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Abstract 35 

Seed germination is characterized by a constant change of gene expression across different 36 

time points. These changes are related to specific processes, which eventually determine the 37 

onset of seed germination. To get a better understanding on the regulation of gene expression 38 

during seed germination, we performed a quantitative trait locus mapping of gene expression 39 

(eQTL) at four important seed germination stages (primary dormant, after-ripened, six-hour 40 

after imbibition, and radicle protrusion stage) using Arabidopsis thaliana Bay x Sha 41 

recombinant inbred lines (RILs). The mapping displayed the distinctness of the eQTL 42 

landscape for each stage. We found several eQTL hotspots across stages associated with the 43 

regulation of expression of a large number of genes. Interestingly, an eQTL hotspot on 44 

chromosome five collocates with hotspots for phenotypic and metabolic QTLs in the same 45 

population. Finally, we constructed a gene co-expression network to prioritize the regulatory 46 

genes for two major eQTL hotspots. The network analysis prioritizes transcription factors 47 

DEWAX and ICE1 as the most likely regulatory genes for the hotspot. Together, we have 48 

mailto:margi.hartanto@wur.nl
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revealed that the genetic regulation of gene expression is dynamic along the course of seed 49 

germination. 50 

INTRODUCTION 51 

Seed germination involves a series of events starting with the transition of quiescent to 52 

physiologically active seeds and ends with the emergence of the embryo from its surrounding 53 

tissues. Germination is initiated when seeds become imbibed by water, leading to the 54 

activation of seed physiological activities (Bewley et al. 2013b; Nonogaki et al. 2010). Major 55 

metabolic activities occur after seeds become hydrated, for example, restoration of structural 56 

integrity, mitochondrial repair, initiation of respiration, and DNA repair (Bewley et al. 2013b; 57 

Nonogaki et al. 2010). For some species such as Arabidopsis thaliana, germination can be 58 

blocked by seed dormancy. Dormant seeds need to sense and respond to environmental cues 59 

to break their dormancy and complete germination. In Arabidopsis thaliana, seed dormancy 60 

can be alleviated by periods of dry after-ripening or moist chilling (Bewley et al. 2013b). 61 

Soon after dormancy is broken, the storage reserves are broken down, and germination-62 

associated proteins are synthesized. Lastly, further water uptake followed by cell expansion 63 

leads to radicle protrusion through endosperm and seed coat, which marks the end of 64 

germination (Bewley et al. 2013b). 65 

A major determinant for the completion of seed germination is the transcription and 66 

translation of mRNAs. The activity of mRNA transcription is low in dry, mature seeds 67 

(Comai and Harada 1990; Leubner-Metzger 2005), and drastically increases after seeds 68 

become rehydrated (Bewley et al. 2013a). Nevertheless, stored mRNAs of more than 12,000 69 

genes with various functions are already present in dry seeds. These mRNAs are not only 70 

remnants from the seed developmental process, but also mRNAs for genes related to 71 

metabolism as well as protein synthesis and degradation required in early seed germination 72 

(Nakabayashi et al. 2005; Rajjou et al. 2004). Later in after-ripened seeds, only a slight 73 



4 
 

change in transcript composition was detected compared to the dry seeds (Finch-Savage et al. 74 

2007). The major shift in transcriptome takes place after water imbibition (Nakabayashi et al. 75 

2005). Interestingly, the transcriptome at the imbibition stage depends on the status of 76 

dormancy. For non-dormant seeds, most of the transcripts are associated with protein 77 

synthesis, while for dormant seeds, the transcripts are dominated by genes associated with 78 

stress-responses (Finch-Savage et al. 2007; Buijs et al. 2019). Even the transcript composition 79 

in primary dormant seeds, which occurs when the dormancy is initiated during development, 80 

is different from that of secondary dormant seeds, which occurs when the dormancy is 81 

reinduced (Cadman et al. 2006). These findings show the occurrence of phase transitions in 82 

transcript composition along the course from dormant to germinated seed.  83 

As omics technology becomes more widely available, several transcriptomics studies in seed 84 

germination processes have been conducted on a larger-scale. More developmental stages, 85 

i.e., stratification and seedling stage, and even spatial analyses have been included in these 86 

studies, resulting in the identification of gene co-expression patterns as well as the predicted 87 

functions of hub-genes (Narsai et al. 2011; Silva et al. 2016; Dekkers et al. 2013; Bassel et al. 88 

2011). Through guilt-by-association, these co-expression based studies can be used for the 89 

identification of regulatory genes that are involved in controlling the expression of 90 

downstream genes. These regulatory genes can be subjected to further studies by reverse 91 

genetics to provide more insight into the molecular mechanisms of gene expression in seed 92 

germination (i.e., Silva et al. 2016). Nevertheless, this approach still has limitations. Uygun et 93 

al. (2016) argued that co-expressed genes do not always have similar biological functions. On 94 

the other hand, genes involved in the same function are not always co-expressed since gene 95 

expression regulation could be the result of post-transcriptional or other layers of regulation 96 

