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Forecast-based financing is a financial mechanism that facilitates humanitarian actions prior to anticipated floods by
triggering release of pre-allocated funds based on exceedance of flood forecast thresholds. This paper presents a novel
model suitability matrix that embeds application-specific needs and contingencies at local level on a pilot project of
forecast-based financing. The added value of this flexible framework is demonstrated on a set of hydrological and
machine learning models. The model suitability matrix facilitates transparency and traceability of subjectivity in
model evaluation. This paper advocates a stronger interface between model developers and end users for upscaling
of forecast-based financing.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Since 1900, 55% of globally recorded floods have been classified as
riverfloods [1]. Climate change projections indicatemore extremeweather
patterns with dry areas getting dryer and wet areas getting wetter; this may
accelerate existing flood hazards [2]. Although only low confidence can be
given to climate change effects on global flood magnitudes [3], a global
assessment of future river flood hazards using eight emission scenarios
showed multi-model consistent increases in flood magnitudes across the
tropical regions of Africa, South- and East-Asia and Latin-America [4];
these are regions in which intangible flood damage – like loss of lives and
spread of waterborne diseases – prevail [5]. Between 2000 and 2009,
<4% of international disaster-related financing was allocated to disaster
prevention and preparedness, with the majority of funds allocated to
emergency relief [6]. Over time, this imbalance has directed humanitarian
aid for disaster risk reduction into two distinct branches, namely
ical Institute, Allegaten 70, 5020 Berg
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emergency relief and long-term disaster risk reduction – leaving a gap in
short-term prevention and preparedness.

Operational flood forecasting has become an integral part of flood risk
management through wide-spread establishment of early warning systems
– at local [7] national [8], continental [9] and global [10] scale. As an
extension to flood early warning systems, forecast-based financing is a
novel financial mechanism facilitating humanitarian aid prior to
anticipated flood events – with practical implications in developing
countries, where intangible flood damage prevails. Forecast-based
financing consists of three components: i) flood forecast model triggers
reflecting local impact levels through forecast thresholds, ii) financial
mechanisms which secure and release pre-allocated funds once forecast
thresholds are exceeded and iii) a standard operating procedure describing
humanitarian actions to be taken by Red Cross National Societies and
partners once funding is released [11]. By exploiting this “window of
opportunity”, humanitarian actions – like distribution of water purification
en, Norway.
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tablets, emergency shelters, canned food and blankets – can prevent loss of
life before a flood event turns into a flood disaster. As such, forecast-based
financing bridges the existing gap between long-term disaster risk
reduction and emergency relief [12].

Although the International Federation of the Red Cross has secured
funding in the Disaster Relief Emergency Fund, forecast-based financing is
still limited to pilot projects by 16 Red Cross National Societies across
Africa, Asia and Latin-America (see https://www.forecast-based-
financing.org/our-projects/ for full overview of pilot projects); as goes
unsaid, the global effect will increase with upscaling and wide-spread
implementation in the Global South. Flood forecasting models can be
regarded as the engine of forecast-based financing, but with increasing
data availability and open-source code, selecting the most suitable model
for forecast-based financing at local level becomes increasingly
challenging.

This paper presents the development and subsequent evaluation of
flood forecasting models for forecast-based financing. The novelty of this
paper comprises a model suitability matrix extending model evaluation
beyond the commonly addressed forecast skill. A pilot project of forecast-
based financing in Togo, West-Africa, is used as case study, in which the
main component of an operational threefold flood forecasting system is
improved. First, a process-based distributed hydrological model is set up,
calibrated and forced using open and globally available data. Secondly,
machine learning models of increasing complexity are trained on local in-
situ measurements. Thirdly, a naïve baseline model is defined. Following
model construction, a novel model suitability matrix for forecast-based
financing is developed and used to evaluate the models. The model
suitability matrix considers needs at end-user level through quantitative
score assignation on the following criteria: data, software, computational
efficiency, flexibility, requirements of technical expertise, forecast skill and
uncertainty. The aim of this paper is to introduce a holistic and flexible
framework for model evaluation targeted to the application of forecast-
based financing.

The remaining of this paper is structured as follows: Section 1.1.
introduces the case study; Section 2 outlines materials and methods,
Fig. 1.1.Mono River Basin and key locations

2

including development of flood forecasting models (2.1), evaluation of
forecast skill (2.2) and evaluation of model suitability (2.3); Section 3
presents the results in terms of forecast skill (3.1) and model suitability
(3.2) respectively; Section 4 provides a discussion of the results, with
emphasis on the application of the model suitability matrix; and lastly,
Section 5 concludes the main findings of the study and gives
recommendations for future applications and further development of the
model suitability matrix.

1.1. Case study

The Mono River Basin is a transboundary catchment shared between
Togo and Benin in West Africa (see Fig. 1.1). The catchment drains an
area of 24,100 km2 between latitude 6°16′N - 9°20′N and longitude 0°42′
E - 2°25′E to the largest river system in Togo: the Mono River. Nangbéto
Dam is a medium hydroelectric dam (design capacity: 65 MW) located on
the Togolese side of the Mono River Basin (7°25.4′ N, 1°26.1′ E). The dam
was constructed in 1987 and is today operated by Communaute Electrique
duBenin, an electricity company co-ownedbyTogo and Benin. Downstream
of the dam, villages on both Togolese and Beninese sides are exposed to
floods on an annual basis during theWest AfricanMonsoon (July–October).

The dam reservoir has a retention capacity of 1.72 × 106 m3, but small
differences in annual maximum inflow and outflow reveal that water levels
are kept high preceding and during the West African Monsoon [13].
Without optimized reservoir release schedules, the reservoir can spill in a
matter of days (see Table 1.1) by inflows about the 2-year return period
flow or less (see Table 1.2). Table 1.3 shows i) autocorrelation in inflows,
ii) autocorrelation in outflows and iii) cross-correlation between inflow
and daily average upstream precipitation (from rain gages, not shown),
reflecting a slowly responding system in three ways. Firstly, the low
cross-correlation between upstream precipitation and inflow to the dam
indicates high retention capacity in the soil, so that consecutive, or long-
lasting rainfall events are needed to saturate the soil and initiate drainage
to the Mono River. Secondly, due to the size of the river system, time is
needed for accumulated water to travel downstream. Thirdly, manual
(Nangbéto Dam and flood-prone villages).

https://www.forecast-based-financing.org/our-projects/
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Table 1.1
Number of days needed to fill the reservoir given constant inflow (Qin) and initial
storage as percentage of total volume.

Initial storage Filling time (days)

Qin = 300 m3/s Qin = 700 m3/s Qin = 1000 m3/s

10% 60 26 18
20% 53 23 16
30% 46 20 14
40% 40 17 12
50% 33 14 10
60% 26 11 8
70% 20 9 6
80% 13 6 4
90% 7 3 2

Table 1.3
Autocorrelation in inflows (Qin) and outflows (Qout) and cross-correlation
between inflows and daily average cumulative upstream precipitation (Qin-P)
for lag days T-x.

