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Abstract 
 
Rangelands cover a large proportion of the earth’s surface, upon which a great deal of 

biodiversity, but also livelihoods of people depend. Rangeland management on varying 

scales has been able to benefit from the implementation of remote-sensing based 

information. However, the interests of different scales of rangeland management, from 

local to international, have differing requirements for remote-sensing based data in terms 

of cost, accuracy and speed in order to asses rangeland utilization intensity. In this research, 

the accuracy of a MODIS Net Primary Productivity-based model (process-based model) 

developed for Azerbaijan for aboveground carrying capacity in rangelands was compared 

to that of locally-trained a Landsat 8 surface reflectance-based empirical (Cubist) model. 

These models were coupled with stocking density estimates derived from summer herder 

locations to identify areas in which overgrazing had occurred. This was performed for the 

study area of Bulgan province, Mongolia. It was shown that the performance of the 

process-based model when applied to Bulgan resulted in low accuracy, however the model 

performed comparably to the model developed in a previous study for Azerbeijan. Despite 

this, the mean of the biomass predictions differed significantly from the mean of the 

observed values (p < 0.05). The empirical model delivered better performance than the 

process-based model and did not result in significant differences between the means of 

predictions and observed biomass values (p > 0.05). Due to overprediction of biomass by 

the process-based model, overgrazing was not estimated to be as extensive by the process-

based model as by the empirical model. However, the process-based model and validation 

strategies could be further fine-tuned until the accuracy of an NPP-based model could be 

comparable to that of a strictly empirical model and applicable for use in inter-regional or 

international comparison of overgrazing levels.  
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1. Introduction 
 

1.1. Context & Background 
 
Despite the superficial simplicity of the term ‘rangeland’ and an immediate association to a 

singular, idyllic image that might be conjured in one’s mind, there is no universally accepted 

definition of the term (Reeves et al., 2015). According to the definition maintained by the 

Society for Range Management, land can be considered rangeland when it is predominantly 

covered by “[...] grasses, grass-like plants, forbs, or shrubs and is managed as a natural 

ecosystem” (Reeves et al., 2015, p.239). Naturally, this entails that a large proportion of the 

earth’s land surface can be classified as rangeland, although exact estimates range between 

18% to 80% (Lund, 2007). Since no single international ⁠organization is responsible for reporting 

on and assessing global rangeland cover such as there exists for global forest cover, like the 

United Nation’s FAO, estimates of rangeland cover vary greatly (Lund, 2007). Despite this lack 

of monitoring, many people are dependent on rangelands for their livelihoods, providing food 

and income. Pressures on rangelands are increasing in the form of overuse, land conversion 

and climate change: estimates of degraded rangeland globally vary from 20% to 73% (Lund, 

2007). This conflict between extensive reliance on rangelands and degradation can be seen in 

the context of the Sustainable Development Goals (SDG’s) as compiled by the United Nations. 

Specifically, the goals 15.3 (“End desertification and restore degraded land”) and 2 (“Zero 

Hunger”) are of concern (United Nations, 2016). As populations increase, the intensification 

of the rangeland use likely increases to maintain a sufficient level of food production, thereby 

contributing towards the “Zero-Hunger” SDG. However, intensification of land use or the 

change of land use altogether can be in conflict with reaching the SDG 15.3, as desertification 

and intensified rangeland use, in combination with other factors, have been shown to be linked 

(Bedunah & Angerer, 2012). 

 

The interests of monitoring rangelands are many; on a global scale, cross-border comparable 

and accurate data is required on the state of rangelands in order to identify areas which require 

extra attention in terms of reaching related Sustainable Development Goals such as SDG 2 and 

15.3, and subsequently, in order to direct international efforts accordingly. Unlike the global 

Forest Resource Assessment (FRA)’s surveys of forest cover, such globally comparable data is 
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hardly available for rangelands (Lund, 2007). Understanding and balancing the fine and 

complex relationship between maintaining rangeland-dependent livelihoods and maintaining 

rangeland quality is necessary and can be aided by defining the ‘carrying capacity’ of the land 

using remote sensing and other spatially explicit data (de Leeuw et al., 2019). In the context of 

rangeland management, carrying capacity is defined as: “[...] the number of livestock per unit 

area that can be sustained given the amount of available forage and is expressed as the 

number of animals and days that an area of land may be grazed.” (de Leeuw et al., 2019, p.66). 

In practice, defining the carrying capacity would allow policy makers to more effectively steer 

grazing pressure, both spatially and temporally, in such a manner that livestock productivity 

and reduction of land degradation are in balance, by avoiding or more closely monitoring areas 

potentially at risk of overgrazing. 

 

However, the concept of carrying capacity, and thus overgrazing, may not be universally 

applicable to all climatic zones and land-cover types, which has been a topic of debate in the 

field of rangeland ecology for many years, especially since the definition of rangelands can 

span a variety of land-cover types (Addison, Friedel, Brown, Davies, & Waldron, 2012; de 

Leeuw et al., 2019; Wehrden, Hanspach, Kaczensky, Fischer, & Wesche, 2012). Many argue that 

it is fundamentally only appropriate to employ carrying capacity as a conceptual tool when an 

ecosystem is considered to be an ‘equilibrium’ system (de Leeuw et al., 2019; Ellis & Swift, 

1988). In this system it is assumed there is a limited amount of forage available, and that 

overgrazing of the forage, and thus over-exploitation of the land, leads to rangeland 

degradation. The system is therefore mainly influenced and bound by grazing pressure (Ellis & 

Swift, 1988). Conversely, non-equilibrium systems have been found to be bound by other 

factors, but mainly the variability of rainfall ⁠ (de Leeuw et al., 2019; Vetter, 2005; Wehrden et 

al., 2012). In such systems, if the variability of rainfall is above a certain threshold (often 33% 

is maintained), the productivity of the land can no longer be considered to be bound by 

grazing, as periods of droughts largely influence the stocking density, rather than the 

overgrazing of the livestock itself (Ellis & Swift, 1988). In other words, periods of drought in 

non-equilibrium systems reduce the amount of available forage, therefore reducing livestock 

numbers and stocking density, before the stocking density can become high enough to have a 

significant effect on the availability of forage. This difference between in equilibrium and non-
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equilibrium systems is critical in rangeland monitoring, and consequently rangeland 

management as well, because the carrying capacity approach must be applied only to areas 

for which it is valid. 

Simultaneously, differing interests in rangeland monitoring mean that the requirements of the 

monitoring activity can differ according to the varying needs of the parties involved. As 

determined before, global-scale monitoring is required for international comparisons in 

relation to the monitoring of the state of the Sustainable Development Goals. However, in 

local-scale management, there is a greater need for a high level of accuracy of the data in order 

to effectively manage stocking densities locally. In addition, local-scale management also 

necessitates insight into local systems and factors which can affect the risk of overgrazing 

(Bedunah & Angerer, 2012). For example, overgrazing and land degradation is often found 

close to urban areas and water sources, but these factors are not necessarily globally valid 

(John et al., 2018). Also, data that could prove useful on this scale, such as local stocking 

densities, is not consistently available globally (Lund, 2007). Therefore, there seems to be an 

inherent difficulty in fulfilling the requirements of rangeland (overgrazing) monitoring at 

different scale levels, while employing similar methods to achieve results.  

 

A country which has a large interest in rangeland monitoring is Mongolia. An estimated 70% 

of Mongolia’s land can be classified as rangeland (Bruegger, Jigjsuren, & Fernández-Giménez, 

2014). Arid and semi-arid regions such as Mongolia are especially at risk of desertification and 

land degradation, as there generally exists a high degree of variability of precipitation 

(Eisfelder, Kuenzer, & Dech, 2012; Huang, Yu, Guan, Wang, & Guo, 2016). Although in 2014 

28% of the employment was dependent on rangelands, and approximately 13.5% of the Gross 

Domestic Product (GDP) stemmed from livestock (National Statistics Office of Mongolia, 2019), 

its rangeland vegetation productivity has been estimated to have decreased by 20-30% in the 

last 40 years, and the vegetation composition of an expansive area is projected to change 

greatly (Angerer, Han, Fujisaki, & Havstad, 2008; Bruegger et al., 2014). Despite a decreasing 

productivity, the amount of livestock has almost doubled (from 33.6 million to 66.7 million) 

between 1999 and 2017 despite severe droughts and extreme cold winters in 2001 and 2009, 

of which the former killed up to 35% of the livestock at the time (Angerer, 2012; Erdenesan, 

2018). Currently, a large degree of rangeland management is performed on a highly localized 
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level, based on traditional communal knowledge (Bruegger et al., 2014). While this can be 

effective on local scales, cross-boundary policymaking and management capabilities are 

currently weak (Bruegger et al., 2014). Furthermore, the differing climatic zones which exist in 

Mongolia complicate the issue of regional and national rangeland management, as ecological 

systems can display conflicting characteristics of differing ecological models, such as the 

equilibrium and non-equilibrium paradigms, which require different management methods 

(Ellis & Swift, 1988; Fernandez-Gimenez & Allen-Diaz, 1999). Therefore, developing an 

accurate and interpretable method for the estimation of carrying capacity and, potentially, 

overgrazing risk in Mongolia is key in coping with both anthropogenic and non-anthropogenic 

pressure sources, which endanger not only the sustainability of rangeland ecosystems, but also 

the livelihoods of many pastoralists. At the same time, this method should ideally maintain 

cross-border comparability in the context of the Sustainable Development Goals and be 

applicable in other regions as well, thus not be dependent on highly cost- and labor-intensive 

data. 

 

1.2. Problem Definition 
 
It is perhaps an inescapable fact: the narrower the scope for which a prediction model is 

developed, the better its performance. For example, if one develops a model to predict apple 

harvest yields in the field of Farmer A, this model will likely not perform as well on harvest 

yields in the field of Farmer B. By expanding the scope of the model to include the fields of 

Farmer B in the development and training of the model, the resulting model will perform 

better for those fields, but due to its wider scope, worse for Farmer A than if only the fields of 

Farmer A had been involved in the training of the model. The development of models for 

rangeland monitoring faces this problem, as the interests and requirements of local rangeland 

policy makers and users can differ greatly from the requirements of global rangeland 

monitoring. Especially for the estimation of (aboveground) biomass, a wide range of models 

has been developed. Two main approaches using input from remote sensing images can be 

distinguished according to Reeves et al.: “[…] (1) empirical approaches that estimate the forage 

biomass or quality based on a statistical relationship between the spectral bands (or some 

combination of bands) in the imagery and field-collected vegetation data and (2) process 

models that use remote-sensing data as inputs for predicting vegetation biomass or quality” 
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(Reeves et al., 2015). Both approaches are subject to the issue mentioned before (Eisfelder et 

al., 2012).  

 

Empirical, statistical models derive relations between data points without previous knowledge, 

thus being entirely dependent on the input data itself, and likely inaccurate for regions outside 

of the extent from which the training data originated. Approaches using linear and logarithmic 

regression have been employed in many regions, such as estimating dry matter production in 

Senegal (Tucker, Vanpraet, Boerwinkel, & Gaston, 1983), grass yield in Golog prefecture, China 

(Yu, Zhou, Liu, & Zhou, 2010), and aboveground biomass on the Qinghai-Tibet Plateau (Liu et 

al., 2015). While these are often adequate for limited extents, they struggle with up-scaling 

(John et al., 2018). Non-parametric approaches using machine learning techniques such as 

Cubist and Random Forest attempt to overcome problems with linear (parametric) techniques 

related to limitations in characterizing complex relations in multiple climatic zones and land 

cover types simultaneously (John et al., 2018). In addition, they allow for an expansion of the 

indices used for prediction – as frequently only the Normalized Difference Vegetation Index 

(NDVI) is employed in linear models (John et al., 2018). The drawback of this method is the 

comparatively extensive field sampling required in order to obtain enough in-situ training and 

validation points.  

