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Abstract 

 

Among the Sustainable Development Goals (SDG), SDG 15.3: “end desertification and 

restore degraded land” is of great importance, yet challenging, for drylands all over the world. 

Especially in Morocco, of which a vast area is dryland, and thus vulnerable to desertification and 

land degradation. By understanding turning points (i.e., key moments in the ecosystem 

development where its functioning is significantly changed or altered) in Moroccan dryland 

ecosystem functioning and their effects on desertification and land degradation, valuable 

information is produced for better dryland ecosystem conservation. 

This research aimed to (1) identify and classify turning points in Moroccan dryland 

ecosystem functioning and (2) to establish a relationship between turning points and their 

drivers. Moreover, this research intended to (3) identify and classify abrupt changes in vegetation 

greenness trends on a sub-national scale, namely in the Todgha valley, and to investigate the 

explanatory value of migration to characterise the detected changes. 

By applying BFAST01 (a time series segmentation technique) on a 19-year rain-use 

efficiency time series, turning points were detected. Next, a typology developed for the 

classification of turning points was used to characterize ecosystem functioning changes in 

Moroccan drylands. Results showed a hotspot of turning points in the northern part of Morocco, 

in 2009, encompassing the Moulouya River basin. The majority of turning points (63.2%) were 

characterized by a steady increase in ecosystem functioning up to the turning point occurrence, 

after which the increase in ecosystem functioning slowed down. The Hassan II dam might 

explain the occurrences of these turning points, as the dam possibly led to a reduction of water 

availability downstream.  

Further analysis, by means of a binary logistic regression, showed that a combination of 

proximate (i.e., cropland abandonment, changes in sparse herbaceous land cover, and built-up 

expansions) and underlying causes (i.e., the occurrence of abnormally dry months and population 

density increase) had influence over the probability of a turning point occurrence in Moroccan 

dryland ecosystem functioning. However, the model resulted in a McFadden pseudo-R2 of only 

0.015, so interpretation should be done with care. 

Moreover, by applying BFAST01 on a 20-year NDVI time series and classifying the 

outputs, similarly to what was done with the rain-use efficiency data, the identification and 

classification of abrupt changes in vegetation greenness trends was performed. Abrupt changes 

were detected across the whole Todgha valley in a very patchy pattern, with a peak in the year 

intervals of 2005 – 2006, 2009 – 2010, and 2013 – 2014. The impact of migration on the  
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detected abrupt changes was found to be substantial. Migration and the accompanied remittances 

lead to local development in the form of investments in diesel pumps for agriculture. People who 

receive remittances have the ability to continue or expand their agriculture activities, which 

likely results in positive vegetation greenness trends, while the opposite case can potentially lead 

to negative vegetation greenness trends. 

 

Keywords: abrupt changes, rain-use efficiency, ecosystem functioning, turning point, drylands, 

drivers. 
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1. Introduction 

1.1    Background 
Drylands are, defined by the United Nations, land areas with one specific characteristic: 

the low amount of precipitation they receive (United Nations Environment Programme, 2011). 

Drylands cover approximately 40% of the total earth surface and give a place to live for over two 

billion people. After Asia, Africa has the highest percentage of its population living in drylands 

(42% and 41%, respectively; Reynolds et al., 2007). Drylands also account for roughly 40% of 

the global net primary productivity (Wang et al. 2012), the energy stored in biomass by 

vegetation and used by the ecosystem. They are located in the dry sub-humid, semi-arid and arid 

climates of the world. In terms of carbon storage efficiency, drylands are as efficient as humid 

areas (Laban et al., 2018). Global climate change, human activities, and severe droughts in the 

Sahel region have led to a significant increase in scientific interest in dryland ecosystems and 

their functioning both in the Sahel region and around the globe (Fensholt et al., 2015b). The 

biophysical characters of drylands, dependent on precipitation and vulnerable to drought, makes 

this type of ecosystem vulnerable for human-induced soil degradation and anthropogenic 

activities (Saco et al., 2018; Zika & Erb, 2009). 

These vulnerabilities can lead to abrupt changes in dryland ecosystems functioning. 

Abrupt changes in ecosystem functioning are changes that occur over a short period of time, with 

respect to the nominal rates of change, and can be identified by detecting turning points. Turning 

points are key moments in the ecosystem development where its functioning is significantly 

changed or altered (Horion et al., 2016). By identifying turning points in dryland ecosystems 

functioning and characterising the drivers of these turning points, a contribution to the 

Sustainable Development Goals (SDG) of the United Nations can be made, in particular to SDG-

15.3: end desertification and restore degraded land (United Nations, 2017). Research by de Jong, 

Verbesselt, et al. (2012) and de Jong, Verbesselt, et al. (2013) revealed that, between 1982 and 

2008, the global area with greening trends was decreasing, while the global area with browning 

trends increased. This increase in browning trends suggest a decline in vegetation activity in 

dryland ecosystems. However, other studies (Dardel et al., 2014; Eklundh & Olsson, 2003; 

Heumann et al., 2007) showed particular greening in the Sahel region, paradoxically.  

Drivers of these changes in dryland ecosystems emerge as naturogenic and 

anthropogenic, which are both of importance when analysing drivers of ecosystem change. 

Knowing the drivers of change is important in order to mitigate the effects of desertification and 

land degradation. Policies with an aim on, for example, land management, water management, 

and agriculture could benefit from a clear view on the most important drivers of change.  
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A country that is vulnerable to desertification and land degradation, due to the presence 

of large dryland areas, is Morocco. Next to the large dryland areas in Morocco which have an 

important role in shaping the country, emigration (i.e., leaving the country of origin) and its 

associated effect on land cover change has been paramount in shaping Morocco’s society 

(Castles et al., 2013). As a result, arable and irrigated land will be abandoned, which makes it 

vulnerable to turning points. Compared with the positive net-migration of 80,000 in The 

Netherlands in 2017, Morocco presented a net-migration of -257,096 in the same year (The 

World Bank, 2019). An area within Morocco which consists of large dryland areas and present 

an inherent nature of migration patterns is the Todgha valley (de Haas, 2003). These two factors 

makes the Todgha valley an interesting area to investigate. 

1.2    Problem definition 
Several global scale studies (de Jong, Schaepman, et al., 2013; IPCC, 2007; Li et al., 

2012; Maestre et al., 2012) have shown that climate change is a major driver of the changes in 

vegetation trends over the course of time, potentially leading to desertification and land 

degradation.  

Besides natural drivers, more and more research focusses on anthropogenic drivers of 

change in dryland ecosystems. A previous study carried out by Lioubimtseva and Henebry 

(2009) indicated that water, demanded for irrigation, leads to human-induced desertification of 

drylands in Central-Asia. Fensholt, et al. (2014) have shown that human factors influence the 

NDVI trends. Especially on a smaller scale, it is important to take human factors into account. 

This is also suggested by others (Bégué, Vintrou, Ruelland, Claden, & Dessay, 2011; Seaquist, 

Olsson, Ardö, & Eklundh, 2006). Yet, the complex relation between changing vegetation trends, 

climate change, human impact (e.g., migration, population density, land management) and other 

drivers has to be established. This is also advocated by others as a relevant field of study (Bürgi 

et al., 2010; de Jong, Verbesselt, et al., 2013; Fensholt et al., 2015a; Levick & Rogers, 2011; 

Sohl et al., 2010). However, in depth studies of this complex relation have not been performed 

before at a national scale, such as Morocco.  

The GIMMS Normalized Difference Vegetation Index (NDVI) from the Advanced Very 

High Resolution Radiometer (AVHRR) sensors has been the standard NDVI product to detect 

turning points in multiple studies (Dardel et al., 2014; Fensholt et al., 2013, 2015a; Horion et al., 

2016). However, with a spatial resolution of ~9 km this product is too coarse to relate turning 

points to a particular driver. The MODIS NDVI products with a finer spatial resolution, 500 and 

250 m, have the potential to relate turning points to particular drivers, as suggested by 

Rasmussen et al. (2014).  
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Considerable research has been done on detecting vegetation trend changes and turning 

points in dryland from earth observation data (Bernardino et al., 2020; de Jong, Verbesselt, et al., 

2013; Horion et al., 2016). But a national and more detailed assessment of turning points and 

their drivers in Morocco is still missing. Such a national assessment is essential in order to get a 

better understanding of dryland ecosystem functioning on both a local and global scale (Geist & 

Lambin, 2004; Rasmussen et al., 2014; Sohl et al., 2010).  

The effects of migration on Morocco and specifically on the Todgha valley in terms of, 

e.g., increased globalization, increased wealth, and decreasing birth rates, has been established in 

several studies (de Haas, 1998, 2003, 2007; Jones, 1998). However, the connection between 

migration and shifts in vegetation activity trends has never been studied on such a small scale as 

the Todgha valley. On the one hand, migration can give people the possibility to pursue their 

aspirations, a livelihood in the city, for example. On the other hand, migration can lead to local 

development, as remittance flows directly to the people who need it. In Morocco, this may lead 

to, e.g., the investment in irrigation pumps, which then may result in more agricultural activity. 

This pathway of development has been proven to be important in the Todgha valley (de Haas, 

2006).  

In general, dryland regions in Morocco remain poorly studied and deserve more research 

(Maestre et al., 2012). 

1.3    Research objective and research questions 
The objective of this research is to identify and classify turning points in Moroccan 

dryland ecosystem functioning and to have a detailed look at the drivers of these turning points, 

both naturogenic and anthropogenic. In order to achieve this objective, the following main 

research question is defined:  

 

“How can turning points and their drivers in Moroccan dryland ecosystem functioning  

over the last 20 years be characterised?” 

 

To answer the main research question, three sub-questions have been formulated: 

 

 Which dryland areas in Morocco experienced turning points in ecosystem functioning 

over the last 20 years and how can these be categorised? 

 To what extent does a combination of proximate causes (i.e., agricultural activities, 

increased aridity, infrastructure extension and wood extraction) and underlying causes 

(i.e., climate and demographic factors) explain the detected turning points in Moroccan 

drylands on a national scale? 
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 Which areas of the Todgha valley experienced abrupt changes in vegetation greenness 

trends over the last 20 years and what is the explanatory value of migration on the 

detected changes? 

