge about soils. The research domain of
pedometrics deals with “the development and application of statistical and mathematical
methods applicable to data analysis problems in soil science” (McBratney et al., 2018).
The focus of this thesis is on understanding soil spatial relationships, which are applied
for mapping soils — the sub-domain of digital soil mapping, DSM (Zhang et al., 2017) —
and also on mapping crop yields and yield gaps. Soil mapping quantifies soil properties
over space and contributes to solutions for the above mentioned global challenges.

Soil and other agronomic variables can be mapped using various methods. The gen-
eral focus is nowadays on machine learning (also called ‘data mining’) methods, rely-
ing on numerical approaches using abundant data, such as data from remote sensing
(McBratney et al., 2000) and often also relying on abundant soil data or crop data itself.
However, while machine learning methods undoubtedly have their benefits, using those
methods risk finding irrelevant relationships (Wadoux et al., 2020) as well as obscuring
causalities and natural laws (Spiegelhalter, 2019, Ch. 5). Also, machine learning meth-
ods might under-perform in correctly assessing the spatial uncertainty of a produced
map (Fouedjio and Klump, 2019).

Even more, interesting and even indispensable data from other sources than remote
sensing can still be very labour intensive or expensive to gather, such as observations
from visually assessed soil profiles, chemical soil analysis, or crop yield gaps. Thus we
still need methods to create maps based on relatively small data sets. Also it sometimes
remains difficult to match data supply with knowledge demand (Hendriks et al., 2016;
Grunwald et al., 2011); as an example, certain soil properties need to be quantified
while only soil type is known. Another mismatch can be in spatial support: for instance,
observations exist as point values but values concerning an area are needed, or vice
versa. For such cases, machine learning methods might be too limited.

Therefore, to meet the needs of the future, we need to think about statistically explicit
and consistent ways to combine and process data: data from different sources, with
different uncertainty, with different spatial support, etc. We also need ways to combine
new and legacy data, including existing beliefs in a more qualitative formulation (Truong,
2014). Model-based geostatistics provides tools to deal smartly, consciously and sta-
tistically soundly with spatial data (Magalhaes et al., 2011; Diggle and Ribeiro, 2007),
and enables — unlike most machine learning methods — the integration of varying spatial
support data into one stochastic model (McKinley and Atkinson, 2020). Besides, using
methods based on a statistical model that is a realistic representation of reality, one can
assess the model functioning, unlike many data-driven approaches.

This thesis aims to feature current developments in model-based geostatistics to be
used for the needs of today and the future, and also bring these developments in line
with contemporary computational possibilities. This thesis explores the methods and
limitations of model-based geostatistics in the context of mapping soil properties and
crop yields, applied on the knowledge gaps defined later in this chapter.



1.2 Model-based geostatistics

Geostatistics is part of the broader field of spatial statistics, and was originally designed
for geological and other environmental data, having its own terminology and workflow.
Geostatistics describes spatial phenomena with the help of spatial correlation, beside
more general descriptions such as overall variance, overall mean, and dependency on
eventual independent variables. Spatial correlation is modelled by considering observed
reality as one realisation of a spatial random process’. In our context, spatial random
processes are characterised by decreasing covariance over separation distance (Web-
ster and Oliver, 2007), or in the words of Tobler’s first law of Geography: “Everything is
related to everything else. But near things are more related than distant things” (citing
Miller, 2004). The relation between covariance and separation distance is visually repre-
sented in a correlogram or semi-variogram, and summarised into a geostatistical model
with a few parameters. Then, this geostatistical model enables spatial interpolation (also
called kriging) of location-specific observed values into a prediction map, together with a
map of the associated prediction uncertainty (Fouedjio and Klump, 2019).

Note that the concept of geostatistics also includes temporal processes, extending the
methodology to space-time models (Cressie and Wikle, 2015; van Zoest et al., 2019),
as well as directionality — the latter meaning that the covariance depends not only on
separation distance but also on direction (Allard et al., 2016); both extensions are out-
side the scope of this thesis. Regarding the two other main fields of spatial statistics
(Schabenberger and Pierce, 2002; Cressie and Wikle, 2015): we do not consider spatial
point processes where the location of the object of interest is a random variable in itself;
and we will only slightly touch concepts regarding lattice data, which deals with spatial
data related to an area divided into a set of fixed and discrete (thus countable) locations
— an example is provinces in a country.

Model-based geostatistics aims at explicitly applying formal statistical methods into

the field of geostatistics (Diggle and Ribeiro, 2007). For example, traditional geostatis-
tics (Journel and Huijbregts, 1978) produces a variogram cloud — plotted as a point
cloud — showing the observed semi-variance depending on distance. Using arbitrary
choices, this variogram cloud is summarised into an empirical variogram. Then, the
geostatistical model parameters are estimated by fitting a line through the empirical
variogram points, using a pragmatic numerical algorithm (Banerjee et al., 2004) or even
by visually guided tuning (Oliver and Webster, 2014). On the contrary, using model-
based geostatistics one can estimate or infer model parameters as well as predictions
using sound methods developed in general statistics, where — apart from model choice
and related assumptions — no subjective choices have to be made (Diggle and Ribeiro,
2002). Also Bayesian geostatistical models are part of the repertoire of model-based
geostatistics.

“Random’ in this context means the same as ‘stochastic’: containing an element of randomness.
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1.3 Bayesian statistics in the context of model-based
geostatistics

An overview of Bayesian statistics from a science history perspective and discussion
of its place in modern statistics, research and society is given by McGrayne (2011),
while McElreath (2016) provides a mathematical and also intuitive treatment of the
subject. Bayesian statisticians use probability to express their knowledge — or inversely
formulated: their ignorance — about the world; this view is one of the three main sta-
tistical paradigms? (Spiegelhalter, 2019). By gathering data (observing events, doing
experiments, etc.) our knowledge and thus the associated probability changes — hence
the former name ‘inverse probability’. More mathematically, the combination of pre-
observation knowledge with gathered data will produce a probability distribution of the
variables of interest, eventually combined with the prediction of unobserved quantities,
also as probability distributions. According to Diggle and Ribeiro (2002), the Bayesian
extension of model-based geostatistics facilitates an accurate estimation of parameter
and prediction uncertainty because of the consistent underlying model, while allowing
incorporation of pre-observation knowledge into the final results.

Even more, Bayesian statistics provides a coherent framework to build a hierarchical
statistical model, consisting of several layers. It does so by modelling variables which
are related, while these relationships are expressed in other variables in another layer,
but conveniently being part of the same model (Gelman et al., 2013). Note that all those
variables are considered random variables, that is: having a probability distribution
rather than being a single, deterministic value. This approach facilitates hierarchical
model-based geostatistics, where the spatial random field forms one layer in the model,
and the geostatistical model parameters form another layer (Banerjee et al., 2004; Dig-
gle and Ribeiro, 2007). The realisation of the random field is conditional on the obser-
vations, while the pre-observation knowledge is connected to the geostatistical and
regression parameters.

In practice, using such a hierarchical model can be cumbersome because there is often
no analytical solution. Because of technological and mathematical developments in

the last decades, it is nowadays possible to numerically infer the parameters of many
Bayesian hierarchical models, although some models are computationally very expen-
sive (Arab et al., 2017).

2The others are Fisher’s tests of significance and Neyman-Pearson tests of acceptance. Both are considered
approaches from the frequentist school, where probabilities are defined as proportions as they appear in —
often imaginary — very large repeatable experiments (McElreath, 2016).



1.4

Knowledge gaps

Given the rich toolbox offered by model-based geostatistics, | identified the following
knowledge gaps related — among others — to food security and purposeful land use:

1.5

In the research domain of agronomy, consciousness and experience is lagging
behind how to translate potential yields, according to a plant growth model and
known for certain point locations only, to numbers on regional level (so-called
spatial aggregation), using a statistically correct way and including uncertainty
quantification.

Combining legacy and new data in soil science is lacking a statistically sound
basis.

Predicting on point level while the available observations have areal support (spa-
tial disaggregation) is often based on only a few areas. This means that sparse
data are available for model calibration. In such cases, the accuracy of the predic-
tion as well the accuracy of the prediction uncertainty deserves extra attention.

The use of Bayesian statistics is increasing everywhere in science, because of
mathematical, numerical and computational developments, but its application

in pedometrics is lagging behind, perhaps because of unfamiliarity and usability
issues.

Research objective, research questions

This thesis aims to explore the application of model-based geostatistics and Bayesian
statistics in a spatial context, as well as their combination, to spatially predict soil- and
agronomical properties including assessment of prediction uncertainties. Therefore, in
this thesis | will address the following research questions:

1.

What is the added value of model-based geostatistics vs. the usual climate zone
approach in case of yield gap prediction, including inferences per country based
on few point data?

. Can legacy data be re-used in case of a generalised linear regression model to

predict a binary soil property?

. Does the use of Bayesian statistics for spatial prediction of crop yields on national

scale, with only regional data available, provide more accurate predictions and
prediction uncertainties?

When mapping a binary soil property, is the prediction map more accurate when
using Bayesian hierarchical model-based geostatistics instead of Bayesian gener-
alised linear regression?
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1.6 Thesis outline

Table 1.1 shows how the main chapters of this thesis, the knowledge gaps and the
research questions are related.

Table 1.1: Overview main thesis chapters and their relation with knowledge gaps and
research questions.

Ch.  Applied method Knowledge Research Case study
gap question

2 Model-based geostatistics i 1 Crop yield gap, West-Africa

3 Bayesian statistics i, iv 2 Clay ripening, Netherlands

4 Bayesian model-based iii, iv 3 Crop yields, Burkina Faso
geostatistics

5 Bayesian model-based iv 4 Depth Pleistocene sand layer,
geostatistics, hierarchical Netherlands

Chapter 2, Geostatistical interpolation and aggregation of crop growth model outputs,
addresses the added value of using model-based geostatistics, and the prediction (in-
cluding uncertainty) of crop yield gaps based on point data, based on a case study with
sorghum and millet in West-Africa.

Chapter 3, Mapping the probability of ripened subsoils using Bayesian logistic regres-
sion with informative priors, explores the use of legacy information to improve the ac-
curacy of the prediction map. As motivating example we chose to map a binary soil
property, clay ripening, in the west of The Netherlands.

Chapter 4, Model-based geostatistics from a Bayesian perspective: investigating area-
to-point kriging with small data sets, investigates the accuracy of prediction uncertain-
ties in case of sparse data when model-based geostatistics is applied on an area-to-
point kriging situation. This is illustrated with disaggregating millet crop yields in Burkina-
Faso.

In Chapter 5, Mapping depth to Pleistocene sand with Bayesian generalised linear geo-
statistical models, we thoroughly explain an existing implementation of a Bayesian gen-
eralised linear geostatistcal model and explore possible issues and their solutions. Then,
using the depth of the Pleistocene sand layer in the province of Flevoland, reduced to

a binary variable, we check if this approach provides more accurate maps than less
complicated standard alternatives.

The final Chapter 6, Synthesis and general discussion discusses the achievements as
presented in this thesis, together with general recommendations for future research.
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10 Geostatistical interpolation and aggregation of crop growth model outputs

Abstract Many crop growth models require daily meteorological data. Consequently,
model simulations can be obtained only at a limited number of locations, i.e. at weather
stations with long-term records of daily data. To estimate the potential crop production
at country level, we present in this study a geostatistical approach for spatial interpo-
lation and aggregation of crop growth model outputs. As case study, we interpolated,
simulated and aggregated crop growth model outputs of sorghum and millet in West-
Africa. We used crop growth model outputs to calibrate a linear regression model using
environmental covariates as predictors. The spatial regression residuals were investi-
gated for spatial correlation. The linear regression model and the spatial correlation of
residuals together were used to predict theoretical crop yield at all locations using krig-
ing with external drift. A spatial standard deviation comes along with this prediction, in-
dicating the uncertainty of the prediction. In combination with land use data and country
borders, we summed the crop yield predictions to determine an area total. With spatial
stochastic simulation, we estimated the uncertainty of that total production potential as
well as the spatial cumulative distribution function. We compared our results with the
prevailing agro-ecological Climate Zones approach used for spatial aggregation. Linear
regression could explain up to 70% of the spatial variation of the yield. In three out of
four cases the regression residuals showed spatial correlation. The potential crop pro-
duction per country according to the Climate Zones approach was in all countries and
cases except one within the 95% prediction interval as obtained after yield aggregation.
We concluded that the geostatistical approach can estimate a country’s crop production,
including a quantification of uncertainty. In addition, we stress the importance of the
use of geostatics to create tools for crop modelling scientists to explore relationships
between yields and spatial environmental variables and to assist policy makers with
tangible results on yield gaps at multiple levels of spatial aggregation.

Abbreviations

CZ: agro-ecological climate zones; GYGA: global yield gap atlas; KED: kriging with external drift; LOOCV:
leave one out cross validation; REML: restricted maximal likelihood estimation; RVH: regressor variable hull;
RWS: reference weather station, reference weather station location; SCDF: spatial cumulative distribution
function; sd: standard deviation, kriging standard deviation; se: standard error; SPAM: spatial plant allocation
model; WOFOST: world food studies; Yp: yield potential; Yw: water-limited yield potential
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2.1 Introduction

To support research and decision making related to global food security, mechanistic
crop growth models are frequently used to calculate the potential yield of a food crop in
a certain area and context. These models describe the build-up of harvestable biomass
as a result of the interaction between plant physiology and environment (Roudier et al.,
2011; van Ittersum et al., 2013). Many of these models require accurate daily meteo-
rological data, preferably observations, instead of interpolated grid based data, due to
the non-linearity of many weather-crop relationships (van Bussel et al., 2011; van Wart
et al., 2013b) In addition, detailed and locally relevant information about crop manage-
ment and soil information are required for accurate crop growth simulations (van ltter-
sum et al., 2013). Consequently, model simulations can only be obtained on a limited
number of locations, i.e. close to weather stations with long-term records.

In several studies average crop estimates for large areas have been obtained by spa-
tially aggregating location-specific crop model simulations, see e.g. Rosenzweig and
Parry (1994), Wolf and Diepen (1995) and Alexandrov et al. (2002). A recently imple-
mented approach is based on so-called agro-ecological Climate Zones (CZ) (van Wart
et al., 2013a), applied e.g. in the Global Yield Gap Atlas (GYGA; www.yieldgap.org)
(van Bussel et al., 2015). In this approach it is assumed that CZ are regions that are
homogeneous with respect to climate conditions. The CZ approach is a straightforward
and clear example of the calculate > interpolate > aggregate class of spatial aggre-
gation approaches. An important drawback of this approach is that it ignores spatial
variation of crop growth simulations within the climate zones, i.e. within these zones
the simulated crop growth is assumed constant. Incorporating spatial variation could
improve the spatial resolution and accuracy of the final results and thus help supporting
national and local policy decisions, prioritizing investment strategies of fertilizer and
seed companies and NGOs’. The CZ approach also fails to quantify the uncertainties
associated with the interpolation and aggregation steps, which is essential information
to guide accuracy improvement strategies (van Bussel et al., 2016). In this study we
therefore explore whether the drawbacks of the CZ approach can be overcome with the
help of a geostatistical approach. Geostatistics provides tools for a coherent quantifica-
tion of site as well as aggregated modelled crop yield predictions. It produces continu-
ous spatial maps that provide valuable location-specific information for crop modellers
as well as decision makers and yields graphs that indicate areal proportions below or
above a potential yield level threshold for regions or countries. It also offers means

to explore the relationships between calculated yields and explanatory environmental
variables.

The aims of this study are to present a state-of-the art model-based geostatistical method
for spatial interpolation and aggregation of simulated yields, to illustrate it with a case
study, and to compare the results with those of the common CZ approach. More specif-
ically, we use kriging with external drift (KED), supported by restricted maximum likeli-
hood parameter estimation (REML; Lark, 2000; Diggle and Ribeiro, 2007). Additionally,
we use spatial stochastic simulation to predict aggregated crop production at country
level and its associated uncertainty. As a case study, we interpolate and aggregate
modelled yields of sorghum (Sorghum bicolor) and millet (e.g. Pennisetum glaucum,
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Eleusine coracana) in West Africa, according to as provided by the crop growth model
WOFOST (Wolf et al., 2011; Supit et al., 2012).

2.2 Materials and Methods
2.2.1 Study area

This study has been carried out in West Africa, focussing on Burkina Faso, Mali, Ghana,
Niger and Nigeria. Most of this area consists of a low plateau of maximal 500 metre
above sea level, with some mountainous areas up to 2040 metres. The daily mean
temperature is almost always and everywhere (except at high altitudes) above 18°C
and relatively stable during the year. The most dynamic weather pattern is precipita-
tion, dictated by dry winds from the Sahara in the north, dominant from November until
February, and by the moist southwest marine wind, dominant in July (von Kaufmann

et al., 1983).

2.2.2 Modelled crop yield data

Modelled crop yields for sorghum at 38 (Fig. 2.1) and millet at 37 Reference Weather
Station locations (RWS) were obtained from the Global Yield Gap Atlas (www.yieldgap.org).
Two yield levels, yield potential (Yp) and water-limited yield potential (Yw), were simu-

lated using the crop growth model WOFOST version 7.1.3 (release March 2011) (Wolf

et al., 2011; Supit et al., 2012). The yield potential is determined by solar radiation,
temperature and carbon dioxide concentration; there are no limitations due to water

stress, low soil fertility, weeds, pests, etc. The yield potential is further influenced by
management practices like sowing date and cultivar choice. The water-limited yield
potential, i.e. rainfed yield, is defined similar as Yp, except that possible water stress

is taken into account (Evans, 1996; van Ittersum and Rabbinge, 1997).

The 38 and 37 locations used in the crop yield modelling were selected on: 1) the basis
of proximity of weather stations with high-quality weather data, which are located in ar-
eas with high crop densities as indicated by You et al. (2006), You et al. (2009, see also
http://mapspam.info) and 2) the dominant representation of the crop growing conditions
in terms of weather, soils and cropping system for the countries of interest. Sorghum
and millet share the same location 32 times. The final numbers of Yw on each location
are area-weighted means of several simulations for dominant soil types, and both Yp
and Yw are averaged over multiple years of simulation (Grassini et al., 2015; van Bussel
et al., 2015)". Summary statistics of simulated Yp and Yw for sorghum and millet are
provided in Table 2.1.

2.2.3 Trend model covariates

In the kriging procedure described hereafter, we used grid maps of environmental and
meteorological variables that are expected to be related to the simulated crop yield. To

"More detailed information about site selection and spatial support for the simulated point data can be found
on www.yieldgap.org, section “Methods”
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Figure 2.1: The yield potential (Yp; indicated by both circle area and colour scale) for
sorghum at 38 locations as provided by the Global Yield Gap Atlas. Distance is
indicated by geographical arc degrees; due to the map projection, the corresponding
distance in km differs slightly across the map.

Table 2.1: Summary statistics of crop growth model yields Yp and Yw, for sorghum and
millet. ‘n’ is the number of observations, i.e. the number of modelled crop yields per
case. ‘skewness’ refers to the asymmetry of the dataset values. sd = standard

deviation.
Research cases
units Sorghum Sorghum Millet Yp Millet Yw
Yp Yw
n [] 38 38 37 37
mean [ton/ha] 7.50 6.21 4.23 3.02
sd [ton/ha] 1.17 2.00 1.02 1.40
skewness [-] -0.15 -0.45 —-0.66 0.09
min [ton/ha] 5.04 2.04 1.21 0.56
max [ton/ha] 9.96 9.71 5.90 5.80
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Table 2.2: Meteorological variables (long-term averages) used in the trend models. The
geographical resolution of all grid maps is 30 arc seconds. We derived the monthly
temperatures from www.worldclim.org, accessed July 22nd, 2014.

Covariate Units, description Source

Aridity index  dimensionless; higher value means more www.cgiar-csi.org Accessed Aug. 29,
water available for vegetation. 2014

Degree °C x number of days; cumulative Calculated from monthly temperature

days according to van Wart et al. (2013a).

Temperature  °C; a measure for temperature differences  Calculated from monthly temperature

seasonality over the year according to van Wart et al. (2013a).

stay as close as possible to the agro-ecological Climate Zones method, we decided to
use for all four cases a trend model with the three covariates used in the CZ approach
(Table 2.2).

2.2.4 Geostatistical modelling

2.2.41 General framework: the geostatistical model

To build a geostatistical model, we first need to introduce the idea of a random field. A
random field is a set of random variables indexed by location (Plant, 2012). Additional to
the statistical model of a random variable, a random field has parameters describing its
spatial correlation.

In this chapter, we build a statistical model of a random field for each of the four cases
defined in Section 2.2.2. Thus, the crop growth model outputs for each case are consid-
ered realisations of four separate random fields. Our general statistical model of each
random field is denoted by Z = {Z (s), s € D} (unit: ton/ha; s is a two-dimensional
vector, representing geographic location, D is the geographic domain of interest). At
each location seD, Z(s) is modelled as the sum of a spatial trend (a linear regression
part) and a stochastic residual (a random variable):

k
Z(s)=Po+ ) Bi X x(s)+8(s) =X () xf+2(s) (2.1)

i=1

where B, is the regression intercept, 8; (i = 1---k) are regression coefficients associ-
ated with the covariates, the x; are k environmental covariates? and s(s) is the stochas-
tic residual. In matrix notation (the last part of Eq 2.1) the spatial trend is written as

X (s)T x B, where X(s)” is the transpose of a location specific column vector X (s)

of size k + 1 composed of [1, xi(s), ..., x,(s)] and B is the k + 1 vector [Bo, ...,[B].
To allow comparison between the estimated regression coefficients, all covariates are
scaled (‘normalised’) such that the means are zero and the standard deviations are
one (Montgomery et al., 2001). The stochastic residual £(s) is assumed to be normally
distributed with zero mean and constant variance, independent of s. However, unlike

2Note that in other chapters of this thesis k includes the intercept
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standard linear regression, in geostatistics ¢ is allowed to be spatially correlated. This
spatial correlation is expressed in the covariance function C(h), where h refers to geo-
graphic distances. Here we assume that the covariance C(h,) between £ (s;) and £ (s»)
at any two locations s; and s, depends only on the separation vector b1, = s; — s; .
Under this assumption, the spatial dependence structure of Z is fully characterised by
the covariance function, which is formally defined as (for readability, the multiplication
sign x is omitted for the rest of this chapter):

C(h)=E[RZ(s) - p(HZ (s +h) - p(s)}] (2.2)

where E[-] is mathematical expectation and u(s) is the mean of Z(s) (i.e., p(s) =
E[Z(s)] = X (s)"B). Alternatively, the spatial dependence structure of Z(s) can be
characterised by the variogram, which is a basic concept in geostatistics:

1
y(h) = SE|(Z(s) = Z(s + h))’] (2.3)

With the assumption of a constant mean and a covariance that only depends on the
separation vector, the variogram and covariance function are related by the identity:

C(h) = C0) —~(h) (2.4)

where C(0) is the covariance at distance 0, i.e. the variance of Z. Note that h is a vec-
tor. A further simplification is to assume that the covariance function and corresponding
variogram only depend on the length of the vector, the Euclidean distance |h,| between
any s; and s,.

Commonly used variogram models, such as the exponential and spherical model, are
defined in Diggle and Ribeiro (2007) and Webster and Oliver (2007). The variogram
model ~(h)= constant for |h| > 0O is referred to as a pure nugget model. With this model
the residuals are spatially independent (i.e., the covariance equals 0 for distances greater
than 0). In other words, the residuals show no spatial structure and consequently all
spatial structure is captured by the trend. Estimation of a variogram from available data

is discussed in Section 2.2.4.2.

2.2.4.2 Trend model calibration, variogram model selection and calibration

For all four cases the modelled crop yields and covariate values at the n input point data
locations were used for fitting the trend and selecting and fitting a variogram model. For
spatial models with a trend (as in this research), the variogram parameters can best

be estimated by restricted maximum likelihood (REML) (Lark et al., 2006; Webster and
Oliver, 2007). The REML procedure optimizes the parameters for a chosen variogram
model directly from the data, by filtering out the trend in an analytical way. As REML
maximizing algorithm we used differential evolution (Storn and Price, 1997), imple-
mented in the R package DEoptim (Mullen et al., 2011).
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We manually tried several variogram models, all with added nugget, and chose the
model with the largest REML value. Given the REML estimates of the variogram model
parameters, from which a covariance matrix C' of residuals at observation locations is
derived, the regression coefficients were next estimated by Generalised Least Squares
(Webster and Oliver, 2007):

B=(x"c'X) X"C'2 (2.5)

The trend estimation algorithm also provides an Rﬁdj, a measure for the goodness of fit

of the trend model adjusted for the number of included covariates, and with standard
errors for each of the elements of 3.

2.2.4.3 Defining the suitable area for prediction by limiting extrapolation

The combination of covariate values at the reference weather station locations (RWS),
given by matrix X, is the calibration domain. Care should be taken when the combi-
nation of covariate values of a prediction location is outside this calibration domain.

An example: the aridity index (see Table 2.2) of the RWS in this research ranges ap-
proximately from 1,700 to 7,000. However, on the map of West-Africa the aridity index
ranges from 25 (deep into the Sahara desert) to 30,000 (some coastal areas). Because
of severe extrapolation, using these extreme values might produce unrealistic yield
predictions (e.g., a negative sorghum yield) and the associated prediction uncertainty
may underestimate the actual uncertainty, as this uncertainty is based on the assump-
tion that the trend relation remains linear outside the calibration domain. Therefore, we
cannot safely predict sorghum yields in the Sahara or at the coast. The same holds for
a combination of covariate values outside the calibration domain, e.g., the combination
of aridity index and degree days values, even if the aridity index values and the degree
days values separately are each inside the calibration domain; this is known as ‘hidden
extrapolation’.

The above means that the geographical area which is suitable for prediction should

be restricted to locations with a combination of covariate values inside the calibration
domain. Hence, we introduce the concept of ‘covariate space’: a k-dimensional math-
ematical space where each dimension is a covariate of the trend model. The covariate
values of the observation dataset can be visualised as a point cloud in this covariate
space. The scaled distance from the centre of this point cloud to any combination of
covariate values X, (a vector, indicating a single point in the covariate space) is given by
d (Montgomery et al., 2001):

d=3(X"X) % (2.6)

where X equals design matrix X without the leading column of ones. The point cloud
can be encapsulated within an ellipsoid, a k-dimensional ellipse, referred to as the re-
gressor variable hull (RVH) by Montgomery et al. (2001). The axes of the RVH are scaled
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in every dimension, according to the distribution of the point cloud. The scaled dis-
tance from the RVH to the RVH-centre is d,,,.. We choose this threshold d,,,,, such
that the RVH touches the outside border of the observation point cloud. All covariate
value combinations with d larger than d,,,, are considered an extrapolation in covariate
space; thus their corresponding locations on the geographical map are considered as
not suitable for yield prediction.

2.2.5 Spatial prediction: kriging with external drift (KED)

‘Kriging’ is a geostatistical interpolation method used to predict the value at any location
based on a number of observations in the same area. ‘External drift’ is another expres-
sion for trend model, with covariates other than coordinates. In this research, the crop
yield at a point location s in the study area is predicted as a weighted average of the
crop growth model outputs provided by WOFOST at » point data locations:

2s0)= ) diz(s), (2.7)
i=1

where z(s;) is the crop growth model output at ‘observation’ location s; and A; a kriging
weight. The kriging weights are obtained by solving a system of n+k+1 linear equations
(Webster and Oliver, 2007). In case of kriging with external drift (KED) these kriging
weights are a function of: 1) the covariances, as discussed in the section 2.2.4.1, be-
tween the regression residuals at the observation locations and the prediction location:
a vector ¢, of length n; 2) the covariances between the residuals at each pair of obser-
vation locations: an n x n matrix C'; 3) the covariate values at the observation locations:
ann x (k + 1) matrix X, a composition of n vectors x(s;); and 4) the covariate values

at the prediction location with a leading one: a vector x of length k + 1. The kriging
weights are computed by solving the matrix equation

AGo) = (o + X(XTCTX) " (o - XTc-lco))Tc-1 (2.8)

where X (s¢) is the vector of all 4; for location sy. The variance of the prediction error (a
measure for the uncertainty of the prediction within the geostatistical framework), also
known as the kriging variance, at location s is given by

o (s9) = C(0) = g C" ey + (o - XTC‘lco)T (xTc—lx)’1 (zo- X"C'ey)  (29)

The kriging variance contains both the uncertainty in the interpolated residuals (first
two terms in Eq (2.9) and the uncertainty in the estimated mean (according to the trend
model; third term in Eq. (2.9) (Brus and Heuvelink, 2007) ). The square root of the krig-
ing variance is known as the kriging standard deviation and commonly mapped along-
side with the kriging predictions. It is taken as a summary measure for the uncertainty
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of the kriging prediction. For kriging, and for the related functions of cross-validation
and spatial stochastic simulation (both explained later) we used the gstat package
(Pebesma, 2004) in the R programming environment.

2.2.6 Spatial aggregation: total production and the spatial
cumulative distribution function (SCDF) of production per
country

To obtain a total production potential for a defined area, we sum up the predicted crop
production over all suitable grid cells: spatial aggregation. For this we need to incor-
porate land use. The Spatial Plant Allocation Model (SPAM) dataset, version 2005,
provides a spatially explicit estimate of the area cultivated by the crop per grid cell (You
et al., 2009). For millet, we summed the SPAM maps for the two available kinds of this
crop (millet pearl and millet small). Secondly, the geographical area where crop yield
can be predicted by KED is limited as explained in Section 2.2.4.3. Therefore we re-
strict predictions to the suitable geographical area. Multiplying the predicted yield per
grid cell, for all suitable locations, with the cultivated area per grid cell (as provided

by SPAM) gives the predicted production per grid cell in ton. Summing the predicted
production per grid cell, over all grid cells within a country finally gives the predicted
total crop production potential within that country in tons.

However, unlike the prediction itself, the variance of the predicted total crop production
potential per country cannot be calculated by summing the weighted variances per

grid cell, because the prediction errors are correlated. Therefore we turned to a spatial
stochastic simulation approach (Webster and Oliver, 2007). In this approach, a pseudo-
random number generator is used to simulate a large number (we used 1000) ‘possible
realities’ of crop yield maps based on the calibrated geostatistical model. For each

grid cell, the average of the simulated crop yield approximates the predicted crop yield
as obtained by kriging, while the variance of the simulated crop yield maps approxi-
mates the kriging variance. To perform the spatial aggregation with quantification of
uncertainty, for every simulated crop yield map the total crop production in a country

is computed by the same procedure as used for the predicted crop production, i.e. by
summing up the simulated yield multiplied by the SPAM surface fraction for all suitable
grid cells in the country. This results in as many possible values for the total crop pro-
duction per country as the number of possible realities that had been generated. This
set of values may be interpreted as a random sample of the probability distribution of
the (weighted) aggregated crop production of the country (Heuvelink and Pebesma,
1999). Thus, the variance of this set of simulated values is an approximation of the
variance of the predicted total crop production per country. Moreover, by sorting the
simulated total crop production values the lower and upper bound of prediction intervals
can easily be computed. For instance, by taking the 2.5 and 97.5 quantiles, the bounds
of a 95% prediction interval are obtained.

The maps with simulated crop yield were also used to predict the Spatial Cumulative
Distribution Function (SCDF; de Gruijter et al., 2006) of the crop production per country.
From a SCDF one can read the proportion of land in a country for which the crop yield
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is below or above a given threshold, and the maximum crop yield for a given fraction of
the country.

2.2.7 Cross-validation to quantify the modelling and calibration
accuracy

The uncertainty associated with the predictions is quantified through the kriging vari-
ance and additionally by leave-one-out cross-validation (LOOCV). For LOOCV each
location of the crop growth model outputs is taken out one-by-one, and its value is pre-
dicted based on the remaining crop growth model output locations, using the already
estimated parameters for the trend and spatial correlation. The advantage of LOOCV is
that we do not rely on modelling assumptions, i.e. it also provides realistic estimates of
the quality of predictions if the assumptions made in spatial modelling are violated.

Four LOOCYV statistics were computed. First, the mean error (ME) (Oliver and Webster,
2014) that quantifies the systematic error:

ME =% ; (z(s:) = 2(s2) (2.10)

where z (s;) is the modelled crop yield (true value), and Z (s;) the geostatistically pre-
dicted crop yield at the LOOCYV location s;. In case of unbiased prediction, ME equals
zero. The second LOOCYV statistic is the root mean squared error (RMSE):

_ Iy NEPPES
RMSE—Jn;(z(s,) 2(s1) (2.11)

A smaller RMSE indicates more accurate predictions (Oliver and Webster, 2014). As a
third validation measure, we calculated the correlation coefficient r between the z (s;) and

2(.9,‘).

ME and RMSE are a function of the prediction errors only, not of the kriging variances.
To verify whether the kriging variance is a proper measure of the prediction error, Lark
(2000) proposed to compute the standardised squared prediction error at each cross-
validation location. This fourth validation statistic is a function of the prediction error and
the kriging variance o:

{z(s) = 2 ()P

=1, 2... 2.12
0'2(55) l ’ " ( )

6(si) =

If the errors are normally distributed and the kriging variance is a correct assessment of
the expected squared prediction error, this quantity has a Chi-square distribution with
one degree of freedom. Hence, the mean of the 8 (s;) should be close to one. Lark
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(2000) proposed to compute also the median of 6(s;), as a median is less sensitive

to outliers than a mean. Ideally the median of 6 (s;) should be close to 0.455. If the
median and/or mean are close to their ideal values, on average the kriging variance is
an unbiased quantification of the accuracy of the predictions.

2.3 Results

2.3.1 Model choice and calibration

2.3.1.1 Calibrated trend models

The calibrated spatial trend models for the sorghum and millet cases are given in Table
2.3. Recall that the estimated regression coefficients Eand the se (standard error) are
based on scaled covariates, indicating the relative importance of the covariate and the
precision of the estimated coefficient, respectively (Montgomery et al., 2001). Between
21% and 70% of the total variation was explained by the spatial trend; the Yw cases
variation was better explained than the Yp cases variation. Every case had at least

one covariate where the standard error was relatively low compared to the estimated
coefficient values, indicating that the corresponding regression coefficient differed signif-
icantly (p-value < 0.1) from zero.

Table 2.3: Scaled trend model coefficients for sorghum and millet.

covariate Sorghum Yp Sorghum Yw Millet Yp Millet Yw
R, 0.53 R2,4: 0.70 R2,4;: 0.21 R2,.4,: 0.58
a se B se ,E se E se
(Intercept) 7.50 0.13 6.21 0.18 4.23 0.15 3.05 0.15
Aridity Index 0.44 044 1.60 0.60 0.17 0.49 0.20 0.49
Degree Days -0.62 0.17 -0.53 0.23 0.38 0.19 0.13 0.19
Temperature 0.03 0.41 0.20 0.56 -0.35 0.46 -0.94 0.46

Seasonability
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2.3.1.2 Selected and calibrated variogram models

Table 2.4 presents the variogram models fitted by REML. In the case of sorghum Yp,
the residuals from the spatial trend showed almost no spatial structure. In other words,
almost all spatial structure was captured by the covariates. Because of this lack of spa-
tial correlation, we cannot profit from spatial interpolation of the residuals, in terms of

a reduction of the prediction error variance compared to the variance obtained with
multiple linear regression.

The three other cases showed a spatial structure in the trend residuals; the range pa-
rameters were optimized to the maximal value as dictated by the settings of the REML
maximizing algorithm.

Table 2.4: Variogram models fitted by REML for the four cases. Variogram type and
variogram parameters are explained by Diggle and Ribeiro (2007) and Webster and
Oliver (2007).