T−1 T−2 T−3 T−4 T−5 T−6 T−7 T−8 T−9 T−10

Qin 0.95 0.92 0.89 0.86 0.84 0.82 0.81 0.79 0.78 0.77
Qout 0.95 0.90 0.87 0.84 0.81 0.78 0.76 0.73 0.71 0.69
Qin-P 0.29 0.33 0.39 0.39 0.38 0.39 0.39 0.35 0.35 0.34
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release of outflows is dictated by the former to slow processes, with
influence from both recent inflows and recent releases (essentially the
storage in the reservoir).

Two types of climate are found in the Mono River Basin: sub-equatorial
climate with two wet seasons (April–June and September–October) below
latitude 8° 30.0′ N, and tropical climate with one wet season (May–
September) in the northern parts upstream of Nangbéto Dam. Estimates
of mean annual rainfall range between 1060 mm and 1300 mm [14]. The
highest rainfall occurs during the West-African Monsoon. Onset of the
West African Monsoon is associated with migration of the Intertropical
Convergence Zone [16], while variability in rainfall patterns during the
West African Monsoon is influenced by the African Easterly Jet (12–15
km altitude) and Tropical Easterly Jet (4–5.5 km attitude) [17], along
with local relief and topography (for climatic effects on rainfall in Togo
see Ongoma et al. [18]). Following the two wet seasons, a dry season
prevails fromNovember toMarch;<10% of average annual rainfall occurs
during these months [19,20]. While declining rainfall rates have been
detected between 1960 and 2001 [21], soil-saturation has been identified
as the most dominant flood-generating process in the Mono River Basin
[22].

Forecast-based financing was operationalized in the Mono River Basin
in 2016 by Togo Red Cross Society, with support from the Red Cross Red
Crescent Climate Centre, the German Red Cross, Global Facility for Disaster
Reduction and Recovery and the Togolese Government. The operational
threefold flood forecasting system at Nangbéto Dam (the FUNES system)
consists of i) an inflow prediction model (FUNES), an outflow prediction
model (reservoir model) and iii) a hydraulic model (routing model) (see
Fig. 1.2). FUNES [23] is a machine learning model (k nearest neighbor)
trained on moving averages of upstream precipitation (7, 14, 21, 56 and
224 days) to predict inflows to Nangbéto Dam with four days lead-time.
The predicted inflows are fed to the reservoir model – an exponential
function of inflow fitted to historical releases from Nangbéto Dam – and
outflows from the reservoir model feed to the routing model. The latter
comprises a rudimentary hydraulic model (no measured cross-sections)
with subjective probabilities assigned to flood extents in downstream
villages. Further reclassification to five risk classes was used to establish
triggers for release of pre-allocated funds, secured by the German Red
Cross with governmental support.

As can be seen in Fig. 1.2, the engine of the operationalflood forecasting
system is FUNES. The model was transferred to local staff – dam operators
at Nangbéto Dam and key persons from the local Red Cross – with the
Table 1.2
Flow return periods estimated for dam inflows (Qin), outflows (Qout) and a river gauge

Return period (years) 2 5 10 20 25

Qin (m3/s) 960 1330 1580 1815 –
940 1290 1500 – 174

Qout (m3/s) 530 915 1219 1530 –
455 870 1223 – 177

Q (m3/s) [annually flooded] 570 800 880 940 –
630 850 1030 1200 –
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advantage of not requiring high levels of technical expertise. However,
since the year of operationalization, FUNES has overestimated inflows,
bringing a chain reaction throughout the early warning system that leads
to false alarms and subsequent transaction costs (see Fig. 1.3). The dam
operators have access to the system and can override flood forecasts that
seem highly unlikely, but this would not be needed if the model had higher
forecast skill.

Clearly, improvements to FUNES will propagate through the flood
forecasting system, reducing false alarms and thereby reducing transaction
costs. Therefore, FUNES is subject to improvements through development
of a collection of flood forecasting models in the proceeding section. At
the same time, it is desirable to keep requirements of technical expertise
at a minimum level, so that locally available and affordable levels of
expertise are required to implement, operate and maintain the model.

2. Material and methods

2.1. Development of flood forecasting models

The plethora of available software for hydrological prediction is
growing, unlocking opportunities for increasingly sophisticated modelling
and further complicating the process of model selection. With respect to
increasing code and data availability globally, two model types have been
subject to significant advancements over the past decades: process-based
distributed hydrological models [24] and machine learning models [25].
Therefore, these two model types were selected for development in this
study: a flexible process-based distributed hydrological model for which a
global parameter set exists and machine learning models of distinct
complexities.

2.1.1. Data
Table 2.1 provides an overview of data used in the study. The data is

structured into two categories: “globally available/open data” and “local/
purchased data”. The first category refers to data that is free of charge
and/or obtained from datasets covering the entire globe, derived in such
a way that availability is insensitive to geographical location and/or
inarguably accessible without costs. Hence, globally available/open data
is distinctly different from in-situ measurements owned and protected by
local agents and globally distributed data available at a cost. The second
category refers to data that is available for specific locations – such as in-
situ measurements – and/or at a cost. Local/purchased data was obtained
from the Red Cross Red Crescent Climate Centre (RCCC) and partners
associated with implementation of flood forecasting for the pilot project
of forecast-based financing in the Mono River Basin.

A comparison of local rainfall measurements and globally available/
open data climatology showed that MSWEP reanalysis rainfall
station 150 km downstream (Q).

50 100 200 Function Source

2125 2370 – Fréchet [13]
0 1910 2060 2210 Log Pearson Type 3 This study

1990 2390 – Weibull [13]
5 2260 2823 3460 Log Pearson Type 3 This study

1000 1040 1780 Gumbel [14]
1440 1600 1070 Goodrich



Fig. 1.2.Current threefoldflood forecasting system (FUNES scheme) showingmodels and input/output variables: precipitation (P), inflow to the dam (Qin), outflow from the
dam (Qout) and water level (h). The input/output variables as well as the models are located in the catchment with colors and arrows respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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overestimates rainfall over the Mono River Basin (annual average rainfall
range 1200–1600 mm), with less bias in the RFE satellite rainfall estimates
(annual rainfall range 1100–1300 mm). MSWEP and RFE were initially
chosen because these products were found most reliable over West-Africa
in previous studies [36]. Table 2.2 provides an overview of statistics of
the data used for training and testing of machine learning models.

2.1.2. Hydrological model
The distributed hydrological modelling platform, wflow, is an open-

source toolkit of the Deltares Open Streams Project [37]. Wflow currently
contains four hydrological models (wflow_sbm [38]; wflow_hbv [39];
wflow_gr4 [40]; and wflow_w3ra [41]. In this study, wflow_sbm (Simple
BucketModel – hereafter referred to as SBM) was used, due to its simplicity
and flexibility explained below.