 

A working hypotheses was formulated in order to investigate the socio-economic drivers 

of abrupt changes in vegetation greenness trends, and in this way addressing the third sub-

question. The working hypotheses states that:  

 

“The pumping of water for cropland irrigation in the western part of the Todgha valley (zone b) 

leads to a lowering of the groundwater table in the eastern part of the Todgha valley and further 

downstream in the Tinejdad-Ferkla oasis (zone c & d), and thus, to desertification.” 

 

This working hypothesis was provisionally accepted as a basis to investigate the socio-

economic drivers of abrupt changes in vegetation greenness trends in the Todgha valley. It is a 

follow up of former research by de Haas (2003) regarding the disparate socio-economic impacts 

of out-migration on the Todgha valley. 

1.4    Report structure 
This thesis consists of two parts and two study areas. In the first part, a national analysis 

has been performed to identify and classify turning points in ecosystem functioning. 

Complementary to this analysis, a national driver analysis has been done in order to characterise 

the drivers of these turning points. This first part addresses sub-questions 1 and 2. The second 

part of the thesis consists of a sub-national analysis to identify and classify abrupt changes in 

vegetation greenness trends in the Todgha valley. On this sub-national scale, the focus has been 

on the explanatory value of migration to characterise the detected changes. This analysis leads to 

answering sub-question 3. 

The distinction between the terms turning point (i.e., used in the first part of this thesis) 

and abrupt change (i.e., used in the second part of this thesis) has been deliberately made. As 

defined by Horion et al. (2016), a turning point is a key moment in the ecosystem development 

where its functioning is significantly changed or altered, which can be assessed by using the 

Rain-Use-Efficiency. In the second part of this thesis, NDVI was used to detect changes in 

vegetation greenness trends. As these changes do not imply a shift in ecosystem functioning, the 

term abrupt changes was used here instead of the term turning point.  

Chapter 2 describes the theoretical background to support this report. This chapter 

includes information that assists in understanding the methodology, interpreting the results and 

placing the research in a scientific context. The study areas and a detailed explanation of the data  
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can be found respectively in Chapters 3 and 4. The methodology that was used to answer each 

sub-question and finally, the main research question, is presented in Chapter 5. The results, 

which are shown in Chapter 6, are presented per sub-question, and are discussed in Chapter 7. 

Finally, the conclusions of this research and recommendations for further research are featured in 

Chapter 8.  
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2. Theoretical background 
 

In order to understand the methodology, interpret the results, and to place the present research in 

a scientific context in the best way possible, additional information on four fundamental 

concepts is required. These four concepts are: Rain-Use-Efficiency, Break For Additive Season 

and Trend, a framework with causes of desertification and land degradation, and lastly, binary 

logistic regression. They are indispensable for this research and will be elaborated upon in the 

following sub-sections.  

2.1    Rain-Use-Efficiency 
The turning points in Moroccan dryland ecosystem functioning are identified by means 

of using the Rain-Use-Efficiency (RUE; Le Houérou, 1984), which is a key indicator for 

measuring the response of plant production to precipitation. RUE is defined as the ratio between 

the Net Primary Productivity (NPP) and precipitation, and can be used as an indicator for 

dryland ecosystem functioning (Horion et al., 2016). The small integral of the NDVI growing 

season was used as a proxy for the NPP (Fensholt et al., 2013), following (Bernardino et al., 

2020). The denominator in this ratio is the sum of the precipitation in the growing season.  

 

𝑅𝑈𝐸 =  
𝑁𝑃𝑃

𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛
 

 

Because NPP is highly correlated with precipitation in arid and semi-arid drylands, RUE 

provides a way to normalise NDVI to NDVI per unit precipitation. As this research included 

investigating both naturogenic and anthropogenic drivers of turning points, this normalisation is 

essential. By using the RUE, precipitation and other drivers of turning points in ecosystem 

functioning are differentiated from each other (Orr, 2011). This has been proven to be a method 

with high potential (Fensholt et al., 2015a; Horion et al., 2016) 

2.2    BFAST, BFAST01 and BFAST01classify 
A time series is as a sequence of satellite images, acquired within a certain time frame, 

with the same spatial coverage and resolution. Time series are ideally fit to monitor vegetation 

and detect shifts in vegetation activity. A time series object operates as the input of Break For 

Additive Season and Trend (BFAST) and Break For Additive Season and Trend 01 (BFAST01) 

algorithms. 

A way to analyse time series is Break For Additive Season and Trend (BFAST), 

proposed by Verbesselt, Hyndman, Newnham, & Culvenor (2010). This method iteratively 

estimates the time step and amount of abrupt changes in the trend and seasonal components  
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within a time series and has been proven to effectively detect changes in vegetation dynamics in 

different ecosystems, including drylands. De Jong et al. (2012) used BFAST to detect both 

abrupt and gradual vegetation trend changes in shrubland and grassland biomes. Two other 

studies have shown the effectiveness of using BFAST to detect vegetation trends in dryland 

areas (Fensholt et al., 2015b; Watts & Laffan, 2014). 

A variant of BFAST, and another way to analyse time series, is Break For Additive 

Season and Trend 01 (BFAST01). BFAST01 (de Jong, Verbesselt, et al., 2013) is different from 

BFAST (Verbesselt et al., 2010) in the sense that it only detects the most prominent trend shift 

within the time series, while BFAST detects all the potential. Thus, a turning point is identified if 

and when the most prominent trend shift in RUE is detected. 

To not only identify, but also classify turning points and abrupt changes in dryland 

ecosystems, Bernardino et al. (2020) developed an improved typology for BFAST01classify (de 

Jong, Verbesselt, et al., 2013).  This improved typology divides the detected turning points and 

abrupt changes into six types and four subtypes. Moreover, the new typology also provides 

information about the rate of change in functioning before and after the shift, besides of only the 

direction of change. Table 1, extracted from Bernardino et al. (2020), gives an overview of the 

possible types and subtypes. 
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Table 1    Typology of types and subtypes of changes in ecosystem functioning, extracted from Bernardino et al. 

(2020) 
 

Type Subtype Example 
Illustration of 

ecological inference 

 Stable increase No subtype 

 Gradual increase in 

ecosystem functioning 

due to increased 

temperature or CO2 

fertilization (e.g., Horion 

et al., 2016) 

 Stable decrease No subtype 

 
Gradual land 

degradation, such as 

long-term loss in soil 

organic matter content 

(e.g., Horion et al., 2019) 

 
Interrupted 

increase 
 Accelerating 

 
Species composition shift 

towards a faster 

ecosystem functioning 

increase (e.g., Chapin et 

al., 2000) 

 Interrupted 

increase 
 Slowing 

down 

 
Species composition shift 

towards a slower 

ecosystem functioning 

increase (e.g., Chapin et 

al., 2000) 

 Interrupted 

decrease 
 Accelerating 

 Extreme drought leads to 

high RUE, but 

subsequent plant 

mortality decreases 

ecosystem productivity 

by reducing vegetation 

density (e.g., Lotsch et 

al., 2005) 

 Negative 

reversal 
 Complete 

 

Deforestation leading to 

a decrease in ecosystem 

functioning in north-

eastern Brazil. 

 
Positive 

reversal 
 Transition 

 Cropland abandonment 

followed by natural 

vegetation regeneration  

(e.g., Horion et al., 2016; 

Bernardino et al., 2020) 

) 
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2.3    Framework causes of desertification and land degradation 
After analysing 132 case studies on the causes of desertification and land degradation in 

dryland ecosystems, Geist & Lambin (2004) developed a framework of desertification and land 

degradation causes. In this framework, a distinction between proximate and underlying causes of 

desertification is made. They define proximate causes as immediate actions at the local level 

(e.g., agricultural activities, increased aridity, infrastructure extension and wood extraction). 

Underlying causes are fundamental social and biophysical factors (e.g., demographic factors, 

economic factors, technological factors, climatic factors, policy and institutional factors, cultural 

factors). These proximate and underlying causes are divided per continent, based on occurrence 

in the 132 case studies. In this way, it becomes clear for each continent which proximate and 

underlying causes are important to investigate, in terms of desertification and land degradation. 

The four proximate causes which have potential to explain the occurrence of turning 

points in Moroccan drylands are agricultural activities, increased aridity, infrastructure 

extension, and wood extraction. Former research showed that these causes have a strengthening 

effect on desertification and land degradation in Morocco (Hammouzaki, 2013; Karmaoui, 2019; 

Karmaoui et al., 2014). The underlying causes which have been treated as probable drivers of 

turning points are climate and demographic related factors.  

2.4    Binary logistic regression 
A binary logistic regression allows us to better understand how proximate and underlying 

causes are related with turning points occurrence. It looks for the most optimal relationship 

between the dependent variable and one or more independent variables by estimating 

probabilities using the maximum likelihood method. It is a powerful statistical way of modelling 

a binomial outcome with one or more explanatory variable. A binary logistic regression differs 

from the regular logistic regression in the sense that it is optimized to deal with a binary response 

variable. Its model is defined as follows: 
 

𝑃(𝑌𝑖 = 1 |𝑋𝑖 = 𝑥𝑖) =
𝑒(𝛽0+𝛽1𝑥𝑖)

1 + 𝑒(𝛽0+𝛽1𝑥𝑖)
 

 
By using turning points occurrence as the binary dependent variable (turning point/no 

turning point), a binary logistic regression has the potential to establish a relationship between 

the proximate and underlying causes (independent variables). Different studies have used this 

regression method to related topics successfully (Dargaso Dana, 2018; Mandal & Mandal, 2018; 

Pourghasemi, 2016), making the binary logistic regression an analysis method with high 

potential.   
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3. Study area 

3.1    National study area 
The first part of this research focused on a specific area within the undisputed territory of 

Morocco. The Western Sahara, the territory occupied mostly by Morocco as its Southern 

Provinces, is excluded from this research. The Köppen-Geiger climate classification (Beck et al., 

2018), with a 1 km spatial resolution, combined with the World Atlas of Desertification (Cherlet 

et al., 2018), were used to define the study area. The study area consists of drylands with an arid 

and semi-arid climate (BWh, BWk, BSh, and BSk). The remaining parts of Morocco are also 

excluded from this research, because these areas do not match the definition of drylands by the 

United Nations (United Nations Environment Programme, 2011). The open source QGIS 

software was used to extract the study area. This specific area is shown in black on the inset map 

of Figure 1.  

 

Figure 1    The national study area relative to the undisputed territory of Morocco (black area) and the Todgha 

valley relative to the national study area (white star). 

