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A B S T R A C T

Naturally isolated montane forests in East Africa are hotspots of biodiversity, often characterised by high species
endemism, and are fundamental contributors to water services. However, they are located in areas highly sui-
table for agriculture, making them a prime target for agricultural activities. The Eastern Arc Mountains (EAM) in
Eastern Tanzania are within the target regions for agricultural development under the Southern Agricultural
Growth Corridor of Tanzania (SAGCOT). However, forest monitoring initiatives that track long-term forest
dynamics and the ecological impact of current agricultural development policies on forests, are lacking. Here, we
use the STEF (Space-Time Extremes and Features) algorithm and Landsat time series to track forest disturbances
(deforestation and degradation) and forest gains (regeneration) as spatio-temporal events over seventeen years
(2001–2017) in the montane forests of the Mvomero District in Tanzania. We found that 27 % (∼ 20 487 ha) of
montane forests were disturbed between 2001 and 2017, mainly led by deforestation (70 %). Small-scale crop
farms with maize, banana, and cassava crops, were the most planted on deforested areas. Most disturbances
occurred at lower elevation (lowland montane), but there was an increasing shift to higher elevations in recent
years (2011–2017). Forest disturbances exclusively occurred at small spatial scales, a pattern similar to other
forest montane landscapes in Africa, which lowers detection capabilities in global forest loss products. Our
locally calibrated and validated deforestation map (Producer's accuracy= 80 %; User’s accuracy=78 %) shows
a gross underestimation of forest cover loss (> 10 000 ha) by global forest loss products in these mountainous
forest landscapes. Overall, we found few areas undergoing forest regeneration, with only 9 % of the disturbed
forest regenerating over 17 years. Long-term conversion to cropland prevented regeneration in the lowlands,
with regeneration mainly happening at higher elevations. However, the shift of deforestation and forest de-
gradation to higher elevations may challenge high elevation regeneration trends, leaving the remaining blocks of
montane forest in the Mvomero District at a risk of degradation and disappearance. Without effective forest
conservation measures, market-driven agricultural development is likely to trigger an expansion of cropland at
the expense of forests to meet the increased demand for the agricultural products promoted, with negative
impact on biodiversity, carbon sequestration and water services.

1. Introduction

Naturally isolated tropical forest landscapes such as montane forests
are hotspots of biodiversity, often characterised by high species en-
demism (Burgess et al., 2007; Chaverri et al., 2016; Myers et al., 2000;
Särkinen et al., 2012; Schmitt et al., 2010), but are vulnerable to
human-induced disturbances, especially when they are located in areas

highly suitable for agricultural production. Yet, montane landscapes
often do not receive much attention from forest monitoring initiatives
that track forest disturbances (deforestation and degradation), probably
because of their small size. The focus is often on large lowland tropical
forest ecosystems (Achard et al., 2014). Forest regeneration monitoring
in montane forest landscapes is also scarce, leading to the paucity of
information on the patterns and trends of regeneration after

https://doi.org/10.1016/j.jag.2020.102063
Received 29 September 2019; Received in revised form 20 January 2020; Accepted 28 January 2020

⁎ Corresponding author.
E-mail addresses: hamunyelae@unam.na, eliakimprof@yahoo.com (E. Hamunyela).

Int J Appl  Earth Obs Geoinformation 88 (2020) 102063

Available online 04 February 2020
0303-2434/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/03032434
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2020.102063
https://doi.org/10.1016/j.jag.2020.102063
mailto:hamunyelae@unam.na
mailto:eliakimprof@yahoo.com
https://doi.org/10.1016/j.jag.2020.102063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2020.102063&domain=pdf


disturbance in such forest landscapes.
The Eastern Arc Mountains (EAM), a range of unconnected blocks of

mountains ranging from Southern Tanzania to Southern Kenya, are
isolated montane forest landscapes which have a high level of plant and
animal endemism. At least 800 vascular plant species and 96 vertebrate
species found in EAM are endemic, and another 71 vertebrate species
are near-endemic (Burgess et al., 2007; Lovett et al., 2001; Newmark,
1998; Lovett, 1998). Seventy one (71) vertebrates in EAM are threa-
tened by extinction (Burgess et al., 2007). Apart from being a biodi-
versity hotspot, the EAM also play a vital role in the hydrological cycle,
by being the main water catchment for important rivers (e.g. Wami
River) in this area (Doggart and Loserian, 2007). However, these
montane forests have been under human pressure for decades, resulting
in complete disappearance of some of them (Hall et al., 2009). The EAM
lost 25 % of the original forest extent to agriculture between 1955 and
2000 (Hall et al., 2009), and the remaining montane forests of EAM
represent less than 30 % of the original forest extent (Burgess et al.,
2007). Expansion of agricultural land for food and cash crops, for ex-
ample tea (Jacobs et al., 2017) drove the disappearance of some of the
EAM forest blocks (Hall et al., 2009).

With human population in East Africa still growing at a high rate
(2.82 %), which is two times higher than the global rate (1.19 %;
Gerland et al., 2014; United Nations, 2017), the demand for agricultural
land to expand cropland and grazing areas is expected (Fisher, 2010).
There has been effort over the years to protect montane forests in EAM
by establishing forest reserves (Lovett and Moyer, 1992; Redhead,
1981), but forest disturbances still occur in these forest landscapes
(Lyimo, 2014). Our understanding of the extent and trends of forest
disturbance in EAM is however limited because continuous and ela-
borate monitoring of forest changes in these montane forest landscapes
is lacking.