(Lelli et al. 2012). Further, Uygun et al. (2016) emphasized the importance of combining the 97 
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expression data with multiple relevant datasets to maximize the effort in the prioritization of 98 

candidate regulatory genes.  99 

Genetical genomics is a promising approach to study the regulation of gene expression by 100 

combining genome-wide expression data with genotypic data of a segregating population 101 

(Jansen and Nap 2001). To enable this strategy, the location of markers associated with 102 

variation in gene expression is mapped on the genome, which results in the identification of 103 

expression quantitative trait loci (eQTLs). Relative to the location of the associated gene, the 104 

eQTL can be locally or distantly mapped, known as local and distant eQTLs (Rockman and 105 

Kruglyak 2006; Brem et al. 2002). Local eQTLs mostly arise because of variations in the 106 

corresponding gene or a cis-regulatory element. In contrast, distant eQTLs typically occur due 107 

to polymorphism on trans-regulatory elements located far away from the target genes 108 

(Rockman and Kruglyak 2006). Therefore, given the positional information of distant eQTLs, 109 

one can identify the possible regulators of gene expression. However, the eQTL interval 110 

typically spans a large area of the genome and harbors hundreds of candidate regulatory 111 

genes. A large number of candidate genes would cause the experimental validation (e.g. using 112 

knockout or overexpression lines) to be costly and take a long time. Therefore, a prioritization 113 

method is needed to narrow down the list of candidate genes underlying eQTLs, particularly 114 

on distant eQTL hotspots. A distant eQTL hotspot is a genomic locus where a large number of 115 

distant eQTLs are collocated (Breitling et al. 2008). The common assumption is that the 116 

hotspot arises due to one or more polymorphic master regulatory genes affecting the 117 

expression of multiple target genes (Breitling et al. 2008). Therefore, the identification of 118 

master regulatory genes becomes the center of most genetical genomics studies as the findings 119 

might improve our understanding of the regulation of gene expression (i.e., in Keurentjes et 120 

al. 2007; Jimenez-Gomez et al. 2010; Sterken et al. 2017; Valba et al. 2015; Terpstra et al. 121 

2010).  122 
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In this study, we carried out eQTL mapping to reveal loci controlling gene expression in seed 123 

germination. To capture whole transcriptome changes during seed germination, we included 124 

four important seed germination stages, which are primary dormant seeds (PD), after-ripened 125 

seeds (AR), six-hours imbibed seeds (IM), and seeds with radicle protrusion (RP). In total, 126 

160 recombinant inbred lines (RILs) from a cross between genetically distant ecotypes Bay-0 127 

and Shahdara (Bay x Sha) were used in this study (Loudet et al. 2002). Our results show that 128 

each seed germination stage has a unique eQTL landscape, confirming the stage-specificity of 129 

gene regulation, particularly for distant regulation. Based on network analysis, we identify the 130 

transcription factors ICE1 and DEWAX as prioritized candidate regulatory genes for two 131 

major eQTL hotspots in PD and RP, respectively. Finally, the resulting dataset complements 132 

the previous phenotypic QTL (Joosen et al. 2012) and metabolite QTL (Joosen et al. 2013) 133 

datasets, allowing systems genetics studies in seed germination. The identified eQTLs are 134 

available through the web-based AraQTL (http://www.bioinformatics.nl/AraQTL/) 135 

workbench (Nijveen et al. 2017). 136 

 137 

MATERIALS AND METHODS 138 

 139 

Plant materials 140 

In this study, we used 164 recombinant inbred lines (RILs) derived from a cross between the 141 

Bay-0 and Shahdara Arabidopsis ecotypes (Loudet et al. 2002) provided by the Versailles 142 

Biological Resource Centre for Arabidopsis (http://dbsgap.versailles.inra.fr/vnat). The plants 143 

were sown in a fully randomized setup on 4x4 cm rockwool plugs (MM40/40, Groudan B. V.) 144 

and hydrated with 1 g/l Hyponex (NPK = 7:6:19, http://www.hyponex.co.jp) in a climate 145 

chamber (20°C day, 18°C night) with 16 hours of light (35 W/m2) at 70% relative humidity. 146 

Seeds from four to seven plants per RIL were bulk harvested for the experiment (see also 147 

http://www.bioinformatics.nl/AraQTL/
http://dbsgap.versailles.inra.fr/vnat
http://www.hyponex.co.jp/
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Joosen et al. 2012; Joosen et al. 2013). The genotypic data consisting of 1,059 markers per 148 

line was obtained from Serin et al. (2017). However, the genotypic data is available only for 149 

160 RILs; therefore, we used this number of lines for eQTL mapping. 150 

 151 

Experimental setup 152 

The RIL population was grouped into four subpopulations, each one representing one of the 153 

four different seed germination stages. We used the designGG-package (Li et al. 2009) in R 154 