3.2    Sub-national study area 
The second part of this research concentrated on a specific area within the national study 

area: the Todgha valley. This area has been selected based on the presence of multiple oases, its 

significance on the migration numbers of Morocco and because we had access to expertise 

knowledge for this area (de Haas, 1998, 2001a, 2003, 2006, 2007). The Todgha valley is located 

in the middle of Morocco’s main oasis regions, the Draâ valley and the Tafilalt. The Todgha 

valley is indicated with the white star on the inset map of Figure 1. 

 

 

 

0 200 400 km  
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3.2.1    An introduction to the Todgha valley 

The Todgha is a river valley on the Southern slopes of the High Atlas Mountains that 

drain the melt- and rainwater captured in the high mountains south- and eastward to the Sahara 

desert. In this arid/semi-arid climate, the High Atlas Mountains provides a continuous supply of 

fresh water, which explains the existence of numerous oases south of the Atlas. The Todgha 

valley stretches from the main town Tinghir in the west to Tinejdad in the east. Zooming in on 

the actual Todgha Valley, roughly four zones can be distinguished based on the discrepancy in 

water availability and irrigation methods (Figure 2). This distinguishing has been made 

throughout the analysis to identify abrupt changes in vegetation greenness trends as well as the 

explanatory analysis.  

 

Figure 2    The four zones of the Todgha valley. Based on the discrepancy in water availability and irrigation 

methods. 

 

The Upper Todgha valley (Figure 2a) starts at the point where the Todgha leaves the 

gorges. This zone has the most elevated relief from all zones and is characterised by its 

abundance in perennial water sources. From here on downstream, the Todgha flows further in a 

south-eastern direction and the valley gently widens. At this point, in the Middle and Lower 

Todgha valley (Figure 2b), khettara1 and mechanical irrigation becomes more important because 

of the subsidence of the Todgha. The most eastern point of this zone marks the end of the old 

Todgha valley. Newly irrigated plains of Ghallil and Bour Tinedjad (Figure 2c) emerge in this 

zone since the 1980s particularly. This zone is increasingly reclaimed for relatively large-scale 

agriculture. Here, farmers are dependent on the use of diesel engines to pump up subsurface 

water of the Todgha. Further eastwards, the fourth zone of the Todgha valley, the traditional  

 

                                                

 
1 A traditional irrigation method to access subsurface water via a network of tunnels, shafts and dams. 

(a) 

(b) 
(c) 

(d) 
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oasis of Tinejdad-Ferkla (Figure 2d), can be distinguished. The valley widens up again and the 

contrast with the traditional oasis of the Todgha valley (zones a and b) is clear. This zone suffers 

from lowering of water tables, caused by pumping in zones b and c, leading to drying out of 

sources and water tables (de Haas, 2003). 
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4. Data description 
 

All data used in this research originates from satellites and can thus be referred to as remote 

sensing data. Data from two different sources were used for the identification and classification 

of turning points in ecosystem functioning, namely Moderate Resolution Imaging 

Spectroradiometer (MODIS) and Climate Hazards Group InfraRed Precipitation with Station 

(CHIRPS). In order to characterise the drivers of the identified turning points, data from several 

different sources were used, all remotely sensed. To identify abrupt changes in vegetation 

greenness trends on a sub-national scale, MODIS data were used. The data for both the national 

and the sub-national will be discussed in the following sub-sections and are summarised in  

Table 2 and 3 

4.1    Identification of turning points in ecosystem functioning 
To identify turning points in ecosystem functioning on a national scale, the NDVI 

product of MODIS and the rainfall estimates product from CHIRPS were used. As suggested by 

Rasmussen et al. (2014), the use of MODIS NDVI products with a finer spatial resolution (i.e., 

500 and 250 m), has the potential to relate turning points in ecosystem function to particular 

drivers.  

 

4.1.1    MODIS 

The 6th version of the Terra MODIS NDVI product (Didan, 2015b) was used. For the 

national turning point analysis, a spatial resolution of 500 m was chosen. This dataset has a 

temporal resolution of 16 days, ranging from February 2000 to the present time. Additionally, 

the complementary Quality Assessment (QA) product of MODIS was utilised to assess the 

quality of the images. 

 

4.1.2    CHIRPS 

CHIRPS data was used for the precipitation estimates (Funk et al., 2015). CHIRPS 

provides monthly rainfall estimates with a spatial resolution of ~5 km. Covering the entire globe 

and with a temporal extent ranging from 1981 up to the present time, this dataset is very suitable 

for long-term analysis. 
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Table 2    Summary of the data used in the national turning point analysis and the sub-national greenness trend 

analysis. 
 

Data product 
Spatial 

resolution (m) 
Spatial extent 

Temporal 

resolution 
Temporal extent 

MODIS NDVI 500 / 250 Global Bi-monthly 2000 - present 

MODIS QA 500 / 250 Global Bi-monthly 2000 – present 

CHIRPS 5500 Global Monthly 1981 – present 

4.2    Characterisation of turning points in ecosystem functioning 
The possible drivers of the detected turning points are divided into proximate and 

underlying causes. For each proximate and underlying cause, different datasets were use. These 

datasets are discussed in the following sub-sections, starting with the datasets for the proximate 

causes (4.2.1, 4.2.2, 4.2.3) and ending with the underlying causes (4.2.4 and 4.2.5). 

 

4.2.1    CCI Global Land Cover 

The CCI Global Land Cover product was used in order to investigate ‘agricultural 

activities’ as a possible proximate cause of turning points in ecosystem functioning. The 

European Space Agency (ESA) initiated a programme to monitor essential variables regarding 

climate change, called Climate Change Initiative (CCI; ESA, 2017). Part of this program was to 

monitor land cover, resulting in the CCI Global Land Cover product. As land cover data is 

accompanied with a standardised legend, agricultural areas can be detected and analysed from 

this product. 

 

4.2.2    Global Human Settlement Built-Up 

The Global Human Settlement product was used to derive information about 

infrastructure, in order to investigate the proximate cause ‘infrastructure expansion’. The Global 

Human Settlement product, provided by the Joint Research Team (JRT) of the European 

Commission (EC), contains information on the human presence on the planet (Corbane et al., 

2018). The Built-Up layer specifically, provides information on the presence of built-up areas 

around the world. 

 

4.2.3    Forest loss  

 Hansen et al. (2013) developed a global forest change product. This product provides 

multiple layers, containing information about both forest gains and losses. To analyse the 

possible proximate cause ‘wood extraction’, the year of gross forest cover loss event (“lossyear”) 

layer was used. This layer contains forest loss, defined as a stand replacement disturbance, or a 

change from a forest to non-forest state. 

 



 

15 

 

 

 

4.2.4    Standardized Precipitation-Evapotranspiration Index and TerraClimate Soil Moisture 

In order to analyse climate related factors as underlying drivers of turning points, two 

different datasets regarding climate indicators were used. Firstly, the Standardized Precipitation-

Evapotranspiration Index (SPEI). SPEI provides long-time, robust information on drought 

conditions and shows deviations of the current climatic balance with respect to the long-term 

balance (Vicente-Serrano et al., 2010) . The other product that was used is the TerraClimate Soil 

Moisture, providing soil moisture estimates (Abatzoglou et al., 2018). 

 

4.2.5    Population Density Grid 

To address the demographic factor as underlying cause of turning points, population 

density extracted from the Gridded Population of the World product was used. This dataset 

provides estimates of the population density around the globe (Center for International Earth 

Science Information Network - CIESIN - Columbia University, 2016). 

 
Table 3    Summary of the data used in the national driver analysis. 

 

Data product 
Spatial 

resolution (m) 
Spatial extent 

Temporal 

resolution 

Temporal 

extent 

Assessed 

driver 

CCI Global 

Land Cover 
300 Global Annual 1992 - 2018 

Agricultural 

transition 

Global Human 
Settlement 

Built up 

250 Global 15-yearly 
1975, 1990, 

2000, 2014 

Infrastructure 

expansion 

Forest loss 30 Global Annual 2000 - 2018 
Wood 

extraction 

SPEI 0.5° Global Monthly 1901 - 2015 Climate factor 

TerraClimate 

Soil Moisture 
0.04° Global Annual 1958 - 2019 Climate factor 

Population 
Density Grid, 

V4 

1000 Global Demi-decadal 
2000, 2005, 
2010, 2015, 

2020 

Demographic 

factor 

4.3    Identification of abrupt changes in vegetation greenness trends 

To identify abrupt changes in vegetation greenness trends on a sub-national scale, the 6th 

version of the Terra MODIS NDVI product with a spatial resolution of 250 m (Didan, 2015a) 

was used. This dataset has a temporal resolution of 16 days, ranging from February 2000 to 

December 2019. Additionally, the complementary Quality Assessment (QA) product of MODIS 

was utilised to assess the quality of the images. 
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5. Methodology 
 

Working with remotely sensed data to identify and classify turning points, accompanied by a 

characterisation of their drivers, requires multiple steps, such as data acquiring, data pre-

processing, turning point analysis, driver analysis, and validation. All steps, except the data 

acquiring and deriving the growing season, were performed in the programming language R. 

This chapter describes, per research question, the methodological steps which were followed to 

get the required results to answer them and are summarised in Figure 3.  

5.1    Identification and classification of turning points in ecosystem functioning  
 

5.1.1    Downloading and pre-processing MODIS 

All available NDVI layers of MODIS, with a spatial resolution of 500 m, for the period 

2000/01/01 – 2020/01/01 were downloaded via Google Earth Engine. This resulted in 457 

images, ranging from 2000/02/18 to 2019/12/19. Additionally, the complementary QA layers of 

MODIS were downloaded, also resulting in 457 images. The first step was to pre-process the QA 

layers in such a way that the pixels with bad quality remained and could be used as a mask later 

on. The VI quality layer was investigated first. Pixels labelled as ‘VI produced, but check other 

QA’, were further investigated using the VI usefulness layer. From these pixels, pixels marked as 

‘Lowest Quality’, ‘Quality so low that it is not useful’, ‘L1B data faulty’ and ‘Not useful for any 

other reason/not processed’ were added to the mask with bad pixel quality. Next, the QA 

land/water was used to make a mask that was used to exclude water bodies from the study area. 

The pixels labelled as “Land (nothing else but land)” by the land/water QA layer were kept. 

The pre-processing of the NDVI layers of MODIS was done as follows. Starting with 

masking non-dryland areas of the undisputed territory of Morocco, by using the Köppen-Geiger 

classification data was cropped, re-projected and resampled to fit NDVI layers specifications. 