 

Process-based models also often require calibration according to the local conditions in which 

they are applied (Reeves et al., 2015). Calibrating a process-based model for a wider extent 

thus likely implies lower accuracy than calibrating for a smaller extent. A process-based model 

was implemented in Mongolia in order to predict forage availability, in which biomass 

estimates (derived from MODIS NDVI) were fed into the Phytomass Growth Simulation model 

(Angerer, 2012). In order to be applicable for the entirety of Mongolia, the model included 65 

variables for various categories of soil surface, plant species, livestock and climate data, all of 

which had to be set according to data acquired in the field (Angerer, 2012). Another, similar 

model was developed for Kazakhstan using net primary productivity (NPP) estimates derived 

from remote sensing fed into the BETHY/DLR model; however, this also required local 

parameterization (Eisfelder, Klein, Niklaus, & Kuenzer, 2014). In order to overcome the issue of 

the necessity of a large degree of local parameterization, a model for carrying capacity in 
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Azerbaijan has been developed with promising results by de Leeuw et al., which uses the 

MODIS global NPP product (de Leeuw et al., 2019). Importantly, this model uses only a very 

limited range of variables and parameters, for which no field data is required apart from for 

validation purposes. ⁠However, it is unknown how this model performs for regions outside 

Azerbaijan, and how it compares to empirical models developed from in-situ data and other 

process-based models with a higher degree of parameterization according to local conditions 

(de Leeuw et al., 2019). 

Apart from the estimation of aboveground biomass and usable forage, and thus carrying 

capacity, the estimation of spatial distribution of stocking densities is another element in the 

estimation of overgrazing risk. This can often only be characterized on a rough scale within 

certain administrative boundaries (National Statistics Office of Mongolia, 2019). However, with 

the incorporation of known herder locations, the spatial distribution of stocking density within 

local administrative boundaries can be more accurately estimated. 

 

Finally, the high degree of local parameterization complicates the use of developed models for 

other regions worldwide, hindering cross-border compatibility of results. In the specific 

context of Mongolian rangeland monitoring and management, there is a need for a model 

such as developed by de Leeuw et al. (2019), which combined with stocking densities can 

provide insight into overgrazing risk on country-wide or regional scale without the need for 

costly and time-intensive widespread sampling of aboveground biomass, and thus also locally 

help steer policy. Simultaneously, the model should ideally be easily applicable in other similar 

regions on the globe without the necessity for extensive local-scale parameterization and 

potentially aid in the global comparison and monitoring of land degradation in the context of 

the United Nation’s Sustainable Development Goals. 

 

  



7 
 
 

1.3. Objectives 
 
The general research objective of this thesis is to assess the accuracy of a process-based model 

for aboveground carrying capacity in rangelands, compared to that of an empirical model, and 

couple these models with stocking density estimates to identify areas in which overgrazing has 

occurred, as well as investigate the differences between models in predicted overgrazing 

levels. 

 

Research questions: 
 

• How suitable is an existing process-based model for rangeland biomass developed for 

Azerbaijan, for use in Bulgan province, Mongolia, based on validation with in-situ 

biomass samples? 

 

• Does an empirical model for rangeland biomass increase prediction accuracy compared 

to the process-based model? 

 

• What is the spatial distribution of forage intake by herder livestock in their summer 

locations in Bulgan, Mongolia? 

 

• What are the differences in overgrazing predictions between the empirical and 

process-based models, and what factors influence these differences? 
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4. Methodology 
 

4.1. Study Area 
 
The area this thesis has used for the analysis is Bulgan province, Mongolia. It is located in the 

north of Mongolia and covers an area of 48,733 km2, which is approximately the same size as 

Slovakia. It is home to 62,214 people, of which approximately 75% live in a rural environment 

(National Statistics Office of Mongolia, 2018b). On average, the province thus has a population 

density of only +-1.3 per square kilometer, slightly over half of the country-wide population 

density of Mongolia. The average annual temperature is -2.4 °C, and temperatures fluctuate 

between -49 °C in winter 

and 38 °C in summer (Yu et 

al., 2013). The vegetation 

types vary, generally along 

the north/south axis: 

while the north is 

characterized by alpine 

forests in the Sayan 

montane conifer forests 

ecoregion, the landscape 

gradually transforms to 

arid steppe plains in the 

Mongolian Manchurian 

grassland ecoregion 

further southwards (Yu et 

al., 2013). Most of the 

province lies in the 

Selenge-Orkhon forest 

steppe ecoregion of which 

the vegetation cover is a 

mixture of forest and 

grassland (Figure 1). 

Figure 1: Map of Bulgan Province, Mongolia. The land cover in Bulgan 
consists of mostly grassy vegetation in the south and forest in the north. The 
province can be categorized into three ecoregions, as divided by the dashed 

lines: Sayan montane conifer forests, Selenge-Orkhon forest steppe and 
Mongolian-Manchurian grassland . 
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Urban areas are very sparsely distributed throughout the province, and agriculture mostly 

occurs in the Selenge- and Eg river basins in the north of the Selenge-Orkhon forest steppe 

ecoregion (Figure 1). The average yearly precipitation ranges from 200 to 350 mm (Yu et al., 

2013), and the coefficient of variation of precipitation is below the threshold of 33%, which 

generally allows for the determination of carrying capacity as outlined in the introduction of 

this thesis (Figure 2). Herding livestock is an important source of income in Bulgan: the 

province counts 10,683 households which depend on herding as their primary source of 

income, which is more than half of the total number of households (19,072) (National Statistics 

Office of Mongolia, 2018a). Herders generally move in a rotational system according to the 

seasons, from summer to winter pastures (Al-Jaloudy et al., 2005). 

 

 
Figure 2: Map of the spatial distribution of coefficient of variation (CV) of precipitation in Mongolia. Inset map 
shows the resulting divide between equilibrium and non-equilibrium systems according to the 33% threshold as 

proposed by Ellis and Swift (Ellis & Swift, 1988). Bulgan province is outlined in red. Rainfall variability data 
obtained from (Wehrden et al., 2012) 
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4.2. Data 
 
The data used can be categorized as: data and parameters required as input for the process-

based biomass prediction model (Table 1), vegetation indices used as input for the empirical 

biomass prediction model (Table 2), other data required as input for the empirical biomass 

prediction model (Table 3), parameters required for the adjustment of biomass estimates to 

sustainably usable values (Table 4) and data and parameters required for forage intake 

estimation (Table 5). The analysis has been performed for the year 2014, as this was the year 

for which there were georeferenced biomass sample points and herder locations available. 

 

4.2.1. Process-based model 
 
The remote sensing data used to generate biomass predictions consists of two composite 

MODIS (Moderate Resolution Imaging Spectroradiometer) products, the MOD17A3HGF v006 

Net Primary Production Yearly L4 Global 500 m SIN Grid and the MOD17A2HGF v006 Net 

Photosynthesis  8-day composite 500 m,  and a Landsat 8 derived yearly maximum top-of-

atmosphere NDVI composite. Net Primary Production is defined as the rate at which all flora 

in an ecosystem are producing useful energy, and is thus the difference between net 

photosynthesis (PsnNet) and woody maintenance plus growth respiration (Zhao, Heinsch, 

Nemani, & Running, 2005). It is valid to use the sum of PsnNet in this use case, since the target 

of the analysis and the majority of vegetation in the study area that is of interest for biomass 

prediction are herbaceous species, which do not grow woody biomass. The MODIS NPP and 

GPP data were retrieved from the USGS’s AppEEARS (Application for Extracting and Exploring 

Analysis Ready Samples) platform. Other data and parameters used in the process-based 

model are a mean annual temperature raster, and parameters for the conversion of carbon to 

biomass and the calculation of fraction of aboveground biomass. The interpolated mean 

average temperature from 1970 – 2000 was retrieved at 30 arcsec resolution from WorldClim 

Version 2 (Fick & Hijmans, 2017), and the parameters from IPCC and Hui & Jackson (Hui & 

Jackson, 2006; IPCC, 2006). 
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Table 1: Data and parameters required as input for the process-based biomass prediction model. 

Process-based biomass estimation  

Data/Parameter Value, Unit Type, 
Resolution 

Source 

Annual Net Primary Production (NPP) kg C ha−1 yr−1 Raster, 500 m MOD17A3HGF v006 

Eight-day net photosynthesis (PSnNet) kg C ha−1 eight days−1 Raster, 500 m MOD17A2HGF v006 

Annual maximum NDVI composite  Raster, 30 m USGS/Google 

Mean Annual Temperature (MAT) °C Raster, 30 arcsec Fick & Hijmans, 2017 

Factor for conversion biomass to 
carbon 

0.47 Parameter IPCC 2006 

FANPP and MAT relation fANPP=0.171+0.0129 
MAT 

Parameter Hui & Jackson, 2006 

 
 

4.2.2. Empirical model 
 
It was chosen to use the 30m resolution Landsat 8 tier 1 surface reflectance product instead 

of a surface reflectance product with comparable resolution as the MODIS NPP product (250- 

or 500m resolution MODIS) as input for the empirical model. This was done in order to 

minimize the effect of within-pixel variance on accuracy assessment of the empirical model, 

since the georeferenced biomass sample plots were small (1 m2) compared to the surface area 

of a 500m resolution MODIS pixel (250,000 m2), or even a 250m resolution pixel (62,500 m2).  
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Table 2: Vegetation indices used as input for the empirical model. Blue (B), Green (G), Red (R), NIR, SWIR1 and 
SWIR2 indicate surface reflectance SR at wavelengths (μm): B: SR0.452-0.512, G: SR0.533-0.590, R: SR0.636-0.673, NIR: 

SR0.851-0.879, SWIR1: SR1.566-1.651, SWIR2 SR2.107-2.294. The parameter L denotes the canopy background adjustment 
term, C1 and C2 are coefficients correcting for aerosol influences, Gf is a gain factor. Terms b1-6, g1-6 and w1-6 are 

Tasseled Cap indices coefficients. See Devries, Pratihast, Verbesselt, Kooistra, & Herold (2016) for all values used. 

