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Propositions

1. Decoupling can assess the direct utility of radar-derived surface soil
moisture in representing root zone conditions.

(this thesis)

2. Vegetation backscatter can potentially be used to directly estimate
root zone soil moisture.

(this thesis)

3. Wholeheartedly accepting more members of the minority at every
level of the scientific community will reduce the bias still existing in
science.

4. Improvement of process-based models cannot be achieved without
advancements in measurement techniques.

5. There are no long-term environmental solutions, only present-day
solutions which will soon give rise to other problems that require new
solutions.

6. Despite improved digital connectivity, modern technology is becoming
a tool for widening social disconnect.

7. Atwo-day weekend is not enough to maintain a work-life balance in
today’s fast paced living.
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"You can't go back and change the beginning, but you can
start where you are and change the ending.”

C.S. Lewis

Introduction




2 Introduction

1.1 Context

Soil moisture dynamics are a fundamental factor in agricultural water management, and are
highly variable both spatially and temporally. Accurate estimates of soil moisture status are
essential for crop production, soil quality and resource use, but may be difficult to monitor over
finer spatio-temporal scales relevant for water management. Radar satellites have potential
for providing this information; however translating satellite data into agriculturally useful soil
moisture remains a challenge which has prevented full realization of the potential. This PhD
project takes a new, innovative look at soil moisture dynamics to discover how radar-derived
soil moisture can be directly applied to generate information that support of more efficient
and sustainable agriculture.

1.1.1 Agricultural water management

Soil moisture plays a central role in determining efficient land water management strategies
in agricultural areas (Gao et al., 2014; Rivers et al., 2015; Petropoulos et al., 2018). It is
a dynamic and highly non-linear environmental variable whose state is controlled by complex
interactions of meteorological conditions, vegetation characteristics and responses, and soil
properties (Hillel, 1998; Hartge et al., 2016). Because of its dynamic nature, its status should
be monitored in order for farmers to efficiently manage their lands throughout the growing
season. One of the more obvious and main roles of soil moisture is providing available water for
crops (Allen et al., 2005). Aside from this, soil moisture influences the mechanical properties of
soils which allows it to support any overlying weight (Ayers and Perumpral, 1982). Therefore,
soil moisture information is crucial for selection of optimal tillage practices and for determining
irrigation schedules.

In any given area, the general climatology dictates long term or seasonal soil moisture trends,
which influence farming schedules and activities. Land and water management practices, in
particular tillage and irrigation, are generally adapted to the expected soil moisture status at
different stages of a growing season. For example, in temperate areas, a majority of the crops
are grown over the summer months (June - August) because of longer day time hours and
higher atmospheric temperatures. Since a predefined number of days is already known for crop
growth for each specific crop type, tillage is usually initiated over a short span of days in early
spring when the soils are still wet and may even be close to saturation. Higher soil moisture
levels, however, increase the susceptibility of soil to compaction and lessen mobility of heavy
farming machinery (Mosaddeghi et al., 2000). Such conditions ideally require assessment of
trafficability to ensure efficient use of the heavy mobile machinery which is now indispensable
for tillage and harvesting (Droogers et al., 1996; Miiller et al., 2011). In addition, the long term
use of heavy machinery leads to a prevalence of subsoil compaction in many agricultural areas
(Défossez and Richard, 2002; Raper, 2005). Assessment of trafficability will, therefore, also
mitigate compaction rates currently encountered in agricultural fields. After sowing and until
crop maturity, ensuring adequate water within the crop’s root zone is important for significant
productivity levels. Crop growth coincides with increasing evapotranspiration demands, which
further translates to increased crop water requirements. Soil moisture throughout the root
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zone will determine the amount of water available for uptake. Therefore, monitoring root
zone soil moisture will help determine the necessity of irrigation as well as its timing and
frequency (Vellidis et al., 2008; Zotarelli et al., 2011; Brocca et al., 2018). Clearly, soil
moisture information is essential for farmers throughout the entire year (fig.1.1).

Because present day agriculture is carried out over large areas, optimal and efficient land
and water management strategies are needed in order to meet increasing crop productivity
and resource efficiency demands. These strategies are geared not only toward high biomass
production or business sustainability and profitability, but also toward preservation of soil
quality and health (Roger-Estrade et al., 2010; Powlson et al., 2011; Robertson and Swinton,
2005). New and smart technologies which maximize farming activities over agricultural lands
and minimize energy and production costs are becoming popular and are continuously being
adopted. For instance, remote sensing is becoming an integral part of modern agriculture
because of its importance for precision farming (Gebbers and Adamchuk, 2010).
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Figure 1.1: Matching soil moisture with water requirements throughout a growing season. Soil
moisture dynamics are presented by the measurements at several depths. The periods for tillage
and crop growth are also indicated.

1.1.2 Mapping and monitoring soil moisture with radar satellites

Mapping and monitoring soil moisture conditions in agricultural areas have been achieved
using microwave remote sensing (Henderson and Lewis, 1998; Steele-Dunne et al., 2017).
Satellites provide a good alternative to in situ soil moisture sensors because installation of
spatially distributed measurements can be a tedious task. The microwave or radio portion of
the electromagnetic spectrum covers the wavelength range from approximately 1 cm to 1 m.
Longer wavelengths of the microwave spectrum are not susceptible to atmospheric scattering
which affects shorter optical wavelengths. Microwaves can penetrate through cloud cover,
haze, dust, and all but the heaviest rainfall, which allows detection of microwave energy under
almost all weather and environmental conditions. However, microwave satellites only measure
soil moisture at the the upper surface layer (< 5 cm) while most agricultural applications
require soil moisture measured over deeper layers, and can be up to 1 m deep (e.g. over the
root zone).



4 Introduction

There are two forms of microwave remote sensing, the active and passive. In the passive form,
energy received by the sensors is related to the temperature and moisture properties of the
emitting object or surface. The microwave energy recorded by a passive sensor can be emitted
by the atmosphere, reflected from the surface, emitted from the surface, or transmitted from
the subsurface. Most passive microwave sensors are characterized by low spatial resolution
because of the large fields of view needed to detect sufficient energy to record a signal.
Active microwave sensors use a self-contained source of microwave radiation to illuminate
the target (Ulaby et al., 1982; Fung, 1994) and are generally divided into imaging and non-
imaging categories. At present, the most common forms of imaging active microwave sensors
are Synthetic Aperture Radars (SAR). The sensor transmits a microwave signal towards the
target and detects the portion scattered back. Upon contact with the surface, the incident
energy from the transmitted signal may be reflected, scattered, absorbed (attenuated) or it
may penetrate into the medium and be further absorbed or scattered (Moreira et al., 2013).
The amount of energy backscattered is dependent on the surface properties and the angle at
which the microwave energy strikes the target. The strength of the backscattered signal is
used to discriminate between different targets and the time delay between the transmitted and
reflected signals determines the distance to the target (e.g. DEMs). SAR utilizes the motion
of the antenna along the azimuthal direction to “synthetize” or give the effect of a long
antenna, which allows imaging at higher spatial resolutions. It therefore solves the problem of
conventional radar systems, that achieve higher spatial resolutions with longer antennas but
are prohibitive for flying or outer space.

Using SAR, the amount of energy backscattered from a natural surface is dependent on
radar configuration, soil, and vegetation characteristics (Moreira et al., 2013). The radar
configuration sets the length and angle of the incoming microwave signal, which determines
the type of interactions between the signal and target ground objects. Among the recently
launch radar satellites, Sentinel-1 (C-band, 5.405 GHz) has a high revisit time of 1 - 3 days
in European regions (Torres et al., 2012) which allows frequent monitoring of surface soil
moisture conditions. Furthermore, its 10 m pixel size enables estimation of soil moisture
variability at quite high spatial-resolutions. At the C-band, the total backscatter over vegetated
agricultural fields is the integrated signal of the vegetation canopy and underlying surface soil
layer. Both soil and vegetation components need to be quantified to further estimate surface
soil moisture. Surface scattering models over bare soils, which may be process-based (Integral
Equation model (IEM, Fung et al., 1992) or semi-empirical (Oh and Kay, 1998 and Dubois
et al., 1995), have been applied to quantify the soil backscatter. During vegetated periods,
the volume scattering from stalks and leaves and scattering from soil-vegetation interaction
are additional components included in the total backscatter. Improved soil moisture estimates
are achieved when the vegetation component of the total backscatter is accounted for in most
soil moisture retrieval algorithms (e.g. Bindlish and Barros, 2001; Notarnicola et al., 2006;
Joseph et al., 2010).

Integration of satellite-derived soil moisture with process-based hydrological models has been
achieved through data assimilation (e.g. Das and Mohanty, 2006; Reichle et al., 2004; Draper
et al., 2012; Renzullo et al., 2014). However, data-driven and statistical methods have also
been applied based on empirical relations between surface and subsurface soil moisture to esti-
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mate the latter (e.g. Gonzélez-Zamora et al., 2016; Gao et al., 2019; Pezij et al., 2020).

1.1.3 Soil moisture dynamics

Characterizing soil moisture dynamics across different spatio-temporal scales enable the iden-
tification of controls and estimation of parameters for model simulations. At the field or
catchment scales, soil moisture variability is influenced by meteorology, topography, vegeta-
tion and soil properties. Grayson et al. (1997) grouped soil moisture controls into local and
non-local controls. Non-local controls are related to lateral fluxes being dominant under wetter
conditions (Famiglietti et al., 1998; Qiu et al., 2001; Zhu and Lin, 2011) whereas local con-
trols are dominant under drier conditions and are related to vertical fluxes (Joshi and Mohanty,
2010; Zhao et al., 2010; Baroni et al., 2013).

Soil hydraulic properties, which are largely determined by physical properties, exert a major
control on soil moisture variability. Both textural composition and structural arrangement of
soil fragments exert their influence on soil hydraulic properties. Soil structural changes have
direct impacts on hydraulic properties and soil moisture estimation (Mapa et al., 1986; Moret
and Arrde, 2007) may persist in both the short- and long-term (Pagliai et al., 2004; Strudley
et al., 2008). Land management practices in agricultural fields further contribute to changes
in soil physical properties including bulk density (Mallory et al., 2011; Osunbitan et al., 2005),
aggregate stability (Paul et al., 2013; Zheng et al., 2018) and macroporosity (Roseberg and
McCoy, 1992; Pagliai et al., 2004; Malone et al., 2003). Studies have suggested incorporating
agricultural land use and management changes to parameterize hydrological models for a more
accurate representation of soil structure and variability in hydraulic properties (e.g. Gonzalez-
Sosa et al., 2010; Ndiaye et al., 2007).

In addition to soil properties, vegetation affects soil moisture dynamics directly through root
water uptake and indirectly through root-induced changes to soil structure. The acquisition
of water from the soil, a consequence of stomatal opening for photosynthesis, is mostly dic-
tated by transpiration demands. Most studies on vegetation-soil moisture interactions have
focused on dry or drying conditions because of the negative consequences for vegetation and
agricultural yield (Passioura, 1994; Li et al., 2009). During such periods or in water-controlled
environments, vegetation can be both water and nutrient deficient since nutrient availability is
limited by water deficits (Porporato et al., 2003; D'odorico et al., 2003). In terms of soil mois-
ture dynamics, Hupet and Vanclooster (2002) showed that vegetation plays a non-negligible
role in the observed soil moisture variability within a cultivated field. Furthermore, a hydro-
geophysical investigation of root zone soil moisture under two agricultural crops by Srayeddin
and Doussan (2009) found that the variability in root water uptake which they attributed to
rooting patterns and densities, is influenced by water availability in the root zone. Roots indi-
rectly affect soil moisture dynamics by altering soil hydraulic properties. A recent review by Lu
et al. (2020) reports contrasting root effects on soil hydraulic properties depending on which
processes are dominant (e.g. root growth (or decay), root density, or diameter). In addition,
they noted that the temporal variability arising from agricultural cycles as an important aspect
of root-induced modifications to soil hydraulic properties.
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1.2 Motivation

In the Netherlands, the existing network of canals and waterways over agricultural areas are
a potential resource for operational water management. Furthermore, the Netherlands Hy-
drological Instrument (NHI, De Lange et al., 2014), a national scale modeling framework is
already in place for interconnectivity or interoperability of hydrological models that have been
developed for specific components of the hydrologic cycle (i.e. surface water, groundwater,
unsaturated zone). According to Xu and Tung (2008), operational water management re-
quires decision-making within limited time intervals and involves multiple criteria related to
water supply and mitigating water-related hazards.

Radar satellites such as Sentinel-1 can offer soil moisture information at frequent time inter-
vals that could, potentially, be integrated within an operational framework. Several years ago,
Wagner et al. (2007) suggested that operational coarse-resolution (25 — 50 km) soil moisture
products can be expected in the near future from radiometer and scatterometer systems. True
enough, there are already several global coarse soil moisture products available (e.g. SMOS
L2/L3 soil moisture, SMAP L2/L3 soil moisture, see Petropoulos et al., 2018). Petropoulos
et al. (2018) further note that despite this overwhelming global need, operational earth obser-
vation soil moisture products have not yet been widely adopted by the agricultural community.
A key technical barrier may be the limited availability of operational soil moisture estimates at
high spatio-temporal resolutions. In relation to this, in a study within selected water authorities
in the Netherlands, Pezij et al. (2019a) found that operational water managers have indicated
the need to access high-resolution spatial data, value-added products and tools for commu-
nication to stakeholders. Furthermore, operational water managers may struggle to correctly
interpret hydrological model output and therefore need suitable indicators for evidence-based
decision-making. More recently, Wagner et al. (2009) and Petropoulos et al. (2018) suggested
that the next few years may also see operational soil moisture products at finer (< 1 km) scales
based on Sentinel-1 or from downscaled and disaggregated soil moisture products. Therefore,
scientific investigations concurrent with efforts to generate operational soil moisture products
would be beneficial in determining advantages and limitations of Sentinel-1 in operational
(water) management in agricultural areas.

Since Sentinel-1 and other radar satellites only measure surface soil moisture, roughly the
upper 5 cm of the soil profile, root zone soil moisture conditions needed in most agricultural
applications cannot currently be accurately captured from satellite-derived soil moisture alone.
Previous studies have shown that surface soil moisture can be decoupled with deeper layers
(e.g. Capehart and Carlson, 1997; Kumar et al., 2009; Hirschi et al., 2014) and may lead to
inaccurate estimates of root zone soil moisture. Furthermore, previous studies investigating
soil moisture coupling were applied at continental or global scales using land surface models.
The coupling behavior of soil moisture in agricultural areas derived from in situ soil moisture
measurements are still limited in comparison with model simulated values. However, in situ
measurements are valuable for estimating fluxes and for retrieval of spatial and temporal
dynamics of soil moisture profiles, especially at the field and catchment scales (Vereecken
et al., 2008).
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Figure 1.2: Monitoring soil moisture status with satellites for operational water management in
agricultural areas. The left image portrays Sentinel-1 mapping moisture for tillage to assess mobility
and susceptibility to compaction while the right image shows it mapping crop water requirements
later in the growing season.

Agricultural water requirements depend on atmospheric conditions and different periods of a
growing season. The information contained in radar satellites, such as Sentinel-1, needs to
be assessed and matched with agricultural water requirements to determine the its benefits
within operational water management framework. Factors controlling field scale soil moisture
variability during specific periods within or outside the growing seasons should be determined
and linked with water requirements. In order to ultimately obtain measures or indicators for
root zone soil moisture that are readily usable for farmers, appropriate methods are needed to
balance the information contained in satellite-derived soil moisture and that available in other
datasets.

1.3 Research questions and thesis outline

In this thesis, the main goal is to investigate the impact of soil moisture dynamics on the ability
of radar satellites to provide usable information on agricultural water requirements. With
operational water management as one of the primary applications in mind, suitable methods
are investigated for matching the soil moisture information contained in radar satellites with
the water requirements at different stages of a growing season (fig.1.2).

The following research questions are posed:

e How does soil moisture vary with depth, and under which conditions are surface and
subsurface soil moisture coupled?
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e How does subsurface soil moisture in agricultural areas vary in space and time?

e During dry periods, does vegetation backscatter from Sentinel-1 have the potential to
reflect root zone soil moisture?

e During saturated conditions, how can satellite-derived surface soil moisture be used for
management of agricultural fields?

e Can a data-driven approach based on surface conditions accurately estimate root zone
soil moisture?

In the succeeding sections of this thesis, each chapter addresses one research question (Chap-
ter 2 - 6). Chapter 2 focuses on the vertical variability of soil moisture and how this impacts
the ability of satellite-derived soil moisture to represent subsurface soil moisture. In Chapter 3,
the field scale soil moisture dynamics over a cultivated field is investigated to quantify variabil-
ity and describe the controls over space and time. Chapter 4 focuses on the potential of the
vegetation component of the total radar backscatter, as an alternative to the soil component,
for directly measuring root zone soil moisture. Chapter 5 demonstrates a method to estimate
agricultural field trafficability using insights from the results in Chapter 2. Chapter 6 illustrates
the capabilities of a purely data-driven method for estimating root zone soil moisture. Each
chapter is written as a stand alone journal article format which may result in repetition of
some sections in the introduction and methods in the chapters. This is followed by a Synthesis
(Chapter 7) where the findings are integrated and discussed in relation to the overall objective
of this thesis.

1.4 Study areas

Two soil moisture monitoring networks in the Netherlands, Raam and Twente, were used in
this thesis. The Twente soil moisture network in the eastern part of the country was established
in 2009 (Dente et al., 2011). It was meant primarily as a regional monitoring network for the
validation of remote sensing soil moisture products. A total of 20 stations were installed and
distributed over an area of approximately 1306 km. The Raam soil moisture network (Benninga
et al., 2018) was established in 2016 in the southeastern portion of the country. A total of 15
stations are distributed over the Raam catchment and cover an area of approximately 237 km,
hence smaller than the Twente network. In both networks, soil moisture sensors were installed
at discrete depths (5, 10, 20, 40, and/or 80 cm). The stations are located in generally flat
agricultural fields (fig.1.3) where the most commonly encountered crop is grass, followed by
corn, winter wheat, potatoes, sugar beets, and other vegetables. The soils in both networks
are mostly sandy, with the stations in Twente network holding slightly higher loam content
that those in the Raam network (Benninga et al., 2018; Dente et al., 2011).
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Figure 1.3: Maps showing the study areas within the Netherlands. The figure indicates the
locations of points until 2017. For Twente, some of the stations have been relocated after 2017
because of logistic concerns. Details of the specific changes made for each station are not known.
However, the relocated stations were not part of the analysis in the research chapters. Elevation

shown is above mean sea level.
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Abstract

Recent advances in radar remote sensing allow mapping of surface soil moisture at different
spatial scales. Furthermore, satellite-derived surface soil moisture measurements can be as-
similated into hydrological models for improved estimates of subsurface soil moisture values.
However, variability of soil moisture across the soil column is important for accurate estimation
of depth-integrated values as decoupling between surface and subsurface can occur. In this
study, we employ new methods to investigate the occurrence of (de)coupling between surface
and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated
in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected
at the subsurface after a certain delay. The main approach involves the application of a dis-
tributed lag non-linear model (DLNM) to simultaneously represent both the functional relation
and the lag structure in the time series. The results of an exploratory analysis using residuals
from a fitted loess function serve as a posteriori information to determine (de)coupled values.
Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results
provide new insights into the decoupled range, especially as we found that its occurrence
among the sites investigated is not limited to dry conditions.
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2.1 Introduction

Although recent decades have seen great advances in remote sensing applications for mapping
surface soil moisture (Jackson, 1993; Njoku et al., 2003; Mohanty et al., 2017), most hydro-
logical studies that make use of soil moisture data require integrated values over a certain
soil depth (Brocca et al., 2017). Extrapolation of surface soil moisture from remote sensing
techniques to depths beyond the sensor's capacity (up to 5 cm) is not a trivial task given the
spatio-temporal variability of soil moisture. The vertical distribution of soil moisture, which
determines integrated soil moisture content over a soil column, is rarely uniform as more pro-
nounced dynamics are expected closer to the surface compared to deeper in the soil (Hupet
and Vanclooster, 2002). Currently, information derived from remote sensing is assimilated
into hydrological models to obtain integrated soil moisture values (Houser et al., 1998; Das
et al., 2008). However, Kumar et al. (2009) stressed that it is important to assess vertical
variability, especially the strength of coupling between surface and subsurface soil moisture
for improvement of data assimilation results. Analyses of vertical soil moisture distributions
also have important implications for modeling studies, as they could be used for calibration or
validation of model parameters (De Lannoy et al., 2006).

The amount of soil moisture at any given time is controlled by factors operating at different
time scales. While prevailing atmospheric conditions directly affect surface layers and control
the temporal dynamics of soil moisture (Albertson and Montaldo, 2003; Koster et al., 2004), it
is the downward movement of water from the surface that dictates the amount of subsurface
soil moisture at a given time (Belmans et al., 1983; Rodriguez-Iturbe et al., 1999). Flow rates
to the subsurface are driven by hydraulic properties, which are in turn controlled by physical soil
characteristics such as texture, bulk density, and structure. Relative to changes in atmospheric
conditions, soil physical properties change over longer timescales. Vegetation further modifies
vertical soil moisture distribution by root water uptake (Yu et al., 2007) and by changing soil
structure (Angers, 1998).

Given the variability along a soil column, under which conditions do surface soil moisture
reflect subsurface soil moisture? Several studies have investigated this relation to address
the correspondence between surface and subsurface soil moisture. One of the earliest studies
was done by Capehart and Carlson (1997) wherein they compared modeling outputs with
remote sensing measurements. Using very shallow depths of 5 mm and 5 cm, they referred
to decoupling as the deviation from a linear correlation between these depths due to variable
drying rates. Further assessments of decoupling from model-generated time series soil moisture
data have been investigated using cross-correlation values (Martinez et al., 2008; Mahmood
et al., 2012; Ford et al., 2014). High correlation to the subsurface was obtained using lagged
values of surface soil moisture. However, cross-correlation is limited to providing a single value
throughout the range of soil moisture encountered per lag. Furthermore, cross-correlation
generally aims to evaluate the strength of lagged linear dependence between two variables
(Shumway and Stoffer, 2010). However, lagged dependence between surface and subsurface
soil moisture may not be linear given that non-linear processes determine water flow along
the soil profile. Using in situ field measurements, Wilson et al. (2003) investigated spatial
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surface (0-6 cm) and subsurface (0-30 cm) soil moisture distribution by calculating statistical
metrics and by means of a variogram. Decoupling between the two depths was observed which
they suggested to be influenced by vegetation, especially root density at surface soil. Their
results were also affected by the dry soil moisture range and emphasized the importance of
distinguishing between surface and total soil moisture for future applications of remote sensing
to atmospheric studies.

Based on previous studies, the term decoupling refers to a weak dependence between soil
moisture contents at the surface and subsurface. Recognition of decoupling is important,
however most studies have been limited to providing qualitative characterization of conditions
when decoupling occurs (e.g. dry period). Only Capehart and Carlson (1997) identified a
mid-range soil moisture (~0.3cm?®cm™3) when the surface and very near surface begin to
decouple. Their results, however, are limited to a thin layer of the soil column. In this
paper, our main objective is to quantitatively identify a range of surface soil moisture values
that is decoupled from the subsurface. Furthermore, we consider depths greater than those
investigated by Capehart and Carlson (1997). The ability to quantify (de)coupled surface
and subsurface soil moisture contents will contribute to more effective estimation of depth-
integrated soil moisture data using remote sensing methods and improved data assimilation
results in hydrological models.

We utilized in situ time series datasets at depths of 5 cm and 40 c¢cm to represent surface and
subsurface, respectively. Values outside the decoupled range are considered coupled since soil
moisture is inherently bounded up a maximum value equal to soil's porosity. The investigation
of (de)coupling is based on the idea that surface conditions will be reflected at the subsurface
after a certain delay indicating strong coupling between the two zones, and vice versa. More
focus is given to the decoupled soil moisture range since it has greater implications for extrap-
olation of surface soil moisture values to deeper soil layers. We applied statistical methods to
identify conditions of decoupling with no prior assumptions on the type of functional relation
between surface and subsurface. As an exploratory step, we first assessed the dependence
without considering lags using regression and residuals analysis. The main approach for as-
sessing decoupling was application of distributed lag non-linear models (Gasparrini et al., 2010)
to incorporate both the lag structure and the functional relation between surface and subsur-
face soil moisture. Applications of distributed lag models to econometrics and environmental
epidemiology have been well documented (Almon, 1965; Zanobetti et al., 2002; Bhaskaran
et al., 2013; Wu et al., 2013). However, their application to hydrological studies have rarely
been explored.

2.2 Material and methods

2.2.1 Description of datasets and study sites

Four time series datasets from the Twente soil moisture and temperature monitoring network
(Dente et al., 2011) were used in this study (fig.2.1). Datasets from 2014 to 2016 are available
with only short periods of missing data. The stations are located in agricultural fields with
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Figure 2.1: Location of study site in the eastern part of the Netherlands (inset). Triangles
represent stations used within the Twente soil moisture and temperature monitoring network (Dente
et al., 2011). Squares represent meteorological stations. Symbols with similar colors indicate the
pair of measurements used for the analysis.

sensors installed at 5 cm, 10 cm, 20 cm, and 40 cm depths. To investigate decoupling, only
the 5 cm and 40 cm depths were considered because the largest possible distance was desired.
Each station consists of EC-TM ECH20 capacitance probes (Decagon Devices, Inc., USA)
that logged soil moisture data every 15 minutes. A calibration procedure using gravimetric
measurements was applied prior to analysis (Dente et al., 2011).

Land cover in the area varies from corn in one field (SM05), to grass in two fields (SM05 and
SM13), to a forest area (SM20). Values at 40 cm capture the root zone of vegetation for each
site. In reality, rooting depths vary and depend on species composition, climate, and plant
growth rate. However, the depth considered would still allow for approximation of root zone
conditions. The landscape is characterized by flat to slightly sloping terrain. It is important
to note that SM20 is located at the eastern foot of a small hilly terrain. Throughout the
study period, either land cover remained unchanged or the same crop was planted. The soil
types for the stations range from coarse sandy soils to weakly silty soils (Wosten et al., 2013).
A summary of the land cover and relevant characteristics of the stations are given in table
2.1.

Soil moisture values were averaged into daily values to match the available daily rainfall data
from the Dutch national weather service (KNMI). For SM13 and SM20, there are some missing
data from the beginning of 2014. The datasets from SM13 begins on April 25, 2014 while
SM20 begins on May 2, 2015 (fig.2.2).
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Figure 2.2: Time series plots of surface (5 cm in light blue) and subsurface (40 cm in dark blue)
soil moisture. Vertical black bars at the top show daily precipitation data from the nearest KNMI
station.

Table 2.1: Summary of land cover descriptions at each station covering the period of 2014 to
2016. Soil descriptions and codes are based on BOFEK 2012 (Wosten et al., 2013). Both the slope
and distance to nearest ditch were determined from 5m resolution DEM. Datasets are from 2016
and were obtained from the publicly available national topographic database of the Netherlands
(TOPNL).

Station  Land BOFEK Soil description Slope Aerial distance to
No. cover (degrees)  nearest ditch (m)
SMO05  Grass Loamy sandy soils with a thick cultivated layer 2.22 18.97
(317)
SM09 Corn Weakly loamy sand soils with a thick cultivated 2.70 1.41
layer (311)
SM13  Grass Weak silty soils (podsols)(304) 1.0 17.09

SM20  Forest Coarse sand (podsols)(320) 2.30 875.26
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Figure 2.3: Schematic diagram using hypothetical soil moisture values to show vertical variability.
Left: Scatterplot showing the trend with a fitted loess function. The variability can be seen
using the standard deviation bars. Right: Scatterplot of the residuals from the fitted function.
Soil moisture variability is visible from the variance given by the vertical bars and the cumulative
residuals variance given by the black line. A change in variability at an intermediate soil moisture
value is marked by a change in the slope of the cumulative variance line, indicated by 6.

2.2.2 Regression and residuals analysis

As an exploratory step, the dependence between surface and subsurface soil moisture was
initially visualized using scatterplots. Conditional means for every 0.01 cm® cm™ interval and
vertical bars representing + standard deviation were added to show changes in vertical vari-
ability across the soil moisture range. Longer standard deviation bars indicate higher vertical
variability (fig.2.3, left). We referred to vertical variability as the uneveness or irregularity in
the soil moisture distribution within a certain depth of interest along the vertical profile, in
this case up to depths of 40 cm. For the rest of this paper, variability will refer to vertical
soil moisture variability, unless otherwise stated. The plotted points were colored per month
to show any impacts of seasonality. The effect of rainfall was included by adjusting the sizes
of the points proportional to rainfall intensity measured from the nearest KNMI stations. For
the overall measure of dependence, Spearman’s rank correlation coefficient Ry was computed
for every pair of ranked values in the time series. This was chosen as the assumption of linear
dependence was not made.

A flexible non-parametric locally weighted regression function (commonly called a loess func-
tion, Cleveland and Devlin, 1988) was fitted along the soil moisture range. This was used to
explore and identify trends across the soil moisture range. A linear regression was also fitted
only for comparison. Residuals were analyzed further for variability not captured by the fitted
function (fig.2.3, right). The residuals variance for every 0.1 cm® cm™ interval as well as the
resulting cumulative residuals variance were analyzed to examine variability across the range.
The degree of variability was related to the slope of the cumulative variance line, with steep
slopes indicating high variability. In addition, a significant change in variance between two
points was indicated by a significant change in the slope of the line. The soil moisture value
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where a significant change in slope occurred was marked by 6., this divides the soil moisture
range into two groups. The group with a steeper slope was interpreted as the decoupled range,
and vice versa. Since the measured variance is sensitive to sample size, a correlation coefficient
was calculated to determine if there was significant dependence between the two variables.
Residuals variance were first normalized from 0 to 1 because of the varying soil moisture range
encountered at each station.

Results of the exploratory methods were considered a posteriori knowledge for analysis of
lagged dependence and interpretation of results.

2.2.3 Analysis of Lagged Dependence
Cross correlation

Since decoupling is based on the strength of lagged dependence, the existence of lag between
surface and subsurface soil moisture values was first determined. Cross-correlation is known to
be a quick and easy method to apply for this objective. Lagged values of surface soil moisture
were correlated with instantaneous values at the subsurface. A maximum cross-correlation
at negative lags indicated that surface soil moisture is leading subsurface soil moisture, and
vice versa (Shumway and Stoffer, 2010). A 10-day lag was deemed long enough to show the
presence of lag-lead relations in the time series since the maximum correlation occurred within
this period.

Distributed lag non-linear model

We incorporated delayed or lagged effects in evaluating the relation between surface and sub-
surface values, and eventually in determining the (de)coupled values. It should be emphasized
that the analysis was primarily focused on examining the trends and relation between surface
and subsurface soil moisture. Moreover, it was not intended to replace other existing models
for estimating soil moisture or examining its patterns.