The climate classification data were resampled using the nearest neighbour method.  Water 

bodies and pixels with bad quality were masked out of the NDVI layers of MODIS as explained 

before. To match the same temporal extent as the CHIRPS data, monthly composites were made, 

using the max function, resulting in 239 images. This also decreased the number of missing 

values in the NDVI dataset. Finally, the NDVI dataset was re-scaled, by dividing it by 10,000, 

and pixels with a value lower than 0.1 were excluded. This was done in order to remove areas 

with sparse/absent vegetation (de Jong, Verbesselt, et al., 2013).Which resulted in NDVI values 

ranging from 0.1 up to 1.  
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Figure 3    Conceptual frameworks of the followed methodology. Horizontally distributed based on the three sub-questions. 
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5.1.2    Downloading and pre-processing CHIRPS 

The monthly composites of the rainfall estimate of CHIRPS were downloaded from the 

CHIRPS directory (Funk et al., 2015). The dataset has 239 images, ranging from 2000/02 – 

2019/12, which matches the temporal extent and spatial coverage of the NDVI layers of MODIS. 

The rainfall estimates of CHIRPS were cropped, re-projected and resampled to match the NDVI 

layers specifications. The rainfall dataset was resampled using the nearest neighbour method, 

assuming that there will not be much variation in rainfall in a ~5 km pixel.  

 

5.1.3    Growing season and small integral 

For each pixel, the annual growing season small integral value was derived for the whole 

time series, and was used as a proxy of the NPP (Fensholt et al., 2013). The small integral can be 

seen as the total vegetation greenness during the growing season. To determine the start and end 

of the growing season, and to extract the small integral value, the TIMESAT software was used 

(Jönsson & Eklundh, 2004). The same settings were used as the ones specified by (Horion et al., 

2016), and following (Bernardino et al., 2020). Nineteen growing seasons were extracted from 

the twenty years of NDVI data. As the used dataset goes from February 2000 to December 2019, 

it was not possible to estimate the last growing season (i.e., the 2019 - 2020 growing season).  

 

5.1.4    Extracting sum of precipitation 

The per pixel sum of the precipitation in the growing season, which acts as the 

denominator for calculating the RUE, was extracted based on the nineteen NDVI growing 

seasons. The start and end time of the NDVI growing seasons, per pixel, were also obtained from 

TIMESAT (i.e., as an index), and were used to determine which months were included in the 

precipitation sum for each season. By summing the precipitation estimates for these months, the 

growing season precipitation sum was derived. 

 

5.1.5    Turning Point Occurrence Maps 

The next step was to create the Turning Point Occurrence Map (TPOM). To do this, the 

RUE, which is described in more detail in section 2.1, was calculated as the ratio between the 

small integral and the sum of precipitation per pixel. This was done for all pixels of the study 

area. Then, BFAST01, discussed in more detail in section 2.2, was applied on the RUE time 

series. The formula argument of BFAST01 was set to “response ~ trend”, as a yearly time series 

with no seasonality was used. The bandwidth argument, which determines the size of the data 

window for the break detection in relation to the sample size, was set to 3/19, which is a well 

suited window for the proper detection of breaks in a relatively short (i.e., 19 time steps) time 

series. Default settings were used for the remaining arguments. Finally, pixels where no turning  
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points in ecosystem functioning were detected were excluded, leaving only significant turning 

points (p < 0.05), resulting in the TPOM (section 6.1.1) . 

 

5.1.6    Classified Turning Point Map 

Furthermore, the Classified Turning Point Map (CTPM) were created. An improved 

typology, discussed in more detail in section 2.2, was used for making the maps. The direction of 

the trends and rates of change in RUE, before and after the detected turning points, were used to 

classify the changes in ecosystem functioning, according to the typology proposed by Bernardino 

et al. (2020). Which makes it possible to characterise not only the rate of change, but also the 

status of the detected turning point in the trend. The typology argument of BFAST01classify was 

set to ‘drylands’, as this enables the new typology with type and subtype. Default settings were 

used for the remaining arguments. In this case, the pixels where no turning point in ecosystem 

functioning was detected were included. These pixels were classified either as ‘stable increase’, 

‘stable decrease’ or ‘no change’. This resulted in two CTPM’s, one showing the type of change 

and the other showing the subtype of change (section 6.1.2). 

5.2    Characterisation of drivers of turning points in ecosystem functioning 
In order to characterise the drivers of the detected turning points, by means of the binary 

logistic regression, it is necessary that the data of each driver is summarised into one raster layer. 

This resulted in six raster layers, which acted as the input of the binary logistic regression.   

 

5.2.1    Downloading and pre-processing CCI Global Land Cover 

The CCI Global Land Cover product was downloaded from the CCI download page 

(ESA, 2017) for the period 2000 – 2018, resulting in 19 images. The data were cropped, 

reprojected, and resampled to the NDVI dataset specifications. Next, the cropland areas were 

extracted. The values used to extract these areas were 10 (cropland, rainfed), 20 (cropland, 

irrigated or post-flooding) and 30 (mosaic cropland (>50%)), according to the UN-LCCS legend 

(FAO, 2000). The cropland pixels which ever underwent a change to any other land cover type, 

from the start till the end of the available data, were extracted using the sum function. After 

applying the sum function, the pixels with values 19 (i.e., cropland pixels which never underwent 

a change) and 0 (i.e., pixels that were never cropland) were given the value 0. All the other 

pixels (i.e., cropland pixels that underwent a change) were given the value 1. Resulting in a 

binary raster layer which made it possible to investigate if cropland abandonment had an 

influence on the detected turning points. 
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5.2.2    Downloading and pre-processing Global Human Settlement Built-Up 

Two epochs, 2000 and 2014, of the Global Human Settlement (GHS) Built-Up layer were 

downloaded from the GHS datasets page (Corbane et al., 2018). These two layers were cropped, 

reprojected, and resampled as described before. One GHS Built-Up growth raster layer was 

created by subtracting epoch 2000 from epoch 2014. In this way, the pixels where built-up area 

was developed between 2000 and 2014 were made visible, which made it achievable to analyse 

the influence of built-up development on the detected turning points. 

 

5.2.3    Downloading and pre-processing Forest Loss 

The forest loss layer, for the period 2000 – 2018 was downloaded from the data 

download page, hosted by the University of Maryland (Hansen et al., 2013) The data was 

cropped, reprojected and resampled as outlined before. One binary raster layer was created by 

means of assigning the pixels which underwent a loss in forest to the value 1, and assigning the 

pixels which did not underwent a loss in forest to the value 0. Resulting in a raster layer which 

made it possible to investigate the loss in forest as driver of the detected turning points.  

 

5.2.4    Downloading and pre-processing Standardized Precipitation-Evapotranspiration Index 

Monthly SPEI data, for the period 2000 – 2018 were downloaded from the Global SPEI 

database (Vicente-Serrano et al., 2010). The Global SPEI database provides time-scales between 

1 and 48 months. For this research, a time-scale of 9 months was downloaded, as drought events 

before and after the detection of a turning point are interesting to investigate, and following 

(Bernardino et al., 2020). First, the data was cropped, reprojected, and resampled as described 

before. Consecutively, The number of abnormally dry months (i.e., SPEI values lower than or 

equal to -1.5, representing moderate to extreme drought conditions), according to Spinoni et al. 

(2013) and following Bernardino et al. (2020) were counted. Resulting in one raster layer in 

which the pixels represent the total number of dry months in the time series, and resulting in a 

way to investigate drought events as a driver of the detected turning points. 

 

5.2.5    Downloading and pre-processing TerraClimate Soil Moisture 

The monthly TerraClimate Soil Moisture data, for the period 2000 – 2018 were 

downloaded from the website of the Climatology Lab (Abatzoglou et al., 2018), which is the 

producer of this dataset. The data was cropped, reprojected, and resampled as described before. 

The first step was to aggregate the monthly data to yearly data and to extract the yearly average 

for the time series. One soil moisture raster layer was created by calculating the Sen’s slope, by 

means of the eco.theilsen function. Which is a nonparametric method for estimating trends in 

univariate time series (Sen, 1968; Theil, 1992). This resulted in a raster layer where the slope is 

visualised, indicating negative and positive soil moisture trends. 
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5.2.6    Downloading and pre-processing Population Density 

Two epochs (i.e., 2000 and 2015) of the Population Density dataset from the Gridded 

Population of the World collection were downloaded (Center for International Earth Science 

Information Network - CIESIN - Columbia University, 2016). The data was cropped, 

reprojected, and resampled as described before. One population density growth raster layer was 

created by subtracting epoch 2000 from epoch 2015. In this way, the pixels where population 

expanded between 2000 and 2015 were extracted, which made it possible to analyse the 

influence of population growth on the detected turning points.  

 

5.2.7    Binary logistic regression 

The former pre-processing of the driver data resulted in a dataset of 4.412.130 rows and 9 

columns. To model the relationship between the detected turning points and their potential 

drivers, NA (i.e., Not Available) values were removed from this dataset. After this alteration, the 

dataset contained 752.399 rows and still 9 columns, of which the first column operated as the 

dependent variables (i.e., turning point = 1, no turning point = 0). A random sample was used in 

order to compose a training dataset of 526.679 rows, which equates to 70% of the dataset. After 

sampling, the train dataset consisted of 524.916 rows without a detected turning point and 1.763 

rows with a detected turning point. The remaining 30% of the dataset was used to create the test 

dataset (i.e., 225.720 rows). Of this dataset, 224.936 rows were without a detected turning point, 

the reaming 784 rows did include a detected turning point, which is inevitably unbalanced. 

The fitting of the binary logistic regression was done by using the glm function. To 

ensure a logistic regression was fitted, the family argument was set to ‘binomial’. As the 

selection of independent variables to incorporate in the model is essential to prevent (e.g., 

multicollinearity, overfitting or redundancy), both forward and backward variable selection was 

used. This was executed by setting the direction argument of stepAIC to ‘both’. Resulting in a 

binary logistic regression model using 5 of the 9 independent variables (i.e., ‘GHS_Builtup’, 

‘Cropland’, ‘Sparse_Herbaceous’, ‘Pop_Density’, and ‘SPEI’). Based on this model, the 

McFadden pseudo-R2 was calculated in order to assess the goodness of fit (i.e., 0 indicates a bad 

fit, 1 indicates a perfect fit). Finally, a Likelihood ratio test was done, which is a goodness of fit 

test to compare between two models; the null model and the final model.  

