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Abstract 
 
 
Sargassum is a type of brown algae that can be found in coastal waters or free floating in the 
ocean. Sargassum is not directly harmful on sea, in fact a lot of marine species such as fishes and 
sea turtles depend on it for shelter and food source. Climate change and increasing amount of 
nutrient in the Caribbean Sea has presumably led to recurring large scale Sargassum influxes in 
this region since 2011. The worst influx occurred in 2018 which impacted many islands in the 
Dutch Caribbean including Bonaire. Sargassum brown tide flooded the island and deprived the 
coastal ecosystems from oxygen, which led to degradation of mangroves and seagrass beds in 
Bonaire. Besides, the smell of rotting seaweed on beaches repels tourists having an adverse 
effect on the tourism sector. Measures must be taken to prevent irreparable damage on the 
ecosystems and economy of Bonaire due to Sargassum influx. There is a great need for an early 
warning system that alerts the authorities for possible Sargassum influx and a monitoring 
system that can assess the extent and impact of Sargassum on coastal ecosystems. With up to 
10m spatial resolution and five days revisit time, the freely available Sentinel-2 satellite platform 
might be a good opportunity for such a warning and monitoring system. 
 
This research investigated the effectiveness and limitations of Sentinel-2 images for mapping 
Sargassum on the open sea, the coastal waters and the east coast of Bonaire. This research also 
evaluated the potential of Sentinel-2 images for mapping the seagrass distribution in the shallow 
waters of Lac Bay in relation to the possible impact of Sargassum. Sargassum and seagrass 
distribution maps are important for coastal managers to locate the most impacted sites and to 
design suitable measures.  
 
Supervised Decision Tree and Maximum Likelihood Classifiers (DTC and MLC) were explored to 
map Sargassum and seagrass on the coast. A chi-square threshold technique was applied to the 
MLC, referred to as MLCprobability%, to avoid misclassifications. Training sites were visually defined 
from Sentinel-2 images taken in 2019 to collect reference Sargassum and seagrass pixels for 
training the supervised classifiers. A distinction between Sargassum on land and water was 
made apart from six other classes in the training samples. In the lagoon Lac Bay only seagrass 
and non-seagrass classes were addressed for mapping their distribution. Feature selection based 
on the Jeffries-Matusita distance was performed to select the best band selection and spectral 
index combinations. Sargassum ground truth data or training sites can be difficult to assess on 
open sea because its presence is temporary and unpredictable. Therefore, unsupervised 
classifications based on density slicing and Principal Component Analysis were explored to 
detect floating Sargassum on open sea. Density slicing was used to segment a Green Normalized 
Difference Vegetation Index (GNDVISlice) image, whilst a Triangle thresholding was used to 
automatically segment a Principle Component image (PCATriangle). The classification results were 
compared across different time periods apart from each research objective. The best 
classification method was widely evaluated based on classification accuracy, image 
interpretation and robustness of the classification methods.  
 
Results showed that the Normalized Difference Vegetation Index (NDVI), Red-Edge Position 
Index (REP) and Sentinel-2 bands B05 (VNIR at 705nm) and B11 (SWIR at 1610nm) were 
effective in separating Sargassum from other coastal features. The MLC20% model achieved an 
excellent validation accuracy of 87% and was found suitable for classifying floating Sargassum 
on coastal waters while minimizing false positives due to cloud edges and dark mangrove 
fringes. Persisting misclassifications of Sargassum on land occurred due to various degree in 
organic decomposition and water content of the Sargassum leading to a larger variation in 
spectral reflectances and so ambiguity in the training samples and possibly due to mixed pixels 
in addition. Consequently, floating Sargassum and coastline pixels were often overestimated as 
Sargassum on land. Hence, Sargassum on land cannot be classified with a high accuracy in this 
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study. The PCATriangle and MLCBase methods were effective in detecting floating Sargassum on 
open sea. The MLCBase model does not use a chi-square threshold, hence every pixel is classified 
on the image. The PCATriangle method is excellent for classifying sparsely distributed Sargassum 
slicks on rough waters, whilst the MLCBase method is suitable for open calm sea. The study also 
showed that clouds, image striping and inter-band parallax effects were the main sources of 
misclassification of Sargassum in open sea. In this study, the seagrass distribution cannot be 
assessed accurately since fringing coral reefs and deep-water pixels were grossly overestimated 
as seagrass. This means that the impact of Sargassum on the seagrass can be neither assessed.  
 
Nevertheless, this research confirmed the capability of Sentinel-2 platform for mapping 
Sargassum. The results of this study can be used as a reference to develop a proper Sargassum 
warning and monitoring framework and support other studies on the potential of remote 
sensing for coastal ecosystems.   
 
Keywords: Sargassum, Seagrass distribution, Remote Sensing, Sentinel-2, Coastal ecosystems, 
Supervised and Unsupervised Classification.   