A distributed lag non-linear model (DLNM) developed by Gasparrini et al. (2010) was applied
to the 5 cm and 40 cm time series datasets at the study sites. Briefly, the model is capable
of simultaneously representing both functional the dependence and delayed response between
exposure and response values. We considered surface soil moisture as the exposure values that
produced delayed effects to the response values at the subsurface. A non-linear model was
selected in order to capture the non-linear dynamics of flow and transport along the soil profile
(Mohanty and Skaggs, 2001; Kim and Barros, 2002). Furthermore, DLNM offered enough
flexibility to model a variety of dependencies in the time series dataset by selecting a suitable
basis function. As an analogy, a DLNM is to a linear time series model (e.g. autoregressive
model) just as a generalized linear model is to a linear model, as can be seen in Eq. 2.1.

In assessing lagged dependence, event scale patterns were of interest rather than large scale
trends within the time series (Wilson et al., 2004). This required seasonal patterns to be
addressed prior to applying the DLNM. This was done by fitting a loess function to the time
series and then subtracting it from the original soil moisture values (Cleveland et al., 1990).
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Removal of seasonality was further justified by the scatterplot results (see Section 2.3.1). The
influence of seasonality on the vertical soil moisture variability is indicated by clustering of
observation points occurring within the same months (fig.2.4). De-seasonalized soil moisture
values were used for identifying (de)coupled soil moisture conditions.

For consistency in modeling, the range of surface soil moisture values used was from 0-
0.50 cm® cm™2. This was based on the highest surface soil moisture value encountered among
the four sites. A lag value of up to 30 days was considered long enough to investigate delayed
effects. This period also approximated the recurrence of heavy rainfall within the study sites.
A spline function was the basis function chosen to represent the functional dependence and
delayed effects as it offered flexibility to capture non-linearities. In addition, contributions from
daily rainfall data were used to incorporate current and past meteorological conditions. This
was applied as a covariate and was represented with an additional basis function. We only
considered delayed effects in vertical flow as lateral movement is deemed negligible in a flat
to slightly sloping terrain (table 2.1). The analysis was performed in R software using dinm
(Gasparrini, 2011) and mgecv (Wood, 2006a) packages.

The following section concisely describes the mathematical formulation of a DLNM. However,
the reader may choose to skip this section as the general description of the methods applied
have already been given in the text above. For a more detailed explanation, readers are referred
to Gasparrini et al. (2010) and Gasparrini et al. (2017).

To more formally describe a DLNM, let us first consider a general time series model, where

outcomes Y; with t =1,--- , n can be described by:
J K
glue) = a+ ) s0x: B) + > ek (2.1)
j=1 k=1

where ;1 = E(Y'), assumed to be derived from a Poisson distribution, and g is a monotonic link
function. The functions s; denote relationships between the variables x; and vector parameters
B;. Other uy variables with predictors are included in coefficients 7, to specify their related
effects. The relation between x and g(u) is represented by s(x) through a basis function. The
complexity of this estimated relationship depends on the type basis function chosen and its
dimensions. In the presence of delayed effects, the outcome Y at any time t is explained by
the past exposures x;_; with / as the lag representing the elapsed time between exposure and
response. The final goal of a DLNM is to simultaneously describe the dependency along both
the predictor space and lag dimension. This is achieved by selecting two sets of basis functions
that are combined to obtain the cross-basis functions (Gasparrini et al., 2010).

Within the DLNM framework, a response Y; at time t = 1 is based on lagged occurrences
of predictor x;, which is represented by vector g = [X;—j;- - ;xt_L]T. The minimum and
maximum lags are given by ky and Ly, respectively. The function represents dependence
through:

s(q.t) = s(xere—p, o+ xeor) = Y F - wlxer, /) (2.2)

I=ly
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where f - w(x;,_(, I) represents the exposure-lag-response function, which is composed of two
marginal functions: the exposure-response function f(x) and lag-response function w(/) in
the space of the lag. Parameterization of f and w is achieved by application of the known
basis functions to the vectors g; and /. The result can be expressed as matrices R and C with
dimensions (L — lp + 1) X v, and (L — kp + 1) X v, respectively.

The cross basis function s and parameterized coefficients 7 are given by:

S(Xertmty o Xe1im) = (1[7/0+1Af)"7 =w/n (2.3)

The values of w are derived from A;, which is computed from the row-wise Kronecker product
between matrices R and C. The dependence is expressed through w and parameters 1. The
cross-basis function represents the integral of s(x, t) over the interval [k, L], summing the
contributions from the exposure history. The estimated dependence to specific exposure values
is determined by prediction of A, called lag coefficients. The estimated ﬂA and covariance matrix

V([?) is given by:
V(B) = A V(AT (2.5)

A further extension to DLNM is the application of penalties for smoothness of the lag structure
and shrinkage of lag coefficients to null at very high lags. These penalties were applied in the
analysis using a second-order difference (Wood, 2006b) and varying ridge penalties (Obermeier
et al., 2015; Gasparrini et al., 2017), respectively. Application of penalties was based on the
assumption that, at higher lags, the lag coefficients become smaller and approach the null
value.

2.2.4 Evaluating (de)coupled soil moisture values

Application of a DLNM resulted in the estimation of parameter /3 for each surface soil moisture
value (Eq.2.4 and 2.5). This indicated the strength of dependence between surface and
subsurface soil moisture. Higher £ values indicated stronger dependence or coupling between
the two. Hence, we referred to ﬁ as the relative influence of surface soil moisture on subsurface
values.

2.3 Results

2.3.1 Regression and Residuals analysis

The overall dependence between surface and subsurface given by the Spearman’s rank coeffi-
cient (Rs) range from 0.746 to 0.866 (fig.2.4). However, even with a high overall dependence,
variability is not uniform across the soil moisture range (fig.2.4). Except for SM13, increased
variability is observed towards drier soil moisture values. Furthermore, the degree of variability
also differs among the four sites. The most pronounced variability is observed at SM13 and the
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least at SMO05. Clustering of observation points occurring within the same months indicate
that seasonality dictates soil moisture values and impacts soil moisture variability. Rainfall
events measured on the same day do not show a clear effect on surface and subsurface soil
moisture dependence. Observations with higher rainfall intensities appear scattered in the
plots (fig.2.4). In addition, the said observation points do not necessarily fall along the fitted
functions or at the wet soil moisture region of the scatterplots. As lag is not considered, the
impact of rainfall on variability is not fully captured in the scatterplots alone.
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Figure 2.4: Scatter plots of 5 cm vs 40 cm soil moisture values at /ag = 0. Colors correspond to
the months in a year and sizes of points are proportional to rainfall intensity. Trends along the soil
moisture range shown with the fitted loess function (black line). A linear function (blue line) is
also fitted for comparison. The overall dependence using Spearman’s rank correlation Rs is given
in the upper left corner each plot. Residual standard errors (RSE) for loess (lo) and linear (Im)
fits are also shown.
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Figure 2.6: Scatterplot of sample size vs. normalized residual variance calculated for each
0.01 cm® cm ™3 interval. Colors indicate soil moisture conditions at each point. The plot of points
indicate very weak linear dependence, which is further confirmed by a -0.24 correlation coefficient.

Assessment of the regression fit quality was performed by comparison using residual standard
errors (RSE). The results for both linear and loess functions show highly similar values (fig.2.4).
This indicates that, in this case, a linear function captures the relation between surface and
subsurface values. Nevertheless, the more flexible loess function was preferred for further
residuals analysis because of its slightly better model fit and, using only visual inspection of
fig.2.4, it more closely approximates the calculated conditional mean.

Figure 2.5 shows the residual plots with lines of the cumulative residuals variance. The change
in slope of the line is a feature consistent for all sites regardless of the magnitude of residual
variance. The changes in variability are more clearly observed from the residuals than from
the standard deviation bars in the scatterplots. The change in slope at 6. is highlighted by
the vertical dashed line. The decoupled soil moisture range corresponds to the section of
cumulative residuals variance line with a steeper slope. Specifically, the ranges of decoupled
surface soil moisture values (in cm?® cm‘3) were 0.08-0.21 for SM05, 0.12-0.27 for SMO09,
0.30-0.39 for SM13, and 0.08-0.12 for SM20. Except for SM13, the decoupled values are
within the dry to intermediate soil moisture range. The cumulative residuals variance line
for SM13 appears to increase exponentially with increasing surface soil moisture. This differs
from the other three sites which show a distinct decrease in slope at increasing soil moisture
values. For SM20, a second point is identified with a change in slope. The flat line starting
from 0.24-0.28 cm® cm~3 indicates there is still lowered variance at the very wet soil moisture
range.

The correlation between normalized variance and sample size yielded a value of -0.24 (fig.2.6).
This low correlation magnitude confirms that the variance obtained for the soil surface moisture
intervals was not strongly influenced by the sample size used.
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Figure 2.7: Cross-correlation plots of soil moisture values. The lagged surface soil moisture values
at 5 cm are correlated with subsurface values at 40 cm. A 1 to 2 day lead of surface soil moisture
is observed, except for SM20. This is indicated by having maximum the correlation values at lags
of -1 to -2 days. At SM20, the maximum correlation occurs at positive lags.

2.3.2 Cross-correlation

Figure 2.7 shows cross-correlation values at the four sites. Maximum correlation occurs at -1
to -2 days lag, except at SM20. This translates to a 1 to 2 day lead of surface soil moisture
values. For SM20, the maximum correlation occurs at positive lags. Correlation values from
lag = 0 to lag = 10 are almost equal at SM20. Although this indicates leading subsurface
values, it does not eliminate the possibility of having a lag between surface and subsurface
values (see Section 2.4.2). Other factors may play a role in having leading subsurface values in
the cross-correlation plots. Hence, SM20 was still analyzed for decoupling using DLNM.

2.3.3 Distributed lag model

Figure 2.8 shows the overall /3 for each surface soil moisture value with 5% and 95% confidence
intervals in shaded gray regions. In order to identify a range that is decoupled, a threshold
value () must be specified. This value is comparable to the intermediate soil moisture 0,
identified from Section 2.3.1. The values of 6. provided a suitable guide for identifying a
threshold common to all four sites (table 2.2). The corresponding 4 values obtained at 0.
were very close to 1, therefore, setting the threshold . = 1 seemed a reasonable choice.
This was preferred over the exact 3 at each 6. since the latter was defined using exploratory
methods at /ag = 0. Using the chosen (. = 1, surface soil moisture values with 3 < 1 are
considered decoupled while those with f>1are coupled.

Based on [, the identified decoupled values are generally in the dry to intermediate soil
moisture range (fig.2.8), except for SM13 where decouple values are at the wet range. Table
2.2 shows the decoupled values identified based on the selected BAC The behavior and trends
of B also differ for each station. For instance, at SM05 and SMQ9, there is a general increase
in 3 from dry towards wet surface soil moisture values. SM20 also shows increasing 3 over
a limited soil moisture range (0.1 — 0.25 cm®cm~2). Outside this range, the estimated &}
values for SM20 were less than one and have very broad confidence intervals. Recall that the
range used for DLNM was only for uniformity among the four study sites. The lack of or
very few observations for very dry or very wet soil moisture conditions led to wider confidence
intervals not only for SM20 but also for the other three sites. Compared to the three sites,
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Figure 2.8: The relative influence of surface soil moisture on subsurface values obtained by
summing the predicted /§ along the 30-day lag. The threshold value (BAC) used to identify the
decoupled range is indicated by the horizontal line. Surface soil moisture values below [3:_- are
considered decoupled. The 5% and 95% confidence intervals of the predicted values are shown as
shaded regions.

Table 2.2: Summary of coupling analysis showing the surface soil moisture with significant change
in variability (6.) from residuals analysis and representing significant lagged influence (ﬂAC) using a
threshold of 3. = 1 from the distributed lag non-linear model. Values of 3 at . are presented for
assessment of the suitability of the BC =1 threshold.

Station No. SSM at 0, £ at 6. Decoupled values using threshold
6\5 =1
SMO05 0.21 0.90 <0.24
SM09 0.27 0.97 <0.28
SM13 0.30 1.18 >0.34
SM20 0.12 0.94 0.16>SSM>0.23

the estimated /3 values for SM13 show decreasing values towards the wet soil moisture range
(> 0.3cm?®cm™3). From the intermediate to dry soil moisture conditions, the values fluctuate
around the designated ..

2.4 Discussion

2.4.1 Decoupled soil moisture values

Regression and residuals analyses show that there is an inherent vertical variability between
surface and subsurface soil moisture values based on the lack of 1:1 correspondence between
the two (fig.2.4). This inherent variability is also not uniform as higher variability is observed
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at certain soil moisture ranges. The cumulative residual variance plots (fig.2.5) clearly indicate
the soil moisture values where vertical variability starts to become consistently larger. The
increase in variability further translates to weak lagged dependence which we observe as low
£ values from DLNM. The increase in vertical variability and weakening of lagged dependence
is what we considered as decoupling between the surface and subsurface soil moisture.

Both residuals analysis and DLNM were successful in identifying a decoupled soil moisture
range and there is good agreement between the results from both. Three out of four sites
show decoupled values in the dry to intermediate soil moisture range (fig.2.5 and table 2.2).
These results agree with the known range where decoupling is expected (Capehart and Carlson,
1997; Hirschi et al., 2014; Wilson et al., 2003). For SM05 and SMO09, the intermediate soil
moisture value, . that marks when decoupling begins (table 2.2) is close to that identified
by Capehart and Carlson (1997). They obtained a value of 0.3cm?® cm™® as the point below
which decoupling begins. However, results for SM13 do not conform to the traditional concept
of decoupling. This result is significant as it implies that decoupling may occur at any value
and is not confined to dry soil moisture range.

The vegetation type at each site exerts some influence on the soil moisture variability and the
resulting (de)coupled values. First, the vegetation type affects how much ground surface is
directly exposed to atmospheric conditions. Forested areas and grass fields are almost fully
covered by vegetation compared to a corn field where the crops are organized in equidistant
rows. Vegetation or canopy cover will determine how atmospheric conditions affect the soil
moisture values. For instance, the amount of intercepted precipitation and evaporation are
both dependent on vegetation cover. This in turn will have direct impacts to the surface soil
moisture dynamics at each of the sites. For comparison, the variability given by the standard
deviation bars in fig.2.4 and variance in fig.2.5 at the cornfield (SM09) is higher compared
to that of the grass field (SM05) or the forested area (SM20). In addition, the forested area
(SM20) has the smallest range of soil moisture values among the four sites. This may be due
to the large intercepted rainfall by the forest canopy. Root water uptake (RWU) is another
way by which vegetation affects soil moisture variability. RWU can have significant influence
on the subsurface dynamics. The influence of RWU may vary for different vegetation types
as it can be exerted over a range of depths, leading to differences in the resulting (de)coupled
values.

Among the four sites, the subsurface trends observed for the 40 cm values at SM13 show
consistently high values, which can be more pronounced during winter months. This resulted
in decoupling during wet soil moisture conditions in fig.2.8. This trend is different from the
other three sites which only show a slight increase in the subsurface values. Further inspection
of the time series data at SM13 reveals no sudden disturbance in the signal which could be
attributed to errors in the sensor. Field investigation confirmed an increase in silt content
at 40 cm compared to the upper layers. The increase in silt content promotes a decrease of
hydraulic conductivity over depth that results in a slower vertical flow towards deeper layers.
The presence of burrowing and hibernating animals was also observed at the site during
winter. These create macropores which eventually alter the hydraulic properties of the soil
(Kode3ov4 et al., 2006; Beven and Germann, 2013). We infer that, at the measurement domain
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of the sensor, these burrows or macropores facilitated faster vertical flow to the subsurface.
Alternatively, if the burrows produced voids around the measurement domain, this would result
in lowered soil moisture or data gaps due to the loss of sensor to soil media contact. However,
there were no gaps observed that coincided with the burrowing animals’ period of hibernation.
During precipitation events, soil moisture flowing from upper layers arrived more rapidly at
40 cm depths due to the presence of macropores. There it accumulated and flowed more
slowly to deeper layers because of the low hydraulic conductivity promoted by the increase in
silt content. The overall effect of these factors was the pronounced increase in soil moisture
values at 40 cm compared to those at 5 cm during winter periods as observed from the time
series dataset in fig.2.2.

Site-specific characteristics at each station control the magnitude of variability as well as the
range at which decoupling is observed. However, the occurrence of decoupling is independent
of the magnitude of variability since it was observed from SMO0b5 where variability is least up
to SM13 where it is greatest. The methods applied in this study only identify conditions when
decoupling occurs but do not explicitly determine its controls. ldentification of controls for
decoupling requires a separate analysis where mechanistic models or statistical approaches can
be applied.

2.4.2 Assessing the use of lagged dependence for identifying decoupled condi-
tions

To assess the applicability of the methods applied, we further discuss their strengths and
weaknesses. We also present opportunities for further studies as well as foreseen limitations
for other sites.

Strengths: The residuals analysis and DLNM methods allow quantification of a range of soil
moisture values where decoupling occurs. This provides further extension to previous studies
where decoupling is only described qualitatively. As seen from the results at the four sites,
decoupling can occur at any soil moisture value, and is not confined to dry periods or ranges.
Furthermore, by making no initial assumptions on data distributions and the type of functional
relation and lag structure, the methods applied were considered robust. Non-linear functions
were applied as they conform to the nonlinearity of water flow in the unsaturated zone. They
can also handle a variety of bivariate dependence, even in cases where the relation is linear, as
shown by the highly similar fit of the loess and linear functions in Section 2.3.1.

Weaknesses: The first aspect that needs to be further investigated is the selected B value
for identifying the decoupled soil moisture range. Although the selection in this study was
based on trends identified from time series datasets, the methods applied should be tested
further using other datasets to confirm the suitability of ﬁAC = 1 for other depths and soil
types. The choice of 5. is crucial as it dictates which soil moisture values are expected to be
decoupled. For instance, at the sites where decoupling occurs during dry conditions, a higher
B value would enlarge the decoupled range. A similar effect would be expected for the site
with decoupling during wet conditions. However, a lower §. value could result to decoupling
only during extreme soil moisture conditions (e.g very wet or very dry).
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Another aspect to further examine is the use of cross-correlation for confirming the presence
of leading surface soil moisture values. Results from SM20 show maximum correlation at
positive lags which indicate leading subsurface values (fig.2.7). The weakness of using cross-
correlation as a test for the presence of lag can be two-fold. First, cross-correlation can also
capture the effect of subsurface dynamics such as groundwater influence and lateral flow. We
infer that in SM20, subsurface dynamics dominates and masks the lag relation sought. An
additional covariate representing subsurface dynamics was not included in the DLNM analysis
since a dominant downward vertical flow was assumed. This assumption was based on the
flat slopes encountered at SM20 (table 2.1). Therefore, the occurrence of subsurface lateral
flow or groundwater influence pose limitations to the applicability of DLNM for assessing
decoupling. Second, cross-correlation is limited to evaluating linear lagged dependence and
in incorporating non-linear lagged dependence can make the test more robust. Equivalent
methods exist (e.g. mutual information content, Qiu et al., 2014) but they are much more
computationally demanding when the goal is simply to check for the existence of lag-lead
relation.

Opportunities: In relation to utilizing remote sensing techniques, our results imply that the
accuracy of estimating subsurface values from surface soil moisture can be greatly affected
by vertical coupling. Lower variability and hence lower uncertainties are expected in the
coupled soil moisture range. Assessment of decoupling can be used in combination with
modeling studies as a preliminary method to determine the range where variability is expected
to be higher. Furthermore, it can be helpful in assessing whether simulation results capture
the variabilities observed in both the coupled and decoupled ranges. Taking decoupling into
account can also assist in evaluating the necessity of complex models for simulating vertical
soil moisture content.

For data assimilation (DA) applications, (de)coupling methods can be used for cross-
comparison of the vertical coupling derived from DA model outputs with those observed from
long term in situ measurements. This can aid in examining the adequacy of the assumed
inherent connection between surface and subsurface values. As Kumar et al. (2009) pointed
out, land surface models vary in their representation of the strength of this connection (e.g.
weak or strong connection) which contributes the degree in which modeling results are im-
proved. They also suggested that strong coupling is a more robust choice unless independent
information suggests that a more decoupled surface-subsurface representation is more realistic.
In this aspect, the analysis applied in this study could be a valuable tool in determining which
type of surface-subsurface coupling is the more optimal choice. Furthermore, the assumed
connection strength is adopted for the whole range of soil moisture values. The results of
our analysis show that at any given site, decoupling will occur regardless of degree of soil
moisture variability. A variable coupling strength could be adopted based on the soil moisture
range where decoupling is likely to occur as an alternative to the single value for the whole
range.

Although the study focused on vertically discrete values, the results are also applicable for
depth-averaged values commonly used in remote sensing and DA applications. This requires
that the vertically discrete values adequately capture the overall dynamics within zone being
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Figure 2.9: Subsurface soil moisture dynamics for vertically-discrete (40 cm) and depth-average
value. Left: Time series of soil moisture at 40 cm and depth-averaged values. The dynamics
observed for depth-average values are highly similar to those at 40 cm. Right: Scatterplot showing
that these two sets of values are highly correlated.

investigated. In such a case, we infer that the translation to depth-averaged values would
result in (de)coupled values that are close, but not identical, to the values obtained when only
comparing two discrete depths. As an illustration, we calculated the depth-average values
using all the available measurements at each site (i.e. 5, 10, 20 and 40 cm depth) following
the formula from Qiu et al. (2014). Figure 2.9 (left) reveals highly similar dynamics for
both discrete and depth-average values. Therefore, it can be expected that the results from
a regression and DLNM analyses using depth-average values would be highly similar to the
original results in fig.2.5 and fig.2.8. However, if the vertically discrete values insufficiently
represent the subsurface dynamics, larger deviations in the resulting decoupled values can be
expected.

Limitations: In this study, only meteorological factors were incorporated in the DLNM analysis
since vertical movement was assumed to be the dominant flow mechanism. However, the
subsurface can also be influenced by lateral movement or groundwater by capillary rise. In
such scenarios, decoupling will not be limited to changes in surface conditions. For this, SM20
provides an excellent example. This station is located at the foot of a small hill (fig.2.2) where
the occurrence of lateral subsurface movement is highly probable. This shows that although
the analysis would be limited to smaller scales, or even a single point, recognition of regional
setting is important for interpretation of results. In addition, subsurface dynamics can also
be affected by capillary rise in areas with shallow groundwater. For future applications, the
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effect of both capillary rise and lateral movements to subsurface dynamics should be assessed
and included in the DLNM analysis, but caution should be exercised when interpreting the
results. Assessment of decoupling with DLNM is deemed more applicable to areas where the
subsurface has insignificant groundwater influence and where vertical downward movement is
the dominant flow mechanism.

2.5 Conclusions

The methods applied in this study allow for investigation of vertical soil moisture variabil-
ity. More importantly, application of DLNM allowed for decoupled soil moisture range to be
quantitatively identified. The results also reveal that decoupling is not confined to dry soil
moisture range as implied by previous studies. The reasons for decoupling are manifold and
controls for the dry soil moisture range may differ from those for the wet range. The results
of this study have implications for remote sensing and data assimilation methods, especially
for uncertainties related to the use of surface soil moisture to obtain integrated soil moisture
values.
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Abstract

Cultivated fields are dynamic environments because of cyclical land management and vegeta-
tion growth. Soil physical properties change consistently due to farming which impacts soil
moisture dynamics at seasonal or annual scales. In this study, the contributions of tillage and
vegetation growth to subsurface soil moisture dynamics over three seasons (summer 2017,
winter 2017, summer 2018) were investigated using in situ measurement stations distributed
in a cultivated field. From the temporal stability analysis applied, root-induced variability
was estimated to be up to nine times larger compared to those due to tillage. During the
2018 summer drought, the variability in root water uptake (RWU) depends on soil moisture
and atmospheric demands. For energy-limited periods, RWU variability strongly correlates
with potential evapotranspiration. Once water-limited conditions occurred, RWU variability
dramatically decreases, and further implies an adaptive water uptake strategy. The impact
of these seasonal changes on soil hydraulic properties was analyzed through inverse hydro-
logical modeling using a pore-flow model. For stations with reasonable modelling accuracy,
significant differences for some of the hydraulic parameters were observed. Among them was
the much lower saturated water contents (6;) estimated for winter 2017 when the soil was
bare compared to the two summers when crops were grown. However, a pore-flow model was
not sufficient to capture the soil moisture dynamics for almost half of the stations, especially
during the two summer periods. These combined modeling results further demonstrate that
cultivated fields have temporally dynamic soil hydraulic properties and may systematically re-
quire the application of a flow regime other than pore-flow to accurately capture soil moisture
dynamics.
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3.1 Introduction

In agricultural lands, field scale soil moisture variability is important for selection of optimal
water management strategies that maximize crop growth (Zhang and Oweis, 1999; Liao et al.,
2008; Geerts and Raes, 2009), minimize the harmful impacts of pesticides on groundwater
resources (Shipitalo et al., 2000; Ghafoor et al., 2013) as well as erosion (Keesstra et al.,
2016). Local scale knowledge of soil moisture dynamics and its spatial variability is also
vital to improve our understanding of biogeochemical processes and subsurface flow processes
(Wang et al., 2015).

At the field scale, soil moisture dynamics is determined by complex interaction of processes,
which have been broadly categorized into local and non-local controls (Grayson et al., 1997).
Local controls such as soil properties (Famiglietti et al., 2008; Penna et al., 2013) and veg-
etation (Baroni et al., 2013) influence vertical drainage and evapotranspiration fluxes. Non
local controls including topography leads to surface and subsurface lateral flow (Joshi and
Mohanty, 2010). The variability in precipitation might, however, be more important for scales
larger than the field scale (Rosenbaum et al., 2012). At deeper soil layers, the direct impact
of meteorological variables on soil moisture dynamics diminishes but is primarily modulated by
vegetation activity through root water uptake (RWU). Hupet and Vanclooster (2002) showed
that vegetation growth, and subsequently evapotranspiration and root water uptake play a non-
negligible role in the temporal dynamics of the observed soil moisture patterns in a cultivated
(maize) field. Soil-root interactions and their responses to different soil moisture conditions
determine water transport processes in the soil-plant-air continuum. Acquisition of water from
the soil results in variable root and hydraulic conductivity which depends on water shortage,
soil salinity and on water demands from transpiring the above-ground shoot (Steudle, 2000).
Recent studies have shown that the rhizosphere has a different hydraulic property than the
bulk soil (Carminati et al., 2010; Tardieu et al., 2017). Carminati et al. (2011) found differ-
ences in the hydraulic properties of the rhizoshpere and bulk soil during a drying phase and
immediately after rewetting.

Compared to other landscapes, moisture dynamics in agricultural fields is further affected by
land management practice (Kovég et al., 2005; Govaerts et al., 2007; Fabrizzi et al., 2005).
Physical soil properties such as bulk density (Mallory et al., 2011; Osunbitan et al., 2005),
aggregate stability (Paul et al., 2013; Zheng et al., 2018) and macroporosity (Roseberg and
McCoy, 1992; Pagliai et al., 2004; Malone et al., 2003) are altered by land management both
in the short- and long-term (Pagliai et al., 2004; Strudley et al., 2008). Soil structural changes
have direct impacts to hydraulic properties and soil moisture estimation (Mapa et al., 1986;
Moret and Arriie, 2007). Studies have suggested incorporating land use changes to parame-
terize hydrological models for a more accurate representation of soil structure and variability
in hydraulic properties (e.g Gonzalez-Sosa et al. 2010; Ndiaye et al. 2007). Furthermore,
Schwen et al. (2011a) and Alletto and Coquet (2009) demonstrated that temporally varying
soil hydraulic parameters improved simulation results.

To elucidate the processes that act as controls for soil moisture variability, temporal stability
analysis (TSA, Vachaud et al. 1985) has been applied at regional and catchment scales (e.g.
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Guber et al. 2008; Vanderlinden et al. 2012; Fry and Guber 2020). In TSA, soil moisture
variability at a certain location is characterized in terms of its mean and standard deviation
relative to the trends derived from all measurements combined. Based on this, the presence
of locations exhibiting persistent bias or those which are consistently wetter or consistently
dryer than the average are highlighted. Using TSA in grass fields, Wang et al. (2012) demon-
strated that the temporal stability in the root zone is mainly affected by vegetation phenology.
Furthermore, it may control soil moisture variability at both seasonal and annual time scales.
Martinez et al. (2013) analyzed TSA using stochastic simulations of soil moisture values de-
rived from known statistical distributions of soil hydraulic properties. Focusing on the impact
of soil hydraulic properties on soil moisture temporal stability, their main findings indicate that
coarser soil textures have higher mean relative differences than finer textures. In addition,
RWU was found to decrease the mean relative differences variability in the root zone and
increased variability below it. In recent years, TSA has been relatively popular for optimizing
sampling locations, especially for large areal campaigns, because it allows identification of sites
that are representative of the spatial mean (e.g. Brocca et al. 2009; Schneider et al. 2008;
Gao et al. 2019).

In this study, our main goal is to quantify subsurface soil moisture variability using TSA from
almost 12 months of subsurface in situ measurements and to explore its impacts on soil hy-
draulic properties. Field scale subsurface soil moisture dynamics from in situ measurements are
limited in literature, perhaps due to the difficulty of obtaining spatially-distributed subsurface
measurements in a single field. However, in situ measurements are essential since they capture
conditions that may otherwise be difficult to replicate in process-based models. Installed at
40 cm depth, the measurements from 25 sampling points captured the active root zone of
the crops encountered in the field. Furthermore, the sensors were integrated into a wireless
LoRaWAN architecture for real-time monitoring. Since meteorological conditions over a field
is assumed to be uniform, only the contributions of soil heterogeneity and vegetation activity
were related to the variability observed over two growing seasons (2017 and 2018) and the
winter season in between. Inverse modeling was applied to the in situ measurements to deter-
mine how the dynamics observed from the in situ measurements impacted the soil hydraulic
properties.

3.2 Materials and Methods

3.2.1 Site Description

The study area is a cultivated field situated at the southeastern portion of the Netherlands
(fig.3.1). The terrain is generally flat and the soil is dominantly sandy (82.1% sand, 10.5%
silt, 5.2% clay, and 2.2% organic matter). The crops grown every year rotates from corn,
chicory, potato, and grass.The field is part of the Raam soil moisture network (station RM07,
Benninga et al., 2018). Measurements at RM07 were used to provide information on the
surface moisture conditions, yet are not further included in the analysis. For every growing
season, the field is tilled before the seeds are sown and after the crops are harvested.