SBM is a modified version of the TOPOG-SBM model, originally
developed for steep slopes and thin soil layers (≤2 m) by Vertessy and
Elsenbeer [42]. As a near calibration-free process-based distributed
hydrological model, SBM is designed to maximize information from land
cover and soil maps in physically-based parameter estimations. The
model is coded in Python-PCRaster [43] and requires i) static input data
(digital elevation model, soil and land cover), ii) dynamic input data
(precipitation, temperature and potential evapotranspiration) iii)
specification of model parameters in PCRaster format. Model parameters
are generated with lookup-tables linking soil and land cover to catchment
properties. The following processes and fluxes are modelled in response
to precipitation: interception, evapotranspiration, infiltration, percolation,
horizontal groundwater flow, capillary rise, exfiltration, exchange between
groundwater and open water and direct runoff. Lakes, dam reservoirs and
irrigation fields can be added to the basic model structure. SBM has been
used for hydrological assessments of land cover change [44], benchmarking
of global hydrological models in river basin modelling [45] and flood
forecasting [31] using both local/purchased and globally available/open
data in Africa, Asia, Latin-America, Europe and Australia. SBMwas selected
4

for this study as it reflects state-of-the-art process-based distributed
hydrological models with kinematic routing of surface water.

Delft-FEWS (Flood Early Warning System) is a data-centric open shell
facilitating data handling and forecasting [46]. Delft-FEWS consists of a
database, a general adapter, import/export and transformation modules
and a user interface. Delft-FEWS has been applied in >40 flood forecasting
centers and is currently in operational use in the UK [8], Australia [47] and
the USA [48]. Although intended for operational application, the use for
research purposes has also been demonstrated [49]. SBM was set up and
embedded in Delft-FEWS using the Delft-FEWS Accelerator. To minimize
calibration efforts, seamless large-domain parameter estimates [31]
developed for SBM were used to generate PCRaster maps of saturated
hydraulic conductivity, monthly leaf area index, saturated and residual
soil water content, saturated water fraction (lakes), land cover and soil
depth. A reservoir was specified at the location of Nangbéto Dam, using
estimated reservoir dimensions and a target release (for power production).

The satellite and reanalysis data was merged in Delft-FEWS to create
continuous records between 1987 and 2018, in which RFE/ERA5 data
was used where available and MSWEP/EartH2Observe given secondary
priority. Simulations were run on three-hourly time-steps between 1987
and 2018. Potential evapotranspiration was calculated with de Bruin
Equation [50] using merged mean sea level pressure, incoming solar
radiation and air temperature. The potential evapotranspiration
climatology was calculated from simulations and used for forecasting.
Forecasts were generated on six-hourly time-steps from 2016 to 2018
with up to ten days lead-time using ensemble weather forecasts from the
ECMWF Ensemble Prediction System (one control forecast and 50
ensemble members). Daily average flows were calculated with a simple
averaging procedure in Delft-FEWS.

2.1.3. Machine learning models
Several machine learning models were built, from which the simplest

and most complex models were selected. The models were trained using



Fig. 1.3. The structure of the FUNES system, currently operational for forecast-based financing in Togo. P= precipitation, Qin= inflow, Qout= outflow, Q= discharge and
h = water level.
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average-based metrics that emphasize model simplicity and accuracy. The
input variable selections were defined based on correlation analyses. Low
correlation between rainfall and discharge indicates a slowly responding
basin, in which autocorrelation in flows may be exploited for predictive
capacity (recall Table 1.3). Using flow data from the preceding 50 days,
an autoregressive random forest was trained to predict inflows to Nangbéto
Dam. Froma supervised learning perspective, this is a reasonable attempt at
exploiting the autocorrelation. Following this, several feedforward and
feed-backward neural networks were trained using backpropagation with
variations of this input variable selection (including the difference in
inflows and outflows over consecutive days). Finally, a deep learning
Table 2.1
Overview of data classified according to cost and availability.

Data Source

Globally available/open data Reanalysis rainfall estimates MSWEP [26]
Satellite rainfall estimates RFE [27]
Reanalysis temperature EartH2Observe
Reanalysis incoming solar radiation EartH2Observe
Reanalysis mean sea level pressure EartH2Observe
Ensemble rainfall forecasts ECMWF-EPS [3
Global parameter set for SBM Github [31]
Land cover USGS Land Cov
Soil Harmonized Wo
Streamlines and basin boundaries HydroBasins [3
Digital elevation model SRTM [35]

Local/purchased data Discharge measurements Nangbéto Dam
FUNES forecasts RCCC
Reservoir water level RCCC
Rainfall measurements RCCC
Other discharge measurements (incomplete) RCCC
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modelwas built, trained on inputs to the hydrological model (precipitation,
temperature and potential evapotranspiration) in addition to inflows and
outflows. The simplest and most complex machine learning models were
used to investigate performance gains from increasing model complexity
in terms of architectures and data. The models and experimental setup
are described in detail below.

A random forest (RF) is an ensemble of weak classifiers (trees) that
average their predictions. Each tree sorts similar samples into groups. At
test time, trees can assign labels by averaging nearby samples in the training
data. In this case samples are sorted by the 50 preceding days of inflow and
outflow and the predicted label is the next ten days of flow (see Table 2.3).
Spatial resolution Temporal
resolution

Period

28 km 3 h 1987–2015
28 km 24 h 2001–2018

[28]; ERA5 [29] 28 km 3 h; 1 h 1987–2015; 2008–2018
[28]; ERA5 [29] 28 km 3 h; 1 h 1987–2015; 2008–2018
[28]; ERA5 [29] 28 km 24 h; 1 h 1987–2015; 2008–2018
0] 50 km 6 h 2016–2018

– – –
er Institute [32] 300 m – –
rld Soil Database [33] 1 km – –
4] 500 m – –

30 m – –
Inflow and outflow 24 h (average) 1987–2018
Inflow 24 h (average) 2016–2018
Water level estimates 24 h (average) 2016–2017
8 rain gauges 24 h (average) 2012–2016
7 river gauges 24 h (average) 1951–1999 (large gaps)



Table 2.2
Statistical moments of inflows (Qin) and outflows (Qout) used as training and testing
data for machine learning models.

Training (1987–2016) Testing (2016–2018)

Qin Qout Qin Qout

Mean 103 m3/s 94 m3/s 131 m3/s 119 m3/s
Min 0 m3/s 0 m3/s 0 m3/s 0 m3/s
Max 2133 m3/s 1429 m3/s 1391 m3/s 861 m3/s
Standard deviation 201 m3/s 119 m3/s 235 m3/s 145 m3/s
Skewness 9.3 28 4.1 6.6
Kurtosis 2.8 4.4 2.2 2.3

Table 2.4
Input data to the convolutional neural network. The precipitation (P), potential
evapotranspiration (PET) and temperature (T) covered the whole basin.