(version 3.6.0 Windows x64) to aid the grouping so that the distribution of Bay-0 and Sha 155 

alleles between sub-populations is optimized. The first stage is the primary dormant (PD) 156 

stage when the seeds were harvested and stored at -80°C after one week at ambient 157 

conditions. The second stage is after-ripened (AR) seeds that obtained maximum germination 158 

potential after five days of imbibition by storing at room temperature and ambient relative 159 

humidity. The third stage is the 6 hours imbibition (IM) stage. For this stage, the seeds were 160 

after-ripened and imbibed for six hours on water-saturated filter paper at 20°C and 161 

immediately transferred to a dry filter paper for 1 minute to remove the excess of water. The 162 

fourth stage is the radicle protrusion (RP) stage. To select seeds at this stage, we used a 163 

binocular to observe the presence of a protruded radicle tip. 164 

 165 

RNA isolation 166 

Total RNA was extracted according to the hot borate protocol modified from Wan and 167 

Wilkins (1994). For each treatment, 20 mg of seeds were homogenized and mixed with 800 μl 168 

of extraction buffer (0.2M Na boratedecahydrate (Borax), 30 mM EGTA, 1% SDS, 1% Na 169 

deoxycholate (Na-DOC)) containing 1.6 mg DTT and 48 mg PVP40 which had been heated 170 

to 80°C. Then, 1 mg proteinase K was added to this suspension and incubated for 15 min at 171 

42°C. After adding 64 μl of 2 M KCL, the samples were incubated on ice for 30 min and 172 
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subsequently centrifuged for 20 min at 12,000 g. Ice-cold 8 M LiCl was added to the 173 

supernatant in a final concentration of 2 M, and the tubes were incubated overnight on ice. 174 

After centrifugation for 20 min at 12,000 g at 4°C, the pellets were washed with 750 μl ice-175 

cold 2 M LiCl. The samples were centrifuged for another 10 min at 10,000 g at 4°C, and the 176 

pellets were re-suspended in 100 μl DEPC treated water. The samples were phenol-177 

chloroform extracted, DNAse treated (RQ1 DNase, Promega), and further purified with 178 

RNeasy spin columns (Qiagen) following the manufacturer’s instructions. The RNA quality 179 

and concentration were assessed by agarose gel electrophoresis and UV spectrophotometry. 180 

 181 

Microarray analysis 182 

RNA was processed for use on Affymetrix Arabidopsis SNPtile array (atSNPtilx520433), as 183 

described by the manufacturer. Briefly, 1 mg of total RNA was reverse transcribed using a 184 

T7-Oligo(dT) Promoter Primer in the first-strand cDNA synthesis reaction. Following RNase 185 

H-mediated second-strand cDNA synthesis, the double-stranded cDNA was purified and 186 

served as a template in the subsequent in vitro transcription reaction. The reaction was carried 187 

out in the presence of T7 RNA polymerase and a biotinylated nucleotide 188 

analog/ribonucleotide mix for complementary RNA (cRNA) amplification and biotin 189 

labeling. The biotinylated cRNA targets were then cleaned up, fragmented, and hybridized to 190 

the SNPtile array. The hybridization data were extracted using a custom R script with the help 191 

of an annotation-file based on TAIR10. Intensity data were log-transformed and normalized 192 

using the normalizeBetweenArrays function with the quantile method from Bioconductor 193 

package limma (Ritchie et al. 2015). Then, for each annotated gene, the log-intensities of anti-194 

sense exon probes were averaged. 195 

 196 

Clustering analysis 197 
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Principal component analysis for log-intensities of all parents and RIL population samples 198 

was done using the pr.comp function in R where the unscaled log intensities are shifted to be 199 

zero centered. For hierarchical clustering, we only selected genes with a minimal fold change 200 

of 2 between any pair of consecutive stages (PD to AR, AR to IM, or IM to RP). Then, the 201 

distance matrices of filtered genes and all samples were calculated using the absolute Pearson 202 

correlation. These matrices were clustered using Ward’s method. We manually set the number 203 

of clusters to 8 and performed gene ontology enrichment for each of the clusters using the 204 

weight algorithm of the topGO package in R and used 29,913 genes detected by hybridization 205 

probes as the background (Alexa et al. 2006). 206 

 207 

eQTL mapping 208 

For eQTL mapping, we used 160 RILs separated into four subpopulations, each representing 209 

one specific seed germination stage. For each stage separately, eQTLs were mapped using a 210 

single-marker model, as in Sterken et al. (2017). The gene expression data were fitted to the 211 

linear model 212 

𝑦𝑖,𝑗  ~ 𝑥𝑗 + 𝑒𝑗 

where y is the log-intensity representing the expression of a gene 𝑖 (𝑖  = 1, 2, ..., 29,913) of 213 

RIL 𝑗 (𝑗 = 1, 2, ..., 160) explained by the parental allele on marker location 𝑥 (𝑥 = 1, 2, ..., 214 