Global forest change datasets generated from satellite data (e.g.
Landsat data) provide annual information on forest loss and gain
(Hansen et al., 2013), but the utility of such information for local forest
change assessment in Afro-montane forest landscapes is not known.
However, evidence from elsewhere show that global forest change da-
tasets substantially underestimate forest loss (Milodowski et al., 2017;
Tropek et al., 2014). Forest loss caused by small-scale disturbances
were particularly found to have high likelihood of being under-
estimated by globally or regionally generated forest change datasets
(Milodowski et al., 2017). In many African forest landscapes, forest
disturbance occurs on small spatial scale (Fisher, 2010; DeVries et al.,
2015a; Tyukavina et al., 2018), making the underestimation of forest
loss by global or regional forest change datasets in these landscapes
highly likely. Underestimation of forest loss would consequently leads
to underestimation of forest regeneration because only areas where
forest loss is detected would be assessed for forest regeneration. To
improve our understanding of forest disturbance and regeneration dy-
namics in Afro-montane forest landscapes, locally calibrated forest
change datasets are needed.

In recent years, a number of studies analysed forest cover change in
some Afro-montane forests using locally calibrated algorithms (e.g.
Brandt et al., 2018; DeVries et al., 2015a; Hall et al., 2009; Hamunyela
et al., 2017), but these studies only focused on forest disturbance, thus
ignoring forest regeneration after disturbance. Detection of forest re-
generation after disturbance is generally scarce because concurrent
mapping of forest disturbance and regeneration remains limited in sa-
tellite-based forest monitoring. This is mainly because development of
algorithms for automated forest regeneration detection has been lim-
ited compared to forest disturbance. Yet, detecting both forest dis-
turbance and regeneration makes accounting of net forest greenhouse
gas (GHG) emissions possible. It also allows for the profiling of forest
disturbance pathways in regard to certain drivers, and information on
forest regeneration is particularly important under current restoration
initiatives such as AFRI100 (the African Forest Landscape Restoration
Initiative).

The use of dense time series of satellite data, rather than annual
time series, for forest monitoring in recent years has improved the
detection of forest disturbance and regeneration (DeVries et al., 2015b),
but accurate detection of small-scale and low-magnitude forest dis-
turbances is still challenging (Milodowski et al., 2017) particularly in
seasonally dry forests where strong seasonality complicates the detec-
tion of forest cover changes. Some montane forests in East Africa, in-
cluding Tanzania, have strong seasonality in their photosynthetic ac-
tivity and canopy water content (DeVries et al., 2015a), and forest
disturbances in these forest landscapes mainly occur at small spatial
scales (Brandt et al., 2018). Strong seasonality makes it difficult for the
widely used single-time series change detection algorithms (e.g.
BFASTmonitor -Breaks For Additive Season and Trend Monitor
(Verbesselt et al., 2012) and CCDC - Continuous Change Detection and
Classification (Zhu and Woodcock, 2014a,2014b)) to differentiate small
scale forest disturbances from natural intra-annual variations.

Recently, a new algorithm (STEF - Space-Time Extremes and
Features: https://github.com/hamun001/STEF) that combine spatial
and temporal context has been developed to enhance detection of
small-scale and low-magnitude forest disturbances in dry forests with
strong seasonality from time series of satellite data (Hamunyela et al.,
2017; Brandt et al., 2018). STEF leverages both spatial and temporal
information in satellite data to enhance the detection of forest changes,
and has been extended to support concurrent mapping of forest dis-
turbance and regeneration. With STEF algorithm, the STEFmonitor
function provides the capability for forest disturbance detection,
whereas the STEFregrowth function detects forest regeneration after
disturbance. Up to now, however, the application of STEF had been
limited to tracking forest disturbances (deforestation and degradation)
in a few countries in Eastern Africa (Ethiopia, and Kenya), whereas
forest regeneration had not yet been assessed. Here, we apply STEF to
assess forest disturbance and regeneration patterns and trends in the
evergreen and seasonally dry montane forest landscapes located in the
Mvomero District, Tanzania. Montane forest blocks in Mvomero District
are part of the biologically rich EAM. We address the following research
questions:

a) What has the forest disturbance pattern been for montane forests in
Mvomero District, Tanzania between 2001 and 2017? How have the
patterns varied across time and along elevation?

b) What are the main drivers of forest disturbance in the montane
forest landscapes of Mvomero District?

c) Do these forests regenerate after forest disturbance? How does re-
generation vary across along elevation?

We focused on Mvomero District in Morogoro Region, Tanzania
(Fig. 1) where smallholder farming is the primary activity in the Dis-
trict, consisting of crop production and livestock keeping mainly in the
form of pastoralism (Robinson et al., 2014). We defined deforestation as
the conversion of a forest area to non-forest area (Hansen et al., 2013),
whereas forest degradation was defined as partial removal of forest, but
the area remained forest. Forest regeneration was defined as re-estab-
lishment or recovery of forest canopy after disturbance.

2. Study area

Our study area covers two of the 13 blocks that make up the EAM:
Nguru and Uluguro Mountains located in Mvomero District in
Morogoro Region, Tanzania (Fig. 1). The EAM are 13 separate moun-
tain blocks located in Kenya and Tanzania. The elevation ranges from
200m to 2 637m above the sea level. Nguru and Uluguru mountains
form the main water catchment of the Wami River (Doggart and
Loserian, 2007), which supports the livelihood of many people within
the Wami river basin, and is an important source of water for wildlife in
this area (Tobey, 2008).