Case variogram type variogram parameters
nugget partial sill range
[(ton/ha)?] [(ton/ha)?] [arc degrees]
Sorghum Yp  Nugget + Spherical 0.56 0.09 2.2
Sorghum Yw  Nugget + Exponential 0.87 1.48 20.0
Millet Yp Nugget + Exponential 0.13 2.26 20.0

Millet Yw Nugget + Exponential 0.32 1.39 20.0
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2.3.2 Spatial prediction

Fig. 2.2 shows the predicted yield and kriging standard deviations (sd) for sorghum Yp
and sorghum Yw. The maps of predicted millet Yp and millet Yw (and the corresponding
sd) are provided as supplementary materials®, together with summary statistics. At the
unmapped, white parts of the land surface, the covariates are too different from the con-
ditions at the RWS where crop yield was modelled; therefore these locations are outside
the suitable area, as explained in Section 2.2.4.3, and no yield predictions were made at
these locations. Note that the mapped areas for sorghum and millet are partly the same
(for example in northern Mali and northern Niger), and partly different (for example in
southern Ghana). Remember that the RWS where sorghum yield was modelled were
partly the same, but also partly different from the RWS used for millet; this explains the
similarities as well as the differences in the mapped area. For the same crop, the RWS
for Yp and Yw were identical, thus those mapped areas are exactly the same.

Both sorghum yield maps (2.2a and 2.2¢) show a clear north-south influence, with higher
yields in the south. With millet, this tendency is rotated to higher yields in the south-
west, decreasing towards north-east. The maps with kriging standard deviations show
relatively large values far away from the RWS and near the border of the mapped area.
Near the border several of the covariates have extreme values, so that the uncertainty
about the mean (spatial trend) was relatively large. In case of sorghum Yp, no effect

of distance to RWS can be seen. This is because the trend residuals showed almost
no spatial structure. As a consequence the kriging variance (sd?) was nearly constant
throughout the area, almost equal to the nugget of the variogram (Table 2.4). The three
other cases had a spatial structure in the trend residuals, which shows in the kriging sd
being smaller near RWS locations. This effect is clearly visualized in the detail map in
the supplementary materials, Fig. A.5.

3The supplementary materials, Appendix A, can be downloaded from the journal version of this chapter: Luc
Steinbuch, Dick J Brus, Lenny GJ van Bussel, Gerard BM Heuvelink, 2016. Geostatistical interpolation
and aggregation of crop growth model outputs. European Journal of Agronomy, v77, pp.111-121.
https://doi.org/10.1016/j.eja.2016.03.007
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Figure 2.2: KED (kriging with external drift): prediction of sorghum yield potential (Yp; a) and its
corresponding standard deviation (b); prediction of sorghum water-limited yield potential (Yw; c)
and its corresponding standard deviation (d). All maps are in ton/ha. The colours of the circles
indicate the crop modelled yield according to the legend of a and c. The circle diameter indicates

the same property.
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2.3.3 Spatial aggregation

Fig. 2.3 shows the geostatistically predicted average sorghum and millet yields (po-
tential and water limited) per country. We calculated the average sorghum yield by di-
viding the predicted total crop production per country by the area tilled with the crop
within the country; within each country, at least 70% of the SPAM surface is covered by
the predictions. The error bars indicate the 95% prediction interval for the calculated
yields. The figure also shows the corresponding yields according to the agro-ecological
Climate Zone (CZ) approach, together with the actual yield per country as provided

by the GYGA project. Because Benin is not considered by the GYGA project, we only
have its geostatistical predictions. For all cases in all countries, the geostatistical ap-
proach yields were close to the CZ yields. Except for sorghum Yp in Niger, the CZ val-
ues were within the 95% prediction interval obtained with the geostatistical approach. In
Niger, the difference between Yp and Yw was largest, for both crops and approaches.
In Ghana, those differences were minimal. Except for Ghana, the differences between
Yp and Yw were more pronounced for millet than for sorghum. The size of the pre-
diction interval varied considerably, as examples: +0.3 ton/ha (around a mean of 7.6)
for sorghum Yp in Mali, contrasting +0.7 ton/ha (around a mean of 4.1) for millet Yp in
Benin.
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Figure 2.3: Predicted average sorghum (a) and millet (b) yield per country [ton/ha]. Yp:
yield potential; Yw: water-limited yield potential. The bars indicate average yield
according to the geostatistical approach, including the 95% prediction interval. For
comparison, the horizontal lines show Yp and Yw according to the CZ approach, and an
estimation of the actual yield (source: www.yieldgap.org/web/guest/sub-saharan-africa,
accessed Oct 22, 2015).
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The predicted spatial cumulative distribution function in Mali is visualized for sorghum
Yp and Yw in Fig. 2.4. Following arrow (A) as interpretation example, Fig. 2.4a reads
as: “It is estimated that for 50% of the cultivated area in Mali, Yp is 7.6 ton/ha or lower;
with a probability of 95%, this estimated yield is between 7.3 and 7.9 ton/ha”. Following
arrow (B): “It is estimated that a yield potential of 8.5 ton/ha or higher is achievable for
100-82 = 18% of the cultivated area in Mali; with a probability of 95%, this estimated
area is between 100-91=9% and 100-72=28%".

Comparison of Fig. 2.4a and b shows how accounting for water limitation decreases
crop yield. In case of Yw, 50% of the area has a crop yield of just 7.0 ton/ha or higher,
instead of the threshold of 7.6 ton/ha for Yp. Note also that accounting for water limita-
tion heightens the left long tail visible in Fig. 2.4b, which represents marginal growing
conditions. For example, in case of Yw, ca. 12% of the sorghum cultivated land in Mali
has a predicted yield below 5 ton/ha; in case of Yp the area fraction with predicted yield
below 5 ton/ha is practically zero.

Note that 50% of the area corresponds to the median, which is in both cases close to
the means given in Fig. 2.3, indicating fairly symmetrical distributions.

2.3.4 Cross validation

The results of leave one out cross validation (LOOCV) are presented in Table 2.5. In

all four cases the ME was very small showing the absence of bias. The RMSE ranged
from 0.63 to 1.08. Compared to the standard deviation of the modelled crop yield at
the 38 or 37 RWS (Table 1), the RMSE values were lower in all cases, with ratios vary-
ing between 0.53 (millet Yw) and 0.74 (sorghum Yp). This also agrees with the cor-
relation coefficients r, which show that a substantial portion of the spatial variation in
the modelled yields was explained by the KED model. The mean of the standardised
squared prediction errors (6) was close to the ideal value of one for all cases. Based on
the median of 6, the squared prediction error appears to be overestimated by the kriging
variance for sorghum Yp and millet Yp, and underestimated for sorghum Yw and millet
Yw.

Table 2.5: Cross-validation results values for the four cases.

Case ME RMSE T mean(6) median(0)
Sorghum Yp -0.005 0.86 0.68 1.007 0.300
Sorghum Yw -0.031 1.08 0.84 0.986 0.812
Millet Yp -0.025 0.63 0.78 1.038 0.378
Millet Yw -0.014 0.74 0.85 1.007 0.553

Ideal value 0.000 0.00 1.00 1.000 0.455
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Figure 2.4: Predicted spatial cumulative distribution function of sorghum yield potential
Yp (a) and sorghum water-limited yield potential Yw (b) over the sorghum cultivated
area of Mali, with lower and upper limits of a 95% prediction envelope. See main text for
explanation of arrows (A) and (B).
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2.4 Discussion

In this chapter, we applied model-based geostatistical methods for spatial interpolation
(i.e., prediction) and aggregation of crop yield model outputs. As case study we inves-
tigated sorghum and millet in West Africa, each with potential (Yp) as well as water-
limited potential (Yw) yields. We built a spatial stochastic model (a fixed trend model
combined with a variogram model), and used this model for spatial prediction and there-
after for spatial aggregation.

2.4.1 Model choice and calibration

2.4.1.1 Calibrated trend models

Investigating the calibrated trend models enables to explore some of the presumed key
drivers of plant growth. According to Table 2.3, Degree days has a negative effect on
the sorghum yields (-0.62 for Yp and -0.53 for Yw), a positive effect on millet Yp (0.38)
and no significant (defined here as se larger than B) effect on millet Yw. This might be
due to heat stress during the growing period, or to the relation between Degree days
and growing period length; or perhaps Degree days is an indirect indicator for factors
like total amount of precipitation during the growing season that are not incorporated

in our trend model but play a role in the crop growth modelling itself. Because water
availability is part of the modelling of sorghum Yw, we understand why the aridity index
has a positive influence. However, for millet Yw there seems to be no such relation-
ship. Actually, the majority of regression coefficients are not significantly different from
zero. This is largely due to the limited number of observations. However, recall that

we deliberately chose the same three covariates that define the CZ’s. The findings
presented in Table 2.3 hint that the definition and validity of the CZ’s itself can be more
thoroughly investigated with the help of spatial linear regression. For example, perhaps
it is worth considering to use different CZ definitions for different crops and/or different
CZ definitions for potential yield vs. water-limited potential yield.

The choice for a trend model, i.e. which covariates to use, is often arbitrary. Soil prop-
erties have not been included in the set of candidate covariates, although these are
important inputs of the WOFOST model, especially for Yw. Because the modelled crop
yield was calculated by an area-weighted mix of model outcomes using the soils nearby
the reference weather station, rather than using the soil on the exact spot of the weather
station, there was no obvious original soil property to offer to the trend model. A solution
would be to use an average soil property (for example the total available water holding
capacity) over a circular neighbourhood near the weather station. Recently produced
high-resolution soil maps of Africa (Hengl et al., 2015) are already used by GYGA and
would be very useful for this extension as well.

Unlike the CZ approach, the geostatistical approach did not take differences between
countries into account. This would be a useful addition, because management-measures
vary (and are included in the WOFOST model), but it would need much more reference
weather station locations (RWS), in every included country.

Also other covariates like latitude, altitude etc. can be included. However, incorporating
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too many covariates — compared to the number of RWS - might result in ‘overfitting’:
the trend model is essentially explaining noise, rather than the crop yield modelling
mechanistics (Mundry and Nunn, 2009). Covariates should be selected with care.

2.4.1.2 Selected and calibrated variogram models

In this research, the variogram model describes the spatial correlation, or the lack of

it, of the yields as far as this has not yet been explained by the calibrated trend mod-
els. From Table 2.1, and by visual inspection of the yield maps (Fig. 2.2), we can see
that the spatial variation of sorghum Yp is the smallest. The calibrated trend model
explains about half of the spatial variation (see the Rzadj in Table 2.3); the rest of the
variation has no detectable spatial structure. Despite the high values of the correspond-
ing R?.4;'s, the residual yields of sorghum Yw, millet Yp and millet Yw have a signifi-
cant spatial structure (Table 2.4). The three fitted variograms with spatial correlation
(sorghum Yw, millet Yp, millet Yw) have large variogram ranges that are larger than the
spatial extent of the study area. This indicates presence of a geographical trend, which
may be modelled by taking latitude and longitude as additional covariates into account.
The presence of a residual spatial correlation and a geographical trend hints at addi-
tional causal covariates that have not been included in the trend model. For instance,
latitude might be related to ‘hours of sunshine during growing season’.

2.4.1.3 Location and number of reference weather stations

The number and locations of the RWS used in this study were originally designed for
the CZ-approach. For a geostatistical approach, the number of used RWS in this chap-
ter (37 or 38) could be considered small. For a classical variogram parameter estima-
tion, by method-of-moments, at least 100 observations are needed (Oliver and Webster,
2014); for state of the art likelihood based methods such as REML, Kerry and Oliver
(2007) suggest a minimum of 50 observations. Although we succeeded in selecting,
calibrating and validating geostatistical models with these small datasets, geostatistical
theory and practices encourage to increase the sample size in future research. For this
study area this was not possible because it lacks trustable weather stations with long-
term data.

2.4.2 Spatial prediction

The prediction maps (Fig. 2.2 - a and c) show how the predicted yield potentials are
affected by climatological variables, some of which follow common sense. For example,
the sorghum yield potential (Yp) decreases towards the north, the dry Sahara desert.
As expected, this effect is even stronger for the sorghum water-limited yield potential
(Yw). The blank enclosure in central Nigeria indicates the elevated Jos Plateau: the
elevation related climate variables place this area outside suitable area according to our
extrapolation limitations measures. In the two Yw cases, the min and max values found
by prediction (Table A.1 in the supplementary materials) cover a wider range than the
minimum and maximum values of the modelled crop yields (Table 2.1), indicating an
extrapolation in the prediction, despite our extrapolation limiting measures. For sorghum
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Yp, the prediction yield range is just inside the modelled crop yield range (5.25-9.82

vs. 5.04-9.96 ton/ha). This shows that the prediction locations are not exactly the RWS
locations with the most extreme values; due to the nugget effect, there might be sub-
stantial differences in prediction on short distances. For millet Yp, the smallest predicted
yield (1.28 ton/ha) is a bit larger than the smallest modelled crop yield (1.21 ton/ha), but
the maximal predicted yield is larger (8.16 ton/ha) than the maximal modelled crop yield
(5.90 ton/ha).

The standard deviation (sd) of the prediction errors is for large parts of the maps small
relative to the prediction: therefore we consider the prediction maps reliable. However,
at places with marginal growing conditions sd is substantial compared to the predicted
yield, such as in the north of the prediction area for the Yw cases.

2.4.3 Spatial aggregation

Predicted yields aggregated per country as obtained with the geostatistical approach
and CZ-approach were comparable (Fig. 2.3). Compared to the uncertainty of the yield
predictions at point-locations, the uncertainty in the aggregated yield is much lower.
This is due to the averaging-out effect of aggregation, as element-wise dependent un-
certainties partly cancel each other out when taken together. This might explain why
the uncertainties of millet Yp and millet Yw are relatively large in Benin (Fig. 2.3b). The
mapped millet yield area in Benin, taking the cultivated area into account, is very small
compared to the mapped areas in all other countries (and also compared to sorghum in
Benin). Hence the averaging-out effect for millet in Benin is smaller.

The supplied example of the spatial cumulative distribution function of sorghum in Mali
(Fig. 2.4) shows that the geostatistical approach enables to answer detailed questions
about e.g. the effect of irrigation on the total production in a country. Depending on the
development of crop growth models, in the future similar approaches can be used for
visualising the effect of other yield-limiting factors, for example fertilization.

Considering the outcomes (predicted yield, predicted production per country), there is
more uncertainty than accounted for in this work, for example in crop growth modelling
itself (Asseng et al., 2013), in the SPAM mask, and perhaps in the covariates. Addi-
tionally, yield plateaus in irrigated daily practice are about 80% of Yp (Cassman, 1999)
and the actual land use, represented by the SPAM mask can easily change. To keep
things simple we did not make use of available information about the uncertainty of the
crop model outcomes. Research into how this information can be incorporated in the
geostatistical approach is left for future work.
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2.5 Conclusions

The model-based geostatistical approach presented and applied in this study has a
number of benefits for spatial prediction and aggregation of modelled crop yield at weather
stations:

e it provides a high-resolution map depicting predicted yield that varies continuously
over the area of interest;

o it incorporates information contained in correlated environmental variables to
improve spatial interpolation, and takes maximal use of the spatial correlation in
trend residuals;

o it quantifies the prediction uncertainties, as well as the uncertainty of the aggre-
gated production

e it supplies a spatial cumulative distribution function of the yield for countries or any
other spatial region, including an uncertainty envelope;

e it uses a systematic and reproducible approach that involves few ad hoc deci-
sions.

Because of these additional features, we stress the importance of applying geostatisti-
cal approaches in future crop yield mapping and aggregation.

Supplementary materials

The supplementary materials, Appendix A, can be downloaded from the journal ver-
sion of this chapter: Luc Steinbuch, Dick J Brus, Lenny GJ van Bussel, Gerard BM
Heuvelink, 2016. Geostatistical interpolation and aggregation of crop growth model
outputs. European Journal of Agronomy, v77, pp.111-121;
https://doi.org/10.1016/j.eja.2016.03.007
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Abstract One of the first soil forming processes in marine and fluviatile clay soils is
ripening, the irreversible change of physical and chemical soil properties, especially
consistency, under influence of air. We used Bayesian binomial logistic regression (BBLR)
to update the map showing unripened subsoils for a reclamation area in the west of The
Netherlands. Similar to conventional binomial logistic regression (BLR), in BBLR the
binary target variable (the subsoil is ripened or unripened) is modelled by a Bernoulli
distribution. The logit transform of the ‘probability of success’ parameter of the Bernoulli
distribution was modelled as a linear combination of the covariates soil type, freeboard
(the desired water level in the ditches, compared to surface level) and mean lowest
groundwater table. To capture all available information, Bayesian statistics combines
legacy data summarized in a ‘prior’ probability distribution for the regression coeffi-
cients with actual observations. Our research focused on quantifying the influence of
priors with different information levels, in combination with different sample sizes, on
the resulting parameters and maps. We combined subsamples of different size (ranging
from 5% to 50% of the original dataset of 676 observations) with priors representing
different levels of trust in legacy data and investigated the effect of sample size and prior
distribution on map accuracy. The resulting posterior parameter distributions, calculated
by Markov chain Monte Carlo simulation, vary in centrality as well as in dispersion,
especially for the smaller datasets. More informative priors decreased dispersion and
pushed posterior central values towards prior central values. Interestingly, the result-
ing probability maps were almost similar. However, the associated uncertainty maps
were different: a more informative prior decreased prediction uncertainty. Based on the
‘overall accuracy’ validation metric we found — for this case specific — an optimal value
for the prior information level: the standard deviation of the legacy data regression pa-
rameters should be multiplied by 10. This effect is only detectable for smaller datasets.
The Area Under Curve validation statistic did not provide a meaningful optimal multiplier
for the standard deviation. Bayesian binomial logistic regression proved to be a flexible
mapping tool but the accuracy gain compared to conventional logistic regression was
marginal and may not outweigh the extra modelling and computing effort.

... using Bayesian binomial
logistic regression with prior for

regression coefficients based
on legacy data ...

From point observations
of soil ripening indicator ...

... to posterior probability of
ripened claysoil.

New data

15\’6
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Abbreviations

AUC: Area under curve; BBLR: Bayesian binomial logistic regression; BIC: Bayesian Information Criterion;
BLR: Binomial logistic regression; FPR: False Positive Rate; GLM: Generalized Linear Model; ML: Maximum
likelihood; MLE: Maximum likelihood estimator; MLR: Multinomial logistic regression; MLW: Mean lowest
ground water table; ROC: Receiver Operating Characteristics; TPR: True Positive Rate; UMF: Uncertainty
multiplication factor.
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3.1 Introduction

One of the first soil forming processes in marine and fluviatile clay soils is ripening,
which is the irreversible change of physical and chemical soil properties, such as con-
sistency, under influence of air. The ripening stage is an important factor in determining
land use suitability. Moreover, it is also an indicator for forecasting soil shrinkage (Pons
and Zonneveld, 1965). In the central western part of The Netherlands, clay soils have
been waterlogged almost since deposition, and part of these soils are thus still ripening.
The ripening process is ongoing, and as a result the current maps, created between
1960 and 1995, are getting outdated. These maps must be updated to accurately repre-
sent the current situation.

Soil ripening is mapped as a binary property, i.e. on each location, the soil is considered
either ‘ripened’ or ‘unripened’. It is unripened if any part of the profile (0-80cm) contains
unripened clay. If point observations of soil ripening and maps of covariates related to
soil ripening are available, a map of the probability of a ripened subsoil can be obtained
by binomial logistic regression (BLR). In BLR, the logit transform of the ‘probability of
success’ parameter of the Bernoulli distribution which represents in our case the prob-
ability that the soil is ripened, is modelled as a linear combination of covariates. With
more than two classes the data follow a multinomial distribution and a similar approach,
multinomial logistic regression (MLR), can be applied to map class probabilities. Kem-
pen et al. (2009) and Vasques et al. (2014) applied MLR to map probabilities of multiple
soil classes. Collard et al. (2014) compared MLR with classification trees and random
forests. They found that MLR performed remarkably well for predicting soil classes. In
contrast, Heung et al. (2016) showed MLR to perform worse for predicting soil classes
in a comparison of ten machine learning approaches (e.g. logistic model trees, artificial
neural networks).

BLR and MLR only use the observations of the variable of interest at the sampling points
and the maps of the covariates. Models might better reflect reality and give more ac-
curate predictions if we were able to exploit all available information in the model cali-
bration process, especially in situations with scarce data. In particular, we may think of
‘prior’ knowledge about the regression coefficients of the BLR (MLR) model, which is
not used in BLR (MLR) calibration. Bayesian statistics is equipped to capture all avail-
able knowledge by combining multiple information streams, i.e. information summarized
in a ‘prior’ probability distribution of the model parameters, and information contained

in the actual observations. For instance, Stanaway et al. (2011) used knowledge of
plant properties and observation accuracy in Bayesian mapping of the risk of invasive
plant species in Australia. Frigessi and Stander (1994) used deterministic terrain data
to support Bayesian classification of satellite spectral images. Truong et al. (2014) used
expert guesses of point-support variogram parameters to support Bayesian area-to-
point kriging for remotely sensed air temperature.

To our best knowledge, Bayesian logistic regression has not yet been used to create soil
property maps. In this research, we extensively explain, and apply, Bayesian binomial
logistic regression (BBLR) for mapping clay soil ripening probability. In particular, we
assess the added value of incorporating prior information derived from case-related
legacy data. We investigate the added value of prior information with different degrees
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of information level in combination with different sample sizes of recent soil ripening

data. Furthermore, this work includes a brief explanation of Bayesian generalized re-
gression, the Metropolis algorithm and the validation statistics ‘overall accuracy’ and
‘area under curve’, with the purpose to familiarize soil scientists with these concepts.

3.2 Theory

3.2.1 The binomial logistic regression (BLR) model

Binary responses on discrete or continuous covariates can be modelled with the bino-
mial logistic regression (BLR) model, which is an instance of the Generalized Linear
Models family.

Lety;, i = 1...nbe observations of a binary target variable, where each y; equals
1 or 0 and n is the number of sampling locations. In BLR, the data are modelled as
independent draws from a Bernoulli probability distribution:

y; ~ Bernoulli (rr;) (3.1)

with 7r; the ‘probability of success’ parameter at the i-th sampling location. The logit
transform of x; is modelled by a linear combination of covariates:

logit (;) = log (&) = d’'p (3.2)

1

where d; is an k-size vector, the first element of which equals 1 and the remaining ele-
ments of which contain the values of k — 1 covariates at the i-th sampling location, and
3 is a vector of regression coefficients, including an intercept term. The inverse logit is

written as:
exp(d! B)

;= logit™! (d78) = —— 7
n; = logi (,5) [+ oxpd )

(3.3)

For all locations together, Eqn. 3.2 can be written as Egn. 3.4 with r a column vector
of my,...,m, and X the design matrix, which contains the k covariates at the n sampling
locations, including a column of leading ones:

logit () = X 3. (3.4)

Having described 7 as a function of a vector of regression parameters 3, we obtain

an estimate of 3 that fits the data best, and use this calibrated BLR model for estimat-
ing the probability of a ripened subsoil at new locations. Note that we assume that the
regression residuals are independent. In other words, we assume that the spatial struc-
ture in parameter 7 is fully captured by the covariates.
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3.2.1.1 Estimation of regression parameters using maximum likelihood

Likelihood is a central concept in statistical model calibration, selection and comparison.
In the scope of this paper, the likelihood £ (3) equals the probability of the observations
y as a function of the regression coefficients vector 3, given in Egn. 3.5 (Collet, 1991):

LB = pwld) = [ |70 -m) (3.5)
i=1

Note that parameter x; is a function of 3 as given in Eqn. 3.3. Note also that p(y|3)
is a proper probability distribution when considered a function of y, i.e. it integrates to
a finite value (actually to one) over all possible values for y, but it is a likelihood when
considered a function of 3.

We calibrate a given model structure, i.e. a model with a given combination of covari-
ates, on the data by finding the estimate Efor 3 that maximises the likelihood. Ana-
Iytical solutions are not always available and numerical, iterative search algorithms are
used instead (Collet, 1991). The uncertainty in Eis expressed by its variance-covariance
matrix:

Var(ﬁ) = (XT‘A/'X)_1 (3.6)

with V' = diag@2, 72, ..., 72), where 0> = 7; (1 -7;) and 7; the estimate for 7;
resulting from plugging in 3 in Eqn. 3.4. The diagonal of var (E) contains the squared
standard errors, i.e. the modelling variance of E
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3.2.1.2 Estimation of probability of ripened subsoil at new locations

Point estimates for the model parameter 7t at a new location can be obtained by sub-
stituting Efor B and x, for X in Eqn. 3.3, with =, the covariate values at the new loca-
tion. The modelling uncertainty in 7c at a new location as result of uncertainty in Ecan
be investigated by the Monte Carlo method: simulate a large number of independent
vectors with regression coefficients (using 5 var(E) and a pseudo-random number
generator, while assumlng 5 has a multivariate normal distribution) and calculate the
corresponding 7r0 using Eqgn. 3.4, where () indicates the iteration number, (j) = 1, 2..r
of r iterations. The resulting empirical distribution at the new location can be visualised
by a histogram of all simulated ngj).

3.2.1.3 Selecting model structure

The regression model structure, i.e. the combination of covariates, may be chosen by
minimizing the Bayesian Information Criterion (BIC; Neath and Cavanaugh, 2012).
Model selection criteria such as BIC favour models that explain the data well — quan-
tified with a high maximum likelihood — but penalizes for model complexity, expressed
as the number of model parameters m,,, which equals the number of covariates plus
interactions if included:

BIC = -21log(L(B)) +m, log(n) (3.7)
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3.2.2 The Bayesian binomial logistic regression (BBLR) model
3.2.2.1 Bayesian statistics

Using notation introduced in the previous section, Bayes’ theorem follows from the defi-
nitions of conditional and joint probabilities, and states that

_rB.y _pBpryb
pBly) = ) @) (3.8)

Within the Bayesian framework, 3 can represent any collection of parameters — or even
a more abstract concept such as ‘a hypothesis’. These parameters are implicitly part
of a statistical model definition. Observations y can also be named ‘evidence’. Using
this terminology, p(3, v) is the joint probability function of the parameters and the evi-
dence, while p(y) is the probability of the evidence itself. In the third part of the equa-
tion, p(B) is the prior probability or ‘prior belief’, the probability function assigned to the
parameters, independent of the evidence. The conditional probability p (y|3), already
introduced in the previous section, is the probability of the evidence given (also called
‘conditional on’) the parameters. The resulting p (Bly) is called the posterior probability,
the measure of our belief in the parameters given the evidence (Bernardo and Smith,
2009; Pruim, 2011; Gelman et al., 2013).

Evaluation of Egn. 3.8 is usually complicated because the evidence probability p(y) is
unknown. One solution, explained below, is to make use of Markov chain Monte Carlo
simulation. This only requires the ratio of different posteriors, all conditional on the same,
fixed evidence but with different parameters. Markov chain Monte Carlo simulation makes
use of the fact that, given fixed evidence y, the posterior of 3 is proportional to the
product of the prior and likelihood (Gelman et al., 2013):

pBly) < p(B) p(ylB) (3.9)

The prior belief can range from no belief to very strong belief, in other words from a non-
informative prior (although some authors reflect that a non-informative prior does not
exist, because a prior always contains some information) to a very informative prior.
Note that in the Bayesian model building process, it is justified to adjust a prior after
data collection so that the posterior makes sense (Bernardo and Smith, 2009; Gelman
et al., 2013). However, a prior should not repeat information that is already captured by
the likelihood; all information sources can be used only once.
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3.2.2.2 Sampling the posterior with Markov chain Monte Carlo

As indicated above, we use a numerical simulation algorithm, the Metropolis algorithm,
to sample from the BBLR posterior distribution (as illustrated in Fig. 3.1), rather than
finding an analytical solution to the posterior by applying a so-called ‘conjugate prior’.
This latter option is shortly discussed in Section 3.4.4.2. The Metropolis algorithm gen-
erates a Markov chain of model parameter vectors (i.e., regression coefficients). A Markov
chain has the property that given the current state, the next and previous state are inde-
pendent; the current state depends only on the previous state. Simulating values from

a distribution by generating a Markov chain is referred to as Markov chain Monte Carlo
simulation (MCMC). The Metropolis algorithm is one specific example of MCMC. For
more information about MCMC see e.g. Chib and Greenberg (1995), Christensen et al.
(2010), and Gelman et al. (2013).

An important indicator of the proper functioning of the Metropolis algorithm is the ac-
ceptance rate, i.e. the number of accepted proposals divided by the total number of
proposals. For a sufficient and efficient exploration of the parameter space, this number
should be between 0.25 and 0.5 (Rosenthal, 2011). The acceptance rate is largely
controlled by the size of the jumps in parameter space. The jump from 3 to B* is
generated by the proposal probability distribution (also called jumping distribution) using
BY as input. We tune this proposal distribution by manually setting a tuning parameter,
often a variance scaling factor, to attain the desired acceptance rate. Furthermore, the
first set of 3’s, the warm-up phase (also called ‘burn-in’), that is highly influenced by
the starting point, should be removed. The consecutive 3'’s of the remaining chain are
correlated. To speed up subsequent computations and save storage space, ‘thinning’ is
applied by subsampling the Markov chain systematically. Chain convergence is checked
by comparing different parts of the chain, by comparing different chains (for example
chains with different settings), or by a combination of both (Brooks et al., 2011; Gelman
et al., 2013). If the different parts or different chains produce similar posterior distribu-
tions then this indicates that the parameter space has been explored sufficiently.

A (thinned) Markov chain of regression coefficient vectors forms a random sample from
the joint posterior distribution of those coefficients. We can easily obtain the marginal
density for individual coefficients by considering the sample of only that coefficient (Fig.
3.1¢c).

The probability of success parameter 7r is computed from the regression coefficients

in the same way as described for BLR in Section 3.2.1.2, but note that this provides a
sample from the posterior distribution of 7r. Typically, the mean of this sample is used to
summarise information.
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Figure 3.1: Flowchart of the Metropolis algorithm (a) and a simplified example of a
resulting Markov chain in two-dimensional parameter space (b). After starting at 3=
[0.2, 1.0], the Markov chain gradually jumps to the area where the joint posterior
probability density of 3 is concentrated — which appears to be around [0.45, 3.25] — and
starts exploring it. In this example, we show the first 250 iterations. From the Markov
chain, we can extract the marginal probability density of each model parameter; this is
shown for By (c). Note that we did not apply warm-up removal nor thinning before
calculating and plotting the marginal density.
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3.2.3 Validation of estimated probability by overall accuracy and
area under curve

We validated the BLR and BBLR models by comparing the estimated probabilities of
ripened subsoil at validation locations (continuous from zero to one) with the observa-
tions (binary: zero or one). Note that the probabilities themselves cannot be validated
because these are only model constructs and are not observable. One possibility to
deal with this is to set a probability threshold value, for example 0.5, that transforms the
probabilities into zeroes and ones, and calculate the confusion matrix from comparison
of observed and predicted ripened soil. This is illustrated in Figs 3.2a and 3.2b. From
the confusion matrix, various metrics can be extracted, such as map unit purities, class
representations and, as applied in this research, the overall accuracy (Fig. 3.2c; Brus
etal., 2011).

The choice of the probability threshold value is often arbitrary. For example, if a predic-
tion that is wrongfully classified ‘ripened’ has more serious consequences and should
be penalized more than wrongfully classifying a soil as ‘unripened’, it may be useful

to increase the threshold, so that a smaller part of the area is wrongfully classified as
ripened (at the expense of increasing the area that is wrongfully classified as unripened).
The Receiver Operating Characteristics (ROC) quantifies the estimation performance
without the need for setting a threshold (Fig. 3.2de). ROC calculates the ‘True Positive
Rate’ (the proportion of observed ripened that is correctly predicted as ripened) as
well as the ‘False Positive Rate’ (the proportion of observed ripened that is incorrectly
predicted as ripened) for all thresholds. The resulting graph is summarized in one per-
formance statistic, the area under curve (AUC) (Fawcett, 2006). Ideally, AUC equals
one, while an AUC of 0.5 indicates no predictive value at all.
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Figure 3.2: lllustration of the ‘overall accuracy’ and ‘area under curve’ (AUC) statistics.
Starting from a fictitious dataset of observations y, corresponding estimates 7 and an
arbitrary probability threshold (in the example taken as 0.5), predictions of the ripening
indicator y are obtained. By comparing y and ¥, the confusion matrix is constructed (b),
and the overall accuracy is calculated, as well as the True Positive Rate (TPR) and
False Positive Rate (FPR) (c). For AUC, TPR and FPR are calculated for all probability
thresholds ranging from 0 to 1 (d). Next, TPR is plotted against FPR, resulting in the
Receiver Operating Characteristic (ROC) (e); the TPR and FPR according to
threshold=0.5 are shown. Finally, AUC summarizes the ROC into a single number. A
good separating performance would show a large TPR while FPR is small, for all
thresholds. In such case the ROC curve is steep at first and passes close by the upper
left corner, resulting in an AUC close to 1. In this example, AUC equals 0.639.
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3.3 Case study
3.3.1 Study area

The marine clay soils of interest in this study are situated in the western and north-
western part of The Netherlands (Fig. 3.3a). The clay material was deposited between
6,000 and 1,000 BC, during a period of increased sea level (Jongmans et al., 2013).

In a later stage organic material accumulated under wet conditions and the land be-
came covered with peat. Then, because of water erosion and peat excavation, lakes
emerged. Reclamation of the lakes started around 1500 AD and continued until at least
1958. Until reclamation, the soils were continuously submerged. The groundwater ta-
bles in the reclaimed clay soils commonly are shallow, and, as a result, locally these
soils are still in the ripening stage (Stichting voor Bodemkartering Wageningen, 1969).
This study is limited to the clay soils in these former lakes' classified as unripened in
the previous mapping survey, which was gradually performed in the timespan 1960-
1995 — but mainly between 1960 and 1980. The soils of interest cover 211km? and are
highly fragmented in a rectangular area of 60 by 100 km (Fig. 3.3a). Land use consists
mainly of agricultural permanent grasslands, and to a lesser extent arable farming and
nature. In this densely populated area there are also many buildings and roads (Sticht-
ing voor Bodemkartering Wageningen, 1969; de Vries et al., 2017). The climate can be
described as maritime with a warm summer, without any regular dry period (Peel et al.,
2007).

3.3.2 Data

3.3.2.1 Observations

To determine the current ripening stage, 676 sampling locations were selected by spa-
tial coverage sampling (Brus et al., 2006), using the R package spcosa (Walvoort et al.,
2010). Sampling was done, in 2016, using an Edelman or a gouge auger. The soil pro-
files, up to at least 150 cm depth, were systematically described in the field, and later
classified into the new data observations ‘ripened’ or ‘not-ripened’, considering the up-
per 80 cm soil layer (Fig. 3.3b) (de Vries et al., 2017). The sample fraction with ripened
soils was 56%. Originating from earlier surveys, legacy data on the ripening stage of
1319 soil profiles sampled in the timespan 1985-2005 are shown in Fig. 3.3c. Here,
61% of the sample had ripened soils.

3.3.2.2 Subsamples of new data

To determine the effect of sample size on the posterior distributions and probability

maps when using BBLR, subsamples from the complete dataset were selected. This
was done by clustering the 676 sampling locations into clusters of equal size by k-means
clustering (Hartigan and Wong, 1979), using the spatial coordinates of the sampling
locations as clustering attributes. We computed clusters of size 2, 4, 10 and 20. By se-
lecting randomly one point per cluster, two subsamples of size 676/2, four subsamples

In Dutch: “Droogmakerijen”
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of 676/4 et cetera were obtained. Each subsample was used for calibration. The obser-
vations not included in a calibration subsample were used for validation. An overview of
the resulting subsamples is provided in Table 3.1.
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Figure 3.3: The area of interest in the central-western part of The Netherlands, mapped

as unripened subsoils on the current (but outdated) Soil Map of the Netherlands
1:50,000 (a). Recently collected data on subsoil ripening stage (‘new data’) (b). Data
collected on soil ripening stage in the years 1985-2005 (‘legacy data’)(c). The orange
square in (a) indicates a subarea, which we will focus on.

Table 3.1: Overview of new data subsamples obtained by k-means clustering of the
original dataset of 676 observations.

Number of Observation locations Validation locations
subsamples per subsample per subsample
Subsamples 50% 2 338 338
Subsamples 25% 4 169 507
Subsamples 10% 10 66, 67 or 68 608, 609 or 610
Subsamples 5% 20 33 0r34 642 or 643
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3.3.2.3 Covariates

The set of covariates to be proposed as regressors was based on expert knowledge,
i.e. we selected covariates that, based on pedological knowledge, could influence the
ripening process. As our aim was to construct a map of the probability of a ripened
subsaoil, only covariates of which a map was available were considered. An overview
of all 12 candidate covariates is given in de (de Vries et al., 2017), and summarized in
Table 3.2.