Input Output

Qin-49 … Qin Qout-49 … Qout Qin+1 Qin+2 Qin+3 … Qin+10

P−49 … P
PET−49 … PET
T−49 … T
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The full existing dataset of daily inflows and outflows at Nangbéto Dam
since the year of construction (1987) to 2018 was split into training and
verification with statistical justification: The first 90% of the dataset were
used for training (1987–2016) and the remaining 10% (2016–2018) were
used for testing. To the extent that errors of individual trees are
uncorrelated, the ensemble will be more accurate than any one classifier.
To this end, bootstrap sampling (training examples drawn with
replacement) is used to create classifiers that have seen slightly different
sets of data. The model was implemented in the Python library sklearn
using ExtraTreesRegressor [51]. For details on similarity and sorting see
Geurts et al. [52], where it is also shown that random forests are a type of
k-nearest neighbor model (like FUNES) withweighted voting by neighbors.

Deep learning has the advantage of being able to scale and combine
different types of data tomake predictions. A convolutional neural network
(CNN) is a feature extractor that emphasizes and pools essential
information while preserving spatial and temporal components, such as
georeferenced location and time. A CNN was built using the 50 preceding
days of inflow and outflow, as well as satellite and reanalysis data
including: precipitation (from RFE/MSWEP), temperature (from ERA5)
and potential evapotranspiration (derived with the de Bruin Equation)
(see Table 2.4), with precedence from merging procedure in Delft-FEWS
as described in Section 2.1.2. The satellite and reanalysis data were fed to
three separable convolutional neural networks [53], and the flow data
was fed to a one-dimensional convolutional neural network (as described
in LeCun and Bengio [54]). The output of these four networks were
concatenated and followed by a fully connected network that predicts
inflow to the dam. The architecture is sketched in Fig. 2.1. The model
was implemented using the SeparableConv2D model from the Python
library Keras [55].

While neural networks are the most widely applied machine learning
technique in the fields of hydrology and hydraulics [56,57], neural
networks are far more complex and sensitive to parameters than random
forests. The resulting CNN model had ~24,000 parameters, while 90% of
historical data from 1987 gave ~10,000 examples; fitting a model with
more parameters than training examples is an ill-posed problem. Stochastic
Gradient Descent (SGD) is an iterative method that incrementally updates
the parameters using partial derivatives. Upon random weight
initialization, the contribution to prediction error per parameter is
calculated for a single sample to guide incremental changes in parameter
values. For a given set of identical predictions on training data, numerous
parameter configurations can produce equal outputs. This equates to the
issue of equifinality in conventional hydrological modelling [58].
Equifinality is a common problem when training neural networks and can
often be solved by two simple regularization methods:
Table 2.3
Input data to the random forest (subscripts designate preceding days) using flow
measurements between 1987 and 2016.

Input Output

Qin-49 Qout-49 Qin-48 Qout-48 … Qin Qout Qin+1 Qin+2 … Qin+10

6

1. Weight penalty: The network is discouraged to use all the ~24,000
parameters by introducing a cost function for the use of each additional
parameter. In other words, only parameters that aid learning of multiple
examples will be applied; the model is less likely to use parameters to
memorize the flow characteristics of a single example [59].

2. Dropout: At each step in SGD, a percentage (20–50%) of theweights are
temporarily set to zero. The remaining weights (80–50%) of the model
must then be able to make flow predictions independent of the weights
that have been dropped out. This makes it more difficult for a model to
memorize the training set without learning general patterns [60].

In combination with SGD, these regularization methods perform the
task of selecting, scaling and combining input variables into higher-order
features as the data moves through the neural network. In this study, only
weight penalty was applied in combination with SGD, as further
improvements were not obtained using dropout.

2.1.4. Baseline model
A model should be as simple as possible – but not simpler. The simplest

model used as baseline in this study is a naïve forecast predicting that
the measured inflow of today persists k (k = lead-time) days into the
future. This model was used as a transparent reference to assess the gain
in forecast skill with increasing model complexity.

2.2. Evaluation of forecast skill

Nash Sutcliffe Efficiency (NSE) (Eq. (1)) and root-mean squared error
(RMSE) (Eq. (2)) are among the most commonly applied metrics for
evaluation of hydrological models. However, since limitations are evident
with any single metric, a combination of absolute value error statistics
(such as RMSE), normalized goodness-of-fit statistics (such as NSE) and
graphical results is recommended [61]. The Kling Gupta Efficiency (KGE)
(Eq. (3)) was introduced as a decomposition of the NSE to correlation,
bias and variability, but nevertheless suffers from limitations of absolute
value error statistics. The Index of Agreement (AINDEX) (Eq. (4)) states the
ratio of mean squared error to potential error and partially overcomes the
insensitivity of NSE to observed and predicted means and variances.
However, poor model fits can obtain high values (>0.65), ultimately
precluding calibration with a narrow range [62].

NSE ¼ 1−
Pn

i¼1 Pi−Oið Þ2Pn
i¼1 Pi−P

� �2 ;
where P ¼ predicted;O ¼ observed; n ¼ sample size and bars denote mean

ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
i¼1 Pi−Oið Þ2

n

s
;where P ¼ predicted;O ¼ observed and n

¼ sample size ð2Þ

KGE ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−1ð Þ2 þ σP

σO
−1

� �2

þ P
O
−1

� �2
s

;where r2

¼ coefficient of determination; σ
¼ standard deviation and bars denote mean ð3Þ



Fig. 2.1. Architecture of the convolutional neural network with precedency of precipitation and rainfall inputs specified in parentheses.
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AINDEX ¼ 1−
Pn

i¼1 Oi−Pið Þ2Pn
i¼1 Pi−O

�� ��þ Oi−O
�� ��� �2 ;

where P ¼ predicted;O ¼ observed; n ¼ sample size and bars denote mean

ð4Þ

While RMSE, NSE, KGE and AINDEX reflect different quantities, they are
all average-basedmetrics. Amajor limitation of suchmetrics is that amodel
may perform well on average and still under- or overestimate flows on a
daily basis. In the context of forecast-based financing, where the
exceedance of forecast thresholds on daily basis constitutes a main pillar
of the system, capturing average performance is insufficient. As argued by
Coughlan de Perez et al. [13], the use of hit rate (HR) (Eq. (5)) and false
alarm rate (FAR) (Eq. (6)) is advised. However, systematic overestimation
can lead to misleadingly high HR, and the number of observed threshold
exceedances in the verification period affects the corresponding FAR. It is
therefore argued here that a combination of average-based metrics and
HR/FAR be used for evaluation of forecast skill; firstly, to constrain
predicted flows to the range of observed flows, and secondly, to ensure
that the model differentiates flows above and below the forecast threshold.
To isolate the forecast skill of the models during the flood season, the
metrics were calculated for high flows (West-African Monsoon) and low
flows (dry period) separately in the period of verification (2016–2018).