Climatic conditions in these areas are predominantly influenced by
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the Indian Ocean (Pócs et al., 1990; Newmark, 2002; Doggart and
Loserian, 2007), but the eastern and western sides of Nguru and Ulu-
guru mountains receive different rainfall amounts. Rainfall on eastern
slopes ranges from 2100 to 4000mm/year, and from 1000 to
2000mm/year for western slopes (Pócs et al., 1990). These mountai-
nous areas receive rainfall throughout the year. The wettest period is
March-April, whereas the June to August is the least wet period (Pócs
et al., 1990; Doggart and Loserian, 2007). Besides commercial cropland
area in the lowlands whose products are nationally distributed, small-
holder mixed crop-livestock farming is also prominent in these montane
regions (Robinson et al., 2014). Through Southern Agricultural Growth
Corridor of Tanzania (SAGCOT) initiative, the Government of Tanzania
is promoting profitable smallholder farming by incentivising stronger
linkages between smallholders and commercial agribusinesses (United
Republic of Tanzania, 2011). There has been a large increase of live-
stock in our study area due to immigration of pastoralists from other
regions (Raben et al., 2006; Lyimo, 2014). Large-scale droughts in re-
cent years in Tanzania have been pushing pastoralists from drier sur-
rounding areas to wetter areas like Nguru and Uluguru (Lyimo, 2014).

3. Data and methods

The overview of the methods applied in this study to track forest
disturbance and regeneration from Landsat time series is shown in
Fig. 2. First, we pre-processed Landsat multi-spectral and normalised
difference moisture (water) index (NDMI; Gao, 1996) images, and
generated a benchmark forest mask (see Section 3.1). NDMI is

calculated as a ratio between the NIR (Near Infrared) and SWIR
(Shortwave Infrared) whereby NDMI = (NIR - SWIR) / (NIR+ SWIR).
Second, we detected spatio-temporal anomalies in Landsat NDMI time
series after spatial normalisation, and subsequently extracted space-
time features (see Section 3.2). Third, we predicted forest disturbance
from space-time features (see Section 3.3). Fourth, we classified forest
disturbances and detected forest regeneration (see Section 3.4). Fifth,
we ground validated the forest disturbances and regeneration, and
subsequently determined the follow-up land-use after deforestation (see
Section 3.5). Sixth, we related forest disturbances to elevation (see
Section 3.6). Seventh, we compared our deforestation map with a
widely used existing global forest loss product (Hansen et al., 2013; see
Section 3.7).

3.1. Remote sensing data acquisition and pre-processing

We downloaded and pre-processed Tier 1 Landsat-5/TM, Landsat-7/
ETM+and Landsat-8/ OLI surface reflectance data and their corre-
sponding NDMI images, covering the period of 1990–2017, from The
United State of America’s Geological Survey (USGS) Landsat surface
Reflectance (SR) Climate Data Records (https://espa.cr.usgs.gov/). Tier
1 Landsat scenes refer to the Landsat data that have the highest data
quality and are suitable for time-series analysis because they have good
geometric accuracy. Landsat-5/TM and Landsat-7/ETM+ surface re-
flectance products were generated using the standard Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) algo-
rithm (Masek et al., 2006; Schmidt et al., 2013), whereas the Landsat 8

Fig. 1. The location of the Mvomero District in Tanzania, as well as the spatial distribution of forest within the District. Forest reserve and National park/Nature
reserve data were acquired from the World Database of Protected Areas (UNEP-WCMC, 2019).
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OLI surface reflectance products were generated using the Landsat 8
OLI surface reflectance algorithm (Vermote et al., 2016). Clouds and
cloud shadows in Landsat data were masked using the pixel quality
flags which were distributed together with Landsat surface reflectance
products. The pixel quality flags were generated using the CFmask al-
gorithm (Zhu et al., 2015; Zhu and Woodcock, 2012, 2014a,2014b).
Only pixels which were flagged as clear - not contaminated by atmo-
spheric artefacts, based on pixel quality information, were not masked.
We also masked non-forest areas using a benchmark forest mask (year
2000) to avoid confusing changes occurring in non-forest areas (e.g.

crop harvest) with forest disturbances. A benchmark forest mask was
created by classifying the study area into forest and non-forest areas
using a random forest classifier (Breiman, 2001) implemented in the
randomForest R-package (Liaw and Wiener, 2002). The inputs into the
classifier were metrics (temporal median, standard deviation, coeffi-
cient of variation, the 25th and 95th percentiles, and the seasonal
amplitude - the difference between 25th and 95th percentile) computed
per pixel from 1990 to 2000 Landsat time series of the Blue, Green, Red,
Near Infrared, Shortwave Infrared, Thermal spectral bands and the
NDMI. The classifier was trained using visually interpreted forest
(n= 5000 pixels) and non-forest (n= 5000 pixels) reference data, se-
lected through simple random sampling. Areas classified as forest were
further pre-processed to remove forest patches smaller than 0.5 ha, to
conform to the Tanzanian areal definition of a forest (United Republic
of Tanzania, 2018). The final benchmark forest mask consisted of 75
735.36 ha of forest. Table 1 shows the proportion of forest at each
elevation zone in Mvomero District, based on the benchmark forest
mask.

Forests in the lowland montane of the study area are characterised
by strong seasonal variation in its photosynthetic activity and leaf water
content. Strong seasonal variations in satellite image time series should
be accounted for during forest disturbance detection to minimise false

Fig. 2. The workflow followed to map forest disturbance and regeneration in Mvomero District, Tanzania, using Landsat time series and STEF algorithm.