1,059). The random error in the model is represented by 𝑒𝑗. 215 

To account for the multiple-testing burden in this analysis, we determined the genome-wide 216 

significant threshold using a permutation approach (e.g. see Sterken et al. 2017). A permuted 217 

dataset was created by randomly distributing the log-intensities of the gene under study over 218 

the genotypes. Then, the previous eQTL mapping model was performed on this permuted 219 

dataset. This procedure was repeated 100 times for each stage. The threshold was determined 220 

using: 221 
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FDS

RDS
≤

𝑚0

𝑚
𝑞. log(𝑚), 

where, at a specific significance level, the false discoveries (FDS) were the averaged 222 

permutation result, and real discoveries (RDS) were the outcome of the eQTL mapping using 223 

the unpermuted dataset. The number of true hypotheses tested (𝑚0) was 29,913 - RDS, and the 224 

number of hypotheses (𝑚) tested was the number of genes, which was 29,913. For the 𝑞-225 

value, we used a threshold of 0.05. As a result, we got a threshold of 4.2 for PD and AR, 4.1 226 

for IM, and 4.3 for RP.  227 

The confidence interval of an eQTL was determined based on a -log10(p-value) drop of 1.5 228 

compared to the peak marker (as in Keurentjes et al. 2007; Cubillos et al. 2012). We 229 

determine an eQTL as local if the peak marker or the confidence interval lies within 1 Mb or 230 

less from the target gene location (as in Cubillos et al. 2012). All eQTLs that did not meet this 231 

criterion were defined as distant. 232 

We defined a region as an eQTL hotspot if the number of distant-eQTLs mapped to a 233 

particular genomic region significantly exceeded the expectation. First, we divided the 234 

genome into bins of 2 Mb. Then, we determined the expected number of distant-eQTLs per 235 

genomic bin by dividing the total number of distant-eQTLs by the total number of bins. Based 236 

on a Poisson distribution, any bin having an actual number of distant-eQTLs larger than 237 

expected (p < 0.0001) was then considered as an eQTL hotspot. 238 

 239 

Gene regulatory network inference and candidate genes prioritization of eQTL hotspot 240 

We used a community-based approach to infer regulatory networks of genes with an eQTL on 241 

a hotspot location using expression data. In this approach, we assume the hotspot is caused by 242 

a polymorphism in or near one or more regulatory genes causing altered expression that can 243 
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be detected as a local eQTL (Joosen et al. 2009; Breitling et al. 2008; Jimenez-Gomez et al. 244 

2010; Serin et al. 2017). Based on this assumption, we labeled all genes with a local eQTL on 245 

a hotspot as candidate regulators and genes with a distant eQTL as targets. The expression of 246 

these genes was subjected to five different network inference methods to predict the 247 

interaction weight. The methods used were TIGRESS (Haury et al. 2012), Spearman 248 

correlation, CLR (Faith et al. 2007), ARACNE (Margolin et al. 2006), and GENIE3 (Huynh-249 

Thu et al. 2010). The predictions from GENIE3 were used to establish the direction of the 250 

interaction by removing the one that has the lowest variable importance to the expression of 251 

the target genes between two pairs of genes. For instance, if the importance of genei – genej is 252 

smaller than genej – genei, then the former is removed. By averaging the rank, the predictions 253 

of all inference methods were integrated to produce a robust and high performance prediction 254 

(Marbach et al. 2012). The threshold was determined as the minimum average rank where all 255 

nodes are included in the network. Finally, the network was visualized using Cytoscape 256 

(version 3.7.1) (Shannon et al. 2003), and network properties were calculated using the 257 

NetworkAnalyzer tool (Assenov et al. 2008). The candidate genes for each eQTL hotspot 258 

were prioritized based on their outdegree and closeness centrality (Pavlopoulos et al. 2011). 259 

 260 

Data availability 261 

The list of genetic markers, genotype, and gene expression data used in this study are given in 262 

Table S7, Table S8, and Table S9, respectively. Cel files of microarray data have been 263 

deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress) under 264 

accession number E-MTAB-9080. The phenotype and metabolite measurement can be found 265 

in Table S10 and Table S11. The list of differentially expressed genes is in Table S12. All 266 

QTL mapping results are given in Table S13 (expression QTL), Table S14 (phenotype QTL), 267 

and Table S15 (metabolite QTL). The code for the analysis and visualization is available in 268 

http://www.ebi.ac.uk/arrayexpress


12 
 

the form of R scripts at the Wageningen University GitLab repository 269 

(https://git.wur.nl/harta003/seed-germination-qtl).  270 

 271 

 272 

RESULTS 273 

Major transcriptional shifts take place after water imbibition and radicle protrusion 274 

 To visualize the transcriptional states of the parental lines and the RILs at the four seed 275 

germination stages, we performed a principal component analysis using the log-intensities of 276 

all expressed genes (Figure 1). The first principal component explains 55.6% of the variation 277 

and separates the samples into three groups. Germination progresses from left to right with the 278 