3.2 Materials and Methods 35

Elevation (m)

11.57
11.22
10.86

1051

{

0 2040km /
/

‘r*: Summer 2017
Winter 2017 &
Summer 2018

Figure 3.1: Map of the soil moisture sensors installed in the cultivated field. a) Location of sensors
for over the measurement period from 2017 to 2018. Within the same field, the location of RM07,
a sensor in the Raam soil moisture and monitoring network (Benninga et al., 2018) is also shown.
b) A cross-sectional diagram of the installation configuration at each location. ¢) Photo of the
above-ground part of one sensor. d) Components at each installation site, which include the soil
moisture sensor with a customized logger and signal transmitter in a white waterproof enclosure.

3.2.2 Soil moisture network with LoRaWAN

Twenty-five soil moisture sensors were installed within the field at 40 cm depth during the
growing seasons of 2017 and 2018, as well as the winter period in between. There were two
sets of sampling locations for the duration of the measurement campaign because a portion
of the field was converted into grass after the 2017 harvest (fig.3.1 and 3.2). Installation in
grass was not considered since there is high likelihood that the sensors will be destroyed by
cattle.

For the growing season of 2017, the crops encountered at the sites were corn and potato.
The soil moisture locations were almost equally (13 in corn, 12 in potato) divided between the
two crops. The sampling campaign started on June 26 and were uninstalled by Sept 12, just
before the harvest period. The measurement campaign resumed after harvest in the autumn
of the same year. Since the southwestern portion of the field was converted into grass, 12
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out of 25 stations were relocated on the northeastern side. The second field measurement
campaign then started from Oct 10 2017 up to March 01 2018 just before the start of tillage
activities. The third field campaign started from May 17 2018, after the seeds have been
sown, up to August 22 2018, before harvesting. For 2018, only corn was planted in the area
where the soil moisture sensors were re-installed. Measurements from the soil moisture sensors
were logged every 15 minutes for each station over the duration of the sampling campaigns.
However, continuous measurements across the seasons were not possible in the field because
of tillage.

The soil moisture sensors were integrated into a wireless LoRaWAN framework that enabled
real-time monitoring and facilitated early detection of malfunctions to minimize data losses.
Briefly, LoRa (short for Long Range) is a radio frequency carrier signal of telecommunications
devices. LoRa allows the conversion of measured data into a signal that can be transmitted
from the sensor location to the back-end user elsewhere. It is considered as a part of the
Internet of Things (loT) technology and is owned by Semtech in 2012 (Alippi et al., 2010). One
advantage of LoRa is its increased communication range for transmitting data, which can be
up to 20 km on good atmospheric conditions (non-rainy days). LoRa Physical Layer Protocol
works on sub-GHz frequencies of frequency bands 433-, 868-, 915-, 923-MHz depending on
country-specific regulations. LoRaWAN is an open standard technology that links the LoRa
signal to a certain application. Thus, LoRaWAN is a communication protocol and network
architecture, while LoRa is the physical layer that enables the long range link LoRaWAN (2021).
LoRaWAN contains the data transfer layer that allows transmission of data to any device
already connected to the cloud. For the soil moisture network, each sensor was connected
to a customized logger and wireless data transmitter (fig.3.1b-d). All 25 data transmitters
were then connected to a wireless LoRa network gateway that was installed inside the barn
next to the cultivated field. Aside from receiving all the soil moisture measurements, the
gateway communicates with other LoRa gateways distributed across the Netherlands, which
allows transmission of the data to the end-user.

Sampling optimization using Spatial Simulated Annealing (SSA)

Spatial simulated annealing (SSA, Van Groenigen and Stein, 1998), a geostatistical method
for sampling optimizations, was applied to optimize soil moisture sampling locations. To solve
spatial optimization problems, SSA algorithm creates slight perturbations in the sampling
design and applies a random search technique. The suitability of a sampling design is evaluated
by minimizing the values of an objective function, which in this case is the average kriging
prediction error variance (Brus and Heuvelink, 2007; Melles et al., 2011). SSA optimization
runs by randomly moving each of the sampling stations, calculating the objective function, and
accepting improved designs (i.e. smaller values for the objective function) over a fixed number
of iterations. In some instances, worse designs are accepted with a decreasing probability (P)
to avoid being trapped in a local minima. P was set to P < 20% as suggested by Brus and
Heuvelink (2007). The cooling factor in SSA, which dictates the rate at which P decreases
to zero, whereby P was set to exponentially decrease as a function of number of iterations to
ensure convergence. The number of iterations was set to 10000 and the cooling factor was
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set at 1000.

A set of soil moisture measurements was obtained on June 08 2017 prior to the installation of
sensors at 40 cm to determine the kriging prediction error variance required needed for SSA.
However, collection of spatially distributed samples at 40 cm depth was considered impractical
for the given sampling optimization task. Therefore, only surface soil moisture were measured
since they influence and may be indicative of subsurface conditions. Thirty surface soil moisture
measurements at 5 cm using a TDR were obtained along three transects that were at least
20 m apart. This was deemed as a reasonable guide for identifying the subsurface sampling
locations based on the assumption that soil moisture values encountered at the 5 cm depth
will have equal probability of being encountered at the 40 cm depth, although not necessarily
because of the same processes. A spherical model was applied to estimate the semi-variogram
parameters using the 30 surface soil moisture samples. The modelled variogram was then used
to estimate the kriging variance required in SSA. Nine out of the 30 measurement locations
were used as the initial input for SSA. Sixteen sampling locations were optimized for the
2017 growing season while 12 locations were optimized for the 2017 winter and 2018 growing
season.

3.2.3 Field scale heterogeneity using Temporal Stability analysis

Using the relative differences (RD) approach, the temporal stability (TS) at each station
were evaluated with respect to the mean value from all of the stations. The daily mean
soil moisture measurements were applied for the TS analysis. The relative difference (d;;), is
defined as:

ij
6,'1':7

; (3.1)

where 0;; is the measurement at location i of sampling time j and 0; is the mean from all the
measurements (N) of each sampling time J:

I
0; = Z 0 (32)
j=1

=

For each location 7, the mean and the standard deviation of the relative differences (MRD and
SDRD) are given by:

N

MRD () = 1 >4 (33)

SDRD (o(5;)) = ﬁ Z (6 — &))" (34)
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where M is the number of samples for each station i.

Due to the bounded nature of soil moisture, the datasets obtained may have skewed distri-
bution, rendering the mean a poor measure of central tendency. In such cases, median is a
better measure than the mean. In this study, TSA was carried out also using the median but
produced highly similar values and trends with those using the mean (fig.8.1, Appendix). In
this case, the mean and the median may be used interchangeably since the distributions are
not highly skewed. Most, if not all, studies encountered use the mean for TSA (e.g. Brocca
et al., 2009; Martinez et al., 2013) but often lacks assessment of its suitability as a measure
of central tendency.

3.2.4 Diurnal soil moisture dynamics during the 2018 summer drought

In 2018, western Europe was hit be a summer drought from June until early August. In the
study area, a drying trend coinciding with the drought was observed until the start of July
(fig.3.2). Irrigation was applied several times to the corn fields starting early July because of the
prolonged dry period. Diurnal soil moisture dynamics were investigated over the month-long
drying period (June 9 - July 9) to determine root water uptake variability. It is assumed that
during this period, the influence of meteorological conditions at 40 cm depth were primarily
modulated by vegetation activity. Atmospheric conditions influence daytime transpiration rates
by dictating the amount of water needed by vegetation and, consequently, determining the
decrease in soil water content during a drying period.

Temperature sensitivity correction

The sensitivity of soil moisture sensors to temperature was addressed by applying a correction
method outlined in Cobos and Campbell (2007). Daily variations in temperature can cause
sinusoidal patterns to be overprinted onto the 'true’ soil moisture values. If the effect of
temperature is negligible, a linearly decreasing trend in soil moisture would be expected for
several consecutive dry days. For the sensors at 40 cm, the soil moisture values were more
or less identical before and after applying the temperature correction, indicating a negligible
effect of diurnal temperature variations on the soil moisture measurements (fig.3.3). These
findings agree with Cobos and Campbell (2007), who noted that at soil depth greater than 15
cm or under a full vegetative canopy, the temperature sensitivity due to diurnal fluctuations
in soil temperature would be small or unnoticeable.

Diurnal soil moisture dynamics

The impacts of root water uptake on soil moisture variability were investigated based on the
diurnal changes in soil moisture from June 9 to July 9, 2018. This drying period facilitated the
estimation of root water uptake up since the changes in soil moisture was mainly attributed
to vegetation activity because of the absence of rainfall over the said month-long period. Us-
ing the 15-minute soil moisture measurements, subsets were obtained for specific daily time
intervals. Diurnal changes (thereafter referred to as RWU) were calculated based on differ-
ences in soil moisture between sunrise and sunset. Furthermore, the afternoon and morning
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Figure 3.3: Measured and temperature-corrected soil moisture at 40 cm depth. For a few obser-
vations, corrected values were not obtained because of missing temperature measurements.

changes were also calculated to determine whether differences occur at different daytime pe-
riods. Afternoon and morning changes were based on differences against measurements at 12
noon.

The temporal RWU dynamics were compared with daily potential evapotraspiration (E T,o¢),
which were measured from the nearest KNMI weather station (Volkel). To facilitate compar-
ison, the volumetric soil moisture content in m® m—3 was converted to millimeters to match
the units of the ET,,; obtained. The measured volumetric soil moisture was assumed to be
representative over a 5.2 cm (52 mm) thickness. This is based on the average of the values
found by Benninga et al. (2018) (6 cm) and Vaz et al. (2013) (4.4 cm), who investigated sam-
pling diameters of theta probe sensors. The corresponding values in millimeters were obtained
by multiplying the volumetric soil moisture content by 52. The spatial patterns between RWU
and soil moisture states were compared using the relative differences approach primarily to
determine whether a correlation exists between the two. In other words, do locations which
are relatively wetter (or drier) show relatively larger (or smaller) RWU?

RWU dynamics was further investigated based on transpiration regimes that relate soil moisture
and E T,,;. Assuming that precipitation is the only source of water in the soil at 40 cm, periods
with sufficient or surplus of precipitation are, on the one hand, considered energy-limited since
E Tpot is limited by energy and not water. On the other hand, precipitation or soil moisture
deficit during droughts are considered water-limited periods. In land surface models, a critical
soil moisture content (.,;;, Seneviratne et al. 2010) separates the two regimes and has been
found to influence land-atmosphere interactions and feedbacks.

3.2.5 Estimation of soil hydraulic parameters using Inverse modeling

Inverse numerical simulations for a 1-dimensional (1D) vertical flow domain was applied in
Hydrus-1D to estimate the soil hydraulic parameters at each station. Soil moisture measure-
ments were used as inputs in the pore flow equations to numerically solve for water retention
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parameters based on van Genuchten (1980). The vertical water flow in an unsaturated porous
media is solved numerically using Richards’ equation:

where t is the time (days), @ is the volumetric water content (cm®cm™2), h is the soil water
pressure head (cm), Z is the spatial coordinate (cm) defined as positive upward, K(h) is the
unsaturated hydraulic conductivity function (cmd~!) and S is a sink term representing water
uptake by plant roots (cmd~!). K(h) is derived from a water retention curve, given by van
Genuchten (1980):

6(h) = % h<0 (3.6)

K(h) = KSe(1— (1 /™))

m=tT (37)
0—0,
58_9579,

where 0, and 6, denote residual and saturated volumetric water contents (cm? cm~3), respec-
tively; a (cm™!) and n (=) are fitting parameters of soil water characteristic curve; Kj is the
saturated hydraulic conductivity (cmd™'); / (=) is the pore connectivity parameter ; and S,
(=) is the relative saturation.

Inverse numerical simulations were carried out over a vertical length of 1 m to cover the rooting
depths of the crops. The initial profile distribution of pressure heads was made uniform over
the flow domain under the assumption of a saturated state during initial conditions. The initial
pressure head value for the profile was set equal to -100 cm. Variable atmospheric conditions
was chosen for the upper boundary while a free drainage was set for the lower boundary
condition. Data on meteorological conditions were obtained the nearest meteorological station
(Volkel) from the Royal Netherlands Meteorological Institute (KNMI). The simulation was
started at the first day of a year (Jan 1) for a spin up period to minimize the impact of initial
conditions. For the growing seasons, root growth and root water uptake models were included
in the simulation considering the growth properties of corn and potato.

3.3 Results and Discussion

3.3.1 Time stability and local controls

Based on fig.3.4, soil moisture values for the 2017 growing season shows distinct patterns
over corn and potatoes, with higher mean relative difference (MRD) in the latter than the
former. In contrast to MRD, the relative difference standard deviation (SDRD) appear to be
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comparable for both crops. The range of SDRD values (~ 0.30-0.5) are also larger during the
2016 growing season compared to those calculated for other seasons. This suggests that soil
moisture at 40 cm vary for both corn and potato. Because there is only a single soil textural
class in the field, the variability at f40.m could be related to structural characteristics that
may be due crop-specific management (e.g. Mudgal et al. 2010; Cercioglu et al. 2019). It
is inferred that the creation of mounds and furrows for the potato field resulted in increased
water retention compared to the corn fields based on higher MRDs in the former.
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Figure 3.4: Plots of relative differences (RD) over different seasons. a) Spatial plots of mean and
standard deviations in RD (MRD and SDRD). b) The stations are ranks based on increasing MRD
for the different seasons. The dots indicate MRD while the bars indicate SDRD for each station.
Blue square dots are stations kept in the same locations while the black circles were changed after
2017 harvest. MRD and SDRD are in m3 m~3 units

In the following winter period, SDRD values were smaller in comparison with the previous
growing season. Since the ground was bare in winter, it is inferred that only soil heterogeneity
contributes to SDRD, unlike the combined effects of both soil and vegetation during the
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previous growing season. Variations in SDRD are among the stations are small (~< 0.1),
implying that soil moisture is relatively stable during the winter period. Surprisingly, the MRD
values calculated for winter 2017 are intermediate between those encountered during the two
growing season (2017 and 2018). This somewhat deviates from the common expectation of
wet or saturated soils during winter because of much lower evaporation demand (e.g. Western
et al. 1998). However, Schwen et al. (2011a) suggested that hydraulically effective pores
may decrease after post-harvest tillage in winter in response to rainfall. In addition, frozen
surface conditions were recorded at the study site in early February based on surface soil
measurements at the nearby RMO7 station, although temperatures measured at 40 cm depth
were still slightly above freezing. Frozen surface conditions may have further contributed to
low of infiltration rates at shallower soil depths that helped maintain lower subsurface soil
moisture contents.

The values of MRD and SDRD obtained for the 2018 growing season are comparable to the
2017 growing season. In both cases, SDRD and MRD are higher compared to those obtained
during the winter period. However in 2018, distinct trends observed in MRD and SDRD are
not observed, which may be due to the presence of a single crop type. Since the TSA was
calculated for each of the three measurement campaign periods, MRD and SDRD for the
2017 growing season may appear to be larger than the 2018 growing season because of the
contrasting trends observed per crop type.

Similarities in MRD rankings are observed for points which were kept in the same location over
the three seasons (stations 03 to 18, fig.3.1 and 3.4). For a few points (03, 16, 17), slight
changes in their rankings suggest that they are time stable sites where subsurface variability did
not dramatically change. However, most of the stations showed large shifts in the ranking over
the seasons, indicating that they are non time-stable sites. These findings further demonstrate
that time varying subsurface soil moisture trends maybe the rule rather than the exception
for every location within a cultivated field. This is dependent on the type of crops grown
per season and the sequence of crop rotation chosen by a farmer. Identification of systematic
long-term changes in subsurface soil moisture dynamics may prove challenging since the choice
of rotation of crops is still dependent on a farmer and is an information that may only become
available in the short term. However, quantification of temporal changes over a whole growing
season for commonly encountered crops could provide insights on the expected magnitude
and/or distribution of soil moisture changes that may be useful for uncertainty estimation of,
for instance, soil hydraulic parameters.

Overall, results from the TS analysis for the growing seasons demonstrate the combined influ-
ence of soil heterogeneity and vegetation activity on subsurface soil moisture variability. The
approximate contributions of each component to the observed subsurface soil moisture vari-
ability were inferred from the changes in SDRD between 2017 winter and 2018 growing season,
since the measurement points were all kept in the same locations. Focus was given to changes
in SDRD since MRD from all stations were comparable for both seasons. For winter 2017
when the soil was bare, the SDRD calculated (0.021 — 0.125 m3*m~3) is considered only to be
a function of soil heterogeneity. For the 2018 growing season, SDRD (0.004 — 0.329 m*m~3)
resulted from the combined influence of soil heterogeneity and vegetation activity. From win-
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Figure 3.5: Soil moisture dynamics in drying phase from 9 June to 9 July 2018. Left: Time series
plots of soil moisture for specific time periods in a day. Right: Diurnal changes in soil moisture
for time specific periods.

ter 2017 to the 2018 growing season, there is a general increase in SDRD, since lower values
in the latter season were only observed at three out of the 25 stations (21, 29, 31). The
largest change in SDRD was calculated in station 25 (fig.3.4), where close to a 9-fold increase
(8.86 times higher) was calculated (from 0.023 to 0.203 m®*m~3). If its is assumed that the
same tillage activities were carried out post-harvest in 2017 and pre-planting in 2018, then the
same magnitude of SDRD for soil heterogeneity in winter 2017 would be expected for 2018
growing season. Therefore, much higher SDRD calculated for 2018 growing season suggests
that vegetation activity has a much larger contribution to soil moisture variability than soil
heterogeneity. Based on higher SDRD measured using the temporal stability analysis in 2018,
vegetation is interpreted to increase soil moisture variability at 40 cm depth from 1.26 to 8.86
times.

Studies on vegetation water uptake have shown that root mucilage also contribute to vari-
able hydraulic properties in the rhizosphere. (Carminati et al., 2011; KodeSova et al., 2006;
Lazarovitch et al., 2018). Carminati et al. (2010) showed that differences in hydraulic prop-
erties between the rhizosphere and bulk soil is actually beneficial for vegetation water uptake
during water stressed periods. Since the sensors are installed in the active root zone of both
corn and potato in this study, some, if not all of the measurements are potentially influenced
by both rhizosphere and bulk soil hydraulic conditions. Currently, it is difficult to determine
to what extent these different soil hydrological regions affect the measurements from sensors
installed.
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Figure 3.6: Relation between subsurface soil moisture dynamics at 40 cm depth and atmospheric
demands during the drying phase. a) Boxplots showing the subsurface soil moisture changes
(Ab40cm) from all 25 stations during the daytime period (between sunrise and sunset). The colors
of each boxplot signifies the standard deviation in Af4ocm (0(AB840cm)). The blue line represents
mean soil moisture (9—40cm) over the daytime period while the red line represents the daily potential
evapotranspiration (E Tpot). The drying period is subdivided into an Energy-limited regime (ELR)
and Water-limited regime (WLR) based on the amount Oagem relative to ETpot. On the 18th
drying day, a transition from ENR to WLR occurred when Oa0em started to become consistently
below E Tpor. b and c) Scatter plots with trend lines showing the correlation between the mean
and standard deviation of Af4ocm with E Tpor. Pearson’s correlation coefficient (R) and P-values
are given.

3.3.2 Diurnal soil moisture dynamics during a drought

Diurnal changes in soil moisture at 40 cm depth over the month-long drying phase during the
2018 summer drought is plotted in fig.3.5. At the start of the drought on June 9 2018, diurnal
soil moisture changes were not constantly decreasing. Larger diurnal changes smaller diurnal
changes. Around June 24 2018, diurnal soil moisture changes appear to linearly decrease and
approach zero until the end of the analysis period. Nighttime changes in soil moisture are
constant and very minimal compared to daytime changes. Further comparison of morning and
afternoon values reveal that latter accounts for most of the daytime changes. The observed
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changes between night and day closely follow known trends in transpiration and confirms the
assumption that they are indeed due to root water uptake (RWU).

At the start of the drying phase, daily 040.n were initially able to meet daily atmospheric
demands, represented by ET,.: (fig.3.6a). On the 18%" dry day, daily soil moisture values
started to become lower than the daily the E T,.:. Soil moisture from the beginning of the
drying phase up to day 18 is considered as the energy-limited regime (ELR) while succeeding
period is the water-limited regime (WLR). In the former, soil moisture at 40 cm were, on
average, higher and therefor sufficient to meet ET,,:. Continued depletion of soil moisture
at 40 cm depth resulted in lower soil moisture compared to E T, from the 18 dry day until
the last dry day investigated. Comparison of two tranpiration regimes reveal that RWU trends
only partly corresponds to E T,,;. The median of the daily RWU, indicated by the boxplot bars
in fig.3.6a, was observed to change proportionally with daily E T,,; within the ELR. However,
RWU begins to deviate from the E T, during the WLR. For this period, RWU is observed to
be consistently smaller and no longer change proportionally with daily E Tp¢. Aside from the
median of boxplots, fig.3.6a further show that the variability in RWU differ between the two
regimes. Within ELR, the variability in RWU based on the length of the box and whiskers,
appears proportional with E T, across the stations, with lower E T, resulting in more a
uniform RWU while higher E T, driving more variable RWU. Within WLR, the variability in
RWU is consistently smaller than ENR and did not always change proportionally in response
to changes in ET,,;. Furthermore, both the mean and standard deviation of RWU have lower
correlations with E T,,, for WLR, as shown in fig.3.6b and c. The change in dynamics upon
transition to a WLR fits the adaptive RWU framework wherein roots seek water from other
(deeper) soil layers once the available supply at shallower depths are depleted and can no
longer meet vegetation or atmospheric demands (Jarvis, 1989). Since 64ocm on day 18 started
to be inadequate for meeting the daily E T, the uptake of water at this depth gradually
diminished. It if further hypothesized that from the 18% dry day, RWU was more aggressive
at deeper layers where soil moisture not as dry as the 40 cm depth.

The critical soil moisture (.,;;) signifying the transition between energy- and water-limited
regimes may be affected by the measurement depth, as observed by Buitink et al. (2020)
using all the soil moisture stations in the Raam and Twente (Dente et al., 2011) networks.
In the Raam, they estimated a f.,;; for the root zone up to 40 cm to be approximately
Ocrir = 0.20 m®m~3. However, based on the measurements at 40 cm depth in this study, the
O+ identified on day 18 was 4.67 mm or 0.089 m® m~=3 (fig.3.6a). This discrepancy may due
to the depths analysed in both studies. Buitink et al. (2020) considered the depth-average
values as opposed to a singular depth considered in the study. In addition, other stations in
the Raam network may have higher soil moisture content compared to the field in RM07 and
thus contributed to higher 0.,;; estimation by Buitink et al. (2020). Nevertheless, the day and
soil moisture at which a transition to water-limited regime occurred is expected to differ when
other depths are investigated.

The results obtained on RWU variability was found to be similar to the findings of Srayeddin
and Doussan (2009) using Electrical Resistivity Tomography (ERT) in maize and sorghum.
Aside from demonstrating the potential of the said geophysical technique to map subsurface
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Figure 3.7: Spatial plots of temporal stability analysis for soil moisture and the changes in soil
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soil moisture heterogeneity, they found variability in RWU over different soil water condi-
tions. The 2D images of ERT obtained exhibited clear horizontal and vertical variation of
soil electrical resistivity which qualitatively depict the pattern of water uptake in both crops.
More importantly, they found the highest RWU heterogeneity under moderate water-stress
conditions. In contrast, lower variability was observed for treatments with the highest water-
stress. However, this could also potentially be due to some limitations of ERT for very low
soil moisture contents. They primarily attributed the high RWU variability during moderate
water-stress conditions to spatial variations in rooting pattern and/or root efficiency. Sim-
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ilarly, it was shown in fig.3.6 that higher RWU variability was found during ELR. However,
atmospheric demands may be the driving force for the observed variability in addition to root
distribution.

Site-specific variations in plant water requirements is further hypothesized to affect RWU
variability since a clear trend with 640 was not found, for both ELR and WLR, based on
the TSA (fig.3.7). Weak correlations were obtained between MRD for RWU with the MRD
and SDRD for 640 (fig.3.8). Based on MRD, the results show that locations with (lower)
higher 040.m does not necessarily result in a (smaller) larger RWU over the drying period.
Furthermore, (lower) higher 640 also did not result in (less) more variable RWU. It is inferred
that antecedent soil moisture state do not exert a significant control on RWU variability based
on the in situ measurements.

3.3.3 Impacts on soil hydraulic properties

Inverse modeling resulted in varying accuracy of the estimated parameters, especially for the
growing season. For some of the locations, lower R? implies that the simulations did not
suitably represent the conditions on the ground. A dual-porosity regime was tested but did
not improve the accuracy or did not achieve model convergence. Nevertheless, for a little over
half of the total dataset (40 of 75, 25 points per season), an R? > 0.5 implies that a pore-flow
model could reasonably describe the hydraulic properties at the corresponding stations. Most
of the stations for winter 2017 could be reasonably represented by a pore flow model since 22
out of the 25 points resulted in R? > 0.5 (table 3.1). However, for the two growing seasons,
less than half of the 25 stations produced reasonable accuracy. This implies that a pore
flow model is generally applicable for the bare winter period but not for the vegetated period
investigated. Unsuccessful attempts using other flow regimes may be due to unsuitable initial
hydraulic parameters used for inverse modeling optimization. Limited first-hand information on
the macropore characteristics at the site or the lack of measurements for laboratory estimation
of hydraulic parameters needed for, say a dual porosity flow regime, contributed to the outcome
of the modelling attempts. Nevertheless, application of a non pore-flow regime merits future
research that requires additional datasets other than those obtained in this study.

Table 3.1: Number of stations with RZ > 0.5.

Season R2>05 R?2<05

summer 2017 8 17
winter 2017 22 3
summer 2018 10 15

For locations with R > 0.5, water retention curves and hydraulic parameters per season are
shown in fig.3.9. The remaining stations with R? < 0.5 low were excluded and no longer
further analyzed. Significant differences among the three groups were obtained for saturated
water content (6;), alpha («), and saturated conductivity (K,) (Table 3.2) using all the
points. However, when only points kept at the same locations (fig.3.9, blue lines and points),
significant differences were only observed for 6, and K,,;. Further, between pairs of seasons,
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Figure 3.9: Water retention curve and soil hydraulic parameters per season obtained using inverse
modeling. a) Lines of the water retention curve colored based on the changes in their locations
and crops at the site. Stations that were kept in the sample location are in blue while the orange
lines were reinstalled at new locations after 2017 harvest, then represented by yellow lines. b) Box
plots of the soil hydraulic parameters per season. The points are overlain to the box plots and

colored per crop. Blue and yellow points represent corn while orange represent potato.

significant differences in 65 were found between 2017 winter and the two summers, considering
all points and only those kept at their original locations (Table 3.3 and 3.5). However, 6
between the two summers were not significantly different, also for both cases. These results
could be easily related to variability observed from TS analysis. Lower 6,'s estimated for winter
2017 is inferred to be due to the decrease in hydraulically effective pores after post-harvest
tillage (see section 3.3.1) while higher 65 for the two growing seasons is in line with the current
knowledge that roots or root growth improves soil hydraulic properties (e.g. Scanlan, 2009;
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Scholl et al., 2014). Unlike 65, p-values obtained for o and Kj,: parameters were not consistent
when using all the points or only those at their original locations. For instance, the p-values
for Ksa: were conflicting in both cases tested, although it has been previously shown that
structural changes in the soil greatly impacts K, (Ahuja et al., 1984; Fatichi et al., 2020).
Results for o and K,; are therefore inconclusive compared to 0;. It is highly likely that the
small number of samples contributed to the results even though non-parametric measures of
significance were applied.

Table 3.2: Kruskal-Wallis test for significant differences among the soil hydraulic parameters for
all stations with R? > 0.5. p — values < 0.05 are marked with *.

0, 0 @ n Ksat

X2 2.618 22.551 7.593 1.2091 13.23
P-value 2.7e-01 1.277e-05* 2.24e-02* 5.46e-01 1.34e-03*

Table 3.3: Pairwise Wilcoxon test to detect significant differences between pairs of seasons. Only
parameters with p — value < 0.05 in Table 3.2 are presented. S17 - summer 2017, W17 - winter
2017, and S18 - summer 2018. p — value < 0.05 are marked with *.

95 « Ksat

S17 - W17  2.24e05*% 1.61e02* 7 2.87e04*
W17 - S18  2.91e03*  7.30e01 5.65e01
S17 - 518 3.98e01 1.35e01 3.11e02*

Table 3.4: Kruskal-Wallis test for significant differences among the soil hydraulic parameters for
stations kept in the same location and with R? > 0.5. p — value < 0.05 are marked with *.

0, 05 [e% n Ksat

X2 4293 11.674 3.484 2170 7.963
P-value 0.117 0.003* 0.175 0.338 0.0187*

Table 3.5: Pairwise Wilcoxon test to detect significant differences between pairs of seasons. Only
parameters with p — values < 0.05 in Table 3.4 are presented. S17- summer 2017, W17 - winter
2017, and S18 - summer 2018. p — value < 0.05 are marked with *.

95 Ksat

S17 - W17 0.021*%  0.506
W17 - S18 0.007* 0.002*
S17-S518 0.176  0.063
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3.4 Conclusion

In a cultivated fields, soil moisture in the active root zone of 40 cm depth shows considerable
variability in space and time due to tillage and root-induced changes to soil structure. Based
on in situ soil moisture measurements, root-induced subsurface soil moisture variability was
much larger than tillage-induced variability. Furthermore, the variability in root water uptake
is higher for periods with sufficient subsurface soil moisture to accommodate transpiration
demands. Assessing the impacts of the soil moisture variability on the hydraulic properties
proved to be challenging using the commonly-used pore-flow model. Among the soil hydraulic
parameters estimated with reasonable accuracy, the changes in the saturated water content for
different seasons were found to compliment the subsurface soil moisture variability observed
from the temporal stability analysis. Changes for the remaining estimated parameters were not
consistent and could not be easily related with the results from the temporal stability analysis.
Perhaps the inverse modeling simulations could be improved with a different flow regime (e.g.
dual-porosity). However, this was hampered by the availability of hydraulic parameters that
could serve as initial values to ensure realistic optimized parameters.
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Abstract

Monitoring root zone soil moisture dynamics is crucial for improving hydrological models and
drought monitoring. This study explores the use of radar backscatter to estimate root zone soil
moisture dynamics over agricultural areas. Sentinel-1 (C-band VV-polarization) backscatter
was decomposed into the soil and vegetation contributions using the Water Cloud model for the
growing seasons of 2016 to 2018, allowing us to specifically investigate the impact of increased
vegetation water stress during the 2018 European drought. Soil backscatter strongly correlate
with root zone soil moisture during non water-limited conditions. Surface and root zone soil
moisture are de-coupled during water-limited conditions. However, vegetation backscatter was
found to strongly correlate with soil moisture in the active root zone during the said conditions.
These results suggest that radar remote sensing may provide a new source to estimate root
zone moisture dynamics, especially during water-limited conditions.
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4.1 Introduction

Root zone soil moisture is an essential component of the hydrologic cycle and is useful for
drought monitoring, irrigation scheduling, and carbon cycle modeling (Bolten et al., 2009;
Entekhabi et al., 1996; Falloon et al., 2011). In recent years, radar satellites have been a
source of spatio-temporal root zone soil moisture information. Although radars only measure
the upper surface soil layer, estimation of root zone soil moisture from surface soil moisture
has been achieved through process-based models via data assimilation (e.g. Reichle et al.,
2004; King et al., 2005; Draper et al., 2012) or data-driven approaches (e.g. Albergel et al.,
2008; Kornelsen and Coulibaly, 2014; Gao et al., 2019). Estimation of root zone soil moisture
conditions directly from surface values has been hampered by the variability along the soil pro-
file due to non-linearities in the rate of processes controlling soil moisture state. For instance,
varying rates of infiltration, evapotranspiration, root water uptake and the heterogeneity in
soil physical properties contribute to vertical variability in soil moisture. Surface soil moisture
may be de-coupled from deeper layers, especially during dry periods (e.g. Wilson et al., 2003;
Hirschi et al., 2014; Carranza et al., 2018).