Name Index Equation Source 

Normalized 
Difference 
Vegetation Index 

NDVI (NIR − R)

(NIR + R)
 

(Rouse, Schell, & 
Deering, 1973) 

Modified Soil-
Adjusted 
Vegetation Index 
(v2) 

MSAVI2  

(2 ∗ NIR + 1 −√(2 ∗ NIR + 1)2 − 8 ∗ (NIR − R))

2
 

(Qi, Chehbouni, 
Huete, Kerr, & 
Sorooshian, 1994) 

Soil-Adjusted 
Vegetation Index 

SAVI 
(

(NIR − R)

(NIR + R + L)
) ∗ (1 + L) 

(Huete, 1988) 

Enhanced 
Vegetation Index 
(v2) 

EVI2 
Gf ∗ (

(NIR − R)

(NIR + 𝐶1 ∗ R − 𝐶2 ∗ B + L)
) 

(Huete et al., 2002) 

Normalized 
Difference 
Moisture Index 

NDMI (NIR − SWIR1)

(NIR + SWIR1)
 

(Wilson & Sader, 
2002) 

Tasseled Cap 
Brightness 

TCB 𝑏1B + 𝑏2R + 𝑏3G + 𝑏4NIR + 𝑏5SWIR1 + 𝑏6SWIR2 (Devries et al., 2016; 
Kauth, 1976) 

Tasseled Cap 
Greenness 

TCG 𝑔1B + 𝑔2R + 𝑔3G + 𝑔4NIR + 𝑔5SWIR1 + 𝑔6SWIR2 (Devries et al., 2016; 
Kauth, 1976) 

Tasseled Cap 
Wetness 

TCW 𝑤1B + 𝑤2R + 𝑤3G +𝑤4NIR + 𝑤5SWIR1 + 𝑤6SWIR2 (Devries et al., 2016; 
Kauth, 1976) 

 

Bands 2 to 7 were used from the Landsat 8 monthly composite, which were retrieved from 

Google Earth Engine. A modified form of the script provided by the Centre for Development 

and Environment, Bern University, was used to create the monthly composite, providing cloud 

masking, best-pixel selection based on distance from clouds and ‘greenness’ levels, as well as 

correcting for differences in topographic illumination (Hurni, Heinimann, & Würsch, 2017). 

From the Landsat 8 monthly composite, eight spectral indices were calculated to use as input 

(Table 2).  
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In addition, ‘time-integrated’ values of each of these indices, as well as precipitation, until the 

approximate date of sampling were calculated and used as input for the empirical models: 

 

𝑉𝐼𝑖𝑛𝑡 =∑𝑉𝐼

𝑑

𝑖=1

 

 

where VIint = Integrated Vegetation Index, d= month of biomass sampling and VI = Vegetation 

Index. It was chosen to use a simple summation of the monthly VI values, rather than compute 

an integral, as fitting a curve to the monthly VI values per pixel would have been too time- and 

computation-intensive.  

 

Other datasets used for the estimation of carrying capacity are in-situ georeferenced biomass 

samples, a DEM raster, a monthly precipitation raster, an ecoregion vector dataset, a land cover 

vector dataset, and a tree cover percentage raster (Table 3). The tree cover product is at 30m 

resolution for the year 2010 and available for download from the Global Land Cover Facility 

(GLCF) (Sexton et al., 2013). A DEM of Bulgan province was retrieved from the Shuttle Radar 

Topography Mission (SRTM) 90m Digital Elevation Database v4.1 (Reuter, Nelson, & Jarvis, 

2007). In-situ biomass measurements were collected by the Institute of Geography and 

GeoEcology, Mongolian Academy of Sciences, and are available for the year 2014 (120 

samples) as point data. The dataset contains attributes for the date of collection, 

administrative area, biomass, grazing pressure and landcover type. The sampling technique 

used was purposive sampling, in which only grassland samples were taken from relatively 

homogeneous areas. Care was taken to include areas with varying levels of grazing pressure. 

The sample plots were 1 m2 in area, from which the aboveground biomass was harvested, 

dried, and weighed. Monthly precipitation data was retrieved using Google Earth Engine from 

the TerraClimate Monthy Climate and Climatic Water Balance for Global Terrestrial Surfaces 

dataset at 2.5 arcmin resolution (Abatzoglou, Dobrowski, Parks, & Hegewisch, 2018). The 

ecoregion data was retrieved using Google Earth Engine from the RESOLVE Ecoregions dataset 

(Dinerstein et al., 2017).  Although the ecoregion dataset originally included three ecoregions 

intersecting Bulgan province, it was chosen to merge the two most northern ecoregions (Sayan 

Montane Conifer forests and the Selenge-Orkhon forest steppe) into one ecoregion, ‘Forest-
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steppe’. This was done because there were too few biomass samples located in the Sayan 

Montane Conifer forest ecoregion. The landcover data was retrieved from Copernicus, filtered 

and converted to vector format via Google Earth Engine before download (ESA, 2018). 

 

Table 3: Data required as input for the empirical biomass prediction model. 

Empirical biomass estimation 

Data/Parameter Value, Unit Type, 
Resolution 

Source 

Monthly median composite Landsat 8, 
Bands 2-7 

 Raster, 30m USGS/Google 

DEM m Raster, 90m SRTM 

Ecoregion  Vector (polygon) RESOLVE Ecoregions 2017 

Tree cover Tree cover %  Raster, 30m GLCF/Google 

Land cover  Raster, 100m CGLS-LC100 collection 
2/Google 

Monthly precipitation mm Raster, 2.5 arcmin TerraClimate/Google 

Georeferenced biomass samples dry weight, g 
m−2 

Vector (point) Mongolian Academy of 
Sciences 

 
 

4.2.3. Sustainably usable biomass 
 
For the conversion of predicted biomass values to sustainably usable values, several 

parameters were used from de Leeuw et al., (2019) such as a ‘proper use’ factor, and ‘proper 

use’ factor reduction based on slope percentage (Table 4).  

 
 

Table 4: Parameters required for the adjustment of biomass estimates to sustainably usable biomass values. 

Biomass proper use estimation 

Data/Parameter Value, Unit Type, 
Resolution 

Source 

Proper use factor 0.65 Parameter (de Leeuw et al., 2019) 

Reduction proper use factor for slopes 
10-30% 

30% Parameter (de Leeuw et al., 2019) 

Reduction proper use factor for slopes 
30-60% 

60% Parameter (de Leeuw et al., 2019) 

Reduction proper use factor for slopes > 
60% 

100% Parameter (de Leeuw et al., 2019) 
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4.2.4. Forage Intake 
 
For the estimation of forage intake, generally two types of data were required: herder 

locations, and sub-district statistics on livestock numbers (Table 5). A dataset containing the 

seasonal locations of herders as points for the 2014 year was collected by the Institute of 

Geography and GeoEcology, Mongolian Academy of Sciences. Attributes included are province, 

Soum (district administrative level), Bag (sub-district administrative level), season and herder 

names. Sub-district statistics on livestock numbers were also provided for the year 2014 by the 

Institute of Geography and GeoEcology, and contained attributes on season, district, sub-

district, herder names, livestock numbers by animal type, and total livestock numbers in 

sheep-equivalent units (SEU). Due to missing and/or incomplete data in some areas, census 

data on livestock numbers by subdistrict and livestock type was retrieved from the Mongolian 

Statistical Information Service portal in order to supplement the seasonal data where possible 

(National Statistics Office of Mongolia, 2019). Finally, for the final calculation of forage intake, 

several parameters are required such as a SEU conversion matrix, with which different 

livestock types can be converted and represented in SEU (Appendix A), a grazing range matrix, 

representing the distance typically grazed per season per livestock type (Appendix A), a forage 

intake parameter, denoting the daily forage intake requirement per SEU, and duration of stay 

parameters, which represent the duration that herders generally stay per location, per season.  
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Table 5: Data and parameters required for forage intake estimation 

Forage intake estimation 

Data/Parameter Value, Unit Type, 
Resolution 

Source 

Administrative boundaries  Vector (polygon) Mongolian Academy of 
Sciences 

Georeferenced seasonal herder locations  Vector (point) Mongolian Academy of 
Sciences 

Seasonal livestock per herder group and 
subdistrict 

 Table Mongolian Academy of 
Sciences 

Livestock per subdistrict  Table National Statistics Office of 
Mongolia 

Conversion to SEU matrix   Table/Parameter (Sainbuyan, 2016) 

Grazing range matrix  Table/Parameter (Sainbuyan, 2016) 

Forage intake 1.5 Kg SEU-1 

day-1 
Parameter (Sainbuyan, 2016) 

Duration of stay summer pastures 90 days Parameter Mongolian Academy of 
Sciences 

Duration of stay summer + autumn 
pastures 

150 days Parameter Mongolian Academy of 
Sciences 

 
 

4.3. Models 
 
Two types of models will be discussed in this section, which for the sake of consistency will be 

identified henceforth as the ‘Process-based’ models and the ‘Empirical’ models. It is important 

to note that, while the process-based model is identified as such, it does contain empirical 

elements, such as the parameters in the fraction of aboveground biomass formula, which were 

derived through empirical methods. 

 

4.3.1. Process-based model 
 
The process-based model for carrying capacity estimation is based on the model developed by 

de Leeuw et al. (de Leeuw et al., 2019). The main inputs necessary are the MODIS NPP product, 

and the WorldClim mean annual temperature (Figure 3). NPP values can be converted to total 

biomass using a conversion factor of 0.47 (IPCC, 2006). Then, the aboveground biomass is 

derived from the product of the fraction of aboveground biomass (fANPP) and the converted 

NPP values.  

𝐴𝐵 = 𝑁𝑃𝑃 × 𝑓𝐴𝑁𝑃𝑃 
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where AB = aboveground biomass, NPP = Net Primary Productivity and fANPP = fraction of 

Aboveground Biomass. fANPP is related to mean annual temperature through the following 

equation (Hui & Jackson, 2006). 

 

𝑓𝐴𝑁𝑃𝑃 = 0.171 + 0.0129𝑀𝐴𝑇 

 

where MAT = Mean Annual Temperature. In addition, in order to minimize the effect of 

biomass growth that had occurred past the sampling date, the model can potentially be 

adjusted by using the sum of PsnNet up to the sampling date instead of yearly NPP (Figure 4): 

 

𝐴𝐵 =∑𝑃𝑠𝑛𝑁𝑒𝑡

𝑑

𝑖=1

× 𝑓𝐴𝑁𝑃𝑃 

 

where d = number of eight-week periods up to the sampling date and PsnNet = Net 

Photosynthesis.  

 

Due to the relatively low resolution of the MODIS NPP product compared to the in-situ 

biomass sampling plots (500 m vs. 1 m), it is suggested by de Leeuw et al. to employ high-

resolution Landsat images to correct for possible landscape heterogeneity within a MODIS 

pixel when assessing model accuracy (de Leeuw et al., 2019). This will be elaborated upon in 

the section on validation. 
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Figure 3: Schematic representing the process-based 
model for aboveground biomass calculation. NPP = 

Net Primary Production 

 

Figure 4: Schematic representing the process-based 
model for aboveground biomass calculation using 

the sum of eight-day GPP. NPP = Net Primary 
Production 

 

4.3.2. Empirical model 
 
An empirical model was chosen for biomass estimation after evaluating the performances of 

two machine learning methods, Random Forests and Cubist. The input data for the models 

were the same for each model (Tables 2 & 3).  

 

Random Forest 
 
Random Forest (RF) is a machine learning method based on the concept of decision trees 

(Breiman, 2001). Decision trees themselves often perform poorly because they do not extend 

well to prediction using unseen data, thus beyond the data for which they were trained. 