Table 1
The proportion forest cover at each elevation zone in Mvomero District based
on the benchmark forest mask. Elevation zones are based on Hall et al. (2009).
The elevation was derived from Advanced Land Observing Satellite (ALOS)
Digital Surface Model (AW3D30).

Elevation zone Elevation (m) Proportion of forest pixels (%)

Lowland montane 200–800 36.4
Submontane 800–1 200 20.6
Montane 1 200–1 800 26.9
Uppermontane > 1 800 16.1
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detections and reduce omission of real changes (Hamunyela et al.,
2016a). Differences in spectral resolution among Landsat sensors also
propagate inter-sensor differences in the time series (Roy et al., 2016)
that may negatively affect detection of forest disturbances. We spatially
normalised NDMI time series to reduce seasonal variations (Hamunyela
et al., 2016a). Hamunyela et al. (2016a) used 95th percentile value
computed from a local moving window around the target pixel to
normalise the value of the target pixel. Unlike Hamunyela et al.
(2016a), here we used zonal spatial normalisation approach to increase
computational efficiency. To do this, the study area was first classified
into phenologically unique forest zones. Next, each pixel value in each
NDMI image was normalised using the 95th percentile value computed
from all pixel values in its respective phenological zone. The K-mean
clustering method (k=10, Hartigan, 1975) was used to classify the
forest into phenologically unique zones. The inputs into the K-mean
classifier were temporal median, standard deviation, coefficient of
variation, 25th and 95th percentiles and the seasonal amplitude (dif-
ference between 25th and 95th percentiles) metrics also computed per
pixel from the 1990–2000 NDMI time series.

Fig. 3 shows an example of NDMI pixel-time series before and after
spatial normalisation. Note that phenological variation is not clearly
defined even prior to spatial normalisation (Fig. 3a), however the
variability prior to disturbance has been reduced in Fig. 3b. At this
pixel, there were too few clear Landsat observations per year to clearly
capture phenological variation of the forest. The average number of
clear observations per year between 1990 and 2017 was only 10. Yet,
each Landsat sensor has 16-day revisit. Clear observations are few be-
cause these montane areas are frequently covered by cloud. Also note
that spatial normalisation does not only reduce seasonal variations; it
also maximises the difference between the mean value of the observa-
tions before the disturbance and the value at the disturbance, thus in-
creasing the detectability of disturbances (Hamunyela et al., 2016a). In
Fig. 3a, for example, the absolute difference between the mean value of
the observations before the disturbance and the value of the observa-
tion at the disturbance (disturbance date: 10 April 2010) was 0.46. This
difference, however, increased to 1.53 after spatial normalisation
(Fig. 3b).

3.2. Spatio-temporal anomaly detection

We detected spatio-temporal negative anomalies from spatially
normalised NDMI time series using STEFmonitor algorithm (Hamunyela
et al., 2017, 2016a, b) implemented in STEF R-package (https://github.
com/hamun001/STEF). We chose NDMI because it is better suited for
forest cover change than other in vegetation indices (DeVries et al.,

2015b). Spatio-temporal negative anomalies were tracked between
2001 and 2017 while using the NDMI observations from 1990 to 2000
as a reference. An observation was classified a spatio-temporal negative
anomaly if it was smaller than the percentile threshold computed over
the reference period (history period) of a local data cube. A local data
cube was defined around the target pixel, and had both a spatial and
temporal extent, which were user-defined. A temporal extent corre-
sponded to the length of the NDMI time series (1990–2017). The spatial
extent was set to 11 by 11 Landsat pixels (∼ 10.9 ha). This spatial
extent was considered sufficient because the change processes in our
study area occurred on a small spatial scale and our reference period
was long enough to derive a stable percentile threshold (see Hamunyela
et al., 2016b). A 5th percentile threshold was used to identify negative
anomalies because it leads to accurate detection of forest disturbances
especially in areas where disturbances occur at small spatial scale and
have a low-magnitude of change (Hamunyela et al., 2017, 2016b). A
pixel was flagged potentially disturbed if there were two consecutive
negative spatio-temporal anomalies. Once two consecutive spatio-
temporal negative anomalies were detected, STEFmonitor function ex-
tracted a set of space-time features from the local data cube, which
were then used later on to predict forest disturbances (Hamunyela
et al., 2017). The space-time features were then used as predictors of
forest disturbance (see Section 3.3).

3.3. Forest disturbance prediction and validation

We computed forest disturbance probability at each pixel using
space-time features as predictors of forest disturbance. The probability
of forest disturbance was calculated using random forest algorithm
(Breiman, 2001). The random forest model was trained with 208
sample pixels (disturbed forest= 124, stable forest= 84) generated
through a simple random sampling approach from pixels with two
consecutive negative spatio-temporal anomalies (see Section 3.2). The
training sample pixels were visually interpreted using high spatial re-
solution imagery available in Google Earth™ (https://www.google.
com/earth/) and Bing Maps (http://www.bing.com/maps/), which
were complemented with all available Tier 1 Landsat multi-spectral
image time series, following the timesync approach proposed by Cohen
et al. (2010). Fig. 4 shows an example of forest cover loss between 07
August 2012 and 23 October 2016 in Mvomero District as captured by
high resolution images in Google Earth™. Next, we used a probability
threshold of 0.25, which achieved the smallest difference (lowest area
bias) between producer's and user's accuracy, to discriminate false de-
tections from forest disturbances. This probability threshold was de-
termined using the training samples. The study area was then classified