PD and AR seeds grouping together, indicating that the after-ripening treatment does not 279 

induce a considerable change in global transcript abundance. The large-scale transcriptome 280 

change only happens after water imbibition and radicle protrusion. This event was also 281 

observed by Finch-Savage et al. (2007) and Silva et al. (2016). The second principal 282 

component on the PCA explains 14.2% variance in the data and separates the RILs within 283 

each of the three clusters but not the parents. The source of this variation may be the genetic 284 

variation among samples and shows transgressive segregation of gene expression in RILs due 285 

to genetic reshuffling of the parental genomes during crossing and generations of selfing.  286 

To identify specific expression patterns among genes in the course of seed germination, we 287 

performed an additional analysis of the transcriptome data using hierarchical clustering 288 

(Figure 2). For this analysis, we only selected the 990 genes with a minimal fold change of 289 

two between any two consecutive stages (PD to AR, AR to IM, IM to RP). We then clustered 290 

both the genes and the seed samples. As shown in the figure, the clustering of samples shows 291 

https://git.wur.nl/harta003/seed-germination-qtl
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similar grouping as in the previous PCA plot; three clusters were formed with one cluster 292 

containing both PD and AR, while IM and RP form separate clusters. 293 

The clustering of genes shows at least three distinctive gene expression patterns. In the first 294 

pattern, transcript abundance is highest in the last stage, radicle protrusion. A GO enrichment 295 

test suggests that transcripts with this expression pattern are involved in the transition from 296 

the heterotrophic seed to the autotrophic seedling stage, with enriched processes such as 297 

photosynthesis, response to various light, and response to temperature. This is in agreement 298 

with Rajjou et al. (2004), who showed that genes required for seedling growth are expressed 299 

after water imbibition. The second pattern shows an opposite trend with higher transcript 300 

abundances in the first three stages and lower expression at the end of the seed germination 301 

process. Some of these transcripts may be the remnant of seed development since the GO 302 

term related to this process is overrepresented. Moreover, transcripts involved in response to 303 

hydrogen peroxide were also overrepresented, which provides more evidence for the 304 

importance of reactive oxygen species in seed germination (for review see Wojtyla et al. 305 

2016). The last pattern represents genes that are upregulated at the IM stage. Genes with this 306 

pattern are functionally enriched in the catabolism of fatty acids, a likely source of energy for 307 

seedling growth (Bewley et al. 2013c). Altogether, these results suggest that co-expression 308 

patterns of genes reflect particular functions during the seed germination process.  309 

 310 

Distant eQTLs explain less variance than local eQTLs and are more specific to a seed 311 

germination stage  312 

To map loci associated with gene expression levels, we performed eQTL mapping of 29,913 313 

genes for each seed population representing four seed germination stages (Table 1). We found 314 

eQTLs, numbers ranging from 1,335 to 1,719 per stage (FDR = 0.05), spread across the 315 
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genome. Among the genes with an eQTL, only a few (less than 1%) had more than one. We 316 

then categorized the eQTLs into local and distant based on the distance between the target 317 

gene and the eQTL peak marker or the confidence interval. Based on this criterion, over 72% 318 

of the eQTLs per stage were categorized as local (located within 1 Mb of the gene), while the 319 

remainder were distant. Although the total of the identified eQTLs was different between the 320 

stages, the ratio of distant to local eQTLs was relatively similar for all stages. We then 321 

calculated the fraction of the total variation that is explained by the simple linear regression 322 

model for each eQTL. By comparing the density distributions (Figure S1), we showed that 323 

local eQTLs generally explain a more substantial fraction of gene expression variation than 324 

distant eQTLs. Finally, we determined the number of specific and shared eQTLs across stages 325 

(Figure 3). Here, we show that distant eQTLs are more specific to seed germination stages. 326 

Local eQTLs, on the other hand, are commonly shared between two or more stages, which is 327 

in line with previous experiments showing overlapping local eQTLs and specific distant 328 

eQTLs across different developmental stages (Vinuela et al. 2010), environments (Snoek et al. 329 

2012; Snoek et al. 2017; Lowry et al. 2013) and populations (Cubillos et al. 2012).  330 

 331 

An eQTL hotspot on chromosome 5 is associated with genes related to seed germination 332 

and collocates with multiple metabolic and phenotypic QTLs 333 

To get an overview of how the eQTLs were mapped over the genome, we visualized the 334 

eQTL locations and their associated genes on a local/distant eQTL plot (Figure 4A). Here, the 335 

local eQTLs are aligned across the diagonal and spread relatively equally across the genome, 336 

while it is not the case for the distant eQTLs. Furthermore, specific loci show clustering of 337 

eQTLs, which could indicate the presence of major regulatory genes that cause genome-wide 338 

gene expression changes. We identified ten so-called (distant-) eQTL hotspots, with at least 339 

two hotspots per stage (Table 2). The number of distant eQTLs located within these hotspots 340 
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ranges from 16 to 96. The major eQTL hotspots are PD2, IM2, and RP4, with 69, 69, and 96 341 

distant eQTLs co-locating, respectively. Moreover, the landscape of the eQTL hotspots 342 