Next, the just created binary logistic regression model was used on the test dataset, to 

investigate how the model functioned on unseen data. As both the train and test dataset are very 

unbalanced, due to the relatively small amount of detected turning points, the Receiving 

Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) were used to 

evaluate the model performance. The predicted class (i.e., 0: no turning point, 1: turning point)  
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was determined by means of the cutoff value. The cutoff value was determined in an incremental 

fashion, based on the ROC curve. The cutoff value used was 0.0038. The classification accuracy 

was obtained by calculating the precision, recall, and F1-score. The precision is a metric that 

quantifies the number of correct positive class predictions (i.e., 1: turning point). Consecutively, 

recall quantifies the number of positive class predictions made out of all positive examples in the 

dataset. Finally, the F1-score provides a single score that balances both the concerns of precision 

and recall in one number. 

5.3    Identification and classification of abrupt changes in vegetation greenness trends 
 

5.3.1    Downloading and pre-processing MODIS 

All available NDVI layers of MODIS, with a spatial resolution of 250, for the period 

2000/01/01 – 2020/01/01 were downloaded via Google Earth Engine. This resulted in 457 

images, ranging from 2000/02/18 to 2019/12/19. Additionally, the complementary QA layers of 

MODIS were downloaded. The first step was to crop both the NDVI layers as the QA layers to 

the sub-national study area (-531500, -472000, 3487000, 3513000). The following pre-

processing steps were similar to the steps taken to pre-process the NDVI layers of MODIS with a 

spatial resolution of 500 m, which are described in more detail in section 5.1.1. This resulted in 

239 monthly NDVI composites. Monthly composites have been made in this case not to match 

the temporal extent of other data sources, but to reduce the amount of missing values and of data 

in general (reducing computing time in the next steps). 

 

5.3.2    Abrupt changes in vegetation greenness trends 

The pre-processed NDVI time series, with a spatial resolution of 250 m, functioned as the 

input for the BFAST01. The formula argument of BFAST01 was set to “response ~ trend + 

harmon”, as a monthly time series with seasonality was used. Default settings were used for the 

remaining arguments. Next, pixels where no abrupt change in vegetation greenness trends were 

detected were excluded, leaving only significant changes (p < 0.05), resulting in the map 

showing the abrupt changes in vegetation greenness trends in the Todgha valley (section 6.3.1). 

 

5.3.3    Classification of the abrupt changes in vegetation greenness trends 

The identified abrupt changes in vegetation greenness trends were classified by using the 

same typology used in the national turning point analysis. The direction of the trends and rates of 

change in NDVI, before and after the detected turning points, were used to classify the changes 

in vegetation greenness, according to the typology proposed by Bernardino et al. (2020). Which 

makes it possible characterise not only the rate of change, but also the status of the detected 

turning point in the trend. The typology argument of BFAST01classify was set to ‘drylands’, as  
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this enables the new typology with type and subtype. Default settings were used for the 

remaining arguments. In this case, the pixels where no abrupt change in vegetation greenness 

trend was detected were included. These pixels were classified either as ‘stable increase’, ‘stable 

decrease’ or ‘no change’. This resulted in two maps of the Todgha Valley (section 6.3.2). One 

showing the type of change in vegetation activity trends and the other showing the subtype of 

change in vegetation activity trends. 

 

5.3.4    Literature review  

 In order to judge the validity of the working hypotheses, stated in section 1.3, a literature 

review was carried out. This literature review combined the results of this section with literature 

from multiple migration scholars, of which Prof.dr. H.G. de Haas plays an important role. 

Additional information was acquired through personal communication with Prof.dr. H.G. de 

Haas. The literature review resulted in an explanatory analysis, together with a proposed theory 

to clarify the desertification patterns in the Todgha valley.  
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6. Results 
 

The results of this study are presented and described in this chapter. First, the results of the 

identification and classification of turning points in ecosystem functioning are presented. Then, 

the results regarding the characterisation of the drivers of the detected turning points are 

presented. This chapter ends by presenting the results of the identification and classification of 

turning points in vegetation activity trends on a sub-national scale, focusing on the Todgha 

valley. 

6.1    Turning points in ecosystem functioning 
 

6.1.1    Spatial and temporal distribution of turning points in ecosystem functioning 

The TPOM highlights dryland areas in Morocco which experienced significant turning 

points in ecosystem functioning over the last nineteen years, from 2000 up to and including 

2018. Most turning points occurred in 2009 (Figures 4 and 5). Turning points in ecosystem 

functioning were primarily detected in the north of Morocco (Figure 4a). These turning points 

were mainly concentrated in a single region of the country, although some turning points, were 

detected as individual pixels. It is noteworthy that the BFAST01 algorithm does not allow to 

detect turning points in the beginning and end of the time series. This is why there are no turning 

points detected before 2005 and after 2013 (de Jong, Verbesselt, et al., 2013). In general, the 

amount of dryland areas in Morocco showing turning points in ecosystem function was 0.34%. 

No significant (p < 0.05) change in ecosystem functioning was detected in 91.63% of the dryland 

areas in Morocco. Monotonic changes were seen in the remaining 8.03%. 
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Figure 4    The TPOM in ecosystem functioning. The area in the northeast of Morocco where the turning points 

were primarily detected is highlighted with a black rectangle and referred to as Figure 4a. 

 

 

Figure 5    The frequency of turning points in ecosystem functioning. Although the analysis was made from 2000 to 

2018, no turning points were detected before 2005 and after 2013. 
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6.1.2    Classification of the detected turning points in ecosystem functioning 

The most outstanding type of change was interrupted increase (63.2%), followed by 

negative reversal (i.e., from increase to decrease in ecosystem functioning; 20.3%) and 

interrupted decrease (16.4%). With only 0.08% of the pixels, a positive reversal (i.e., from 

decrease to increase in ecosystem functioning) hardly occurred (Figure 6).  

 

 

Figure 6    The percentage of pixels for each type of change in ecosystem functioning, for pixels that presented a 

turning point in Morocco. 

 

The CTPM (Figure 7) revealed the change type of the pixels which underwent a turning 

point in ecosystem functioning. A hotspot of turning points in ecosystem functioning was 

observed in the northern part of Morocco, which overlaps with the cities of Missour, Sidi 

Boutayeb, Teggour, and partially El Ksabi (Figure 7a). Furthermore, this area belongs to the 

basin of the Moulouya River. The sources of the Moulouya are in the Almssid region and drains 

both the Middle and High Atlas Mountains. This area was used to investigate the classification 

of the detected turning points in more detail.  

The western part of the hotspot area (hereafter, simply “western part”) showed a 

dominance of turning points classified as interrupted decrease. The eastern part of the hotspot 

area (hereafter, the “eastern part”) revealed a combination of two types of changes: interrupted 

increase and negative reversal, with a dominance of the former.  

Lastly, a coherent area in the centre of the hotspot showed a dominance of the negative 

reversal change type (hereafter, the “central part”).  
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Figure 7    The type of turning points in ecosystem functioning. The area in the northeast of Morocco where the 

turning points were primarily detected is highlighted with a black rectangle and referred to as Figure 7a. 

 

The four types of change can be further investigated by looking at the subtypes (Figure 8 

and 9). From the turning points that were classified as interrupted increase, the great majority 

(99.4%) showed the subtype “slowing down”. The remaining 0.6% showed the subtype 

“accelerating”. From the turning points that were classified as interrupted decrease, 49.0% 

revealed the subtype “slowing down”, where the subtype “accelerating” was found in 51%. Next, 

from the turning points that were classified as negative reversal, 99.8% displayed the subtype 

“transition”. All turning points that were classified as positive reversal, revealed the subtype 

“transition”. 
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Figure 8    The sub(type) of turning points in ecosystem functioning for Morocco. The percentage of pixels for each 

possible combination of type and subtype of change are presented. 

 

 

Figure 9    The RUE time series and BFAST01 results for those time series, visualising the type and subtype of 

change in ecosystem functioning. A peak in RUE can be seen around 2009. From the top row to the bottom row: 

interrupted increase with a slowing trend, interrupted decrease with an accelerating trend, negative reversal which is 

in transition, and positive reversal which is in transition.  
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In the western part of the hotspot, an equal share of the turning points that showed an 

interrupted decrease were sub-classified as either slowing down or accelerating (Figure 10). 

Most of the turning points which were classified as an interrupted decrease occurred from 2005 

up to and including 2007. The same happens in the areas showing an interrupted decrease with a 

deceleration after the turning point, but with a smaller magnitude.  

The eastern part of the hotspot was classified as interrupted increase with a deceleration 

after the turning point. These turning points occurred mainly in 2009 and 2010, with a very high 

occurrence of turning points in 2009.  

In the central part of the hotspot, reversals from increasing to decreasing trends in 

ecosystem function were revealed. Almost all trends were in a transitional stage. These reversals 

occurred also primarily in 2009. 

 

 

Figure 10    The subtype of turning points in ecosystem functioning. The area in the northeast of Morocco where the 

turning points were primarily detected is highlighted with a black rectangle and referred to as Figure 10a. 
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6.2    The drivers of turning points 
Knowing the drivers of turning points in dryland ecosystem functioning is important to 

mitigate the effects of desertification and land degradation. By means of the binary logistic 

regression, insight was given into the influence of proximate and underlying causes on the 

detected turning points. The proximate drivers that turned out be most important to explain the 

detected turning points is ‘Cropland’ (i.e., cropland abandonment). Subsequently, the underlying 

drivers that emerge as most important are ‘Pop_Density’ (i.e., an increase in population density) 

and ‘SPEI’ (i.e., the occurrence of abnormally dry months). These three variables revealed a 

significant influence (p < 0.05) on the detected turning points. The binary logistic regression 

showed that underlying drivers are important to explain turning point in ecosystem functioning 

in Morocco, as two of the three significant variables are underlying drivers (i.e., ‘Pop_Density’ 

and ‘SPEI’).  

The model summary in Appendix II gives an overview of the constructed binary logistic 

regression. The coefficients table within the model summary showed the significance of 

‘Cropland’, ‘Pop_Density’ and ‘SPEI’. The model fit statistics (Appendix III) revealed a 

McFadden pseudo-R2 of 0.015, which indicates a bad model fit. However, the likelihood ratio 

test showed that the log-likelihood difference between intercept only model (i.e., null model) and 

model fitted with all independent variables is 183.44, indicating improved model fit. This 

improvement of fit is also significant (p < 0.05).  