However, RF addresses this issue through several methods. First, RF ‘bootstraps’ datasets, by 

sampling from the training dataset with replacement. Secondly, RF randomly selects variables 

at each node, until each decision tree is complete. Thirdly, this process is repeated for n 

number of trees. The predictions, in the use case of regression, are the means of the 

predications of each tree. The advantages of RF is that it is relatively efficient, it can handle 

large numbers of input variables, it is a flexible method that generally offers a good trade-off 

between bias and variance (Segal, 2004). In addition, RF has been used with success for the 

estimation of a wide range of biomass types using remote sensing data. For example, it has 
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been employed for the estimation of wheat biomass with remote sensing data as input by 

Wang et al. (Wang et al., 2016), the estimation of woody biomass using Landsat data (Avitabile, 

Baccini, Friedl, & Schmullius, 2012), and high density biomass estimation in wetland areas 

using WorldView2 data (Mutanga, Adam, & Cho, 2012). However, it must be noted that RF 

does occasionally suffer from overfitting when faced with noisy tasks, especially when the 

dataset is relatively small (Segal, 2004).  

 
 

Cubist 
 
Cubist is similar to tree-based models in that a tree is grown with linear regression models at 

the terminal nodes. Each intermediate step also contains a linear model. Then, all paths 

through a decision tree are ‘flattened’ into rules, which are pruned and combined for 

simplification. Cubist is different from other tree-based models in several ways: most 

importantly, a boosting-like technique called ‘committees’ can be used, and predictions can be 

adjusted using instance-based corrections (Kuhn et al., 2013). The advantages of using Cubist 

for predictions are that it is robust when faced with noisy data (as is often the case with remote 

sensing) due to the use of committees and instance-based corrections, and that it can handle 

non-linear patterns in the data, while remaining relatively interpretable (John et al., 2018). In 

addition, it can handle different forms of input data besides numerical, such as factors. Cubist 

has been successfully used for rangeland productivity biomass estimation in several studies, 

such as the development of a 30m grassland productivity estimation for central Nebraska by 

Gu & Wylie (Gu & Wylie, 2015) and for a study estimating grassland biomass and canopy cover 

in Mongolia (John et al., 2018).  
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Model tuning and selection 
 
The steps taken to create the models was as follows: First in order to assess the general 

effectiveness of each model compared to one another, the models were compared using a so-

called ‘benchmark’. In a ‘benchmark’ test, the models can be compared using the same 

resampling instances, thus eliminating variance otherwise introduced from differences in 

cross-validation sets. Using pre-defined hyperparameter search spaces, both models were 

allocated 200 instances for which random combinations of hyperparameters were selected to 

use in model training: this is dubbed a ‘random search algorithm’. These have been shown to 

offer a good trade-off between finding optimal hyperparameter combinations and 

computational load (Bergstra & Bengio, 2012). For each 200 iterations of random 

hyperparameters, the best combination was selected using spatial cross-validation; this is 

called the inner resampling loop. This entire process was then repeated in an outer resampling 

loop using repeated spatial cross-validation, comparing the best models between the two 

learning methods, RF and Cubist. Performance metrics were then calculated using the mean 

performances of the outer resampling loop. If one model performs much better than the 

others, it could be decided to use only this one for further training. However, in this case there 

did not seem to be a significant difference at that point between learner performances. 

Therefore, it was chosen to continue with both methods.  

Again, hyperparameter search spaces were chosen for each learning method. However, the 

hyperparameter tuning was performed with repeated spatial cross-validation and with a 

budget of 5000 random iterations, rather than the single spatial-cross validation and the 200 

random iterations used in the benchmark test. After hyperparameter tuning, the best 

hyperparameter combination was extracted and used to set the hyperparameters of a model. 

This model was then resampled using repeated spatial cross-validation in order to reduce bias 

in the performance estimation that would have been introduced if the performance was solely 

estimated based on tuning performance results. Finally, the model performance was 

estimated and compared between learning methods. In addition, scatterplots were created of 

predicted vs ground-truth values using the mean predictions from the outer resampling loop 

in order to visually compare the overall performances between the RF and Cubist methods.  
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4.4. Validation  
 

4.4.1. Cross-validation 
 
The most important method to prevent overfitting of the empirical models, as well as provide 

indications of model prediction accuracy was repeated spatial cross-validation. This method is 

based on the well-known method k-fold cross-validation, in which data is randomly split into k 

folds. Each model is trained using the k – 1 folds, and then validated using the leftover kth fold. 

This is then repeated until every fold has served as the validation set. The mean performance 

of the test scores is then taken as the overall performance metric for the model. However, this 

can lead to issues when applied to spatial data, as spatial data is likely affected by spatial 

autocorrelation. This means that datapoints located closer to one another are more likely to 

be similar; therefore, not accounting for spatial autocorrelation often leads to overoptimistic 

model performance (Brenning, 2005). By using spatial cross-validation, it is avoided that 

training and test folds are located close to one another, splitting the data into spatially disjoint 

subsets (Brenning, 2005). Repeating this process further reduces variance caused by 

partitioning: this is known as repeated spatial cross-validation.  

 

4.4.2. NDVI-adjustment of process-based model 
 
Due to the relatively large difference between the area of a MODIS NPP pixel (250,000m2) and 

the area of a biomass sampling plot (1m2), it was suggested by de Leeuw et al. (2019) to 

perform an adjustment of the observed biomass, so that these would be a better reflection of 

the true biomass which one MODIS pixel encompassed. Although the sampling in this study 

was performed purposefully, with sampling plots being chosen in relatively homogeneous 

areas, it is possible that this did not occur everywhere. Potential prediction errors could be 

attributed to the biomass sampling plot not correctly reflecting the mean biomass of the pixel 

in which it is located, rather than unexplained variation in the true phenomena linked to 

biomass levels which the model could not capture. For example, if the MODIS pixel in which 

the sampling plot was located also included a permanent body of water, deciduous forest, or 

rocky outcrops, this would of course not be reflected in the biomass sampling plot, resulting 

in measurement error. Therefore, it could be worthwhile to perform an adjustment to account 

for this. This can be done by incorporating a relatively high-resolution 30m resolution 
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(compared to the 500m resolution MODIS pixels) yearly NDVI composite. Assuming that there 

exists a relationship between NDVI and biomass, and that the interfering, non-grassland areas 

within a MODIS pixel have a significantly different mean biomass value, and thus NDVI 

signature, the observed biomass value could be adjusted by the ratio between the NDVI of the 

smaller, high-resolution pixel and the mean NDVI of the large, low-resolution MODIS pixel. If 

the values of the error metrics of model predictions are then lower, it could be a sign that there 

is some effect of the mismatch between spatial resolutions of sampling versus prediction 

areas. 

 

4.4.3. Performance Metrics 
 
The performance metrics that were chosen to evaluate the accuracy of model biomass 

predictions were Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and comparison 

of means using the paired Wilcoxon signed-rank test. MAE is a measure for overall magnitude 

of prediction errors, without considering their direction. It is calculated by taking the average 

of the absolute differences between observed values and predicted values (Willmott & 

Matsuura, 2005). RMSE is also a measure of magnitude of error; it is the square root of the 

mean of squared differences between the observed and predicted values (Wilmott & 

Matsuura, 2005). In practice, this means that RMSE is proportionally more sensitive to larger 

errors than it is too smaller errors, while errors are weighted equally by MAE (Wilmott & 

Matsuura, 2005).  This difference between MAE and RMSE is why these metrics were chosen 

to estimate and compare the performance of the empirical and process-based models, as the 

relation between the two metrics allows for a better interpretation of model prediction 

behavior, than if only one metric was used (Wilmott & Matsuura, 2005). Next, a statistical test, 

namely the Wilcoxon signed-rank test, was performed to determine if the predicted values of 

the models differed significantly from the observed values. This test is often regarded as the 

non-parametric equivalent of the paired sample t-test. However, the assumptions about the 

distributions of the samples are different; while the paired sample t-test requires the 

dependent variable to be normally distributed, the Wilcoxon test only requires the differences 

between the independent and dependent variables to be symmetrically distributed (Wilcoxon, 

1945). De Leeuw et al. (2019) used a paired sample t-test to compare observed and predicted 

biomass values; however, after checking the normality of the predicted values in our study 
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using the Shapiro-Wilk test of normality, it could not be concluded that the predicted values 

followed a normal distribution, therefore the paired sample t-test could not be used in this 

case.  

 

4.5. Workflow 
 
The workflow of all data processing can be divided into roughly four parts (Figure 5). Part 1 

deals with the workflow of the prediction of aboveground biomass using the process-based 

model. Part 2 describes the workflow of aboveground biomass prediction using the empirical 

model. In part 3, it is described how the data processing for the estimation of forage intake 

was done. Finally, part 4 describes the steps taken to overlay the results of the previous parts. 

 

 
 

Figure 5: Workflow schematic showing the steps that were taken in data processing. NPP = Net primary 
production, DEM = digital elevation model, AB = aboveground biomass. More detailed schematics including all 

steps taken can be found in Appendix B. 
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4.5.1. Aboveground biomass prediction using empirical model  
 
To start, the no data-values in the Landsat 8 terrain-corrected median monthly composite were 

set to NA, as they were originally set to 0. Then, the images were cropped to the study area 

extent and reprojected to UTM Zone 48N projection. These were then split into 1500x1500 

pixel tiles to allow for the implementation of parallel processing to reduce overall computation 

length. For each tile, the vegetation indices (Table 2) were calculated, and capped to a -1, 1 

range if applicable. The resulting vegetation indices tiles were then mosaiced, and in QGIS a 

manual check was carried out using the eight-day NPP composites as an overlay to 

approximate when the growing season started and ended (Assumed was an NPP value above 

0 meant the start of the growing season, and the inverse for the end of the growing season). 

In the first and last month of the pre-mosaiced tiles corresponding with growing season 

months, NA-values were reclassified to the mean value of each vegetation index. This was 

done so that a linear time-series interpolation could be carried out in the remaining months if 

values were missing, important for the calculation of time-integrated vegetation indices. After 

the interpolation of NA-values in the vegetation index tile raster stacks, the tiles were 

mosaiced. From these stacks, the time-integrated vegetation index rasters using values up to 

the sampling date were generated. After all other input data for the process-based model had 

been cropped, reprojected and resampled to the same resolution as the vegetation indices 

rasters, all rasters were stacked. Next, all values at the locations of the georeferenced biomass 

sample points were extracted. All variables except for the ecoregions were rescaled to a 0,1 

range. Before the prediction could be performed, the raster stack with all predictor variables 

were split into 1000x1000 pixel tiles to increase processing speed. After applying the model to 

each tile, all tiles were mosaiced to create one predicted aboveground biomass raster at 30m 

resolution covering the entire study area. Then, using the Copernicus land cover product, 

which had been filtered to only include areas that were not categorized as 

grassland/shrubland, the biomass raster was inversely masked to include only grassland areas. 

Finally, performance metrics were calculated over all predictions.  

 

4.5.2. Aboveground biomass prediction using process-based model 
 
First, the MODIS NPP yearly composite and WorldClim mean yearly temperature rasters were 

cropped to the study area and reprojected to UTM zone 48N projection at 500m resolution. 
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These were then stacked, and an aboveground biomass raster was generated using the 

process-based model as described in section 4.3.1.  

To gain information of the variability of NPP within the 500m resolution pixels compared to 

the smaller 1m2 biomass plot size, several additional steps were taken, as described in 4.4.2: 

the georeferenced biomass sample points were used to mask the yearly NPP composite raster. 