Over agricultural areas, radar backscatter contains information on both soil and vegetation
water content since the incoming microwave signal is influenced by the geometric and dielectric
properties of the scatterers (Ulaby et al., 1986). Radar specification equally influences the
magnitude of scattering processes. The primary scatterers are elements (leaves or stalks)
with sizes similar to or larger than the microwave wavelength or with an orientation similar
to that of the incoming signal polarization. Elements smaller than the microwave wavelength
contribute little to the backscatter but attenuate the signal. Radars operating at shorter
wavelengths (X-band) do not usually penetrate into agricultural canopies in contrast to longer
wavelengths (L- or C-band). Over bare soils or sparsely vegetated fields, the total backscatter
is dictated (mostly) by soil characteristics. During vegetated periods, both the overlying
vegetation canopy and the underlying surface soil layer influence the total backscatter (Attema
and Ulaby, 1978; Imhoff, 1995). Vegetation results in volume scattering and attenuation of the
soil signal. However, the soil signal is not totally diminished even under the mature agricultural
canopy as it is carried within the soil-vegetation interaction signal. Estimation of the soil and
vegetation contributions, for instance using the Water Cloud model (Attema and Ulaby, 1978),
further allows for the estimation of each respective water contents.

The soil component of the radar backscatter has been widely studied in relation to estimating
surface soil moisture for bare soils. When the influence of the overlying vegetation canopy
on the total backscatter is significant, the vegetation component should be quantified to
improve soil moisture estimation (e.g. Bindlish and Barros, 2001). The vegetation backscatter
from (agricultural) canopies has been investigated to gain insights on the phenology (Bakar
et al., 1997; Vreugdenhil et al., 2018; Asilo et al., 2019), presence of water stress (McNairn
et al., 2002; van Emmerik et al., 2017), and productivity (Li et al., 2003; Setiyono et al.,
2019). Vegetation water content (VWC) has been estimated from the vegetation backscatter
(Notarnicola and Posa, 2007; Srivastava et al., 2015) and radar vegetation index (RVI, Kim and
van Zyl, 2004; Kim et al., 2011, 2013; Huang et al., 2015). Diurnal variations in backscatter
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have also used as an indicator of crop water stress (Steele-Dunne et al., 2012; van Emmerik
et al., 2015; Van Emmerik et al., 2016). From agronomy, leaf and soil water potential are
known to be in equilibrium at pre-dawn (e.g. Sellin, 1999). This indicates the potential of
VWC to reflect root zone soil moisture conditions. Although soil water storage have been
inferred from vegetation dynamics using optical remote sensing products at global Wang-
Erlandsson et al. (2016) and catchment scales Sriwongsitanon et al. (2016), the utility of
vegetation backscatter has not yet been explored despite the dependence of VWC to root
zone soil moisture.

Both soil and vegetation components of the backscatter have the potential to indicate root
zone soil moisture conditions. The former measures the uppermost soil layer which greatly
influences the amount of water in the root zone, while the latter is connected via its roots, and
whose only source of water is the soil. This study explores the potential of radar backscatter
and its components, simulated using the Water Cloud Model (WCM), to estimate root zone soil
moisture over corn and grass fields. We utilized measurements from two soil moisture networks
(Raam and Twente) over three growing seasons (2016 to 2018) which allowed comparison
of different meteorological conditions. More specifically, comparison is made between 2018
growing season, which coincided with the European summer drought, and the two previous
years. With this paper, we explored the impact of different soil moisture conditions on the
ability of radar backscatter components to reflect root zone conditions, that may be used for
applications such as water stress detection, irrigation planning and fire risk assessment.

4.2 Materials and Methods

Correlations between radar backscatter and its components with root zone soil moisture were
calculated to determine if the former is able to reflect the latter in agricultural fields. First,
time series plots of radar backscatter from Sentinel-1 (S1) (VV- and VH- polarization) and soil
moisture (surface and root zone) were investigated to show the overall trends over the growing
seasons of 2016 to 2018. The soil and vegetation contributions to the total backscatter were
simulated using the Water Cloud Model (WCM) and calibrated against S1, as summarized
in fig.4.1. Only VV-polarization was investigated since its has been shown to have higher
sensitivity to soil moisture (e.g. El Hajj et al., 2017; Amazirh et al., 2018; Benninga et al.,
2019). Vegetation indices and Dubois et al. (1995)'s model for the soil backscatter were used
to derive the vegetation and soil parameters of the WCM, respectively. We focused on the
months of June - September to ensure that crops have had considerable growth in order to
investigate the influence of both radar backscatter components.

4.2.1 Soil moisture network locations

Agricultural fields within Twente (Dente et al., 2011) and Raam (Benninga et al., 2018) soil
moisture networks were investigated over the growing seasons of 2016 - 2018 (fig.4.3a). Out
of 35 stations, 25 were investigated (14 in Raam and 11 in Twente) based on availability of
data in time and at depth. Furthermore, these stations hold sandy soils so the influence of
soil texture on the correlations between radar backscatter and soil moisture can be assumed
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Figure 4.1: Flowchart showing the sequence of analysis applied. The symbols used are: o9 for
soil backscatter, v200 for attenuated soil backscatter, o0 for vegetation backscatter, ¢, for the
total backscatter, agl for Sentinel-1 VV polarization backscatter, € for dielectric constant. Box
colors refer to different model components (green for vegetation, brown for soil, and blue for the
total backscatter).

to be negligible. We focused on the two most common crops encountered: grass and corn (49
instances for grass and 18 for corn, table 4.1). At each station in the Raam network, Decagon
ECH20 (EC-TM or 5TM) sensors were installed at 5, 10, 20, 40, and 80 cm depths, and
records data every 15 minutes. In Twente, installation of sensors were not uniform at depth,
so only stations which have at least up to 40 cm depths were utilized. The selected stations
also have no or limited data gaps over the three-year period.

Surface

30 cm

Figure 4.2: Diagram showing the installation setup for each station. Soil moisture sensors were
installed at 5, 10, 20, and 40 cm depths for each station. For each measurement depth, an associ-
ated soil thickness is determined based on the midway distance between two adjacent measurement
points. Root zone soil moisture is represented by the zone-weighted depth-average values that are
aggregated based on both the measurement and its associated soil thickness (see eq.4.1).

The 15-minute data were further transformed into zone-weighted depth-averaged root zone
values (6,,). This was calculated using measurements down to 40 cm for corn and 20 cm for
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Table 4.1: Crop at the study sites for 2016 - 2018. Stations starting with RM belong to Raam
network and those starting in TW are from Twente network

Station 2016 2017 2018 Area (ha.) % sand
RMO01 grass grass grass 0.59 91.3
RMO02 sugar beet fennel corn 2.92 90.4
RMO03 grass grass grass 5.65 93.3
RM04 grass grass grass 2.04 90.0
RMO05 onion lettuce lettuce 6.24 93.1
RMO06 grass grass grass 1.62 83.7
RMO07 corn potato grass 3.24 82.1
RM08 sugar beet  winter wheat beans 251 92.8
RMO09 sugar beet potato corn 4.83 95.4
RM11 corn corn winter wheat  3.49 94.8
RM12 grass grass grass 13.16 92
RM13 corn corn corn 8.48 96.7
RM14 grass grass grass 9.56 90
RM15 grass grass grass 2.05 88.6
TWO01 grass grass grass 2.46 66.3
TWO02 grass grass grass 4.76 80
TWO07  winter wheat corn corn 4.55 66.3
TWO08 corn corn corn 6.14 88.3
TWO09 corn corn grass 2.04 87
TW10 corn corn winter wheat  8.88 88.3
TWI13 grass grass grass 4.15 88.3
TW14 grass grass grass 3.18 78.67
TW15 grass grass grass 1.63 66.3
TW17 grass grass grass 2.03 88.33
TW18 corn corn corn 2.00 78.67

grass (fig.4.2). Measurements at 80 cm were absent for some stations and were, therefore not
used in order to have uniform root zone across the study sites. Root zone soil moisture 6, is
calculated using:

2104z
z

erz - (41)
where 6; (in m>m™2) is the volumetric water content for measurement depth j (cm), Az
(cm) is the thickness of soil associated with the measurement depth, and z (cm) is the total
averaging depth. The mean values from 0630 - 0700 in the morning were calculated from
the 15-min. 6,, data to match timing of S1 descending pass over the study areas. This time
of day is close to pre-dawn conditions when leaf and soil water potential are known to be in
equilibrium.

4.2.2 Sentinel-1 datasets

Radar backscatter observations were obtained from Sentinel-1A and -1B (02, ), which operate
in the C-band with a center frequency of 5.405 GHz. Over land, the Interferometric Wide
Swath (IW) mode provides images at VV and VH polarization, with a pixel spacing of 10 m
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x 10 m and radiometric accuracy of 1 dB (30) Torres et al. (2012). Datasets were acquired
between June 2016 and September 2018. We used Level-1 Ground Range Detected (GRD)
products, derived from focused synthetic aperture radar (SAR) images that were multi-looked
and projected to a ground-range, using an Earth Ellipsoid model Filipponi (2019).

Incidence angle normalization

The incidence angle at which Sentinel-1 observes the earth surface depends on the location
and orbit in which an image is acquired. For each scene in the IW mode, the incidence angle
can vary between 29.1° and 46°. We normalized the observations to a common incidence
angle of 37.5° by a cosine correction:

cos”
0% = Uoin(@ref) (4.2)
c0s"(@inc)
where o°, (in m? m~2) is the backscatter observation normalized to a reference angle ¢,ef of

37.5°, 0° is the backscatter observation (in m>m~2) and ¢, is the local projected incidence
angle (in degrees). The coefficient n is equal to 1 if re-radiation of the satellite signal from
the earth surface is isotropic (volume scattering) and n is equal to 2 if re-radiation follows
Lambert's cosine law (Ulaby et al., 1982). Here we assume n = 2, because previous studies
obtained good results with this assumption (Mladenova et al., 2013; Van der Velde and Su,
2009).

The values of S1 pixels were averaged over each field to reduce radiometric uncertainty. Ben-
ninga et al. (2019) showed that spatially averaging 02, over areas approximating the acreage
of agricultural fields improves radiometric uncertainty by up to 0.85 dB for the VV polarization
and up to 0.89 dB for the VH polarization. However, we still encountered considerable vari-
ability in the spatially averaged S1 that resulted in lower accuracy of the Water Cloud Model
(WMC) simulations. Therefore, we investigated the mean o2, from all the fields for each S1
overpass per crop type to focus on the general trends over the growing season.

Table 4.2: Fitting parameters for Water Cloud Model (WCM) for each growing season and crop
type

v Corn Grass
@A B A B
2016 | 0.1713 0.0782 | 0.0382 0.4194
2017 | 0.0953 0.1502 | 0.0279 0.2941
2018 | 0.1625 0.1848 | 0.0288 0.2662

4.2.3 Modeled radar backscatter components

At the C-band, the total backscatter for agricultural fields represents the integrated signal of
the vegetation canopy and underlying surface soil layer. Using the Water Cloud model Attema
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and Ulaby (1978) (WCM), components of the total backscatter (0¢,,) for a dual-polarized
signal pg (p and ¢ is V or H) were estimated using:

U?ot,pq = Useg,pq + ’quo—:oi/,pq (43)
,Y;Z)q _ e—ZquvlseCG (44)
0eg.pq = AVacost(1 — 72) (4.5)

where o°__ is the vegetation component, ¢°_;, is the soil component, and 7?2 is the two-way

veg soi
attenuation.

The 02, was estimated using Dubois et al. (1995)'s formulation for VV-polarization. The
surface roughness parameter is represented by the height standard deviation (H, s, in cm). A
constant value of H,,,s = 1 was used over the study period. The selected H,,s was found to
be well within the range of values measured by Sano et al. (1998) for grass (0.67 - 1.99 cm)
and by Rakotoarivony et al. (1996) and Martinez-Agirre et al. (2017) for corn after sowing
(0.8 - 1.5 cm, and ~0.8 - ~1.8 cm, respectively). In addition, Benninga et al. (2019) applied
values very close to H,,,s = 1 for estimation of soil moisture in the Twente network.

The parameters V; and V, are vegetation descriptors which are used to express microwave
scattering mechanisms related to canopy geometry and attenuation in the canopy layer related
to the vegetation water content, respectively. A and B are fitting parameters that depend
on the vegetation descriptor. We set Leaf Area Index (LAI) for V; since biomass directly
relates to canopy geometric properties. Furthermore, LAl has been commonly used as a
vegetation descriptor in previous studies (e.g. Kumar et al., 2012; Dabrowska-Zielinska et al.,
2007; Prevot et al., 1993). The Radar vegetation index (RVI) was used to represent V., as
it has been previously shown to relate with vegetation water content (e.g. Kim et al., 2011;
Huang et al., 2015). LAl was obtained from the 8-day composite of MODIS. Missing data
were linearly imputed to obtain values on days with available S1 and soil moisture data. RVI
was estimated from S1 VH and VV observations using the formula:
4VH

RVI= vy (4.6)
This follows Charbonneau et al. (2005), who modified the original RVI formulation of Kim and
van Zyl (2004) when only one type of cross polarization is available. However, Charbonneau
et al. (2005) worked with HH4+HV based on the assumption that HH~VV. The mean value
of all the fields for each crop was calculated, similar to the radar and soil moisture datasets.
The WCM fitting parameters were constrained by calibrating the model per year using all the
available S1 observations (Table 4.2). We minimized the RMSE as the objective function for
calibration between model outputs and S1 using a conjugate gradient method (Fletcher and
Reeves, 1964).
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Figure 4.3: a. Location of study sites. b. Cumulative potential rainfall deficit relative to the start
of each year to show water availability during the growing season (yellow region) of 2016 - 2018.
Daily gridded P and E Tpo: from the Royal Netherlands Meteorological Institute (KNMI), were
used to calculate the mean potential water deficit (P — E Tpo¢) from all the stations. Periods
with potential rainfall deficits occur when E T, is higher than P, which translates to negative
(cumulative) values.

4.2.4 Meteorological conditions during the 2016 - 2018 growing seasons

The growing season in the Netherlands for most (annual) crops falls between the months of
May - October when the average temperature and sun hours increase. Corn seeds are sown
annually in May, reach maturity in late July, and are harvested at the end of September or early
October. Grasses are perennial crops which grow between April - October. Meteorological
conditions during the growing seasons of 2016 - 2017 were generally considered to be energy -
limited or non water - limited because rainfall events generally compensated the potential
evapotranspiration demands and lead to minimal potential rainfall deficit over the growing
seasons (P — E T, fig.4.3b). In 2018, western Europe was hit by a drought during the
summer months (Toreti et al., 2019; Vogel et al., 2019). In the Netherlands, the drought
started at beginning of June up until early August. Compared to the two previous years,
rainfall deficit was much higher during the summer of 2018. Furthermore, 2018 conditions
saw water-limited conditions, particularly the the start of July when a large increase in water
deficit occurred.

4.3 Results and Discussion

4.3.1 Radar backscatter and soil moisture time series trends

Figure 4.4 are the time series plots of S1 backscatter (¢2;, VV- and VH polarization) and soil
moisture (6s,r and 6,,) over three growing seasons. In general, the trends for 021 in both
channels were similar over the three year period for both crops. For 2016 and 2017, increasing
02, in VV and VH was observed as the growing season progressed for corn, albeit fewer
observations were obtained for 2016 since Sentinel-1B was not yet operational. However, 02,
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Figure 4.4: Time series plots of Sentinel-1 backscatter (02;, VV and VH- polarization) and soil
moisture at the study sites (05, and 6,;). Os,,f is represented by measurement at 5 cm while 6,
is calculated as the zone-weighted depth-averaged values (see section 4.2.1). Rainfall and potential
evapotranspiration (E Tpot) show the meteorological conditions over the growing seasons. Colored
points represent the mean values while the grey dots are the complete observation points.

was relatively the same or had a flatter trend for grass fields. In 2018, however, a decreasing
trend for both crops is visible in ¢2; until early August, coinciding with the 2018 summer

drought. After which, 02, increased until the end of the growing season for both crops.

As expected, soil moisture trends (6), both s, and 6,,, reflected meteorological conditions
over the growing seasons. Soil moisture closely followed the amount and frequency of rainfall
during the growing seasons (fig.4.4). Frequent rainfall events in June 2016 led to an increase
in soil moisture. In 2017 soil moisture was slightly lower at the beginning of the growing
season but constantly increased because of steady rainfall events. For 2018, the study area
only received minimal rainfall at the beginning of the drought in June. Higher E T,,; combined
with the lack of rainfall in July resulted in low soil moisture. Recovery in soil moisture started
early to mid-August when steady amounts of rainfall resumed. The decrease in 0, observed
for both crops in 2018 was more evident for corn compared to the grass fields investigated.
However, the decrease in 0,, for both crops appear similar.

Trends for 02, and 6 over the growing seasons in fig.4.4 appear to be more similar in 2018
compared to the two previous years. For instance in 2016, a decreasing trend in @ at the two
depths investigated is the opposite of the increasing 02, for corn or the static trend in grass. A
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Figure 4.5: Results of coupling analysis between 5 cm and 40 cm soil moisture using average values
from all the sites. The two statistical methods (residuals analysis and distributed lag non-linear
model) applied following Carranza et al. (2018) showed complementary results. The scatterplot
in a. shows the fit of a loess over the data points, from which the residuals in b. are derived.
The plot of the residuals show higher variance for surface soil moisture < 0.23 m3m™3. These
results match well with the the range of values with 5 < 1 in plot c. Lower (3 indicate weaker lag
dependence between surface and subsurface values. Based on these two results, it is interpreted
that decoupled conditions occur when surface soil moisture is approximately 6. < 0.2 m3m~3.

strong correlation between 02, and 6 is therefore not expected for 2016 and 2017 based on the
time series plots. However, dissimilarity in ¢, and 6 confirms the non-negligible influence of
vegetation on the former. Similar trends observed between ¢2; and 6 for 2018 may have been
influenced by the summer drought that year. It further suggests that the total backscatter
is roughly indicative root zone soil moisture trends over vegetated agricultural fields during
droughts.

The 2018 summer drought resulted in decoupled soil moisture conditions, which means that the
surface no longer reflected subsurface or root zone conditions (Carranza et al., 2018). Based
on the soil moisture measurements at 5 cm and 40 cm depths from all the study sites, we
found that coupling between surface and subsurface soil moisture is promoted for conditions
above 0.20 m®*m~3, referred to as 6. (fig.4.5). In this case, soil moisture measurements
generally indicate that decoupling occurs during drier soil moisture conditions, which may,
among others, be due to increased surface evaporation (e.g. Hirschi et al., 2014). In 2018,
Osur- was generally lower than 6. which means that it is decoupled from root zone conditions.
Based on fig.4.4, 0,, in 2018 were higher than 6,,,r. Furthermore, the difference between
surface and root zone was observed to be larger for corn than for grass, which may be due
to deeper rooting depth associated with the former. Decoupling of surface and subsurface
soil moisture may have influenced the ability of the radar components to reflect root zone
conditions, as discussed in the succeeding section.

4.3.2 Water Cloud model simulations

The results of the water cloud model (WCM) simulations are given in fig.4.6. The simulated
values yielded RMSEs of 0.8 - 1.4 dB for corn and 0.75 - 1.5 dB for grass. The RMSEs obtained
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Figure 4.6: Simulated backscatter in the VV-polarization for corn and grass using Water Cloud
Model (WCM) calibrated using Sentinel-1 observation (a and c). Pearson’s correlation coefficient
(r) between soil and vegetation backscatter (02, ,, and aeeg) with root zone soil moisture (6,,) are
further calculated (b and d). Significant correlations (p-value< 0.05) are indicated by *.

here were found to be similar to previous studies in C-band for both crops (e.g. Baghdadi
et al., 2017; Aline and Pierre, 2013). Focusing on the estimated backscatter components,
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Figure 4.7: Water Cloud Model simulation for July 2016 - 2017 and 2018 to compare the impact
of water-limited conditions on the root zone - backscatter correlations (r). Datasets for 2016
and 2017 were combined because of similar meteorological conditions. The fitting parameters
used and accuracy of the Water Cloud Model (WCM) simulations are given in a and ¢. The
correlations obtained for the backscatter components are given in b and d. Significant correlations
(p-value< 0.05) are indicated by *.

the behavior of ¢ ;, and aeeg in relation with 6,, was observed to change over the growing

seasons. For both corn and grass, the simulations for 2016 and 2017 yielded similar range of
backscatter values for both 2,; (-16 to -11 dB) and 09, (-17 to -9 dB). In corn, 02, showed
strong correlations with 6,, for 2016 and 2017, but had much lower correlation in 2018. The
correlations for oeeg were the opposite of those obtained for ¢ .: higher in 2018 compared
to the two previous years. In grass, strong correlations between 6,, and o2, were found over
the three growing seasons. However, similar to corn, an increase in correlation between 6,,
and o, was also observed in 2018. The relative magnitude of the backscatter components
differ for the two crops in 2018. Relatively higher aeeg was simulated for corn compared to
02 ;. This apparent increase is due to lower 02 ., in 2018 compared to the two previous years.
However, the opposite was obtained for grass, where the magnitude of o0, decreased relative

veg
to o
soil*

Relating the estimated radar components with meteorological conditions, weaker correlations
between ¢ ., and 0,, coincided with decoupled soil moisture status in 2018. This is expected
since 02 ., only measures the upper surface soil layer. In fig.4.4, the 2018 summer drought re-
sulted in very dry 6,,¢, especially in July when the water deficit increased drastically (fig.4.3b).
In contrast, the previous years promoted coupling between 6,.r and 6,,. Hence, ago,-, was

considered a good indicator of 6,, for 2016 and 2017.

. . 0 . :
For both crops, stronger correlations with oy, over the 2018 growing season suggest its

potential as a direct measure of 6,, during dry periods. We hypothesize that during the 2018
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summer drought, the root zone soil moisture - vegetation interaction was enhanced in Ueeg

because very dry s, resulted in a static or relatively flat 02 ,, signal, especially for corn. In
fig.4.4, the decreasing trend in Sentinel-1 (02,) in 2018 must have reflected the decreasing
vegetation water content in Ueeg-
To further assess the potential of 0¥, in reflecting 6,, for water-limited conditions, a com-
parison is made between the WCM simulations using only the measurements for the month
of July. Based on fig.4.3b, water-limited conditions mostly occurred in July even though the
2018 summer drought started at the beginning of June. August already saw the start of recov-
ery in soil moisture (fig.4.4) because of the resumption of rainfall events. WCM simulations
for July 2016 - 2017 and 2018 are shown in fig.4.7. The fitting parameters (A and B) for
the WCM were re-calibrated to the subsetted data. Observations for 2016 and 2017 were
combined since both years have similar meteorological conditions. Plus, the former year had
very few points (only 3 - 4) for model re-calibration. In fig.4.7, July only simulations for the
backscatter components closely follow the overall trends for the growing season. However, the
RMSEs obtained for the WCM improved, especially for the July 2018 simulations. Correlations
obtained for ¢2,;, and 00, are also similar to those in fig.4.6. In both plots, strong significant
correlations are found between aeeg and 6,, for 2018. Even higher correlations for July further

strengthens the hypothesis that Ueeg can potentially reflect 6,, for dry periods.

Fig.4.6 and 4.7 further demonstrate contrasting magnitudes of the simulated O’eeg for grass

and corn during water-limited conditions. As shown in fig.4.6 and 4.7, drying and water-limited
conditions resulted in higher o)., for corn, a broad-leaf crop, while a much lower o0, was
estimated for grass which has narrow leaves. Previous studies have demonstrated the impact of
vegetation geometry (i.e. "narrow” vs "broad” leaf crops) on the volumetric scattering of the
radar signal. Macelloni et al. (2001) showed that vegetation with similar biomass but different
geometries will results in different backscatter coefficients. Furthermore, in the broad-leaf
crops, an increase in biomass results in an increase in backscatter because of the dominance of
scattering process. For narrow-leaf plants, a flat or decreasing trend occurs with an increase
in biomass because of the major contribution of absorption. Based on the WCM simulations
for 2018 in fig.4.6 and 4.7, increased absorption of the incoming radar signal may have further
decreased the magnitude of aeeg in grass as compared to corn, in addition to the decreasing
vegetation water content during the summer drought.

If aeeg strongly correlate with 6,, during water-limited conditions, why then would they cor-
relate poorly for average meteorological or wet conditions? The aeeg - 6,, interactions may
have been highlighted during water-limited conditions because of the absence of factors that
can obscure the said relation. The lack of rainfall during 2018 summer drought facilitated
accounting of the decrease in 6,, solely to vegetation water uptake. Therefore, this easily
allows for the changes in vegetation water content from aeeg to be related with the depleting
0,,. For non-water limited conditions, there may be water surplus in the root zone that is not
necessarily taken up by vegetation to meet transpiration demands. The subsurface fluxes from
rainfall and drainage to deeper soil layers must first be accounted before a measure of the
changes due to root water uptake can be quantified. Therefore, investigating aeeg - 0,, inter-

actions appear to be less straightforward during non-water limited conditions. The signal from
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020,-, may also dominate the total backscatter with higher 6,,s. Furthermore, some studies
found increased root water uptake variability for moderately stressed crops (e.g. Srayeddin and
Doussan, 2009), which may contribute to uncertainties in assessing Jeeg - 0, relations during
non-water limited conditions. Nevertheless, strong correlations between O'eeg and 6,, during
the 2018 summer drought suggest that the limitations ¢2_;, could potentially be complemented
by information contained in O’Seg. This may allow derivation of empirical relations using both
components of 02, for the whole range of root zone soil moisture. The results obtained further
suggest that vegetation-only scattering may potentially be used to directly monitor subsurface
soil moisture changes during agricultural droughts or to assess wildfire hazards, especially for

broad-leaf vegetation in agricultural and forested areas.

4.3.3 Implications for water management in vegetated regions

The sensitivity of the vegetation backscatter to root zone soil moisture highlighted during
periods of drought is foreseen to be beneficial for managing vegetated areas (i.e. agricultural
and forests) in order to maintain productivity and to prevent loss of biodiversity.

In agricultural areas, S1 vegetation backscatter will allow frequent root zone soil moisture
information for monitoring and irrigation advisory that is crucial during (agricultural) droughts.
Using the vegetation backscatter will allow for a simplified method to estimate root zone soil
moisture that eliminates the uncertainties associated with soil moisture retrieval using the
soil backscatter during vegetated periods. Figure 4.4 shows a decreasing trend in S1 total
backscatter during the 2018 drought, suggesting that it can directly be applied for estimating
root zone soil moisture without decomposing the signal into its components. The results found
here can be further extended to forested areas and may provide information for assessing the
probability of wildfire occurrence. Previous studies already demonstrated the importance of
SAR for mapping and monitoring pre-fire conditions such as fuel type (e.g. Arroyo et al.,
2008; Chuvieco et al., 2003) and live fuels content (e.g. Rao et al., 2020). Root zone soil
moisture from SAR will provide complementary information on the water status in the soil
that is valuable for mitigating wildfire occurrence.

4.4 Conclusions

The potential use of radar backscatter components to monitor root zone soil moisture dynamics
in agricultural fields is demonstrated for varying meteorological conditions. At the regional or
catchment scale, meteorological conditions dictate which component of the total backscatter
can reflect root zone soil moisture better. During non water-limited conditions, soil backscatter
shows strong and significant correlations with root zone soil moisture. However, water-limited
conditions such as the drought in 2018, highlights the ability of vegetation backscatter to reflect
root zone soil moisture. This further indicates the potential use of vegetation backscatter for
water stress and drought monitoring or for fire risk-assessment of agricultural and forested
areas.
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Abstract

The use of heavy mobile machinery in agriculture for tillage and harvesting is now indispens-
able since it facilitates farming over large areas. However, one of the impacts of regular and
prolonged use of heavy mobile machinery is soil compaction. To help minimize this harm-
ful effect, trafficability of agricultural fields at any particular time needs to be determined.
Soil moisture acts as one of the dominant controls for field trafficability. Satellites such as
Sentinel-1, which is one source of spatio-temporal soil moisture information, could be useful in
assessing trafficable conditions. One limitation of satellite-derived soil moisture is that only the
surface layer of soil is mapped. In this study, we determined the feasibility of using Sentinel-1
surface soil moisture readings to monitor trafficability during 2016 and 2017. We first de-
termined coupled conditions when surface soil moisture is a good indicator for values at the
subsurface. We applied a probabilistic approach to determine trafficability using extensive in
situ measurements of penetration resistance and surface soil moisture over a variety of crops.
Trafficability is expressed as the probability that penetration resistance will exceed a threshold,
for a given soil moisture value. Furthermore, we investigated the variability encountered from
these measurements to gain insights into other temporal controls. Our results show coupled
conditions for soil moisture > 0.19 cm®cm ™ and there is an almost 1:1 correspondence be-
tween surface and subsurface values. For decoupled conditions, values in the subsurface can
be twice those at the surface. An increase in penetration resistance variability coincided with
the maturity of crops for cultivated fields. Aside from soil moisture, root growth may also have
a significant impact on the temporal variability of soil's penetration resistance. The status of
trafficability can be monitored through the high temporal resolution of Sentinel-1. However,
aggregation to coarser resolutions may be necessary as its original 10 m resolution appears to
be suboptimal, based on validation against in situ measurements. This information can aid
farmers in the timing of tillage activities or for water managers in deciding to adjust water
levels to meet agricultural demands.
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5.1 Introduction

Modern agriculture relies on heavy mobile machinery to carry out farming operations such as
tillage and harvesting. Mechanization increases productivity and enables farming activities to
be carried out over larger areas. This is driven both by the high demand for food production
as well as economic factors to make agriculture profitable. However, one of the negative
impacts of using heavy machinery is soil compaction (Lal, 1991; Raghavan et al., 1990; Hamza
and Anderson, 2005; FAO, 2015). As a form of land degradation, soil compaction leads to
structural damages to soil (Baumgartl and Horn, 1991; Eckelmann et al., 2006). Destruction
of soil structure also leads to poor infiltration (Van Dijck and Van Asch, 2002) which in turn
leads to water logging, run-off and erosion (Ekwue and Harrilal, 2010). Compaction can have
negative consequences for crop root growth and soil ecosystems.