The Receiver Operating Characteristic (ROC) curve (Figure 11) showed an Area Under 

the Curve (AUC) of 0.6318, indicating a model that is acceptable in discriminating between 

pixels where a turning point occurred and pixels where no turning point occurred. 

 

 

Figure 11    Receiver Operating Characteristic curve and the Area Under the Curve of the created model 
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The confusion matrix (Table 3) revealed that the model classified 605 turning point 

occurrences correctly (i.e., true positives), 179 turning point occurrences were not classified 

correctly (i.e., false negatives). Furthermore, 138.726 observations were correctly classified as an 

observation were no turning point occurred (i.e., true negatives). 86.210 observation were 

wrongly classified as observation were a turning point occurred (i.e., false positives). The 

confusion matrix revealed precision (i.e., correct positive class predictions) and recall (i.e., 

correct positive class predictions out of all positive examples in the dataset) values of, 

respectively, 0.772 and 0.007. The F1-score was 0.138, which indicated that the trained model 

had a classification strength of around 14%.   

 
Table 4    The confusion matrix of the created model on unseen data. 

 Reference  

Predicted 0 1 

0 138726 179 

1 86210 605 

6.3    Abrupt changes in vegetation greenness trends in the Todgha valley 
 

6.3.1    Spatial and temporal distribution of abrupt changes in vegetation greenness trends 

The map on Figure 12 shows the detected abrupt changes in vegetation greenness trends 

from the beginning of 2000 until the end of 2019 in the Todgha valley. The Upper Todgha valley 

showed a patchy pattern with abrupt changes occurring between 2003 and 2016 (Figure 12a). 

Most abrupt changes in the Upper Todgha valley appeared between 2005 and 2006 and between 

2009 and 2010.  

Following the valley eastwards, a less patchy pattern was observed. The Middle and 

Lower Todgha valley disclosed abrupt changes in vegetation greenness trends mainly between 

2003 and 2006 (Figure 12b).  

The newly irrigated plains of Ghallil and Bour Tinedjad presented abrupt changes 

primarily between 2005 and 2010 (Figure 12c). It is conspicuous that, the most recent created 

irrigated plains revealed abrupt changes in vegetation greenness trends nearly solely between 

2011 and 2014.  

The traditional oasis of Tinejdad-Ferkla revealed the same patch like pattern as the Upper 

Todgha valley, with abrupt changes between 2005 and 2016 (Figure 12d).  

It is noteworthy that the BFAST01 algorithm does not allow to detect abrupt changes in 

the beginning and end of the time series. This is why there are no abrupt changes detected before 

2003 and after 2016 (de Jong, Verbesselt, et al., 2013). In general, the year intervals  
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2005 – 2006, 2009 – 2010 and 2013 – 2014 revealed the most abrupt changes (Figure 13). The 

amount of dryland pixels in the Todgha valley showing abrupt changes in vegetation greenness 

trends was 89.2%. No significant (p < 0.05) change in vegetation activity trends was detected in 

7.7% of the dryland areas in the Todgha valley. Monotonic changes were seen in the remaining 

3.1% of the pixels. 

 

 

Figure 12    The time of occurrence of abrupt changes in vegetation greenness trends. The Todgha valley is 

highlighted with a black rectangle in both the main map as the inset map. 
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Figure 13    The frequency of abrupt changes in vegetation greenness trends. Although the analysis was made from 

2000 to 2019, no turning points were detected before 2003 and after 2016. 

 

6.3.2    Classification of the detected abrupt changes in vegetation greenness trends 

From the pixels that underwent an abrupt changes, the two prominent types of change 

were negative reversal (i.e., from increase to decrease in vegetation activity; 55.7%) and 

interrupted increase (36.1%). The least number of detected abrupt changes are classified as 

interrupted decrease (4.1%) and positive reversal (i.e., from decrease to increase in vegetation 

activity; 4.1%) (Figure 14)2. 

 

Figure 14    The percentage of pixels for each type of abrupt change in vegetation greenness trends, for pixels that 

presented an abrupt change in the Todgha valley. 

 

The type of changes can be seen in Figures 15. The Upper Todgha valley revealed a 

dominance of interrupted increase and negative reversal, but also showed a strip where no abrupt 

changes were detected.  

Moving to the east, to the Middle and Lower Todgha valley, positive reversal and 

interrupted decrease occurred the most. Particularly at the more downstream ends, where 

khettara irrigation is relatively important, interrupted decrease is the dominant type of change.  

 

                                                

 
2 The statistics have been calculated based on all the pixels within the black rectangle, this calculation is not based 
on the exact borders of the Todgha valley nor the different zones of the Todgha valley.   
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The newly irrigated plains of Ghallil and Bour Tinedjad presented a patchy pattern with 

primarily a mix of interrupted increase and decrease. The most recent created irrigated fields 

were characterised by a negative reversal. This mix also presented itself in the traditional oasis of 

Tinejdad-Ferkla, accompanied by a relative vast area where no abrupt changes were detected.  

 

 

Figure 15    The type of abrupt changes in vegetation greenness trends. The Todgha valley is highlighted with a 

black rectangle in both the main map as the inset map. 

 

The four types of change can be further investigated by looking at the subtypes (Figure 

16). From the abrupt changes that were classified as interrupted increase, 78.6% showed the 

subtype “slowing down” and 21.4% showed the subtype “accelerating”. From the abrupt changes 

that were classified as negative reversal, 34.0% were assigned to the subtype “transition” and 

57.0% to the subtype “complete”. To elaborate on this, a dominance of the subtype “slowing 

down” was revealed regardless of the direction of change (interrupted increase or interrupted  
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decrease). The NDVI time series and the BFAST01 output of the two most prominent types of 

change are visualised on Figure 17. 

 

 

Figure 16    The sub(type) of abrupt changes in vegetation greenness trends for the Todgha valley. The percentage 

of pixels for each possible combination of type and subtype of change are presented. 

 
 

 

 

Figure 17    The NDVI time series and BFAST01 output of the two most prominent types and subtypes of change. 

The left column shows the type interrupted increase, with a slowing down after the turning point. The right column 

shows the type negative reversal, with the subtype complete. 
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In the Upper Todgha valley, the abrupt changes that were classified as interrupted 

increase were sub-classified mostly slowing down (Figure 18). Reversals from increasing to 

decreasing trends in vegetation activity were observed as another important type of change of 

this area. Those trends were mostly completely reversed, which indicates a profound change in 

vegetation activity. Most of the turning points that happened in the Upper Todgha valley 

happened between 2005 – 2006 and 2009 – 2010. 

In the Middle and Lower Todgha valley, a large area revealed reversals from decreasing 

to increasing trends in vegetation activity. Some trends were sub-classified as transitional, 

whereas most of the trends had completely reversed in a positive way. Those turning points 

occurred mostly in 2005 – 2006. The areas which showed an interrupted decrease revealed a 

slowing trend after the abrupt change, and happened in 2009 – 2010.  

Moving further east, the newly irrigated plains of Ghallil and Bour Tinejdad showed a 

mix of interrupted increases and decreases. From this mix of reversals, the trends were sub-

classified as both slowing down and accelerating. However, the area where the most recent 

created irrigated fields are located revealed reversals from increasing to decreasing trends in 

vegetation activity, from which most of them had completely reversed between 2013 – 2014. 

The situation of the traditional oasis of Tinejdad-Ferkla is comparable with that of the 

Upper Todgha valley. It is noteworthy that some areas, around the cities of Tinejdad and Isilf, 

were classified as interrupted decrease with a slowing down after the abrupt change. These 

abrupt changes happened in 2005 – 2006. 
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Figure 18    The subtype of abrupt changes in vegetation greenness trends. The Todgha valley is highlighted with a 

black rectangle in both the main map and inset map. 
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7. Discussion 
 

This chapter reviews the methods used and results per sub-question. At the start of this research, 

the following problem was defined: the contemporary knowledge on turning points in ecosystem 

functioning and their effects on desertification and land degradation is lacking, on both a local 

and global scale. A national and more detailed assessment of turning points in ecosystem 

functioning and their drivers is needed. This led to the proposed objectives: identify and classify 

turning points in Moroccan dryland ecosystem functioning, and have a detailed look at the 

drivers of these turning points. By answering the three sub-questions (section 1.3), these 

objectives were achieved: 

7.1    Identifying and classifying turning points in ecosystem functioning in Moroccan 

dryland  
This study resulted in the first nationwide identification and classification of turning 

points in dryland ecosystem functioning, with such a fine spatial resolution (i.e., 500 m), and 

provides a perspective on the distribution of small-scale RUE disturbances over a 19-year period. 

A hotspot of turning points were identified in the northern part of Morocco, which overlaps with 

the cities of Missour, Sidi Boutayeb, Teggour, and partially with El Ksabi. This area belongs to 

the basin of and depends on the Moulouya River for freshwater and thus determines 

environmental conditions and human activities (e.g., agricultural) (Snoussi et al., 2002; V. 

Tekken et al., 2009; Vera Tekken & Kropp, 2012). Furthermore, this hotspot is located directly 

downstream of the Hassan II dam, which was inaugurated in 2009 (IUCN & Centre for 

Mediterranean Cooperation, 2010). The sources of the Moulouya are in the Almssid region and 

drains both the Middle and High Atlas. This hotspot is generally in line with the hotspot of 

turning points detected in the global study of (Bernardino et al., 2020). However, these turning 

points were mainly discovered in the period 2002 – 2006. Besides this hotspot, the study of 

(Bernardino et al., 2020) showed other turning points around the country which were not 

discovered in this study. Bernardino et al. (2020) revealed a total number of 235 turning points in 

Morocco, where this study discovered 2547 turning points. Yet, we expected to identify more 

turning points in Moroccan drylands compared to the global study, because of the higher number 

of pixels used in the analysis (i.e., caused by the finer resolution used in this study, 500 m versus 

8000 m). Possibly this was also caused by the short time series used in the analysis (i.e., 2000 - 

2018).  