Fig. 3. An example of (a) the original and (b) spatially normalised pixel-time series for Landsat normalised difference moisture index (NDMI) from montane forest in
the Mvomero District, Tanzania. The forest at this pixel was disturbed between 12 March 2010 and 10 April 2010.
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into two strata: disturbed and stable forest area stratum. The proportion
for disturbed forest stratum was 29.6 % whereas the stable forest
stratum was 70.4 %. A total of 421 reference sample pixels (disturbed
forest= 186 and stable forest= 235) generated through stratified
probability sampling (Stehman, 2009) were used to assess the accuracy
of the forest disturbance map. The reference data was acquired through
visual interpretation of 30m Landsat multi-spectral image time series
and high spatial resolution imagery available in Google Earth™
(https://www.google.com/earth/) and Bing Maps (http://www.bing.
com/maps/). The allocation of the sample size to each stratum was
based on the approach recommended by (Olofsson et al., 2014;
Stehman et al., 2012), which ensures a reliable estimation of overall
accuracy, producer’s and user’s accuracy for classes with small area
proportions. Next, we calculated area-adjusted producer’s accuracy
(PA) and user’s accuracy (UA) for forest disturbance.

3.4. Forest disturbance classification and regeneration detection

To understand the current status of the disturbed forest areas, we
classified disturbed areas into deforestation, forest degradation and
regeneration (Fig. 2; Step 4). A disturbed forest area was classified i) as
deforested if it was no longer covered by forest, ii) as degraded if the
forest was partially removed, but the area remained forested, and iii)
regenerating if the forest was recovering from the impact of dis-
turbance. To identify deforested areas, we applied a Sentinel-2 forest
mask of 2016 (http://2016africalandcover20 m.esrin.esa.int/) to the
forest disturbance map. Disturbed areas which were not within the
Sentinel-2 forest mask of 2016 were considered to have remained non-
forest after disturbance, hence were deforested. For disturbed areas that
were within the Sentinel-2 forest mask of 2016, we considered them
either to be degraded or regenerating after a disturbance event oc-
curred.

We disentangled regenerating forest from degraded forest by ap-
plying a forest regrowth monitoring algorithm (STEFregrowth) also
implemented in the STEF R-package (https://github.com/hamun001/
STEF) to track forest regeneration on the disturbed forest areas that
were within the 2016 Sentinel-2 forest mask. STEFregrowth detects
forest regeneration after disturbance from satellite time series by as-
sessing whether previously anomalous observations in the time series of
a target pixel ceased to be spatio-temporal negative anomalies over a
user-defined time frame until the end of the time series. Here we used
1.5 years as the minimum time-frame that non-anomalous status should
persist before flagging a previously disturbed forest pixel as forest re-
generation. We used 1.5 years as minimum time-frame to minimise
chances of confusing cropland dynamics with forest regeneration.
Similar to forest disturbance detection (see Section 3.2), the percentile
threshold for determining whether an observation was anomalous or
not after disturbance was computed from the reference period of a local
data cube, and was similar (5th percentile) to the one used to identify
anomalies in Section 3.2. The spatial and temporal extent of the local
data cube were also similar to those used for tracking spatio-temporal

anomalies (see Section 3.2). Pixels that were located within the Sen-
tinel-2 forest mask of 2016 and where observations persistently ceased
to be anomalous for a minimum of 1.5 years until the end of the time
series were classified as forest regeneration. Disturbed forest areas
where no forest regeneration was detected by STEFregrowth were sub-
sequently classified as forest degradation.

3.5. Ground validation of deforestation, forest degradation and
regeneration

We conducted a field data collection in the summer of 2018 (July/
August) to ground validate deforestation, forest degradation and re-
generation maps produced from satellite data (Section 3.4). Due to time
and field data collection cost, the field campaign only focused on Nguru
Mountains, in the northern part of Mvomero District (Fig. 5) were most
of deforestation, forest degradation and regeneration were detected.
Four sampling sites (Fig. 5) were purposely selected to target areas with
varying rates of deforestation, forest degradation, regeneration, and
cattle density (based on Robinson et al. (2014)) to ensure that they are
representative of the entire study area. We also ensured that sampling
sites cover different wards. Tanzania is sub-divided into various ad-
ministrative divisions, of which a ward is one of the lowest adminis-
trative division. Similar to Brandt et al. (2018), each sampling site had a
radius of 5 km. Within each sampling site, we selected pixels from de-
forestation, forest degradation and regeneration strata using stratified
probability sampling approach (Stehman, 2009). In total, 217 sample
pixels were selected within these four sampling sites. Out of 217 sam-
ples, 112 were from deforestation stratum, 105 from forest degradation
and 51 were from forest regeneration stratum. We used open data kit
(ODK) to collect locational and thematic information at each sample
pixel, including the current land use/land cover, and presence/absence
of fire relics and signs of livestock grazing and browsing. In cases where
a deforested pixel was converted to cropland, we also documented the
crops that we found being grown on a deforested pixel. The field data
were then used to calculate the producer’s accuracy (PA) and user's
accuracy (UA) of deforestation, forest degradation and forest re-
generation maps. The information on the follow-up land use/cover after
deforestation was used to identify the main drivers of deforestation
(Fig. 2; Step 4).