The use of heavy machinery in agriculture is indispensable so a balance in the timing of farming
operations and susceptibility of soils to compaction must be achieved in order to minimize the
harmful and long-term effects. A way to minimize the exposure to the negative impacts
of using heavy machinery is to determine trafficable conditions for the soil. Assessment of
agricultural field trafficability as well as the operating machinery during periods suitable for
traffic can help slow down the rate at which soils are being compacted so that the use of
heavy machinery can be sustainable in the long term. Trafficability is defined by Campbell
and O'Sullivan (1991) as the ability of soil to (1) provide adequate traction for vehicles and
(2) withstand traffic without excess compaction or structural damage. This is an extension to
earlier studies for military purposes which were only concerned with vehicle mobility (Knight
and Freitag, 1961). More recent studies on field trafficability focus on soil-vehicle interaction
to quantify the amount of soil compaction with different vehicle specifications (Keller and
Lamandé, 2010; Nawaz et al., 2013; Riicknagel et al., 2015). Two sets of factors determine
whether soils are able to support the weight of overlying machinery without increased risk
for compaction. On the one hand are soil physical characteristics that dictate the mechanical
strength of the soil. These include texture and bulk density of the soil (Miiller et al., 2011). For
soil texture, the strength of aggregated soils increases as clay content increases. Texture wise,
soils with higher bulk density at the onset of field traffic can withstand higher pressures before
undergoing deformation. Both soil texture and bulk density do not change significantly over
short time scales (weeks or months) but they are important controls over the spatial patterns
of trafficability. On the other hand are external factors that affect the grain-to-grain contact
of individual soil particles. Perhaps the most important of these factors is soil moisture.
For any given texture or bulk density, soil strength decreases towards wetter soil moisture
conditions. Therefore soils become more prone to compaction with increasing soil moisture.
The amount of overlying pressure that soils can accommodate decreases with increasing soil
moisture since the grain-to-grain contact disappears as water fills up the pore space. Spatio-
temporal soil moisture variability is influenced by atmospheric conditions (Seneviratne et al.,
2010), soil properties (Rawls et al., 1991), and vegetation (Hupet and Vanclooster, 2002).
Soil moisture exerts significant temporal control over soil strength as it varies greatly over
short time scales because of changes in the prevailing atmospheric conditions. Other factors
that control compaction are the set of vehicle specifications that determine the impacts of
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overlying machinery to the soil. Soil-vehicle interaction studies focus on the influence of tire
inflation pressure, wheel and axle load on soil deformation (Miiller et al., 2011).

The mechanical strength of the soil can be determined using cone penetrometers (Kuang
et al., 2012; Upadhyaya, 2005). These are widely used instruments for determining soil's
penetration resistance, which is equivalent to the force per unit base area required to push
the cone penetrometer through a specified increment of soil depth (Bengough et al., 2000;
ASAE EP542, 1999). They also have the advantage of providing relatively quick and easy
measurements in the field. Cone penetrometer measurements are also referred to as cone index
(CI). Existing field trafficability models have related soil moisture with Cl using a decreasing
exponential function (e.g. Henderson et al., 1988; Ayers and Perumpral, 1982; Sojka et al.,
2001; Vaz et al., 2001), with an increasing Cl trend towards drier soil moisture conditions.
Several studies are geared towards monitoring and identifying conditions when the ground is
less susceptible to compaction. For instance, Earl (1997) and Droogers et al. (1996) related
trafficability and workability to soil hydraulic parameters to determine the number of workable
days for a field. Other studies investigated the spatial variability of soil moisture and Cl which
can assist farmers in avoiding less trafficable areas within an agricultural field (Carrara et al.,
2007; Ferrero et al., 2005). These studies have shown the impacts of soil moisture on field
trafficability. Trafficability determined from soil moisture would be beneficial for agriculture,
but this has been hampered in the past by the lack of continuous and available soil moisture
data. Datasets from satellites are potential sources of regular and/or frequent soil moisture
information that also cover a considerable spatial extent.

In the last few years, developments in mapping soil moisture using microwave remote sensing
have been reported, with increasing spatial and temporal resolutions and accuracy (Kornelsen
and Coulibaly, 2013; Vereecken et al., 2014). Techniques using microwave remote sensing
are divided into active and passive methods. Passive microwave remote sensing measures the
intensity of microwave emissions from the Earth's surface, expressed in terms of brightness
temperatures. These measurements are performed with microwave radiometers. Active mi-
crowave remote sensing supply their own source of illumination. Active microwave sensors
transmit signals towards a target and measures the portion scattered back. Synthetic aperture
radar (SAR) is an active microwave sensing technique providing observations with a higher
spatial resolution. SAR backscatter signals depend on the technical configuration of the sen-
sor as well as the geometric and dielectric properties of objects on Earth. For soils, dielectric
properties are highly influenced by its moisture content (Cihlar and Ulaby, 1974).

Sentinel-1 satellites, which carry a SAR instrument, are promising sources of soil moisture
information that would be suitable for mapping and monitoring field trafficability at field
scale. Its revisit time can be up to 2-4 days for certain areas in Europe (Torres et al., 2012),
which makes it highly suitable for monitoring changes in soil moisture. The acquired images
are also freely and operationally available. Sentinel-1 measurements are only sensitive to
soil moisture in the upper surface layer (~ 5 cm). However, assessment of trafficability
requires soil moisture values over the topsoil or critical layer (Droogers et al., 1996; Earl,
1997; Priddy and Willoughby, 2006; Reintam et al., 2016). Although values used in literature
vary, this corresponds roughly to the upper 20-30 cm of the soil layer. This means that surface
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Figure 5.1: Location of the study sites in Twente (yellow square) and the Raam (yellow triangle)
soil moisture networks (inset). The stations utilized from Twente are plotted on the left while
those from the Raam are plotted on the right.

soil moisture from Sentinel-1 needs to be translated into subsurface values before it can be
used in certain applications. The vertical variability of soil moisture may lead to decoupling
between surface and subsurface values (Capehart and Carlson, 1997; Carranza et al., 2018)
wherein conditions in the former no longer represents those at the latter. This complicates the
estimation of depth-average soil moisture needed for assessment of trafficability. Identifying
coupled soil moisture conditions would be beneficial as it facilitates the use of satellite-derived
surface soil moisture to assess field trafficability.

In this study, our main objective is to assess whether Sentinel-1-derived surface soil moisture
can be used to monitor field trafficability. For Sentinel-1, several aggregation schemes were
tested to determine the optimal pixel size. The accuracy of these aggregation schemes were
validated against reference in situ measurements from two monitoring networks (Raam and
Twente networks). Given the measurement depth limitations of Sentinel-1, we first aim to
identify conditions when surface soil moisture values are good indicators of those at subsurface.
In addition, the variability encountered from extensive penetration resistance measurements
was analyzed in order to gain further insights on its temporal controls. A probabilistic approach
is applied to express trafficability based on surface soil moisture and to incorporate variabil-
ities encountered from in situ measurements. We demonstrate the results over a small site
within the Raam catchment as an example to show the potential of Sentinel-1 for monitoring
agricultural field trafficability.
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Table 5.1: Characteristics of the study sites. The description of soil types are taken from BOdem-
Fysische EenhedenKaart (BOFEK 2012, Wosten et al., 2013). For the fields within Raam, the
percentage of mineral components and organic matter content are taken from Benninga et al.
(2018) while those from Twente are also from BOFEK 2012

Station Soil Description %Silt %Clay %OM Crop 2016 Crop 2017  Size (ha)
RMO02 Weakly loamy sandy soil on 3.7 21 3.8 Sugar beets Winter 2.96
sub-soil of coarse sand (305) Wheat

RMO07 Loamy sandy soil with thick ~ 10.5 5.2 2.2 Corn/Cichory Corn/Potato  4.79
man-made earth soil (317)

RMO08 Weakly loamy podzol soil 16 14 41 Sugar beets Winter 2.51
(304) Wheat
RM11 Weakly loamy podzol soil 1.7 16 19 Corn Corn 3.49
(304)
RM13 Weakly loamy soil partly on 1.1 08 1.4 Corn Grass 8.48
sub-soil of coarse sand (309)
RM15 Weakly loamy sandy soil with 5.5 2.8 3.1 Grass Grass 2.05
thick man-made earth soil
(311)
TWO02 Loamy sandy soil with thick 21 4 5.2 Grass Grass 4.76
man-made earth soil (317)
TWO7 loamy sandy soil with a clay 35 13 24 Winter Corn 4.55
deck (316) Wheat
TWI10 Weakly loamy podzol soil 13 3 4.1 Corn/Potato Corn 8.88
(304)

5.2 Material and methods

5.2.1 Raam and Twente soil moisture networks

We utilized several locations within the existing soil moisture monitoring network in Twente
(Dente et al., 2011) and Raam catchment (Benninga et al., 2018) as our study sites. These
two networks contain stations covering the eastern (Twente network) and southeastern (Raam
network) parts of the Netherlands (fig.5.1). They were installed previously to serve as valida-
tion sites for satellite-derived data products. Each station contains sensors that continuously
monitor soil moisture over the soil profile. Soil moisture and temperature sensors (ECH20
EC-TM or 5TM) were installed at discrete depths below the surface (5, 10, 20, 40, and
80 cm). Measurement loggers store values every 15 minutes. For this study, we utilized year-
long measurements from 2016 - 2017. In both monitoring networks, stations were installed in
agricultural areas, at the edge or corner of a field to allow continuous measurements. Instal-
lation in the middle of the field was not permitted because of tillage, harvesting or grazing
of animals. From the Twente network, three out of the 20 stations were utilized; from the
Raam network, six out of the 15 stations were utilized as study sites. These were chosen to
capture the variability in the crops encountered at the study sites during the two-year study
period. The nine agricultural fields for this study were either grass or cultivated fields. The
most common cultivated crop encountered was corn, followed by potato, sugar beet, winter
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wheat, and chicory (Table 5.1). The terrain in these fields was generally flat to gently sloping.
Sandy soils were encountered in most of the fields, except for TWQ07 where the soil holds
slightly higher loam content.

5.2.2 In situ surface soil moisture and cone index measurements

Aside from the soil moisture networks, we also collected in situ surface soil moisture and cone
index measurements from the nine agricultural fields (fig.5.1). These were taken from two
growing seasons, specifically from May 26, 2016 to October 09, 2017. For each growing sea-
son, a field was visited at least twice to collect measurements during different soil moisture
conditions. The number of measurements ranged from 10 to 30 points per field per mea-
surement day, depending on the size of the field. The points are 15 - 20 m apart and forms
somewhat of a grid for each field. In addition, measurements were always taken at the same
location for both surface soil moisture and penetration resistance. The measurement locations
were also kept the same during succeeding measurement days for a growing season. However,
this was not feasible for both years because changes in the crops planted made it difficult to
keep the locations of existing points. In total, 840 actual measurement points were collected
over all study sites.

Surface soil moisture was measured using a hand held time domain reflectrometry (TDR) device
(TRIME-IMKO) with 5 cm pins. The calibration of TDR for sandy soils at the study sites was
performed against volumetric soil moisture values from undisturbed samples collected during
several occasions within the whole field campaign (fig.5.2). A total of 127 sample points were
used for calibration using linear regression. The calibrated volumetric soil moisture (VWC) is
given by the function:

VWC = 0.797x + 0.114 (5.1)

where x is the soil moisture measured using the TDR device. The linear function used ade-
quately fitted the points based on R? = 0.681. In addition, RMSE = 0.067 cm? cm3indicated
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small differences between these two measurements and bias = —0.064 cm®cm™3 indicated
that measurements using the TDR device gave slightly lower readings compared to those from
undisturbed samples.

Penetration resistance measurements were obtained using a hand held penetrometer (Ei-
jkelkamp Penetrologger) with a 1 ¢cm cone diameter and a 60 degree angle. We referred
to the penetration resistance measurements also as the cone index (Cl). The measurements
were taken from the soil surface until 20 cm for every 1 cm-depth interval.

5.2.3 Sentinel-1 imagery

The SAR instrument on board the Sentinel-1 satellites operates in C-band (5.405 GHz), which
in Interferometric Wide Swath (IW) mode provides over land images at VV and VH polariza-
tion, with pixel spacing of 10 m x 10 m and a reported radiometric accuracy of 1 dB (30)
(Torres et al., 2012). Sentinel-1A and Sentinel-1B provide images since 3 October 2014 and
26 September 2016, respectively. The combination of Sentinel-1A and Sentinel-1B results in a
revisit time of 3 days over the Raam study area and a revisit time of 1.5 days over the Twente
study area. Given the higher sensitivity to soil moisture of backscatter observations acquired
in VV polarization than in VH polarization (e.g. Baghdadi et al., 2017; Bousbih et al., 2017;
Hajj et al., 2017), we used the observations in VV polarization to retrieve soil moisture. The
Sentinel-1 images are freely available via the Copernicus Open Access Hub (ESA, 2019).

We applied the following operations to convert raw pixel values into radar backscatter (o): (1)
Range Doppler Terrain Correction (RDTC) using the tool in the Sentinel Application Platform
(SNAP) software, which includes (a) radiometric calibration, (b) reprojection to correct for
distortions due to topographical variations and tilt of the satellite sensor, and (c) radiometric
normalization with projected local incidence angles, and (2) a 5 x 5 median speckle filter to
suppress speckle noise.

Projected local incidence angles of the Sentinel-1 observations vary between 36.8° and 40.7°
for the Raam study area and 31.5° and 46.7° for the Twente study area. We normalized the
backscatter observations to a reference angle of 40° using a cosine correction (Ulaby et al.,
1986) :

cos”
ot = 0° 2 (Prer) (52)
cos"(Pinc)
where o° (in m? m~2) is the backscatter observation normalized to a reference angle ¢,ef of

40°, ¢° is the backscatter observation (in m? m*Z) and ;,c is the local projected incidence
angle (in degrees). We assumed a value of n = 2, based on C-band SAR observations in
previous studies (Lievens et al., 2011; Van der Velde and Su, 2009; Mladenova et al., 2013;
van der Velde et al., 2015), which corresponds to the assumption that re-radiation from the
soil surface follows Lambert's cosine law (Ulaby et al., 1986). Sentinel-1 observations that
exceed the upper limit of -2 dB or the lower limit of -22 dB (the maximum noise equivalent
to sigma zero) were taken out.
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Figure 5.3: Flowchart summarizing the methods applied in this study. The analysis was carried
out in three parts. One section focuses on translating Sentinel-1 backscatter to soil moisture
values and validating the results with in situ time series measurements. Another section focuses
on determining coupled soil moisture conditions. The third section describes the probabilistic
framework applied to express trafficability using surface soil moisture and penetration resistance
values.

5.3 Methods

The analysis carried out for monitoring field trafficability using Sentinel-1 was divided into
three parts (fig.5.3). The first section describes the soil moisture retrieval from Sentinel-
1 backscatter values. This section also includes the validation of soil moisture retrievals
using time series field measurements. The second section describes the coupling of surface
and topsoil soil moisture values by looking at the variability between the two. This was
needed in order to identify which surface soil moisture values (e.g. from Sentinel-1) are
representative for the total soil moisture content within the topsoil. Using these results, the
third section describes the probabilistic framework applied to express field trafficability using
in situ measurements of surface soil moisture and cone index.
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5.3.1 Soil moisture retrieval - Change Detection Algorithm

The change detection algorithm, developed by Wagner et al. (1999), linearly relates backscatter
(in dB) to a relative soil moisture index S,, of the surface layer over time:

200 () — T80 i
Su(t) = 0800(t) — o5 Min (5.3)

o o
0400, Max — 9400, Min

where 0240 p1in and 0250 ., are the backscatter observations under dry and wet soil conditions
(in cm3 cm~3), respectively. The absolute minimum and maximum values of o5, are probably
outliers due to radiometric noise, speckle or exceptional surface conditions, such as wet snow
or surface inundation (Pathe et al., 2009; Bauer-Marschallinger et al., 2018). To exclude
these outliers, we estimated the o5, ysi, and 0900 prax by the 2.5% and 97.5% percentile of the
time series. For the calculation of 0%y, 4, and o5y ., We used time series of two complete
hydrological years, between March 1, 2016 and March 1, 2018, resulting in 395 images over the
Twente region and 198 over the Raam catchment. For backscatter observations that exceed

T 00 Min OF T400 maxs Sw(t) is set equal to 0 or 1, respectively.

The main assumption of the change detection algorithm is that the parameters, other than soil
moisture, are considered time-invariant, such as surface roughness and vegetation. The change
detection algorithm is promising for operational applications of soil moisture retrievals from
satellite observations, because the model is build only on a statistical analysis of backscatter
time series and no detailed ground parameters are required (Wagner et al., 1999; Pathe et al.,
2009; Hornacek et al., 2012; Bauer-Marschallinger et al., 2018). Although Wagner et al.
(1999) developed the change detection algorithm for coarse satellite observations (European
Remote Sensing scatterometer satellites, spatial resolution 50 km), several studies obtained
acceptable correlations with in situ soil moisture measurements using SAR observations at
C-band (Pathe et al., 2009; Hornacek et al., 2012; Bauer-Marschallinger et al., 2018).

The change detection algorithm results in a relative soil moisture estimate whereas absolute
soil moisture, corresponding to the volumetric water content, is needed for mapping field
trafficability. This problem is circumvented here by assuming that soil moisture varies between
the wilting point (6,,) and saturated soil moisture content (6s,;), which allowed us to linearly
scale S,, to volumetric soil moisture 6 (in cm®cm™2), as follows:

0(t) = (Osat — Oup) * Su(t) + Oup (5.4)

The BOdemFysische EenhedenKaart (BOFEK2012) provides the soil type classes and associ-
ated soil physical characteristics (including van Genuchten parameters) for the soil units in the
Netherlands (Wdsten et al., 2001; Wosten et al., 2013). Then, the equation proposed by van
Genuchten (1980) gives the soil moisture content at wilting point and saturated conditions
(table 5.2). Benninga et al. (2018) showed that the wilting point and saturated soil moisture
content calculated from BOFEK2012 align with the minimum and maximum soil moisture
measurements at 5 cm depth of the individual stations of the Raam network.
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Table 5.2: Values of s, and 6,,, derived from BOFEK 2012 (Wosten et al., 2013). These
parameters were used to linearly scale relative Sy values and derive absolute soil moisture values
(see Eq.5.4).

Station BOFEK code Osat Owp
RMO02 305 0.43 0.03
RMO7 317 0.45 0.05
RMO08 304 0.43 0.03
RM11 304 0.43 0.03
RM13 309 0.43 0.03
RM15 311 0.43 0.03
TWO02 317 0.45 0.05
TWO07 316 0.40 0.12
TWI10 313 0.45 0.05

Validation of Sentinel-1 estimates using in situ measurements

The accuracy of soil moisture retrievals were evaluated against reference soil moisture values
at the study sites. We utilized the 5 cm soil moisture measurements from the nine stations as
reference values to validate the soil moisture retrievals from Sentinel-1. A subset of the total
Sentinel-1 dataset was obtained based on the dates in common with in situ measurements.
Aside from the original 10 m resolution, we tested four aggregation methods in order to de-
termine the optimal pixel resolution for Sentinel-1. The first method employed aggregation to
coarser resolutions of all the pixels in the Sentinel-1 image after masking out those which were
not agricultural lands or low vegetation nature areas. For the second method, we aggregated
only the pixels within each field boundary after masking out pixels outside each field. For
the third method, we aggregated only the surrounding pixels, with the station located at the
center. A circular buffer around each station was created to mask out the pixels outside the
buffer. The fourth method involved calculation of the field mean. We aggregated the pixels
to 50 m, 100 m, and 150 m, for each of the first three aggregation methods. The choice of
upper limit (150 m) for aggregation was based on the size of the smallest field encountered at
the study sites (table 5.1) so that it is comparable to area of the largest pixel size used. The
smallest field is at RM15 with an area of 2.05 ha while a 150 x 150 m pixel size has an area
of 2.25 ha.

To select the optimal resolution and aggregation method for Sentinel-1, we calculated several
performance metrics to compare the results. We computed RMSE, bias, unbiased RMSE,
and Spearman’s rank correlation coefficient for the results of aggregation methods used. The
optimal resolution and aggregation method was further utilized to derive the trafficability
status at selected fields over 2016 to 2017.

5.3.2 Soil moisture and Cone index variability

Vertical soil moisture variability

As the first step to relate satellite-derived surface soil moisture to field trafficability, we inves-
tigated when surface soil moisture is a good indicator of subsurface soil moisture conditions.
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We utilized the time series measurements at 5 cm and 20 cm from the selected study sites
within Twente and Raam monitoring networks. The 5 cm values represent surface soil mois-
ture measurements as they approximate the depths at which most satellites are able to extract
soil moisture information. The 20 cm values correspond to measurements at the topsoil depth
which carries the weight of overlying machinery. Several studies have also referred to such
depths as the critical layer (Knight and Freitag, 1961; Paul and de Vries, 1979; Priddy and
Willoughby, 2006). We referred to vertical variability as the irregularity between soil moisture
contents between 5 cm and 20 cm depths.

Using the time series soil moisture datasets from the Raam and Twente monitoring networks,
we applied residuals analysis to look at (de)-coupling between surface and topsoil moisture
conditions. Carranza et al. (2018) inferred that there is lower vertical variability during coupled
soil moisture conditions. The analysis involved fitting a non-parametric loess function to relate
surface and topsoil values. After which, residuals from the fitted loess function were used to
calculate the residuals variance. This showed the vertical variability throughout the whole soil
moisture range encountered at the study sites. To determine whether coupling or decoupling is
present given any soil moisture value, the cumulative residuals variance line was plotted. This
allowed us to observe changes in the variance of residuals as they were reflected as changes in
the slope of the cumulative variance line. The soil moisture range with flatter slopes indicated
lower variability or coupled range, and vice versa.

To get an impression of the similarity in soil moisture at 5 cm and 20 cm during coupled and
decoupled conditions, the ratio between two was computed as a simple quantitative measure of
correspondence. A Bayesian approach, developed and explained in detail by Kruschke (2013),
was applied to determine the probabilistic mean of these ratios. The mean of 5 - 20 cm
ratio is the parameter of interest that will be estimated. Briefly, the method involved Monte
Carlo Markov Chain (MCMC) to generate a large representative sample (100,000 samples)
to approximate the posterior distribution of the parameter of interest. From the posterior
distribution, the mean as well as the high density interval (HDI), where 95% of the estimates
lie was calculated. MCMC sampling was performed separately for the coupled and decoupled
range.

Cone index seasonal variability

We also investigated if there is a trend in Cl values over a growing season using the median
and interquartile range (IQR) of Cl over the topsoil (upper 20 cm values). This was performed
for four fields where the most frequent measurements were made. These fields are RM07,
RMO08, TWO02, and TW10. TWO02 is a grass field while the other three are cultivated fields
(see table 5.1). We accounted for differences in soil moisture by correcting Cl values to a
single soil moisture value based on the method of Busscher et al. (1997). Visual assessment
of the median and IQR for different dates was performed to compare Cl values and to identify
if there are trends over the growing seasons of 2016 and 2017.
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5.3.3 Probabilistic framework to model field trafficability

A probabilistic approach was applied in identifying trafficable conditions, This allowed for the
variabilities encountered in the in situ measurements to be incorporated in the analysis. First,
we determined the joint empirical probability density function (pdf) for cone index and surface
soil moisture using kernel density estimation (KDE). The pdf's were then utilized to calculate
the conditional probabilities to express field trafficability.

Estimating joint probability density function (pdf) for Cl and surface soil moisture

We selected a subset of the in situ measurement points using the coupled range identified
in section 5.3.2. At this range, surface soil moisture can be directly related to Cl as it is a
good indicator of values for the whole topsoil. In situ measurement points that belong to the
decoupled range were discarded.

Initial visual inspection of the measurement values revealed that those collected from grass
fields tend to have higher cone index values than those in cultivated fields. The probabilistic
method in section 5.3.2 was applied and extended to test whether these measurements indeed
form two separate groups, and merited separate analyses. This method is similar to a t-test
with the main goal of determining whether the Cl values are distinct from each group. The
posterior distributions of grass and cultivated field were estimated using MCMC, also using
100,000 representative samples. To test the similarity between these two groups, the difference
of means between every combination of representative values was obtained. Two groups were
deemed similar if the difference between the means between their posterior distribution were
close to or equal to zero.

Kernel Density Estimation (KDE) was applied afterwards to determine the empirical bivariate
distribution of surface soil moisture and cone index. This is a non-parametric method to es-
timate the underlying probability density function (pdf) of a random variable (Parzen, 1962;
Rosenblatt, 1956) using kernels. It is a suitable method for datasets with complicated distri-
bution since no assumption is made on the shape of the underlying density function. Density
estimation is carried out by centering a kernel at the location of each data point. The overall
density estimate is obtained by summing all the densities estimated at each point. Points that
plot closer to each other will have more kernels centered nearby which yields higher density
estimates.

In the bivariate case, the data points were represented by two vectors x3 =
[¥11, X12, X13, - - -, X1n] @nd X1 = [Xo1, X22, X23, - - . , X2n] Where x; = (X1, X2;) was a sample from
a bivariate distribution f. These two vectors represent the datasets collected for surface soil
moisture and Cl. The bivariate kernel density estimator f was given by:

Flx H) = % 3 Kialx — x) (5.5)

where Ky is a non-negative kernel function and H is the kernel bandwidth that controls the
amount of smoothing.
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To calculate the joint pdf of soil moisture and Cl using KDE, we utilized a Gaussian kernel with
bandwidths (represented by h for a univariate case) obtained using Scott's rule (Scott, 1992).
For cultivated fields, we obtained a value of hsy = 0.022 cm®cm™ and h¢; = 0.138 MPa;
and for grass fields, we obtained hsy; = 0.001 cm®cm™2 and h¢; = 0.184 MPa. From the
joint pdf of ClI and soil moisture, we generated 500 random samples from a multivariate normal
distribution using the bandwidth matrix derived (Gentle, 2009). The random samples were
drawn with replacement along the length of x (total number of paired data points), and then
adding random noise or perturbations to the sampled values using bandwidth matrix H. These
random samples were used to calculate the conditional probabilities.

Determining conditional probabilities for Cl to express trafficability

For a given soil moisture, we calculated the cumulative conditional probability that the cor-
responding Cl will take a value less than or equal to a known threshold. Higher probability
values indicated poor trafficability. We used a value from Droogers et al. (1996) who applied
0.70 MPa as the threshold for conditions suitable for agricultural traffic. Using the randomly
generated points, trafficability is evaluated using the conditional cumulative distribution func-
tion (ccdf) given by Fxja. This expressed the cumulative probability of a random variable X
conditioned on the occurrence of an event A:

Fxja(x) = P(X < x|A) (5.6)

In this case, we determined the cumulative probability that a cone index value X will less than
or equal to x = 0.7 MPa given a soil moisture value A. Higher probability values indicate
conditions not favorable for traffic, vice versa. Based on the results obtained in Section 5.4.1,
soil moisture from Sentinel-1 images were transformed into its corresponding probability values
for trafficability.

5.4 Results and Discussion

5.4.1 Surface soil moisture from Sentinel-1

Figure 5.4 shows the calculated accuracy metrics using the four aggregation methods applied.
The plot shows improvement in accuracy in all four metrics when larger pixel sizes are used
compared to the original 10 m pixel size of Sentinel-1. Values for RMSE, bias, and unbiased
RMSE are lower while Spearman’s correlation is higher for larger pixel sizes compared to
the original 10 m Sentinel-1 pixel size. From the four resolutions tested, using 150 m pixel
resolution provides the best results. Furthermore, aggregation of all the pixels in a scene
results in slightly higher accuracy values for all the study sites. We observed smaller variability
for each metric calculated when aggregating all the pixels in a scene compared to the other
methods. Radiometric uncertainties at the field scale, which affect the soil moisture retrieval
accuracy, may be influenced by speckle effects (Ulaby et al., 1986). Aggregation of the original
Sentinel-1 observations to larger pixels sizes implies a larger number of independent samples
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Figure 5.4: Plots of four accuracy metrics used to compare the aggregation schemes and res-
olutions tested. RMSE, bias, unbiased RMSE, and Spearman’s rank correlation coefficient were
computed to compare the results. All metrics are in cm® cm™3

lation coefficient which is unitless

, except for Spearman'’s rank corre-

that leads to the suppression of speckle effects; this is critical for improving ¢° uncertainties.
Our results are in line with other studies who showed that aggregation of SAR pixels produced
better results. For instance, Pierdicca et al. (2013) obtained higher soil moisture retrieval
accuracy when aggregating pixels to field scale using synthetically generated o° representing
Sentinel-1 observations of bare soil. Pathe et al. (2009) found that retrieval errors may be
dominated by noise in SAR measurements, even when assuming high model parameter errors
to account for the neglect of vegetation effects. They further suggested that several pixels
should be averaged to decrease the noise level, even at the expense of the spatial resolution
of the soil moisture maps.

For the different land cover types, we see no apparent trend in the results. For instance,
points in fig.5.4 for grass (green points) and cultivated fields (brown points) do not reveal
any clustering from the plots; which implies that the accuracy of soil moisture retrievals from
Sentinel-1 is comparable for grass and cultivated fields.
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Figure 5.5: Left: Scatterplot of 5 cm and 20 cm soil moisture values. 5 cm values represent
surface soil moisture while 20 cm values represent the topsoil. A loess function is fitted for the
overall trend while standard deviation bars indicate the variability across the whole soil moisture
range. Center: Plot of the residuals from the fitted loess function over the surface soil moisture
range. The variance from the residuals for every 0.01 cm® cm—3 interval is given by the vertical bars
at the bottom of the plot. The cumulative variance of residuals is plotted as a black line. A change
in the slope of the line at 0.19 cm® cm~3 separates the decoupled range (< 0.19 cm3 cm~3) from
the coupled range (> 0.19 cm®cm™3). Right: Posterior distributions of 5 to 20 cm soil moisture
ratio has a mean of 1.03 cm3cm™3 for coupled range compared to 0.55 cm3cm™3 for decoupled
range. The distributions also show the range corresponding to the 95% high density interval of
the ratios calculated.