Table 3.2: Candidate covariates.

Candidate covariate Type

Distance to dike Categorical
Elevation Continuous
Soil type Categorical
Freeboard Continuous
Mean lowest water table Categorical
Seepage and infiltration Categorical
Land use Categorical

Relative elevation, 100m radius Continuous
Relative elevation, 250m radius Continuous
Relative elevation, 500m radius Continuous
Relative elevation, 750m radius Continuous
Relative elevation, 1000m radius  Continuous

We did not consider interactions. We shifted and scaled the covariates according to
Gelman et al. (2008), which means all means became zero and standard deviations
became 0.5, so that continuous variables have the same scale as symmetric binary
inputs. We used the full sample of new observations to select a subset of covariates
used as regressors in the models. This subset of covariates was used in all models
calibrated on the subsamples. As will be explained in Section 3.3.4.1, three covariates
where finally selected: soil type, freeboard and mean lowest water table (MLW). Soil
type is a categorical variable where two soil types are distinguished: a ‘peaty earth soils
with unripened subsoil’?, which we indicate here as ‘peaty clay soil’, and ‘clayey hydro-
earth soils with unripened subsoil’®, which we indicate shortly as ‘clayey soil’. The peaty
clay soil contains an organic layer of at least 10cm, starting within 40cm from surface
level, containing a substantial amount (>10%) of organic material (Bakker et al., 1989).
Freeboard* refers to the regulated water level below surface as desired by the local
water board (de Vries et al., 2017). The majority of the freeboard values are between
25 and 120 cm below surface level. MLW is explained on detail level by Hoogland et al.
(2014) and de Vries et al. (2017). In our study area MLW is a discrete variable taking on
18 values, ranging from 54 to 137 cm below surface level.

2In Dutch: “Plaseerdgrond”
3In Dutch: “Tochteerdgrond”
4In Dutch: “Drooglegging”
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Figure 3.4: Maps of selected covariates for the subarea indicated in Fig.3.3a, including
new data observations. Soil type, distinguishing two types of clay soil (a). Freeboard, in
cm below surface level (b). Outliers (for example elevated roads) are removed, which
explains the thin white lines not present on the maps shown in (a) and (c). Mean lowest
water table (MLW) in cm under surface level (c). In this area, 10 discrete steps are
present.
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3.3.3 Bayesian and non-Bayesian binomial logistic regression
implementation

3.3.3.1 Priors

We constructed several priors for the Bayesian models using the legacy data. We fitted
a (non-Bayesian) BLR model to these data, using the selected covariates (as will be dis-
cussed in Section 3.3.4.1) as regressors. As these ripening observations were gathered
in the past and are strongly spatially clustered (Fig. 3.3c), it would be unwise to simply
add these to the new observations and treat them as if they were new observations.
However, we consider them appropriate for constructing an informative case-related
prior to be used in a Bayesian BLR.

We quantified our trust in the BLR model calibrated with legacy data by multiplying the
variance-covariance matrix of the regression coefficients with an uncertainty multiplica-
tion factor (UMF). We only considered UMFs greater than one because the legacy data
are less informative about current subsoil ripening than the new data. Note that UMF is
a multiplier for the variance, thus the standard deviations are multiplied by the square
root of UMF. We used a range of values for UMF and evaluated which UMF value gave
the best results through validation. For further comparison, we added a data-unrelated
prior, being a multivariate normal distribution with zero means and covariances and an
extremely large value (10E20) for all variances. In the context of BBLR, this prior can be
considered extremely low-informative. We also applied non-Bayesian binomial logistic
regression using the new data only, and non-Bayesian binomial logistic regression with
coefficients derived from the legacy data. An overview of all statistical models is given in
Table 3.3.

Table 3.3: Overview of applied statistical models.

Binomial logistic Bayesian binomial logistic regression (BBLR) Binomial logistic
regression using regression using
new data legacy data
Data-unrelated, non-informative Prior based on old data with
prior uncertainty multiplication factor
(UMF)
BLR Non_inf 10000 1000 200 100 50 10 5 BLR_on_legacy

All statistical models were calibrated on all 36 subsamples presented in Table 3.1,
giving a total of 360 calibrated models. Recall that all 360 models used the same subset
of covariates as regressors.
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3.3.3.2 MCMC settings and computation costs

For the MCMC Metropolis algorithm, we used the same settings for all cases: the total
number of iterations was 15,500 of which 500 are warm-up; the thinning factor was 15,
resulting in MCMC samples of size 1,000; starting values for all elements of 8 were
zero. The tuning parameter for the jump distribution for this specific algorithm, MCMClogit
in the R package MCMCpack (Martin et al., 2011) was 0.9, resulting in an acceptance
rate between 0.27 and 0.47 for all statistical models, except for two subsamples with
quasi-complete separation, i.e. subsamples for which the model (almost) perfectly pre-
dicts the observations. An example would be in Fig. 3.4a (if we would have sampled
only this area): there is no observed unripened clayey soil, so a model with soil type
as covariate perfectly predicts the observations in the clayey soil section of the map.
The consequences of quasi-complete separation will be discussed later. Table A.3 in
the Supplementary materials® shows all acceptance rates. We applied the Gelman
diagnostic (Gelman et al., 2013), as implemented in the diagnostic coda R package
(Plummer et al., 2006) to verify chain convergence. Calculating one Markov chain took
between 0.5 and 4 seconds — increasing with subsample size — using a present-day
office computer. Calculating one map with estimated probabilities of a ripened subsoil
with a total of 81,000 grid points, based on 1,000 simulated vectors with regression
coefficients, took about two minutes.

3.3.3.3 Binomial logistic regression

The non-Bayesian BLR parameters were estimated using the glm function, part of the
base R-package stats (R Core Team, 2017).

5The supplementary materials, Appendix A., can be downloaded from the journal version of this
chapter: Luc Steinbuch, Dick J Brus, Gerard BM Heuvelink, 2018. Mapping the probability of ripened
subsoils using Bayesian logistic regression with informative priors. Geoderma, v316, pp.56-69;
https://doi.org/10.1016/j.geoderma.2017.12.010.
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3.3.4 Results

3.3.4.1 Regression model structure and BLR estimates

Using the full new dataset, we selected a model structure through stepwise selection,
with BIC as model performance criterion. This resulted in a model with the covariates
soil type, freeboard and MLW as predictors. For reference purposes, the maximum like-
lihood estimates (MLE) of 8, using the full new dataset, are provided in the Supplemen-
tary materials, Table A.1. The MLE of 8 calibrated with the legacy data, which is used to
construct the priors, is provided in Table A.2. The MLEs of 5 for the 36 subsamples are
included in the overview in Table A.6 to Table A.9 of the Supplementary materials.

3.3.4.2 Posterior distribution of regression coefficients

We found as general trend that the probability of a ripened subsoil is larger for clayey
soils than for peaty clay soils and increases with freeboard and MLW, which is in line
with our knowledge of soil forming processes. This holds for all but a few of the smaller
subsamples, as shown in Table A.6 to Table A.9.

Fig. 5 shows as an example of results for the MLW regression coefficient. Note that, as
expected, the larger the sample size and the more informative the prior (i.e., a smaller
UMF), the more peaked the posterior distribution, indicating a smaller modelling un-
certainty about the regression coefficient. Also, a larger sample size results in a larger
difference between the modes of the prior and the posterior distribution. This is espe-
cially true for UMF = 5. The smaller the UMF, the larger the overlap of the posterior
distributions.
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Figure 3.5: Marginal posterior probability distributions of the MLW coefficient (grey
lines), for three sample sizes (rows) and three UMF values (columns). A smaller UMF
value means a more informative prior. Prior distributions are in bold purple.
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Figure 3.6: Estimated probability of ripened subsoil obtained with the entire new
sample and a prior with UMF = 100 (a). Subarea with observations (b).

3.3.4.3 Probability maps of ripened subsoil

Fig. 3.6a shows a map of the estimated probability of a ripened subsoil. If we apply a
probability threshold of 0.5, about 60% of the area, previously mapped as ‘unripened’,

is predicted as ripened. Fig. 3.6b zooms in on the subarea. Note that in the area of

Fig. 3.6b quite a few ripened subsoils are observed in areas with small estimated proba-
bilities of a ripened subsoil (mainly in the north-west part). The sharp boundaries in the
probability map are caused by sharp boundaries in the maps of the covariates soil type
and MLW (Fig. 3.4a and c).

Fig. 3.7 shows probability maps for different combinations of sample size (for each
sample size, one sample was randomly selected from all samples of that size) and prior
distribution for the subarea. The spatial pattern is quite similar for all maps.
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Figure 3.7: Maps of estimated probability of ripened subsoil for three subsample sizes
(rows) and three UMF values (columns).
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Figure 3.8: Density plots of the estimated probabilities of ripened subsoil in the
subarea, for three sample sizes (50%, 25% and 5%) and three UMF values. The bold
pink line corresponds with the probabilities of the maps shown in Fig. 3.7.

Fig. 3.8 shows density plots (smoothed and standardized histograms) of the estimated
probabilities shown on the maps of Fig. 3.7. For comparison, density plots of all other
subsamples of the same size are added. The density plots are multimodal (i.e. have
several local maxima). For example, for the 50% and 25% subsamples three modes
appear at probability levels near 0.2, 0.4 and 0.9. With UMF = 5 (strong informative
prior) a fourth local mode at 0.8 appears, most pronounced for the 5% and 25% sub-
samples. For a given sample size, the densities at the modes for UMF = 5 are larger
than at the corresponding modes for UMF = 1000 and 100, which means that for UMF
=5 we have larger areas with estimated probabilities near 0.2, 0.4, 0.8 and 0.9. For the
5% subsamples and large UMF (1000 and 100) there are large differences in density
plots, indicating a substantial sampling uncertainty in the estimated probabilities of
ripened subsoil.
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Fig. 3.9 shows maps of the modelling uncertainty expressed as interquartile range
(IQR), based on 1000 simulations for each of the nine shown cases (as explained in
Section 3.2.1.2). The modelling uncertainties about the probability of ripened subsoil
are highest for models calibrated with a small dataset and a low informative prior (such
as Fig. 3.99). The IQR decreases with increasing sample size and decreasing UMF
(more informative prior), although not necessarily at every single location.

Figure 3.9: Modelling uncertainty as quantified by the interquartile range obtained with
three sample sizes and three UMF values.
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Figure 3.10: Overall accuracy for a probability threshold of 0.5, for four sample sizes
and BLR + six UMF values. Note the vertical axis origin.

3.3.4.4 Validation

As explained in Section 3.2.3, we analysed the effect of increasingly informative priors
on the quality of the maps by comparing the validation metrics ‘overall accuracy’ (Fig.
3.10) and ‘area under curve’ (AUC; Fig. 3.11 page 57) as obtained with BLR and with
BBLR using different values for UMF. The validation statistics were computed from all
subsamples of a given size. For example, for the four “subsamples 25%” (see Table
3.1), we have in total of 4 x 507 = 2028 validation points with an estimated probability
and an observed ripening indicator. All 2028 estimation-observation pairs were used to
estimate the overall accuracy and AUC for this sample size, for each statistical model.
The threshold used to calculate the overall accuracy was set to 0.5. The two 5% sub-
samples with quasi-complete separation were not included in the computation of the
validation statistics.

The overall accuracy suggests an optimal value for the UMF around 100 (Fig. 3.10

and Table A.4 ), independent of sample size, apart from the 50% subsamples size that
show almost no dependency on the UMF. For the 25% subsample, both UMF=100 and
UMF=50 seem to be optimal. Contrary to the overall accuracy, the AUC kept increasing
(while levelling out) with the information level of the prior (Fig. 3.11, page 57). This even
happened with unrealistically small UMF values, such as 1, 0.1 and 0.01 (results not
shown) and with the legacy data based 3 (see Supplementary materials Table A.5).

For the 50% subsamples, there is an unexpected jump in overall accuracy between the
non-Bayesian BLR and all Bayesian models (Fig. 3.10), probably due to the numerical
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Figure 3.11: Area under curve (AUC) for four sample sizes and BLR + six UMF values.
Results based on all subsamples (except the quasi-complete separation) of the given
size. Note the vertical axis origin.

implementation rather than to the underlying mathematics®. For a quick indication of the
added value of using BLR or BBLR, we also calculated the overall accuracy if we would
use the sample mean of the observations as an estimate of the probability of ripened
subsoil. This implies that the estimated probability is constant throughout the study
area, and all subsoils are predicted either as ripened or unripened. For the different
samples, overall accuracy ranged from 0.431 to 0.568, showing that there is a clear gain
in overall accuracy thanks to the logistic modelling.

We also investigated the effect of UMF on the overall accuracy and AUC for each sep-
arate subsample, see Fig. A.1 and Fig. A.2 in the Supplementary materials, resp. Es-
pecially for the 5% subsamples (Fig. A.1d ) the influence of a more informative prior

— the validation statistics become more alike — is clear. However, there is no graphical
indication of an optimal value for the UMF based on overall accuracy. With a single
exception, AUC increases (and levels out) with increasingly informative priors for each
individual subsample (Fig. A.2).

8Perhaps, by mistake the BLR model validation is based on the median of 3 while all other models are using
its mean.
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3.4 Discussion

In this research, we applied Bayesian binomial logistic regression (BBLR) for mapping
the probability of ripened subsoils and the ripening indicator, and compared the added
value of several priors, ranging from low-informative to high-informative. We investigated
how these different priors influenced results for different numbers of new observations.

3.4.1 Mapping ripened clay soils

Fig. 3.3b and Fig. 3.6a indicate the progress of subsoil ripening in recent decades. Re-
call that the whole area of interest was unripened on the current (but outdated, several
decades old) soil map of the Netherlands. On the updated map 60% of the area has
ripened clay soils (if we apply a probability threshold of 0.5), so updating the soil map
has proved relevant. It should be noted that during sampling, incidentally land owners
did not permit access because the soil was too wet; therefore we might slightly have
underestimated the area of unripened soils.

Bayesian BLR did not offer advantages compared to non-Bayesian BLR when using
all new data: validation results (quantified as overall accuracy statistic and area under
curve) were almost comparable. However, when only a small subsample of the new
data was used, overall accuracy and AUC improved slightly when the prior was cho-
sen well. In our research, the ‘uncertainty multiplication factor’ (UMF), expressing our
trust in the legacy data, was optimal around 100 (Fig. 3.10), which means the stan-
dard deviation of the legacy data 3 should by multiplied by 10. In practice, it will be
case-dependent whether or not BBLR with a prior based on legacy data can outperform
BLR and if so, which UMF value yields the best results. When no validation data are
available, the optimal UMF value can possibly be approximated by leave-one-out cross
validation.

When comparing the results obtained with the separate samples of a given size, priors
with stronger information content (smaller UMF) make the posterior 5’s more similar
and thus more robust against outliers in the subsample (see for example Fig. 3.5, and
Supplementary results Fig. A.1 and Fig. A.2). With a very small UMF (strong informa-
tive prior), the legacy data start to dominate the new data, thus introducing a systematic
difference with the 3 as estimated from all new data.

The observations actually consist of the ripening stage in five grades per soil horizon.
These observations are used to classify each soil profile into ripened or unripened. In
this study we used this binary variable. Further research into how we can make better
use of the three-dimensional data on the ripening stage in five grades is welcomed.

3.4.2 AUC and overall accuracy as validation statistics

To our initial surprise, AUC kept increasing with increasing prior information level (Fig.
3.11). Lobo et al. (2008), Hanczar et al. (2010) warn to draw conclusions on the quality
of the result based on AUC. Marzban (2004) discourages the use of AUC for model
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calibration and model fine-tuning. Being a threshold-independent metric, AUC is insen-
sitive to changes that affect all estimated probabilities in a comparable way, for example
if all estimates collectively increase. To clarify this, let us name the observed ripen-

ing indicator y and the corresponding estimated probability 7 together an ‘estimation-
observation pair’. These pairs are sorted on the estimated probability. For illustration
see columns “y” and “m” in Fig. 3.2a. As long as the order of the estimation-observation
pairs remains the same, the ROC graph and thus AUC will not change, whatever col-
lective changes occur in the estimated probabilities. However, if individual estimates
change, the order in the estimation-observation pairs might change as well and thus
influence the AUC. Perhaps, in our situation, a more informative prior smoothens out
extreme (and unlikely) estimates, thereby increasing AUC. But the overall shift in pos-
terior 3, from new data-dominated to legacy data-dominated, might leave the order

of estimation-observation pairs intact, thus not penalizing AUC for an extreme trust in
the legacy data. A possibility to prove this hypothesis would be to try a prior in which

3 strongly diverges from the MLE 3, for example with one regression coefficient being
negative. This might cause a smaller AUC in case of a more informative prior. We con-
clude that, in our situation, AUC has limitations for model comparison, despite (or per-
haps: because of) the advantage of being threshold independent. Unlike AUC, overall
accuracy decreased if the trust in the legacy data was large (Fig. 3.10). Overall accu-
racy is maximized for an UMF around 100 — although users can make other choices
depending on priorities. For example, if only a small new data set would be available,
the trust in the legacy data may be increased to lower the risk of unrealistic estimated
probabilities on a ripened subsoil. Based on Fig. A.2d in the Supplementary materials,
a UMF between five and ten seems appropriate.

3.4.3 Quasi complete separation

Quasi-complete separation, affecting two of the twenty 5% subsamples, means that

a covariate, or a combination of covariates, can almost perfectly predict the observa-
tions; this results in a badly defined maximum likelihood estimator (MLE; Rainey, 2016).
The MCMClogit algorithm calculates the binomial logistic regression MLE variance-
covariance matrix and multiplies it by a scalar (the jump size setting parameter) to de-
rive the jumping distribution (Martin et al., 2011). The variance-covariance matrices

of the MLE for both 5% subsamples contained extreme values (i.e. >1E6), probably
resulting in a jumping proposal that is unbalanced for exploring simultaneously the di-
mensions of the 3 parameter space. For the low-informative prior (see for its definition
Section 3.3.3.1), this quasi-complete separation itself, or the unbalanced jumping pro-
posal, or the combination of the two caused an acceptance rate of about 0.05 (Table
A.3 in Supplementary results), which is much too small and leads to results that are not
meaningful. Decreasing the jump size setting increased the acceptance rate but the
mixing — visually inspected by plotting the Markov chain for each element of 3, a so-
called ‘traceplot’, was still unsatisfactory. A prior with some information increased both
acceptance rate and mixing, while using the standard jump size setting of 0.9. Trial-
and-error revealed that a not-case-related prior (Gaussian with means and covariances
of B set to zero), with all variances equal and < 20, or our case related prior (Gaus-
sian, see Table A.2 in Supplementary materials) with UMF < 10,000, contain enough
information for the MCMClogit algorithm to mix well. Thus, using a prior with a very
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modest (or stronger) information level enables estimation of a meaningful 3 for samples
with quasi-complete separation, where a (non-Bayesian) maximal likelihood algorithm
fails. Related, but not similar is the proposal from Gelman et al. (2008) to use a “weakly
informative prior”, based on general rules-of-thumb regarding regression coefficients in
binomial logistic regression to stabilize a maximum likelihood finding algorithm in case
of complete separation.

3.4.4 Bayesian perspective
3.4.4.1 Bayesian paradigm

In this research, we focussed on a practical application of Bayesian statistics. The the-
oretical and philosophical considerations of the Bayesian paradigm, related to the per-
ceived nature of probability, are outside the scope of this work; see for example Bernardo
and Smith (2009) and Lindley (2004). But, to our opinion, the general principle that the
Bayesian paradigm allows to exploit all sources of information while recognising their
information content is highly relevant to soil mapping.

3.4.4.2 Using conjugate priors

We used an MCMC-algorithm to sample from the posterior 3. Another often used ap-
proach in Bayesian statistics for finding the posterior is to apply conjugate priors. A
conjugate prior distribution is chosen in such a way that, in combination with the likeli-
hood function, the posterior distribution follows the same parametric form as the prior
distribution. The parameters of this posterior distribution can be computed analytically,
so that there is no need for sampling from the posterior. In other words, conjugancy
between prior and posterior provides an analytical rather than a numerical solution for
a posterior distribution, at the cost of limiting the possible choices for a prior distribution.
Samaniego (2010) discusses the added value of using conjugate priors in the context of
increasing computer power and software developments. For conjugate prior strategies
for binomial logistic regression we refer to Chen and Ibrahim (2003).

3.4.4.3 Using new data to adjust the prior

One might question the validity of adjusting the prior through the ‘uncertainty multipli-
cation factor’ on the basis of the new data. This might seem counterintuitive given the
concept ‘prior belief’. As we indicated in Section 3.2.2.1, literature recognizes that a
prior might be adjusted after the collection of the data (which can be considered adding
additional knowledge), but it should not repeat data that is captured in the likelihood.
Some Bayesian approaches promote an even closer relationship between data and
prior, leading to empirical Bayes and hierarchical Bayesian analysis. In our research,
we allowed the uncertainty multiplication factor to depend on the new data, while we
made a clear distinction between calibration new data (which appears in the likelihood),
and validation new data. To arrive at our statement that — in our context — an uncertainty
multiplication factor of 100 is optimal, we used the validation new data.
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3.4.4.4 Added value Bayesian approach

This research showed a potential for recycling (legacy) information using a Bayesian
approach, so that costs can be saved through collecting fewer new data. However,
expressed in overall accuracy, large new datasets still performed best. Note that we
used the full new dataset to select an optimal regression model structure. If only a small
dataset is available, other model structure selection methods have to be applied. Note
also that the differences between the models were often small on the scales of the val-
idation statistics. We did not have a probability-based validation dataset and could not
compute confidence intervals, which made it impossible to analyse whether observed
differences were statistically significant.

In follow up research’ we will include a spatially correlated term in the linear predictor
for the logit transform of the probability (Christensen et al., 2006; Diggle and Ribeiro,

2007). If there is spatial structure that is not explained by the covariates than this ap-

proach is expected to result in more accurate maps.

3.5 Conclusions

o Bayesian statistics allows combination of information sources by adding existing
information in the form of a prior distribution to new data.

e For mapping clay soil ripening in the west of The Netherlands, Bayesian binomial
logistic regression (BBLR) with a legacy data based prior yielded slightly more ac-
curate maps than binomial logistic regression (BLR), but only in case of a limited
amount of recent information (new data) available.

e To be able to use legacy data as prior, we introduced an ‘Uncertainty Multiplica-
tion Factor’, expressing our trust in the legacy data. In our case study, results (ex-
pressed in the ‘overall accuracy’ validation statistic) were optimal when standard
errors of regression coefficients estimated from legacy data were multiplied by 10.

e Surprisingly, the validation statistic Area Under Curve (AUC) was maximal if we
expressed an infinite trust in the legacy data. We concluded that AUC has limited
capabilities for model comparison.

e In the area of interest, about 60% of unripened subsoils have ripened over the
past several decades.

Supplementary materials

The supplementary materials, Appendix A., can be downloaded from the journal version
of this chapter: Luc Steinbuch, Dick J Brus, Gerard BM Heuvelink, 2018. Mapping the
probability of ripened subsoils using Bayesian logistic regression with informative priors.
Geoderma, v316, pp.56-69; https://doi.org/10.1016/j.geoderma.2017.12.010

“See Chapter 5 of this thesis, however with another dataset.



fo(B,0%, ) < 35 fo(9)

Fo(BalZ) o< [ £o(01Z)tu(Bg; Be, Bq) Ao

fo(z7[Z) 5 (z2-XB)TC ' (Zz-XB)+2B0
t — m—k+2aq N

fp(z*|z) o f¢ f(z¥z, ¢)fp(¢|z) do

f(z"[Z, )
vy =m —k+ 2aq

— p(@)xp
p(O|E) = e



Model-based Geostatistics from
a Bayesian Perspective:
Investigating Area-to-Point

Kriging with Small Datasets

Based on:
Luc Steinbuch, Thomas G. Orton, Dick J. Brus , 2020. Model-Based Geostatistics from a Bayesian Perspective:
Investigating Area-to-Point Kriging with Small Data Set. Mathematical Geosciences, v52, pp.397-423.



64 Model-based Geostatistics from a Bayesian Perspective:

Abstract

Area-to-point kriging (ATPK) is a geostatistical method for creating high resolution raster
maps using data of the variable of interest with a much lower resolution. The dataset of
areal means is often considerably smaller (< 50 observations) than datasets conven-
tionally dealt with in geostatistical analyses. In contemporary ATPK methods, uncer-
tainty in the variogram parameters is not accounted for in the prediction; this issue can
be overcome by applying ATPK in a Bayesian framework. Commonly in Bayesian statis-
tics, posterior distributions of model parameters and posterior predictive distributions
are approximated by Markov chain Monte Carlo sampling from the posterior, which can
be computationally expensive. Therefore, a partly analytical solution is implemented

in this paper, in order to (i) explore the impact of the prior distribution on predictions

and prediction variances, (ii) investigate whether certain aspects of uncertainty can

be disregarded, simplifying the necessary computations, and (iii) test the impact of
various model misspecifications. Several approaches using simulated data, aggregated
real-world point data, and a case study on aggregated crop yields in Burkina Faso are
compared. The prior distribution is found to have minimal impact on the disaggregated
predictions. In most cases with known short-range behaviour, an approach that disre-
gards uncertainty in the variogram distance parameter gives a reasonable assessment
of prediction uncertainty. However, some severe effects of model misspecification in
terms of overly conservative or optimistic prediction uncertainties are found, highlighting
the importance of model choice or integration into ATPK.

Abbreviations

au: abstract units (length); ATPK: Area-to-point-kriging; BAK: Bayesian areal kriging; BATPK: Bayesian area-
to-point kriging; FIR: Fraction inside region; GRF: Gaussian random field; INLA: Integrated Nested Laplace
Approximation; MCMC: Markov Chain Monte Carlo; ME: Mean error; ML: Maximum likelihood; MML: Max-
imum marginal likelihood; MPP: Mass preserving property; StSE: Standardised squared error; REML: Re-
stricted maximum likelihood; RK: Regression kriging; RMSE: Root mean squared error; UK: Universal kriging
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4.1 Introduction

An important challenge often encountered in scientific research is spatial prediction
using areal-support data; that is, data about the variable of interest that is available

as areal means only. Data may be aggregated for privacy protection, administrative,
technical or other reasons. Examples include data on the failures in semiconductor chip
production (White et al., 2017), cancer mortality (Goovaerts, 2006), precipitation (Park,
2013), soil properties (Kerry et al., 2012; Orton et al., 2012; Malone et al., 2009; Brus
et al., 2014), soil hydraulic properties (Horta et al., 2014) and, the motivating example
in this research, crop yields. You et al. (2009) state that, due to limited resources, in
many sub-Saharan countries crop yield information is only available sparsely and in
aggregated format, while crop yield information at a finer spatial resolution is needed

to support increasing crop productivity (see for example Orton et al. (2018)) and thereby
improve human welfare as well as ecological sustainability.

Usually, model-based spatial prediction is done using algorithms based on point support
(Diggle and Ribeiro, 2007). In the case of areal-supported input, area-to-point kriging
(ATPK) is a popular approach to create fine-scale raster maps of the variable of interest
and the corresponding prediction uncertainty (called spatial disaggregation or down-
scaling). In ATPK, regression coefficients (in the presence of covariates) and variogram
parameters (describing spatial relationships) have to be estimated, for example by a
least square estimator for the regression coefficients combined with an iterative vari-
ogram fitting deconvolution algorithm (‘method of moments’) on the regression resid-
uals (Goovaerts, 2008). More recent methods such as restricted maximum likelihood
(REML) in combination with universal kriging' (UK) (both, and from hereon, referring

to their application in the ATPK setting) consider the uncertainty in the regression co-
efficients (Webster and Oliver, 2007). However, uncertainty in the variogram model
parameters might also be a relevant source of uncertainty (Jansen, 1998; Kitanidis,
1986; Minasny et al., 2011). Truong et al. (2014) showed that variogram uncertainty can
have a substantial impact on ATPK variances. Brus et al. (2018) summarised earlier
work by Pardo-Iguzquiza and Dowd (2001) showing that uncertainty in the variogram
parameters can be quantified by the inverse Fisher matrix of the variogram parameters,
but did not integrate this uncertainty in the kriging prediction uncertainty itself. In the
Bayesian statistics paradigm, parameters can be considered stochastic rather than
fixed but unknown (Schabenberger and Gotway, 2005). From a Bayesian perspective,
REML in combination with UK considers the regression coefficients as stochastic and
subsequently integrates them out — from the likelihood function for estimation of the var-
iogram parameters as well as from the prediction®. In this paper, this Bayesian direction
is continued by successively integrating out the spatial variance parameter (analytically)
and the spatial correlation distance parameter (numerically). By applying analytical
solutions whenever possible, Markov chain Monte Carlo (MCMC) sampling from the
Bayesian posterior distribution as proposed for example by Minasny et al. (2011) is
avoided. MCMC can be computationally expensive and may, when used in a spatial
context, be difficult to converge to a posterior distribution due to correlated parameters

TUniversal kriging is in this work defined as geostatistical prediction with the trend uncertainty included and
where this trend is based on one or more covariates, which may or may not include the spatial coordinates.

2With “integrated out” | mean here: the regression coefficients are removed as such from the likelihood, but
are implicit in the prediction, and their uncertainty contributes to the prediction error variance.
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(Christensen et al., 2006). The extra effort of taking variogram parameter uncertainty
into account could be most beneficial in the case of ATPK or area-to-area kriging, be-
cause the provided dataset of areal means, from which regression coefficients and
variogram parameters at high-resolution support must be inferred, can often be limited
in size. However, taking variogram parameter uncertainty into account can also be ben-
eficial in the case of point-to-point kriging (Le and Zidek, 1992; Berger et al., 2001) and
for sampling design (Marchant and Lark, 2004, 2007).

It is not uncommon in ATPK studies to have only a small dataset of areal means and

no available relevant expert knowledge to inform model parameters (for example Brus
et al., 2018). Therefore, this research aims to provide some insight into the applicability
and behaviour of ATPK methods under these circumstances. To provide this insight, the
following questions are answered: i) What is the impact of different prior distributions

— selected to represent a lack of prior knowledge about model parameters — on the
quality of the ATPK predictions and prediction uncertainties? ii) Can some aspects

of uncertainty be disregarded, which might allow for computational benefits? iii) How
sensitive are results to misspecifications of the underlying statistical model?

In the following sections, the theoretical framework of model-based geostatistics for

areal data, the Bayesian paradigm and the combination of these are briefly introduced.

In the simulation part of this paper, REML is compared with more Bayesian approaches

to perform and assess ATPK using a simulated spatial signal, including datasets as

small as nine observations. Using real-world data, different approaches on self-aggregated
remote sensing data are tested, referred to as the synthetic case study. Finally, as the
motivating example, millet and sorghum yields, known as areal means only, are down-
scaled for each of the 45 provinces of Burkina Faso to a fine-scale grid of predicted

yields.

4.2 Theory

4.2.1 Geostatistics basics: Gaussian random field

According to the general theoretical framework of model-based geostatistics (Diggle
and Ribeiro, 2007), the spatial variable of interest is represented by a Gaussian random
field

Z ~ MVN(X B,0°C(9)), (4.1)

with MVN indicating a multivariate normal distribution; X the design matrix containing
location-specific covariate values, including a column with ones to represent the regres-
sion intercept; 3 the vector of k regression coefficients (also called trend parameters);
o in the terminology of geostatistics the partial sill variance; and C(¢) the spatial corre-
lation matrix as a parametric function of distance parameter ¢.3

SIncidentally, in this chapter | will also use the ‘nugget effect’ which is not in included in Eqn. (4.1). For
example Eqn. (5.10), page 119, shows the nugget effect added to an exponential covariance function.
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Among several other possibilities, the exponential covariance function

h(si1, Siz)) 4.2)

¢

is assumed, where il and i2 index two discrete point locations s;; and s, within the
Gaussian random field, and A(s;;, s;2) represents the Euclidian distance between those
locations, while (...);1 » means the element in row i1, column i2 of the indicated covari-
ance matrix. Spatial directional dependence is not considered. For notational conve-
nience, C(¢) is indicated by C from now on.

(P C(@))irn = T7exp (—

4.2.2 Area-to-point kriging

In the case of ATPK, the observations are m areal means

Zj z2(s)ds,je1,2,...m, (4.3)

- m sEA
together z, with z(s) an unobserved realisation of an infinite number of point values Z
in area A; and |A;| the surface area of area A}, turning Eq. (4.1) into

Z ~ MVN(X 3,02C), (4.4)

with Z the stochastic representation of observations z, X containing covariate values
averaged over the corresponding areas, and o>C the matrix with average covariances
between and within the areas. Note that 3, > and ¢ are equivalent in Egs. (4.4) and
(4.1): the parameters on point support are estimated from the areal data. Note the
absence of a nugget effect (often indicated by 72), which might represent measurement
errors and micro-scale variation, in the covariance model. Such a nugget effect cannot
be identified based purely on areal-support data. Although Truong et al. (2014) demon-
strated the potential of expert prior knowledge to help define a nugget parameter, in the
situation investigated here no such knowledge is available. This issue will return in the
discussion.

To be able to predict values z* at n* point locations s*, together with the corresponding
prediction variances v*, it is necessary to define: 1) matrix E*, the mean correlation
between points in the observation areas and the prediction points and also implicitly a
function of ¢, 2) matrix C**, the correlation matrix between the prediction points, again
a function of ¢, 3) the design matrix for the prediction locations X*, and finally 4) the
generalised least squares (GLS) estimator for 3 as given by

B _ (YTa—IY)flfrg_lz' (45)

The n* + m-dimensional distribution of the predictions and observations together can be
written as
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=

According to UK theory, the resulting prediction is given by

2 ~ X_*IB 2 c* 6*
B,o s~ MVN,y i ([ X3 }:0— (6*)7- E}) (4.6)

2,,=C C Z-XB)+XB, 4.7)

an implicit function of ¢, with prediction variance-covariance matrix

varlZ]x] =

] — e T — el — (4.8)
FPC -o*CC @Y+ X -CC XHX € X)X -CC X,
an implicit function of ¢ and 2. The diagonal of var[zf]K] is the vector of prediction
error variances, better known as the universal kriging variance 9y, for every prediction

point.

For a mathematical elaboration of the above equations, refer to Wackernagel (2014).
The term regression kriging (RK) is used later to refer to simple kriging of the trend
residuals, an approach which disregards any uncertainty in the estimated plug-in values
of the trend parameters, which results in a different kriging variance. In the following
sections, the framework presented above will be extended to a Bayesian one.

4.2.3 Bayesian statistics

In the Bayesian framework, parameters are considered random variables (McElreath,
2016). Formulated in general probability notation where ® stands for ‘parameters of
interest’ and E for evidence (observations), Bayes’ rule states that

p(®) X p(E|©)

OIE) = ,
P(O|E) o)

(4.9)
where the probability distribution p(®|E) indicates the posterior degree of belief in the
parameters given the evidence, p(®) indicates the prior degree belief in the parameters,
independent of the evidence, p(E|®) the probability of the evidence as a function of the
parameters — called the likelihood — and p(E) is the probability of the evidence. Note
that to assess the likelihood, a correctly defined probability distribution of the modelled
process is assumed. Note also that p(F) is often left out, when a proportional value for
p(O|E) is sufficient. Mathematically, p(E) equals p(E, ®) integrated over its parameters

P(E) = fp(& E)do. (4.10)
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In a Bayesian context, prediction entails formulating a distribution conditional on the ev-
idence E. Inserting the parameters in the equation shows the derivation of the posterior
predictive integral

p(PIE) = fp(P,GIE)dG
(4.11)

= fP(Pl& E)p(O|E) dO,

where P stands for the predicted values.

In the Bayesian framework, the prior p(®) needs to be defined, stating the current state
of knowledge — or, inversely formulated, the current state of ignorance — about the pa-
rameters. In many cases, a low-informative prior is desired, however formulating a prior
that ‘lets the data speak for itself’ is not always straightforward (Seaman et al., 2012;
Lindley, 2004). Also, a ‘conjugate’ prior is often chosen so that its distribution function
matches the likelihood, resulting in a closed-form description of the posterior (Albert,
2009).