3.6. Relating deforestation, forest degradation and regeneration to elevation

We assessed how deforestation, forest degradation and regeneration
varied with elevation over the years in the montane forests of Mvomero
District (Fig. 2; Step 5). To do this, we overlaid the 30m resolution
ALOS Digital Surface Model (AW3D30, provided by the Japan Aero-
space Exploration Agency: https://www.eorc.jaxa.jp/ALOS/en/
aw3d30/index.htm) with deforestation, forest degradation and re-
generation maps. We classified elevation into 4 zones, namely: lowland
montane (200–800m), submontane (800–1200m), montane
(1200−1800m) and uppermontane (> 1800m). Next, the mapped

Fig. 4. An example of forest cover loss in Mvomero District of Tanzania, as visible from high resolution images in Google Earth™. Images were acquired on 07 August
2014 (left image) and 23 October 2016 (right image).

E. Hamunyela, et al. Int J Appl  Earth Obs Geoinformation 88 (2020) 102063

6

https://www.google.com/earth/
http://www.bing.com/maps/
http://www.bing.com/maps/
https://github.com/hamun001/STEF
https://github.com/hamun001/STEF
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm


areas of deforestation, forest degradation and regeneration were com-
puted per elevation zone. To assess whether there has been elevational
shift in forest disturbance over the years, we grouped the deforestation
and forest degradation into two temporal categories, namely the
2001–2010 and 2011–2017. For each temporal category, we calculated
the proportion of deforested and degraded Landsat pixels at each ele-
vation zone. We also calculated forest regeneration success at each
elevation zone. Forest regeneration success was defined as the total area
of regenerated forest at a particular elevation zone divided by the total
area of forest disturbed at the same elevation zone.

3.7. Comparison to global forest loss product

We compared our locally calibrated deforestation map with a global
forest loss dataset (Hansen et al., 2013) using a map-to-map comparison
approach to assess whether globally generated forest loss datasets can
provide reliable forest change information in complex montane forest
landscapes (Fig. 2; Step 6). The global forest loss dataset was generated
from Landsat data using a globally tuned decision tree algorithm
(Hansen et al., 2013), and is freely available annually since 2000
(http://earthenginepartners.appspot.com/science-2013-global-forest).
To ensure consistency, the comparison of forest loss datasets was lim-
ited to the changes that occurred within the benchmark forest mask,
produced in Section 3.1.

4. Results and discussion

4.1. Forest disturbance and regeneration across Mvomero District

Montane forests of the Mvomero District underwent frequent small-
sized forest disturbances between 2001 and 2017 that have resulted in
large areas of forest loss (Fig. 6). An estimated 20,487 ha of forest (27 %
of the benchmark forest mask: 75,735 ha) were deforested (14 341 ha)
and degraded (6 146 ha) during our study period. This pattern of small-
sized forest disturbances is similar to other montane regions in Eastern
Africa (Ethiopia and Kenya) (Devries et al., 2016; Pratihast et al., 2014;
Brandt et al., 2018). We were able to map these small-sized forest
disturbances with producer’s and user’s accuracy of 70 % and 69 %,
similar to those achieved in Mau Forest in Kenya using STEF algorithm
(Brandt et al., 2018). Despite the complex temporal dynamics before
and after forest disturbance (Fig. 7), we were also able to detect de-
forestation, forest degradation and regeneration concurrently with high
spatial accuracy (around 70 %; Table 2). This high spatial accuracy
could be attributed to the fact that we used a method that leverages
spatial and temporal information in satellite data to detect forest dis-
turbance and regeneration. Spatial and temporal contexts provide
complementary information that can enhance automated identification
of land cover changes (Hamunyela et al., 2016a; Zhu, 2017). Our
spatio-temporal method therefore offers new prospects for incorpora-
tion of forest regeneration into forest change assessments especially in
forest landscapes with strong seasonality. Forest degradation and re-
generation maps had the highest area bias (Table 2), mainly because
separating degradation and regeneration is more challenging when
compared to deforestation.

Fig. 5. The location of four sampling sites where field verification campaign took place. Each sampling site has a radius of 5 km.
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Fig. 6. Forest disturbance by year in the Mvomero District, Tanzania as detected from Landsat time series (2001–2017) using STEF (Space-time Extremes and
Features) algorithm (Hamunyela et al., 2017).

Fig. 7. Landsat normalised difference moisture index (NDMI) time series of a deforested, degraded, and regenerated pixels of a montane forest in Mvomero district,
Tanzania.
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Forest disturbance in the Mvomero District was driven by defor-
estation (Fig. 8). Groundtruthing revealed that most of the deforested
area (94 %) was converted into cropland for food crops. Our
groundtruthing exercise recorded a diversity of crops (13 crop types)
planted on deforested areas. Bananas, cassava and maize were the most
planted crops (Fig. 9). A previous studies also found these crops to be
among the most planted in this area. Some crops (e.g. Cardamom and
Cacao) planted in our study area are shade tolerant (they need a pro-
portion of forest cover to cultivate), whereas crops such as maize,
beans, and others are shade intolerant (need 100 % forest cover re-
moval) (Mwampamba and Schwartz, 2011). Our results show that
small-scale crop farming could be the main driver of deforestation in
the montane forest landscapes of Mvomero District. This is not sur-
prising because agriculture is known to drive 83 % of deforestation in
the tropics (Fisher, 2010; Hosonuma et al., 2012; Carter et al., 2015;
Tyukavina et al., 2018). Our study area is within the target regions for
agricultural development under the Southern Agricultural Growth
Corridor of Tanzania (SAGCOT). The SAGCOT initiative promotes