Aside from soil moisture, a component of the total radar backscatter is due to the influence
of surface roughness and vegetation. In cultivated fields, tillage activities at the beginning of
a growing season effect changes to surface roughness. Based on field measurements, Callens
et al. (2006) showed that after the onset of the first rainfall events, surface roughness remains
fairly stable. A sensitivity analysis performed by Joseph et al. (2010) on soil moisture retrieval
across the corn growth cycle also came to a similar conclusion. In grass fields and meadows,
surface roughness may be considered invariable over longer periods of time; an assumption
frequently adopted in soil moisture retrieval methods (e.g. Alvarez-Mozos et al. (2006); van der
Velde et al. (2012)). The magnitude of vegetation effects on the total backscatter depends
on sensor specifications (e.g. frequency, incidence angle, polarization) and vegetation type.
Effects of grass on o° is generally expected to be weak because the dimensions of scatterers (i.e.
leaves and stems) are small in comparison to the SAR wavelength (e.g. Van der Velde and Su,
2009). However, the effects may be significant in cultivated fields. For example, Joseph et al.
(2010) quantified the effect of corn across its growth cycle on C- and L-band backscattering at
incidence angles of 15, 35 and 55°. They showed that throughout the corn growth cycle, both
an attenuated soil return and vegetation scattering can dominate the measured o°. However,
the measured o° still displayed some sensitivity to soil moisture even at peak biomass. Despite
the known impacts of surface roughness and vegetation, previous studies have shown that
change detection method can reasonably track changes in soil moisture using multi-temporal
satellite imagery (e.g. Moran et al., 2000; Baghdadi et al., 2007; Pathe et al., 2009) since it



5.4 Results and Discussion 85

tries to overcome the difficulties in applying bare soil and vegetation backscatter models by
only interpreting changes in backscatter rather than absolute backscatter levels.

For the performance of linear transformation applied (see Eq.5.4), the accuracy might vary
depending on the actual soil moisture distribution. At the study sites, the range of soil moisture
encountered span from dry to wet conditions, which are close to the 6, and 6, parameter
values applied. However, in regions where soil moisture distribution is skewed (e.g. very dry
or very wet climates), the linear transformation method might not be the optimal choice if the
range of soil moisture values encountered is limited, and oy, and oy« are not measured under
conditions of 6,,, and 0s,:. In such cases, another transformation may be more appropriate.
For instance, cumulative distribution function (cdf) matching (Reichle and Koster, 2004) can
be applied as this method allows to incorporate the soil moisture distribution in scaling S,
values.

5.4.2 Soil moisture and Cone index variability

The scatterplot in fig.5.5 (left) shows a general linear trend across the soil moisture range. The
variability across the soil moisture range is not constant based on the length of the standard
deviation bars. However, it is not very easy to visualize trends in variability from the scatterplot
alone. Further examination of the variance of residuals from the fitted loess function (fig.5.5,
center) reveals that for dry conditions, variance is consistently higher compared to those during
wet conditions. A change from higher to lower variance occurs at 0.19 cm®cm™2 based on
the change in slope in the cumulative variance line. From this, we determine that values from
< 0.19 cm® cm™2 corresponds to a decoupled soil moisture range while those > 0.19 cm® cm—3
corresponds to the coupled range (Carranza et al., 2018).

For assessment of trafficability, wetter soil moisture conditions are of primary interest since
soils are generally more susceptible to compaction. During wet conditions, we found coupling
between surface and topsoil soil moisture values, therefore the former is a good representative
of the total soil moisture within the latter. This is further confirmed by the probabilistic mean
calculated. A value equal to 1.036 cm®cm~2 for the 5-20 cm ratio (fig.5.5, right) indicates
an almost 1:1 correspondence between the two. This implies that surface soil moisture, for
instance those derived from Sentinel-1, can already be used as a proxy for topsoil values without
the need for a separate analysis to convert surface values to topsoil soil moisture content. For
the decoupled range, the probabilistic mean is 0.547 cm3cm™3, which means that subsurface
values can be twice as much as the surface.

ClI plots over the topsoil for four fields show the variability over a growing season fig.5.6. Cl
values in cultivated fields increase in median and IQR towards mid-growing season and then
decreases at the end or after harvest. This shows that Cl becomes higher and more variable
mid-growing season when the crops are mature. However, this trend was not observed in the
grass field (TW02). Aside from soil moisture, we hypothesize the root growth affects the
temporal variability of Cl for cultivated fields. For the grass field, the lack of trend observed is
still inconclusive since we only had one site. Several studies have already looked at importance
of roots in increasing soil strength, but has been investigated mainly in relation to erosion
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Figure 5.6: Profile Cl values at four selected fields where most measurements were collected. The
top panel shows the median Cl per depth per measurement date (mm-dd) while the bottom panel
shows the interquartile range (IQR). Dates when the measurements are collected are indicated
in the bottom panel. For 2016 and 2017, a slight increase in both median and IQR of Cl is
observed up to mid-growing season (brown colors). These values decrease towards the end or after

harvesting (blue colors). This pattern is observed for the three sites which are cultivated fields,
with exception of TWO02 which is a grass field.

and hazards (De Baets et al., 2008; Fan and Su, 2008; Mickovski et al., 2009). Studies

investigating the impact of root growth on soil hydraulic properties and field trafficability is
still rare in literature (e.g. Wieder and Shoop, 2017).

5.4.3 Probabilistic modeling of field trafficability

The calibrated values plotted in fig.5.7 (left) show that grass fields have higher Cl values
compared to those in cultivated fields. These two groups also show different probabilistic
mean Cl, which warrants separate analysis for trafficability (fig.5.7, right). Grass fields have
a probabilistic mean Cl of 1.74 MPa while cultivated fields have 0.709 MPa. The posterior
distribution of the mean Cl for cultivated and grass fields do not overlap and differ by at least
1 MPa. This difference can be attributed to the type of land management in these fields. For
cultivated fields, yearly tillage loosens the soil so that Cl values become lower at the beginning
of the growing season. For grass fields, regular mowing and trampling of animals results in

higher Cl. Fields which remain as grass fields become more compacted over time as they are

not being tilled. Faunal activities (e.g. from burrowing animals) may alleviate soil compaction

to a certain degree but based on our measurements, these are not enough for grass fields to
have similar Cl values to cultivated fields.
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Figure 5.7: Left: Scatterplot of in situ measurements of surface soil moisture and penetration
resistance. Colored points are within the coupled soil moisture range while grey points are in the
decoupled range. Right: Distribution of the probabilistic mean Cl for grass and cultivated fields.
The difference in mean Cl for these two groups is given in the bottom panel. The probability that
the difference between these two sets of mean Cl is zero is also equal to zero.

Figure 5.8 shows the bivariate pdf’s obtained and random samples generated for cultivated and
grass fields. Aside from having generally higher values, grass fields also have higher variability
as seen from the spread of points in the scatterplot (fig.5.7) and bivariate pdf's (fig.5.8). The
variability observed in the pdf’s implies that Cl values does not depend on soil moisture alone.
Aside from soil moisture, bulk density also controls Cl values but was implicitly incorporated
when we separated the analysis for cultivated and grass fields. The differences in Cl for
cultivated and grass fields already indicate their differences in bulk densities.

The distribution of random samples closely approximate the original measurement data distri-
bution for Cl but not for soil moisture (fig.5.8, bottom panel). However, the soil moisture values
from the random samples generated still approximate the realistic range and distribution of soil
moisture. This was confirmed by also plotting the 5 cm time series measurements from both
Raam and Twente networks (plot not shown). In addition, our measurements might also be
incomplete since we were not able to encounter all possible soil moisture values. From fig.5.7,
we lack measurements beyond 0.4 cm®cm™2 for grass and between ~ 0.35 — 0.4 cm®cm™3
for cultivated fields. Nevertheless, we were still able to generate random samples from the
underlying distribution of soil moisture with the bandwidths used (see section 5.3.3)

The pdf's generated over the study two-year period only reflect average/normal weather condi-
tions in the Netherlands, which is characterized by having moderate rainfall over the whole year.
Similar to our measurements (fig.5.8), intermediate soil moisture values (20-30 cm3 cm=3) are
the most frequent while very dry and very wet conditions occur less frequently. Therefore,
the pdf’s obtained are more suitable for predicting trafficability during average weather years.
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Since the shape of the pdf used is not universal, the results of the analysis may be subopti-
mal for periods when or areas where very wet or very dry weather conditions are prevalent.
Modeling trafficability for such conditions can be done if the appropriate bivariate pdf's can
be selected.

Trends in soil strength over the whole soil moisture range are consistent with previous studies
(e.g. Henderson et al., 1988; Vaz et al., 2011) which demonstrate increasing Cl with lower soil
moisture. Similar findings found in this study despite using only surface soil moisture further
strengthens the potential for using satellite-derived surface soil moisture for monitoring field
trafficability.

5.4.4 Monitoring trafficability with Sentinel-1

A small area around the vicinity of RMO7 in the Raam catchment is selected as a test site to
demonstrate monitoring of trafficability in grass and cultivated fields. Figure 5.9 (top panel)
shows plots at four locations (2 in grass and 2 in cultivated fields). A 150 m pixel resolution
was used based on the results in section 5.4.1. Time series plots in fig.5.9 (bottom) show the
soil moisture trends over the fields. Monitoring of the trafficability status can be easily carried
out using the high temporal resolution of Sentinel-1, although fewer images were available
in 2016 as compared to 2017. Probability for exceeding the threshold are much higher for
cultivated fields than grass fields even though similar range of soil moisture were encountered
for both. Furthermore, soil moisture trends at the selected locations all show seasonality, but
cultivated fields show larger inter-field variability than grass fields. We also observed the same
trends in inter-field variability for other locations (both grass and cultivated fields) in this
selected area.

From the time series plots in fig.5.9, periods with lower probability of exceeding the threshold
translates to favorable trafficability conditions. For the two cultivated fields, this is observed
in early spring (around April) of 2017, and coincides with the timing of tillage for most fields in
the Netherlands. For the spring of 2016, however, the trafficability conditions between these
two cultivated fields vary. For C1, soil moisture conditions indicate good trafficability, while for
C2 it is the opposite case. Soil moisture contents in C2 did not decrease, so the trafficability
conditions did not improve over the spring period. This difference may due to the types of
crops grown as well as how these fields were managed in previous years.

Grass fields always appear to be trafficable given the threshold used. This is not the case
for cultivated fields where there are more pronounced fluctuations in trafficable conditions.
However, the results for grass fields may not always hold true, especially for tractors with very
heavy weights. In principle, these vehicles are legally allowed to reach up to 21 tons per axle
(EU Regulation 167/2013). In contrast to our results for grass fields, soils may not be highly
trafficable for very heavy vehicles during saturated conditions. The threshold value we used
may be a more reasonable indicator of trafficability using average tractor weights ranging from
6-8 tons.

These results obtained could potentially be used by farmers and water managers alike. For
farmers, the results can be used to identify periods suitable for traffic and to aid in deciding
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Figure 5.9: Plot as an example for for monitoring field trafficability. Top: Map of the vicinity
of RMOQ7 station within the Raam soil moisture network where a few fields were selected. Two
in grass (labeled G) and two in cultivated (labeled C) fields. One of the fields (C1) is also the
location of RMO7. Bottom: Time series plots for the probability values to express trafficability at
the selected fields. Surface soil moisture derived from Sentinel-1 are also plotted (blue).

when to initiate tillage activities. Although in practice, this might still be difficult to apply since
farmers still need to work on their fields despite conditions unfavorable for traffic. Nevertheless,
the results can help in increasing awareness as to when soils are more susceptible to compaction.
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For water managers, the results could aid in their decisions to adjust water levels in channels
and/or canals in order to meet the water demands of farmers.

5.5 Conclusions

In this paper, we demonstrated how Sentinel-1 can be used to monitor trafficability status in
agricultural fields. Our findings show that by identifying coupled conditions, satellite-derived
surface soil moisture can be directly related with cone index values. Since we focused only on
soil moisture as the dominant temporal control, expressing trafficability as probability values
is advantageous because uncertainties are already incorporated. However, further attention
should be given to the impacts of root growth as it may also act as a significant temporal
control for cone index. Finally, we showed that the high temporal resolution of Sentinel-1 is
suitable for tracking the changes in agricultural field trafficability. However, our results show
that aggregation to coarser resolution may be necessary, which may also preclude identifying
the spatial variability within a field.






"Two roads diverged in a wood, and I—
| took the one less traveled by,
And that has made all the difference.”

Robert Frost
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Abstract

Accurate estimates of root zone soil moisture (RZSM) at relevant spatio-temporal scales are
essential for many agricultural and hydrological applications. In situ measurements have been
increasing in the last decade, but are often of limited relevance due to their temporal and spatial
specificity which does not provide long-term or spatially-distributed information. Quantitative
models, which are either process-based or data-driven, will perhaps always be useful alterna-
tives to direct soil moisture measurements. Data-driven machine learning techniques present
unique opportunities to develop quantitative models that do not require assumptions about the
processes operating within the system being investigated. In this study, Random Forest (RF),
which is an ensemble learning algorithm, was applied with the main goal of identifying the
utility of a data-driven model for estimating RZSM. Interpolation and extrapolation of RZSM
on a daily timescale was carried out using RF over a small agricultural catchment from 2016
to 2018. In order to assess the performance and utility of RF, model results were compared
to simulations from a process-based pore flow model combined with data assimilation. In
addition, optimization steps were applied to increase model performance for both methods. In
general, the accuracy obtained from both methods indicates that they are equally capable of
accurately estimating RZSM. Both methods gave poorer estimates at extreme soil moisture
conditions, which suggests that certain processes or covariates are poorly represented in the
modeling efforts. However, in data-poor regions where soil hydraulic parameters are limited
or lacking, RF may be more advantageous than a process-based model, especially when the
primary goal is confined to the estimation of soil moisture states.
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6.1 Introduction

Root zone soil moisture (RZSM) is an important environmental variable that impacts hydro-
logical processes relevant for agriculture and climate-related studies. It is one of the main
drivers for agricultural productivity (Rigden et al., 2020) and serves as an indicator for crop
water stress which is valuable for drought monitoring (Bolten et al., 2009). Outside the hy-
drological cycle, RZSM dynamics play a role in quantifying soil carbon fluxes (e.g. Kurc and
Small, 2007).

Accurate estimates of RZSM are necessary in order to have a better understanding of agricul-
tural and environmental processes it controls. Direct RZSM measurements can be obtained
from in situ sensors installed along the soil profile or at specific depths (Vereecken et al.,
2008; Dobriyal et al., 2012). Achieving distributed spatial measurements of RZSM can be a
challenge because installation of sensors at the subsurface can be a tedious task and are likely
to disturb the soil properties. It has become relatively common to extract RZSM from surface
soil moisture (SSM), which may be in situ or satellite-derived (Ulaby et al., 1996), since they
are more easily obtained. Satellite-derived SSM has the advantage of providing spatially dis-
tributed soil moisture while in situ measurements offer higher temporal frequency (second or
minutes) compared to satellites, which only provide snapshots at regular time intervals (days
or weeks).

Analytical solutions are applied in cases when direct RZSM measurements are lacking or insuf-
ficient. These methods are based on theoretical or empirical relations between environmental
variables controlling RZSM state. Arguably, the most common approach is to apply process-
based hydrological models which are based on conceptual understanding of the system (e.g.
Cordova and Bras, 1981; Porporato et al., 2004. These models employ numerical solutions of
flow and transport equations in unsaturated porous media (Feddes et al., 1988). Information
on soil hydraulic properties, either measured directly or from pedo-transfer functions (Schaap
et al., 2001; Van Looy et al., 2017), are required to estimate water movement across a chosen
flow domain. It may be necessary to optimize soil hydraulic parameters, for instance using
inverse modeling (e.g. Ritter et al., 2003), in order to improve model simulation accuracy.
The prevailing meteorological conditions, as well as variables that describe vegetation growth
are necessary to determine the amount of water entering and exiting a given flow domain. In
the last couple of decades, data assimilation methods have been applied to improve process-
based model estimates (Houser et al., 1998; Pezij et al., 2019b), which may take advantage
of satellite-derived SSM information.

Data driven methods to estimate RZSM include time series analysis (TSA) and machine learn-
ing (ML) techniques. These methods aim to extract knowledge by evaluating patterns or vari-
ability in that data and further stimulate actions that are dictated by the data. In the context
of RZSM estimation, data-driven methods implicitly incorporate and evaluate all the interact-
ing processes that produced a given RSZM state. TSA methods, such as the application of
an exponential filter (Wagner et al., 1999; Albergel et al., 2008), a cumulative distribution
function (cdf-matching, Gao et al., 2019; Zhuang et al., 2020), or transfer-functions (Pezij
et al., 2020) primarily utilize surface soil moisture data to derive a functional relation with
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RZSM. However, calibration of functional parameters may be necessary each time it is applied
to a different study area in order to obtain high accuracy. ML algorithms build mathematical
models based on training sets and covariates to extract information from data. Furthermore,
they are tuned to handle diverse and large volumes of data sets, which may be relevant for
large scale studies or for operational (water) management. Application of ML methods in soil
hydrology have started to gain attention in the last couple of decades. For instance, ML tech-
niques have been applied to estimate model-derived RZSM (Kornelsen and Coulibaly, 2014)
or SSM (Ahmad et al., 2010). Using satellite data, ML techniques allow up- or downscaling of
soil moisture values (Srivastava et al., 2013; Zhang et al., 2017). Comparison of ML methods
have been made for forecasting of soil moisture using values at discrete soil moisture depths
(Prasad et al., 2018) or soil layers (Matei et al., 2017) at regional scales. Interstingly, SSM
has also been estimated from in situ measurements of soil moisture at deeper layers using
ML (Coopersmith et al., 2016). In a comparison study, Karandish and Simnek (2016) showed
that the ML techniques may provide a useful alternative to process-based models using limited
input data.

We applied Random Forest (RF), an ensemble learning algorithm, to estimate RZSM based
on in situ datasets within the Raam catchment in the Netherlands. Among the advantages
outlined by Tyralis et al. (2019) is that RF is has been found to produce have been found
to be consistent predictions and it reduces the variance without increasing the bias of the
predictions. So far, there are still limited studies applying RF in soil hydrology, particularly in
estimations of RZSM. A data-driven method will ensure that all the processes operating in
the system under study are incorporated in the predictive RF model developed. In addition,
there has been proliferation of RZSM in situ measurements in the last couple of decades from
various soil moisture monitoring networks worldwide (e.g. International Soil Moisture Network
(ISMN, Dorigo et al., 2011a) which provides an excellent opportunity to capitalize on ML
techniques. In this study, daily measurements in agricultural fields for almost two years were
used for RF modeling in two ways: 1) interpolation at randomly selected points within the
time series and 2) extrapolation of future RZSM state based on past values. A comparison
is then made between between the RF results and a process-based model in order to assess
the capabilities of a data-driven method. A pore-flow model with data assimilation via direct
insertion of in situ measurements was applied to simulate RZSM at the study sites.

6.2 Materials and Methods

As an overview, Random Forest (RF) was applied for interpolation and extrapolation of root
zone soil moisture (RSZM) within a small catchment. For comparison of results, RZSM were
also simulated using a process-based (PB) pore-flow model which was combined with data
assimilation. For both methods, steps to optimize model (hyper) parameters were applied to
improve model performance and to allow objective comparison of the results. Briefly, a selec-
tion of hyperparameters were tuned for RF while the soil hydraulic parameters were optimized
via inverse modeling for PB. Data assimilation via direct insertion of in situ measurements
was further applied to improve PB model results. The succeeding sections further describe in
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Figure 6.1: Flowchart to summarize the the analysis. A data-driven (Random Forest, RF) and

a process-based model were applied to predict and forecast root zone soil moisture.

For RF,

hyperparemeters were tuned to obtain the optimal model using different training sets. In addition
to the RF estimates, prediction intervals were calculated using quantile regression forest to quantify
the prediction uncertainties. For the process-based model, the soil hydraulic parameters were first
optimized using inverse modeling. Forward modeling was then ran with data assimilation via direct
insertion of in situ measurements into the initial conditions of the simulation runs for every 20-day

sampling interval (n).

Table 6.1: List of crops types encountered in the Raam network

Station 2016 2017 2018
RMO01 grass grass grass
RMO02  sugarbeet fennel corn
RMO03 grass grass grass
RMO04 grass grass grass
RMO05 onion lettuce lettuce
RMO06 grass grass grass
RMO7 chicory potato corn
RM08  sugarbeet wheat beans
RMO09  sugarbeet potato corn
RM10 grass grass grass
RM11 corn corn wheat
RM12 grass grass grass
RM13 corn corn corn
RM14 grass grass grass
RM15 grass grass grass
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Figure 6.2: Site characteristics. The image on the top left shows the location of the Raam
catchment (red area) in the southeastern portion of the Netherlands. Black dots indicate the 15
soil moisture stations used in the analysis. The remaining images show the covariates used for the
Random Forest modeling, including meteorological, vegetation, and soil characteristics at the sites.
Meteorological data are obtained from KNMI (Royal Dutch Meteorological Institute), Leaf Area
Index (LAI) is from MODIS, and soil hydrological groups are from BOFEK2012 (Wosten et al.,
2013). Except for BOFEK2012, the images shown are snapshots of the datasets on July 3, 2016.

detail the datasets used and methods applied while a summary is shown in fig.6.1.

6.2.1 Raam Soil Moisture Network

The Raam catchment is located in the southeastern portion of the Netherlands which holds
mostly sandy soils. A total of 15 operational soil moisture stations are distributed across the
whole catchment (fig.6.2). At each station, soil moisture and temperature sensors (Decagon
EC-H20 5TM) were installed at 5, 10, 20, 40, and 80 cm depths and measurements were
recorded every 15 minutes. The soil moisture stations were located in agricultural fields,
which are the characteristic land cover type within the catchment area. The most common
crop type at the stations is grass, followed by corn, potato, sugarbeet, and other vegetable
crops (table 6.1). A more detailed description of the Raam soil moisture network is provided
in Benninga et al. (2018).

Measurements down to 40 cm depth were integrated over a 60 cm averaging depth to calculate
for root zone soil moisture (fig.6.3). This was chosen in order to have a uniform root zone
across the study sites which have varying crop types. For grass fields, the active root zone
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Figure 6.3: Diagram showing the installation setup for each station. Soil moisture sensors were
installed at 5, 10, 20, and 40 cm depths for each station. For each measurement depth, an associ-
ated soil thickness is determined based on the midway distance between two adjacent measurement
points. Root zone soil moisture is represented by the zone-weighted depth-average values that are
aggregated based on both the measurements and its associated soil thickness (see eq.6.1).

may only be up to 20 cm because of its shallow rooting system while for crops such as corn or
potato, the root zone can extend beyond 1 m. Nevertheless, the depth used for the analysis
generally captures the active root zone for the crops at the study sites. Furthermore, the
methods applied in this study could also be customized for other depths that would suitably
represent the root zone depths. Root zone soil moisture 6,, is given by:

9, = Z;:l OJAZJ (61)
z
where 6; (in m*m™?) is the volumetric water content for measurement depth j (cm), Az
(cm) is the thickness of soil associated with the measurement depth, and z (cm) is the total
averaging depth. Measurements from all 15 stations starting from April 2016 up to December
2018 (33 months) were used for the analysis. The daily mean values from the 15-mins. data
were calculated in order to match the meteorological datasets acquired.

6.2.2 Random Forest regression

Random Forest (RF) is an ensemble-learning algorithm that combines the concepts of decision
trees and bagging (fig.6.4, Breiman, 2001). Decision trees (DT), either for classification or
regression, partition the variable space using a set of hierarchical rules such that the dataset are
grouped recursively based on similar instances. A set of covariates (continuous or categorical
variables) are used for recursively splitting the values of the variable of interest, which results
in multiple parent and child nodes that resemble a tree-like structure. Splitting at each node
involves random selection of candidate variables from the total number of covariates, referred
to as the mtry parameter. The DT will evaluate each candidate to find the optimal split that
maximizes the ‘purity’ or alternatively, that results in the largest decrease in the impurity at
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each child node. In this case, the estimated response variance for regression trees was used
as a measure for impurity (Wright and Ziegler, 2015). RF creates diverse DTs to avoid highly
correlated predictors by growing them from different subsets of the training data through a
procedure called bagging. Often a large number of trees are created, and is referred to as
the ntree parameter. Bagging, an abbreviation for 'bootstrap aggregation’, is a technique
for generating multiple training data by resampling with replacement of the original training
set. This means that some data may be used more than once in the training, while others
might never be used. For each bootstrap sample, a regression DT generates multiple parent
and child nodes until the stopping criterion is reached. In this case, when the value for the
minimum node size (min.nodesize) parameter is achieved. After all the trees are grown, the
RF regression predictor is the mean from all the predictions from each individual tree. More
detailed description of RF methods and parameters are given in Breiman (2001) and Hastie
et al. (2009).

Estimation of RZSM using RF was implemented in two ways: 1) interpolation of randomly
selected points within the whole time series data, and 2) extrapolation of 'future’ RZSM
based on 'past’ values. For each method, a single RF model was built based on the combined
measurements from all 15 soil moisture stations in the Raam. For RF interpolation, random
samples were obtained from the daily time series data at each station. For RF extrapolation, the
length of the time series at each station was first split based on the sampling proportion used.
The first part of the time series was selected for training and constitutes the " past” data, while
the remaining was used for model validation and constitutes the "future” data. Proportions
of 50% up to 80% (with increments of 10%) of the daily time series measurements at each
station were used to generate the samples from each station. These were then combined into
one training set for building each RF model. The value of the ntree parameter was made
proportional to the samples in each training set, and was set to a tenth of the amount of
each training set. This corresponded to 600, 700, 900 and 1000 trees for interpolation and
600, 800, 900, 1100 trees extrapolation for each training set (50%, 60%, 70%, 80% of total
measurements). Optimization of RF models were carried out by tuning mtry and min. node
size parameters for each training set proportion tested.

Hyperparameter optimization

The RF model was tuned in order to select the combination of the hyperparameters mtry
and min. node size that would yield the highest accuracy. Hyperparameters are parameters
that need to be set prior to training a model and somewhat defines the configuration of the
regression trees. Their values directly control the behaviour of the learning algorithm and
have a significant effect on the performance of the model being trained. Other RF model
parameters that are not tuned will simply 'learn’ on their own during model training. The
values for mtry will dictate splitting of RZSM values at the nodes of the regression tree while
the minimum number of elements per node (min. node size) will serve as a stopping criterion
in building the regression trees. We tested values of mtry from 1 to 25 and min. node size of
5,10, 20, and 30. A total of 100 combinations of hyperparameters (mtry and min. node size)
were tested for each of the four training set proportions (50% to 80%) in the tuning phase. A
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Figure 6.4: Schematic diagram for Random Forest. For each sample or training set, a large
number of bootstrap samples (ntree) are obtained. A regression tree is built from each bootstrap
sample which involves hierarchical partitioning of the dataset. This involves splitting of the datasets
based on candidate variables that are randomly selected from the total number of covariates used
(mtry). The final RF estimate is the average of all estimated values from each regression tree.
Based on the distribution of all the RSZM estimates obtained from all the trees, the prediction
intervals at the 2.5™" and 97.5'™ percentiles were determined to quantify the uncertainties in the
RF model.

10-fold cross-validation (CV) scheme was applied for each hyperparameter combination in the
tuning phase. The mean root mean square error (RMSE) computed for each hyperparameter
combination in the 10-fold CV scheme were compared to assess model performance, which
in this case in the RMSE. Aside from having a separate validation set, a CV scheme is a
preventive measure for model overfitting (Lever et al., 2016).

RMSE's were examined further to select the final RF model as the one with highest accuracy
('best model') might also be computationally expensive. Therefore, we compared the model
with the best RMSE to another one that has a faster computation time but comparable RMSE
as a 'tradeoff’ to evaluate a simpler model without sacrificing accuracy. RMSE's were first
ranked from lowest to highest and then a pairwise elimination process was applied by evaluating
the improvement in RMSE. The final 'tradeoff’ model was selected once a < 1% improvement
in RMSE was found.
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Random Forest covariates

Covariates or the set of predictor variables used to build RF regression trees include informa-
tion on meteorological conditions, soil properties, land cover and vegetation characteristics
at each site (fig.6.2 and table 6.2). Daily meteorological data from 36 KNMI (Royal Dutch
Meteorological Institute) stations distributed within the entire Netherlands were interpolated
to produce a 5 x 5 km gridded image in order to extract daily values at the location of each
soil moisture station. Spatial estimates of the values at each KNMI station were obtained
using a Thin Plate Splines interpolation (Sluiter, 2012). Temperature, wind speed, relative
humidity, sun hours, potential evapotranspiration, and radiation, were selected among the to-
tal meteorological datasets available as these were also the input variables in the process-based
model applied in this study. They are, therefore, indicative of surface processes that influence
the RZSM state. Gridded values of daily rainfall measurements with a 1 x 1 km pixel size were
obtained directly from KNMI. Ordinary kriging was applied to around 300 measurement loca-
tions of rain gauges distributed across the Netherlands to produce the rainfall maps (Soenario
et al., 2010). Leaf area index (LAI) from an 8-day MODIS composite with 500 m resolution
was used to capture vegetation characteristics over the study sites. The values for days in
between LAl measurements were linearly interpolated to obtain daily estimates.

Both crop type and soil hydro-physical groups were also included as categorical covariates.
The former is based on field observations while the latter was obtained from Bodemfysische
Eenhedenkaart (BOFEK2012, Wosten et al., 2013), which is a map of soil hydro-physical prop-
erties for the Netherlands. Figure 6.2 indicates the BOFEK2012 codes for the soils within the
Raam network only. Further description of each code is given in Wosten et al. (2013). These
two categorical variables are re-coded into dummy or indicator variables for the RF regression.
The categorical variables are transformed into a dichotomous (1 or 0) representation of its
presence or absence for each data point. For example, the categorical variable " Crop” with
a type "Corn”, a value of 1 is assigned for measurements having the said crop, and 0 for
measurements with another crop type.

The current soil moisture state is inevitably affected by its past values and past meteorological
conditions. The so-called soil moisture memory (or persistence) has been widely investigated
because of its importance in climate-related studies (e.g. Koster and Suarez, 2001). Therefore,
lagged values were also calculated for meteorological and soil moisture datasets in order to
incorporate past information in the RF model. This may be useful especially for forecasting
where only past information is available. For surface soil moisture and meteorological datasets,
values with a lag of 1 day were obtained. Additional lagged surface soil moisture values of
3 and 40 days were also calculated based on findings of soil moisture memory studies at
global (McColl et al., 2017) and continental (European, Orth and Seneviratne, 2012) scale,
respectively. A total of 39 covariates were used for the RF models (table. 6.2).