For various reasons, prior distributions that do not integrate to a finite value (i.e., can-
not be normalised to integrate to one) might be considered, termed in the Bayesian
framework as ‘improper’ priors. Improper priors can result in improper (poorly defined)
posterior probability densities.

In the remainder of this paper, a posterior probability distribution — proper or not — is
indicated by f,(...]...), the likelihood by fi(...]...) and a prior distribution — again hav-
ing propriety or not — by fy(...). When the function type is ambiguous, its interpretation
depends on the context and its arguments.

4.3 Implementation

4.3.1 Partly analytical bayesian area-to-point algorithm

In this section, a partly analytical and partly numerical algorithm to execute Bayesian
ATPK is described, based on integrating out the trend and variance parameters and
systematically exploring gridded values in the correlation distance parameter space.
This algorithm is developed as an alternative to methods based on sampling from the
posterior distribution. Starting from Eq. (4.4), the likelihood of data generated by the
geostatistical model is based on the multivariate normal distribution

m 202

eniedt[c]’

1 1 _ —
fiZB. 0% ¢) = ——————exp {— (z-Xp'c 1(2 - Xﬁ)}, (4.12)

where |...| indicates the determinant.

Throughout this work, the priors for the trend, variance and correlation distance parame-
ters are given by
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1
fo(B, 0%, ¢) —f(). (4.13)

This prior represents a priori independence between the parameters with an unlimited
uniform (and thus improper) prior for the regression coefficient vector; a prior for the
variance that is equivalent to an unlimited uniform prior for In(c%), again an improper
prior; and fy(¢), for which different options are considered. It falls under the more gen-
eral formulation of Berger et al. (2001), who considered appropriate objective (uninfor-
mative) priors for the analysis of spatial point-support data.

Given the above prior and likelihood function, the joint posterior distribution for the pa-
rameters is (up to a constant of proportionality)

(B,0%.¢1Z)
1

1 N — — )1
o —————exp {—ﬁ@ -XP'C (2~ Xﬁ)} . 414

@2mi (@)% |C

Based on the above assumptions, Fig. 4.1 illustrates our partly analytical Bayesian
algorithm, Bayesian areal kriging (BAK), to infer the marginal posterior distributions of
all parameters and to calculate and summarise predictive distributions. The relevant
equations and their derivation are given in Additional material A (see page 92); the
summary stating the main equations follows in the coming sections.

4.3.1.1 Marginal posterior distance parameter

Given the joint posterior (Eq. 4.14), 8 and % are analytically integrated out to arrive at
the analytical solution for the marginal posterior for ¢ given by

1

Jo(¢lZ) < fo(d)— P 1 o (4.15)
o [X'c'X[ |e-Xprc @-Xh)|

where g is defined according to Eq. (4.5).

Numerically, BAK creates a one-dimensional grid covering the parameter space of ¢,
calculates the marginal posterior for each ¢, and normalises the marginal posterior to a
distribution that integrates to one within the bounds of the ¢ grid.
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Figure 4.1: Bayesian areal kriging (BAK) algorithm workflow. The posterior density can
be represented by one 1-dimensional and several 2-dimensional parameter grids, each
of which can be numerically integrated and normalised. The shown densities are meant
for illustration.

4.3.1.2 Marginal posterior sill

For the marginal posterior of o2, 3 is analytically integrated out from the joint posterior
(Eq. 4.14) to arrive at

F(0?3) o f fo(¢>exp{ 221[(z Xﬁ)TC (Z_Xﬁ)]} (4.16)

mk"
(02) :
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As, to the authors’ knowledge, there is no analytical way of integrating out ¢, BAK cre-
ates a two dimensional grid over the parameter space of ¢ and o> and calculates the
joint posterior for o2 and ¢ (i.e., the integrand) for every grid point; then it performs a
trapezoidal integration over ¢ and normalises to arrive at the marginal distribution for o>.

4.3.1.3 Marginal posterior regression coefficients

The marginal posteriors of the individual regression coefficients 3,, ¢ = 1..k are based
on the joint posterior for the vector 3

1

Fr(BIZ) o f Jo(®) dg. (4.17)

=k |z-Xp7C ' z-Xp)

The integrand here can be shown to be proportional to a multivariate ¢ di§tribution (Roth,
2013) for B with m — k degrees of freedom, location (vector) parameter 3, and scale
(matrix) parameter

_G-Xp'C z-Xp

(YTE_IY)—I. (4.18)
m—k

X

This integrand can be marginalised to a scaled ¢-distribution for the individual regression
coefficients, as an implicit function of ¢, and rearranged to give

(B2 f o@D By By Eg) dp (4.19)

with f,(¢[z) as indicated in Eq. (4.15) and where

. Il +1)/2 1 X L O
t(Bgi By Zg) = v+ D] 12 [1 +— By = B2 By~ By) (4.20)
T(v/2)(vm)! 2 [z, v

defines a t-distribution for 8, with degrees of freedom v = m — k, location parametequ
and scale parameter X, the gth element on the diagonal of 35. Note that the variance of
this r-distribution is X,v/(v - 2).

Similarly to Sect. 4.3.1.2, BAK creates two-dimensional grids covering the parameter
spaces of ¢ and g, (for all g) and applies the trapezoidal rule to calculate the integral
over ¢ in Eq. (4.19); finally, it normalises to get the marginal distributions for each indi-
vidual g,.
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4.3.1.4 Posterior predictive distribution

The conditional distribution for the variable of interest, given the data and any particular
value of the distance parameter, f(z*|z, ¢), is a r-distribution with degrees of freedom

v = m — k, with location parameter Z*|¢ — an implicit function of ¢ — already given in
Eqg. (4.7), and with scale parameter as provided in Eq. A85 in Additional material A (see
page 92). The variance of this conditional distribution, also a function of ¢, is given by

m-k (2-XB)'C z-XA)
m-k-2 m—k (4.21)
x{cr-CT'@V+(x-CC HX €' XX -CT X,

var[£*|¢] =

Note that Eq. (4.21) is an increased universal kriging variance (see for comparison
Eq. (4.8)) because the uncertainty in 0% is also considered — hence the increment ex-
pressed in the first fraction. The second fraction equals the REML estimate for o given

@.

The posterior predictive distribution is defined as an integral of the above conditional
distribution with respect to the posterior distribution of the distance parameter,

fr(Z7[2) = Lf(Z*IE, $)fp(912) do, (4.22)

which is numerically approximated. BAK first creates for each prediction point s* a vec-
tor of predictions and a vector of corresponding prediction variances, both as a function
of ¢. Finally, the algorithm calculates the mean and variance of the posterior predictive
distribution (or, more formally, of a finite mixture distribution that approximates this distri-
bution, with weights defined based on f,(¢|z) and the spacings of the ¢ parameter grid).
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4.3.2 Methodological details

In this chapter, a number of increasingly Bayesian approaches to ATPK are applied and
compared (Table 4.1. The first three rows of the table represent plug-in approaches for
some of the parameters (i.e., the stated parameters are first estimated, by maximising a
likelihood or marginal likelihood function, before being plugged into the relevant predic-
tive distribution equation for prediction), while the final row represents the fully Bayesian
approach. In the case of maximum likelihood estimation (ML, and not implemented

in this work), all parameters (in the geostatistical context: regression coefficients and
spatial covariance parameters) are estimated by analytically or numerically maximising
the likelihood. This general approach was consolidated by Fisher almost a century

ago (Stigler, 2007) and applied in geostatistics for example by Kitanidis (1983) and
Lark (2000). REML, which has been advocated for several decades in geostatistics, is
based on a likelihood function for a set of projected data rather than the original data,
and gives conditionally unbiased estimates for the spatial parameters (Webster and
Oliver, 2007; Lark and Cullis, 2004); see also Sect. A2 in Additional material A . REML
represents a form of marginal likelihood (a likelihood function in which some parameters
have been marginalised), and has been presented in a Bayesian framework as such
(the integral of the likelihood function with respect to the trend parameters, assum-

ing a flat improper prior for these parameters) (Harville, 1974). Note that f,(3) can

be considered an uninformative prior when neglected — this is often valid for centrality
parameters but not for other parameters. Underpinning the same approach, UK takes
the uncertainty in the trend coefficients into account, making it a logical combination
with REML. Within this research, the combined application of REML and UK is indicated
by ‘REML approach’.

The next gradation towards the fully Bayesian approach is maximum likelihood with both
trend and variance integrated out, in the context of this paper indicated by the generic
term ‘maximum marginal likelihood’ (MML).

Finally, the full Bayesian approach (also referred to as ‘Bayesian approach’) provides a
posterior distribution of all parameters, while in the prediction all parameters are inte-
grated out and the uncertainty of all parameters is taken into account.

In the following sections, REML, MML and the Bayesian approach are compared, and
for the Bayesian approach different priors for ¢ (as defined in the following section) are
applied. All algorithms (including the central BAK algorithm as presented in Fig. 4.1) are
written in the statistical programming language R, and are available at Steinbuch et al.
(2019).
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Table 4.1: Geostatistical approaches from maximum likelihood to full Bayesian.
Corresponding to their universal kriging counterparts, 25, and oy, indicate the
regression kriging and regression kriging variance respectively.
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4.3.2.1 Prior distributions for ¢

For fo(¢), three potential forms of prior distribution are compared, intended to repre-
sent limited prior knowledge. These are: 1) a uniform prior with limited bounds; 2) the
reference prior as suggested by Berger et al. (2001) for analysis of point-support data,
applied in the context of areal-support data, and explained in Online Resource B*; and
— in the simulation ensemble — 3) an inverse-gamma distribution. The bounded uniform
and the inverse-gamma distributions are proper; the assumed propriety of the reference
prior will be discussed later.

4.3.2.2 Estimation and prediction with REML and MML

For REML, the approach as described by Brus et al. (2018) was applied. For MML,

the posterior mode of ¢ was calculated using the Bayesian approach with a uniform
prior for ¢. Then, the predictive distribution was defined conditionally on this value of ¢.
Mathematically, this equals integrating out 3 and o> to arrive at an estimated ¢, which is
successively used as a single plug-in value for MML prediction; the mean and variance
of the predictive distribution (representing the prediction and prediction variance) are
shown in Table 4.1 and Egs. (4.7) and (4.21).

4.3.2.3 Estimating average covariances

The average correlation matrices, C and 5*, can be approximated in different ways. In
this research, many discretisation points within each area are defined and the relevant
Euclidean distances between those points are calculated, followed by construction

of the corresponding correlation matrix, based on the correlation function — such as
given in Eqg. (4.2) — and distance parameter ¢. Then, all correlations per area-area
combination are averaged to arrive at C, and per area-prediction point combination to
arrive at C . The discretisation points were on a regular grid in the simulation study, and
selected by simple random sampling in the two case studies.

4Online resources B..F can be found in the journal version of this chapter: Luc Steinbuch, Thomas G. Orton,
Dick J. Brus , 2020. Model-Based Geostatistics from a Bayesian Perspective: Investigating Area-to-Point
Kriging with Small Data Set. Mathematical Geosciences, v52, pp.397—423.; https://doi.org/10.1007/s11004-
019-09840-6
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4.3.2.4 Validation

To quantify the performance of each approach — for the simulation study and synthetic
case study, where the original point data were available — the predictions z* and predic-
tion uncertainties v* were assessed in relation to the original signal z. As an indication
of the quality of the prediction, the root mean squared error (RMSE) defined as

R o e
RMSE = J” Z {z(s)) — 2*(s)} (4.23)

i=1

was calculated, where a smaller number indicates more accurate predictions (Oliver

and Webster, 2014). For comparison, a baseline approach was also included, for which
point predictions were defined simply by the areal mean data for the corresponding

area. Unbiasedness of predictions was tested using the mean error (ME),

Ly {z(si) — 2°(s1)}. The mass preserving property (MPP) of the predictions was checked,
which states that, in the case of ATPK, the mean of all predictions in any observed area
should equal the observed areal mean (Kyriakidis, 2004). This check was summarised

by showing the maximum observed difference between areal-average data and the

mean of the corresponding predictions.

As an indication of the quality of the prediction uncertainty, a motivating factor for this
work, the standardised squared error (StSE) defined as

N a2
{Z(sl) Z (Sl)} (424)
vi(si)
was calculated. This StSE should ideally have a mean of one (Lark, 2000). Higher val-
ues indicate an underestimation of uncertainty, which is labelled ‘optimistic’, and lower
values indicate an overestimation of uncertainty, labelled ‘conservative’.

StSE(s;) =
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4.4 Simulation study

The following shows a single one-dimensional simulation where REML and full Bayesian
(defined with fy(¢) ~ uniform) are compared for illustration purposes. Following the illus-
tration, an ensemble of many simulations is applied to assess several settings. Online
Resource D contains similar results for two-dimensional simulations.

4.41 Single simulation

4.41.1 Simulated dataset

A line of length 300 abstract units (au) was created, and filled with n = 600 equally
spaced nodes. Using the exponential covariance function, a spatially correlated signal
(with a zero-nugget exponential model; ofim =5, ¢um = 60) was generated and added
to the trend of a linear function of the coordinate (8, = 0 for the intercept, Basim = 0.02
for the slope on coordinate). For the Bayesian approach, fy(¢) ~ uniform was used,
bounded by ¢;,, = {10, 300}; these bounds also defined bounds for the REML parameter
search. The priors for 3 and o are provided in Eq. (4.13). The above settings are re-
ferred to as the standard settings. The line was split into m = 10 equal one-dimensional
‘areas’ or line sections. Finally, both z and the covariate over the areas were averaged

to arrive at the observed means z and the averaged design matrix X.

4.41.2 Results

The original signal (assumed to be unobservable, and represented as point values),
the areal means (the ‘observations’) and the predictions are shown in Fig. 4.2. The
difference between the REML and the full Bayesian approach is mainly in the prediction
uncertainty: the Bayesian approach gives a slightly larger prediction interval.

The marginal densities in Fig. 4.3 show that, based on this — small — simulated dataset,
it is rather difficult to identify the distance parameter ¢, which has a very flat mode.

The REML estimates for ¢ and o (point values) are close to the modes of the respec-
tive marginal posteriors from the Bayesian approach. For the trend parameters, the
marginal Bayesian posterior distributions are slightly skewed and wider than the cor-
responding distributions based on REML (Gaussian distributions parameterised by the
GLS estimate and estimation variance), indicating that more uncertainty is included.
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Figure 4.2: One simulation and resulting predictions, selected for illustration purposes.
The predictions of REML and Bayesian with uniform prior for ¢ coincide largely, but
Bayesian shows a larger prediction uncertainty. Distance is measured in abstract units

(au).
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Figure 4.3: Marginal posterior distributions of spatial parameters o (a) and ¢ (b), and

of the two trend parameters 3, (c,d), resulting from the single run with

Bayesian-uniform approach. REML parameter estimations and the data simulation

settings (i.e. the true values) are also shown.
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The pairwise joint posteriors (¢ with each other parameter) are shown in Fig. 4.4: o2
and ¢ seem to have a positive correlation (subfigure a), while 8; has a slightly negative
correlation with ¢ (b) and 8, a slightly positive correlation (c).

a I Posterior density C
X REML
300 N
- Simulation 300
200 — 200 —
) [}
100 — 100 —
0 T T T T O 77—
0 5 10 15 20 -0.02 0.02 0.06
o? B1 B2

Figure 4.4: The joint posterior distributions of the spatial parameters o> and ¢ (a), and
of the two 3 elements with ¢ (b,c). REML parameter estimation and the data simulation
settings are also shown. The grey shade is an indication of the posterior probability
density (the darker, the larger).

Figure 4.5 shows the variogram models obtained with REML and the Bayesian-uniform
approach.

Table 4.2 shows the validation results of this single simulation. The quality of the pre-
diction (RMS E) is almost equal for the REML and Bayesian approaches, and better
than for the baseline approach. The ME and max(MPP) are close to zero, indicating
the absence of bias, and a discretisation grid (which is different from the prediction grid)
of sufficient density to provide good approximations of areal-average covariances and
areal-average values of covariates. The uncertainty validation value mean(StSE) shows
that REML is on average optimistic, while the Bayesian approach is conservative. Note
that the baseline approach does not provide a quantification of prediction uncertainty.

Table 4.2: Results of single simulation run with validation on original data points.
REML.: restricted maximum likelihood; StSE: standardised squared error; ME: mean
error; RMSE: root mean squared error; max(MPP): maximal found deviation from the
mass preserving property.

mean(StSE) RMSE ME max(MMP)

REML 1.169 0.585 0.000 0.009
Bayesian-uniform 0.827 0.588 0.000 0.009
Baseline - 0.666 0.000 0.000
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Figure 4.5: Variogram model as estimated by REML and Bayesian-uniform models (for
several value combinations of o> and ¢) shaded according to their probability densities.
The empirical residual variogram is added for reference.
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4.4.2 Simulation ensemble

In this section, results are generalised by generating many simulations, varying only
the random number seed, while comparing validation statistics on the outcomes of
several approaches: REML, MML and full Bayesian with the three different priors for ¢
indicated earlier. The applied inverse-gamma prior for ¢ is set as somewhat informative
with shape = 11 and rate = 600. This results in a mean of 60 au, emulating a situation
where decent prior knowledge about the range is available. Also, the number of obser-
vations m is varied by dividing the line into m sections of equal length; this together is
one ‘session’. Furthermore, to investigate how the approaches behave for differently
simulated datasets and different inference settings, both are varied into an ‘ensemble’ of
many sessions. The settings as used in standard session 1 are given in Sect. 4.4.1.1.
Sessions 2 and 3 vary the upper bound for the uniform prior and for the REML and
MML searches for estimation of ¢ in comparison with standard session 1 (where ¢ =
300au). In session 4, the trend is removed (so that the inferential model has to infer

the mean only); in session 5, the trend is based on a separate Gaussian random field
(GRF) rather than on the coordinates. Sessions 6, 7 and 8 introduce a misfit between
the simulation model and the inferential model, where the correlation function in the sim-
ulation model is changed or a nugget component is added — the inferential model stays
unchanged. Finally, sessions 9 and 10 show the effects of a misfit between the actual
signal and the support of the available data (i.e., short or very long distance parameter
used in simulation compared to the area sizes and total extent), which might make it
difficult to identify parameters.

Table 4.3 presents the results expressed as the average (and, in small font, the corre-
sponding standard deviation) over 250 means of the standardised squared error
(mean(StSE)). Table D1 in Online Resource D shows the results of the analogous two-
dimensional simulations. More validation statistics and assessments about ¢ and o
for the simulation ensemble can be found in Online Resource C, which also includes
m = 15 and m = 30 for the one-dimensional simulations, and in Online Resource E for
the corresponding figures of the two-dimensional simulations.

4.4.2.1 General results

Referring to Online Resources C and E, the maximal difference with respect to the
mass preserving property (max(MPP)) ranges between 0.09 and 0.28 in the case of the
two-dimensional simulations. In the one-dimensional case, max(MPP) is much smaller.
With all approaches in all simulations, the ME was small. The RMS E was, for a given
simulation, almost equal for all, but the baseline approach was, on average, larger. The
main difference between the approaches was in the prediction uncertainty (assessed by
StSE).

The standard session 1 in Table 4.3 shows that m = 10 caused REML to be optimistic,
while the Bayesian-uniform approach was less optimistic, Bayesian-inverse-gamma
was closest to one (perhaps due to the knowledge captured in the prior distribution

for ¢), MML was slightly conservative and Bayesian-reference very conservative. With
increasing m, all mean(StSE) approached one, while the corresponding sd(StSE) de-
creased. Even with m = 20, the differences between approaches and the deviation from
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Table 4.3: Mean standardised squared error (mean(StSE)) for the one-dimensional
simulation ensemble, comparing restricted maximum likelihood (REML), maximum

marginal likelihood (MML) and three full Bayesian approaches with different priors for ¢.
Colours are used to highlight larger and smaller values for the readers’ convenience.

Session m  REML MML  InvGam Uniform Reference

10 12545 09412 09910 1.07 12 0.40 os2

1: Standard Settings 20 1.05047 0.93 oas 0.98 039 1.02 041 0.72 035

50 1.0102s 09702z 0.9902 1.01 02 0.93 025
2: Small upper limit: 10 1.194s5 0.89 11 0.87 096
= 100 20 1.0304 0.91 040 0.92 057
" 50 1.0102s 0.97 026 0.98 025
3: Large upper limit: 10 12617 0.95 12 1.20 1.3
B = 2000 20 1.05047 0.93 042 1.07 043
! 50 1.0202s 0.97 02r 1.03 027

4 Trend is Gaussian 10 1291 09710 0.9607% 1.07 0 0.51 oss

Random field 20 1.07046 09504 0.9705r 1.0204 0.79 038

50 1.0302 0.99022 1.0002 1.0202 0.96 025

10 12615 0.98121 0.970ss  1.09 111 0.54 oss

5: No trend 20 1.07 04z 0.96 042 0.97 os7 1.03 041 0.82 039

50 1.03028 09802 0.9902 1.0202 0.96 025

6: Matérn simulation, 10 0.1401¢ 0.10011  0.10011  0.10 o 0.05 005

smooth: v =2 20 0.04003 0.04003 0.03002 0.04 003 0.03 002

o 50 0.0100t 0.01001 0.01 001  0.01 oo 0.01 o0t

7: Matérn simulation, 10 2.78 240 2.091s7 242176 2.56 191 0.89 078

unsmooth: vo. = 25 20 257140 22912 2.67 112 2.70 121 1.68 109

s 50 2510 24100 2730 2.68070 2.25 070

10 34535 25926 2.78 221  2.99 249 1.09 105

Sz' /idlded nugget: 20 47021 41719 44315 45910  3.21 1e

50 7.1941s 6.891s 7.34 11 7.36 150 6.57 115

9: Extreme short range 10 4.9060¢ 3.684ss 5.7242¢  5.71 455 1.62 152

in simulation: ¢, = 5 20 283911 21319 3.241s 3.021s 1.01 oss

sim 50 15104 1.4503 1.72 048 1.61 o045 0.92 042

10: Extreme Iong range 10 1.01 070  0.76 050 0.77 os6 0.85 o6t 0.32 025

in simulation: 20 0.9904 0.880sr 0.87 o35 0.983 os7 0.69 o34

Dsim = 600 50 1.0002z 0.96026 0.9502 0.98 025 0.91 024

one became small, except for the Bayesian-reference approach. The results for two-
dimensional simulations were similar, although differences between approaches were a
bit larger for m = 9 and deviations from one were often still substantial for m = 25.

4.4.2.2 Changing uniform prior for ¢ (sessions 2 and 3)

Sessions 2 and 3 vary only in the upper bound of the uniform prior for ¢ (au = 100 and
2000 respectively) used as the basis for inference, rather than in the simulating model;
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for comparison, the same bounds in the REML and MML parameter searches were
applied. Note that Bayesian-inverse-gamma and Bayesian-reference results (see

Sect. 4.3.2.1), having their own bounds, are not repeated here. Also recall that the
extent of the simulated dataset was 300 au. The seemingly arbitrary choice of the upper
bound of the uniform prior for ¢ influenced the results, especially with few data (small m)
and with the two-dimensional simulations (see Online Resource D).

Although MML and the Bayesian-uniform approach use the same range of possible ¢
values, MML was far less influenced by the upper bound for its parameter search. The
proportion of ¢ values (estimated by REML and MML respectively) that were very close
to the upper and lower bounds are also given (Online Resource C/E). Interestingly, in
the case of a larger upper bound (session 3) the fraction of REML-estimated ¢'’s close
to the unchanged lower bound was larger than in session 1, while the fraction of MML-
estimated ¢’s close to the lower bound stayed the same.

4.4.2.3 Varying simulation trend (sessions 4 and 5)

The trend on the spatial coordinate (the standard) was also compared with a trend that
was a simulated GRF itself (8; = 0,8, = 2,72 = 0, 0> = 0.5, ¢ = 30), session 4, and
with a constant mean, session 5. In both cases, the form of the trend (i.e., the design
matrix) was assumed known for inference and prediction. The only difference between
the sessions was the means: the simulated error signals for sessions 1 to 5 were iden-
tical. Compared with a trend on the coordinate, both the GRF trend and a constant
mean gave only minor differences in mean(StSE); this also held for the two-dimensional
simulations.

4.4.2.4 Misspecified model (sessions 6, 7 and 8)

In sessions 6 and 7, the error signal was simulated using a Matérn covariance function
with large and small values for the smoothness parameter v;, (not to be confused with
the degrees of freedom v of a t-distribution used earlier). The inference in these ses-
sions was still based on the exponential covariance model, which equals the Matérn
model with v, = 0.5. These sessions were designed to provide a test of how the
methods deal with a misspecified inferential model. The large v,;, in session 6 caused
all mean(StSE) to be far too conservative, with the Bayesian approaches slightly more
conservative, and with average mean(StSE) values becoming smaller with increasing
m. In the two-dimensional simulations, the values stayed considerably closer to one.

A small vg;,, as shown in session 7, caused almost all results to be optimistic. With
increasing m, the mean(StSE) did not converge towards one, but rather seemed to
stabilise at an optimistic value. With a nugget component added to the simulated data
(session 8; with nugget-sill ratio 1/6), all approaches were optimistic (except Bayesian-
reference and m = 10, and its two-dimensional counterpart with m = 9), and the
average mean(StSE) increased with m in the one-dimensional simulations. In the two-
dimensional simulations, the relation between m and mean(StSE) was ambiguous.
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4.4.2.5 Simulation with extreme distance parameter (sessions 9 and 10)

If the distance parameter used for the simulations was very small in relation to the areas
under consideration, such as in session 9, all approaches seemed to be quite opti-
mistic, but this effect strongly decreased with increasing m. The worst performer was
the Bayesian-inverse-gamma, where information encapsulated in fy(¢) now mismatched
the simulation model, although Bayesian-uniform also performed badly. The Bayesian-
reference approach performed best. In the two-dimensional simulations, values were
more extreme, especially form = 9. When, as in session 10, the distance parameter
was large compared to the total extent under consideration, REML performed almost
perfectly while other approaches tended to be slightly or fairly conservative, but im-
proved with increasing m.

4.5 Case studies

4.5.1 Synthetic case study: vegetation index data, with validation
on point support

To briefly investigate how REML, MML and full Bayesian would perform for a real-world
dataset, a remote-sensing vegetation index, CFAPAR-27, was used as the variable of
interest. These data are used as a covariate in the real case study (spatial prediction

of crop yield in Burkina Faso, Sect. 4.5.2) and therefore concisely described in Online
Resource F. This spatial variable is, obviously, available on pixel support. The CFAPAR-
27 data were masked using the crop yield mask (see also Sect. 4.5.2), and subse-
quently aggregated over the 45 provinces of Burkina Faso. As covariates for inference,
two climate variables broadly representing rainfall and temperature (CRAIN-EC-27 and
TMIN-EC-21) and one variable representing soil pH (PHAQ) were used. Gaussianity for
all real world variables of interest was assumed.

ATPK was applied using four approaches: 1) REML, 2) MML, 3) the full Bayesian ap-
proach using the uniform prior for ¢, and 4) the full Bayesian approach using the refer-
ence prior for ¢. For REML and MML, the parameter search for ¢ was bounded between
37 km and 300 km, being roughly the smallest distance between the centres of any

two areas, and one third of the largest extent of the region of interest, respectively. The
same bounds defined the uniform prior for the full Bayesian approach.

The resulting mean(StSE) was 2.87, 2.73, 2.92 and 2.59 for the REML, MML, Bayesian-
uniform and Bayesian-reference approaches respectively, showing that prediction un-
certainty was seriously underestimated by all approaches. The mean(StSE) of the Bayesian-
uniform approach could be changed by several tenths by adjusting the bounds of the

uniform prior. All RMSE values for the four approaches were around 6.19 (compared

with the baseline approach RMSE of 16.54), indicating that they offered the same pre-
diction quality and probably quite similar predictions.
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4.5.2 Real case study: crop yield data

As a real-world case study, this paper predicts yields of sorghum and millet, both cereal
staple foods, in Burkina Faso, West Africa. The observation areas are the 45 provinces,
for which the average yields only are known (averaged over the years 2000-2013, and
provided by AGRHYMET), as shown in Fig. 4.6 for millet. Covariates for the trends as
suggested by Brus et al. (2018) are used: for millet no covariates, and for sorghum four
covariates are shown and briefly explained in Online Resource F.

REML, MML, Bayesian-uniform and Bayesian-reference approaches were applied,
with similar settings to those of Sect. 4.5.1 in the previous analysis of the vegetation
index data. The observed millet yields, and the resulting predictions and prediction
uncertainties (standard deviations of the predictive distributions) when applying MML,
are presented in Fig. 4.6; maps are presented first over the entire study region, then
focused on a subregion to reveal more detail. Similar maps for sorghum are presented
in Online Resource F.

Figure 4.7 (page 88) shows the densities of the millet yield predictions and prediction
standard deviations based on all four approaches, indicating that the Bayesian and, to

a lesser extent, MML approaches generated larger prediction uncertainties than REML.
For sorghum (see Online Resource F), the Bayesian-reference calculated prediction
diverted from the other approaches, due to the tendency of the distance parameter to
move as close as possible to zero; the applied lower bound for the uniform prior for ¢
and for the REML and MML parameter searches imposed a limit on this effect. This
shows again that a seemingly arbitrary choice of a uniform prior or of a parameter range
for REML or MML might influence the resulting prediction uncertainty.

4.6 Discussion

4.6.1 Setting uniform prior

Both in the simulations (Table 4.3 and Online Resource C) and in the case studies, the
choice of the upper and lower bounds of a uniform prior for ¢ can influence the predic-
tion uncertainty, especially (but not exclusively) with smaller datasets and if the posterior
mode of ¢ coincides with one of the bounds of the prior. This effect can also occur with
REML and MML approaches, where the search for the optimum value of ¢ is bounded
by the same limits. It should be stressed that, in this context, this ‘flat’ uniform prior can-
not be considered uninformative. The fact that the posterior modes of ¢ (resulting from
Bayesian approaches), or ¢ (from the REML approach), often coincided with one of the
bounds (for example see the ‘¢, mode(¢) ~ min, max’ columns in Online Resources

C and E, but also sorghum in the case study) highlights the importance of carefully
considering such prior or parameter search settings in geostatistical practice.

4.6.2 Reference prior

According to the simulations, the reference prior did not perform well, being in many
cases too conservative about prediction uncertainty, and pushing posterior distributions
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Figure 4.6: Millet case study. a) millet yields per area, averaged over the years 2000 to
2013; source: AGRHYMET (Traore et al., 2014). b) Predicted yields and c) prediction
uncertainty, both from the MML approach. Subfigs. d), e) and f) show corresponding
map details from the south-western part of Burkina Faso.

of the distance parameter too strongly towards zero (see also Online Resources C and
D). In the case of small v, or T?im > 0, this conservatism compensated to some extent
for model misspecification. Berger et al. (2001) derived the form of the reference prior
for analysis of spatial point-support data, and the same logic was applied — with area-to-
area average correlations replacing the point-to-point correlations of Berger et al. (2001)
— to justify a similar prior for analysis of areal-support data. However, although the logic
to derive the form of the prior follows analogously, the authors are unsure of the analo-
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Figure 4.7: Densities of predicted millet (a) and associated sd of prediction errors (b) in
Burkina Faso, with restricted maximum likelihood (REML), maximum marginal likelihood
(MML), Bayesian with a uniform prior for the distance parameter and Bayesian with the
reference prior.

gous logic to ensure propriety of the resulting prior and posterior distributions. As such,
even if the simulations would have demonstrated a strong advantage, it would require
further work to derive the required proofs of propriety. With the simulation results not
demonstrating strong advantages, other priors for ¢ are currently recommended.

4.6.3 Misspecified model

Validation statistics about prediction uncertainties are very sensitive to the misspeci-
fication of variogram parameters that determine the smoothness of the spatial signal.
Examples are the nugget parameter and the smoothness parameter of the Matérn co-
variance function, as demonstrated in the simulation sessions 6, 7 and 8 and, in my
opinion, in the vegetation index synthetic case study. Short-range spatial relationships
are however difficult, if not impossible, to assess if only areal means are available. Sit-
uations with areal data combined with some high-density point data could improve the
results, see for example Moraga et al. (2017); another approach would be to use prior
information, such as expert opinions, for the nugget (Truong et al., 2014). In cases in
which more summary data per area are available than only the mean, Orton et al. (2012)
proposed a method for incorporating this information. In this situation, the exponential
covariance model without a nugget was applied for convenience, as is often the case in
comparable research; this is however a quite arbitrary choice and, given the results, a
careful consideration of all model parameters that determine the smoothness of realisa-
tions is suggested for future research.
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4.6.4 Number of observations

In simulation sessions 6, 7 and 8 (very smooth or very rough simulated signals),
mean(StSE) did not converge to one with an increasing number of observations m as
might be expected, and actually diverged away from one in most cases. Therefore,
more data do not alleviate a poor choice of model. Furthermore, in the simulation setup,
increasing m had the side effect of decreasing the size of the individual areas, which
might also have influenced this behaviour due to short-range variations becoming better
observable.

Very small datasets (nine or ten observations) were analysed in the simulations. The
main point of interest was to see how the different approaches behave in such extreme
situations, assessed by taking averages over many simulations. The authors stress that,
even when using a Bayesian approach, any geostatistical conclusion based on nine

or ten observations should be interpreted with caution, perhaps except if strong and
honest prior information is available and can be incorporated.

4.6.5 One-dimensional versus two-dimensional simulations

The effect of simulation choices and statistical inference approaches was quite similar
in the one-dimensional and two-dimensional simulations. Differences might be due to
different mutual spatial relationships. For example, for the two-dimensional simulations
with nine observations, the closest pairs of units have centroids separated by 100au.
For the one-dimensional simulations with ten observations, neighbouring units’ cen-
troids are separated by 30au. Therefore, despite there being an almost equal amount
of data, there is much more short-range information in the one-dimensional data in the
used setup. This might explain the extremely large mean(StSE) values in session 9 of
the two-dimensional study (up to 49.2) compared to the less extreme values in the one-
dimensional study (up to 4.9).

The approximation of the average covariance matrices might have been less successful
for the two-dimensional simulations. This would explain the relatively high max(M PP)
and the unexpected irregular spatial pattern of the prediction error sd (see Online Re-
source D, Fig. D1 d).

4.6.6 The algorithm

Although the authors did not compare the used approach with more conventional MCMC
methods, it proved an effective and efficient way of performing Bayesian (and also MML)
spatial data analysis in the presented area-to-point context. As indicated in Sect. 4.3.2.3,
several different methods can be used to approximate the average covariance matrices.
For example, the Legendre-Gauss quadrature — as described by Orton et al. (2017) —

is computationally and memory-wise much cheaper, but perhaps less accurate than

the applied discretisation points method. Both methods, including some variations,

are included in the code, as is area-to-area kriging. Future extensions might include
directionality and point-to-point kriging.
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The Integrated Nested Laplace Approximations (INLA) alternative to MCMC (Blangiardo
et al., 2013) has some similarities to our partly analytical Bayesian approach, such

as a gridded search in parameter space and numerical integration. However, it uses
Laplace approximations of some integrals and is applicable to a much wider range of
models, including hierarchical ones. Furthermore, its spatial implementation assumes
the Markovian property on the spatial Gaussian random field (meaning that any point or
area in the region is only influenced by its immediate neighbours), leading to sparse
covariance matrices and thus reductions in computational costs. In our opinion, our
approach offers specific and transparent insights into the Bayesian approach of model-
based geostatistics. For future research, however, it would be interesting to redo the
calculations with INLA, or to integrate some of the sophisticated and cost-reducing
details of INLA into the code.

4.6.7 General remarks

The general impression obtained from the ensemble of simulations is that REML tended
to underestimate prediction uncertainty the most, followed by Bayesian-uniform. The
Bayesian-reference approach tended to be more conservative, while MML was slightly
conservative but seemed relatively stable. The differences between the approaches
decreased with increasing m.

Given a covariance model that is more or less accurate in terms of short-range be-
haviour, the conclusion is that, for datasets of sufficient size, or if a slight underestima-
tion of prediction uncertainty is allowed, the REML approach as demonstrated by Brus
et al. (2018) should be sufficient. For smaller datasets with no prior information avail-
able, the most robust and in many cases best approach, although somewhat conser-
vative, appeared to be MML. An additional advantage of MML is its relative insensitivity
to arbitrary choices such as bounds on the correlation distance parameter. In several
sessions, MML even outperformed Bayesian-inverse-gamma when the supplied prior
information about ¢ was correct. Finally, MML has additional computational benefits for
prediction over the fully Bayesian approach.