agricultural development by smallholder farmers through access to the
market. Therefore, agriculture-driven forest loss in our study area in
recent years might be, in part, relate to the SAGCOT initiative, despite
environmental sustainability being a priority for the SAGCOT initiative.
Thus, without effective conservation measures, market-driven agri-
cultural development is likely to trigger an expansion of cropland at the
expense of forests to meet the increased demand for the agricultural
products promoted. To mitigate unintended effects on forests, agri-
cultural development policies should actively incentivise sustainable
intensification (e.g. increased farm productivity and profitability) to
avoid triggering unintended expansion of agricultural land into natural
ecosystems (Brandt et al., 2018; Carter et al., 2015). Immigration of
pastoralists from drier surrounding areas to wetter areas like Nguru and
Uluguru mountains in search for water and pasture during droughts
(Raben et al., 2006; Lyimo, 2014) might also have contributed to forest
disturbance in our study area. Intensification practices for both crops
and livestock would help reducing unintended forest disturbances in
montane forest landscapes of Mvomero District. However, intensifica-
tion is often accompanied by increased use agrochemical inputs, which
could have detrimental effects on the environment. Therefore con-
servation agriculture might be a better option for attaining increased
food production while conserving forests.

The remaining 30 % of forest loss in Mvomero District was related to
forest degradation. However, forest degradation was probably under-
estimated since degradation events tend to be too small to be detected
with 30m resolution Landsat data (Brandt et al., 2018). In part, forest
degradation in our study area was probably driven by the cultivation of
shade tolerant crops (e.g. cardamom, cacao) that need a proportion of

Table 2
Producer’s (PA) and User’s (UA) accuracy, and area bias, for deforestation,
forest degradation and regeneration detected in montane forest in Mvomero
district, Tanzania.

PA[%] UA[%] Area bias[%]

Deforestation 80 78.2 1.8
Forest degradation 78.7 72.5 6.2
Forest regeneration 70.6 75 −4.4

Fig. 8. Deforestation, forest degradation and regeneration in the Mvomero District, Tanzania as detected from Landsat time series (2001–2017) using STEF (Space-
time Extremes and Features) algorithm (Hamunyela et al., 2017).
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forest cover to cultivate. Activities such as firewood extraction, char-
coal production and timber harvesting might also have contributed to
forest degradation. These activities are frequent drivers behind forest
degradation in many African forest landscapes (Dresen et al., 2014;
Pratihast et al., 2014), and known to be common in Mvomero District
(Lyimo, 2014).

Only a small proportion (9 %) of disturbed forest in the Mvomero
District between 2001 and 2017 was able to regenerate (Fig. 8). Several
factors can explain the observed low regeneration rates. First, shifting
cultivation practices, known to occur in this area (Mwampamba and
Schwartz, 2011) have probably become rarer due to increased popu-
lation. Therefore, deforested areas converted to cropland might have
remained cropland permanently. Higher population means less land for
everyone, therefore, no land available to put some of it into fallows.
Second, we found evidence of grazing and browsing at some sample
locations. Continuous grazing and browsing by livestock might also
suppressed forest regeneration.

At least 12 % of all forest disturbances that occurred in Mvomero
District between 2001 and 2017 happened within areas designated as
forest reserves (1034 ha) and national park/nature reserve (1425 ha).
Deforestation (70 %) dominated the disturbances that occurred within
the forest reserves and national park/nature reserves. However, 76 % of
disturbances in forest reserves and national park/nature reserves hap-
pened between 2001 and 2010, with the remaining 24 % occurring
during 2011–2017 period. These results show that clearance and de-
gradation of forest in Mvomero District within forest reserves and na-
tional park/ nature reserves is relatively limited, and has decreased
sharply in recent years (2011–2017). This decline in forest disturbance
within the forest reserves and national park/nature reserves could be a

result of recent effort to eliminate farms encroaching into forest reserve.
However, continued occurrence of forest disturbances, particularly
deforestation within forest reserves highlights the presence of a loop-
hole in the current mechanisms for protecting forests in this area. We
found 9 % of regenerated forest in Mvomero District to have occurred
within the forest reserves (83 ha) and national park/nature reserve
(82 ha). We expected most forest regeneration to occur within forest
reserves and national park/nature reserves because of the abandonment
of farms that encroached into forest reserves. This limited regeneration
within the forest reserves and national park/nature reserve may be due
to the fact that most of the disturbed were cleared for cropland. Re-
establishment of a forest on an abandoned cropland is likely to take a
longer period.

4.2. Deforestation, forest degradation and regeneration along the
elevational gradient

Most of the deforestation and forest degradation that occurred in
Mvomero District between 2001 and 2017 were at lower elevation
(lowland montane), with disturbance events decreasing as the elevation
increases (Fig. 10). While the absolute value of disturbed area was
lower at higher elevations, we observed an increasing trend in higher
elevations in recent years (2011–2017). During the 2001–2010 period,
more than 60 % of deforestation and forest degradation events occurred
in lowland montane and less than 15 % of at high elevations (montane
and uppermontane). In subsequent years (2011–2017), however, de-
forestation and forest degradation activities shifted to higher elevations
(Fig. 11), declining sharply at low elevation. During this period, more
than 50 % of deforestation and forest degradation activities were

Fig. 9. Crops grown on deforested areas at the sampled locations in the Mvomero District, Tanzania, and their frequency of occurrence.