(Figure 4B) differs for every stage, including PD and AR, which is surprising since these two 343 

stages have a relatively similar transcriptome profile (Figure 1).  344 

We remapped the QTLs for previously studied seed germination phenotypes (Joosen et al. 345 

2012) and metabolites (Joosen et al. 2013) using the RNA-seq based genetic map (Serin et al. 346 

2017). We then visualized the resulting QTL count histograms alongside the eQTL histogram 347 

(Figure 5). The histogram shows that several eQTL hotspots collocate with hotspots for 348 

phenotype and metabolite QTLs (phQTLs and mQTLs, respectively). The most striking 349 

example is the collocation of QTLs on chromosome 5 around 24—25 Mb (IM2 and RP4) at 350 

the last two stages of seed germination. We performed gene ontology (GO) term enrichment 351 

analysis for genes with an eQTL mapping to these hotspots, and found ‘seed germination’ 352 

enriched among other terms (Table 2). These findings taken together indicate that the IM2 and 353 

RP4 hotspots harbor one or more important genes affecting gene expression during seed 354 

germination. Therefore, the identification of the regulatory gene(s) for one of these hotspots 355 

can give us more insight into the trans-regulation of gene expression during seed germination.  356 

 357 

Transcription factors were prioritized as the candidate genes for major eQTL hotspots 358 

To prioritize the candidate regulatory genes underlying eQTL hotspots in this study, we 359 

constructed a network based on the expression of genes with eQTLs on the hotspot location. 360 

We built the network for two hotspots: RP4, where QTLs for expression, metabolite, and 361 

phenotype are collocated; and PD2, another major eQTL hotspot in this study. For RP4, the 362 

total number of genes used to construct the network was 116, of which 20 had a local eQTL at 363 

the hotspot, whereas for PD2, 114 genes were identified, of which 45 with a local eQTL. The 364 

genes with local eQTLs were then labeled as candidates. The networks were constructed by 365 
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integrating predictions from several gene regulatory network inference methods to ensure the 366 

robustness of the result  (Marbach et al. 2012). The direction of the edges in the network is 367 

predicted using the GENIE3 method (Huynh-Thu et al. 2010). For each candidate gene, we 368 

calculated the outdegree, indicating the number of outgoing edges of a gene to other genes in 369 

the network, and the closeness centrality of the candidate gene nodes, which shows the 370 

efficiency of the gene in spreading information to the rest of the genes in the network 371 

(Pavlopoulos et al. 2011). Finally, these two network properties were used to prioritize the 372 

most likely regulator of the distant eQTL hotspot. 373 

In the resulting network, genes encoding the transcription factors DECREASE WAX 374 

BIOSYNTHESIS/DEWAX (AT5G61590), and INDUCER OF CBP EXPRESSION 1/ICE1 375 

(AT3G26744) were prioritized as the most likely candidate genes for RP4 (Figure 6) and PD2 376 

(Figure 7), respectively. As many as 15 genes were predicted to be associated with DEWAX 377 

and 32 genes with ICE1. Note that these numbers depend on the chosen threshold; 378 

nonetheless, the current candidates are robust to changes when the parameter was changed 379 

(Table S3 and Table S4). Furthermore, these two genes also had the highest closeness 380 

centrality among the other candidates, showing that these genes have a strong influence 381 

within the network. We assessed the Bay x Sha SNP data (Genomes Consortium. Electronic 382 

address and Genomes 2016) and found several SNPs between the Bay and Sha parents in both 383 

the DEWAX and ICE1 genes, including two that affect the amino acid sequence of the 384 

corresponding proteins (Table S5 and Table S6). Also, querying for DEWAX and ICE1 on 385 

AraQTL showed a local eQTL for both genes in an experiment using the same RIL population 386 

on leaf tissue (West et al. 2007).  This evidence supports the hypothesis that polymorphisms 387 

between the Bay and Sha alleles of DEWAX and ICE1 are be responsible for the steadily 388 

occurring local eQTLs at three stages (PD, IM, RP) for DEWAX and all four stages for ICE1. 389 

 390 
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DISCUSSION 391 

The function of DEWAX may be related to seed cuticular wax biosynthesis 392 

In this study, we constructed a network of genes associated with the RP4 eQTL hotspot and 393 

showed that DEWAX was prioritized as the candidate gene for the hotspot. DEWAX encodes 394 

an AP2/ERF-type transcription factor that is well-known as a negative regulator of cuticular 395 

wax biosynthesis (Go et al., 2014; Suh and Go, 2014; Cui et al., 2016; Li et al., 2019) and a 396 

positive regulator of defense response against biotic stress (Froschel et al. 2019; Ju et al. 397 