HR ¼ a
aþ c

;

where a ¼ threshold exceedance forecasted and observed;

c ¼ threshold exceedance observed but not forecasted

ð5Þ

FAR ¼ b
bþ d

;

where b ¼ threshold exceedance forcasted but not observed;

d ¼ threshold exceedance neither forecasted nor observed

ð6Þ

Evaluation of probabilistic forecasts was carried out with the Ensemble
Verification System (EVS) version 5.6 [63], using the following metrics to
capture resolution, reliability and discrimination of forecast probabilities:
the Brier skill score (BSS) (Eq. (7)), themean continuous ranked probability
skill score (CRPSS) (Eq. (8)) and the relative operating characteristic score
(ROCS) (Eq. (9)). The forecast probabilities were verified against the
7

sample climatology. The advantage of using BSS, ROCS and CRPSS as
opposed to the BS, ROC and CRPS is that the ensemble skill (and not just
the ensemble spread) is evaluatedwith reference to the sample climatology.
In order to assess the ensemble spread, rank histograms were used. Rank
histograms are constructed by counting the fraction of observations that
fall in n + 1 ranked ensemble members (bins) and comparing those to a
uniform probability across all bins.

BSS ¼ 1−
BS
BSref

;where BS ¼ 1
n

Xn
i¼1

Pi−Oið Þ2;

P ¼ forecasted probability;O ¼ observed;

n ¼ sample size and subscript ref denotes the sample climatology

ð7Þ

CRPSS ¼ 1−
CRPS
CRPSref

;where CRPS ¼
Z ∞

−∞

Xn
i¼1

Pi−Oið Þ2
n

dP;

P ¼ forecasted probability;O ¼ observed;

n ¼ sample size and subscript ref denotes the sample climatology

ð8Þ

ROCS ¼ 1−
ROC
ROCref

;

where ROC ¼ 2 A−0:5ð Þ;
where A ¼ area under curve obtained by plotting HR against FAR

ð9Þ

Yet, models obtaining high forecast skill can vary widely on other
aspects impacting operability, such as complexity, flexibility and data –
and code availability. In the context of forecast-based financing, it can be
argued that the criteria for model evaluation be extended beyond forecast
skill to consider local contingencies and needs at end-user level. This can
be obtained by applying a novel approach to model evaluation using the
model suitability matrix presented in the proceeding section.

2.3. Evaluation of model suitability

Subjective decisions, or opinions embedded in mathematics, are
intrinsic to both model development and model evaluation. The model at
hand is optimized to perform well on selected metrics that essentially
reflect judgements made during model development. This subjectivity is
however often explicitly or implicitly undermined; the authors therefore
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argue here that a transparent approach for tracing quantified opinions is
needed. When quantified opinions can be traced, strengths and weaknesses
can be identified according to end-user needs; the model suitability matrix
is an attempt at this.

In defining themodel suitabilitymatrix for forecast-basedfinancing, the
following generic steps were taken:

1. Define criteria of interest
2. Select metrics and suitability thresholds for quantitative score

assignation
3. Embed suitability thresholds in decision tree for transparency
4. Select forecast lead time and use decision tree to consistently assign

scores
5. Normalize scores in suitability matrix and display in radar charts

The above-mentioned steps are generic in the sense that various
stakeholder constellations can follow the same procedure to adapt the
framework for model evaluation on a case-by-case basis. As such, the
framework is flexible, transparent and consistent. The criteria and
thresholds presented below reflect expert judgement by the authors and
are meant to illustrate the setup of the framework rather than provide
solid numbers for other case studies and future applications. Seven criteria
were defined in collaboration with representatives from the Red Cross Red
Crescent Climate Centre affiliated with the pilot project of forecast-based
financing in the Mono River Basin (see Table 2.5).

Data availability and costs are the largest constraints for implementing
flood forecasting systems in developing countries with data-sparse
catchments – where forecast-based financing is most needed. Likewise,
financial constraints can restrict the use of commercial software. Therefore,
the use of freely available data (ID1) and open-source code (ID2) is
promoted. Computational efficiency (ID3) relates to resources needed to
run the model and connects to lead time in the sense that the time needed
to generate forecasts affects the lead-time of the forecast in real-time.
Therefore, low computational efficiency is rewarded.

As catchment characteristics change and data availability increases,
models should be able to cope with and benefit from such changes (ID4).
Models that allow for data assimilation and incorporation of, for instance,
land cover changes or dam reservoirs upstream or downstream are
therefore considered more flexible. Moreover, models should require an
obtainable level of technical expertise among local staff for operation and
maintenance (ID5). Forecast-based financing is amechanism that is handed
over from the training agency (Red Cross Red Crescent Climate Centre and
partners) to local staff (local authorities or other emergency management
first responders and local representatives of the National Red Cross
Societies). This transfer is usually through in-person interaction, for
instance through a workshop. Given limited time and resources, a
workshop of one week was considered a reasonable estimate for a fast
Table 2.5
Selected criteria with ID reference and description.

ID Criteria Description

1 Data The degree to which data used in model setup is available
and free of charge regardless of geographical location.

2 Software The degree to which open-source code comprises the
model structure.

3 Computational
efficiency

The time required to generate forecasts relative to the
forecast lead-time.

4 Flexibility The degree to which the model can adapt to catchment
changes and incorporate observations through data
assimilation.

5 Requirements of
technical expertise

The time needed for untrained local staff to acquire
technical skills and knowledge needed to operate and
maintain the model independently from model
developers.

6 Forecast skill Accuracy expressed in terms of hit rates, false alarm rates
and average-based metrics like NSE, RMSE, KGE and
AINDEX.

7 Uncertainty The degree to which forecast uncertainty is displayed in
model outputs.
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transfer to illustrate the use of this criterion. However, while a training
time for local staff of one week here is used as a proxy for an efficient
transfer, it should be noted that this will vary from case to case, depending
on available resources.

As argued above, the combined use of average-based metrics and HR/
FAR is more appropriate for forecast-based financing, as release of funding
is triggered once forecast thresholds are exceeded (ID6). Lastly, all models
exhibit uncertainty from input, structure and parameters, but not all display
this uncertainty in model outputs. By using models that display uncertainty
(ID7), probabilities – rather than a single deterministic value – can form
basis for forecast thresholds defined to trigger release of funding for
forecast-based financing. This aligns forecast-based financing with the
recent shift from deterministic to probabilistic flood forecasting [64]. In
this paper, the BSS, CRPSS and ROCS described above were used to assess
the performance of the probabilistic forecast against the sample
climatology. For BSS > 0, CRPSS> and ROCS > 0, the sample climatology
is considered outperformed by the probabilistic forecast, so that the
uncertainty displayed by the ensemble provides an added value and
hence one point is obtained on ID7 (see Fig. 2.2). The three scores, BSS,
ROCS, and CRPSS, were used complimentarily, but other metrics may
also be utilized complimentarily or separately to assess the performance
of the forecast ensemble against the sample climatology.