The remaining pixels were then converted to polygons. These polygons were then used to 

extract the mean NDVI values from a 30m resolution, yearly maximum NDVI composite, as 

well as the standard deviation of the Landsat NDVI values per 500m resolution pixel. The mean 

NDVI value of the entire 500m pixel, the NDVI value of the 30m resolution Landsat raster, the 

standard deviation of Landsat NDVI values within each 500m pixel, as well as the predicted 

biomass were then extracted at the location of each biomass sample point location. The ratio 

between the mean NDVI value at 500m resolution, and the NDVI value at 30m resolution was 

then calculated and used to create an adjusted ground-truth aboveground biomass column.  

Besides investigating spatial variability within each pixel, it was also investigated if it was worth 

adapting the process-based model to use only NPP values up until the date of sampling, as 

described in 4.3.1. For this, the MODIS eight-day NPP composite was used to extract NPP 

values at the biomass sample point locations. The sum of NPP until the approximate date of 

sampling was then calculated. The resulting NPP values were then used in conjunction with 

the mean annual temperature to calculate aboveground biomass, which was masked using the 

Copernicus land cover to include only grassland areas. Finally, performance metrics were 

calculated for the adjusted and unadjusted biomass values, yearly and eight-day composite 

biomass prediction values, and the best performing results were used for further processing 

and analysis.  

 

4.5.3. Forage intake prediction 
 

For the creation of the forage intake rasters, the livestock statistics obtained from the Institute 

of Geosciences, Mongolia, first had to be cleaned, and subdistrict identification codes added. 

Then, only livestock numbers recorded in the summer season were selected. This was done 

because reliable estimates of biomass could not be made in other seasons due to the biomass 

sampling occurring only in the summer of 2014. Using a conversion matrix, livestock figures 

were converted to sheep equivalent units (SEU), before being summed per subdistrict. These 
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sums per subdistrict were then spatially joined to herder location points which had been 

filtered to only contain locations of herders in the summer, and summer through autumn 

locations (many herders do not change locations for autumn). Some subdistricts contained 

information on livestock but did not contain herder locations: these were mostly district 

centers. For these district centers, ‘herder locations’ were generated at their centroids. Next, 

the SEU per subdistrict were equally divided among the herder location points within that 

subdistrict. Then, livestock was divided into ‘large’ and ‘small’ livestock, and buffers were 

created around the herder location points with a radius according to livestock size using the 

grazing range matrix (Appendix A). The buffers were then exported to QGIS and a difference 

operation was carried out, using the vectorized 100m resolution Copernicus land cover 

product-based grassland/shrubland areas. The resulting masked buffers were re-imported to 

R. From the masked buffers, the SEU per cell, for both 30m and 500m resolution were 

calculated by dividing the SEU total per buffer by the approximate number of pixels each buffer 

would occupy (= buffer area divided by pixel size). Then the buffers were rasterized, using the 

previously generated 30m and 500m aboveground biomass rasters as templates, and the SEU 

per cell value raster values. Finally, the small- and large-radius buffer rasters were summed 

and converted to SEU ha values. 

 

4.5.4. Further processing and overlay of outputs  
 
Since the aboveground biomass prediction rasters did not account for the proportion of 

biomass that could be used sustainably, they had to be adjusted by a ‘proper use’ factor 

according to de Leeuw et al. (2019). This proper use factor takes into account the proportion 

of biomass which gets trampled by livestock, as well the proportion of biomass which must 

remain after grazing in order to prevent land degradation from occurring due to erosion or 

replacement of palatable forage species (de Leeuw et al., 2019). In addition, it also takes slope 

steepness into account. Therefore, the proper use factor of 0.65 was adjusted by a factor based 

on the slope steepness as described in 4.2.3. The resulting ‘proper use’ adjustment factor 

raster was then multiplied with the predicted aboveground biomass rasters in order to obtain 

sustainably usable biomass availability rasters, at 30m and 500m resolution. For the absolute 

shortage/oversupply of biomass, defined as the difference between sustainably usable 

biomass and forage intake, the forage intake rasters were subtracted from the biomass 
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availability rasters. For the relative intake of biomass, the forage intake rasters were divided by 

the biomass availability rasters. Finally, summary statistics were calculated for the entire area, 

as well as per district and ecoregion, and the overall results were analyzed and visualized. 

 

4.6. Software 
 
All data processing, except if otherwise mentioned in the workflow section was done in R 

(v3.6.3 The model training and resampling was performed using mlr (v2.17.1) (Bischl et al., 

2016), caret (v6.0-86) (Kuhn et al., 2013), ranger (v0.12.1) (Wright & Ziegler, 2017), and 

Cubist (v0.2.3) (Kuhn et al., 2013).  

All bar charts and graphs were produced in R using base R, as well as the ggplot2 package 

(v3.3.0). All maps were made in Qgis.  

 

5. Results 
 

5.1. Process-based model 

 

5.1.1. Performance 
 

According to the calculated performance metrics, the performance of the process-based 

model was not significantly better than that of the Null model, which used the average of all 

observed biomass values as biomass predictions (Table 11). Note that the observed mean is 

slightly different here than for the empirical model; this is due to the masking of the input data 

with non-grassland areas covering a pixel in which a georeferenced biomass sample was 

located, therefore removing it from the training dataset.  The performance of the process-

based model using the sum of eight-day NPP composites did not increase significantly over the 

process-based model which used the yearly NPP composite according to the RMSE (Table 6). 

However, the MAE, or the average magnitude of error decreased greatly, from 39.48 to 20.20. 

Scatterplots were also compiled of the predicted versus observed biomass values of both the 

model using the yearly composite and the model using the sum of eight-day composites 

(Figure 6 & 7). While the yearly composite model generally overpredicts, the eight-day 
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composite model both over- and underpredicts. The lower MAE of the eight-day composite 

model translates to a narrower range of predicted values overall, without necessarily having a 

higher predictive power, as the predictions do not deviate greatly from the prediction mean of 

62.55 g m-2.  

 

Table 6: Performance of the process-based model compared with the performance of a Null model. MAE = Mean 
Absolute Error, RMSE = Root Mean Square Error. Mean values shown with a 95% confidence interval. 

Model MAE RMSE Mean Observed Mean 

Process-Based, yearly composite 39.48 49.49 97.58 ± 4.55 g m-2  
82.15 ± 9.63 g m-2 Process-Based, eight-day composites 20.20 51.57 62.55 ± 2.76 g m-2 

Null 36.94 50.3 82.15 g m-2 

 
 
 

 
 

 
Due to the relatively high difference in area between the sampling plots and the pixels they 

were located in, an adjustment of the observed biomass values was carried out as proposed 

in section 4.4.2. Inspecting the pixel with the highest internal variance, as well as the pixel with 

the lowest internal variance shows the potential for adjusting the ground truth biomass plot 

values for spatial variability within the pixels they are located in (Figure 8). 

 

Figure 6: Scatterplot of observed biomass vs 
predicted biomass using the yearly NPP composite. 

Figure 7: Scatterplot of observed biomass vs 
predicted biomass using sum of eight-day NPP 

composites. 
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With this adjustment, the mean of the observed biomass increased slightly, from 82.03 g m-2 

to 84.06 g m-2, therefore reducing the overprediction from 15.8% to 13.9%. However, this did 

not significantly affect the accuracy of the model predictions, as the RMSE was increased from 

49.49 to 50.76 (yearly composite), and 51.57 to 54.53 (sum of eight-day composites) (Table 7).  

 

Table 7: Performance of the process-based model with NDVI-adjusted observed biomass values. 

Model MAE RMSE Mean Observed 
Mean 

Process-Based, yearly composites 
(NDVI adjusted) 

39.07 50.76 97.58 ± 4.55 g m-2  

Process-Based, eight-day composites 
(NDVI-adjusted) 

21.99 54.53 62.55 ± 2.76 g m-2 

 
 

The Wilcoxon signed-rank tests were performed for the Process-based models, to test whether 

the mean of the predictions was significantly different from the mean of the observed values. 

In all cases, including the use of NDVI-adjusted sample biomass values, a significant difference 

in means could be found (Table 8). Since the use of the sum of eight-day NPP composites did 

84.06 g m-2 

Figure 8: 500m resolution Modis pixel with the lowest (left) and highest (right) within-pixel variation of 30m resolution Landsat 
NDVI pixels. The red cross indicates the location of the biomass sampling location. The white box indicates the Landsat pixel the 

biomass sample falls within. 
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not significantly improve the predictions of the Process-based model, biomass predictions 

with the Process-based model were carried out using the yearly NPP composite.  

 
 

 

Table 8: Results of the Wilcoxon sign rank test for differences of means. The '*' indicates that the P-value is 
lower than 0.05, thus disproving the null-hypothesis that there is no significant difference in means. 

Input data NDVI-Adjusted P-value 

Yearly NPP composite No 1.202e-05* 

Eight-day NPP composite No 2.202e-05* 

Yearly NPP composite Yes 5.196 e-4* 

Eight-day NPP composite Yes 2.312 e-4* 
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5.1.2. Biomass predictions: Process-Based model 
 
The sustainably usable biomass prediction values by the process-based model were highest in 

the northern forest steppes, with most values exceeding 700 kg ha in these areas (Figure 9). 

The lowest values were found in the south, the Mongolian-Manchurian grassland ecoregion 

(Figure 9). 

 

 

 

 

 

 
 
The three districts with the highest mean predicted sustainable biomass values were Selenge, 

Xangal, and Bugat, with 886, 862, and 777 kg ha biomass prediction means. The three lowest 

mean predictions values were found in Gurvanbulag, Saixan, and Dashinchilen, with 509, 566, 

and 575 kg ha sustainably usable biomass respectively (Figure 11). The confidence interval of 

Figure 9: Prediction of aboveground biomass [kg/ha] (left), and biomass adjusted for sustainable use [kg/ha] (right) for Bulgan province 
using the process-based model. 
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the observed values, visible as black bars in figure 10, show that there were often only a low 

number of observed values per district, which resulted in relatively wide confidence intervals. 

Therefore, it is difficult to make conclusions on the performance of the model within certain 

districts, such as Bayannuur (wide confidence interval), Bulgan (only one sampling point) or 

Rashaant (no sampling points) (Figure 10). With the resulting overall mean sustainably usable 

biomass figures, the overall theoretical carrying capacity can be calculated. According to the 

process-based model, the total carrying capacity, or the number of sheep-equivalent units that 

can sustainably graze in a 150-day period in Bulgan province is 9.3 million SEU.  

 

  

 

 

 
 

Figure 10: Sustainably usable biomass predictions compared to 
(converted to sustainable useable) observed biomass values, 

per district using the process-based model. The black bars 
represent the 95% confidence interval of the observed values. 

Figure 11: Sustainably usable biomass predictions per 
district; process-based model. 
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5.2. Empirical model 

 

5.2.1. Exploratory analysis 
 
Before the training of models and model selection, an exploratory analysis was carried out of 

the chosen vegetation indices and other input variables. The correlations between input 

variables were calculated using the Spearman method, since the normality of these could not 

be confirmed using the Shapiro-Wilk test. The three input variables with the highest 

correlation with biomass were NDVI (0.48), TCW (0.45) and EVI (0.44). Generally, the time-

integrated vegetation indices were not significantly correlated with biomass (Figure 12). The 

highest correlation non-vegetation index input variables were precipitation and time-

integrated precipitation (0.42 each). From the scatterplots of the highest correlated vegetation 

index (NDVI) and non-vegetation index input variables (precipitation), it is visible that at high 

(> 150 g/m2) biomass values, the correlation between NDVI and biomass, as well as 

precipitation and biomass is not strong (Figure 13). In addition, NDVI and precipitation values 

seem to ‘taper off’ with high corresponding biomass values, indicating non-linear relationships 

(Figure 13). 