RF prediction intervals

Uncertainties in RF estimates are defined based on the 95% prediction interval (PI) obtained
using quantile regression forest (qRF, fig.6.4). The idea behind gRF is that instead of recording
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Table 6.2: Covariates used in Random Forest

Meteorological Vegetation Soil
Symbol Description Symbol Description Symbol Description
RG Ave. Wind LAI Leaf Area VWC5 Soil moisture at
speed Index 5cm
Q Radiation LAl lag 1-day lag VWCllag 1-day lag
rd Rainfall Crop.grass VWC lag3 3-day lag
SQ Sun Hours Crop.corn VWC _lag40 40-day lag
TN Min. Temp Crop.potato BOFEK.305
X Max. Temp Crop.sugarbeet BOFEK.304
UG Relative Crop.wheat Crop type BOFEK.311
Humidity (dummy) BOFEK2012
EV24 Evapo- Crop.onion BOFEK.409 codes (dummy)
transpiration
RG_lag Crop.fennel BOFEK.317
Q-lag Crop.beans BOFEK.309
rd_lag Crop.lettuce BOFEK.312
SQlag 1-day lag
TN_lag
TX lag
UG_lag
E24 lag

DOY Day of year

the mean value of response variables from the trees, all responses for each tree are recorded
(Meinshausen, 2006). This allows not only for the estimation of the conditional mean but
also a good approximation of the full conditional distribution. Pls were defined using quantile
regression based on the chosen quantiles (a's). For a given random variable, the conditional
distribution function F(y|X = x) is given by the probability that, for X = x, Y is smaller than
y. For a continuous distribution function, the a~quantile (Qa(x)) specifies a value such that
the probability of x being smaller than Qa(x) is, for a given random variable X = x, exactly
equal to a. A 95% Pl (lgs) for the RZSM estimates is based on 2.5% and 97.5% quantiles
([Qoas(x), Qors(x)]).

Variable Importance

Variable importance from the RF models determined using a permutation method (Wright and
Ziegler, 2015). Rankings for covariates were based on the mean decrease in model accuracy
after shuffling or randomly permuting the values of a predictor X;, where i =1 ... n for each of
the covariates used. By permuting the values of X;, its association with the response variable
Y (i.e. RZSM) is broken. Therefore, if the predictor X; is associated with the response Y, a
substantial decrease in accuracy is expected after prediction using the permuted and remaining
non-permuted variables.
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6.2.3 Process-based modelling with data assimilation

A soil water balance model was carried out to simulate one-dimensional daily RZSM at the
study sites. In a water balance model, mass and energy fluxes over time and/or space are
calculated to estimate soil moisture along the profile. We assumed that soil water movement
would be restricted along the vertical dimension since the study sites are generally characterized
by homogeneously textured soils and the terrain at the study sites is generally flat (e.g. De Laat,
1980, for modeling unsaturated flow in the Netherlands). The vertical water flow in unsaturated
porous media is solved numerically using Richard’s equation:

% - % [K(h) (2; + 1)] S (6.2)

where t is the time (days), § is the volumetric water content (cm®cm™2), h is the soil water
pressure head (cm), Z is the spatial coordinate (cm) defined as positive upward, K(h) is the
unsaturated hydraulic conductivity function (cmd=!) and S is a sink term representing water
uptake by plant roots (cmd™!). K(h) is derived from a water retention curve, given by van
Genuchten (1980):

o(h) = i i (_ 9)’ a3 h<0 (6.3)

1
m=1-2 (6.4)

0—46,

58795—9,

where 0, and 6 denote residual and saturated volumetric water contents (cm3cm~3), respec-
tively; o (cm™!) and n (=) are fitting parameters of soil water characteristic curve; K is the
saturated hydraulic conductivity (cmd™'); / (=) is the pore connectivity parameter ; and S,

(=) is the relative saturation.

Inverse modeling for parameter optimization

The soil water balance was carried in two parts using Hydrus-1D software (Simunek et al.,
2005). The first part involved optimization of soil parameters describing the shape of the
water retention curve (65, 6,, a, n) and hydraulic conductivity curve (Ks, /) using inverse
modeling. We initially carried out simulations using soil hydraulic parameters available from
(BOFEK2012, Wosten et al., 2013), but found the results to be unsatisfactory. Optimization
of soil hydraulic parameters was based on Marquardt-Levenberg parameter estimation method
(Marquardt, 1963) as implemented in Hydrus-1D, using soil water content measurements.
The soil domain considered is 1 m to cover depths similar to the measurements stations.
A variable atmospheric condition, based on rainfall and evaportranspiration, was set as the
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upper boundary conditions while a free drainage condition was set as the lower boundary
conditions.Daily meteorological datasets from KNMI, as described in section 6.2.2, were used
for the upper boundary conditions. Initial conditions for the inverse modeling were set to the
pressure head at field capacity with the assumption that the soil is close to saturation the
start of a year when the simulations commenced. In addition, simulations from January until
just before the start of the in situ measurements in April were part of the spin-up period for
the model. A single porosity van Genuchten - Mualem model without hysteresis was used for
the simulation. The flow domain was subdivided based on the number of soil layers present in
BOFEK2012 (see table 8.1, Appendix). For instance, station RM02 was subdivided into two
layers while RM15 has only one layer in the flow domain. Simunek et al. (2005) provides more
detailed information regarding the theory, methods and default parameters in H1D software.
Subsequently, the second part was the forward modeling to estimate soil water content using
the optimized set of soil hydraulic parameters. Observation points within the flow domain
were selected at the same depths as the in situ measurement points. Furthermore, depth-
averaged zone-weighted root zone soil moisture was calculated in a similar manner as the in
situ values.

Sequential Data Assimilation

Data-assimilation is an often applied method to improve the accuracy of hydrological modelling
using up-to-date measurements. The goal of data assimilation is to combine measurements
and modelling efforts into an optimal state estimate of the variable of interest (Reichle, 2008).
The difference between machine-learning and data-assimilation is that the latter depends on
a dynamical model of the system, in this case H1D.To show the added-value of the machine-
learning method, we show an application of data-assimilation with the modelling instrument
used in this study. We recognize that data-assimilation should use information on uncertainties
in both observations and modelling efforts, for which sequential methods such as the Ensemble
Kalman Filter can be used (Evensen, 2009; Houtekamer and Mitchell, 1998; Pezij et al.,
2019b). However, in this study we only focus on a simple data-assimilation method, which
is relatively easy implemented. Houser et al. (1998) and Heathman et al. (2003) showed the
value of direction insertion for soil moisture modelling. Therefore, we applied a direct insertion
data-assimilation method to update the soil moisture state.

We applied direction insertion by replacing the model state by the in situ measurements for
every 20-day interval over the whole simulation period which covered two years. Measurements
along the entire soil profile were used. At the end of each 20-day period, the model state was
replaced by the soil profile provided by the in situ measurements. The model was subsequently
run for the next 20-day period. The said assimilation interval was tested as it approximated the
revisit times of some microwave satellites (e.g. Radarsat-2 or ALOS PALSAR-2) which have
been assimilated into process-based models in the past. The days when data were assimilated
were excluded for model evaluation.
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Figure 6.5: Accuracy metrics and RF model specifications for different training set sample pro-
portions.

6.3 Results and Discussions

6.3.1 Random Forest model tuning

The RF models generated using different training sets indicate that the highest and lowest
RMSEs are based on 50% and 80% for interpolation and 80% and 60% for extrapolation
(fig.6.5a and b). However, a 50% training set performed relatively well in both cases based
on in very minimal decrease in the RF model performance; RMSEs are only 0.002 m®m™3
and 0.0003 m®m~2 higher than those obtained using 80% and 60% training proportion for
interpolation and extrapolation, respectively. Furthermore, the runtime is fastest with a 50%
training set, decreasing the computation time of the best performing model by at least 44%
(e.g. from 25 to 14 mins. for extrapolation). This aspect is of importance for machine
learning techniques, especially as the volume of datasets become larger. Therefore, we selected
the RF model from a 50% training set for further evaluation of the hyperparameter tuning
results.

A comparison of the results obtained from the tuning process using 50% training set is given
in fig.6.6. The RMSEs are observed to exponentially decrease with increasing mtry values,
which is combined with a consistent increase in accuracy with smaller min. node size (fig.6.6a
and e). For both interpolation and extrapolation, a large mtry and a small min. node size
resulted in the best RF model based on RMSEs (fig.6.6¢c and g). This is somewhat expected
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Figure 6.7: Bar graphs enumerating the important variables (VI) for the RF model, decreasing
from top to bottom. Only the top 20 VI's are listed for presentation purposes. The description of
the variables are provided in table 6.2.

because the homogeneity of elements at each node is higher when the min. node size value
is kept smaller. In addition, the largest mtry costs the most computing time, as expected. In
contrast, the 'tradeoff’ model with a smaller mtry value halves the computing time (from 25
to 10 sec.) but only has a slightly lower RMSE fig.6.6 (bottom panel). To balance accuracy
and computation time, the hyperparameters from the 'tradeoff’ model were used further for
model evaluation.

Variable Importance

Based on fig.6.7, surface soil moisture (SSM), soil properties and land cover types have larger
impacts on RF model accuracy compared to meteorological variables. Lagged soil moisture
values appear higher on the list of important variables (VI) in the RF model. For both interpo-
lation and extrapolation, SSM with lags of up to 40 days are still highly relevant in estimating
RZSM. Temperature appears to have the most important effects on RF model performance
among all the meteorological covariates included. Since soil moisture is directly influenced by
precipitation, it is surprising that current and antecedent rainfall did not rank higher in the VI
list. Rather, the impact of precipitation on the RF model may be included within the SSM
variables (VWC5 and VWC5_lag), which ranked highest in the VI list. Within the Raam catch-
ment, meteorological conditions among the Raam stations were found to be similar due to its
small areal coverage (fig.6.8). Since RF capitalizes differences or unique values in the covariates
to separate RZSM into groups in building the regression trees, meteorological variables over
the stations may have been less able to differentiate between RZSM among different stations
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Figure 6.8: Comparison of values of temporally varying covariates among the different stations.
The description of the variables are given in table 6.2.

based on the single RF model trained (i.e. one each for interpolation and extrapolation). We
hypothesize that the influence of meteorological conditions may also be encapsulated within
the DOY variable, which represents effects of seasonal changes on RZSM. The combination
of DOY and temperature may have been adequate for the RF models to estimated RZSM
in the Raam catchment. The results obtained, however, do not imply that meteorological
variables are not important controls for RZSM. In this case, meteorological variability over the
Raam catchment were secondary to variability in crop types and soil characteristics among the
stations for estimating RZSM using the single RF model developed. Perhaps representing all
the meteorological variables into one (or two) variables via dimensionality reduction methods
(e.g. Principal Component) may potentially result in different VI ranking for a consequent RF
model.

6.3.2 Root zone soil moisture estimation in the Raam catchment

The RF model performance for stations with the best and worst accuracy obtained from
RZSM interpolation and extrapolation are given in fig.6.9 (See Appendix, fig.8.2 and fig.8.3
for the complete results). RF interpolations (fig.6.9a and 6.9b) for RZSM have high accuracy
in comparison to RF extrapolations (fig.6.9 ¢ and d). However, the soil moisture dynamics
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Table 6.3: Accuracy metrics for RF and Hydrus-1 (H1D) for interpolation and extrapolation of
root zone soil moisture. The range of values (min.-max.) encountered from all 15 stations in the

Raam network are reported. Except for the unitless R?, the metric are expressed in m® m~3.
Interpolation Extrapolation
RF HI1D RF HI1D
RMSE 0.0097 - 0.0313 0.0185 - 0.0507 0.0168 - 0.0621 0.0201 — 0.0544
Bias -0.0128 - 0.0178 -0.0204 - 0.0259  -0.0235 - 0.0526 -0.0232 - 0.0219
Unb. RMSE  0.0095 — 0.0263 0.0175 — 0.0506 0.0167 — 0.0422 0.0192 - 0.0542
R? 0.7985 - 0.9730 0.6829 - 0.8652 0.6821 — 0.9611 0.4030 — 0.8443

(i.e. an increase or decrease) are still captured in the extrapolated values, even though soil
moisture state may be over- or underestimated. The accuracy of Hydrus-1D (H1D) simulations
are generally lower than RF interpolations but are comparable with RF extrapolations (table
6.3). For instance, the values from H1D simulations are closer to in situ values at the station
with the worst performing RF extrapolations (RM02).

The results from RF generally have high R? (> 0.75) and low RMSEs (> 0.06 m®*m~3),
indicating the capability of a data-driven method to accurately estimate RZSM. They are
comparable, or may even be better than those from H1D simulations, which further adds
weight to the utility of the RF model applied. Differences in accuracy between RF interpolation
and extrapolation could be related to the impact of the training samples used to build each
respective RF model. Higher accuracy for RF interpolations have resulted from inclusion
of most, if not all, of the possible RZSM conditions within the Raam catchment using the
randomly selected training set. This may not be the case for the RF extrapolation model
trained, which consequently contributed to lower accuracy in the validation set. The 'past’
data used to build the RF extrapolation model may exclude some of the meteorological or
soil moisture conditions possible in the Raam catchment. Therefore, 'future’ soil moisture
conditions that are not represented in the training set are 'unseen’ or ‘foreign’ values to the
RF model, and are more likely to be poorly estimated. Poor extrapolation of values outside
the training set is a known drawback of RF and other similar ML techniques (e.g. Hengl et al.,
2018). This can be resolved by inclusion of the full suite of soil moisture conditions and
corresponding covariates in the training dataset. However, this may not be always possible
from in situ measurements since not all soil moisture conditions are encountered in the field
within a short time span (<5 years). Remote sensing is seen as an additional source of
SSM or RZSM information provided that the spatio-temporal resolutions from satellite images
matches the intended scale of study. Another potential complementary dataset are those
simulated by process-based models, especially for extreme meteorological conditions that are
not encountered during field measurements. However, process-based model outputs should
also demonstrate acceptable to high accuracy levels in order to be used as inputs.

For the H1D simulations, data assimilation (DA) by direct insertion (DI) of in situ measure-
ments improved the root zone soil moisture estimates. H1D simulations at the stations with
the highest and lowest RMSE's (fig.6.10) both show improvement after DA (See Appendix,
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fig.8.4 for the complete results). Simulations based on soil hydraulic parameters from BOFEK
generally underestimated RZSM values for all the study sites. A substantial increase in model
accuracy is obtained after optimizing the hydraulic parameters. Further improvement in the
simulation accuracy were obtained after applying DA. Using the DI approach, model estimates
are pushed towards the observations. However, for some stations, a large spike or drop in
RZSM estimates are observed immediately after data was assimilated into the simulation.
The model reverts back to the original state quite quickly, which could either imply subopti-
mal DA sampling interval or that the model physics and/or parameters may not be completely
adequate in explaining the measurements. Such effects can be mitigated by applying other
types of DA (e.g. Ensemble Kalman Filter), which allow continuous estimation of model un-
certainties. However, despite some limitations of the DI method selected, the primary goal
was to demonstrate the improvement in model accuracy, and therefore, other (more complex)
DA methods were not further pursued.

6.3.3 Model residuals for extreme soil moisture conditions

Residuals of the model estimates against in situ measurements from all stations in the Raam
were further assessed to compare the model performance for extreme RZSM conditions. Ac-
curate RZSM estimates of extremes conditions are vital in understanding the environmental
impacts of climate or extreme climatology. In contrast to a single overall metric provided by
RMSE or R?, residuals allow investigation of specific RZSM values that are poorly estimated
using the two methods applied. The results from the residual analysis generally reflect the
accuracy obtained for RF (both inter- and extrapolation) and H1D, as described in the previ-
ous section. The range of residual values are smaller for RF interpolation and higher for RF
extrapolation (fig.6.11c and h). However, based on the residuals, less accurate estimates are
found towards drier and wetter soil moisture values from both RF and H1D.

The variability in the residuals for extreme conditions representing the 2.5 and 97.5™" per-
centiles (equivalent to < 0.08 m®m~3 and > 0.38 m® m~3) from the total dataset distribution
are given as boxplots in fig.6.11 (d, e,/,j). For the two RF models, extreme dry conditions
tend to be overestimated while extreme wet conditions tend to be underestimated, based on
larger than zero residuals for the former and smaller than zero residuals in the latter. The
degree of over- or underestimation is larger for RF extrapolation than RF interpolation. Fur-
thermore, H1D simulations have smaller residuals than RF for extreme dry conditions but have
worse estimates for extreme wet conditions.

Since extreme conditions represent only a small proportion of the total dataset, the probability
of being excluded from the bootstrap samples used for building the regression trees is higher
than other frequently encountered soil moisture values. This may have resulted to poor learn-
ing of the RF model, which is clearly demonstrated in the large residuals for RF extrapolations
of extreme dry conditions. RF extrapolations, with a median of 0.05 m3 m~3, mostly overes-
timated extremely dry conditions, and are worse than those from H1D simulations which had
a median close to zero.

Aside from the impact of the frequency of extreme conditions to the bootstrap samples, large



112 Root zone soil moisture estimation using Random Forests

Interpolation

0.39- .
Sos
:
F o ¢
37 zoz
] 02 03 02 03
0.24 in situ in situ
RF H1D+DA
0.0097 0.0353
0.0017 0.0259
0.0095 0.0241
0.09 - 0.969 0.733
0.30 1b. £ ‘&-f
# | voo g
2 Toalgs”
| Ca— | C—
01 02 01 02
insitu insitu
RF H1D+DA
0.0313 0.0257
0.0178 -0.004
0.0258 0.0254
0.799 0.788

Extrapolation

0.46 -c.

Root zone soil moisture (67, m*m)

0.31 1
RF H1D+DA
0.0168 0.0223
-0.0021 5e-04
. 0.0167 0.0223
0.16 JRM15 R 0.861 0.807
.314d. 03 . P
0.31d ‘ v SN 4
| b Xt + A
B o | #
Totlys™ 3
 CANSS—— P |
0.16 Tosia T Mnsie
RF H1D+DA
RMSE 0.0621 0.0235
Bias 0.0526 -0.0028
Unb. RMSE  0.0331 0.0233
0.01 JRM02 R? 0752 0.838
2016 2017 2018 2019
Time + RF - ---Hydrus 1D in situ
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residuals obtained for RF extrapolations and H1D (fig.6.11 d, e, /,j) may be related to the
covariates used in the former and the type of flow model applied in the latter. Since only
a pore-flow model was applied for simulation root zone soil moisture using H1D, the impact
of preferential flow was excluded in the analysis. Preferential flow paths generated by biotic
(plant roots or animals) activity are likely to be present at the study sites. However, additional
model parameters for incorporating preferential flow are not readily available for the study
sites and would require separate investigation. Arguably, pore-flow models are still the widely
implemented for most applications of process-based models. Migration to a framework that
routinely incorporates preferential flow might be necessary for modelling at spatial-temporal
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Figure 6.10: Hydrus-1D simulations at the stations with the lowest (top) and highest (bottom)
RMSE's using soil hydraulic parameters from BOFEK2012 (yellow). The results from the optimized
soil hydraulic parameters (green) as well as those from data assimilation (DA) via direct insertion of
in situ measurements (red) are also plotted for comparison. Black dots represent data assimilated
at every 20-day sampling interval. Accuracy metrics for each are provided below the scatterplots
(bottomright)

scales where its impact are substantial. Similarly, covariates used in RF also dominantly
reflect processes that are important for simulating pore-flow. As mentioned in section 6.2.2,
they were chosen based on the knowledge that they are inputs for the process-based model.
Underestimation of the two RF models for extreme wet conditions indicates that the covariates
selected may have been insufficient to achieve higher accuracy for the said conditions. Addition
of covariates which directly represent or indicate the likelihood of occurrence of preferential
flow paths in the soil could potentially be beneficial for the RF model. However, deriving such
covariates with suitable spatio-temporal resolutions remained elusive.

6.3.4 Contextualizing utility of data-driven methods for RZSM estimation

Comparison for the results from RF and H1D show that both methods are equally able to accu-
rately estimate RZSM state, although they operate differently. On the one hand, process-based
models determine the rate of water movement along the soil profile which always require soil
hydraulic properties. One the other hand, ML methods such as RF performs focus on patterns
than allow hierarchical splitting of the dataset using suitable covariates. For both methods,
techniques are available in order to optimize and improve naively implemented models that
can elevate accuracy to acceptable levels. The question of utility for different scenarios or
applications therefore arises. In other words, what are the advantages/disadvantages of one
over the other, and how does this affect model selection for a certain application? For RF,
one the of the advantages of a data-driven method is its ability to create a single model that
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Figure 6.12: A flowchart for model selection between data-driven or process based methods.

will fit very large datasets without any assumption on the system dynamics. An RF approach
may be attractive for areas with limited information on soil hydraulic properties because it can
be applied using easily obtained meteorological and satellite-derived variables. Process-based
models maybe applied over large areas in a spatially distributed manner but they need to
explicitly account for heterogeneities in soil properties by modifying the hydraulic parameters
and/or the type of flow mechanisms expected for different parts of a study area. One com-
mon supplementary analysis for process-based models is to apply pedo-transfer functions to
estimate soil hydraulic parameters from commonly measured soil properties such as texture
and organic matter content. RF, however, circumvents the need to carry out this intermediate
and supplementary step by not requiring prior assumptions on the system dynamics, thus not
anchoring its estimates on soil hydraulic properties. For this study, another difference between
the two models applied is the use of SSM values in developing the RF model. Although the-
oretically, RF could be carried out excluding SSM, the results from the variable importance
list show that SSM is relevant for achieving good model performance. Satelite-derived SSM
is a good alternative for the RF model in cases where in situ measurements are insufficient.
Lastly, high RF accuracy for prediction of soil moisture values further opens opportunities for
filling data gaps in highly non-linear time-series datasets.

The increasing amount of available soil moisture measurements globally could be a resource
for expanding the application of data-driven methods in soil hydrology. Similar to what is
carried out in this study, creation of a single model from numerous soil moisture networks
could potentially allow for operational RZSM prediction or forecasting at different spatio-
temporal scales. In situations where the primary goal is to determine the soil moisture state,
RF is seen as a good approach as it can be applied based on accessible surficial datasets.
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However, it is not capable of determining the dominant processes the control the soil moisture
state, although a hint may be provided in the important variables list identified by the RF
model. The impact of certain processes on soil moisture state may be better analyzed with
using a process-based model. The context in which each method may be the better option is
summarized in fig.6.12

6.4 Conclusions

In this study, we demonstrated the capabilities of a data-driven method using Random Forest
for estimating root zone soil moisture with high accuracy, similar to process-based models. It
may be advantageous to apply a Random forest framework for areas with limited information
on soil hydraulic properties, and may circumvent the need to apply pedo-transfer functions.
Increasing availability of datasets from in situ measurements worldwide, and also from satellites
provide opportunities in data-driven methods for large scale studies or operational (water)
management. However, the results from the Random forest model does not explicitly elaborate
on process controlling soil moisture state and may suffer from poor extrapolation results.
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In this PhD project, the potential of radar satellites, particularly Sentinel-1, to support resource
efficient agriculture and operational water management was explored. Sentinel-1 continuously
collect information that is related to soil moisture, but it has not been clear how to directly
exploit the information for agricultural applications. The findings within this PhD project have
advanced understanding of the dynamics between surface and sub-surface moisture and, more
to the point, provide new and novel insights into how to directly harness the strengths of radar
satellite technology for effective water management and soil protection.

This chapter provides a synthesis of the results obtained separately from the previous research
chapters. First, a summary of results or highlights from each of the research chapter is
presented. These aim to answer the research questions posed in chapter 1. Afterwards, new
scientific insights drawn from new methods and results obtained from the research chapters
are described. The third section focuses on interpretations and implications of the results for
relevant fields. Finally, the last section reflects on the limitations/challenges faced within the
research as well as future outlook.

7.1 Summary of major findings

7.1.1 How does soil moisture vary over depth and over which conditions are surface
and subsurface soil moisture coupled?

Investigation of vertical soil moisture variability in agricultural field resulted in identification
of coupled and decoupled conditions in Chapter 2. The former indicates conditions when the
surface moisture is a good representation of subsurface conditions, while the latter does not.
Previous studies that investigated spatio-temporal soil moisture variability in similar landscapes
observed decoupled conditions primarily during a drying phase, which was attributed to variable
surface evaporation rates (e.g. Hirschi et al., 2014). However, a new insight from our research
is that decoupled conditions are not necessarily unique to dry periods since they were also
observed during wet periods as reported in Ch. 2. This has implications for understanding the
controls on soil moisture dynamics. For instance, as inferred from the results in Ch. 2 soil
heterogeneity and the presence of macropores at the sensor location contributed to decoupling
during wet conditions. The statistical methods applied to analyze (de)coupling is considered
robust as no prior assumptions are made regarding the relation between surface and subsurface
soil moisture values. Furthermore, the distributed lag non-linear model (DLNM, Gasparrini
et al., 2010) applied is capable of considering all lag effects in comparison to singular lags in
correlograms. In addition, it is flexible enough to be extended and include other environmental
variables that may have lagged relations with subsurface soil moisture. Knowledge of when
(de)coupling between surface and subsurface occurs has implications for remote sensing and
data assimilation methods, especially for uncertainties related to the use of surface soil moisture
to obtain integrated soil moisture values. In addition, this knowledge can be used to explore
surface and subsurface soil moisture variability to identify processes that may be excluded or
not adequately represented in process-based hydrological models.
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7.1.2 How does subsurface soil moisture in agricultural areas vary in space and
time?

In Chapter 3, meteorological conditions over a cultivated field are considered uniform and
their direct influence on subsurface soil moisture dynamics is much less than their influence
on surface soil moisture. Therefore, in a cultivated field, the effects of soil heterogeneity and
root water uptake on subsurface soil moisture at 40 cm depth were analyzed over different
seasons. Although Chapter 3 focused on a single field, the results obtained have implications
on the subsurface variability expected in other similar landscapes.

During winter when the soil was bare, variability in measured subsurface soil moisture was
attributed to variability in soil structure alone since only a single soil textural composition is
present in the field. Over vegetated periods, the variability in subsurface soil moisture was
found to increase substantially due to vegetation activity. Comparison of the results under the
bare and vegetated conditions presented show that subsurface soil moisture variability in the
latter may be up to nine times greater compared to the former. Aside from taking up water,
root growth and distribution can alter the structure of the soil over a growing season which
has additional direct impacts on soil moisture variability.

Crop types and land management associated with each crop type can further manipulate the
soil moisture dynamics. Within the same field planted with two crops, distinct subsurface soil
moisture patterns were observed under each crop. In particular, soils under the potato crops
had consistently higher subsurface soil moisture measurements compared to the relatively lower
soil moisture measured under corn, leading us to the conclusion that potato cultivation results
in increased or longer soil water retention than cultivation of corn.

During the 2018 drought, the variability in subsurface soil moisture due to root water uptake
was proportional to atmospheric demands. In other words, there was higher variability in sub-
surface soil moisture when the potential evapotranspiration was higher. However, this is only
true for conditions with sufficient subsurface soil moisture to accommodate atmospheric de-
mands. Once subsurface soil moisture is depleted, the amount and variability in root water up-
take decreased, even during days when the potential evapotranspiration remained high. Since
measurements were taken only at a single depth, it was inferred that vegetation sought other
(deeper) layers with sufficient water supply. These results contribute further measurement-
based evidence for the adaptive root water uptake strategies of vegetation, especially during
dry periods.

The soil hydraulic parameters estimated using inverse modeling demonstrated significant dif-
ferences in saturated water contents. The results highlight that the pore-flow regime applied
produced reasonably accurate parameters only for bare conditions. It was challenging to es-
timate soil hydraulic parameters during vegetated periods not only using a pore-flow model,
but with other flow regimes as well. These results suggest that the current information on
subsurface characteristics during vegetated periods or that current modeling frameworks are
not sufficient to successfully apply inverse modeling for estimation of hydraulic parameters
from in situ measurements.
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7.1.3 During saturated water conditions, how can satellite-derived surface soil
moisture be used for management of agricultural fields?

In temperate regions, tillage activities at the start of the growing season typically coincide
with saturated soil moisture conditions. Even though water supply is not a concern, field
trafficability can be a serious problem, not only in relation to mobility of heavy machinery but
also for aggravating the levels of subsurface soil compaction. Results presented in chapter 5
indicate that satellite-derived soil moisture information has great potential for use in monitoring
the trafficability status in agricultural fields. This clearly demonstrates a direct application of
Sentinel-1 surface soil moisture data since coupled conditions were found for the months of
March, April and May when much is conducted.

The results further highlight the role of land management in different agricultural fields. For
example, cultivated fields are likely to suffer more from problems associated with trafficability
than grass fields because tillage activities in the former tend to ‘reset’ soil strength annually or
seasonally. Different stages of vegetation growth were observed to impact the soil’s penetration
resistance measurements, especially in cultivated fields. The value and variability in penetration
resistance increased with crop growth. This suggests the importance of vegetation in improving
the ability of soils to support traffic, similar to the results of several studies as reviewed by
Wieder and Shoop (2017)

7.1.4 For drier periods, does vegetation backscatter from Sentinel-1 have the po-
tential to reflect root zone soil moisture?

Results presented in chapter 4 focus on exploring the potential for vegetation backscatter to
reflect root zone soil moisture over a three-year study period. Estimation of soil moisture from
radar satellites has largely focused on the soil component of the total backscatter. However,
one of the main limitations of this approach is that only the upper surface soil layer is measured.
During vegetated periods, the impact of the vegetation component on the total backscatter is
non-negligible especially for broad-leaf crops. This affects the retrieval of the soil component
and, consequently soil moisture estimation. Interestingly, the vegetation component is also
sensitive to vegetation water content much like the soil component is sensitive to soil moisture.
What is notable about this is that the vegetation water content is highly dependent on the
available water in the soil. Theoretically therefore, the vegetation backscatter could offer
insights into the amount of root zone soil moisture since studies have shown that at pre-dawn
soil and leaf-water potential are in equilibrium (e.g Sellin, 1999).

In chapter 4, vegetation backscatter showed stronger correlations with root zone soil moisture
during a dry period in 2018 when compared to the soil backscatter. In contrast, stronger
correlations with soil backscatter were observed for 2016 and 2017 which were characterized
as years with average meteorological conditions. We hypothesize that the correlations obtained
were influenced by surface-root zone soil moisture (de)coupling. Due to the dry conditions,
surface conditions were generally decoupled from root zone soil moisture in 2018 but were
coupled in 2017 and 2016. It is suggested that the vegetation backscatter has the potential to
be another source of root zone soil moisture information during extremely dry or water-limited
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conditions. It may overcome the limitations of radar-derived surface soil moisture which is
unable to represent the root zone during such extreme conditions.