The decision tree guiding score assignation on the seven criteria
specified above is presented in Fig. 2.2. The questions were formed and
structured in such a way that scores were assigned according to the relative
importance considered by the authors. After score assignation, the model
suitability matrix contains scores on each criterion (see Table 2.6 for
illustrative setup).

For a visual display of the model suitability, the scores Z per criterion i
were linearly normalized between 0 and 1 using minimum/maximum
obtainable score Zmin/Zmax (see Eq. (10)) and thereafter displayed in radar
charts.

Zi ¼ Zi−Zi; min

Zi; max−Zi; min
ð10Þ

This visualization can be particularly useful when stakeholders with
non-technical backgrounds engage in the model selection procedure. It
should be stressed that the criteria and thresholds defined above should
reflect local contingencies; this can only be obtained through a stakeholder
approach. In the proceeding section, the results at four days lead-time are
presented. While several models predicted flows with up to ten days lead-
time, four days were used for model evaluation in order to compare the
results with FUNES.

3. Results

3.1. Forecast skill

Fig. 3.1 shows inflow forecasts during the West African Monsoon
(2016/2017) with forecast hits and misses highlighted for the first
observed exceedance of the forecast threshold (300 m3/s). As can be
seen, only FUNES obtained a forecast hit at first observed exceedance of
the forecast threshold in 2016. However, FUNES consistently
overestimated inflows throughout the wet season, causing daily false
alarms, and is clearly not constrained within the range of observations.

Given the structure of the baseline model (BAS), the forecast threshold
must be observed before it can be predicted; consequently, the first
exceedance of the forecast threshold is always missed. The machine
learning models (RF and CNN) predicted flows closer to the observations,
but missed the first observed exceedance of the forecast threshold in
2016 due to lags and slight underestimation. Despite some over- and
underestimation of a smaller magnitude than that of FUNES, the
hydrological model (SBM) seems to capture dynamics fairly well relying
only on globally available and open data. RF and SBM obtained forecast
hits in 2017. The flood peak was larger and occurred earlier in 2017, and



Fig. 2.2. Decision tree for score assignation using number IDs from Table 2.5.
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Table 2.6
Setup of model suitability matrix.

Model Criteria

ID1 ID2 ID3 ID4 ID5 ID6 ID7

Model1
Model2
… … … … … … … …
Modeln
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while all models except for FUNES obtained forecast hits, the peak was
underestimated by all. Contrary to the large overestimation in 2016,
FUNES underestimated inflows in 2017, missing the first observed
threshold exceedance by several weeks.

The importance of forecast hits at the first observed exceedance of the
forecast threshold connects to the fact that effects of humanitarian actions
following release of funds often extend beyond the forecast lead-time.
While the lead-time constrains the range of actions to be carried out once
funding is released, those actions can reduce the existing flood risk in
near future; as an example, if water purification tablets and emergency
shelters are distributed following a forecast hit that persists into the future,
the same actionswill not be needed and the risk is reduced until the point in
Fig. 3.1. Inflow prediction for the West-African Monsoon in 2016 (top) and 2017 (bott
model (SBM), the currently operational model (FUNES) and the baseline model (BA
exceedance of the forecast threshold (300 m3/s) for each flood season and the correspo
references to color in this figure legend, the reader is referred to the web version of this
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timewhere all tablets have been used and the shelters beenfilled. A forecast
miss, on the other hand, would allow more damage to occur before actions
are taken – essentially turning forecast-based financing into emergency
relief.

Scatter plots separated into dry/wet seasons and full verification period,
are shown in Fig. 3.2. As can be seen, none of the models performed well
during the dry season, and noticeable differences in skill are observed
between the West African Monsoon in 2016 and 2017 for all models.
Over the full verification period, the machine learning models obtained
the highest score, while the naïve forecast outperformed both FUNES and
SBM.

Table 3.1 summarizes the hit rates and false alarm rates for the full
verification period. The simplest machine learning model (RF) obtained
the highest hit rate. The lowest false alarm rate was obtained by the
hydrological model (SBM) and the more complex machine learning
model (CNN). The baseline model (BAS) obtained the lowest hit rate, but
a false alarm rate in the range of RF, CNN and SBM. This is however a
reflection of high lag autocorrelation; with large and slowly responding
river systems like the Mono River, the advantages of non-autoregressive
models like FUNES, CNN or SBM are seen when the forecast lead-time
exceeds the period of lag autocorrelation. However, for fair comparison
between the models constructed in study, the lead-time was restricted
RF Hit

CNN Miss

SBM Hit

FUNES Miss

BAS Miss

RF Miss

CNN Miss

SBM Miss

FUNES Hit

BAS Miss

7

Jul 23 2016

Jul 8 201

om) by random forest (RF), convolutional neural network (CNN), the hydrological
S) as compared to observations (OBS). The red triangle marks the first observed
nding forecast hits and misses by the respective models. (For interpretation of the
article.)



Fig. 3.2. Scatter plots (from left): dry period, full verification period, West-African Monsoon 2016 and West-African Monsoon 2017. The coefficient of determination (r2) is
shown separately for each period.
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to four days by the currently operational model FUNES. For the purpose of
demonstrating the application of the model suitability matrix, the choice of
using four days lead-time does not impinge drawbacks – but the
Table 3.1
Hit rate (HR) and false alarm rate (FAR) for full verification period.

Model HR (%) FAR (%)

RF 91 8
CNN 84 6
SBM 83 6
FUNES 90 23
BAS 78 7

11
relative forecast skill of the baseline and machine learning models is
biased accordingly at lower lead-times. Interestingly, the hydrological
model relying solely on globally available and open data obtains a hit
rate and false alarm rate of the same order as the machine learning
models. However, a clear difference in model performance is seen in
terms of absolute value error and goodness-of-fit statistics, where the
machine learning models outperform the other models. This is shown
in Table 3.2.

Since the flood forecast models are intended to predict high flows, one
can argue that forecast skill during low flows can be disregarded. However,
if the forecast threshold is exceeded during the low flow period, this results
in false alarms. While neither RF, CNN, SBM nor BAS exceeded the forecast
threshold during the dry period of 2017, FUNES exceeded the forecast



Table 3.2
Root-mean squared error (RMSE), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta
Efficiency (KGE) and Index of Agreement (AINDEX) for full verification period.