 

  

Figure 12: Correlation between all input variables except ecoregion type, 
and between these input variables and biomass. Red indicates a negative 

correlation, while blue indicates a positive correlation. The size of the 
circles indicates the magnitude of the correlation. The asterisks are placed 

on statistically significant correlations (p<0.05). 
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5.2.2. Model selection and performance 
 
From the initial ‘benchmark’ comparison, no significant difference in predictive performance 

could be observed between the Random Forest and Cubist methods (Table 9). In addition, the 

models both did not perform much better than the ‘Null’ model, which simply takes the mean 

of the training data as prediction values. Both scaled and non-scaled predictors were tested. 

For the comparison, a 5-fold spatial cross-validation was used for the hyperparameter tuning, 

while a 5-fold, 25-repetition repeated spatial cross-validation was used for the performance 

estimation. The hyperparameter search algorithm was allocated 200 iterations per fold for 

tuning. The hyperparameters and their respective search spaces used can be seen in Table 10.  

 
  

Figure 13: Scatterplots of biomass versus NDVI (left) and biomass versus precipitation (right). 
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Table 9: Results of 'benchmark' comparison between the proposed machine learning methods and a null model, 
which takes the mean of all observed biomass values as predictions. 

Scaled Predictors Model MAE RMSE 

Yes Random Forest 34.55 48.81 

Yes Cubist 33.98 49.68 

No Random Forest 34.60 48.54 

No Cubist 33.69 49.08 

- Null 36.94 50.3 

 
 
 

Table 10: Hyperparameters and search space used in the 'benchmark' comparison. 

Model Parameter Search space 

 
Random Forest 

mtry 1-23 

min.node.size 1-10 

num trees 1-500 

 
Cubist 

committees 1-100 

rules 1-100 

extrapolation 0-100 

 
 

Since one method did not perform significantly better than the other, both methods were 

further tuned and resampled separately. However, predictor variables were not scaled.  

 

In tuning the separate models, 5-fold 10-repetition repeated spatial cross-validation was used 

for the hyperparameter tuning, and 5-fold 100-repetition repeated spatial cross-validation for 

the performance estimation. 5000 iterations were allocated per fold for hyperparameter 

tuning. The same search spaces as in the method comparison was used for Random Forest 

(Table 11). The rules parameter was slightly adjusted for the tuning of the Cubist model (Table 

11). While further tuning seemed to have improved results of both models, Cubist seemed to 

have attained higher performance compared to the Random Forest model (MAE: 31.81 vs 

33.77) (Table 12).  
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Table 11: Parameters and search spaces used in model tuning, as well as optimal hyperparameter values. 

Model Parameter Search space Optimal value 

 
Random Forest 

mtry 1-23 1 

min.node.size 1-10 6 

num trees 1-500 315 

 
Cubist 

committees 1-100 83 

rules 2-300 289 

extrapolation 0-100 16.1 
 

 

 

Table 12: Performance of the empirical models compared with the performance of a Null model. MAE = Mean 
Absolute Error, RMSE = Root Mean Square Error. Mean values shown with a 95% confidence interval. 

Model MAE RMSE Mean predictions Observed Mean 

Random Forest 33.77 47.89 82.84 ± 3.58 g m-2  
81.76 ± 9.12 g m-2 Cubist 31.81 47.60 75.21 ± 4.48 g m-2  

Null 36.94 50.3 81.76 g m-2 

 
 

Besides performance metrics, scatterplots were also made of the mean predictions obtained 

during cross-validation (Figures 14 & 15). The mean predictions of the Random Forest (Figure 

14) seem to be concentrated around the mean of all predictions, especially at mid- to high- 

observed biomass values. In almost all cases, Random Forest overpredicted biomass in the 

range of 0-100 g m-2, while underpredicting at observed biomass values higher than 100 g m-

2, demonstrating a possible upward bias in this range of values. The mean predictions of the 

Cubist model (Figure 15) exhibit a similar pattern to those of the Random Forest. However, 

Cubist generally overpredicted to a lesser extent in the 0-100 g m-2 range, with the exception 

of several outliers. This is in spite of the fact that the mean of the Cubist predictions overall is 

further from the mean of the observed biomass values than that of the Random Forest 

predictions. 
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In order to properly investigate overall prediction bias, the mean predictions were also 

compared to the observed biomass values using the Wilcoxon signed-rank test as outlined in 

section 4.4.2. In the case of the Cubist model, there was no significant difference of means 

between the predicted and the observed biomass values, both for the entire dataset as for the 

ecoregions separately (Table 13). The predictions of Random Forest model were not 

significantly different from the observed values, however the predictions which were done for 

the Mongolian-Manchurian Grassland Ecoregion were significantly different (Table 13).  

 
 

Table 13: Results of the Wilcoxon sign rank test for differences of means. The '*' indicates that the P-value is 
lower than 0.05, thus disproving the null-hypothesis that there is no significant difference in means. 

Model Data (sub-)set P-value 

 
Random Forest 

All points 0.06 

Mongolian-Manchurian Grassland Ecoregion < 0.01* 

Forest-steppe Ecoregion 0.63 

 
Cubist 

All points 0.44 

Mongolian-Manchurian Grassland Ecoregion 0.10 

Forest-steppe Ecoregion 0.10 

 

 
 

 

Figure 14: Mean aboveground biomass predictions 
during cross-validation: Random Forest. The red line 
represents a 1:1 relationship between observed and 

predicted biomass. 

Figure 15: Mean aboveground biomass predictions 
during cross-validation: Cubist. The red line represents a 

1:1 relationship between observed and predicted 
biomass. 
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The importance of variables which were used in the training of the Cubist and Random Forest 

models were also extracted (Figures 16 & 17). In the case of the Random Forest model, the 

values were generated based on permutation importance, or the decrease in model 

performance when a variable is randomly shuffled. The importance values of the Cubist model 

were calculated as a combination of the frequency of variable use in the linear models in the 

nodes and the frequency of variable use in model rules. Note that the importance values 

cannot be compared between models.  

 

 

From the variable importance graph of the Random Forest model, the vegetation indices SAVI, 

MSAVI, EVI and NDVI seem to be the most important for the model (Figure 16).  However, 

there was not a great difference in importance value between each variable and the next 

higher- or lower-ranked variables. The variable importance graph of the Cubist model shows 

three variables which had significantly higher importance than the others: NDMI, TCW and 

SAVI (Figure 17).  

  

Figure 16: Variable importance of the Random Forest model. Figure 17: Variable importance of the Cubist model. 
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Since the performance of the Cubist model was shown to be better than the Random Forest 

model according to the calculated performance metrics, visual inspection of the scatterplots 

and Wilcoxon test, the Cubist model was chosen to be used as the ‘Empirical model’ for the 

remainder of the analysis. 

 

5.2.3. Biomass predictions: Empirical model 
 
The predictions for aboveground biomass and sustainably usable biomass, in which non-

grassland areas such as agriculture, urban settlements and bodies of water were masked out 

can be seen in Figure 18. Overall, the highest amounts of sustainably usable biomass per 

hectare according to the empirical model were found in the northern forest steppes while 

lower biomass values were generally found in the southern, Mongolian-Manchurian Grassland 

ecoregion. Since the slopes in Bulgan are generally not very steep, the reduction of biomass 

from total to proper use does not deviate greatly from the proper use fraction of 0.65. 
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The three districts with the highest mean predicted biomass per hectare values were Selenge, 

Teshig and Bugat with 643, 636, and 623 kg/ha biomass, respectively (Figure 20). The three 

districts with the lowest mean predicted biomass per hectare values were Gurvanbulag, 

Rashaant and Bayannuur, with 368, 424, and 443 kg ha biomass, respectively (Figure 20). The 

confidence interval of the observed values, visible as black bars in Figure 19, show that there 

were often only a low number of observed values per district, which resulted in relatively wide 

confidence intervals. Therefore, it is difficult to make conclusions on the performance of the 

model within certain districts, such as Bayannuur (wide confidence interval), Bulgan (only one 

sampling point) or Rashaant (no sampling points). However, on a district-by-district basis, the 

process-based model prediction means (Figure 10) fell outside of the confidence intervals of 

Figure 18: Prediction of aboveground biomass [kg/ha] (left), and biomass adjusted for sustainable use [kg/ha] (right) for Bulgan province 
using the empirical model. 
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the observed biomass samples more often than the empirical model predictions did (Figure 

19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
With the resulting overall mean proper use biomass figures, the overall theoretical carrying 

capacity can be calculated. According to the empirical model, the carrying capacity, or the total 

amount of sheep-equivalent units that can sustainably graze in a 150-day period in Bulgan 

province is 7.5 million SEU, compared to the 9.3 million as estimated using the process-based 

model.  

 

 

  

Figure 19: Sustainably usable biomass predictions 
compared to converted observed biomass values, per 

district using the empirical model. The black bars represent 
the 95% confidence interval the observed values. 

Figure 20: Mean sustainably usable biomass predictions per 
district; empirical model. 
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5.3. Forage Intake 
 

 
Figure 21: Estimated forage intake [kg/ha] for herders in their summer locations (90-150 days). Hashed areas 
are regions for which there was no/incomplete data. Grey areas represent non-grassland areas, which include 

mainly forest and agricultural land. White lines are rivers and streams. 

 
The majority of forage intake from the summer locations of herders, which encompasses a 90-

150-day period, occurred in the southern half of Bulgan province (Figure 21). Generally, forage 

intake ‘hotspots’ were concentrated around rivers and streams (Figure 21).  Areas 

characterized by high degrees of forest cover such as in the north of the province did not 

experience high forage intake levels (Figure 21).  
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The top three districts with highest mean forage intake levels in grassland areas were Bulgan , 

Saixan and Mogod, with 1524, 235, and 190 kg/ha mean biomass intake respectively (Figure 

23). The three districts with the lowest forage intake levels were Selenge, Dashinchilen, and 

Teshig, with 31, 31 and 24 kg/ha mean biomass intake levels, respectively.  

  

Figure 22: Mean forage intake in grassland areas by district [kg/ha]. Note that Bulgan district was not included in the bar chart, 
as the mean forage intake of this district exceeds 1500 kg/ha, which would have hindered the legibility of this chart. 
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5.4. Overgrazing 

5.4.1. Relative grazing pressure: Overview 
 
Dividing the previously produced sustainably usable biomass rasters by the forage intake 

rasters produced with the process-based and empirical models resulted in maps showcasing 

the relative use of sustainably available biomass according to each model (Figure 23).  Since 

the mean biomass predictions produced by the empirical model were lower than those 

produced by the process-based model, the overall mean relative use of sustainably available 

biomass was predicted to be higher by the empirical model than by the process-based model. 

In addition, the relative usage data produced by the empirical model is a higher resolution 

than the process-based model data, allowing for a higher degree of spatial detail.  