Fig. 10. Temporal cumulative area of deforestation and forest degradation by elevation zone in the Mvomero District, Tanzania, as detected from Landsat time series
(2001–2017) using STEF (Space-time Extremes and Features) algorithm (Hamunyela et al., 2017).
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occurring at elevations higher than> 800m (submontane, montane
and uppermontane). Note that the total deforested area is much greater
than degraded forests, which explains the difference between values
observed in Fig. 10 (raw area) and Fig. 11 (normalized by category).
High elevation and existing forest conservation mechanisms (e.g. es-
tablishment of forest reserves) are not a strong barrier for forest dis-
turbance in Mvomero District. Effective interventions are therefore
needed to protect the key ecosystem services of these montane forests.

By area, most of the regeneration occurred at the lowland montane,
but the highest regeneration success rate (11 %) was at submontane
zone. Differences in regeneration between the elevation zones were
nonetheless negligible (Fig. 12). Livestock grazing and browsing ac-
tivities are likely to occur at low elevation because it might be less
challenging for livestock to move around when compared to high ele-
vations. Therefore, livestock grazing and browsing might have limited
forest regeneration after disturbance at lower elevations. In addition,
most forest degradation occurred at high elevations. Expectedly, de-
graded forest is likely to have higher regeneration than deforested
areas.

4.3. The utility of global forest loss products for local forest assessment

Globally generated forest loss datasets (e.g. Hansen et al., 2013) are
increasingly being used for local forest loss assessment as baseline forest
change scenarios (Hojas-Gascon et al., 2015), but the utility of such
products is often not assessed. Our map-to-map comparison approach
show that the global forest loss dataset (Hansen et al., 2013) under-
estimated forest loss in Mvomero District with a large margin (Fig. 13).
Forest loss estimates from the global dataset were two times lower than
what was detected by our locally calibrated algorithm. Our algorithm
detected over 10,000 ha of forest loss (13 % of the total forest cover in

Mvomero District) more than the global dataset. This difference should
however be interpreted with care because our validation for defor-
estation did not cover the entire study area. The only validation that
covered the whole study area was for forest disturbance (without dis-
criminating between deforestation and degradation). The global dataset
nonetheless missed many obvious forest clearances, especially at high
elevations. In our study area, forest disturbances occurred at small
spatial scale. Therefore, the underestimation of forest loss by the global
product is not surprising. However, the margin of underestimation is
surprisingly high. We therefore do not recommend the use of global
forest loss datasets for local forest loss assessment, including accounting
of forest related GHG emissions in montane forest landscapes of Tan-
zania. To improve current global estimates of forest related GHG
emissions, there is an urgent need to improve the detection of forest
disturbances and regeneration in forested landscapes with strong sea-
sonality and in areas dominated by small-scale disturbances. New
generation of forest change detection algorithms (e.g. STEF), which
consider both spatial and temporal context, offer opportunities to im-
prove detection of forest disturbances and regeneration in such areas
(Brandt et al., 2018). Applying these algorithms to freely available data
from satellite sensors with improved spatial resolution (10m) and high
revisiting frequency such as the Sentinel-1 and 2 sensors could further
enhance detection of forest disturbances in complex forest landscapes.
However, computationally powerful platforms (e.g. Google Engine
Engine) would be needed in order to apply these algorithms to large
areas.

5. Conclusion

Montane forests in Mvomero District, Tanzania, underwent forest
disturbances (20 487 ha) between 2001 and 2017. The disturbances are

Fig. 11. Proportion of deforestation and forest degradation by elevation zone during the 2001–2010 and 2011–2017 in the Mvomero District, Tanzania.

Fig. 12. Regenerated forest area and forest regeneration success after disturbance by elevation in the Mvomero District, Tanzania, during the 2001–2017 period.
Forest regeneration was detected from Landsat time series (2001–2017) using STEF (Space-time Extremes and Features) algorithm (Hamunyela et al., 2017).
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dominated by deforestation. Forest disturbances have been occurring
mainly at lowland montane between 2000 and 2010, but are increas-
ingly shifting to higher elevations in recent years (2011–2017). Forest
clearance to establish small-scale crop farming is driving forest dis-
turbances in species-rich montane forest landscapes of Mvomero
District in Tanzania. Given high dependence on agriculture in the
Mvomero District, reducing forest disturbance would require integrated
land use policies that take the livelihood of local communities around
the montane forests and the benefits derived from forest conservation
into consideration. Sustainable agricultural intensification could be one
of the critical approaches to reduce forest clearance driven by cropland
expansion. Without sustainable agricultural intensification to increase
the yields of smallholder farming in order to meet the food demand of a
growing population, the risk for montane forests to disappear through
deforestation in near future might increase. Natural forest regeneration
in these montane forests is marginal, and may not be relied upon to
counteract the impact of forest disturbance. To prevent the unmitigated
loss of montane forests in Mvomero District, efforts such as community-
driven forest restoration should be considered.

Globally generated forest loss datasets grossly underestimate forest
loss in these montane landscapes, and cannot be relied upon for regular
assessment of forest changes in these areas. New generation of ap-
proaches for detecting changes in forest cover which combine spatial
and temporal context in satellite data offer opportunity to improve
forest monitoring in forest landscapes where hard-to-detect small-scale
disturbances are common and can be used for regular assessment of
forest changes. Improving the detection of small-scale forest dis-
turbances will improve the global estimates of forest related GHG
emissions, but greater improvement will be realised when forest re-
generation is fully incorporated in forest change assessments.
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