Model RMSE (m3/s)a NS (−) KGE (−) AINDEX (−)

RF 91 0.88 0.89 0.86
CNN 86 0.89 0.90 0.88
SBM 176 0.55 0.77 0.54
FUNES 718 −6.42 −1.46 −0.26
BAS 146 0.69 0.85 0.66

a Qmean = 131 m3/s (2016–2018).
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threshold five times. Table 3.3 summarizes the average-based metrics
calculated for the dry period. All models were outperformed by the
climatology (observed mean) on one or more metrics.

In terms of resolution, reliability and discrimination, probabilistic SBM
forecasts outperformed the sample climatology using the forecast threshold
of 300 m3/s (see Fig. 3.3).

To separate structural errors in the hydrological model from errors in
model inputs, the probabilistic forecasts were verified against both
observed and simulated flows. As can be seen, the contribution from
structural errors is evident at lower lead-times, and the seemingly
improving forecast skill with lead-time (up to four days) is a reflection of
compensating errors. The convex rank histogram in Fig. 3.4 shows that
the ensemble lacks spread as compared to uniform probability, indicating
contribution from errors in data inputs (ensemble weather forecast) as
well. The ensemble mean did not improve the deterministic SBM forecasts.
3.2. Model suitability

The model suitability matrix is presented in Table 3.4, and the
corresponding linearly normalized radar charts are shown in Fig. 3.5.
FUNES differs from BAS only in terms of forecast skill (ID6), while RF is a
further improvement to FUNES on this criterion. SBM clearly stands out
on criteria like data (ID1), software (ID2) flexibility (ID4) and uncertainty
(ID7), but due to complexity requires more technical expertise (ID5) and
did not obtain the forecast skill of the machine learning models.

Increasing complexity of the machine learning models adds to the
forecast skill at the expense of requirements of technical expertise. Hence,
CNN obtains the highest forecast skill as evaluated with the model
suitability matrix. In terms of model suitability, three distinct groups can
be identified. BAS, FUNES and RF are models that are both easy to
implement and easily transferred to local staff. However, these models
have no to medium high forecast skill. CNN is a complex model with high
forecast skill that lacks display of forecast uncertainty and means for data
assimilation. SBM is complementary to CNN in the sense that it facilitates
probabilistic forecasting with ensemble weather forecasts, allows for data
assimilation and incorporation of catchment changes, and can be set up,
calibrated and forced with globally available and open data only. BAS is
both cheaper and easier to implement than FUNES and RF, but with the
hit rate of 78% it failed to obtain forecast skill as defined in the model
suitability matrix. Consequently, a combination of CNN and SBM could
be used to cover the complementary qualities in a high-tech scenario – or
FUNES could be substituted with RF in a low-tech scenario. This is
discussed in the proceeding section.
Table 3.3
Root-mean squared error (RMSE), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta
Efficiency (KGE) and Index of Agreement (AINDEX) for the dry period.

Model RMSE (m3/s)a NS (−) KGE (−) AINDEX (−)

RF 6.3 −0.02 −0.27 0.08
CNN 5.8 0.14 0.35 −0.15
SBM 15.6 −5.27 −2.19 0.11
FUNES 63.9 −104 −13.9 −0.15
BAS 7.4 −0.41 0.37 −0.43

a Qmean = 3.1 m3/s (dry period 2017).
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4. Discussion: forecast skill vs. model suitability

The discussion on model evaluation in hydrology is not new; rather, it
has been going on for decades. In a more general context of science,
specialization within sub-disciplines of sub-disciplines have concentrated,
narrowed and dogmatized the framework of model evaluation, excluding
wider connections to practical applications. By directly involving
such connections in the model evaluation, models can be better targeted
to the intended practical applications, circumventing operational
pitfalls discovered in retrospect and maximizing the utility of the model
at hand.

As was demonstrated above, a model with high forecast skill in terms of
root-mean squared error or Nash-Sutcliffe Efficiency – both commonly used
for evaluation of hydrological models (Dawson et al., 2007) – may still be
unsuitable for forecast-based financing, where forecast threshold
exceedance is the trigger for early action. Likewise, a model with high hit
rate – the metric advocated for forecast-based financing [13] – may still
fail to capture general system dynamics and constrain flows within the
observed range. The baseline model is an example of the former and
FUNES an example of the latter.

The poor performance of FUNES – particularly in 2016 – can be
explained by three factors: the sparse data used for training the model
before operationalization, the greediness of the heuristic behind the k
nearest neighbor algorithm, and the use of inconsistent data sources for
training/testing and operationalization respectively. First of all, sparse
data limits the ability of the model to generalize. This is not algorithm-
specific, but rather a general remark on the use of machine learning;
without sufficient data, in terms of both quality and quantity, there is a
practical limitation to generalization. Secondly, biases will arise when the
k nearest neighbors are not representative – this is a joint consequence of
the model structure of FUNES and the limited data, whereby inputs are
mapped to outputs by averaging the outputs associated with the k closest
inputs. Thirdly, several sources of spatial precipitation were used for
training/testing and operationalization. For training, moving averages of
measured precipitation upstream of Nangbéto Dam were used. In
operational mode, forecasted precipitation is needed. Gridded forecasted
precipitation was obtained from several sources, so that biases in inputs
may differ, and thereby distorting the signal with more noise.

The main challenge when predicting systems with high autocorrelation
is to surpass the naïve forecast. In terms of absolute value error and
goodness-of-fit statistics, both machine learning models consistently
surpassed the baseline model at four days lead-time. In terms of hit rate
and false alarm rate, the hydrological model (SBM) surpassed the baseline
model with similar margins as the complex machine learning model
(CNN), while the simplest machine learning model (RF) obtained the
highest hit rate among all.

While RF, CNN and SBM improved the forecast skill of FUNES to various
degrees, they differ significantly in terms of complexity and requirements of
technical expertise. The structure of SBM allows for state-updating through
data assimilation, and given the role of soil saturation in flood generation in
theMono River Basin [22], it is likely that data assimilation of soil moisture
would further improve the forecast skill of SBM. Although CNN obtained
the highest forecast skill as defined in the model suitability matrix, it is –
like SBM – far more complex than RF. This points in the direction of two
distinct possibilities, where an order of precedency is established among
the criteria.

If requirements of technical expertise is a less important criterion in the
Mono River Basin, the complementary qualities of SBM and CNN argue in
favor of a possible hybridization, where for instance a CNN is embedded
for error-correction of SBM. This is possible in operational mode with
Delft-FEWS. On the other hand, if requirements of technical expertise is a
fundamental constraint, it is clear from the model suitability radar charts
that RF is a direct improvement to the existing operational model,
FUNES, in terms of forecast skill, ceteris paribus. Furthermore, since rainfall
rates have declined in the Mono River Basin since 1960 [21] and the
autocorrelation in flows is consistently high, it may be more reasonable to



Fig. 3.3. Skill scores of SBM forecast probabilities. Left: Relative operating characteristic score (ROCS), Brier skill score (BSS) and mean continuous ranked probability skill
score (CRPSS) compared against the sample climatology. Right: ROCS, BSS and CRPSS compared against simulated inflows.
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use flowmeasurements directly as input data in an autoregressive machine
learning model and avoid using non-stationary rainfall records. This can be
argued despite the apparent advantages of using forecastable input
variables, like precipitation, to obtain forecast skill at lead-times beyond
the period of high autocorrelation (approximately 50 days).