2017). This gene also seems to be involved in drought stress response (Huang et al. 2008) by 398 

inducing the expression of genes that confer drought tolerance (Sun et al. 2016), some of 399 

which (LEA4-5, LTI-78) have a distant eQTL at the RP4 hotspot. Moreover, the 400 

overexpression of DEWAX in Arabidopsis increases the seed germination rate (Sun et al. 401 

2016). The role of DEWAX in seed germination is still unknown but may be related to 402 

cuticular wax biosynthesis. 403 

Wax is a mixture of hydrophobic lipids, which is part of the plant cuticle together with cutin 404 

and suberin (Yeats and Rose 2013). Previous studies have demonstrated that the biosynthesis 405 

of wax in the cuticular layer of stems and leaves is negatively regulated by DEWAX (Go et al., 406 

2014; Suh and Go, 2014; Cui et al., 2016; Li et al., 2019). Although the function of this gene 407 

has never been reported in seeds, the presence of a cuticular layer indeed plays a significant 408 

role in maintaining seed dormancy (Nonogaki 2019; De Giorgi et al. 2015). In Arabidopsis 409 

seeds, the thick cuticular structure covering the endosperm prevents cell expansion and testa 410 

rupture that precede radicle protrusion. Besides, this layer also reduces the diffusion of 411 

oxygen into the seed, thus preventing oxidative stress that may cause rapid seed aging and 412 

loss of dormancy (De Giorgi et al. 2015).  413 
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Besides DEWAX, MUM2 is another possible regulatory gene for the RP4 hotspot based on 414 

QTL confirmation of an imbibed seed size phenotype using a heterogeneous inbred family 415 

approach (Joosen et al. 2012). In our study, we also discovered that most eQTLs on the RP4 416 

hotspot peak at the marker located closely to the MUM2 location (Figure S2), which provides 417 

more evidence for this gene as the regulator for the hotspot.  MUM2 encodes a cell-wall 418 

modifying beta-galactosidase involved in seed coat mucilage biosynthesis, and the mum2 419 

mutant is characterized by a failure in extruding mucilage after water imbibition (Dean et al. 420 

2007). In our analysis, MUM2 did not have a distant eQTL on the RP4 hotspot; thus, it is not 421 

prioritized as a prominent candidate, pointing out a limitation of our approach in prioritizing 422 

candidate eQTL hotspot genes which will be discussed later. Nonetheless, we found some 423 

evidence connecting DEWAX to MUM2. First, Shi et al. (2019) found out that the mutant of 424 

CPL2, another gene involved in wax biosynthesis, showed a delayed secretion of the enzyme 425 

encoded by MUM2 that disrupts seed coat mucilage extrusion. In the same study, they 426 

revealed that CPL2 encodes a phosphatase involved in secretory protein trafficking required 427 

for the secretion of extracellular matrix materials, including wax and the cell wall-modifying 428 

enzyme MUM2. Although no direct connection between DEWAX and CPL2 has been 429 

reported, a recent study by Xu et al. did identify DEWAX as a putative regulator of cell-wall-430 

loosening EXPANSIN (EXPA) genes involved in germination (Xu et al. 2020). These findings 431 

provide a link between wax biosynthesis and cell-wall modifying enzymes, and possibly 432 

between the genes involved in these processes.  433 

Second, the expression of DEWAX may be the consequence of the disruption of seed mucilage 434 

extrusion.  Penfield et al. (2001) suggest that seed mucilage helps enhance water uptake to 435 

ensure efficient germination in the condition of low water potential. This is supported by the 436 

evidence that the mucilage-impaired mutant showed reduced maximum germination only on 437 

osmotic polyethylene glycol solutions (Penfield et al. 2001). Therefore, the absence of 438 
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mucilage in imbibed seed under low water potential may cause osmotic stress in the seed and, 439 

in turn, induce the expression of DEWAX, which is known to play a role in the response of 440 

plants against osmotic stress  (Sun et al. 2016). If this is the case, then a scenario could be that 441 

DEWAX acts downstream of MUM2, and the expression variation of these two genes lead to 442 

the emergence of the RP4 eQTL hotspot. 443 

 444 

Network analysis shows the involvement of ICE1 as a regulator of gene expression 445 

during seed germination 446 

ICE1 is an MYC-like basic helix-loop-helix (bHLH) transcription factor that shows 447 

pleiotropic effects in plants. Earlier studies of ICE1 mostly focus on the protein function in 448 

the acquisition of cold tolerance (Lee et al. 2005; Chinnusamy et al. 2003) and stomatal 449 

lineage development (Kanaoka et al. 2008). Recently, ICE1 was also shown to form a 450 

heterodimer with ZOU, another bHLH transcription factor, to regulate endosperm breakdown 451 

required for embryo growth during seed development (Denay et al. 2014). At a later stage, 452 