The authors suggest focusing future research on modelling short-range variation and
including a smoothness parameter in the inferential models. Using honest and informa-
tive priors — depending on the research question at hand — might also yield interesting
results. The Matérn smoothness parameter v;, could be made an integral part of the
Bayesian model, or alternatively incorporated as an extra model parameter to be opti-
mised in an MML approach, which could then be used as a plug-in value for prediction.
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4.7 Conclusions

All tested geostatistical approaches for ATPK (REML, MML, and Bayesian with different
priors for the distance parameter) provided very similar predictions, but were different

in the prediction uncertainties, with REML slightly underestimating the uncertainty in
the case of very few data. Prediction uncertainties are quite sensitive to the parameters
determining the smoothness of the spatial signal (i.e., nugget and smoothness parame-
ter of the Matérn covariance function). Given correctly modelled short-range effects, for
datasets of sufficient size, or if an underestimation of prediction uncertainty is allowed,
the REML approach as demonstrated by Brus et al. (2018) is satisfactory. The MML
approach (maximum likelihood with trend and variance integrated out) provided accept-
able results while being relatively robust to arbitrary settings for the parameter search.
Also, this approach does not need a choice of prior for the distance parameter. A useful
and robust full Bayesian approach could not be accomplished, perhaps due to the lack
of a good uninformative prior for the distance parameter of the covariance function;

the reference prior as proposed by Berger et al. (2001) overestimated the prediction
uncertainty in most cases. For real-world case studies, the demonstrated algorithms
can be used.

Supplementary materials

Additional material A (Derivation of marginal posteriors and posterior predictive distribu-
tions): see page 92

Online Resource B: Reference Prior

Online Resource C: Results One-dimensional Simulation Ensemble

Online Resource D: Example Two-dimensional Simulation, and mean(StSE) of Two-
dimensional Simulation Ensemble

Online Resource E: Results Two-dimensional Simulation Ensemble

Online Resource F: Case Study Covariates Sorghum, and Results Sorghum

Online resources B..F can be found in the journal version of this chapter: Luc Stein-
buch, Thomas G. Orton, Dick J. Brus , 2020. Model-Based Geostatistics from a Bayesian
Perspective: Investigating Area-to-Point Kriging with Small Data Set. Mathematical
Geosciences, v52, pp.397—423. DOI: 10.1007/s11004-019-09840-6 .

The used R-scripts are provided by Steinbuch et al. (2019); the spatial real world dataset
is available upon request.
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4.A Additional material A

4.A.1 Introduction

In this additional material, we will — additional to the main manuscript — explain the math-
ematics of the provided marginal posteriors and posterior predictive distribution, and
connect the mathematics to the implementation in the BAK (Bayesian areal kriging) R
code.

We assume that the point-support variable is multivariate Gaussian with mean X 3 (de-
sign matrix times regression coefficients vector) and covariance matrix entries c>C'(h; ¢)
where C(h; ¢) is the correlation function of separation distance h with the single dis-
tance parameter ¢. Note that since the nugget provides no contribution to the likelihood
function, it is not included in this work.

The full likelihood function for these parameters, with areal-support rather than point-
support data, is given by:

fiZIB, 0%, ¢) =

exp {— L z-Xp)c - Yﬁ)} . (4.25)
eniE)i[C

3 202

with: z the m areal averages, X the design matrix based on area average covariates),
C the mean correlation matrix, with entries given by the means of the point-support
correlations — or the approximations provided by Gaussian quadrature or some other
method.

We assume a prior that represents a priori independence between the trend, variance
and correlation range parameters, which can therefore be decomposed as

fo(B, a2, 8) < fo(B)folo) fo(d) (4.26)

The assumed prior is unlimited uniform, and thus improper, in the regression coefficient
vector 3 (therefore fy(3) can be disregarded), is a user-specified proper distribution for
¢, and is proportional to an inverse-gamma for o> with shape and scale parameters «

and By respectively:

1 —
JoB.0,9) & fo@) 5 —rexp (2. (4.27)
o

(0-2)(l0+ 1

Note that the inverse-gamma scale parameter, 8y here and in general g, is not to be
confused with regression coefficients vector 3, which is set in boldface, or with its el-
ements g,. For the inverse-gamma prior for the variance, we allow hyper-parameter
values ay > —1,8p = 0 (in contrast to the usual bounds for inverse-gamma parameters
of @y > 0,8y > 0), which permits improper priors for o; in particular, with 8y = 0 and
aop = 0 we obtain a prior that is proportional to the inverse of the variance, a common
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(improper) uninformative prior and is equivalent to a uniform prior for log(c?) — it is this
prior that we adopt in the main manuscript, and these hyper-parameters therefore do
not appear in the text there. Also, with 8y = 0 and @y = —1 we obtain a uniform improper
prior for the variance — not such a common prior for the variance , but worth noting as a
special case.

In the numerical implementation, all values for 3, o and ¢ are limited and discrete.

According to Bayes’ theorem, the multivariate posterior is the proportional product of
prior and likelihood:

H(B,0%, 812) « fi(ZIB, 0%, $) fo(B, 07, ¢) (4.28)

However, we are mainly interested in the following marginal posteriors:
f»(#lz), so we have to integrate out 3 and o*;
f,,(a-zlﬁ), so we have to integrate out 8 and ¢;

£,(B,4I2) for each B, in 3, so we have to integrate out o> and ¢, and subsequently find
the marginal f,(8,[z)’s.

We are also interested in the posterior predictive distribution f,(z*[z), with z* the predic-
tions on the point locations of interest, and the associated prediction variance v*.

In the remainder of this document, the following topics are discussed:

e In section 4.A.2, Marginal posterior for ¢ and o (via Integral a) :

To be able to calculate f,(¢|z) and f,,(o-zli), first we analytically integrate out 3
from the full joint posterior distribution, eqn. (4.28), to get the joint posterior for ¢
and o%. The result involves eqn. (4.41), which we name Integral a, and which is
equivalent to the REML function.

e Section 4.A.3, Marginal posterior for ¢ (via Integral b):

To calculate f,(¢[z), we analytically integrate out o from Integral a multiplied

by the prior for 2. The final result is eqn. (4.53) (Integral b). Numerically, we
create a one-dimensional, not necessarily regular, grid for ¢ in parameter space,
calculate the marginal posterior for each ¢, and normalise it to a distribution that
integrates to one.

e Section 4.A.4, Marginal posterior for ol

To calculate fp(o-zli) , the marginal posterior distribution for o2, we use Integral a.
We express it as an inverse-gamma distribution conditional on ¢, see eqn. (4.59).
Numerically, we extend the vector with ¢ to a 2D grid in the parameterspace of

¢ and o and calculate the marginal posterior for o> for every gridpoint; then we
calculate a weighted sum over ¢ to get the marginal distribution for o2.
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e Section 4.A.5, Marginal posteriors for B, (via Integral c):

To calculate f,(8,Iz)’s, the marginal posterior distribution for the §,, we analytically
integrate o> out of the posterior (eqn. (4.28)) to arrive at eqn. (4.88): Integral c.
Numerically, we extend the vector with ¢ to a grid in parameterspace of ¢ and 8
and calculate the marginal posterior for 3 for every gridpoint; then we calculate a
weighted sum over ¢ to get the marginal distribution for the g,’s.

o Section 4.A.6, Posterior predictive distribution f,(z*(z) :

We use an analytically derived multivariate t-distribution to provide a prediction,
eqn. (4.106), and the associated uncertainty, eqn. (4.110), for every spatial pre-
diction point, for every ¢ in the grid vector. We use this information to numerically
calculate the final prediction and uncertainty, weighted by f,(¢[z).

e Finally, section 4.A.7, Connect to R code contains a pseudo-code overview to
explain the functionality of the main function postclabetaz0, which is closely
related to, but — especially in sequence — not the same as the above provided
overview.

4.A.2 Marginal posterior for ¢ and ¢ (via Integral a)

The joint posterior for ¢ and o is given by integrating out 3 from the full joint posterior

Fo(02 B) o f AEIB.0% $)fo(B.0%, 9) 4B

(4.29)
= fiLa@¢, ) fo(0) fo($)
where we define Integrated Likelihood a, or shortly Integral a, as:
fina@l0.0%) = [ £i@1B.0.0%) 4. (4.30)
B

Eqgn. (4.30) applied on eqgn. (4.25) gives

o 1
flLa(Zl(pva- ) = f

exp {—Lz(z -XB)C '(z- Yﬁ)} 8. (4.31)
I} mo am 20
(2m)2(0%)>

1
2

C

Next, we apply the following relationship (Harville, 1974) (just preceding his Eq. 2):

(z-XB)C (2-XB)=(-XP'C (z-XPB)+B-p' X C 'X)B-P). (4.32)

Combining egns. (4.31) and (4.32), and moving some constant terms out of the integral,
gives
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fira@e, %) =

1 1 — A — A P N
_— f exp {—272 |- XB'Cz-XB)+(B-H' X' T 8- ﬂ)]} 4B,
emie)i|C| 7P

(4.33)

where 3 is the generalised least squares estimator for 3, and implicitly a function of ¢ 5:

B _ (fTa_IY)_lYTE_lE. (434)

Then, we split up the exponent (using the general rule “*? = ¢%"), and move addi-
tional constant terms out of the integral:
fira@l¢,0?) =
1 1 _ =ar=l— =4 1 gy T —=1= A
————ew{-5 |- XHT ' E-XD)| f exp -2 |B-BT X T X8 - B as.
" m |=|3 o 8 20
Q2n)2(c?)z |C

(4.35)

Define the mean and covariance parameters for a multivariate normal distribution, re-
spectively:

Homvn = ﬁ (436)
and

! — _ 11
S = | X (2O X| . (4.37)

Combining eqgns. (4.35), (4.36) and (4.37), and multiplying by a constant term before the
integral and its reciprocal inside the integral brings us this equation:

fia@g, %) =

1 1 —= AT — k 1
_ 1 exp {_r‘_z [(2 - Xﬂ)rc 1(2 - Xﬂ)]} (2m)2 X nl?
eni )i |C| (4.38)

1 1
N {—5 (8= ) 5531,8 - umm)]} a8,
B 2m)2 | Xpwnl?

5 Note that most commonly, the covariance matrix instead of the correlation matrix is used in Eqn. (4.34),
however o2 cancels out:

B=X @Cr'X)'X 020z
- (XT(UZ)*‘?‘Y)_] X (o' 'z
- X' X)X T 'z
-X T XX T

thus /3 does not depend on o2.
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where the integral part equals the k-variate normal distribution:

1
fMVN(/B; Fomvns 2mvn) = exp __(ﬂ - ﬂmvn)TE;,Ln (ﬂ - ,Uvan) . (439)
2

QM) [Spnl?

By definition of a well-defined probability distribution, eqn. (4.39) integrates, over all
possible values for 3, to one®. Taking the remaining part of egn. (4.38):

1 1 el . 1
fira@, 07 = —exp {—272 [(z -Xp)'C '(z- Xﬂ)]} Q)2 1Zpunl?
emi @i |C|

(4.40)
and undoing the parametrisation in X,,,,,, and cancelling out wherever possible, pro-

vides us with Integral a, also known as the REML function (Laird and Ware, 1982) (which
is more commonly presented after taking the logarithm):

e

1 a1 — 4
firaGl, o) = —exp {‘ﬁ |z-Xp'C 'z - XB)]}
@nT (@»E[C|

(4.41)

exp {— - [(z _Xp3)C 'z- YB)]}

[
enste)s ol X' ¢ x|

PR
In the last equation, note the power in (o2)¥, where k is also the size of X X, based on
the following equality:

— — | 71— -1
1%l = XT(UZC)-1X1 =(02)’<1XTC lX| , (4.42)

which follows from the general rule that det(bA) = b*det(A), with b a scalar, A a square
matrix and k the dimensions of A.

4.A.3 Marginal posterior for ¢ (via Integral b)

To arrive at the marginal posterior for ¢, we have to integrate out 8 and o from the
likelihood X prior in egn. (4.28):

8We reserve the term “proper” for any probability distribution that integrates to a finite value rather than exactly
to one.
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@) [ 1807 98 ppc”

(4.43)
= fis(Z19) fo(é)
where we define Integrated Likelihood b as
1 _
i@ = [ 5E8.0% 0 e (1) agar? (4.44

This integral, with ay = By = 0, with an alternative form of the prior for ¢, is used in
Berger et al. (2001). Applying eqn.(4.41) (Integral a) gives:

1

1 _ —a7—=1 _ —=x 1 -
fth(E|¢’)=f %exp{—ﬁ(z—X,@)TC’ ](z—Xﬂ)} (O_z)awexp(%)do-2

” om0 [

(4.45)
Combining, and subsequently moving the elements that do not depend on ¢ out of the
integral gives:

1 1 1 R
Jun(Zl9) = 7 f(fz exp {——2 {(z Xp)'cC 1 Z-XP)+ 2,80}} do?
- 5 2y 25K 4ag+1 2
o' [C @)=
(4.46)
Next, we define the two parameters for an inverse-gamma distribution:
1
a = E(m —k)+ (4.47)
1 . — =1 _ —a
B=3(z- Xp)'C (z-XP)+po (4.48)
and noting the inverse-gamma distribution:
fiotsanp) = footy e (-2}, (4.49)
we can write eqn. (4.46) as
1 I'(@) B¢

Jip(zl$) = o) lexp {—0’%} do?®.  (4.50)

T B ) T

Noting that the integral part equals eqn. (4.49), and when integrated over all possible
values of o2 integrates to one (assuming that @ > 0 and 8 > 0), we arrive at
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1 T(a)

fin(Zl) = T— (4.51)
en=|CI'|X © X|
Undoing the parametrisation by o and 8
_ F(m—k+2(yg)
fiLp(Z19) = ] " : e (452)
eo o] [X'C'X| ic-Xp7 T @-Xp+p|

brings us the final formulation of the integrated likelihood (Integral b):

r( m—k;—Z(ro )

Jin(Zl¢) = ] i prrTy
eo [of X' X| [ic-Xp7 T @- X +5)
F( m—k;—Zag)
oFm= el X'T X O |e-Xpr T @-Xp+m|
) 2@ (m—k;Zao )
- ! 1} . . mkt2ap *
w ] [X'C'X| |=-X8r T @-Xp+ 5]

(4.53)

The marginal posterior for ¢ is calculated by multiplying Integral b by the prior fy(¢), as
shown in eq. (4.43); in this final step, we also remove all constants, to arrive at:

1
F@12) o fol)— = (454)

el YTE’IY'% z-X87 T @-X8)+ 25|

Setting @y = By = 0 leads to the form presented in the main manuscript:

1

S0 & fold)—
]

m—)

fa*‘ff [<z X3 C ' z-XB)

Numerically, BAK creates an one-dimensional, regularly spaced grid for ¢ in parameter
space, calculates the marginal posterior for each ¢, and normalises the marginal poste-
rior to a proper distribution.
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4.A.4 Marginal posterior for o

The posterior distribution for o? is given by marginalising the full joint posterior, eq.
(4.28):

F01R) o fﬁ EIB. 2 8)fo(B. . ) dB d. (4.56)
NJ

Splitting the prior into its constituent parts (via eq. (4.26)), and taking terms outside of
the integrals where appropriate, we have:

F(02) fﬁ FiZ18. % 6) 4B o) fo(d) d. (4.57)
X

The integral with respect to 3 in the above equation is our Integral a, already presented
in eqn. (4.41). Combining Integral a with the prior for o> gives:

gy {5k |- YB)TF(E : YB)]}

1
s | e (x
¢ (“ o0 0% o

Jo(#)dg. (4.58)

Combining and moving, and removing constants gives:

exp {—# [(z _XBC 'z-XB)+ Zﬁo]}
F02R) f fold) doh. (4.59)

IY'%

We can set ay = By = 0 and express the marginal posterior for o2 as an integral:

m—) A+7r10+2

¢ (@)

£ o f fo(@exp{'_l[(z Xﬁ)TC (Z_Xﬁ)]} (4.60)
C Lo

2

We note an alternative form for expressing the posterior distribution, eq. (4.59), in terms
of an an inverse-gamma distribution for > and the posterior distribution for ¢. Redefine
the inverse-gamma parameters for this context:

m—k+2a

€= —" (4.61)

and

E-XB'C  E-XP)+ 2%

B= > (4.62)

Reminder: the inverse-gamma distribution is, using the above parameters, defined as:

2

fic(c?;a,B) = F'[za)azfmlexp (—%). (4.63)
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Then, we can write:

2= exp{—;%}
s | o)L
el |IX C© X

(&

[T p exp{-£}

~Js B (@) =

T Jo(¢) dp (4.64)

el Ix e ' x|
(T 1

cf)ﬁ 67

— - fo(@) fic(o; a. B) dg.
X C 7’2

Explicitly substituting the expressions for @ and g into eq. (4.64) gives:

S r( m—k2+2¢10) 1 R
fo7[z) f pearrTIm Tl Jo(®) fic(o™; @, B) do.
¢[<2—YG)T c’ <2—Yﬁ”>+2ﬁo] : ‘5 X C Yr
2
(4.65)
and dropping constant terms leads to:
_ 1
s [ — l oo 0. B) .
‘lef x'c x| [(z ~XB'C @-Xp)+ Zﬁo] 2
(4.66)
Comparing this expression with eq. (4.54), we can see that:
f(07[Z) o f @2 f (12, ¢)dg. (4.67)
¢
where
—_ . ——1 —_a
_ —k+2 Zz-X3TC Z-XB)+2
FPIE ) = figlo? TEF 20 E-XPNC E-XP)+ Py g

2 2

Numerically, BAK extends the vector with ¢ to a 2D grid in parameterspace of ¢ and o,
and calculates the joint posterior (the integrand) for o> and ¢ for every gridpoint; then

it performs a trapezoidal integration over ¢, and normalises, to arrive at the marginal
distribution for o-2.
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4.A.5 Marginal posteriors for g, (via Integral c)

To arrive at f,(8,|z), we first derive f,(8z, ¢) by again marginalising the full posterior
distribution, eq. (4.28):

£, (81%) < f fi(Z18.0%, ) fo(B. 0. $) do do. (4.69)
02,0

Again splitting the prior into its constituent parts (via eq. (4.26)), and taking terms out-
side of the integrals where appropriate, we have:

(B f [EIB. 02, 8)fo(0™) do? o) do
o2,

(4.70)
= [ su@p oo as
¢
where we define Integrated Likelihood c (ILc) as:
e@B.0) = [ HEB. 0 Do) do (@.71)

Focusing now on the expression for the Integrated Likelihood c, we rearrange, and
move the constant part out of the integral to give:

_ 1 1 U f e —
@B = [ —— ( 2)(T)eXP{—F[(z—Xﬁ)TC (z—Xﬂ)]}
“ emilc)
1 —Bo\ , »
(21 XP (?) dor
1 1 | D . R
- —7 | e —ﬁ[(z—xm c (z—Xﬁ)+2,80] do?.
@mt[c] Vo @
(4.72)
Now we redefine the inverse-gamma parameters for this context:
@=2 4 ap, (4.73)
2
1/ —sa7—1 _ —=x
p=5|e-Xp'C (z—Xﬁ)+2B0], (4.74)

and - for readability - we repeat the inverse-gamma distribution with above parameters:

ﬁ a
I'a)

fioosap) = £ exp{-L}. (4.75)
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Thus we can write eqn. (4.72) as eqn. (4.76) in which the integrand is replaced by egn.
(4.75):

1 T @
fiL@B.¢) = L@ BT 2y

B
emt el 7 Je T exp{-Lzfact @9

Applying that the integral integrates to one, and reversing the parametrisation

Jie(@IB, ¢) =

F(% + CKO>

ent[of [ie-Xpr T @-Xp+p|

F(% + a())
T =t — ., C— (4.77)
Wi [C] |E-Xpr T @-Xp+2m| (b
B 2% T (% +ap)
we[e] |z-Xp7 T =-Xp)+ 2/30]%”‘]

Next, returning to the joint marginal posterior for 3, eq. (4.70), applying the relationship
in egn. (4.32) where 3 is again the GLS estimate and thus a function of ¢ (and C), and
further removing all constants gives:

£(817) f Lo @18, )o(0) d
¢

f 2@0 F(% +(¥o)
[
¢

(m)?

— ()
C| |z-XByC ' z-Xp+B-B X T DB~ h)+ %]
« [ — 1 (@) do.
—| 3 —_— A == —_— A A —T—1— A 2
"[C] |e-XBrT c-Xp+ B-H' X' T XB-H+ 2|

(4.78)

We rearrange the sum in eqn. (4.78) [ equivalenttoa + b o« 1 + b/a,a # 0], extend

: . . PSR ; —k+2
the power with —k + &, and multiply the main fraction inside the denominator by ;=7
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respectively:

1
£B7) f ()
¢ me2a A —~T——1— ~ 52
e {1 , B-H'X C XB-p)
z-XPTC (z-XB)+ 2%

o] [c- X7 = - Xy + 23

1
* j; r— m—k+k+2ag fo(¢)do
e {1 L B-B'X T XB-P :
(z-XP)C (z-XP)+2B0

1
‘5‘ 2 [(z -X37C 'z-XpB)+ 2;30]

1

oc
m+2aq

¢ ‘E‘% [(z -XpBIC z-XB)+ 2/30] ’

1
X m—k+k+2aq Jo(g) dg.
1 R x'c'x) ’

1+T(ﬁ_ﬂ)7— [ — A
m =k +2ao ((z- -XB7C (2—X,8)+2B0)/(m—k+2a/0)

B-H

4.79)

Note that (2 — XB)" C (2 — XB)/(m — k) (i.e. the denominator with ao = By = 0) is
—1
the REML estimate of o> given C . Also note that the form is now comparable to that

of the multivariate ¢ distribution (MVr) (Roth, 2013; Gelman et al., 2013), with degrees of
freedom” v

v=m-—k+ 2a, (4.80)
location vector
u=B (4.81)
and shape matrix 32, where
X' C 'X)

>l =

— : 482
((z—Xﬁ)Tc 1(2—Xﬂ)+2ﬁ0)/(m—k+2ao) (4.62)

“Don’t confuse the degrees of freedom v of a ¢ distribution with the smoothness parameter of the Matérn
covariance function, in this chapter represented by v, or vy.
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The resulting MVt is defined as:

—(v+k)/2

T[(v + k)/2] 1 are-iia A
BB = e || T 5B BB (4.83)
and therefore (4.79) can be written as:
1 F(V/Z)Vk/z k/2|2|1/2

1,(8; B, ) fo(¢) dg

Fo(BIR) o f - = T+ 0)/2]

"[E] |z - XAz - XB) + 260
(4.84)
We note that the determinant of X is given by:
—_—a k
[((z ~XB)C (z-XB)+ 2/30) J(m - k + 2a0)
=)= — : (4.85)
X' x|
and therefore dropping constant terms and rearranging leads to:
1 N
R e 191 1,(8: B.D)fo0) do
‘o] |e-XprT @ -XB) 2|
) e — . ‘ k/2
|z-Xp"Cz-Xp)+ 2/30] )
« [— 1088, 5)0) a0
"] [z - XByr T (2 - XB) + 260]
1 N
& 1 m—k+2aq f0(¢) tv(ﬂ; ﬂv E) d¢
"l le-XpT e -Xp v 2m|
(4.86)
Comparing this expression with eq. (4.54), we can write:
78 [ 61) 14882130, (4.87)
¢

According to Roth (2013) the marginal distributions of the multivariate ¢ distribution are
also ¢ (his Eqgn. (4.3) ):
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—(v+ky)/2

[[(v + ky)/2] 1 o R
- 7 |1t ;(ﬁq _IBq)Tqu(ﬁq =By . (4.88)

T(v/2)v/ 21kl |5,

[V(ﬂq;ﬁq, Zq) =

with k, the dimension of g,, in our case one, [i’q the ¢th element of ﬁ as the location pa-
rameter and =, = v[(],, the gth diagonal of matrix v[3] = =, as the scale parameter.
Therefore in our case:

—(v+1)/2

A r 1)/2 1 A R
t(By: Bg- 2q) = SARVE 12 [1 + =By = B" =5 By~ By , (4.89)
L(v/2)(vm)' 2|2, v
and the final marginal posterior for 8, is given by:
fp(:BqIE) o pr(¢|z) tv(ﬁq;,équq) d¢ (4.90)

Similarly to Section 4.A.4, BAK creates 2-dimensional grids covering the parameter
spaces of ¢ and g, (for all g) and applies the trapezoidal rule to calculate the integral
over ¢ in Eq. (4.89); finally it normalises to get the marginal distributions for the individ-
ual g,’s.

4.A.6 Posterior predictive distribution f,(z*[z)

We consider our spatial phenomenon of interest a Gaussian Random field, therefore
we can define our n* point predictions (z*) together with m area observations (z) as one
n* + m-dimensional multivariate normal distribution:

z*
z
with C** the correlation matrix between prediction points, dimension n* x n*, and C’ the

mean correlation between observation area and prediction points, dimension n* X m.

2 - X .lcr ©
B,0%, ¢ MVN,N,,,( Xﬁ],a [(E*)T GD (4.91)

The posterior predictive distribution is defined by:

(=) = f¢ F R 0)f(0[7) 4. (4.92)
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Taking out the first part under the integral

FE ) = f £z, B, % ) dB do”
B0
- f F I, B. 028 f(B. 0%, #) 4B do”
B.o?

= f (212, B, 7?9 f(BIZ, 0%, $) f (0 [z, ¢) dB do?
B.o?

(4.93)

= f f (212, B, f(BIZ,0*, $)dB | f(o7IZ, ¢)do?
B

o2

The integral with respect to 3 results in a Gaussian pdf (Kitanidis, 1986, chapter 4) for
z*, known as universal kriging (here formulated for the area-to-point context) with mean:

2ot e=C C'Z-XB) +XB, (4.94)

and corresponding variance-covariance matrix:

var[£*|02,¢] = 0'2A[£*|¢], (4.95)

where

Al =C* - C CNCY +( X -C ' XHX ' X)X -C Cc'X)'.
(4.96)

Note that we write z*|0%, ¢ and var[z*|0%, ] here to make explicit the dependence of
the distribution that these values parameterise on the parameters o and ¢. Also note
that we have cancelled out o> wherever possible, in particular so that z*|o%, ¢ does not
actually depend on o2, thus we write z*|o%,¢ = z*|¢, and that the diagonal elements
of matrix var[z*] are the prediction variances, also known as kriging variances, as often
presented in other literature.

Now we have:

. 1 1 . - . B
f(Z"1z,¢) o fﬁm’ {—Q(Z* - 2 o) AL24g] (2" - z*l¢)} f(?z, ) do?
o2 Alzg]|’

o2

(4.97)
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For f(c%|zZ, ¢) , we refer back to the REML equation in Equation (4.41) preceeded by the
prior for o2, expressed as an inverse-gamma distribution with parameters a; and 8y:

el o s

f(021Z, ¢) EIvow exp(—2 n T (4.98)
@) 7 e o5 e X e x|
Combining the previous two equations, and taking out the constant Qm)'
E - 1 1 * 2 T ot -1, _x 2
fZ 2, @) | ————exp —r‘_z(z - z'¢)" Alz*l¢] (2" - z*|¢)
% |2Alz46]
. warsl— a4 4.
| B\ &P {—2% [(z -Xp)IC zZ- Xﬁ)]} , (4.99)
8 (o2)0*! ep (?) — L =T ——1—|3 der
@) |C' X C X|

Separating (and subsequently combining) exponents and denominators:

1

R« f
C

o2

n ol ok | =3 [==T——1—1|3
a2 Alz*|g]|? (oH)o+(e?) T X C X

1 . . N N
xexp {—ﬁ(z* — 20T AL (2 - E1) - % -5 [(z -Xp’Cc 'E- Xﬂ)]}dcr2
(4.100)

Next, we separate elements without o from the integral, and reorganise. Note that the
dimension of A[z*|¢] is n* X n*.

_ 1 1
f(Z*lz’ ¢) o L L S 1 f 2 n*+m—k +ap+1
Az o) [Xe ' x| 5 )

1[1 . . . 1 1 —
xexp {—; [E(z* — 2 Al241g] (2" - 21g) + 3 [(z ~-Xp)'C z- Xﬂ)] +ﬂo}} do?
(4.101)

Now, the integral part can be rewritten as proportional to an inverse-gamma distribution
with shape

w="MTR L o (4.102)

and scale
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1 . e o U [ Al
p =3[ -2 Al ] ‘(z*—z*|¢)]+§[<z—Xﬁ)Tc '@-XP)|+po. (4.103)

Integrating out o2, keeping the equation correct, and then dropping constant term gives:

_ 1 I'(a)
(27[z, ¢)
f ¢ T e
1 (4.104)
o

Dropping more terms that do not depend on z*:

f(Z"[z,¢) —a (4.105)

B
Substituting back a and 3, and rearranging:
‘= 1

f(z |Z7¢)OC w+do

1 ~ A - A —Aa =1 _ =
[E(z* - )T AlZ"19] (2" - 21g) + 4 [(Z -XATC =z~ Xﬁ)] +ﬂo]

1

oC

n*+m—k
—  tao

[1 (" -2 |¢)TA[z 617 (" - 2*1p)
(z-XpTC (z XB)+ 2B

n*+m—k+2aq
2

1 (2" = 2 19)  ALZ*19] ' (=" - £'19)

1+ m—k+2aq —_ =1 — A
((z _X37C 'z-XB)+ 2,80) Jm = k + 20)

(4.106)

This final expression is proportional to the multivariate ¢ distribution (Roth, 2013) with —
in this context — degrees of freedom

vy =m—k+ 2ap, (4.107)
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mean

u = 2, (4.108)

and shape matrix parameter

_&-XP'C @-Xp)+2,

. 4.109
m—k + 2aq Al='1¢]. (4.109)

%

Its variance is given by VIVLZZ, (4.110). Both mean and variance are functions of ¢. Note
that ¥, with oy = By = 0 equals the UK variance with REML estimated o2, Equation
(4.110) shows that the variance slightly increases now the uncertainty in o is consid-

ered, as one would expect.

We will approximate Equation (4.92) by a finite sum using trapezoidal integration, that
is:

£ 2. 00 £, D) + F(Z . $i-0) (011D | 6. (4.111)

N =

(')~

G
i=1

where 04, = ¢; — ¢;—1 is the ith spacing between consecutive values in the 1D ¢ parame-
ter grid, ¢;;i = 0,...,G. This can be rewritten as:

G
KD~ Y wi [ ¢, (4.112)
i=0
where we define the weights:

1@l — o) ifi=0
wi =1 1p@cl)e —dg-1) Hi=G (4.113)
%fp(¢ilf)(¢i+1 —¢;.1) otherwise

This defines a mixture distribution for z*, with weights given by w;. Its mean is

G
2= ) WEf(2' )] (4.114)
i=0
and its variance is
G
varl271 = ) wilELf(2' . 8 +varl f(=" . 6] = 27} (4.115)
i=0
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Numerically, BAK first creates for each prediction point s* a vector of predictions and
a vector of corresponding prediction variances, both as function of ¢. Finally, the algo-
rithm calculates the mean and variance of the posterior predictive distribution (or more
formally of a finite mixture distribution that approximates this distribution, with weights
defined based on f,(¢[z) and the spacings of the ¢ parameter grid, eq. (4.113)).

4.A.7 Connectto R code

Function postclabetaz0 as pseudo-code

o Create parametergrids for

- ¢ (aVec)
— 0?2 (clVec)

— (3 (betalMat)
o Create discretized log prior for ¢ (1nf0a)
e For each ¢ in aVec:

— Calculate, using function intLikb, the log likelihood 1nfla. This function
also returns other variables to be used in the following calculations, such as:
betahat, sigma2hat, Ac and resinvAres

— Calculate log posterior 0% (as grid: 1nfpc1a) for each o in c1Vec

— Calculate the marginal log posterior for each g, (as grid: Infpbetaa), using
function margbetab, for each 3 in betaMat

— Calculate posterior prediction (z8IFa) and the associated uncertainty (vOIFa)
using function £z0IFa

For o2, using the 2 dimensional variable 1Infpc1la, backtransform the (log) poste-
rior probabilities, then marginalize and normalize

For ¢: Backtransform and normalize vector 1nfla

For 3,: Backtransform, marginalize and normalize the 1 x p dimensional variable
margbetab

Marginalize predictions z*(s) over ¢ and calculate corresponding prediction uncer-
tainties v*(s), using z0IFa and vOIFa.
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generalised linear geostatistical models.
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Abstract Some spatial soil applications involve binomial variables. If relevant environ-
mental covariates are available, using a Bayesian generalised linear model (BGLM)
might be a solution for mapping such discrete soil properties. The geostatistical exten-
sion, a Bayesian generalised linear geostatistical model (BGLGM) adds spatial depen-
dence and is thus potentially better equipped. The objective of this work is to evaluate
whether it pays off to extend from BGLM to BGLGM for mapping binary soil proper-

ties, evaluated in terms of prediction accuracy and modelling complexity. As motivat-

ing example, we mapped the presence/absence of the Pleistocene sand layer within
120 cm from the land surface in the Dutch province of Flevoland, using the BGLGM
implementation in the R-package geoRglm. We found that BGLGM yields considerably
better statistical validation metrics compared to BGLM, especially with — as in our case
—a large (n = 1000) observation sample and few relevant covariates available. Also,

the inferred posterior BGLGM parameters enable the quantification of spatial relation-
ships. However, calibrating and applying a BGLGM is quite demanding with respect to
the minimal required sample size, tuning the algorithm, and computational costs. We
replaced manual tuning by an automated tuning algorithm (which eases implementing
applications) and found a sample composition that delivers meaningful results within 50
hrs calculation time. With the gained insights and shared scripts spatial soil practitioners
and researchers can — for their specific cases — evaluate if using BGLGM is feasible and
if the extra gain is worth the extra effort.

From binary observations... ... using hierarchical spatial modelling...

Formal definition posterior:
f(y.6]z) =
f(y.8.6%.0.72)

Restrict -
/g’ =n> ———> Integrate out 8 and ¢” S(y.92)

to fixed value

[ \\*
' 9 L Restrict ¢ to discrete set
Update ¢ s Block update y <——— and precalculate related
* using Metropolis & using Langevin-Hastings i
Discard tuning phase A /
& and warm-up phase; thin \\ /
| ~—_ -
Processed chain
f——————»  Sample a realisation of 3 £(B]z) as sample
————>  Sample a realisation of &> f(6?|z) as sample

f(0]z) as sample

Prediction, /(z"|z) as sample

ize towards ¢

Calculate posterior predictive Sample from

L "
for cach chain iteration posterior predictive

... to mapping probability of success

Abbreviations

BGLM: Bayesian generalised linear model; BGLGM: Bayesian generalised linear geostatistical model; GLM:
Generalised linear model; GLGM: Generalised linear geostatistical model; LH: Langevin-Hastings (algorithm);
MCMC: Markov chain Monte Carlo; MVN: Multivariate normal (distribution); PI: Proportional—integral (con-

troller)
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5.1 Introduction

In many soil mapping applications, spatial variables are continuous and can, perhaps
after a transformation (Mdiller, 2007), conveniently be modelled using Gaussian spatial
models. However, some spatial soil applications involve discrete count variables or
categorical variables (Kempen et al., 2012; Malone et al., 2017). In other cases, the
end-user is only interested in information relative to threshold values (Lark and Fergu-
son, 2004). By definition, discrete and categorical variables cannot be transformed to
normality. With such variables, non-linear methods such as indicator kriging (Journel,
1983) deliver reasonable results, but are suboptimal in case of a trend (Papritz, 2009)
and lack model-based consistency, which implies, among others, that they are unsuited
to facilitate kriging with change of support (Emery and Ortiz, 2004).

If environmental covariates are available, using a generalised linear model (GLM) might
be a solution for mapping discrete soil properties. GLM assumes that the actual ob-
servations are a realisation of a discrete random process, such as Bernoulli, binomial

or Poisson. Given this assumption, GLMs use, for each location, a transformation of

a virtual continuous variable — the linear predictor — to the distribution parameter. For
instance, the logit transformation links the linear predictor to the probability of success
for a Bernoulli process. The linear predictor is the linear combination of covariate values
(including an intercept) scaled by regression parameters (Myers et al., 2002, Section
4.2). For mapping purposes, GLM relies on the availability of covariates available for the
whole area of interest, related to the target variable.