  

Empirical model Process-based model 

Figure 23: Fraction of available sustainably usable biomass used by herders in their summer locations, as predicted employing the 
empirical model (left) and process-based model (right). A fraction of use below 1 indicates that more forage could potentially be used 

sustainably, while a fraction of use over 1 indicates there was potentially overgrazing occurring. 
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Besides the pixel-scale forage use factor, the overall overgrazed grassland area and overgrazed 

grassland area per district was also calculated (Figures 24 and 25). ‘Overgrazed’ was defined 

as the percentage of area with a forage intake higher than sustainably available biomass 

(fraction of sustainably available biomass used > 1), while ‘Severely Overgrazed’ is overgrazed 

by a factor of at least 2. The three districts with the largest relative overgrazed area coverage 

according to the empirical model were: Bulgan (73.29%), Saixan (20.78%), and Gurvanbulag 

(16.99%). Using the process-based model, the three most-overgrazed districts were: Bulgan 

(67.33%), Saixan (13.59%), and Xangal (9.62%). The districts with the lowest percentage of 

overgrazed area according to the empirical model were: Dashinchilen (0.15%), Buregxangai 

(0.49%), and Teshig (1.93%). Using the process-based model, the districts with the lowest 

overgrazing percentage were Dashinchilen (0%), Buregxangai (0.13%), and Bayannuur (0.39%). 

The largest differences between the empirical and the process-based models occurred in 

Gurvanbulag (9.13%), Saixan (7.22%) and Rashaant (6.67%) (Figure 25). 

In general, the most overgrazed areas were located in the central and western parts of the 

province (Figures 26).  

 

 
Figure 24: Overall overgrazed area in Bulgan province as a percentage of available rangeland area. 'Overgrazed' 
is defined as the percentage of land in which more forage is used than available, while 'Severely Overgrazed' is 

the percentage of land in which there is more than twice as much forage intake as there is available sustainably. 
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Figure 25: Overgrazing per district as a percentage of available rangeland. Bulgan district was not included, 

since the overgrazing percentage was so high that it would have impeded the legibility of this chart (73% and 
67% for empirical and process-based models, respectively). 

 
 

 
 

 
 

 

Empirical model Process-based model 

Figure 26: Overgrazed available rangeland area (fraction of biomass used > 1) as a percentage of total available rangeland area, using 
the empirical model (left) and process-based model (right). 
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5.4.2. Ecoregion and local-scale differences in overgrazing 
 
Beyond differences in overgrazing between districts, it was also investigated if there were 

differences in overall overgrazing between the ecoregions, Forest-steppe and Mongolian 

Manchurian grassland, and between the model overgrazing predictions of the ecoregions. 

According to the empirical model, the ecoregion with the largest overgrazed area as a 

percentage of its total area was the Mongolian-Manchurian grassland in the south of the 

province, with 8.34% of the total available rangeland overgrazed, of which 2.28% was severely 

overgrazed, compared to the Forest-steppe ecoregion with 7.39% and 1.6% (Figure 27). 

However, according to the process-based model, the ecoregion with the largest relative 

overgrazed area was the Forest-Steppe ecoregion, in the central and northern part of the 

province, with 3.97% overgrazed area, compared to only 3.3% in the Mongolian-Manchurian 

grassland (Figure 27). 

 

  

 
In order to illustrate this difference between empirical and process-based models in the 

ecoregions, two districts were taken as examples, one from each ecoregion: Bayanagt from 

the Forest-steppe ecoregion (Figure 28), and Gurvanbulag, from the Mongolian-Manchurian 

grassland ecoregion (Figure 29). Although the fraction of sustainably available biomass use is 

generally higher for the empirical model, regardless of the ecoregion/district, the difference is 

larger in Gurvanbulag, located in the generally low-biomass Mongolian-Manchurian grassland, 

than in Bayanagt, located further north in the Forest-steppe ecoregion, where biomass was 

Figure 27:  Percentage of overgrazed and severely overgrazed area per ecoregion, using the empirical model (left) and the process-
based model (right) 
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predicted to be higher overall. This mirrors the results of the biomass predictions, as the 

process-based model overpredicted strongly for low observed biomass values, while the 

empirical model was able to predict lower biomass values with a higher degree of accuracy. In 

addition, the higher resolution of the input data used for the empirical model allows for 

varying overgrazing predictions in highly spatially varied biomass values at a local level, as is 

especially the case in mountainous terrain such as in Gurvanbulag (Figure 29). In contrast, the 

overgrazing predictions made using the process-based model capture much less of potentially 

important local variation.   

 

 
 

  
Figure 28: Comparison between overgrazing levels predicted by the process-based and empirical models in 

Bayanagt, located in the Forest-Steppe ecoregion. Also included on the left side are the respective sustainably 
available biomass predictions, to illustrate the cause of the difference in fraction of biomass use between the 

models. 
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Figure 29: Comparison between overgrazing levels predicted by the process-based and empirical models in 
Gurvanbulag, located in the Forest-Steppe ecoregion. Also included on the left side are the respective 

sustainably available biomass predictions, to illustrate the cause of the difference in fraction of biomass use 
between the models. 
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6. Discussion 
 

6.1. Model performance 
 
Overall, it is clear that the empirical model outperformed the process-based model. The 

empirical model predictions resulted in better results in terms of performance metrics; a MAE 

of 31.81 and an RMSE of 47.60 were obtained using the Cubist method, compared to 39.48 

and 49.39 respectively obtained from the process-based model using the yearly composite 

NPP as input data. Furthermore, the Wilcoxon tests also confirmed that there was no 

significant different between the observed values of aboveground biomass and the predicted 

values obtained using the empirical model, while the process-based model showed significant 

differences between observed and predicted values (Figure 30).  In addition, when dividing the 

data into ecoregions, the mean empirical model biomass predictions were still closer to the 

mean of the observed biomass values than the predictions of the process-based model (Figure 

30). 

 

 

 

 

Figure 30: Comparison between mean process-based and empirical sustainably available biomass values and the mean observed 
sustainably available biomass values overall (left), and per ecoregion (right). The black bar represents the 95% confidence 

interval of the observed mean. 
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It must be noted that this is not surprising, as the process-based model was not parameterized 

for this area and was simply transplanted from one region to another, from Azerbaijan to 

Bulgan, Mongolia (de Leeuw et al., 2019). Although the biomass prediction portion of the 

model was not parametrized specifically for the region of study in the analysis of de Leeuw et 

al. (2019), the results of that study were much more optimistic about the potential of the 

process-based method of biomass prediction. There are several potential explanations.  

First, the method of adjustment using Landsat imagery to adjust the mean field biomass values 

significantly increased accuracy in Azerbaijan (38% mean underprediction to 16% mean 

underprediction), while this same method applied in Bulgan did not result in sufficiently higher 

accuracies (15.8% to 13.9% overprediction), so that there was no longer a significant difference 

in means between observed and predicted data. It is possible that the landscape in Azerbaijan 

is more heterogenous on the scale of a MODIS pixel compared to the landscape of Bulgan. It 

must also be noted that the predicted biomass values were manually adjusted upwards in the 

study by de Leeuw et al., to ‘[…] be as close as possible to the field-based measurements’ 

(2019, p.72). For the proposed use of this model as indicated at the start of this thesis, namely, 

to develop a model which avoids the necessity of extensive gathering of field data, manually 

adjusting all predictions up- or downwards would defeat the purpose of being relatively 

independent from field samples.  

Furthermore, the fANPP (fraction of aboveground net primary production) term used in the 

process-based model could be ill-suited for the rangeland type of Bulgan province. For 

example, the mean of field sample biomass that was gathered in Bulgan (820 kg/ha) was 

significantly lower than in Azerbaijan (2974 kg/ha) (de Leeuw et al., 2019). This, combined with 

the fact that the process-based model was heavily upwards-biased especially in the low 

biomass ranges (0-1000 kg/ha), of which there are very few areas in Azerbaijan, indicates (in 

accordance with the advice of de Leeuw et al.) that further work should be  done on the 

relation between fANPP and aboveground biomass for different rangeland types.  

Thirdly, it is possible that due to the sampling design, which was not conducted with this 

research in mind, there is a significant bias introduced into the results which affect the 

validation of model results. Although a correction was carried out using Landsat NDVI as 

previously discussed, this was rather rudimentary, and cannot compensate for a sampling 

design specifically tailored to this research. For example, instead of many dispersed sampling 
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plots, clustered sampling could be performed, so that the spatial variability within one 500m 

resolution pixel could be better characterized. In addition, instead of purposeful sampling, 

sampling could potentially be performed in a stratified manner, where the study area is divided 

into strata and then samples are taken weighted by strata size. However, this is a costly 

exercise, especially in difficult-to-access remote areas. 

Finally, since it was chosen to use the yearly NPP composite as input for the process-based 

method for biomass estimation, the overprediction of biomass values could be partly due to 

the biomass sampling at approximately ‘peak greenness’ not capturing the total production of 

biomass in one year. In essence, the process-based model estimated the biomass production 

for a year, while the empirical model estimated the biomass at one point in time. If there was 

no further growth after the point of sampling, than one might expect the models to return 

similar biomass values. However, if there is heavy removal and re-growth of biomass within 

one year, and after the biomass sampling date, the results of the process-based model might 

not be able to be validated through a set of field sample of biomass taken at one point in time 

only and appear to be heavily overestimating aboveground biomass.  

Therefore, it cannot be concluded that the notion of an NPP- process-based model is not 

suitable for aboveground biomass prediction. However, some local parameterization is 

necessary, as the model proposed by de Leeuw et al. did not perform well in the study area of 

this thesis, Bulgan province. In addition, sampling must be done with the spatial resolution of 

model predictions in mind, as well as the temporal resolution in order to ensure a reliable 

validation strategy.   

Although it was not the focus of this thesis, the biomass prediction results from the empirical 

method were not as accurate as results from previous studies. For example, in a study by 

John et al., in which aboveground biomass was estimated for varying rangeland types across 

Mongolia using Cubist models, the best model resulted in an MAE of 59.83 g/m (9% of the 

observed values mean), while the Cubist model in this thesis resulted in an MAE of 31.8 g/m 

(38.9% of the observed values mean) (John et al., 2018). However, due to the sampling 

design which utilized much larger sampling plots, clustered and stratified sampling, as well as 

a much larger number of samples, John et al. (2018) were able to use 500m MODIS as input 

data, which potentially greatly reduced issues related to cloud cover due to shorter revisiting 

intervals than Landsat 8, as well as reducing potential issues with geometric accuracy related 
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to the higher resolution that Landsat 8 offers. Interestingly, the best models predicting 

aboveground biomass in the study by John et al. (2018) found that the most important input 

variables were often spectral indices related to moisture content, such as Land Surface Water 

Index (LSWI) and the Normalized Difference Water Index (NDWI). This is similar to the best 

Cubist model found in this analysis, as these were NDMI, Tasseled Cap Wetness and SAVI 

(Figure 17). In addition, the aboveground biomass prediction models of John et al., also 

underpredicted at higher biomass levels, however to a lesser extent, as there were likely 

more high-biomass sample points in their training dataset (John et al., 2018). 

 

6.2 Carrying capacity and forage intake 
 
As mentioned in the results section, the overall maximum sustainable carrying capacity in 

Bulgan in the summer is estimated to be 7.6 million SEU by the empirical model, and 9.3 million 

SEU by the process-based model. However, this assumes that livestock is optimally spread out, 

that areas are not overgrazed, and that there were no previously overgrazed areas as a result 

of grazing in the spring (using more than the sustainably available forage). This is of course not 

the reality, as we have seen from the model predictions that sustainably available biomass can 

range greatly between ecoregions and districts, and even on a pixel-by-pixel basis. The model 

predictions for carrying capacity were highest overall in the Forest-steppe ecoregion (572 

kg/ha, or 2.54 SEU/ha, empirical model), in the central and northern parts of the province, 

while the dryer Mongolian-Manchurian grassland in the south and south-west, such as in the 

districts of Gurvanbulag, Rashaant, Dashinchilen and Bayanuur were estimated to have lower 

carrying capacities (419 kg/ha, or 1.86 SEU/ha, empirical model) (Figure 19). Even within 

districts themselves, carrying capacity can vary as well, with biomass values in Gurvanbulag 

ranging from below 200 to the 600-800 kg/ha range (Figure 29).  