We were able to appoint 2009 as a crucial year for altered functioning in dryland 

ecosystems in the Moulouya River basin, which is visualised in the peak in RUE in the time  
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series plots (section 6.1.2). A typical pathway to explain such a peak in RUE is that extreme 

droughts leads to a high RUE, but subsequent plan mortality decreases ecosystem functioning by 

reducing vegetation (Bernardino et al., 2020). However, no extreme droughts were reported in 

2009, so it is unlikely that extreme droughts caused this peak in RUE. Moreover, these kind of 

peaks in RUE are difficult to interpret when no environmental disaster is reported, because RUE 

includes both rainfall as vegetation. This makes it hard to conclude if the peak was caused by 

variations in rainfall or by variations in vegetation.  

The turning points in 2009 represented an increase in ecosystem functioning, with a 

slower increase in ecosystem functioning after the turning point was detected. Which is in line 

with multiple studies regarding the re-greening of the Sahel (Dardel et al., 2014; Eklundh & 

Olsson, 2003; Heumann et al., 2007). However, the study of (Bernardino et al., 2020) classified 

the majority of the turning points in Morocco as negative reversal which were in transition. The 

Moulouya River basin has been struggling with rising temperatures and decreasing precipitation 

which started in the 1970s (Vera Tekken & Kropp, 2012). However, these changes in 

temperature and precipitation turned out to be rather small (V. Tekken et al., 2009). Besides, 

from the turn of the century, neighbouring river basins (i.e., High, Ziz River basin and Tensift 

River basin) experienced their wettest periods between 2002 and 2011 (Diani et al., 2019; 

Meliho et al., 2019). These wet periods might explain the increasing trends in ecosystem 

functioning until the turning point, as water availability is not restricting vegetation growth. 

Notwithstanding, that the most significant drought in the period 1968 – 2015 was observed in 

2006 – 2007 (Meliho et al., 2019). However, almost no turning points were detected in this 

period. As many other areas in Morocco which belong to a certain river basin (i.e., the Draa 

valley, the Todgha Valley), the area of the Moulouya river basin highly relates on natural water 

resources for agricultural production (Ait Kadi, 2004). Because of this high demand for water, 

which is not likely to settle in the near future, the Moulouya River basin suffers from water 

scarcity (Vera Tekken & Kropp, 2012). In their global study, Di Baldassarre et al. (2018) shed 

light on the fact that dams lead to water shortages downstream resulting in environmental 

degradation, called the ‘the supply-demand cycles’. Which is also proven by studies specially 

focused on the Moulouya River basin (IUCN & Centre for Mediterranean Cooperation, 2010; 

Snoussi et al., 2002). This suggests that the inauguration of the Hassan II dam in 2009, which 

was in the same year as most of the turning points were detected, has an explanatory factor on 

the detected turning points. For example, decreasing water supplies downstream caused by the 

construction of the Hassan II dam has led to a reduction of water of water allocated to irrigation, 

which might explain the slower increase in ecosystem functioning in the Moulouya River basin.  
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Which have been proven to be a pathway in the Moroccan Tensift watershed (Meliho et al., 

2019).  

This study used the rainfall estimates dataset of CHIRPS. However, another promising 

dataset could be used for identifying turning points in dryland ecosystems in Africa. Namely, the 

3th version of TAMSAT, derived from Meteosat TIR. This dataset provides monthly rainfall 

estimates of Africa with a spatial resolution of 4 kilometre (Maidment et al., 2014, 2017; 

Tarnavsky et al., 2014), which is slightly finer than the spatial resolution of CHIRPS. With a 

spatial extent of the continent of Africa and a temporal extent ranging from 1983 to the present 

time, this dataset could be promising substitute of CHIRPS in the research of turning points in 

African dryland ecosystems. 

7.2    Characterising drivers of turning points in ecosystem functioning in Moroccan 

dryland ecosystems  
The binary logistic regression showed the difficulties regarding the characterisation of 

drivers of turning points in ecosystem functioning, with a McFadden pseudo-R2 of only 0.015. In 

this light, it is important to note that model interpretation should be done with care. The model, 

which incorporated ‘Cropland’, ‘Pop_Density’, ‘SPEI’, ‘Sparse_Herbaceous’, and 

‘GHS_Builtup’, showed an improved model fit compared to the intercept model only. 

‘Cropland’, ‘Pop_Density’, and ‘SPEI’ were identified by the model as most important variables.  

Cropland abandonment was found to be an important factor on the detected turning 

points. The study by Geist & Lambin (2004) supports this, by stating that desertification happens 

when cropland changes into rangelands. Which is in line with many drylands around the world, 

whom are negatively affected by a change in vegetation cover, resulting in a loss of ecosystem 

functioning (Wang et al., 2012). An increase in population density is a known driver of change in 

dryland ecosystem functioning (Cherlet et al., 2018), which this study supports. It has been 

proven that an increase in population together with an increase in per capita water use is 

affecting drylands (FAO, 2006; Wang et al., 2012). The increase in population could also lead to 

an NDVI decline, which might affect the ecosystem functioning (de Jong et al., 2012). Climate 

related factors are one of the most described drivers of altered ecosystem functioning, including 

dryland ecosystems (Bastiaansen et al., 2020; Mainguet & Da Silva, 1998; Rogers & McCarty, 

2000). Drought conditions, which is studied in this research, were revealed as in important driver 

of the detected turning points. This is supported by a recent study in the Sahel (Bernardino et al., 

2020).  

Despite the fact that climate related factors are so important to explain changes in dryland 

ecosystem functioning, the independent variable ‘Soil_Moisture’ was not included in the model.  
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However, soil moisture is a very interesting and highly potential driver of turning points in 

African dryland ecosystem functioning, as shown previously (Bradford et al., 2019; Wei et al., 

2019). The use of the Sen’s slope as pre-processing method might be sub optimal. Another way 

to pre-process the soil moisture data is to use the soil moisture anomaly, which is often used to 

analyse droughts (Anderson et al., 2012; Mao et al., 2017). The soil moisture anomaly can be 

calculated by subtracting the yearly soil moisture values from the average soil moisture value for 

the whole time series. Negative values indicate dry years, while positive values indicate wet 

years. These values could then be averaged, per pixel, over the whole time series to produce one 

raster layer as input for the binary logistic regression. Also, the cropland data could also be pre-

processed in another way, to potentially result in a better model fit. By generating a continuous 

pre-processed dataset instead of a binary dataset, more valuable data would be included. This 

continuous dataset could consist of the amount of times a cropland pixel underwent a change to 

another land cover type within the time series.  

Even though five potential drivers were investigated by means of six different datasets, 

other factors can offer interesting opportunities to further explain the occurrence in turning point 

in dryland ecosystems, based on the framework of desertification (Geist & Lambin, 2004). For 

example livestock production and migration (i.e., in- and out-migration). The three versions of 

the Gridded Livestock of the World (GLW; Gilbert et al., 2018) dataset provides a subnational 

livestock distribution for 2002, 2006, and 2010, with a spatial resolution of ~10 km. This dataset 

would be very interesting if its spatial resolution improved, as an aggregation from 10 km to 500 

m leads to a lot of uncertainties. The European Commission published a report which describes a 

global dataset on estimates of net migration, with a spatial resolution of 25 km (Alessandrini A., 

Ghio, D., Migali, 2020). The dataset encompasses the period 1975 – 2015 with a five year 

interval. Although that they state that the data is aggregable to country-level, aggregating this 

dataset accurately to 500 m would be a challenge. 

The dependent variable of the model is exclusively composed of  the pixels that 

underwent a turning point (i.e., interrupted increase, interrupted decrease, positive reversal, and 

negative reversal). As there were a lot more pixels showing no turning point (i.e., 752.399) than 

showing a turning point (i.e., 2547) in the current used dataset, the model had a hard time to train 

properly. This might have caused the bad McFadden pseudo-R2 of 0.015. When including also 

monotonic trends (i.e., monotonic increase and monotonic decrease) in the dataset, it will be less 

unbalanced, potentially resulting in a better model fit. Another possibility is to exclusively 

include monotonic trends in the dataset. In this case, the pixels which showed monotonic trends 

should be given the value 1, and all the other pixels should be given the value 0. However, in this  
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case the relationship between monotonic trends and their drivers will be modelled instead of 

turning points and their drivers. 

A binary logistic regression is a widely used technique in ecology to establish the 

relationship between multiple dependent variables and one dependent variable (Chao et al., 

2009; Kumar et al., 2014). However, the use of a binary logistic regression also has its 

downsides. Research by Salas-Eljatib et al (2018) revealed that an unbalanced input dataset will 

lead to higher variances for the maximum likelihood estimates and therefore to more uncertainty 

in identifying the driver variables for modelling the response variable. This problem could 

potentially be solved by using a support vector machine to pre-process the unbalanced data 

before training the binary logistic regression (Farquad & Bose, 2012). Koziarski et al., (2019) 

proposed a Radial-Based Oversampling (RBO) algorithm to estimate local distributions of both 

the minority and majority class and this way reduce the problem of unbalanced data. By 

considering these methods, the model might result in a better fit and thus in a better a McFadden 

pseudo-R2.  

As an alternative to the binary logistic regression, random forest could be considered as 

regression and classification technique. Random forest is a widely used technique in studies 

regarding the functioning of ecosystems (Chrysafis et al., 2017; Heung et al., 2014), and is a 

technique to regress when the predictions of all the grown trees are averaged (Liaw & Wiener, 

2001). However, the “black box” nature of random forest, which makes it hard to interpret the 

relationship between the dependent and independent variables, is a considerable disadvantage of 

this technique (Prasad et al., 2006).  

7.3    Social-economic drivers of abrupt changes in vegetation greenness trend 
The final section of the discussion investigates the socio-economic drivers of abrupt 

changes in vegetation greenness trends and answers the working hypotheses, which is also stated 

in section 1.3. This working hypothesis states that:  

 

“The pumping of water for cropland irrigation in the western part of the Todgha valley (zone b) 

leads to a lowering of the groundwater table in the eastern part of the Todgha valley and further 

downstream in the Tinejdad-Ferkla oasis (zone c & d), and thus, to desertification.” 

 

The oases in the Todgha valley (and oases in general) can be defined as agricultural areas 

in an arid/semi-arid climate, where agriculture is normally not possible without irrigation. 

However, due to social, economic and cultural processes, in which migration played a significant 

role, the traditional functioning of oasis agriculture in the Todgha valley has been under  
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pressure. The cumulative causation theory (Massey, 1990), hypothesizes that this process can be 

explained due to out-migration causing agricultural labour shortages. In contrast to this, the new 

economics of labour migration theory (Stark & Bloom, 1985) hypothesizes that migration 

enables migrant households to overcome local market constraints and to invest in local 

agriculture in order to heighten agricultural production.  