However, when applied to spatial data GLM ignores any spatial dependencies. The
geostatistical extension, a generalised linear geostatistical model (GLGM) adds spa-
tial dependence to the model and linear predictor, by means of a spatially correlated
Gaussian field (Diggle and Ribeiro, 2007). Therefore, compared to a GLM, a GLGM is
more generic and flexible, and thus potentially better equipped, provided that its spatial
dependence parameters can be estimated well. However, GLGMs also require more
skills of the modeller and are computationally more expensive.

Another possible extension is application of Bayesian statistics. Bayesian statistics de-
mands explicit incorporation of pre-observation knowledge — even if this means an ex-
plicit definition of our ignorance (Lindley, 2004). It also considers all model parameters
to be stochastic quantities, thus parameter uncertainty is taken into account (McElreath,
2016). Both Bayesian properties are applied in soil mapping by for example Steinbuch
et al. (2018) and Poggio et al. (2016). Both properties together enable the construction
of hierarchical models in a convenient and statistically sound way (Gelman et al., 2013),
which can be very useful in spatial statistics (Banerjee et al., 2004). In our context, both
GLMs and GLGMs have Bayesian extensions, abbreviated to BGLM and BGLGM re-
spectively. BGLGM is a spatial implementation of a Bayesian hierarchical model (Diggle
and Ribeiro, 2007).

The objective of this work is to evaluate whether it pays off to extend from BGLM to
BGLGM for mapping binary soil properties, when evaluated in prediction accuracy,
modelling effort and computational costs. We pay due attention to software implemen-
tation issues and provide scripts in the supplementary information, because especially
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a BGLGM cannot easily be programmed from scratch, thus we need to rely on existing
software libraries and functions.

As motivating example, we map the depth of the Pleistocene cover sand layer relative
to the surface in the Dutch province of Flevoland. This depth is defined as a Bernoulli
variable obtained by determining whether the depth is above or below 1.2m.

The provincial government and the regional water board are interested in the soil com-
position until the Pleistocene sand layer (Brouwer et al., 2018). This is because un-
ripened clay and peat might be present above the Pleistocene substrate, whose prop-
erties change under the influence of air. These changing properties cause a subsiding
ground level (on some spots with over 2cm y~!), while the Pleistocene sand layer is
stable. For example, in the municipality of Zeewolde subsidence as a result of ripening
soils causes problems with road maintenance. Also, spatially variable subsidence will
cause changes in surface water flows, and both the water board and farmers have to
anticipate. A map of the depth of the Pleistocene sand layer might help to locate poten-
tial problems with land subsidence. The map might also be helpful in the foundation of
construction work (such as buildings, roads and railroads).

5.2 Theory

We model a spatial process for all locations s € A, where A c R? is the study area. As
first modelling step, we state that at every s, z(s) is a binary realisation (zero or one) of
the Bernoulli distribution

Z(s) ~ Bernoulli (p(s)), (5.1)

where parameter p(s) €< 0, 1 > indicates the probability of success. We further assume
that Z is an independent process, i.e. Z(s) and Z(s’) are statistically independent for all
s, €A, s+ 5.

This spatial process Z = {Z(s), s € A} is observed at n locations s;,i = 1,2, ..., n, provid-
ing observation vector z = [z(s1)...z(s,)]”, being a realisation of Z = [Z(s1)...Z(s)]".
We model p(s), and thus Z(s), initially with a generalised linear model (GLM), as ex-
plained in the following section. Next we extend this GLM to a Bayesian generalised
linear model (BGLM) and a Bayesian generalised linear geostatistical model (BGLGM),
the two models to be compared in this research.
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5.2.1 BGLM

5.2.1.1 Generalised Linear Model (GLM)
We base the explanation of GLM on textbooks such as Myers et al. (2002). The logit

transformation projects p(s) to the mathematically more convenient y(s):

p(s)
1 = p(s)

y(s) = IOg( ) = logit(p(s)) (5.2)

while the inverse logit function derives p(s) from y(s):

exp(y(s)) 1

— 1ol
exp(y() + 1 1 +exp(=y(s)) logit™ (y(s)). (5.3)

ps) =

The unobservable variable y(s), s € A, represents the “signal” over the study area. The
vector y = [y(s1)...y(s,)]7 indicates the signal on the observation locations. In a GLM,
y is modelled as a linear predictor:

y=Xp. (5.4)

Here, X indicates the k x n design matrix, containing leading ones and covariate values
at all observation locations. The vector of k regression coefficients, including the inter-
cept, is given as 3. Later we discuss how we can calibrate this model using the vector
of observations z. Note that in the GLM defined above (but not in the other models
considered next), all randomness is captured in Egn. (5.1).

5.2.1.2 Bayesian extension: BGLM

To include parameter uncertainty, we extend the GLM by considering 3 a stochastic
parameter vector (but note that in this work we neither assume s nor X to be uncer-
tain). To work conveniently with stochastic parameters we shape our models using
Bayesian statistics — we assume that the reader is familiar with concepts such as Bayes’
law, prior (conjugate or otherwise), conditional distributions, likelihood, posterior, the
posterior predictive distribution and Markov Chain Monte Carlo (MCMC) simulation; see
for example textbooks Banerjee et al. (2004), Gelman et al. (2013) or McElreath (2016).
In the following, we introduce Bayesian GLM (BGLM).

The posterior density of 3, conditional on the observations is given by Bayes’ rule:

f(Blz) < f(zIB)f(B), (5.5)

with f(3|z) the posterior probability distribution of 3 conditional on z, containing all our
knowledge after taking the observations. The prior f(3) contains our pre-observation
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knowledge; it might be a mathematical abstraction of our assumed ignorance. The
likelihood of the observations conditional on model parameter f(z|3) follows directly
from the Bernoulli probability mass function and can, while incorporating Egns. (5.3)
and (5.4), be expressed as:

18 = [ | pi 1= '
i=1
= [Ttosic xBy {1 - togir™ X B)) .
i=1

In Section 5.3.1 we elaborate on the choice of f(3) and on how we implemented an
algorithm to infer f(3|z).

5.2.1.3 Prediction with BGLM

To derive a prediction map of the probabilities of success, we first define n* prediction
locations s;,i = n + 1,...,n + n*. Typically these are the nodes of a grid covering the
study area, for which all covariates must be available. The prediction probabilities at
the prediction locations result from backtransforming the signal at these locations using
Ean. (5.3):

p* = logit™ ' (y*). (5.7)

We therefore require the vector y* = [y(sp41) ... ¥(smn)]” Of signals at prediction loca-
tions.

In contrast to GLM, in a BGLM y* is stochastic. The posterior probability distribution,
referred to as the ‘posterior predictive’, equals:

Fly'lz) = f ", Blz)dB
- f F@'18, 2)f(Bl) dB (5.8)
- f £ 18)f(Blz) dB.

Note that the last identity holds because y*is completely characterised by the covariates
and 3: given 8, y* and z are independent. In Section 5.3.1 we show the implementa-
tion of the BGLM prediction.
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5.2.2 BGLGM

5.2.2.1 Generalised Linear Geostatistical Model (GLGM)

In a generalised linear geostatistical model (GLGM) (Diggle and Ribeiro, 2007; Webster
and Oliver, 2007), Egn. (5.4) is extended by adding a spatially correlated random effect:

Y = XB+U. (5.9)

Here U is a vector of random variables U(s;),i = 1,...n, taken from a stochastic spatial
process U, which is modelled as a zero mean, stationary Gaussian random field de-
fined over A. Note that we use again Y, and its realisation y, for the signal, although
they are modelled differently in a GLM and GLGM.

The spatial structure of U is in this research characterised by an exponential correlation
function:

h=0

exp(—g) h>0 (5.10)

1
e, h) = { |

1+?

where h indicates the Euclidean distance between locations s and s + h € A, and ¢ is in
geostatistical context called the ‘range parameter’ or distance parameter. The ‘nugget to
partial sill ratio’ - is given by

P=l (5.11)

where parameter 72 captures short-distance variation, i.e. the ‘nugget’, while ¢ (‘partial
sill’ in geostatistics) is the variance of U, minus the variance of U already captured by
72. Note that when 72 = 0, 7 = 0 and the correlation function Eqgn. (5.10) on very short
distances approximates one.

In this research, we made simplifying choices regarding the spatial covariance function
a?c(p, h,1%), such as not to consider spatial anisotropy (c is a function of Euclidean
distance only, not of direction), and not to consider other covariance functions.

Each element of the n x n correlation matrix C(¢, h,7?) is given by the correlation func-
tion Eqgn. (5.10) corresponding to the distance between two observation locations. With
C(¢, h,1%), we can extend Egn. (5.9) with spatial parameters

Y =X3+U

12
~ MVN(X 3,02C(¢, h,n%)). (512)
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For notational convenience, in what follows we often merge spatial and regression pa-
rameters into one parameter vector 8 = (3, 0%, ¢, *), and we will often indicate C(¢, h, %)
by C(¢) or C.

5.2.2.2 Bayesian extension: BGLGM

In the Bayesian extension of the GLGM we consider 8 stochastic. Y is stochastic as
well, due to 3 and the spatial signal U. We therefore need their joint distribution. The
joint posterior density is, according to Bayes’ rule and the chain rule of conditional prob-
ability, proportional to:

f(y.01z) « f(z|y.0)f(y.0)

513
= ) fwI0)f©). (5:13)

with f(y|0) the proportional density of the signal conditional on the parameters. Note
that in this context f(z|y,0) = f(z|y) because conditional on y, z and @ are inde-
pendent. Eqn. (5.13) is often referred to as a ‘hierarchical model’, referring to the three
related levels of probability distributions (Banerjee et al., 2004).

Eqgn. (5.13) shows that three terms need to be inferred. The likelihood of the obser-
vations, conditional on the signal, follows from Eqns. (5.1) and (5.3) and is much like
Eqgn. (5.6):

fly =[] piti-pa'=

i=l.n

= 1—[ logit™ (y;)* {l - logit‘l(y,-)}l_Zi .

i=1l.n

(5.14)

The likelihood of the signal, conditional on the parameters is given by the MVN probabil-
ity density distribution:

f(yl0) = MVN(X3,0°C)
(5.15)

n 1 1
= 2no?) *|C Zexp (—E(Xﬁ -y (c*C) (X8 - y)),
with |C| indicating the determinant of C.

The prior f(0) in Egn. (5.13) is addressed in Section 5.3.2. In the next section we first
extend above theory to prediction on new locations. Note that from Eqgn. (5.13) we can
infer the posterior of @ by integrating out the signal:

flz) = ff(y, 0|z)dy. (5.16)



generalised linear geostatistical models 121

5.2.2.3 Prediction with BGLGM

To predict the signal y* conditional on z within a BGLGM context, we formulate the
posterior predictive distribution as an integral over both the parameters € and the signal
at the observation locations y:

Fly'lz) = f F(y".0.912)d0 dy
= f fW'6.y,2)f(6,ylz)d0 dy (5.17)

- f Fy"10.9)f(8. ylz) d6 dy.

Note that y* and z are conditionally independent given € and y. In the final expression
of Egn. (5.17), we can consider f(0, y|z) (the joint posterior density of parameters and
signal as provided by Eqn. (5.13)) as weights to derive f(y*|z) from f(y*|0,y). The
other component of the integrand, f(y*|0, y), the distribution of a Gaussian response
at prediction locations given observations and model parameters, boils down to simple
kriging. This is because y* and y are part of the joint multivariate normal distribution:

ylB.o?, 7 ¢ X|. o] C@o  C@

where C*(¢) indicates the correlations between the signals at observation and predic-
tion locations and C**(¢) the correlation matrix of y*, both of which can be calculated
using the geographic distance between the relevant locations and Eqgn. (5.10). The
simple kriging predictor, for a given realisation of model parameters and signal, equals a
Gaussian distribution (Searle, 1997, page 47) with mean :

Y =X'B+CH ' CH'(y-XB) (5.19)

and with prediction error variance:

var(Y” = Y*) = 0* (1= C'(¢)' (C#) "' C"(9). (5.20)

In theory, one could calculate both the prediction probability density as provided above
and the corresponding weight factor £(0, y|z) in Eqn. (5.17) for every possible combi-
nation of parameters and signal at the prediction locations, and numerically integrate
the outcomes to infer the posterior predictive distribution f(y*|z). However, even if the
space spanned by the model parameters and signal y would be discretised by a coarse
grid this would be prohibitive because of the high dimension of the parameter-signal
space. In Section 5.3.2 we discuss how to relieve the burden of computational costs
and show how the actual inference of posterior parameters and posterior predictive was
done in this research.
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5.3 Implementation

5.3.1 BGLM implementation

We chose to apply a uniform prior f(3), indicating our pre-observation ignorance about
3. Because 3 is a centrality parameter, this prior might be considered ‘flat’ and can
from a mathematical point of view be left out from Eqgn. (5.5). This means that the pos-
terior 8 for BGLM is proportional to the likelihood (expressed as a function of 3) as
derived for GLM. According to Kutner et al. (2005, Section 14.5) and Myers et al. (2002,
Sections 4.3 and 4.4.1) this likelihood proportionally approaches a MVN distribution in
case of large sample sizes, where the mean of this MVN distribution can be estimated
by a maximum likelihood estimator using the iteratively reweighted least squares algo-
rithm, and the corresponding variances and covariances are estimated via the Fisher
information matrix. For these calculations, we applied the algorithm as implemented in
the base function glm in the statistical programming language R (R Core Team, 2017).
Above mathematical and numerical steps are illustrated in Figure 5.1.

We obtain a prediction of p* by substituting the maximum likelihood estimate of 3 in
Eq. (5.4), with X replaced by X* and the result of that in Eq. (5.7).

Posterior o< like- Choose flat prior Formal definition posterior:
‘ lihood; Gaussian ‘ = neglect prior f(Blz)

A\
Apply iteratively reweighted
least squares algorithm

|

Calculate variance based on [

Maximum likelihood for 3 . . .
information matrix

Variance

i

Predict using covariates

A 4

|

[ Prediction ]

Posterior as a parameterised
Gaussian distribution

Figure 5.1: Workflow to infer the posterior of 3 and predict the probability on success
using a Bayesian generalised linear model (BGLM).

5.3.2 BGLGM implementation

For BGLGM inference and prediction we shaped our approach around several functions
from the geoRglm R package (Christensen and Ribeiro Jr, 2002, 2015). These functions
numerically approximate the posterior distribution of signal and model parameters by
simulating a large sample from the posterior. However, sampling from a posterior can
be computationally expensive, especially if — as in our case — the posterior contains
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a signal of size n (the number of observations), making it necessary to sample from a
high-dimensional combined parameter- and signal space. To lower computational costs,
several extensions and simplifications were implemented by Christensen et al. (2006),
to be discussed in the following sections together with several choices we made for this
research. The corresponding workflow, showing analytical and numerical processing
steps between the boxed representations, is illustrated in Figure 5.2. Our embedding of
geoRglm follows in Section 5.3.2.3.

Formal definition posterior: Restrict
f(y,0]z) = 12/6>=n* —— > Integrate out 3 and 6> f(y,912)

f(y.8,6%,0,7%2) to fixed value

YN |

[
[ v
@] Restrict ¢ to discrete set

: Block updats
¢7 Update ¢ § 0cK upcate y <4—— and precalculate related

sing r is using Langevin-Hastings .
using Metropolis g g ‘ g variables

Discard tuning phase A ]

and warm-up phase; thin \\ /
@t@ o

9 Sample a realisation of 3

4

f(B|z) as sample ]

f(c?|z) as sample ]

%  Sample a realisation of 6>

4

Y v v

_— Marginalize towards ¢ f(¢|z) as sample ]

Calculate posterior predictive Sample from T " - ]
for each chain iteration posterior predictive »| Prediction, f(2"|z) as sample

Figure 5.2: Workflow to sample parameter posteriors and the posterior predictive using
a Bayesian generalised linear geostatistical model (BGLGM), as implemented in the
geoRglm package (Christensen and Ribeiro Jr, 2002, 2015). The Markov Chain Monte
Carlo part (MCMC, indicated in red) represents many thousands of iterations. The
mentioned ‘tuning phase’ is our addition.

5.3.2.1 Choice of BGLGM priors; restrict nugget and range parameter

We assume that the marginal prior ¢, the marginal prior 7> and the combined prior of 3
and o2 are independent:

f(O) = fF@fEF(B, o). (5.21)

We write the joint prior for 3 and o2 as a product of conditional and marginal densities:

F(B, % = f(BloH)f (). (5.22)

Next, following ideas of Diggle and Ribeiro (2007), we assign as combined prior a multi-
variate normal (MVN) and inverse scaled Chi-squared (X§C,) distribution, respectively:
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f(Blo?) = MVN(&, 0> Dyy) and

5.23

f(O'z) :X§c1("0’§'(2))' ( )
From this we derive the distribution of 3 and o conditional on y and ¢ — (3, |y, ¢) —
which also has a MVNyz, distribution; the proof is provided in the Additional material A.
Because f(3,0?) and f(3, 0|y, ¢) have the same type of distribution, they are ‘conju-
gate’ and in this context, we consider f(3,0?) a ‘conjugate prior’. The ‘hyperpriors’ &,
Dy, vy and gé define the distribution of the prior; subscript 0 indicates that a variable is a
prior- or hyperprior parameter.

For pragmatic reasons, 1 is restricted to a fixed plug-in value. This means that we
should apply external information about 7> or try out different values and compare re-
sults. Furthermore, there are quite some computational costs involved for each possible
value of ¢. Therefore, the prior of ¢ is restricted to a discrete set of equally distanced
values, thus forcing every possible ¢ in any calculation to be one of those values. For
these values for ¢, related internal variables are pre-calculated and stored.

Within above indicated constraints, we chose in our research a low-informative prior
f(B) for the regression coefficients, by stating that D;' = 0. This is a limit situation
that causes f(8|c?) to become improper. For f(c%) and f(¢), we followed the reasoning
of Berger et al. (2001) for Gaussian spatial models, which provides a reference prior
composed of f(c?) = 1/0 (which equals vy = 0, in this case a limit situation for the
X%d distribution whereby f(c?) becomes improper) and a proper prior for ¢, depending
on the observation locations and related covariate values. An example of this reference
prior f(¢) follows in the case study, among others in Figure 5.4 . We fixed the prior for
72 (and thus n?) to an arbitrary zero, because we have no other information about its
possible value nor its distribution, and exploring multiple values was outside the scope
of this research.



generalised linear geostatistical models 125

5.3.2.2 Integrate out regression coefficients and variance; sample from posterior
range parameter and signal

Computational costs can be substantially reduced by integrating out the regression co-
efficients 3 and variance of the spatial signal o> (see the Additional material A), rather
than be part of numerically approximating the posterior. This ‘integrating out’ means that
these parameters as such disappear from the equation while their influence remains,
expressed in the relations between the remaining variables.

The remaining ¢, y parameter- and signal space is sampled using Markov chain Monte
Carlo (MCMC) (Brooks et al., 2011). In each iteration the MCMC algorithm alternates
between a proposal for ¢ and a proposal for y. For the one-dimensional update in ¢, a
Metropolis algorithm is applied, meaning that the proposal distribution is symmetric. For
the n-dimensional block update in signal space, the Langevin-Hastings algorithm (LH)
is applied (Christensen et al., 2006). LH is a special case of Metropolis-Hastings, with
faster conversion: while with Metropolis the number of iterations to reach convergence
is proportional to the dimension of the combined parameter-signal space (i.e., it is O(n),
Chivers and Sleightholme (2015)), LH convergences proportionally to the cubic root of
the dimensionality (O(n'/?)) (Roberts and Rosenthal, 1998). It does so by using infor-
mation captured in the spatial correlation matrix C' and in the observations z, to form a
proposal probability gradient field (Christensen et al., 2006).

5.3.2.3 Tuning the proposal distributions, chain phases

The proposal distributions for the MCMC iteration steps of ¢ and y are respectively: 1)
a normal distribution, scaled and rounded to the earlier defined discrete values for ¢;

2) a multivariate normal distribution scaled according to the LH algorithm (Christensen
et al., 2006). Each proposal distribution is scaled by a single variance parameter, that
is v4 and vy, respectively. These scale settings should force the acceptance rates to be
as close as possible to the ideal rates: 0.44 for a single-parameter Metropolis algorithm
(Rosenthal, 2011) and 0.57 for LH (Christensen et al., 2006).

Manually tuning 4 and yy proved to be a very cumbersome process, because a) a

test run to assess a tuning setting can take up half an hour of computation time and

we need to assess several settings of two scaling parameters combined, and b) some-

times at the very beginning of a chain a low value for yy is needed to achieve an accep-
tance rate for y larger than zero (in other words: to start exploring the parameter-signal
space), while soon afterwards this value has to be increased. To overcome both issues
we used a self-tuning algorithm that searches values for y, and yy, forcing acceptance

rates near the optimal values as given above. Because the chain continues while trying
out different settings during the first several thousand iterations, this approach supports
the start up.

For the self-tuning algorithm we applied a proportional—integral (P1) feedback controller
for each scale setting. Such controllers are used in many industrial processes, and are
known for their robustness with respect to process modelling uncertainties (Astrém
and Murray, 2008) and easy mathematical description. Thus, in our research the com-
plete MCMC chain consisted of three phases: 1) the tuning phase, where y,, and yy
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have to be tuned and exploration of the parameter-signal space has to start; 2) the
warm-up phase, where the chain arrives in an appropriate subspace of the parameter-
signal space (note that, according to Gelman et al. (2013), the expression “warm-up”
is a better analogy than the often used expression “burn-in” for this phase); and 3), the
production phase, where the chain explores the parameter- and signal space and thus
samples the posterior. During phases 2 and 3, y4 and yy are constant. The chain part
from phase 3 is thinned, and ultimately used for inference and prediction.

5.3.2.4 Inferencing posterior and posterior predictive

Using Eqgn. (5.16), we arrive at the marginal posteriors by integrating out the other pa-
rameters and the signal:

st = [[[ fw.p.0% 01z ayaas.
1@ = [[[ £w.5.0% 01z dy do* do an (5.24)
f@lz) = f f [y, 8,07, ¢lz) dy do* dB;
where in our approach the integrations over 3 and o> are done analytically while the

integrations over ¢ and y are numerically approximated. To understand the analytical
part, we first re-formulate the marginal posteriors for o> and (3, respectively:

f0?lz) = f f Fly. B. 0% ¢1z) dy dB dg
- f f F(B.0ly. 6, 2)f(y. 91) dy dB o (5.25)
- f f F(B.0°ly. &) (y. 91z dy 4B do.

In a similar way we derive for 3:

f(ﬁlz)=ff fB,’ly, ) (y. $lz) dy do” dg. (5.26)

In Egns. (5.25) and (5.26) the joint conditional distribution f(3, o*|y, ¢) is an important
building block, which we will discuss first in the remainder of this section. Then, we will
discuss the implementations of Eqns. (5.25) and (5.26) as well as the implementation
of f(¢|z) and conclude with a similar reasoning regarding prediction. Note that the up-
coming Eqgns. (5.27), (5.28), (5.30) and (5.32) are explained in the Additional material A,
while only the results are provided here.
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Joint conditional distribution
The joint conditional distribution f(3, o%|¢, y) can, because of the earlier choice for the
conjugate priors (see Section 5.3.2.1 and the Additional material A) be written as the
product of:

f(@16,y) < x5 (ve, 7) and

5 5 (5.27)
fBlo”,¢.y) < MVN(.,0"D,)
with (Diggle and Ribeiro, 2007, section 7.2.1):
n—k ifD61:0andv0=0
Ve = .
n+ vy |fD51¢0andv0>0
_ -1 T -1 -1
D, =D, + X' C'X) (5.28)

& =D.(Dy'é+ X"C'y)
o sy +EE D€ +y"CTly — €1 D€,

c VC

where k represents the number of covariates, including an intercept. Note that subscript
c is used for parameters and hyperparameters conditional on ¢ and y. We reserve the
expression “posterior” for parameter distributions conditional on the observations z.

Marginal posterior f(c|2)
Elaborating Eqn. (5.25):

F0?l2) = f f F(B.0ly. &) (y. 912) dy 4B do

= f f (@6, fBlo?, ¢,y f(y, ¢lz) dy dB dg
(5.29)

=f f(0'2|¢,y)f(y,¢IZ){ff(ﬂl(fz,aﬁ,y)dﬁ}dydqﬁ

- f £\, ) f (. 612) dy do.

For each thinned MCMC iteration we calculate f(c|¢, y) (based on the corresponding
y and ¢) and take one sample, exploiting the fact that standard algorithms exist to sam-
ple from the well-known ng distribution. All those samples together are the empirical
marginal posterior distribution f(c?|2), or in other words: y and ¢ are numerically inte-

grated out from [[ f(c?ly. ¢)f(y. ¢l=) dy dg.

Marginal posterior f(3|z)
The marginal posterior f(3|¢,y) of Egn. (5.26) can be defined as a scaled multivariate
Student’s ¢ distribution (see Additional material A):

F(Blg,y) « MVt, r(Ee, s D,) (5.30)
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with v, + 2 degrees of freedom, location vector &, and scale matrix ¢>D,. Almost identi-
cal to the construction of the empirical marginal distribution for o2, we take one sample
for 3 for each thinned MCMC iteration to compose the empirical marginal posterior
distribution f(3|z).

Marginal posterior f(¢|z) and MCMC posterior evaluations
Elaborating on Eqgn. (5.24) gives:

£l = f f Fly, B.0%, ¢l2) dy do” 4B
- f f F(B.0ly. ) f(y. d12) dy do? 4B (5.31)
= f f (B, ly, ¢)f(¢ly) f(ylz) dy do* dB

In this case, the empirical marginal posterior of f(¢|z) is provided by the ¢ values in the
thinned MCMC iterations. To construct this MCMC chain, the conditional distribution
f(¢ly) is evaluated at every MCMC iteration using the following equation (see Additional
material A):

F@ly) « f@IDIZICI 7 (P72 (5.32)

Likewise, a multivariate ¢ distribution (derived from Eqn. (5.15) ) multiplied by Eqn. (5.14)
is evaluated at every iteration for the signal part f(y|¢, z) of the MCMC iteration (Diggle
and Ribeiro, 2007, Section 7.5.4). Note that in both evaluated distributions (f(¢ly) and
f(ylg, 2)), B and o have been integrated out.
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Posterior predictive
For the posterior predictive, we start with expanding 8 in the final expression of Eqn. (5.17):

fy'l2) = f f f F@'1B. P 6. 9)f (8.0 6.y12) dB do” dp dy. (5.33)

where again integration over 3 and o2 is done mathematically and integration over

¢ and y numerically. In the implementation, prediction is done by taking — on every
thinned MCMC iteration — one sample from the following multivariate ¢-distribution (Dig-
gle and Ribeiro, 2007, Eqn. (7.13)):

POy, @) = MVty (1, 6L E) (5.34)
with
p=(X"-C"C'X)D.D;'& +(CTC™ + (X,C°CT' X)D X"C") y and
E=C*"-— C*Tc—lC*T + (X* _ C*TC—IX)(D61 + D;l)_l(X* _ C*TC_IX)T.
(5.35)

All those samples together constitute the posterior predictive f(y*|z), which are back-
transformed by the inverse logit function to the predicted probability on success p* and
then summarised, for example by calculating the median per prediction location.
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5.4 Case study: Depth of Pleistocene sand layer in
Flevoland

The Dutch province of Flevoland consists of two land reclamations (or polders): the
Noordoostpolder (which translates literally to “North-East polder”) reclaimed in 1943,

and the Flevopolder, reclaimed in two parts, 1957 and 1968 respectively. The total land
area is ca. 1,400 km”. The Noordoostpolder encapsulates two former islands: Urk (founded
on boulder clay deposited in the Saalien ice age) and Schokland (founded on Holocene
peat). During the last ice age (Weichselien) cover sand, an aolian deposit with a me-

dian grain size of 105-210 um (Koster, 2009) was deposited in this area. During the
Holocene, the cover sand was covered by marine deposits (silt and clay) and with peat.

The depth below the land surface of this Pleistocene cover sand layer now ranges from

0 to over 16m.

5.4.1 Soil data and covariates

In 2018, the soil in the province of Flevoland was sampled at 1507 points (Brouwer

et al., 2018) selected by spatial coverage sampling (Walvoort et al., 2010) over the area
of interest. At each location, the depth of the Pleistocene cover sand layer below the
land surface was determined. At some locations the cover sand was not encountered
within augering depth, which was at least 1.20m. At these locations we have so-called
right-censored observations of the cover sand depth. We transformed the continuous
depth data into indicators, having value 1 if the depth of the cover sand exceeds 1.20m,
and 0 else.

We used two covariates in raster format, the first being elevation as derived form the
digital elevation model (DEM) of the Netherlands, more specifically the LiDAR based
Dutch AHN2 (PDOK, 2020). We used the AHN2 version with 5m resolution and void fill-
ing, and re-sampled it to a 25m square grid. We chose this covariate because a DEM is
often used to derive covariates for mapping soil properties. For the calibration locations,
the DEM ranges from -5.4m to 8.6m, with a mean of -3.6m, relative to the reference sea
level.

The second covariate is the estimated thickness of the Holocene layer according to the
3-dimensional Dutch Digital Geological Model (Gunnink et al., 2013; Dinoloket, 2020).
This covariate is a legacy map of the depth to the Pleistocene cover sand. Depending
on the quality of the legacy map, we expect this covariate to be a good candidate for
modelling and mapping our Bernoulli variable. For the calibration locations, the thick-
ness of the Holocene layer ranges from Om to 8.6m with mean 2.9m.

After cleaning the data and defining 500 observation locations as ‘validation locations’,
exactly 1,000 calibration locations remain, of which 782 have value ‘1’, i.e. depth to
Pleistocene sand >1.20m. The removed observations contain two observations at ex-
actly the same location as other observations and five locations without full covariate
coverage. The calibration- and statistical validation locations, and the covariates are
shown in Figure 5.3. Note that urban areas, swamps, waterbodies and areas where
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a

Calibration:
Depth to cover sand > 1.20m
Depth to cover sand < 1.20m

o

o

Validation:
+ Depth to cover sand > 1.20m
+ Depth to cover sand < 1.20m

N
Elevation (m)
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Figure 5.3: Case study observations and covariates. The point observation data, fully
randomly divided into a calibration- and statistical validation set, is presented in
subfigure a, while b shows Flevoland, our area of interest, as one of twelve Dutch
provinces. The covariates elevation and thickness of the Holocene layer are presented

in panels ¢ and d, respectively

the Pleistocene sand layer is known to be at the surface were not or less intensively
sampled since they are outside the area of interest (Brouwer et al., 2018).

Thickness Holocene (m)
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5.4.2 Research approach

We compared four regression models: no covariates (indicated by ‘empty regression
model’), elevation as covariate, thickness Holocene as covariate, and both elevation and
thickness Holocene as covariates (‘full regression model’). All four regression models
have an intercept. For each regression model, we used a BGLM and a BGLGM ap-
proach. For reasons explained later, each BGLGM model was fitted twice. Thus we
calibrated 12 models (four BGLM models and eight BGLGM models), and assessed
their performance by statistical validation for comparison. We selected the models with-
out covariates and the models with both covariates to show the posterior distributions of
model parameters and in prediction over the whole area of interest.

In case of BGLGM we aggregated (compressed) the data by constructing pairs of points
based on minimal separation distance, to reduce computing time. The sum of the two
Bernoulli variables was treated as a binomial variable of two trials, located at a virtual
observation point halfway the two points of a pair. The binomial distribution is a straight-
forward generalisation of the Bernoulli distribution shown in the theory sections of this
work, allowing for several “draws” or observations per location instead of one; the num-
ber of observations at a given point is denoted by m or m;, not to be confused with the
unit of distance. In our case, m = 2 for all virtual points. The covariate values at the
individual points were averaged and assigned to the virtual observation point.

We ran the warm-up phase and production phase with 5 million iterations each, and
thinned the production phase to 50 iterations for posterior inference and statistical vali-
dation. This strong thinning was needed for computational feasibility.

5.4.2.1 Chain convergence assessment for BGLGM

As we are not aware of any easy to use MCMC convergence diagnostics for high-dimensional
posteriors, we applied the between-chain approach (Gelman et al., 2011): for each

BGLGM under investigation, we started two chains, with different random starting val-

ues for ¢ and Y, and different pseudo random number seeds, forcing the proposals of

each iteration to be different between the two chains. We assessed the convergence by
visually comparing the posterior densities of ¢, 3 and o of the two chains, as well as

the statistical validation metrics (i.e. measures of the quality of the spatial predictions).
Because the model parameters and the statistical validation metrics depend on the

signal, we assume that this approach, although indirectly, provides sufficient information

to assess the convergence of inference of both ¢ and the signal.

5.4.2.2 Parameter inference and statistical validation

We show the resulting marginal posterior density plots of all available parameters of the
selected calibrated models.

As already indicated, we randomly divided the original observations into a calibration
set (originally n = 1000, for BGLGM aggregated to 500) and a validation set (n, = 500).
As a statistical validation metric for continuous predictions p, — probabilities between
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(and including) zero and one — in combination with binary validation observations z, —
zero or one — we used the Brier score (Spiegelhalter, 2019)

1 n,
Bri = vi — Lvi 2, .
rier score py izzl(p Zyi) (5.36)

which is analogue to the general mean squared error statistic.

Based on an arbitrary probability threshold of 0.5, we also computed confusion matrices
for each calibrated model, each matrix showing the numbers of true positives, false
positives, true negatives and false negatives. We summarised these confusion matrices
by the overall accuracy:

true positives + true negatives

overall accuracy = (5.37)

ny

To investigate the improvement by the recent soil survey and our models as compared
to the legacy map (used as a covariate in some of our models), we also calculated the
validation metrics for this legacy map. We transformed the continuous variable thick-
ness Holocene (which is equal to the depth of the Pleistocene cover sand) according to
the legacy map into an indicator applying the depth threshold of 1.20m.

5.4.2.3 Prediction

For prediction, we resampled the covariate rasters to a prediction mask resolution of
250m x 250m. In case of BGLM, we used the predict function based on a glm object.
For BGLGM, we found that the calculation time of the prediction (additional to calcu-
lating the MCMC itself) was substantial. This prediction calculation time appeared to

be roughly proportional to O(n?n,) with n, the number of prediction locations and n, the
number of remaining MCMC samples after thinning. We separated the prediction mask
into a batch of 10 small prediction masks with ca. 2,500 pixels each, and predicted each
small mask with a separate run, additional to the single run mentioned in Section 5.4.2
to infer the posterior parameters. All runs are provided with equal random generator
seed and calibration data. Within each run we thinned the MCMC production phase to
five samples; again, this quite rigid approach in separation and thinning was needed for
computational feasibility. For each of those five samples, we calculated a spatial pre-
diction as depicted in Figure 5.2. For each prediction location, we selected the median
of the five predictions and finally merged the small prediction masks into the complete
prediction map.
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5.4.3 Results

5.4.3.1 General performance and computational costs

Comparing the calculation approaches, we found that BGLM always and swiftly pro-
duces an answer. On the contrary, we had initially quite some problems with getting
BGLGM to work at all. A first hurdle was that we obtained MCMC chains with accep-
tance rates very close to zero or one, meaning that the chain does not, or does very
slowly, explore the parameter- and signal space. This was due to difficulties with finding
a functioning MCMC proposal setting v, and yy, and probably also with the need for
different proposal settings during the initial iterations, compared to the subsequent itera-
tions. Those problems were solved for all but a few of our many (not shown) trials using
the tuning algorithm as described in Section 5.3.2.3. Given a proper working MCMC
algorithm with reasonable acceptance rates, the second hurdle was to produce mean-
ingful results, such as convergence to reasonable posteriors. We found that enough
data, and in these data enough (detrended) spatial structure was needed, although in
our case we also found that convergence problems due to weak spatial structure could
be solved by increasing the MCMC chain length.

The BGLMs produced answers within a few seconds of calculation time, while each
single BGLGM run had a calculation time of 30-50 hours, using contemporary computer
technology optimised for speed, one processing core and sufficient working memory.