In many studies on carrying capacity and overgrazing of rangeland by (nomadic) livestock, 

stocking density estimates can only be made on the basis of district or, at best, sub-district 

wide levels, since the exact locations of herders are not known (Gao, Angerer, Fernandez-

Gimenez, & Reid, 2015). Using the known locations of herders, it was found that the locations 

of herders are often highly concentrated in clusters. By using livestock statistics aggregated to 

administrative boundaries, there is thus a risk of greatly underestimating forage intake in areas 

where herders are clustered locally, as is visible when comparing Figures 21 & 22. According 
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to the Mongolian National Statistics Office, the total amount of livestock in Bulgan in 2014 was 

5.8 million SEU (conversion to SEU done using livestock conversion matrix provided by 

Mongolian Institute of Science) (National Statistics Office of Mongolia, 2019; Sainbuyan, 2016). 

Spreading this number over the available land for grazing would result in a stocking density of 

0.54 SEU/ha, or a mean forage intake of 122.4 kg/ha over a 150-day period. Judging from the 

results of the forage intake analysis (Figure 22), in some areas, especially the district centers 

where non-nomadic herders are located, forage intake was estimated to reach up to 1500 

kg/ha in a 150-day period. Furthermore, even within districts it was estimated that there was 

a wide range of forage intake values possible. For example, in Xangal almost all summer forage 

intake was concentrated in one river valley, resulting in extremely high estimated forage intake 

values in this area, while the rest of the district was not grazed at all. However, by averaging 

forage intake over the total area of the district, Xangal appears to be ranked halfway among 

all districts in terms of mean forage intake, while it contains some of the heaviest-grazed land 

in the province. 

It must be noted that there could be some inaccuracies arising from the methods used to 

estimate forage intake. First, the herder location points were not the locations of single herder 

families, but usually groups of herders. These groups do not remain consistent however 

throughout the seasons. The data containing livestock statistics, contained herder names along 

with the sub-district in which they were located, but these could not be linked to the exact 

herder locations. Therefore, it was chosen to divide the total livestock numbers within each 

sub-district equally among the herder locations, regardless of the number of herder families 

referenced by each point. Since it is unknown how consistently herders were grouped into 

single point locations, this could result in over- or underestimations of forage intake.  In order 

to potentially increase accuracy, the allocation of livestock among herder locations could be 

done according to number of herders per point, with points representing more herders being 

allocated a higher number of livestock. However, since not all herder location points contained 

this data, this was not done in the analysis. Secondly, for some sub-districts, there were 

livestock statistics, but these did not contain herder location points. As these were almost 

exclusively district centers (permanent settlements), it was chosen to assign these livestock 

figures to a simulated central ‘herder location’ point. This is also the explanation for the 

extremely high forage intake in Bulgan district. Finally, several subdistricts contained herder 
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locations, but the livestock data was either missing, corrupted, or unusable. Livestock statistics 

on a sub-district level from the Mongolian National Statistics office were then used if the per-

point density of livestock was not unreasonably larger than the district average. This was the 

case for Huremt (Saixan district), Dorgont & Haraat (Dashinchilen district), and Hyalganat 

(Xangal district). These sub-districts were then marked as having an ‘unknown’ forage intake 

density, and not considered when calculating overall forage intake and overgrazing levels. 

 

6.3. Overgrazing 
 

Combining the summer carrying capacity, or maximum sustainably usable forage, with the 

summer forage intake resulted in the fraction of use maps (Figure 23). For both the process-

based and the empirical model, the overgrazing results showed that there was a highly 

localized pattern of overgrazing. It is difficult to compare these results to previous findings of 

other authors, since there is no agreed upon definition for proper use in Mongolia (Gao et al., 

2015).  In addition, overgrazing is often estimated on a yearly basis, rather than on a seasonal 

basis, which does not take into account potential regrowth of biomass during the year. 

Regardless, in a study by Gao et al. (2015), 2014 was found to be the year with the highest 

level of overgrazing in a 10 year period starting in 2003; the percentage of land overgrazed as 

a whole in Mongolia, defined as a percentage of use (of total aboveground biomass) over 70%1, 

or a usage factor of sustainably available biomass larger than 1, was found to be 39.4  

(calculated as an average of percentages over different land cover classes). If only the 

landcover classes were taken which correspond to those in Bulgan, Forest-Steppe and 

Steppe/Dry-Steppe, the mean overgrazing percentage according to Gao et al., was 46.5 (Gao 

et al., 2015). The overall percentage of overgrazed land area in Bulgan, defined as land on 

which there was a usage factor of sustainably available biomass larger than 1, during the 

summer season in 2014 according to this thesis, was 7.59% according to the empirical model, 

and 3.83% according to the process-based model (Figure 27). It must be noted that using the 

districts, subdistricts or even the province of Bulgan as ‘potential’ grazing area is problematic 

and might portray an overly optimistic view of the land available for grazing in one season, 

 
 
1 The proportion of sustainably usable biomass as defined by Gao et al. (70%) is similar to the ‘proper use’ 
factor used in this study (65%, with further reductions according to slope steepness). 
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since the theoretical boundaries of seasonal grazing areas are not fixed according to 

administrative boundaries. It would make more sense to determine the overgrazed area in the 

summer as a percentage of the theoretical total summer grazing area. Unfortunately, this data 

is unavailable. Nevertheless, the analysis provided by this thesis thus implies a generally lower 

percentage of land area as overgrazed, using either the process-based model or the empirical 

model, than the study by Gao et al. This difference can be attributed to several factors: First, 

it must be noted that the scales of comparison are different, and that figures representative 

for all Forest-steppe and Steppe/Dry-Steppe (as defined by Gao et al.) grassland in Mongolia 

are not representative for only Bulgan province. Secondly, the forage intake calculations 

performed in the study of Gao et al. used stocking densities averaged over administrative 

boundaries, rather than a point-and-buffer based estimate such as performed in this thesis. As 

previously discussed, this could mean that total area of estimated overgrazed land has the 

potential to be overestimated, while underestimating the overgrazing on a very local scale. For 

example, fractions of use of sustainably available biomass in excess of 500% could be found on 

a highly local level in Gurvanbulag, Bayanagt, Saixan and Bulgan districts, while overgrazing 

simultaneously did not occur in large areas in these districts (Figure 23). Finally, the analysis 

performed for this thesis did not include the forage intake for the whole year, rather, only the 

summer locations of herders were taken into account. Therefore, if the forage intake over the 

entire year would have been estimated, the resulting percentage of overgrazed land would 

have been higher as well. The grazing pressure as estimated by this study should therefore not 

be seen as a representation of the overall condition of rangeland at a certain point in time, but 

rather an estimation of areas which were over- or under-grazed as a result of the temporary 

settling of a herder(group) for one season only. In other words, one could only determine the 

overall condition of the rangeland using long-term data describing all movements of the 

herders in combination with biomass (re-growth) data spanning the year, rather than a single 

season.  

The question if Bulgan as a whole was overgrazed in the summer season of 2014 is difficult to 

answer. While a large portion of land was not overgrazed as a result of the grazing of livestock 

in their summer locations, areas previously (over)grazed could not be taken into account. 

However, areas that were overgrazed were often very overgrazed to a higher level than 

previously assumed.  



57 
 
 

7. Conclusion 
 
The main objective of this thesis was to assess the accuracy of a process-based model for 

aboveground carrying capacity in rangelands, compared to that of an empirical model, and 

couple these models with stocking density estimates to identify areas in which overgrazing has 

occurred in Bulgan, Mongolia. Since existing models of biomass estimation require high 

degrees of local parameterization, it was investigated if an existing process-based model with 

minimal local parameterization developed for Azerbaijan could be applied to Bulgan, Mongolia 

in order to estimate biomass, and ultimately estimate overgrazing levels. The performance of 

the process-based model when applied to Bulgan resulted in low accuracy when validated with 

in-situ biomass samples, which was not better than predicting with the mean of observed 

values. However, the model performed comparably to the model in Azerbeijan (without 

manual adjustment). Despite this, the mean of the biomass predictions differed significantly 

from the mean of the observed values (p < 0.05). The empirical model, developed using Cubist, 

delivered better performance than the process-based model, and did not result in significant 

differences between the means of predictions and observed biomass values (p > 0.05). Upon 

conversion of aboveground biomass to sustainably usable biomass, the overall theoretical 

summer carrying capacity in Bulgan province in 2014 was estimated to be 7.6 million sheep 

equivalent units (SEU), with higher carrying capacity in the forest steppes in the north 

compared to the southern grasslands. Forage intake was estimated to be generally highest in 

the southern half of the province. However, forage intake was often highly localized to clusters 

in river valleys. As a result, the total area of overgrazed land returned by this study by both 

models was lower than previous studies, but overgrazed land was estimated to be more 

intensively overgrazed. The heaviest overgrazing was estimated to have occurred in roughly 

the same areas using both the process-based and empirical model, but due to overprediction 

of biomass by the process-based model, overgrazing was not estimated to be as extensive by 

the process-based model as by the empirical model. Overall, the process-based model should 

be considered as unsuitable in its current form for rangeland biomass prediction in Bulgan 

province until it can be tested with better-suited validation strategies, as well as with the 

implementation of slight local parameterization. However, this does not definitively disqualify 

a process-based approach to rangeland biomass, and thus carrying capacity prediction, as the 
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model and validation strategies could be further fine-tuned until an NPP-based model could 

be applicable for use in inter-regional or international comparison of overgrazing levels.  
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Appendices 
 

A  Livestock conversion and grazing range 
 

 

Table 14: Livestock conversion matrix. SEU = Sheep equivalent unit. 

Livestock Livestock in SEU 

 1 Horse 7 SEU 

1 Cow 6 SEU 

1 Camel 5 SEU 

1 Sheep 1 SEU 

1 Goat 0.9 SEU 

 

 

Table 15: Livestock grazing range mantrix. ‘Large’ livestock are: Horse, Cattle, Camel. ‘Small’ livestock are Sheep 
and Goat. Summer-Autumn distances were used. 

Season Livestock Size 

Large Small 

Summer-Autumn 5 km 3 km 

Winter-Spring 4 km 2 km 
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B  Workflow 
 

B.1.  Process-based model workflow chart 
 

 
 
Figure 31: Workflow chart showing the steps taken to output the aboveground biomass prediction raster using 

the process-based model. 
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B.2.  Empirical model workflow chart   

Figure 32: Workflow chart showing the steps taken to output the aboveground biomass prediction raster using the empirical model. 
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B.3.  Stocking density and forage intake workflow chart 

 
Figure 33: Workflow chart depicting the steps taken in order to output the forage intake rasters. 

 

B.4.  Over- and undercapacity in biomass availability workflow chart 

 
Figure 34: Workflow chart depicting the steps taken to output relative and absolute forage use rasters. 

 