7.1.5 Can a data-driven approach based on surface conditions accurately estimate
root zone soil moisture?

Data-driven methods provide opportunities to develop quantitative models without prior as-
sumptions about the dynamics of the system under investigation. Results contained in Chap-
ter 6 show that a purely data-driven machine learning (ML) method, in this case using Random
Forests (RF), can achieve a level of accuracy comparable to process-based models for esti-
mating root zone soil moisture. Furthermore, RF may be advantageous for areas with limited
information on soil hydraulic properties. Available remote sensing datasets for relevant covari-
ates, such as surface soil moisture from Sentinel-1, would be valuable in developing ML-based
models for root zone soil moisture. The proliferation of soil moisture networks also provides
an opportunity to explore the capabilities of ML for estimating root zone soil moisture over
much larger scales. While ML and process - based models operate on different fundamental
frameworks, existing knowledge from both can complement future endeavors. For instance,
meteorological variables used as inputs in physical models can be used as the covariates in data
driven methods. Processes that affect the current soil moisture state should be represented in
one or more of the covariates used for ML methods. As shown in chapter 6, lower accuracy
was obtained for extreme dry and wet conditions, which was related to the choice of covariates
in the RF model.

7.2 General conclusions

The underlying hypothesis of this project was that radar satellites can be used for estimation of
agricultural water requirements since their sensitivity to surface soil moisture can be exploited
to gain further insights into soil moisture at deeper soil layers (e.g. topsoil or root zone).

The main goal was discovery of how satellite- derived surface soil moisture information can be
used in agricultural fields and operational water management. The focus was on analysis of
methodologies to maximize the use of radar satellites for estimation of root zone soil moisture
conditions while also addressing the limitations. This novel approach considered how well radar
satellites represent subsurface conditions for different periods of a growing season instead of
focusing solely on existing approaches such as data assimilation into process-based hydrological
models. Emphasis was also given to subsurface soil moisture dynamics in order to advance
understanding of its variability and controls over agricultural fields as this is closely linked
with the ability and effectiveness of radar satellites to represent subsurface conditions (Ch.
3). An important contribution of this thesis is the quantification of (de)coupled soil moisture
values which is key to the applications for satellite-derived surface soil moisture information
(Ch. 2). For cases when surface - subsurface coupling predominates (i.e. surface soil moisture
reflects subsurface conditions), it was shown that satellite-derived surface soil moisture can be
used directly as representative of subsurface/rootzone conditions, for instance in monitoring
trafficability to reduce problems with heavy machinery and compaction (Ch.5). However,
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Figure 7.1: Flowchart showing how the findings of different sections of this thesis could aid in
operational water management agricultural fields. The chapter related to a section of the flowchart
is indicated.

decoupled conditions require more complex or sequential analysis for root zone soil moisture
estimation. In that regard, another important contribution of this thesis project is discovery or
validation of two innovative approaches for addressing the challenges of decoupled conditions.
One innovative approach to using satellite data for decoupled conditions discovered in this
research is to utilize the vegetation component of the backscatter instead of focusing only on
the soil backscatter, especially for water-limited periods (Ch.3 and 4). Another approach to
estimating rootzone moisture during decoupled conditions that still uses the satellite surface
soil information is to apply data-driven methods which do not require assumptions about
system dynamics (Ch.6.) Both of these approaches have advantages, particularly for data
poor regions.

With respect to the main hypothesis, this thesis research has verified that agricultural water
requirements can indeed be estimated from radar satellites in multiple ways and has devel-
oped/identified several approaches for doing so that overcome limitations or questions that
existed before this research was conducted. These results will allow incorporation of radar-
derived surface soil moisture into an adaptive methodological framework for agriculture and
operational water management that reflects close to real-time conditions, instead of relying
on a single method (e.g. data assimilation into process-based model) that will have varying
accuracy across the full range of soil moisture encountered.
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7.3 Discussion

7.3.1 Scientific Advancements/Implications

Multiple methods have been explored and developed in this research project for estimating
root zone soil moisture from Sentinel-1, primarily for agricultural areas. Prior to this research,
satellite-derived surface soil moisture information has been commonly applied using data as-
similation into process-based hydrological models (e.g. Houser et al., 1998; Draper et al., 2012;
Pezij et al., 2019b). Other less commonly applied data-driven methods have been developed,
primarily using time series analysis (e.g. Soil Water Index, Wagner et al., 1999). This thesis
differs from previous studies in that the direct applicability of satellite-derived soil moisture was
sought by investigating the spatio-temporal soil moisture dynamics. Instrumental to the con-
clusions made in this thesis was the identification and quantification of soil moisture coupling.
Although the surface-subsurface coupling has been described in literature (e.g. Capehart and
Carlson, 1997, also in relation to the utility of remote sensing products), this thesis further
demonstrates its importance for gaining insights on factors controlling soil moisture or devel-
oping methods that extends the direct utility of soil moisture information derived from radar
satellites for agricultural applications.

This thesis further highlights that the vegetation backscatter is an untapped resource for
directly estimating root zone soil moisture during extremely dry conditions. It complements
the lack of sensitivity of the soil backscatter to root zone soil moisture during such extreme
conditions. Utilization of the vegetation backscatter can result in a more simplified way of
estimating root zone soil moisture during for water-limited periods that require lesser data and
fewer model parameters, in comparison to using data assimilation with process-based models.
This can further eliminate the need to address the uncertainties in surface soil moisture retrieval
during vegetated periods. The vegetation backscatter can be beneficial in assessing vegetation
water-stress levels, crucial during droughts, that will relevant for giving out timely management
or disaster-risk advisories over agricultural and forested areas. Currently, studies that focus on
radar satellite-derived vegetation characteristics to determine root zone soil moisture dynamics
are still limited. Future studies are needed to ascertain the utility of vegetation backscatter
in providing direct and accurate root zone soil moisture, which could make radar satellites
such as Sentinel-1 (S1) indispensable water management tools for different agro-hydrological
conditions. In relation to data assimilation, perhaps there is potential for the vegetation
backscatter to be assimilated into process-based models, similar to the recent investigation
of Kumar et al. (2020) who assimilated the vegetation optical depth derived from passive
microwave radiometry in land surface models for improved estimations of water and carbon
fluxes or for joint assimilation with surface soil moisture.

7.3.2 Implications for satellite-aided operational water management in agricultural
fields

One of the primary motivations for investigating soil moisture variability in this research was to
assess the potential of using satellite-derived soil moisture data, particularly S1, for operational
water management. This involves translating data from sensors into useful information or indi-



124 Synthesis

cators for advisory or decision-making. The findings of this research collectively demonstrate a
framework for how S1 can aid operational water management, as summarized in fig.7.1.

The results presented in Ch.5 demonstrate that estimation of field trafficability could be easily
achieved from S1 with minimal analysis. This would facilitate timely advisory for farmers of
when to initiate tillage every growing season. Arguably, the onset of tillage is still depen-
dent on the farmers knowledge and assessment of local conditions based mostly on prevailing
rainfall events. However, their assessments alone have individual subjectivity that may risk
exacerbating the existing subsoil compaction levels in a field. Nevertheless, their years of ex-
perience should also not be discounted since they are well accustomed to conditions in their
fields they may also be considered experts. Therefore, field trafficability advisories based on
S1 could supplement their initial assessment of the suitability of the soil for tillage. This is
valuable in order to balance a farmer’s productivity and with further mitigation of present
subsoil compaction levels.

Consequences of poor farming practice during saturated conditions are, arguably, given less
attention than those during dry periods. Perhaps this is due to the direct and more noticeable
impacts on crop yield during dry periods as compared to the invisibility of subsoil compaction
due to poor field traffic management. Although soil compaction has been extensively studied
in the past, indicators for practical applications that support and facilitate mitigation of soil
compaction are not extensively available. This is important since the ubiquity of compacted
soils in agricultural fields have resulted in continued adverse effects in soil functions (Keller
and Lamandé, 2010)and may have consequences not only for the estimation of root zone soil
moisture, but for soil productivity as well. In the Netherlands, for instance, Brus and Van
Den Akker (2018) estimates that 43% of the areas estimated to be at risk of subsoil com-
paction, excluding peat areas, are already overcompacted. In a review paper a few years ago,
Nawaz et al. (2013) estimated that about 68 million ha. of the soils worldwide are affected by
soil compaction from vehicular traffic. Although an outlook was not further elaborated in both
studies, the demands of increasing global population will put further pressure on agricultural
production. Therefore, these estimated values will increase in the near future.

Root zone soil moisture is a valuable information for farmers and water managers further into
the growing season to determine irrigation demands. Most of the indicators needed by farmers
to execute the necessary water management for their field (e.g. soil water storage, available
crop water) are based on estimates of root zone soil moisture. Water managers use root zone
soil moisture information in deciding the appropriate levels of weirs along canals to meet water
demands in agricultural fields. The occurrence of extreme meteorological conditions, such
as the 2018 European summer drought, may also coincide with the growing season or crop
maturity. With climate change, such extreme conditions are predicted to be more common in
the future (Seneviratne et al., 2012). Therefore, maximizing crop water resources will remain
essential for farmers and water managers to meet crop demands now and in the future.

Results in this thesis, specifically in Ch.3-5, agree with previous studies that accurate estima-
tions of root zone soil moisture from S1 is not trivial because of both the increased subsurface
soil moisture variability and influence of vegetation backscatter for vegetated periods (e.g.
Bindlish and Barros, 2001; Gherboud;j et al., 2011; Kornelsen and Coulibaly, 2013). However,
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instead of focusing on improved parameter estimation or optimization of currently applied
data assimilation and process-based modelling, alternative methods that circumvent the lim-
itations in these existing methods are presented in this thesis. By assessing the direct utility
of S1 for root zone soil moisture estimation based on coupling between the surface and the
subsurface, additional options are provided to soil hydrologists and water managers in cases
when the traditional process-based models prove to be inadequate. This may occur because
currently, process-based modelling frameworks do not systematically incorporate and embed
the dynamic nature of the subsurface soil conditions, which is especially true for agricultural
areas. Furthermore, having multiple methods for root zone soil moisture estimation is bene-
ficial for areas with data availability concerns, and not only for for areas with sufficient data
such as the Netherlands. In such areas, operational water management could still be carried
out by capitalizing on data-driven methods using freely available satellite or meteorological
datasets.

Integrating the methods developed in this thesis with new technology that facilitate end-user
services could definitely aid farmers in optimizing their activities in the absence of direct field
measurements. For instance, the probabilistic measure of trafficability estimated in Ch.5 or
root zone soil moisture estimation in Ch.4 could be incorporated in cloud-based services that
allow near-real time assessment monitoring.

7.3.3 Implications for measuring and modeling spatio-temporal soil moisture dy-
namics

The effects of land management and biological activity on soil moisture dynamics in agricultural
areas have been extensively examined using process-based models in literature. Although the
field of hydrological modeling is mature, the lack of consistent modeling results in Ch.3 high-
light aspects that need further investigation in order to realistically represent spatio-temporal
changes in (agricultural) field conditions within computer simulations. This is important since
the results of process-based models are increasingly being relied on for operational manage-
ment, as well as policy and decision-making.

The results in this thesis show that vegetation act as agents of change that make agricultural
areas dynamic environments even at short time scales spanning months or seasons. However,
the exact role of roots and root development on the physical properties of the rhizoshpere
is still a matter of debate. For instance, some studies suggest that roots may compact soils
around them (e.g. Dexter, 1987; Koebernick et al., 2019), similar to the increased penetration
resistance with crop growth in Ch.5. Others found that roots and plant growth improved
porosity and hydraulic conductivity in the rhizoshpere (e.g. Helliwell et al., 2017; Whalley
et al., 2005). Similarly, improved saturated water contents from bare to vegetated periods
were estimated in Ch.3, implying improved porosity. Therefore, more research is needed
to ascertain the role roots play in modifying soil physical properties in order to reconcile
contrasting results in literature, such as those presented above. One example is the recent
study of Lucas et al. (2019) who, through microscopic investigations, demonstrated that root
interactions with existing soil pore structure determine the subsequent effect of root growth
on soil structure. In other words, they showed that roots can compact the surrounding soil
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depending on the structures they encounter. Furthermore, by demonstrating that existing
soil conditions influence plant-soil interactions, Lucas et al. (2019) hint at the importance
of feedback loops in their results. In relation to the modeling results in this thesis, dynamic
soil hydraulic properties estimated for the cultivated field investigated in Ch.3 are also likely
influenced by feedback mechanisms. Current modeling frameworks to simulate water content in
the unsaturated zone over longer time periods (i.e. years) therefore need to include provisions
to systematically integrate known feedback mechanisms. This is important since some of
the changes in soil hydraulic function due to biological feedbacks could be irreversible, as
demonstrated by Robinson et al. (2016, 2019). Robinson et al. (2019) further stressed that
incorporating all the major feedbacks between soil properties and soil-biological-atmospheric
processes, from land use and climate drivers of change, is crucial to better model ecosystem
dynamics.

Currently, mathematical models for different types of flow regimes are available in modeling
platforms despite lacking feedback mechanisms. They can potentially allow for dynamic soil
hydraulic properties in a stop-and-go framework, but may not always be easy and straightfor-
ward to implement. The findings in Ch.3 support previous studies which demonstrate improved
modeling results when dynamic soil hydraulic parameters are applied (e.g. Alletto and Coquet,
2009; Schwen et al., 2011b). Because of seasonal changes in agricultural fields, dynamic
soil properties is, arguably, the rule rather than the exception in these types of landscapes.
It is clear that time-invariant soil hydraulic properties should be substituted with more dy-
namic soil functions in soil hydrologic model structures and should not be seen as a static
occurrence.

At present, pore-flow regimes are still commonly used for most practical applications in agricul-
tural water management. The systematic use of other types of flow regimes is, perhaps, hin-
dered by limited knowledge of when to transition from a pore-flow dominated or a preferential-
flow dominated system. For instance, it was demonstrated in Ch.2 that decoupling could be
related to the presence of hydraulically effective macropores at the measurement location.
However, the extent at which hydraulically effective macropores persist in the soil over a
growing season, whether they dominate or are only sparely distributed in the subsurface, is dif-
ficult to ascertain. This information is essential as it can assist modelers in determining when
or during which conditions would a particular type of flow regime more appropriately describe
a system under investigation. Not only does this strengthens the need to incorporate feed-
back mechanisms that are deemed precursors of dynamic soil properties, it also highlights the
limited availability of tools to estimate effective hydraulic parameters suitable for preferential
flow models.

Despite the growing consensus about its importance to soil functions and hydraulic properties
(Rabot et al., 2018), in situ characterization of the temporal changes in soil structures using
sensors and measuring devices at relevant modeling scales are difficulty to obtain. Further-
more, available datasets of hydraulic parameters of macroporous soils based field or laboratory
techniques are far less common than for matrix or pore flow. At present, hydraulic properties
of macroporous soils may be estimated through inverse modeling solutions based on measured
soil moisture data (Haws et al., 2005). Characterization of 3D soil structure from soil sam-
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ples have been carried out using SEM or X-ray CT at the microscopic scale (e.g. Luo et al.,
2008; Sammartino et al., 2012), fluorescence imaging at millimeter scales (e.g. Haas et al.,
2020), and using dye traces in the field (e.g. Alaoui and Goetz, 2008; Cey and Rudolph, 2009).
Future efforts are needed to translate these observations into effective hydraulic parameters
to facilitate more practical applications of preferential flow modelling studies. In addition,
Chandrasekhar et al. (2018) noted that applications of temporally variable soil hydraulic pa-
rameters in models is not limited by the lack of theoretical framework but because of the lack
of adequate and relevant soil structural and hydrologic data.

Overall, soil moisture estimation in agricultural fields requires dynamic soil functions and hy-
draulic properties in order to accurately represent subsurface processes. The cyclical changes in
the soil due to vegetation growth and land management adds additional dimensions that make
subsurface soil moisture equally as variable as surface soil moisture. Mapping and monitoring
of subsurface soil moisture variability may, however, prove to be more challenging because of
the complexity of data collection or sampling, and quantifying plant responses and effects to
soil physical properties. The growing need to provide accurate soil moisture information at lo-
cal scales and higher temporal frequencies in agricultural landscapes may provide the necessary
push to adapt a dynamic modeling framework in future scientific efforts.

One avenue that could be explored to improve the current structure of process-based models is
the vast, and continuously increasing amount of global in situ soil moisture datasets that have
been collected over the years, and some made available through data hosting platforms such as
the International Soil Moisture Network (ISMN, Dorigo et al., 2011b). Chapter 6 demonstrates
that machine learning (ML) can achieve high accuracy for estimating soil moisture states using
available satellite- and measurement-based datasets. The applications of ML, and also deep
learning (DL), to hydrology is expanding further with recent advances in the fusion of data-
driven and process-based models through a physics-guided machine learning framework (e.g.
Karpatne et al., 2017; Read et al., 2019; Zhao et al., 2019). However, the potential of ML or DL
methods goes beyond spatio-temporal forecasting and prediction of the environmental variables
or parameters. Reichstein et al. (2019) presented several opportunities of DL approaches to
hydrological and earth sciences. Among them were in recognition of the particularities of
the data, plausibility and interpretability of inferences, uncertainty estimation, and testing
against complex physical models. They did not however, explicitly mention the identification
or assessment of feedback loops in models, but may have implicitly included it in recognition
of particularities of the data. Using available soil moisture datasets, ML and DL are potentially
useful tools for exploring consistent patterns and relationships (Steinbach et al., 2001) and
well as causality between variables (Pearl, 2009; Runge et al., 2019) that may shed light
to important processes and feedback loops that poorly represented in current hydrological
modeling frameworks.

7.3.4 Research challenges/limitations and outlook

e The study areas were located in dominantly sandy soils that are homogeneous over the
depths investigated. The surface-subsurface coupling behaviour for other soil textures
or for structured soil were not investigated. Furthermore, it is challenging to project
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and extend the results found in this thesis for other soil textures or soil configurations
because of the non-linear behaviour of soil hydraulic properties. Therefore, future
research is needed to determine the (de)coupling behaviour for other soil textures;

The study sites are in a temperate region with generally flat terrain. This has conse-
quences for the processes included in the models applied. Agricultural areas in other
climatic regions and in mountainous terrains may be further influenced by lateral flows
and surface run-off, which are not considered applicable for the areas investigated,;

The areas investigated for vertical soil moisture (de)coupling had low water tables
and, because of their occurrence in sandy soils, were not significantly affected by
groundwater fluctuations or capillary rise. However, local topography, groundwater
levels and texture is foreseen to affect the estimation of (de)coupled soil moisture
states. For areas where groundwater is foreseen to be impactful, relevant datasets
should be included for the distributed lag nonlinear model applied.

The results obtained focused on water management in agricultural areas but may
potentially find parallel applications for forested regions. For instance, the potential of
vegetation backscatter for monitoring root zone in forested areas and their potential
use for wildfire assessment. Furthermore, arid areas may be interesting regions to
further explore the utility of the vegetation backscatter in representing root zone soil
moisture because water-limited conditions are commonly encountered;

The field measurements gathered in this research focused on the soil but with limited
characterization of vegetation traits. Future research should aim to have simultaneous
measurements of vegetation and soil characteristics to reduce the assumptions made
in investigating soil-plant interactions;

The assessment of trafficability focused only on changes to soil strength with soil
moisture. However, the impact of vehicular characteristics (e.g. tire inflation pressure)
on trafficability and vehicle-soil interactions is not explored. The assumption is that
the threshold applied for estimation of trafficability is applicable to average tractor
weights of 6-8 tons. However, incorporating soil mechanics with soil moisture impacts
on soil strength could improve assessment of field trafficability.
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Figure 8.1: Plots of relative differences (RD) over different seasons based on temporal stability

analysis. a) Spatial plots of median and standard deviations in RD (MRD and

SDRD). b) The

stations are ranks based on increasing MRD for the different seasons. The dots indicate MRD

while the bars indicate SDRD for each station.
locations while the black circles were changed after 2017 harvest. MRD and SDR
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Table 8.1: Soil classes and hydraulic properties based on BOFEK2012 (Wosten et al., 2013). The optimized parameters obtained from inverse
modelling with Hydrus-1D are given on the last few columns.

Name BOFEK2012 unit code PAWN code Upper Depth Lower Depth Startingreeks code 7, 7 P BOFEﬁ 2012 K. T 7, 0 HY%RUS-IE optln;(lszed T
RMO1 305 10 0 25 B1 0.00 0.37 0.0208 1.646 33.34 0.571 0.077 0.545 0.009 1.459 57.463 0.163
25 90 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.078 0.445 0.003 1.594 2.703 0.204
RMO02 305 10 0 25 B1 0.00 0.37 0.0208 1.646 33.34 0.571 0.090 0.361 0.011 1.895 114.810 0.580
25 90 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.041 0.313 0.020 1.454 38.716 0.785
0 25 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.000 0.402 0.022 1516 63.779 -0.304
RMO03 304 9 25 60 02 0.00 0.38 0.0182 1.870 63.90 0.911 0.055 0.500 0.016 1.690 33.119 0.911
60 120 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.062 0.628 0.021 1.718 22.317 0.796
RMO04 305 10 0 25 B1 0.00 0.37 0.0208 1.646 33.34 0.571 0.012 0.484 0.012 1.403 99.219 0.164
25 90 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.013 0.635 0.014 1.619 29.852 0.002
RMO05 311 12 0 90 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.000 0.434 0.015 1.287 49.987 -0.503
0 20 B8 0.00 0.40 0.0313 1.200 22.90 -3.578 0.000 0.480 0.043 1.231 26.590 -3.578
RMO06 409 20 20 40 010 0.00 0.44 0.0231 1.212 25.60 -2.220 0.000 0.476 0.027 1.253 55.259 -2.220
40 65 09 0.00 0.41 0.0280 1.283 24.00 -1.559 0.019 0.490 0.026 1.306 33.161 -1.559
RMO07 317 12 0 90 B3 0.00 0.45 0.0152 1.412 17.81 -0.213 0.095 0.419 0.014 1.402 26.936 -0.056
0 25 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.000 0.538 0.017 1.690 12.896 -0.304
RMO08 304 9 25 60 02 0.00 0.38 0.0182 1.870 63.90 0.911 0.117 0.452 0.011 2.299 45388 0.911
60 120 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.017 0.559 0.020 1.343 77.552 0.796
0 25 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.010 0.413 0.023 1.654 88.567 -0.304
RMO09 304 9 25 60 02 0.00 0.38 0.0182 1.870 63.90 0.911 0.000 0.434 0.008 1.822 13.537 0.911
60 120 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.065 0.499 0.022 1.472 25717 0.796
0 25 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.047 0.453 0.024 1.455 59.433 -0.304
RM10 304 9 25 60 02 0.00 0.38 0.0182 1.870 63.90 0.911 0.060 0.498 0.018 1.866 41.270 0.911
60 120 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.083 0.486 0.017 1.783 61.426 0.796
0 25 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.085 0.337 0.024 1.243 71.797 -0.304
RM11 304 9 25 60 02 0.00 0.38 0.0182 1.870 63.90 0.911 0.051 0.300 0.016 1.216 21.441 0.911
60 120 01 0.00 0.35 0.0220 2.186 99.70 0.796 0.134 0.599 0.030 1.527 127.540 0.796
0 25 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.000 0.478 0.016 1.615 80.487 -0.304
RM12 304 9 25 60 02 0.00 0.38 0.0182 1.870 63.90 0.911 0.004 0.502 0.014 1.725 49.370 0.911
60 120 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.069 0.567 0.030 1.588 5.319 0.796
0 30 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.003 0.483 0.003 2.527 163.940 -0.304
RM13 309 13 30 60 02 0.00 0.38 0.0182 1.870 63.90 0.911 0.116 0.409 0.003 1.614 154.260 0.911
60 120 o1 0.00 0.35 0.0220 2.186 99.70 0.796 0.001 0.574 0.014 1.330 230.460 0.796
0 20 B3 0.00 0.45 0.0152 1.412 17.81 -0.213 0.053 0.372 0.013 1.414 15.818 -0.213
RM14 312 13 20 55 03 0.00 0.34 0.0265 1.543 44.60 -0.333 0.084 0.426 0.028 1.277 14.439 -0.333
55 120 02 0.00 0.38 0.0182 1.870 63.90 0.911 0.047 0.584 0.016 1.945 10.991 0.911

RM15 311 12 0 90 B2 0.00 0.43 0.0224 1.436 32.21 -0.304 0.056 0.570 0.016 1.430 35.873 -0.258
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Figure 8.2: Random forest (RF) interpolation for each station in the Raam network (blue points) from a model trained using 50% the total
dataset. The blue bands represent the 2.5t" and 97.5™" percentile prediction interval. Hydrus-1D (H1D) simulations are drawn as brown lines.
Scatterplot of RF vs in situ values show the accuracy of the predictions. The accuracy metrics are given are in m3m~3, except for the correlation
coefficient, which is dimensionless.
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Figure 8.4: Root zone soil moisture estimates from Hydrus-1D simulations. Results using soil hydraulic parameters (shp’s) obtained from
BOFEK2012 (Wosten et al., 2013) are plotted in grey. The green lines show the results based on the set of optimized shp's while the red lines
are results after data was assimilated via direct insertion of in situ measurements at every 20-day sampling interval (n), as represented by the

black dots. The accuracy metrics are given are in m
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Summary

Since modern day agriculture is commonly carried out over large areas, efficient land and water
management strategies are essential in order to meet increasing crop productivity and resource
demands. Soil moisture plays a central role in determining efficient agricultural management
strategies because it provides information crucial for the selection of optimal tillage practices
and for determining irrigation schedules. Radar satellites have been a source of soil moisture
information at different spatio-temporal scales. Although they provide information for almost
all weather and environmental conditions, they only measure soil moisture at the upper sur-
face layer. This can be inadequate since most agricultural applications require soil moisture
information over deeper layers (e.g. over rooting depth). This thesis therefore investigates the
utility of radar satellites, particularly Sentinel-1, for agricultural water management by inves-
tigating surface and subsurface soil moisture dynamics. The main hypothesis in this research
project is that the known sensitivity of radar satellites such as Sentinel-1 to surface soil mois-
ture can be further exploited to gain insights and estimates of subsurface conditions, which
can be further transformed into indicators relevant for agricultural water management.

The vertical variability between surface and subsurface soil moisture was investigated in Chap-
ter 2. Two statistical methods are applied in order to examine soil moisture dynamics in
agricultural areas using time series datasets. These enable in the identification of (de)coupled
conditions that determine whether surface soil moisture can directly represent subsurface con-
ditions. The results further highlight that the occurrence of decoupled conditions is not
confined to dry periods, as commonly encountered in literature. Subsurface soil moisture dy-
namics, particularly the occurrence of preferential flow paths at measurement locations were
inferred to have influenced decoupling during wetter surface conditions. The statistical meth-
ods applied to identify (de)coupled range are considered robust as no assumptions are made
on the underlying relation between surface and subsurface soil moisture.

Subsurface soil moisture variability in a cultivated field was investigated in Chapter 3 to de-
termine the impact of soil structure and vegetation activity on soil moisture dynamics, based
on almost a year of situ soil moisture measurements. The results of the temporal stability
analysis demonstrate that the contribution of vegetation to soil moisture variability is larger
compared to soil structure. Furthermore, the impact of land management practices for differ-
ent crop types can result in contrasting subsurface soil moisture contents within the same field.
Temporally dynamic soil hydraulic properties were estimated from inverse modeling using in
situ measurements. However, the changes in soil hydraulic properties may be challenging to
determine since using a single type of flow regime has been observed to be insufficient.
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Chapter 4 explores the potential of the vegetation backscatter to reflect root zone soil moisture
conditions, especially during water-limited periods. Based on the the time series of Sentinel-1
bacskcatter for three growing seasons, a clear decrease in the total backscatter was observed
during the 2018 European summer drought. Further investigation of the backscatter compo-
nents using the Water Cloud model reveals that the soil backscatter correlates well with root
zone soil moisture for non water-limited conditions. However, water-limited conditions high-
lights the ability of the vegetation backscatter to reflect root zone conditions based on good
correlations obtained between the two. Unlike the soil backscatter which has been extensively
studied in the past, the vegetation backscatter is deemed as an untapped source that can
potentially allow direct estimation of root zone soil moisture from radar satellites.

During saturated or near-saturated conditions, assessment of field trafficability is important
to ensure good vehicular mobility and to mitigate the present soil compaction rates in agri-
cultural fields. Chapter 5 demonstrates a method to directly apply Sentinel-1-derived surface
soil moisture for monitoring trafficability in agricultural fields. Using the statistical methods
applied in Chapter 2, coupling between surface and topsoil layer was found to coincide with
tillage periods, and facilitates the direct use of Sentinel-1 for estimating field trafficability.
The field measurements of soil strength were related with surface soil moisture to generate a
probabilistic measure of trafficability. Conditions favorable for traffic were found in the begin-
ning of spring, and the changes in trafficability can be monitored further because of the high
temporal frequency of Sentinel-1.

The dynamic and non-linear behaviour of soil moisture over time complicates the estimation
of root zone soil moisture directly from surface soil moisture or using simple empirical relations
during decoupled conditions. Chapter 6 demonstrates a data-driven machine learning approach
using Random Forest to estimate daily root zone soil moisture based on in situ measurements.
Similar to a process-based hydrological model with data assimilation, Random Forest achieves
high, or even in slightly higher, accuracies for prediction and comparable accuracies with
for forecasting of root zone soil moisture. Based on the model residuals, however, model
estimates for extreme dry and wet conditions are more inaccurate than commonly encountered
soil moisture states. It is inferred that poor learning of Random Forest for such infrequently
encountered extreme conditions and inadequacy of the pore-flow model applied for the process-
based model contributed to the said findings. One of the advantages of RF is it does not make
assumptions on the system dynamics, implying that information on soil hydraulic properties
are not required for prediction or forecasting.

The findings from the research chapters are discussed and tied together in Chapter 7. Overall,
the results in this PhD research provide novel and innovative methods for applying Sentinel-
1 in agricultural water management. The results can collectively be incorporated into an
adaptive framework that supports operational water management. For saturated conditions at
the beginning of the growing season when soil compaction is a concern, field trafficability can
be directly estimated from Sentinel-1 derived surface soil moisture, which can assist farmers in
determining the onset of tillage activities. Further into the growing season when adequate soil
water supply is essential to ensure sufficient crop productivity, information on root zone soil
moisture could potentially be derived from the vegetation backscatter especially for droughts
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or by integrating Sentinel-1 surface soil moisture into data-driven methods. These methods
may further be beneficial for data-poor regions which may not have accurate information
on soil hydraulic properties. The results from this PhD further highlight that soil properties
in agricultural areas are constantly changing and require dynamic soil functions and model
structures in order for improved understanding of subsurface processes that are essential for
accurate soil moisture estimation.
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