5.4.3.2 Posterior parameters

Posteriors of regression- and spatial parameters are shown for the empty regression
model and the full regression model, using the BGLM and the BGLGM models, see
Figures 5.4 and 5.5 respectively. The regression coefficient distributions for elevation
are around zero for both the BGLM and the BGLGM models. In case of BGLGM, the
distributions of 3 are wider compared to those obtained with BGLM. In the empty re-
gression model the posterior of B is even almost bi-modal, with one peak above gy = 0.
In case of the BGLGM models, the posteriors of 8; and 8, have more probability mass
away from zero than those obtained with BGLM. The posterior of spatial parameter o
has quite some probability mass at the higher values in case of the empty regression
model. With the full regression model, this probability mass moves closer to zero. The
median of the posterior of o2 for the two BGLGMSs with empty regression model equal
47 and 57, while for the two BGLGMs with full regression model these are 6.8 and 5.4.
Posterior ¢ shows the same movement: the medians are 29, 30 for the empty regres-
sion models, and 8.3, 7.0 km for the full regression models.
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Figure 5.4: Posterior parameter distributions of BGLM and BGLGM models with empty
regression model (intercept By only). Note that the BGLM model only has a regression
coefficient (no spatial parameters). Note also that prior o> cannot be normalised
because it is improper, in other words: its surface under the curve cannot be scaled to
one. For each BGLGM, the posteriors of two separate runs (different in random seed)
are given, allowing to explore their convergence.
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Figure 5.5: Posterior parameter distributions of BGLM and BGLGM models with full
regression model. Regression coefficients are: 5y — intercept; 8, — elevation; 5, —
thickness Holocene.
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5.4.3.3 Statistical validation

The validation metrics are given in Table 5.1, and the confusion matrices in Figure 5.6
(next page). ltis clear that all BGLGMs outperform all BGLMs according to both met-
rics. Note also that BGLGM extracts a bit more information out of the elevation covari-
ate. See, for example, the Brier score: adding elevation to the BGLM regression model
does not improve the performance, while with BGLGM it does. Based on the overall
accuracy, the full BGLGM model perform worse than both single covariate regression
models, and almost equal to the empty model.

There are minor differences between the two different runs of the BGLGM models,
especially according to overall accuracy, with a maximum deviation of 0.008 in case of
the elevation regression model.

Compared with the legacy map (thickness Holocene), the overall accuracy of every
BGLGM map is higher, and only the accuracies of the BGLM maps without covariate
thickness Holocene in the regression model are lower. This is confirmed by the Brier
scores.

The confusion matrices confirm that, in case of BGLM, adding elevation to the empty
regression model or to the regression model with thickness Holocene does not change
anything. Because almost 80% of the calibration data have value 1 (see Sect. 5.4.1),

a BGLM model based on just taking the mean of the observations results in a spatially
constant prediction larger than 0.5, and thus to an overall accuracy of around 0.8 — and
also to around 20% false positives.

Table 5.1: Statistical validation of all models according to the Brier score (smaller is
better) and overall accuracy (larger is better). For each BGLGM, the figures of two
separate runs (different in random seed) are given, allowing to explore their
convergence.

Brier score Overall accuracy

BGLM BGLGM BGLM BGLGM
no covariates 0.161 0.064,0.063 | 0.798 0.912,0.914
elevation 0.161 0.059,0.058 | 0.798 0.916, 0.924
thickness Holocene 0.089 0.059,0.057 | 0.874 0.920, 0.924
elevation + thickness Holocene 0.089 0.058,0.055 | 0.874 0.914,0.914
Covariate thickness Holocene as 0.128 0.872
direct binary predictor
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Legend
True positive False positive Numbers: actual counts;
False negative True negative  @lsoindicated by rectangle surface
01 23 23
no covariates
0 0 21 78 20 78
01 20 21
elevation
0 0 22 81 17 80
30 15 14
thickness Hol.
33 71 25 86 24 87
30 16 17
elev. + th.Ho.
33 71 27 85 26 84
BGLM BGLGM#1 BGLGM#2

Figure 5.6: Confusion matrices for all eight models, based on the validation data set.
For each BGLGM, the matrices for two separate runs are given. “Positive” means: the
depth to the Pleistocene cover sand exceeds 1.20m.



138 Mapping depth to Pleistocene sand with Bayesian

5.4.3.4 Predictions

The predictions for two full models are presented in Figure 5.7 where the orange rect-
angle indicates the detail area of Figure 5.8 (next page) with the same predictions. For
BGLGM, we used run #1.

Recall that the northern area is called Noordoostpolder and the southern unit Flevopolder.
In both maps, we can see the effect of the covariates elevation and thickness Holocene
layer (compare with Figure 5.3), for example in the clearly distinctive spots with low
probability in the very south-west of the Flevopolder. This may be an artefact in the ur-
ban area of the city of Almere. The prediction by BGLM is in general somewhat smoother;
especially in the very south of the Flevopolder. BGLGM allows predicted probabilities
much closer to zero than does BGLM, while in large parts of the Noordoostpolder BGLGM
predicts probabilities closer to one compared to BGLM. In the north of the Flevopolder,
the BGLGM map shows an almost circular pattern with low probabilities that is hardly
visible in BGLM.

Relating the prediction to the observations (Figure 5.8), BGLGM follows the observa-
tions in the calibration data closer — both spatially and in probability.

Figure 5.7: Predicted probabilities of depth of Pleistocene sand > 1.20m according to
BGLM (subfigure a) and BGLGM (b) using the full regression model, using a 250m
resolution prediction mask. The rectangle is the location of the detail area, shown in the
next figure.
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Calibration data:
o Depth to cover sand > 1.20m
o Depth to cover sand < 1.20m

Calibration data:
o Both depth to cover sand > 1.20m
e One>1.20m, one <1.20m
o Both depth to cover sand < 1.20m

Figure 5.8: Detail map of predicted probabilities. Subfigure a shows the prediction
according to BGLM, b the prediction according to BGLGM. For reference, the original
calibration data is added in a. The location of the calibration data for BGLGM,
aggregated from the original observations and assuming two observations on every
(artificial) location, is added to subfigure b.
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5.5 Discussion

5.5.1 Mapping Pleistocene sand layer depth

All maps confirm the general spatial pattern depicted on the covariate map thickness
Holocene, showing several areas where the Pleistocene cover sand is close to the sur-
face. The areas where the Pleistocene sand is deeper reflect old fluvial patterns, e.g.
the deltas formed by the ancient ancestors of the current rivers Overijsselse Vecht and
Gelderse IJssel (Brouwer et al., 2018) and probably also the Eem. The models predict
also in the urban areas, the swampy areas, and areas otherwise excluded from the
sampling design, lacking both calibration and validation data. One of these excluded
parts is in the area just below the very north of the Noordoostpolder. Here, the predicted
probability of Pleistocene cover sand deeper than 1.20m correctly approaches zero.
The maps indicate (although not conclusively) which areas are most susceptible to

soil subsidence (Brouwer et al., 2018), so where a closer look into the soil properties
would make sense. The same methodology could also be used to make a map of the
probability of Pleistocene cover sand at the surface. The statistical validation data of
these maps suggest that we should have more trust in Figure 5.7b. Also visually, it
seems that the BGLGM prediction in Figure 5.7b follows the observations as provided in
Figure 5.3 more closely. We should be careful with the low probability dots in the south-
west of the Flevopolder as shown on both maps, because they are caused by the locally
deviating covariates values (very probably artefacts) and not from the observation data.

As a general note: With the given original dataset, other approaches which take all
available information into account (i.e.: without simplification to binary observations)
are also possible. Those approaches are however outside the scope of this research.

5.5.2 Posterior parameters

5.5.2.1 Posterior regression parameters

The posteriors of the regression coefficients were calculated differently in BGLM and
BGLGM. For BGLM, we used straightforward mathematics and a numerical algorithm
converging within a limited number of iterations. This was possible because of our choice
for a low-informative prior we could borrow well-developed existing concepts based

on non-Bayesian statistics (i.e. estimated maximum likelihood and the corresponding
estimated variances). In case of BGLGM, the posterior is a sample generated from a
MCMC chain. We suppose that extending a BGLM model with variogram parameters
and a signal so that a BGLGM model is obtained, allows for wider posteriors of the
regression parameters and even for a non-Gaussian posterior — see 3, in Figure 5.4.
The empty regression model resulted in a very narrow BGLM posterior centred at the
logit transformed mean of the observations, while the corresponding BGLGM posteri-
ors explored a much wider range of values. We could not explain why the two poste-
rior BGLGM modes consistently are around, but different from, the mode of the poste-
rior BGLM. In the full model (Figure 5.5), the modes of the intercepts 3, of BGLM and
BGLGM are about equal; more freedom for 3 results in larger modes for 8; and 3,, sug-
gesting that BGLGM gets more information out of the covariates than BGLM. This was
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already suggested by the statistical validation. Perhaps this is due to the covariance
structure or to the hierarchical nature in BGLGM.

5.5.2.2 Posterior spatial parameters

The influence of the regression model on the spatial parameters, as shown in Sec-

tion 5.4.3.2, indicates that the covariates explain part of the variation (i.e., the probability
mass emphasises lower values of o2 if covariates are included) and explain also part

of the spatial structure at larger distances (i.e., the probability mass emphasises lower
values of ¢ after including covariates). It would be interesting — in follow-up research —
to explore if the resulting variogram slopes close to the origin are different when com-
paring the empty regression model with the full regression model. It would also be in-
teresting to investigate the correlation between the spatial parameters o and ¢ for a
given regression model by exploring the joint posterior distribution f(o2, ¢|z) which is
especially in a Bayesian setting like this fairly easily to do.

5.5.3 Issues concerning BGLGM
5.5.3.1 Spatial parameters and signal

The applied reference prior (Berger et al., 2001) is based on a Gaussian spatial dataset,
not on Bernoulli observations; within the scope of this work we could not determine if
this is mathematically correct. Note that by definition, the reference prior is designed

to maximise the expected impact of the data on the posterior (Bernardo, 1979; Berger
et al., 2009). This means that the ¢ component of the spatial reference prior uses the
geographic positions of the observation locations. We calculated the reference prior
using the aggregated locations, but using the original locations for calculation would
also have been possible; we are not sure which approach is mathematically prefer-
able. We found a stabilising effect on the chain convergence when using the discretised
reference prior for ¢ rather than the often applied (and in our opinion often mis-used)
discrete uniform distribution. Because the software only allowed discretisation of prior
¢ in regular steps, which has a limit of 2000 discretisation points, and fine steps are
needed for the small values of ¢, we were not able to explore the posterior probability
mass for higher values of ¢.

With trial datasets lacking enough information (elaborated in Section 5.5.3.2), the poste-
riors of o> and ¢ tended to get shapes highly dependent on the chosen random number
generator seed, sometimes with most probability mass around very high values (in
case of o2) or close to the upper limit (in case of ¢). Those posteriors did not resemble
the priors, as we — perhaps a bit naively — initially expected based on our knowledge
about single parameter Bayesian models, where in case of lack of data (or: a weak
likelihood) the prior is shaping the posterior. In similar trials, the signal layer values at
the observation locations tended to go to its extremes —co and oo, resulting in predicted
probabilities of 0 and 1. We considered all those outcomes as ‘not meaningful’. This
behaviour of the signal layer values also indicates that one should be careful when
comparing hierarchical models based on goodness-of-fit metrics. Also, in those trials

it proved more difficult to correctly tune the proposal distributions.
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Fixing 72 (or actually the nugget-to-sill ratio 7?) to zero was an arbitrary choice; a better
approach with the available software would have been to test several values for 7> as
proposed by Diggle and Ribeiro (2007, Section 7.2.1), and compare the associated
statistical validation data. This was outside the scope of our research question. The
same holds for testing other spatial covariance models, such as Matern, which would
add more choices or an extra parameter.

5.5.3.2 Sample size and information

Although not extensively explored, we have strong indications that enough informa-
tion in the data is needed to get meaningful outcomes (see Section 5.5.3.1) in case of
BGLGM, which is also suggested by Diggle and Ribeiro (2007). Enough information is
composed of: 1) enough observations locations, 2) enough observations (or ‘binomial
draws’) per location in cases where this applies, and 3) enough spatial signal in the
actual observations. In our case, the algorithm was less sensitive to lack on 3) if we
applied a longer MCMC chain but we could not determine if this is generally true, nor
if this also solves possible problems with 1) and 2).

For numerical reasons the number of locations n is limited in practice (Ribeiro Jr et al.,
2003), basically due to variance-covariance matrix inversions. With binomial data, in-
formation can be added by collecting data from more locations (which increases the
computational costs) or by collecting data with more observations per location — in other
words: increase m; (which does not affect the computational costs). For given m;, this
suggests that there is a window of opportunity for n: too low n contains not enough
information, too high n is computationally not feasible. Solutions specifically for big n
are being researched (Zhang et al., 2018). In real world applications, a large n might
also be unfeasible because of practical and financial constraints.

In our real world case, we aggregated n = 1000 locations with one observation each

to n, = 500 artificial locations with two observations each, to be able to offer enough
information to the BGLGM algorithm while calculations were still feasible. In Figure 5.8
the calibration data locations in subfigure a or b, compared to the locations in subfig-
ure ¢ show the difference for the detail area. According to Hodge and Vieland (2017),
aggregating binomial data (in their non-spatial context called ‘compression’) causes
quantifiable loss of information. In our case, we assumed that this loss is limited to the
very short distance spatial information and is negligible — especially because we already
fixed the nugget and the covariance model for reasons explained earlier.

A formal definition and quantification of ‘information’ in spatial binomial data is out-
side the scope of this research, but would be a useful tool to assess the feasibility of
model-based geostatistical approaches such as BGLGM for a given dataset or sam-
pling design. In case of m; = 1 (Bernoulli) we expect the number of observation lo-
cations required to arrive at meaningful results to be much larger than in case of the
usual Gaussian geostatistical model, because much less information is available at
each single location and because we need to calibrate a more complex (hierarchical)
model. Possible starting points for such research offer Li and Reynolds (1995); Mays
et al. (2002); Nowosad and Stepinski (2019).
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5.5.3.3 Prediction and calculation time

As already indicated in Section 5.4.2.3, our numerical calculations showed that the
calculation complexity for prediction was roughly O(n2n,), perhaps because a set of
linear equations has to be solved which has a complexity of at least O(n>37°) (Bae et al.,
2014). Because prediction adds substantially to the total calculation time, we chose

— as already explained in Section 5.4.2 — to thin the MCMC chain to 50 iterations in
order to predict at the 500 validation locations, while inferring the posterior parameters
within the same run. For the prediction itself — see Section 5.4.2.3 — we ran 10 parallel
sessions in which we thinned the chain to 5 iterations only. This is another example
showing that, compared to BGLM, BGLGM might offer better results but also requires
much more modelling effort and much more computational costs. In practice we must
accept compromises like prediction based on just five MCMC iterations (after thinning)
to make calculations within a reasonable amount of time.

5.5.3.4 Tuning the proposal distribution

To our knowledge this is the first time a proportional-integrative (Pl) feedback controller
is applied to tune proposal distributions for an MCMC, although the use of separate
‘pilot runs’ for tuning is not unknown (Griffin and Walker, 2013). Far more attention
received adaptive MCMC where the proposal distribution is continuously adjusted dur-
ing the MCMC chain development, based on the posterior density (Griffin and Walker,
2013; Roberts and Rosenthal, 2009; Garthwaite et al., 2016). Note that the applied
Langevin-Hastings algorithm also has adaptive properties. Because we chose to use
an existing implementation of BGLGM, an external feedback controller together with

a separate tuning phase was de facto a necessity, and a PI controller was a natural
choice for reasons already mentioned.

5.5.3.5 Chain convergence assessment

Cowles and Carlin (1996) offer an overview of MCMC chain convergence diagnos-

tics, with metrics generally based on between-chain and/or within-chain comparison

of variances. For multivariate MCMC chains, those variances are extended to variance-
covariance matrices (Brooks and Gelman, 1998). A slightly different approach would be
to compare sample distributions using the Kullback Leibler divergence, tested by Dixit
and Roy (2017) on a 10-dimensional parameter space. We are not aware of any work
considering convergence diagnostics in a space of substantially higher dimension. In
the scope of our research, we considered the applied visual comparison of the results of
the two runs as sufficient, but for future development of BGLGM applications we encour-
age research on methods to assess high-dimensional convergence. Note however that
given a finite MCMC length and a finite number of MCMC chains there is no guarantee
that all local modes are being explored, even if a good convergence is indicated.

5.5.4 Statistical validation

The threshold of 0.5, used for computing the confusion matrices and the overall accu-
racies, is a fairly arbitrary choice. Additionally, the overall accuracy metric assumes
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that the penalties of a false negative and a false positive conclusion are equal. As a
validation metric without threshold we chose the Brier score because it is very straight-
forward, and also because in earlier work we had disappointing experiences with the
often applied Area Under Curve metric (Steinbuch et al., 2018). Note that in case of

an unbalanced statistical validation dataset (meaning: containing many zeros and few
ones, or vice versa), or with non-uniform penalties on prediction error, the Brier score
as means of model comparison can be counter-intuitive, while other metrics might of-
fer more flexibility (Assel et al., 2017; Jewson, 2004). Statistical validation of proba-
bilistic predictors in the context of soil mapping is discussed by Rossiter et al. (2017)
and Beaudette (2020), including alternative metrics. However, because of our focus

on model comparison rather than on real-world applications where penalties indicate
practical consequences, we assume that the quite consistent message from the two
applied metrics — overall accuracy and Brier score — already provides a useful answer to
our research questions. We did not calculate any other validation metrics. The only in-
consistency is the drop in overall accuracy from the regression model with the thickness
Holocene as covariate to the full model in case of BGLGM; this drop is not reflected in
an increased Brier score. Based on the overall accuracy, we suspect some overfitting of
the data by the elevation covariate model.

5.5.5 Comparison of the models, and alternative approaches

In our research, BGLM performed reasonable, see Table 5.1. However, for this it leaned
heavily on the thickness Holocene covariate which is based on the 3D geological model
as described in Gunnink et al. (2013).

The covariate elevation, often included as covariate in digital soil mapping, hardly added
predictive power to any of the models. We should also note that the DEM is already
used in the 3D geological model.

Based on the validation statistics (Table 5.1), BGLGM clearly outperformed BGLM. But
as indicated in Section 5.4.3.1, it was quite an effort to get BGLGM functioning properly,
and when it worked there were serious computational costs involved, with an associated
electrical energy footprint (Taffoni et al., 2019) and a waiting time up to 50 hours until
results were available. For BGLGM, we followed the approach and implementation of
Diggle and Ribeiro (2007) and Christensen (2002). Comparable approaches in the R-
universe such as geoCount (Jing and De Oliveira, 2015), spBayes (especially func-
tion spMvGLM (Finley et al., 2015)), geoBayes (Evangelou and Roy, 2019), PrevMap
(Giorgi et al., 2017) and approximations such as INLA (Rue et al., 2009) — eventually
embedded in geostatsp (Brown et al., 2015) — were outside our scope, but might be
interesting to consider in future research and practical applications. We also did not
look into more pragmatic approaches such as indicator kriging, creating a Gaussian
model with the available data or data-mining methods such as random forest (Heung

et al., 2016) (in combination with additional covariates), all of which have their merits
and drawbacks in case of a binomial spatial variable.

A decision on which method to use should depend on the available or feasible sample
size and the available covariates, on the final goal of the map and/or other deliverables



generalised linear geostatistical models 145

such as the posteriors, uncertainty quantification and — more pragmatically — on the
available resources. Often, in digital soil mapping many covariates are used, some
based on direct observation (such as DEM and its derivatives as generated by radar
and vegetation data visible on multi-spectral satellite images) and some based rather
on modelling and interpolation (such as climate data). In case few covariates related
to the variable of interest are available, we need to have methods at hand that deliver
reasonable mapping results based only on the sample itself. In such cases, indicator
kriging — although statistically not completely sound — might be a good approach. If
we want to add already existing knowledge not captured in covariates, a Bayesian ap-
proach might be a good option. If we, from a pedometrics’ viewpoint, are interested in a
solid statistical description of binomial soil properties over space, an approach such as
BGLGM might very well be worth the effort. Furthermore, the addition of an automated
tuning phase as described in Section 5.3.2.3 makes both methodological research and
practice directed data processing much more feasible than manual tuning would allow.

5.6 Conclusions

Adding a geostatistical component to a Bayesian generalised linear model (BGLM) for
mapping binary soil properties yielded considerably better statistical validation met-
rics in a case study with a large (» = 1000) observation sample and few relevant co-
variates available. However, the resulting Bayesian generalised linear geostatistical
model (BGLGM) is quite demanding with respect to sample size, tuning the algorithm,
and computational costs. In this study we focused on the implementation of BGLGM
as provided in the R-package geoRglm, which we embedded in our own scripts. We
replaced manual tuning by an automated tuning algorithm and found a sample compo-
sition (in size and in number of observations per location) that delivers meaningful re-
sults within 50 hours calculation time. With the gained insights spatial soil practitioners
and researchers can — for their specific cases — better evaluate if using BGLGM would
be possible at all and if the extra gain would be worth the extra effort. The developed
automated tuning algorithm (of which the code is available) makes implementation of
BGLGM in applications more easy.
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5.A Additional material A

5.A.1 Introduction

In this additional material we show: 1) that the proposed MVN x2 , prior for 3 and o is
indeed conjugate; 2) how to arrive at the marginal conditional distributions f(3|y) and
f(o*ly); 3) one of the possibilities to integrate out 3 and ¢ to arrive at the marginal
distribution f(¢ly). Most of this material is based on Diggle and Ribeiro (2007); Chris-
tensen (2004); Diggle et al. (2003); Ribeiro and Diggle (2006); Ribeiro Jr et al. (2003);
Diggle and Ribeiro (2002); we also draw inspiration from Steinbuch et al. (2020, Addi-
tional material A). For general knowledge about Bayesian statistics we relied — among
others — on Gelman et al. (2013) and O’Hagan and Forster (2004). We aim this material
to readers with basic knowledge about probability distributions, conditional probabilities,
integration and matrix algebra. For the meaning and context of most symbols we refer
to the main paper; this document isn’t meant to be read stand-alone. In the remaining of
this section we provide the used distributions, an integral and assumptions.

We will extensively use the multivariate normal, also known as multivariate Gaussian
distribution (MVN), in general terms described as (Gelman et al., 2013, page 578):

n 1 1
MVN(y; p, %) = 2n) 2|2 2exp (—zw —y)' = (- y)) (5.38)

where |X] indicates the determinant of the enclosed matrix, and n the dimension of the
square, symmetric and positive-definite matrix 3. The parameter before the semicolon
— y —indicates the variable whose distribution is given. We will also use the scaled
inverse Chi squared distribution (,\/gd) (Gelman et al., 2013, page 578):

a0 6 = T (@A e (25 (5:39)
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and use the multivariate Student’s ¢ distribution (M V) (Gelman et al., 2013, page 580):

I'((v+n)/2)

MV, (g, B) = — 2
R e

—(v+n)/2
) (5.40)
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In the rest of this document, we will often omit the variable + semicolon part of the nota-
tion. An important likelihood is given by (Christensen, 2004):

f(yl@) = MVN(y — XB3,0%C + 7°1)

) . 1 5.41
= 2n0?)"%|C| 2exp (—E(Xﬁ -y (@O (XB - y))- o410
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To solve an integral, we will apply the Gamma function (Nahin, 2020, note that for a
given n, I' (n) is a constant):

[(n)= f e *x"'dx, n> 0. (5.42)
0
We assume that > = ;—22 is fixed.

5.A.2 Conjugate prior for 3, 5 and o

In Bayesian statistics, a conjugate prior is a prior which, in combination with the likeli-
hood, provides a closed-form’ distribution being the same distribution as the prior. For
mathematical convenience, we apply a conjugate prior for 3 and o2, while we assume
for now that ¢ (and thus C) is fixed.

Using the product rule of conditional probability, we define this joint prior as the product
of two distributions:

(B, = f(Blo) f(o?). (5.43)

We apply the multivariate normal (MVN) and inverse scaled Chi-squared wgc,) distribu-
tions respectively:

f(Blo?*) ~ MVN(&, 0> Do)

5.44

F@) ~ X570, 50, (544
where & is our prior belief about the k regression coefficient means, and D, (a valid

k x k matrix) our prior belief about the scaled variance of, and correlation between, the

elements of &y. Expressed in qualitative terms, 9(2) (> 0; called the ‘scale factor’) can be
considered our prior belief about the value of o2, and v, (> 0; ‘degrees of freedom’) our
prior belief how much we trust g(z), where a higher value for v, indicates more trust.

5.A.3 Conditional distributions for 3 and o

In the main article, we show the calculation of the marginal posteriors f(3|z) and f(0%|z)
for which the conditional distribution £(3, |¢, y) is an intermediate result. With “condi-
tional” we mean here: conditional on ¢ and y, not on the observations z; we use the
expression “posterior” for distributions conditional on the observations. The prior pre-
sented in the previous section, combined with the likelihood f(y|@), delivers the condi-
tional distribution £(3, o*|¢,y) which is, apart from a proportionality factor, a joint MWVX§C,
distribution. The final result is shown in Egs. (5.61) and (5.63).

' With ‘closed-form’ we mean the formulation as found on Wikipedia (https://en.wikipedia.org/wiki/Closed-
form_expression, accessed August 12, 2020): In mathematics, a closed-form expression is a mathematical
expression expressed using a finite number of standard operations. It may contain constants, variables,
certain “well-known” operations (e.g., + — X =), and functions (e.g., n-th root, exponent, logarithm,
trigonometric functions, and inverse hyperbolic functions), but usually no limit, differentiation, or integration.
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We start with writing the joint prior, given in Eq. (5.44), as mathematical equation:

k 1 1
FBloDf(o?) = (2ro?) 2| Dyl 2 exp (‘5(5 - €0)7(c* Do) (B - £o>)

yor 2 (5.45)
(70)9 Vi 2 _(LO D Vog(z)
'T%)(go) “(c) 2 Vexp 552 |
We rearrange the elements, noting that, expressed in general terms, e’ = ¢@*?:
f(Blo*) f()
_k _1 o vos, 1 _ L (F)2 y
= () 2Dy 2 (0 FVexp| - 222 — ~(8 - &) (> Do) (B - &0) | (27)"F Z—(0)"
202 2 r%)
PR, NA L P | vosg 1 T, 279 -1 _k %)%0 vo
=(07)" T "|Do| Zexp _F_E(B_EO) (0°Do) (B — &) |(2m)"2 lﬁ(vz_o)(S‘o) .
(5.46)

We write out the conditional distribution as proportional product of prior Eq. (5.46) and
likelihood Eg. (5.41):

vo+k 1 2 1 k 7 %0
FB.018,y) o (@ DDyl exp (—Vzo—g;) — 2(B- &) (@* Do) (B - eo)] 0t 20 gy
o 2 I'(3)
n i 1
o) 3 |C Zexp (—z(Xﬂ -y)(@*C)y(XB - y)) ,
(5.47)

and we rearrange Eq. (5.47) to:

f(B, O'2|¢, Y) o (0-2)—(V°T+k+l)(0_2)_%

202

0 1 1
- exp[ o~ (B =€) (Do) (B - &) - (X8 - 1) (@) (X y))

"
(3)>

Dol ICT 2 s (o .
2

(5.48)
Note that for clarification and reference of how we group, discuss and rearrange ele-
ments inside equations, we occasionally add coloured underlining. Those lines have no
mathematical meaning.

First, we consider the blue underlined part, which we can shape into the same appear-
ance as the o power in (5.39) by defining the conditional distribution degrees of free-
dom v,:

Ve =n+vy (5.49)
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and simplifying and substituting:

vo+k+n
(0_2) ( 2 +1)(0_2) 37— (0_2) (0 +1)

_ oy (5.50)
Secondly, we consider the underlined part and simplify it by taking out a factor:
_20_% 3B~ €) @Dy (B &) - 5(XB-y) (@ C) (X -
o2 1 (5.51)
= —55 (55 + (B =€) D5 (B~ &) + (XB-9)'CT(XB-y))

To separate 3, we expand the two quadratic matrix terms in Eq. (5.51):

1
~5 (w05t + 87 Dy B~ €1 D' 8- BT D '€ + €1 D60 + BTXTC XB - BTXTCly —yTC ' X B+ yCly)
(5.52)

and group those terms around the different powers and orientations of 3, while making
use of the identities (P - Q)Y = QT - PTand(P-Q-R)T =R - QT - PT:

1 . - - - - - - .
- 55 (st + 85 + XTCT X8~ (D; '€ + X' €'y B~ BT (D560 + XTC'y) + 6 D0 + yC'y)

55 (v0sh + 87D + X7 O X)8 -2 (D €0 + X771y B+ €] Dy +yCy)
(5.53)
while noting that D' and C~' are symmetric matrices.
With the substitution:
=(D,'+ XTCc'x)!
(5.54)

¢& =D.(Dy'¢ + X"Cy),

where D, and &, represent the conditional versions of D, and &, respectively, it follows
that Eq. (5.53) is equivalent to:

1 - - — —
5z (vosz + B'D;'B -2 €' D;' B + €1 D¢y + yC'y); (5.55)

note hereby that D,, and thus D!, is symmetric.

Because we aim for a result that includes the following matrix quadratic form:

B-&)'DNB-&) =p"D'B-2&D;'B+¢DE, (5.56)

we rewrite Eq. (5.55) to
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1
53 (05 + & D b +yC 'y €D 6+ (B- €)' DB =€) (B57)

With the next substitution, which defines the conditional distribution scale factor,

o st + €Dy +y"Cly - €1D;1E (5.58)

c VC

it follows that the exponential, underlined part in Eq. (5.48), which is equal to
Eqg. (5.57), can be written as:

212 (ves? +(B- €)' DB - &)

B (5.59)
_ YeSe Lo e NT 2P V\-l(3_
=352 z(ﬁ &) (D)™ (B &)

Thirdly, as the red underlined part in Eq. (5.48) is constant (remember that since ¢ is
considered constant, so is the resulting C), it can be left out. To make the following
equation fitting, we replace this component by this — also constant — expression:

(%)% ke 1
= (¢)2m) 2| D, 2. 5.60
F(%)@) Q2n)"2|D,| (5.60)

Combining results above for all three components, we obtain the following expression
for the conditional distribution for 3 and ¢*:

Ye

S ()%
F(B, g, y) o< ()T D exp( —g——(ﬁ ) D) (B - é—'c)

oy (@D

Ye

o (5% veSe
=(rrz)-%(2n>-%|DC|-fexp( B-£) (@D (B - &)F( )(g)vﬁ(cw‘ 4D exp( 2%)-

(5.61)
This shows that the joint conditional distribution is the product of a multivariate normal
and an inverse scaled Chi-squared distribution:

(B, e, y) = F(BIo?, b, Y) f(T1e, ) 562)
o MVN(, 7> De) X3 1 (Ver $2). '

For convenience, we repeat the above used substitutions and thus conditional distri-
bution parameters and hyperparameters, and we add (without proof) the limit situation
if D(;l = 0 and vy = 0 as provided by Diggle and Ribeiro (2007):
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) _{n—k if D;' =0and vy =0
“An+w ifD;'#0andvy>0
=(D;' +X"C' X!
& =D.(Dy'¢+ X"'C'y)
, voso+& Dy +y"Cly €I D'E,

c ’
Ve

(5.63)

5.A.4 Marginal conditional distributions for o> and 3

The marginal conditional density for o2 is already given in Eq. (5.62). To derive the
marginal conditional density for 3 conditional on y and ¢, we need to integrate out o
from the joined conditional distribution as given in Eq. (5.62):

f(Blg.y) = f (B, 1¢,y) do”
0
= foo MVN(ﬁ;£cao-2Dc)X§¢1(0'2;Vc, g‘f)do‘z
0

e k k | 1
= f Qr) () 2| D | 2exp (——(,3 -&) (0*D) (B - €c))

(V")*
T(%)

() e(o? *“exp( 2‘§”)da

= (2n )**( |D RIS f (0% exp( 2((5—ec)T(Dc)*‘w—£f>+vcg3))dffz

(5.64)
Inspired by Gelman et al. (2013, Section 3.2), we substitute:
F=(B-£)" (D) (B-€)+ves; and
F
q= = 2,soa z—qandthus
dg Fo o (5.65)
32 —=(07)"; s0
Fy! F\'(F\ F
2 _ (& 224, - (L i __ (£},
do = (2) (77)"dq (2) (2q) dq (2)q dq
and write:
_g(ﬁ)v7r 1 y 0 F k2 F\ _
FBI#.y) = Cm ™ £ ID 7 (50" f (o Fewn-a)- (3 ) a4
(%) w 29 2
(5.66)

()7

= @m "t LD, |“<gb)vf< ) f g exp(-q)dg.
r'(z) 0
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Note that 1) with changing the integral over do to an integral over dq the limits change,
because if o> — 0, g — oo and vice versa; 2) with swapping the integral limits in the
second line, the integral is multiplied by —1 and thus we get rid of the minus sign; 3) the
final integral in Eq. (5.66) is the Gamma function (Eq. (5.42)), defined for any k + v, > 0.
Thus

(%

) =@nt
1(Big.) = Crt Lo

k+ve+2

ID |3 () F™ % r(

k+v.+2
2

k %)% k e+ 2 1 _ keves2
-t 230 r( et )|DC|-z<gc>Vc (B-€)"D(B-£)+v.s?)
I(%) 2
o (1 + (ﬁ - éc)TDL_Zl(/B - £L)) ?
VeSe

(5.67)

This latter expression is proportional to the multivariate ¢ distribution (Eqg. (5.40)) with
degrees of freedom v, + 2, location vector &, and scale matrix 2 D...

5.A.5 Marginal conditional density for ¢

To derive the marginal conditional density for ¢ given the signal y, we need to integrate
out B and o2:

f(gly) = o f(B.0°, ¢ly) dB do? (5.68)

In the following, we will first integrate out 3, then o.

5.A.6 Integrating out 3

Writing out the conditional density term inside the integral:

(B, 0% dly) « fyIB, 2, $)f(B, 07, )
= fyIB,0*, ) f (B, *I9) f(¢)

o |27r0'20|_%exp (—%(Xﬂ -yl*C)y (X8 - y))

1 1 5.69
- 2n0* D[ 2 exp (—Ew — €0 (* Do) (B - £o>) (5:69)
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We first work out the exponential terms containing 3, corresponding to the purple un-
derlined parts, while introducing for convenience the temporary variable T'; for express-
ing the term of interest:

1 1
-5B- €0) (* Do) (B - &) - S - Xp)'*C)y 'y -XPB)

1
=55 (B-&)D5'B-&) + - XP'Cy - XB)); (5.70)
1

TR

We use a relationship used by Harville (1974) (preceding his Eq. 2,); see also Searle
(1971, with C~! added at both sides of Eq. 104 {page 113}):

(y-XpB)'C(y-XpB)=y-XP)'Cy-XP)+(B-B (X"C'X)B-P), (5.71)

with 3 the generalised least squares estimator for 3:

B=X"C'X)y'XTCy. (5.72)

Combining (5.71) with (5.70), while for now neglecting the term —% gives the following

2¢
expressions for T:

Ty =(B-£&)' D' (B-¢&)+@y-XB'Cly-XP)+B-P'X'C'X)B-B)
=B8T(D," + XTC'X)B - BT(Dy'¢ + X"TC'XB) - €I Dy' + B X"C' X)B + R,
(5.73)
where rest term R, is given by:

R =€¢Dj'¢+@y-Xp'C ' y-Xp)+B"(X"C'X)3 574
=D +@y-9'Cly-+9'C'y '

with the regression estimation for the signal § = X 3.

We next write Eq. (5.73) in the following quadratic matrix form, while borrowing D! =
(D' + XTC™' X)) from Eq. (5.63) and introducing . The term —£7 D, '£ is added to be
able to complete the square:

T =|B-6"'D'(B-86)]-€'D,'€+ R

T -1 Ty)-1£ _ £T -1 T -1¢8 AT =1 & (5.75)
=[8"D;'8- 87D '€ - "D\ B+ €D 'E| - € D,'é + R,
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from which it follows that

D;'é = (D;'¢)+ X"C' X3), and thus (5.76)
£=D;' + XTC' X)) (Dy ¢ + XTCT' X B) '

Note that &, (as defined in Eq. (5.63)) equals £if we replace y with g = X 3. Note also
that R, £ and D! are implicit functions of ¢ but not of o*; R, and & depend also on
the signal y.