ICE1 negatively regulates ABA-dependent pathways to promote seed germination and 453 

seedling establishment (Liang and Yang 2015). This process involves repressing the 454 

expression of transcription factors in ABA signaling, such as ABI3 and ABI5, and ABA-455 

responsive genes, such as EM6 and EM1, thus initiating seed germination and subsequent 456 

seedling establishment (Hu et al. 2019; MacGregor et al. 2019). Loss of ice1 has been 457 

reported to lead to reduced germination (MacGregor et al., 2019) 458 

In this study, we performed a network analysis for genes having distant eQTLs on the PD2 459 

hotspot and prioritized ICE1 as the most likely regulator using network analysis. The high 460 

connectivity of ICE1 with the other genes in the network could reflect an essential regulatory 461 

function of this gene during seed germination. However, we did not find any of the known 462 
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ICE1 target genes (i.e., ABI3, ABI5, EM1, and EM6) nor seed germination phenotype (Figure 463 

5) having an eQTL at the ICE1 locus. It could be that the ICE1 polymorphism is not severe 464 

enough to cause considerable trait variation, especially to break a robust biological system 465 

where several buffering mechanisms exist to prevent small molecular perturbation from 466 

propagating to the phenotypic level (Signor and Nuzhdin 2018; Fu et al. 2009).  467 

A good strategy to validate that a predicted candidate gene indeed causes a QTL hotspot 468 

would be to test one parent’s allele of the gene in the genetic background of the other parent. 469 

This could be achieved by generating near-isogeneic lines, although rapid developments in 470 

site directed mutagenesis might offer a more feasible high-throughput approach for future 471 

studies. Next, being able to convert one parent’s gene into the other parent's gene one SNP at 472 

a time would even allow identification of causal SNPs. 473 

Limitations of co-expression network in identifying candidate genes of eQTL hotspots 474 

The construction of a co-expression network is a promising approach to prioritize candidate 475 

eQTL genes (Serin et al. 2016). Despite its potential, there is a major limitation in using a co-476 

expression network. The network is based on gene expression data; hence the identified 477 

causal genes are those that directly affect gene expression. For example, as we described 478 

above, our approach did not prioritize MUM2 for the RP4 hotspot, possibly because the gene 479 

does not cause variation in the target gene expression but rather causes differences at another 480 

level of target gene regulation (e.g., enzyme biosynthesis) between two parental alleles in the 481 

RIL population. Other studies reported similar results where a known causal gene was not 482 

detected as a hub in the network (Jimenez-Gomez et al. 2010; Sterken et al. 2017). To 483 

overcome this, future work should focus on networks that are built upon multi-omics data by 484 

including metabolic, proteomic, and, more importantly, phenotypic measurement data  (Hawe 485 

et al. 2019). Moreover, prior biological knowledge, including protein-protein interaction 486 

(Szklarczyk et al. 2017), transcription factor binding-site (Kulkarni et al. 2018), and other 487 
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types of interactions (for review see Kulkarni and Vandepoele 2019) can be incorporated to 488 

construct data-driven interaction networks. Nevertheless, our approach offers a simple and 489 

straightforward way to prioritize candidate genes underlying eQTL hotspots from a limited 490 

amount of resources.  491 

 492 

 493 

 494 

Tables 495 

 496 

Table 1. Summary of the eQTL mapping for the four different seed 497 

germination stages 498 

 499 

 500 

 501 

 502 

 503 

Table 2. Distant eQTL hotspots of the four seed germination stages. These 504 

hotspots were identified by dividing the genome into bins of 2 Mbp and 505 

performing a test to determine whether the number of distant eQTLs on a 506 

particular bin is higher than expected (p > 0.0001) assuming a Poisson 507 

distribution. Seed germination phenotype and metabolite data were taken from 508 

Joosen et al. (2012) and Joosen et al. (2013), respectively. Detailed information 509 

about enriched GO terms, metabolite, and phenotype can be seen on 510 

Supplemental Table S2 in the Supplementary Material. 511 

hotspot 
ID 

position distant 
eQTLs 

enriched 
GO terms 

metabolite 
QTL 

phenotype 
QTL 

PD1 ch1:6-10 Mb 43 11 1 4 

PD2 ch3:8-12 Mb 69 3 2 1 

AR1 ch2:12-14 Mb  16 0 0 0 

AR2 ch3:2-4 Mb 20 9 1 1 

stage   

eQTLs 

genes 

with an 

eQTL 

eQTL 

type 

total proportion 

primary 

dormant 

1,335 1,328 local 955 0.72 

distant 380 0.28 

after-ripened 1,395 1,377 local 1,089 0.78 

distant 306 0.22 

six hours after 

imbibition 

1,719 1,702 local 1,320 0.77 

distant 399 0.23 

radicle 

protrusion 

1,426 1,418 local 1,096 0.77 

distant 330 0.23 
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IM1 ch5:6-8 Mb 19 2 24 1 

IM2 ch5:22-26 Mb  69 6 6 31 

RP1 ch1:0-2 Mb 23 1 0 1 

RP2 ch1:6-8 Mb 18 0 0 3 

RP3 ch5:14-16 Mb 21 29 0 1 

RP4 ch5:24-26Mb 96 18 20 25 

 512 
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