While one might argue that process-based distributed hydrological
models like SBM could be replaced by a lumped structure for point
predictions of inflow at only one location, the advantage of its complexity
is that catchment changes can be incorporated into the model structure
using the seamless large-domain parameter set [31] for calibration. A
second dam downstream of Nangbéto Dam and upstream of the flood-
prone villages has been planned for years, and in the case that the dam
construction is initiated, inflow forecasts to Nangbéto Dam will lose value
for forecast-based financing. SBM is the only model described in this
Fig. 3.4. Rank histogram of SBM forecas
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paper that can deal with such changes, for which a second reservoir
would be implemented downstream in the distributed grid. Furthermore,
land cover changes like urbanization, cultivation or deforestation can be
detected with satellite images and readily used to update parameters in
the catchment with lookup-tables.

As more data is recorded and made available for model recalibration,
FUNES may also improve with recalibration; the effect of this was seen in
the forecasts for 2017. However, improvements also depend on the quality
of the rain gauge data, the bias in the gridded forecasted precipitation and
the stationarity of relevant processes and characteristics in the basin; for
instance, in the case of urban development or deforestation upstream,
more data from existing rain gauges do not necessarily lead to model
improvements in combination with old data, as signals in the new data
may add noise to the old data.
t probabilities at four days lead-time.



Table 3.4
Model suitability matrix showing assigned and minimum/maximum obtainable
scores on each criteria.

Model Criteria

ID1 ID2 ID3 ID4 ID5 ID6 ID7

RF 0 1 1 0 1 5 0
CNN 1 1 1 0 0 6 0
SBM 4 1 1 2 0 2 1
FUNES 0 1 1 0 1 1 0
BAS 0 1 1 0 1 0 0
Min. 0 0 0 0 0 0 0
Max. 4 1 1 2 1 6 2
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In terms of data and software, all models were set up with open-source
code, but only the more complex models, SBM and CNN, were setup and
forced with globally available and open data. The use of such data is
particularly valuable in developing countries, where continuous and
quality-controlled local in-situ measurements often are lacking or difficult
to obtain. Although one might argue that the baseline model is the simplest
and cheapest implementation, the fact that local in-situ measurements are
used makes it less transferable; obtaining such data owned by local agents
can be a time-consuming and expensive process, especially if models are
developed off -site, and it further requires high autocorrelation in
measurements to give the baseline model predictive skill. Lack of data
downstream of the dam is the very reason why inflow forecasts to Nangbéto
Dam were decided used for forecast-based financing before the pilot project
in Togowas operationalized in 2016; however, if a river gauge is set up closer
to the flood-prone villages, less data is needed to verify the hydrological
model downstream as compared to the machine learning models because
the latter model type requires data for both testing and training.

During the dry period, none of the models performed well, and only
CNN outperformed the observed mean. It should however be noted that
neither themachine learningmodels nor the hydrological models produced
false alarms in the dry period, as opposed to FUNES. The baselinemodel did
not outperform the observed mean. However, as stated before, poor
Fig. 3.5. Radar charts displaying model suitability for

14
performance during low flows can be neglected if no false alarms are
produced. The implication of using a model suitability matrix for model
evaluation, as opposed to only looking at forecast skill expressed through
a collection of metrics, is that aspects relating directly to model operability
can be addressed to facilitate upscaling of forecast-based financing.
Concrete recommendations regarding this are given in the conclusion.

5. Conclusion

Using a pilot project of forecast-based financing as case study, this paper
presented the development and evaluation of five flood forecastingmodels:
i) a process-based distributed hydrological model (SBM) using globally
available data, ii) a simple machine learning model trained on local in-
situ measurements (RF), iii) a more complex machine learning model
(CNN) additionally trained on satellite precipitation estimates, reanalysis
temperature and derived potential evapotranspiration, iv) an operational
machine learning model (FUNES) and v) a naïve baseline model. A novel
model suitability matrix was introduced, broadening the model evaluation
from forecast skill to include quantitative score assignation on data, software,
computational efficiency, flexibility, requirements of technical expertise and
uncertaintywith the use of a decision tree. The approach provides a holistic
and flexible framework for model evaluation, in which subjective
judgements are made transparent and traceable. This contrasts the current
practice, where subjective judgements – implicitly or explicitly – are
embedded but understated in the process of model development and
evaluation. In the context of forecast-based financing, the model suitability
matrix allows model developers to embed needs at end-user level and
thereby better target the model to its practical application.

For future applications and further development of themodel suitability
matrix for forecast-based financing, the following recommendations are
given:

1. Stakeholders should be engaged in on-going and planned pilot projects
of forecast-based financing to develop case-specific model suitability
matrices.
forecast-based financing in the Mono River Basin.
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2. The various model suitability matrices, including criteria and suitability
thresholds, should be stored in a database so that future projects can
benefit from existing tools based on similarity in terms of local needs,
data availability and catchment characteristics; this will support
upscaling.

3. The scientific community should welcome a wider discussion on model
evaluation, in which subjective judgements made during model
development and evaluation are explicitly addressed across various
disciplines connected to modelling of physical processes.

The model suitability matrix is flexible framework in the sense that
criteria and thresholds used in the decision tree can be modified through
stakeholder approach on a case-by-case basis. The framework is
implemented using open-source tools and platforms, allowing for relatively
easy deployment in most decision-making contexts. However, some
components, such as the user interface and the visualization, require further
development and tuning. In underpinning upscaling and widespread
implementation of forecast-based financing, the model suitability matrix
may be an important tool stimulating collaboration between model
developers and providers of humanitarian actions. Furthermore, the
principles on which the framework builds are not necessarily restricted to
the application of forecast-based financing; for any model application,
specific criteria may be quantified using similar approaches. As such, the
authors urge further development of quantitative and transparent
approaches to holistic model evaluation targeted to specific model
applications and hereby hope to stimulate a broader scientific discussion
that contributes to enhancing the practical value of models in the context
of decision-making, management and disaster risk reduction.

Data and software availability

Globally available data used in this study is listed in Table 2.1 with
relevant references. Local data was kindly provided by The Red Cross Red
Crescent Climate Centre and partners associated with implementation of
forecast-based financing in Togo. All models constructed in this study are
based on open-source code: wflow_sbm is available from GitHub (https://
github.com/openstreams/wflow), and the machine learning models and
hybrid models were implemented in Python using the sklearn [51] and
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