For centuries, the dwellers of the Todgha valley developed advanced techniques to 

capture surface water or to extract groundwater for irrigational purposes. Based on the location 

in the valley, the water source they and the irrigation techniques that they use differ. Three main 

oasis types can be distinguished: river, groundwater and source oasis (de Haas, 2001b), two of 

which occur in the Todgha valley. The river oases can be found alongside a perennial rivers 

(zone a). Groundwater oases lie in areas where groundwater is close enough to the surface to be 

extracted (zone b, c & d). As the traditional irrigation technique used in zone b and to a lesser 

extent in zone c, khettaras, require a lot of maintenance of irrigation channels, dams and other 

water works, a collective water management was put into place. The deterioration of power of 

this collective water management, caused by a growing autonomy of households enabled by 

migration, has contributed to the decline of the khettaras (de Haas, 2003), and thus to the 

availability of water. However, when khettaras are well managed and maintained, mostly on a 

very local scale, it still remains an effective irrigation method. 

The growing autonomy of households led to the decline of khettaras on the one hand, but 

to an increase in installations of diesel pumps for irrigation, in the same area, on the other hand. 

Caused by mainly two factors: (1) the general water scarcity in this part of the valley, (2) 

international migration to European countries (de Haas, 2003). The second factor was initiated 

around the 1960s and 1970s, when international migration from Morocco to European began to 

boom. It was mainly due to remittances, the money which is send back by the migrant to the 

country of origin, that households could afford to buy a diesel pump, and to develop economical 

in general (de Haas, 2006). As international migration and migration in its principle requires an 

investment up front, the poorest of the poorest people are not able to migrate, and thus not able 

to buy a diesel pump. Resulting in a fragmentation of diesel pump around the Todgha valley, 

where only the people who receive remittances are able to invest in the installation of diesel 

pumps, and continue or extent their agricultural practices (de Haas, 2003). This might explain the 

very patchy pattern in the different maps (Figures 12, 15 and18). However, in a water scares 

valley, the increase in diesel pumps to extract more groundwater for agricultural irrigation also 

has its dangers. This increased use of diesel pumps for pumping groundwater for irrigation led to 

a decrease of water tables, which has resulted in a water crisis in zone b, c, and d, endangering  
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the continuation of the agriculture practices (de Haas, 2001b, 2003; Otte, 2000). The pathway of 

lowering water tables due to the extensive pumping of water for irrigation was also proven in the 

Souss-Massa River basin (Choukr-Allah et al., 2017).  

To conclude, the eastern part of the Todgha valley and the Tinejdad (zone c & d) suffered 

from the pumping of water for cropland irrigation in the western part of the Todgha valley (zone 

b), which led to the lowering of groundwater tables and resulting in desiccation and ultimately 

possibly desertification. Moreover, this area also suffered from water management problems 

around khettara irrigation. Seeing that the overall patchy patterns of changes in vegetation 

greenness are rather localised, which are strongly influenced by social (i.e., water management) 

and economic (i.e., pumping purchasing power) and factors, desertification in the Todgha valley 

is a profoundly localised phenomenon.  

Thus, the relation between the pumping of water in the western part of the Todgha valley 

and localised desertification in the eastern part of the Todgha valley is causal and supports the 

working hypothesis, resulting in the above justified localised desertification theory.  

 

Three fundamental differences between the analysis of this sub-question and that one of 

the first sub-question are the spatial resolution of the NDVI dataset, the temporal resolution of 

the time series, and the used formula argument of BFAST01. While this analysis used NDVI 

data with a spatial resolution of 250 m, the first sub-question used NDVI data with a spatial 

resolution of 500 m. Using the NDVI data with a spatial resolution of 250 m could potential lead 

to the detection of more turning points in dryland ecosystem functioning. A finer spatial 

resolution also has a better potential to relate turning points in ecosystem functioning to 

particular drivers (Rasmussen et al., 2014). Next, this sub-question used monthly NDVI data as 

input of the BFAST01 algorithm, while the first sub-question used yearly RUE data as input of 

the BFAST01 algorithm. Logically, a time series with a finer temporal resolutions (i.e., monthly 

vs. yearly) offers a higher probability to detect a significant break. Finally, this difference in 

temporal resolution of the time series resulted inevitably in the difference in the formula 

argument of BFAST01. This sub-question made use of the formula argument to “response ~ 

trend + harmon” as a monthly time series was used with seasonality. The first sub-question made 

use of a yearly time series without seasonality, so the formula argument of BFAST01 was set on 

“response ~ trend”. 

These fundamental differences led to the discrepancy in the number of detected abrupt 

changes (i.e., analysed in this sub-question) and turning points (i.e., analysed in the first sub-

question). This discrepancy also shows that changes in vegetation greenness trends do not  
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necessarily imply changes (e.g., positive or negative) in the state of Moroccan dryland 

ecosystems, as no turning points were discovered within the Todgha valley. 
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8. Conclusion and recommendations 
 

8.1    Sub-questions 
In this section, the sub-questions introduces in section 1.3 are answered.  

 

 Which dryland areas in Morocco experienced turning points in ecosystem 

functioning over the last 20 years and how can these be categorised using 

BFAST01? 
 

By applying the BFAST01 algorithm on the RUE time series from 2000-2018, turning points 

in ecosystem functioning were mainly detected in the northern part of Morocco, encompassing 

the river basin of the Moulouya River. Most of these turning points occurred in 2009, possibly 

caused by commissioning the Hassan II dam. A likely pathway could be that a decrease in water 

supply downstream, caused by the dam, and led to a reduction of water and to land degradation. 

Consecutively, by using the BFAST01classify algorithm, while enabling the dryland 

typology, on the BFAST01 output, 63.2% of the detected turning points showed a steady 

increase in ecosystem functioning up to the detection of the turning point. After the detecting of 

the turning point, the increase in ecosystem functioning slowed down in 99.4% of the cases. 

Reversals from an increase to a decrease in ecosystem functioning comprised 20.3% of the 

detected turning points. From which 99.8% was transitioning to a further decrease in ecosystem 

functioning. 16.4% of the detected turning points revealed a decrease in ecosystem functioning 

up to the turning points, from which an equal share was slowing down and accelerating. 

Reversals from a decrease to an increase in ecosystem function were only found in the remaining 

0.08% of the detected turning points, from which all completed the transition to a decrease in 

ecosystem functioning. 

 

 To what extent does a combination of proximate causes and underlying causes 

explain the detected turning points in Moroccan drylands on a national scale? 
 

A combination of proximate (i.e., changes in cropland land cover, changes in sparse 

herbaceous land cover, and built-up expansions) and underlying causes (i.e., the occurrence of 

abnormally dry months and population density increase) to explain the detected turning points 

resulted in a McFadden pseudo-R2 of only 0.015. The main reason for this bad model fit is the 

unbalanced dataset which functioned as input for the binary logistic regression. Also, the way 

some drivers were pre-processed could influence the model in a negative way. Changes in 

cropland, increases in population density, and abnormally dry months turned out to be the most 

important variables. However, the relationship between turning points and proximate and 

underlying causes turned out be very hard to establish.  
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 Which areas of the Todgha valley experienced abrupt changes in vegetation 

greenness trends over the last 20 years and what is the explanatory value of 

migration on the detected shifts? 
 

Abrupt changes in vegetation greenness trends were detected across the whole Todgha 

valley. The year intervals 2005 – 2006, 2009 – 2010 and 2013 – 2014 revealed the most abrupt 

changes. Moreover, the abrupt changes were detected in a very patchy pattern, with only small 

areas of the Todgha valley showing the abrupt changes in the same year. The impact of 

migration on the detected abrupt changes is substantial. Migration, which results in remittances, 

leads to very local development in the form of investments in diesel pumps for agriculture, as not 

everyone has the means to migrate. In this way, people who receive remittances have the ability 

to continue or expand their agriculture activities. People who do not receive remittances do not 

have the ability to continue their agriculture activities, which can result in negative vegetation 

greenness trends. This pathway of development can be summarised in the developed localised 

desertification theory. 

8.2    Main research question 

After discussing the three sub-questions, the main research question can be answered: 

 

“How can turning points and their drivers in Moroccan dryland ecosystem functioning over the 

last 20 year (2000-2019) be characterised?” 

 

Turning points in Moroccan dryland ecosystems can be detected by applying BFAST01 

on the 19 year rain-use efficiency time series. The rain-use efficiency is calculated by dividing 

the net primary productivity by the sum of the precipitation, both in the growing season. 

Consecutively, the turning points could be classified by applying BFAST01classify on the 

BFAST01 output. By means of a binary logistic regression some potential drivers could be 

analysed. However, the created model needs major improvements to establish an accurate 

relationship between turning points and their drivers in Moroccan dryland ecosystems.   

8.3    Further research 
Further research should firstly focus on the complicated relationship between turning 

points and their drivers. The presented binary logistic regression should first of all be expanded 

with more potential drivers (i.e., soil moisture and migration). Next, as the ratio of turning points 

and no turning points is very unbalanced which resulted in the bad model fit, the Radial-Based 

Oversampling technique is worth investigating. As this method reduce the problem of 

unbalanced data. Moreover, pre-processing the driver data in another way could also influence  

 



 

48 

 

 

 

the model in a positive way. Also, investigating other machine learning techniques (i.e., random 

forest) to model this complicated relationship should be considered. These potential steps for 

improvement of the binary logistic regression model are worth investigating, and may lead to a 

better modelled relationship between turning points and their drivers. This relationship provides 

crucial insights for a better decision-making process for dryland ecosystem conservation and 

management. 

Secondly, as most of the turning in ecosystem functioning were detected in the year that 

the Hassan II dam was brought into us. Further work should focus on the exact influence of 

lowering water availability (both above ground as ground water) due to a dam on turning points 

in ecosystem functioning.  

Finally, further research could focus on the use of two different datasets to compute the 

RUE. As an alternative to MODIS to provide the necessary NDVI data, Landsat 7 and 8 could be 

used. These two Landsat products cover the temporal extent used in this study, but with a finer 

spatial resolution (i.e., 30 m instead of 500 m). As alternative to CHIRPS to provide the required 

precipitation estimates, Tropical Applications of Meteorology using SATellite (TAMSAT) could 

be used. Encompassing also the temporal extent used in this study, but also with a finer spatial 

resolution (i.e., 4 km instead of ~5 km). 
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