Next, we take exponents containing 3 from Eq. (5.69), now including the exp function
itself, and combine it with Eq. (5.75). We also keep the —# factor. We move the rest

R, away from the quadratic form, and to complete the square, we subtract éTDglé,
giving the following equality:

1 1
exp|-=(XB -y (*C) " (XB-y)|exp|-=(B - &) (Do) (B - &)
2 2

1 1 A A

= exp (_F(Rl)) exp (—ﬁ(—ﬁTDc_lf)) (5.77)
1 S A

- exp (—F(ﬁ -9'D (B~ §))~
o

Using Egs. (5.77), and adding the multiplication term 2ro*D,["z and its reciprocal, we
rewrite (5.68) as:

y Vos2
(Ply) o |27TO'ZC|_%|27TO'2D0|_%(O'2)_(70+1)(3X]? _%%
o2 20’2

1 1 ~ ~
- exp (_ﬁ(Rl)) exp (—F(—ETDCIO)
1
2no?

- 2o’ D, |2 f 2o D[ exp (— B-6'D'B- é)) g
B

(5.78)
- f(¢)do?

= f |27r0'20|_% |27r0'2D0|_%(0'2)_(V70+”exp (
0—2

VoS (2)
202

1 1 ~ ~ i
- exp (—F(Rl)) exp (—ﬁeeTD;‘s)) 270 D, |2 f(¢) do.

As the integral over 3 encloses a multivariate normal distribution of 3, which integrates
to one, we have integrated out 3, as is shown in the final step in above equation.
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5.A.7 Integrating out o

Comparable with the approach of bringing all terms containing 3 into a MVN in order to
integrate it out, in this section we will put all terms containing o into a x3,, distribution,
with as goal of this section to write Eq. (5.78) in the following form:

Yy)2 -l 14 2
f@ly) < R (8, y)(<2(>)( )V”) f (2(1)(9 )V“(aﬂﬂ”exp( z)do-z, (5.79)
(7'2 b3

with R, a rest term, to be determined. We begin by using Eq. (5.78), while rearranging
some terms

s« 5@ [ erotyRiort

_ _1
- 2ra?) M Dyl
. (0_2)—(%%1)

( vosg + Ry -é'D;'¢
- exp|-

202

- Qa2 |D,|? do?

= /@) f Qn ey el

] (5.80)
- |Dyl™2
. (0_2)—(%0“)
ox _Vos‘g + R -€"D;'€
P 2072
- |D,J? do?
= f(@)Do[ 2| D |*|C"* 2m) ™"
vosz + Ry — €T D€
202
Thus, if we set (referring to Eq. (5.63)):
V=vo+n=v, (5.81)
and R ~
) vosg + Ry — €D '
ve (5.82)

vosz + €MDY ¢+ (y —9)TC\y - 9) + 9T C g - €T D;'E
Ve
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we get a valid y3 , distribution
Note the similarities, but also the differences, between ¢~ above and the earlier derived
conjugate conditional distribution Eq. (5.63)

sy +EE Dy € +y"Cly — € D€,

Ve

. (5.83)
Substituting Eqgs. (5.81) and (5.82) in Eq. (5.79) gives

N\<

Z V§‘2
2 5 ()@ exp (— 2)do-2
) 2no

(5.84)
Because the integral over o represents a y2 , distribution which integrates to one, we
end up with the following marginal conditional distribution for ¢

f<¢|y>ocf(¢)|Dor%|DC|%|C|-%<2n)—"/2["’( 2)“) f

L ()3 -
F(Bly) < f($)Dol"2|D.IZ|C| 2 27) ™" (ﬁ@z)“]
2
= f(¢>|Dorf|DC|%|C|‘%<2n>‘"/2(§ﬁ r(v/2) (™"

(5.85)
« f(@IDI?ICI 7 (A2

where the last proportionality follows from removing all elements not depending on y
and ¢.
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To meet the needs of the future, we need to think about statistically explicit and consis-
tent ways to combine and process spatial data. In this thesis, | applied model-based
geostatistics rather than a quite pragmatic approach for mapping crop yield gaps (Chap-
ter 2); re-used soil legacy data the Bayesian way in a clay ripening study(Chapter 3);
investigated the added value of taking spatial parameter uncertainty into account for
mapping sorghum yields (Chapter 4) and applied hierarchical model-based geostatistics
for modelling and mapping the probability of exceeding a threshold of a soil property
(Chapter 5). In this final chapter | will review the results of this research and link them

to the research questions and knowledge gaps formulated in Chapter 1; the overview

is provided in Table 6.1. For the readers’ convenience the knowledge gaps (KG) and
research questions (RQ) are shortly repeated in Table 6.2. In the final section of this
chapter — and also of this thesis — | will round up.

6.1 Change of support

In Chapter 2, | showed the potential of applying geostatistics for mapping the yield gap.
Using 37 or 38 observation locations | calculated the potential total crop yields, and as-
sociated uncertainties in administrative areas (in this case: countries). Applying model-
based geostatistics has clearly added value compared to the prevailing agro-ecological
Climate Zones approach, such as a finer scale of modelling, and uncertainty quantifi-
cation of predictions — both grid-wise and area-wise. Therefore, | concluded that the
model-based approach offers more possibilities for both scientists and policy-makers,
and is statistically much better founded (which answers RQ 1). However, we have no
means to validate if our estimation, or our estimated uncertainty, has any connection

to the real world because 1) we cannot measure a whole area, only at points and 2)
because the variable of interest, modelled potential crop yields, is a quite mathematical
construct based on biology, so there is nothing to physically measure at all.

| reversed the change-of-support problem in Chapter 4: | mapped grid-wise the produc-
tion of a crop based on averages per province. Also here, it is important to acknowl-
edge uncertainty: shown values and patterns are unlikely to be the perfect truth, but are
only estimations. As methodology, Bayesian statistics makes it easier to consistently
calculate uncertainties. Regarding prediction uncertainty, the method of the maximum

Table 6.1: Section overview.

Section Addressed Addressed
knowledge gap research question

6.1 Change of support iii 1,3

6.2 Incorporating legacy information ii 2,3

6.3 Small data issues and algorithm behaviour 3,4

6.4 Acceptance of model-based and/or Bayesian i, iv 1

geostatistics in crop- and soil sciences
6.5 Data, information, knowledge and wisdom
6.6 Rounding up and looking ahead
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Table 6.2: Reminder knowledge gaps (KG) and research questions (RQ).

KGi Lagging experiences and awareness among agronomists regarding spatial
aggregation in a model-based way

KGii Lacking knowledge and experience with how to combine legacy data and new data

KG iii Quantifying uncertainty in case of area-to-point prediction

KGiv Understanding and application of Bayesian methods in pedometrics

RQ 1 What is the added value of model-based geostatistics (including point-to-area) in

crop sciences?
RQ 2 Can legacy data be re-used?
RQ 3 More accurate prediction and prediction uncertainty with Bayesian statistics?
RQ 4 More accurate prediction with hierarchical model-based geostatistics?

marginal likelihood' was actually in most cases more accurate than the full Bayesian
method; both maximum marginal likelihood and full Bayesian mostly outperformed REML,
especially for smaller datasets. Regarding the accurate prediction, there was not so
much difference between the compared approaches. This answers RQ 3 and con-
tributes to filling KG iii.

The algorithm used in Chapter 4 can with some slight adjustments be used for point-
to-area kriging and point-to-point kriging as applied in the case study of Chapter 2, as
well as for area-to-area kriging. This allows to compare different approaches — REML,
maximal marginal likelihood, and a full Bayesian approach in different change of support
settings, and explore the added value. Not treated in this thesis, but a logical extension,
is combining data with different support into the spatial model inference (and succes-
sive prediction), which is an application of the general concept of spatial data fusion
(e.g. (Bogaert and Fasbender, 2007; Castrignano et al., 2019) ). Another research path
would be to incorporate non-Gaussian data types (such as the binary soil properties

as discussed in Chapters 3 and 5) into change-of-support kriging in a model-based
geostatistical way. This might include extra assumptions in case area count data have
to be given a meaning on point level (Banerjee et al., 2015, Section 7); an interesting
starting point could be the area-to-point Poisson kriging of wildlife counting data as
done in Kerry et al. (2013).

6.2 Incorporating legacy information

The challenge of creating a prior from information and knowledge — the distinction be-
tween those two will be further discussed in Section 6.5 — comes back in quantifying
the ‘strength’ of the regression parameter prior as done in Chapter 3: in this research, |
‘knew’ the inferred probability distribution resulting from earlier observations. However,
| had to make a choice how to weigh this legacy information in relation to the new ob-
servations. In Chapter 3 the weight variable was called the uncertainty multiplication

See Table 4.1, page 75: with maximum marginal likelihood | mean maximum likelihood with trend and
variance integrated out, the range parameter estimated as plug-in deterministic value and — as with almost
all models in this thesis — the nugget parameter and the Matérn smoothness parameter fixed to arbitrary
values.
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factor (defined in Section 3.3.3.1, page 48). It will be difficult to find indisputable criteria
to set this variable, for two main reasons. First, this weight depends on the perceived
change in soil properties over several decades, which is the topic of research itself.
Second, the prior has to be weighed against the likelihood; in how far do we have to
take the design of data collection (while of course being ignorant about the collected
data themselves) into account? According to Gelman et al. (2017), a prior is mostly
constructed in relation to the modelled likelihood, although in theory it should be to-
tally independent. My solution was to judge the uncertainty multiplication factor using
part of the new observations, de facto applying validation data for model choice, which
prohibits estimating the correct prediction error based on statistical validation (Varma
and Simon, 2006). For future research, we could consider nested validation approaches
(see for example Krstajic et al., 2014; Pejovi¢ et al., 2018).

In this thesis, | only experimented with informative priors for the regression coefficients.
For geostatistical applications, we should also be able to formulate informative priors
for the spatial parameters, following the example in Truong et al. (2014). Applying infor-
mative priors can be necessary when using small sample sizes in applied research in
the behavioural and social sciences (van de Schoot and Miocevi¢, 2020); perhaps the
same holds for spatial statistics. Using informative priors might increase the accuracy of
the uncertainty in case of area-to-point prediction with few data (referring to Chapter 4)
and perhaps also produce useful results in case of few data, to overcome the initial
problems | had with hierarchical modelling in Chapter 5.

In Chapter 5, | reused a legacy map not via a prior but as a covariate, which made it
possible to explore its added value to the regression model, and also to validate the
legacy map directy against the observations (Table 5.1, page 136). In general however,
using covariates might have a disadvantage regarding reproducibility: in the spatial do-
main, there are many maps with potential useful covariates around. The source, under-
lying assumptions and generating models of these maps are often difficult to trace. For
a spatial statistician, not only smart, conscious and consistent ways to deal with data
are important (as argued in the Introduction, Section 1.1), but also the data themselves
should as much as possible be from a known source and have a known quality. Just
using more data sources is not necessarily always better (Simmonds et al., 2020).

To summarise my answer to RQ 2: legacy data can indeed conveniently be used, both
as prior and as covariate — but together with some assumptions. Application of legacy
data did in the case studies improve the results (expressed in statistical validation met-
rics). More effort is needed for a wider use of, more experience with, and conscious-
ness about legacy data (further contributing to filling KG ii), reaching beyond information
described in probability distributions which will be discussed in Section 6.4.

The simulation research in Chapter 4 (where | investigated if model-based approaches
could reconstruct the spatial simulation model settings) showed the importance of (often
a-priori) decisions, such as covariate model choice, and stressed the importance of
making the best possible assumptions, or integrating all possible knowledge, in case of
few observations — as might be often the case with area support data (partly answering
RQ 3). This touches the research of Truong et al. (2014). Note that with real data, if
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for example the stationarity assumption is violated, some models might be even more
sensitive to misspecification and probably underestimate the prediction uncertainty.

On a more detailed level | found that little experience and consciousness is being de-
veloped concerning a low-informative prior for the range parameter of the spatial co-
variance model, although some theory exists (Berger et al., 2001) which | applied in
Chapters 4 and 5. For the development of Bayesian model-based geostatistics, more
attention for this difficult-to-grasp parameter and its prior is needed.

6.3 Small data issues and algorithm behaviour

In contrast with the big-data methods that nowadays get a lot of attention, one of my
focus-points was how to deal with small data. To my knowledge little is known about
how geostatistical algorithms actually behave with really small datasets, with the ex-
ception of research in Kerry and Oliver (2007), which advises at least 50 observation
locations with Gaussian observations and REML analysis confirming earlier research
in Lark (2000). Somarathna et al. (2017) concluded that with datasets approaching 100
observations the influence of model choice on prediction results increases compared to
bigger datasets.

For example, it would be interesting to add a Bayesian perspective to the research of
Chapter 2, possibly supported by simulation trials, because probably some uncertainty
was missed with only 38 or 39 observation locations. Although, answering RQ 3, the
simulations in Chapter 4 suggest that the increased uncertainty correctly inferred by
going Bayesian (in comparison with REML parameter estimation combined with uni-
versal kriging) is on average only an issue with fewer than 20 observations in case of

a spatial structure. | also found that the approach of integrating out and using a grid-
ded calculation in parameter space as applied in Chapter 4 still functions with small
datasets, in contrast with the MCMC driven algorithm as applied in Chapter 5, which did
not work with small trial datasets (both real-world and simulated), as described in Sec-
tion 5.5.3.2. It is unclear if this problem is entirely related to using a MCMC algorithm, or
rather to the existence of a signal layer in the hierarchical model; it would be interesting
to explore small data behaviour for spatial MCMC algorithms with only regression- and
spatial parameters (thus: for Gaussian data), for example to investigate if in such cases
the correlation between spatial parameters inhibits meaningful Bayesian inference.

Regarding the research described in Chapter 5: the low information density of binary
observations appears to be a limiting factor, which might explain why textbook examples
for Bayesian Generalised Linear Geostatistical Models are often Poisson or binomial
with several draws per location, such as disease occurrences; see for instance the
case-studies presented in Diggle and Ribeiro (2007, Section 7.6). Perhaps there are
ways, for example related to information- and entropy theory, to analytically investi-

gate the amount of information contained in spatial observations or information pos-
sibly contained in future observations according to a given sampling design. Based

on this amount, it might be possible to conclude if 1) geostatistical algorithms would
work; and 2) geostatistical analyses would make sense in a small data setting. In a next
stage, questions 1) and 2) can be asked again combined with an informative prior in a
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Bayesian setting. Such an approach would be interesting for both Gaussian and non-
Gaussian settings. Not always will it be feasible to collect 1000 binary observations, as
was required for the BGLGM-algorithm (in Chapter 5). As already indicated in Chap-
ter 5: possible starting points for such research is offered in Li and Reynolds (1995);
Mays et al. (2002); Nowosad and Stepinski (2019).

The issue of small data can also be understood in the context of “limited availability of
relevant covariates”. The case study in Chapter 5 shows that, compared to a purely co-
variate driven approach such as Bayesian Generalised Linear Models, the hierarchical
model based geostatistics approach performs better in prediction (which answers RQ 4
in this context), because in such a case geostatistical modelling has a clear advantage.

| want to stress here that using model-based geostatistics does certainly not exclude
big data applications, although mathematical and numerical approximations, additional
to those discussed in this thesis, might be needed for computational feasibility (see for
example Zhang et al., 2018; Sengupta et al., 2016; Blangiardo et al., 2013).

6.4 Acceptance of model-based and/or Bayesian
geostatistics in crop- and soil sciences

The rich toolbox of spatial statistics, including geostatistics is easily accessible for crop
scientists, see for example the textbook by Schabenberger and Pierce (2002) including
several spatial crop case studies and stressing the fact that crop sciences often cannot
be separated from soil sciences and related mapping. Also, interesting connections can
be made with climatological applications such as spatially modelling the temperature
inside a greenhouse (Bojaca et al., 2009). Sometimes, geostatistics are considered

a tool supporting Geographic information systems (GIS), which also is of interest for
crop scientists (Pierce et al., 2004). However, despite the existence of textbooks and
scientific papers, my personal impression (not based on any research) is that crop sci-
entists might have less consciousness about the existence of spatial statistics, while in
soil science spatial statistics is more accepted as one of the mainstream methods. To
be concrete: the applied agro-ecological Climate Zone approach of spatial prediction
(van Wart et al., 2013a) as mentioned in Chapter 2 is in my view a logical continuation
of the mechanistic plant growth model (based on calculating plant growth with weather
data, and to a lesser extent also depending on soil- and management properties) and is
thus process-based, rather than model-based in the statistical sense (van QOijen et al.,
2009).

Regarding KG i, | focused on a specific procedure and arrived at RQ 1. In Chapter 2, |
showed how to calculate potential crop yields per area, including uncertainties, based
on an existing dataset produced and used by plant scientists in a model-based way. As
already indicated in the previous section, because of the small number of observations
a Bayesian extension would perhaps have yielded more accurate uncertainties, but
would have made the methodology harder approachable for the target group addressed
by the specific research of Chapter 2: agronomists without geostatistical background.

In my opinion, the concept and importance of ‘uncertainty’ is sometimes difficult to con-
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vey to non-statisticians — agronomists and many other disciplines alike — although it

is a fundamental part of environmental research (Brown, 2010). In geostatistical text-
books the amount of text about how to estimate/infer prediction- or parameter uncer-
tainty exceeds by orders of magnitude the text about what to do with this information?.
Sometimes examples are provided: e.g. Chiles and Delfiner (2012) mentions, in the
Introduction, reasons to consider uncertainty in off-shore oil industry and shows a cal-
culation of risk assessment in Chapter 3. For environmental scientists, Webster and
Oliver (2007) mentions reasons to consider uncertainty for agriculture, but in the Intro-
duction only. Note that in the research field of sampling design, the maximal allowed
prediction uncertainty plays an important role (e.g. Vieira et al., 1983). There is also
ongoing research towards visualisation of spatial uncertainty (MacEachren et al., 2005;
Pebesma et al., 2007; Kinkeldey et al., 2014; Luzzi, 2016), which shows the importance
and recent interest in the subject.

Concluding, and relating to KG iv: more effort could be given to translate the concept
and importance of uncertainty towards other disciplines, but considering the added
value of fine-tuning mathematics by going ‘model-based’ and ‘Bayesian’ for the sake of
inferring more accurate uncertainties might be asking too much for many geostatistical
users. The other way around, re-using legacy data (including ‘subjective’ informative
priors) might be more appealing for users working on real-life cases while inducing
resistance in more fundamental research fields. Development of Bayesian geostatistics
should certainly continue (also because the philosophical concept is appealing), but in
my opinion, for application-directed research the focus should for now be on re-using
legacy data and the possibilities offered by hierarchical models.

On the longer term, there could also be more emphasis on the development of easily
accessible applications related to model-based geostatistics (Gelfand and Banerjee,
2017, Section 7.1), rather than — for outsiders — somewhat obscure R-packages. Let
me provide two examples: 1) Kerry and Oliver (2007) presume that the disappointing
acceptance rate of REML algorithms in geostatistical research is due to the lack of user-
friendliness; 2) for me it was quite an effort to successfully run the BGLGM-algorithm
as discussed in Chapter 5, although it is implemented in a well-developed R-package.
Calculation speed also adds to user-friendliness: thus replacing MCMC algorithms
(which in case of BGLGM took 25-50 hours calculation time) with approaches such as
INLA (Blangiardo et al., 2013) might be worth consideration for a broader acceptance.
Also, more emphasis could be given to easily accessible explanations of the used prin-
ciples which would help practitioners and fellow scientists, having less knowledge about
spatial statistical modelling, to be aware of the background, possibilities, benefits and
drawbacks of model-based tools. For this reason, | graphically showed in this thesis
several of the applied principles and algorithms. With the same transparency intention
towards non-statistical users, | also showed many of the equations used by the applied
algorithms in this thesis.

A remark: we — statistical modellers — tend to be interested in the model parameter
values, and as Bayesian modellers even in probability distributions of those model pa-
rameters. One can ask however in how far this is relevant for practitioners or for fel-

2Actually this PhD thesis is no exception to this.
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low researchers of other disciplines. Often, their only goal in applying geostatistics is
spatial prediction. According to Chilés and Delfiner (2012, Introduction), the goal of
geostatistical models is descriptive rather than interpretive, although Diggle and Ribeiro
(2007, Section 1.3) sets as primary scientific objectives estimation and prediction, and
secondary hypothesis testing.

And as a final remark in this section, | would like to stress that there is no sharp line
between Bayesian and ‘non-Bayesian’ (or conventional, or frequentist) statistics, neither
should there be one in geostatistics. As Table 4.1 (page 75) shows, just like examples in
textbooks such as Diggle and Ribeiro (2007, Chapter 7): many shades of grey exist, we
can choose to estimate a point ‘plug-in’ value of one parameter while inferring the pos-
terior distribution of another parameter in the same model. Also, in Chapter 5 we found
that the posterior distribution for the regression parameter for the Bayesian Generalised
Linear Model can be inferred using algorithms already developed for the well-known
Generalised Linear Model, in case of a low-informative prior. Bayesian statistics should
not be considered something alien.

6.5 Data, information, knowledge and wisdom

In Chapters 3, 4 and 5 | applied Bayesian statistics, in Chapter 3 even with informative
priors. Central in the Bayesian paradigm is the notion of knowledge expressed as a
probability distribution, which extends beyond only mathematics: there is also a human
factor involved. Also the attitude towards uncertainty has a human component. There-
fore | like to discuss a somewhat broader approach in this section.

Regarding Bayesian statistics, Truong et al. (2014) applied a formal definition of statis-
tical expert elicitation to formulate informative priors in a geostatistical context. They
asked three experts with a background in geostatistics and knowledge about the spatial
topic of investigation to elicit geostatistical parameter distributions, resulting in very dif-
ferent answers; in the type of distribution itself (Gaussian, scaled-Beta, etc.) and in the
distribution parameters. The relation between the real world, our perceived knowledge
of it, and the expression of that knowledge in statistical probability distributions might
be counter-intuitive (Spiegelhalter, 2019) and touches research fields such as psychol-
ogy and science philosophy. Experiments show that children (from ca. 10 years of age
on) and layman adults can follow Bayesian reasoning if supported by visualisation of
frequencies (Zhu and Gigerenzer, 2006; Eichler et al., 2020); however the majority of
these tests seem to be limited to binary outcomes — for example, the probability of a
person being ill, given a test result and additional information. As far as | am aware, how
to deal with continuous distributions is less explored.

| would like to point at the hierarchy as shown in Figure 6.1, which is used in many infor-
mation theory textbooks. In my opinion, Bayesian models (and statisticians in general)
tend to focus on the data and information part. On the way up in the hierarchy, in some
instances it proves difficult to make concepts such as “prediction uncertainty” part of the
knowledge of users and fellow non-statistical scientists, as already discussed in Sec-
tion 6.4. This becomes less difficult if translated to concepts such as “ambiguity” and
“equivocality” (MacEachren, 2015), or “risk assessment” and “decision taking support”
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Wisdom: Adding
value; includes
judgements

Knowledge: Know-how,
instructions; includes experience

Information: Descriptions

Data: Products of observation

Figure 6.1: The Data-Information-Knowledge-Wisdom (DIKW) hierarchy, as found in
many textbooks (Rowley, 2007). An informative prior is formulated at the information
(descriptive) layer, while we would like to incorporate knowledge or even wisdom in it.

(Kinkeldey et al., 2017; Roth, 2009). In this research, | emphasised the importance of
uncertainty (most notably in Chapters 2 and 4), but | am not used to express my find-
ings in terms of knowledge or wisdom — and perhaps this is not possible for me because
each reader has a specific context. But somebody will have to make this translation.

In a Bayesian context, and depending on the research and modelling goal, we also
might like to connect in the hierarchy and include less tangible, but still valuable con-
cepts such as ‘knowledge’ and perhaps even ‘wisdom’ into ‘information’ expressed as
an informative prior probability distribution. This happened in Chapter 3 (and was also
discussed in Section 6.2): | already calculated on an information/descriptive level a prior
distribution, but | needed to scale its variance, which in an ideal case should have been
based on knowledge — but | actually used again data and information. Although the idea
of Bayesian statistics is to express knowledge in probability distributions, in practice

it seems difficult to escape the data- and information layers. Beyond the scope of this
work | recommend more — multidisciplinary — research on how to cross the border from
data and information to knowledge and wisdom, and vice versa. For example, to re-use
data, information, knowledge and wisdom in an efficient, effective and of course also
scientifically correct way, we might build on existing work such as O’Hagan and Forster
(2004, Chapter 6), Kuhnert et al. (2010) and O’Hagan (2012).
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6.6 Rounding up and looking ahead

Although | focused on crop- and soil applications, geostatistics has many other appli-
cations : archaeology (Lloyd and Atkinson, 2004), environmental exposure risk and
disease mapping (Goovaerts, 2014), wildlife mapping (Kerry et al., 2013), mining and
geology (its origin) just to name a few. Geostatisticians connect to all those disciplines
using a coherent and mathematically correct framework.

In this concluding chapter, | argued that several future research paths are possible:

among others research into small-data behaviour of geostatistical algorithms; research

to formulate and incorporate informative priors based on knowledge and/or legacy data;
research to combine informative priors with small data; the application of Bayesian
model-based geostatistics for area-to-area kriging; and change-of support in non-Gaussian
settings. | also argued that, to connect to practitioners and fellow scientists with little
geostatistical background, research and intentions should be directed to (keep) ex-
plaining the importance and application of prediction uncertainty; to making applications
user-friendly, and to making mathematical explanations transparent and approachable.

With some of the explored approaches, for example Bayesian area-to-point kriging
(Chapter 3) and BGLGM (Chapter 5), the extra effort may in many cases not outweigh
the benefits for most practical uses, because of little prediction accuracy gain; likewise,
relating to Chapter 4, the extra effort of Bayesian modelling might not outweigh the gain
in prediction uncertainty accuracy. But | also showed benefits of (Bayesian) model-
based geostatistics in small data cases. In my opinion it is important to keep develop-
ing and exploring such methods and algorithms, as they are model-based and hence
mathematically correct. Building on a solid mathematical foundation, mathematically
correct extensions can be made, hopefully able to tackle more complicated problems;
especially problems that cannot be solved with big data approaches.
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Summary

Soils and other agronomic variables can be mapped using various methods. The
general focus is nowadays on machine learning (also called ‘data mining’) methods,
relying on numerical approaches and abundant data — among others from remote
sensing. However, while machine learning methods undoubtedly have their benefits,
they also have shortcomings, such as finding irrelevant relationships, obscuring
causalities and natural laws, dependence on abundant data and limited options for
change of support situations. Therefore, to meet the needs of the future, we also
need to think about smart, conscious and statistically consistent ways to combine and
process data: data from different sources, with different uncertainty, with different spatial
support, in a setting where data is not abundant. We also need ways to combine new
and legacy data, including existing beliefs in a qualitative formulation. Model-based
geostatistics provides tools to deal smartly, consciously and statistically sound with
spatial data, and enables — unlike most machine learning methods — the integration of
varying spatial support data into one stochastic model.

Geostatistics is part of the broader field of spatial statistics, and was originally designed
for geological and other environmental data, having its own terminology and workflow.
Geostatistics describes spatial phenomena with the help of spatial correlation, which

is modelled by considering observed reality as one realisation of a spatial random
process; spatial random processes are characterised by Tobler’s first law of Geography:
“Everything is related to everything else. But near things are more related than distant
things”.

Model-based geostatistics aims at explicitly applying formal statistical methods into the
field of geostatistics. Using model-based geostatistics one can estimate or infer model
parameters as well as predictions using sound methods developed in general statistics,
where — apart from model choice and related assumptions — no subjective choices have
to be made. Bayesian geostatistical models are part of the repertoire of model-based
geostatistics.

Bayesian statisticians use probability to express their knowledge — or inversely
formulated: their ignorance — about the world. By gathering data (observing events,
doing experiments, etc.) their knowledge and thus the associated probability changes
— hence the former name ‘inverse probability’. More mathematically, the combination of
pre-observation knowledge (expressed in a ‘prior’ probability distribution) with gathered
data will produce a ‘posterior’ probability distribution of the variables of interest. Such
models can be extended with prediction, also as probability distributions (the ‘posterior
predictive’). The Bayesian extension of model-based geostatistics facilitates an
accurate estimation of parameter and prediction uncertainty because of the consistent
underlying model, while allowing incorporation of pre-observation knowledge into the
final results. Even more, Bayesian statistics provides a coherent framework to build

a hierarchical statistical model, consisting of several layers. It does so by modelling
variables which are related in one layer, while these relationships are expressed in other
variables in another layer, but conveniently being part of the same model; a third layer
contains prior probability distributions. This approach facilitates hierarchical model-
based geostatistics, where the spatial random field forms one layer in the model, the
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geostatistical model parameters form another layer, and the priors of those model
parameters are the 3rd layer.

This thesis aims to feature and advance current developments in model-based
geostatistics as well as Bayesian statistics in a spatial context to be used for the needs
of today and the future, and also bring these developments in line with contemporary
computational possibilities. Therefore, in this thesis | explore the methods and limita-
tions of model-based geostatistics in the context of mapping soil properties and crop
yields.

Following the general introduction (Chapter 1, in which | present the main objectives

of this PhD-research), Chapter 2 shows an example of the added value of using
model-based geostatistics, and the prediction (including uncertainty) of yield gaps
based on point data, for a case study with sorghum and millet in West-Africa. | used
crop growth model outputs to calibrate a linear regression model using environmental
covariates as predictors. The spatial regression residuals were investigated for spatial
correlation. The linear regression model and the spatial correlation of residuals together
were used to predict theoretical crop yield at all locations using kriging with external
drift. A spatial standard deviation comes along with this prediction, indicating the
uncertainty of the prediction. In combination with land use data and country borders,

| summed the potential crop yield predictions to determine an area total. With spatial
stochastic simulation, | estimated the uncertainty of that total production potential as
well as the spatial cumulative distribution function, and | compared my results with

the prevailing agro-ecological Climate Zones approach used for spatial aggregation. |
concluded that the geostatistical approach can estimate a country’s crop production,
including a quantification of uncertainty. Using model-based geostatics offers important
benefits for crop modelling scientists to explore relationships between yields and spatial
environmental variables, and also assist policy makers with tangible results on yield
gaps at multiple levels of spatial aggregation.

Chapter 3 explores the use of legacy information to improve the accuracy of a predic-
tion map. | used Bayesian binomial logistic regression (BBLR) to update the map show-
ing unripened subsoils for a reclamation area in the west of The Netherlands. Similar

to conventional binomial logistic regression (BLR), in BBLR the binary target variable
(i.e. the subsoil is either ripened or unripened) is modelled by a Bernoulli distribution.
The logit transform of the ‘probability of success’ parameter of the Bernoulli distribution
was modelled as a linear combination of the covariates soil type, freeboard (the desired
water level in the ditches, compared to surface level) and mean lowest groundwater
table. My research focused on quantifying the influence of informative prior distributions
(inferred from legacy data) with different information levels, in combination with different
sample sizes, on the resulting parameters and maps. | combined subsamples of
different size (ranging from 5% to 50% of the original dataset of 676 observations)

with priors representing different levels of trust in legacy data and investigated the
effect of sample size and prior distribution on map accuracy. The resulting posterior
parameter distributions, calculated by Markov chain Monte Carlo simulation, vary in
centrality as well as in dispersion, especially for the smaller datasets. More informative
priors decreased dispersion and pushed posterior central values towards prior central
values. The resulting probability maps were almost similar. However, the associated
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uncertainty maps (showing the uncertainty of the probability parameter) were different:
a more informative prior decreased prediction uncertainty. When using the ‘overall
accuracy’ statistical validation metric, | found — for this case study — an optimal value
for the prior information level, expressed in a variance multiplication factor. The effect
of incorporating informative priors however is only detectable for smaller datasets.
Bayesian binomial logistic regression proved to be a flexible mapping tool but the
accuracy gain compared to conventional logistic regression was marginal and may not
outweigh the extra modelling and computing effort.

| investigated the accuracy of prediction uncertainties in case of sparse data when
model-based geostatistics is applied on an area-to-point kriging (ATPK) situation,
illustrated with disaggregating millet crop yields in Burkina-Faso in Chapter 4. ATPK

is a geostatistical method for creating high resolution raster maps using data of the
variable of interest with a much lower resolution. However, the dataset of areal means
is often considerably smaller (< 50 observations) than datasets conventionally

dealt with in geostatistical analyses. In contemporary ATPK methods, uncertainty

in the variogram parameters is not accounted for in the prediction; this issue can be
overcome by applying ATPK in a Bayesian framework. Commonly in Bayesian statistics,
posterior distributions of model parameters and posterior predictive distributions are
approximated by Markov chain Monte Carlo sampling from the posterior, which can

be computationally expensive. Therefore, | developed a partly analytical solution,
thoroughly explained and implemented in this chapter, in order to (i) explore the impact
of the prior distribution on predictions and prediction error variances, (ii) investigate
whether certain aspects of uncertainty can be disregarded, simplifying the necessary
computations, and (iii) test the impact of various model misspecifications. | compared
several approaches using simulated data, aggregated real-world point data, and a case
study on aggregated crop yields in Burkina Faso. | found that the prior distribution has
minimal impact on the disaggregated predictions. In most cases with known short-range
behaviour, an approach that disregards uncertainty in the variogram distance parameter
gives a reasonable assessment of prediction uncertainty. However, | found some severe
effects of model misspecification in terms of overly conservative or optimistic prediction
uncertainties, highlighting the importance of covariance model choice.

| explored and explained an existing implementation of a Bayesian generalised linear
geostatistical model (BGLGM) including possible issues and their solutions in Chapter
5. Using the depth of the Pleistocene sand layer in the Dutch province of Flevoland,
with the depth reduced to a binary variable, | compared the BGLGM approach with the
far less complicated Bayesian generalised linear model (BGLM, almost equal to the
BBLR model used in Chapter 3). In general, for mapping binary spatial variables using
a BGLM might be a solution if relevant environmental covariates are available. The
geostatistical extension BGLGM adds spatial dependence and is thus potentially better
equipped. | found that BGLGM yields considerably better statistical validation metrics
compared to BGLM, especially with — as in this case — a large (n = 1000) observation
sample but few relevant covariates. Also, the inferred posterior BGLGM spatial parame-
ters enable the quantification of spatial relationships. However, calibrating and applying
a BGLGM (as implemented in the R-package geoRglm) is quite demanding with respect
to the minimal required sample size, tuning the algorithm, and computational costs. |
replaced manual tuning by an automated tuning algorithm (which eases implementing
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applications) and found a sample composition that delivers meaningful results within 50
hrs calculation time. With the gained insights spatial soil practitioners and researchers
can — for their specific cases — evaluate if using BGLGM is feasible and if the gain is
worth the extra effort.

The final Chapter 6 discusses and brings together the achievements as presented

in this thesis, along with my recommendations for future research. Mentioned are
future extensions of the applied change of support, such as Bayesian area-to-area
kriging and application of data-fusion methods for combing data with different support.
| also discuss advantages and challenges regarding using informative priors in spatial
mapping situations. In my opinion, informative priors must be seen in relationship to
the related but distinctive perceptions on data, information, knowledge and wisdom;
developing and using informative priors thus connects to research fields such as
information theory, communication and psychology. Informative priors can be useful

in combination with small data situations. Small data situations can cause problems
already on the level of algorithms, and thus inhibit any analysis because there are no
calculation results at all to be judged. Future research might focus on minimal data
requirement to get algorithms running combined with minimal data requirement to
arrive at meaningful results — and the influence of an informative prior on both those
properties. More general is the discussion if the soil- and crop science community are
actually interested in the tools and possibilities delivered by model-based geostatistics
and its Bayesian extensions. In my opinion, the development of easily accessible
applications (rather then — for outsiders — somewhat obscure R-packages) as well as
easily accessible explanations of the used principles would help practitioners and fellow
scientists (having perhaps less focus on spatial statistical modelling) to be aware of the
possibilities, benefits and drawbacks of those tools.
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