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 
 

iii 
 

Table of contents 
 
 
Chapter 1 Introduction ........................................................................................................................................... 1 

1.1 Context ............................................................................................................................................................... 1 

1.2 Problem definition ........................................................................................................................................ 1 

1.3 Objectives .......................................................................................................................................................... 3 

1.4 Research questions ....................................................................................................................................... 3 

1.5 Thesis structure .............................................................................................................................................. 3 

Chapter 2 Data and methods ................................................................................................................................ 4 

2.1 Study area ......................................................................................................................................................... 4 

2.1.1 Overview .......................................................................................................................................................... 4 

2.1.2 Impact of Sargassum brown tides ......................................................................................................... 5 

2.2 Sentinel-2 data ................................................................................................................................................ 6 

2.2.1. Sentinel-2 instrumentation ..................................................................................................................... 6 

2.2.2 Sentinel-2 data products and pre-processing .................................................................................. 7 

2.3 Remote sensing image classification techniques .............................................................................. 8 

2.3.1 Supervised- and unsupervised classifications ................................................................................. 8 

2.3.2 Maximum Likelihood Classification ...................................................................................................... 8 

2.3.3 Decision Tree Classification .................................................................................................................. 10 

2.3.4 Image Segmentation of Principal Component Image ................................................................. 11 

2.4 Accuracy assessment ................................................................................................................................. 13 

2.5 Research approach and objectives ...................................................................................................... 14 

2.5.1 Classifying Sargassum on the coast and coastal waters ............................................................ 14 

2.5.2 Classifying Sargassum in open sea ..................................................................................................... 17 

2.5.3 Classifying seagrass in Lac Bay ............................................................................................................ 20 

Chapter 3 Results ................................................................................................................................................... 24 

3.1 Classification of Sargassum on the coast and coastal waters ................................................... 24 

3.1.1 Sampled dataset for Sargassum classification ............................................................................... 24 

3.1.2 Best input features for Sargassum classification ......................................................................... 24 

3.1.3 Sargassum classification accuracy ..................................................................................................... 26 

3.1.4 Robustness of classifiers in classifying Sargassum ..................................................................... 28 

3.1.5 Sargassum coverage maps ..................................................................................................................... 31 

3.2 Classification of Sargassum in open sea ............................................................................................ 35 

3.2.1 Segmentation of spectral index images by density slicing ....................................................... 35 

3.2.2 Segmentation of principal component images by Triangle algorithm ................................ 36 

3.2.3 Robustness of different classification methods in classifying Sargassum in open sea . 38 



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 
 

iv 
 

3.2.4 Scalability performances ........................................................................................................................ 41 

3.3 Classification of seagrass in Lac Bay ................................................................................................... 47 

3.3.1 Sampled dataset for seagrass classification ................................................................................... 47 

3.3.2 Seagrass classification accuracy .......................................................................................................... 47 

3.3.3 Robustness of classifiers in classifying seagrass .......................................................................... 49 

Chapter 4 Discussion ............................................................................................................................................ 53 

4.1 Spectral discrimination of Sargassum ................................................................................................ 53 

4.2 Spatial limitation to detect floating Sargassum.............................................................................. 54 

4.3 Remote sensing of seagrass in shallow waters .............................................................................. 55 

4.4 Remote sensing of Sargassum ............................................................................................................... 55 

4.5 Performance of image classification techniques ........................................................................... 56 

Chapter 5 Conclusions and recommendations .......................................................................................... 58 

5.1 Conclusion ..................................................................................................................................................... 58 

5.2 Recommendation ........................................................................................................................................ 59 

List of references ............................................................................................................................................................ 61 

Appendix 1 Sampled dataset covering eight classes obtained from the coast and coastal waters

 ............................................................................................................................................................................................... 69 

Appendix 2 Jeffries-Matusita distance heatmap ............................................................................................... 71 

Appendix 3 Hyperparameters tuning and cross-validation of Decision Tree Classifier for 

Sargassum classification ............................................................................................................................................. 72 

Appendix 4 Accuracy assessment of Sargassum classification in Lac Bay ............................................. 73 

Appendix 5 Sargassum misclassification masks ............................................................................................... 75 

Appendix 6 False colour composite series of Lac Bay and Lagun .............................................................. 76 

Appendix 7 Triangle thresholding of Principal Component images ......................................................... 79 

Appendix 8 Sampled dataset covering seagrass and non-seagrass bottom types obtained from 

Lac Bay ................................................................................................................................................................................ 80 

Appendix 9 Hyperparameters tuning and cross-validation of Decision Tree Classifier for bottom 

type classification........................................................................................................................................................... 81 

Appendix 10 Maximum Likelihood Classifier probability and Entropy maps for predicting 

bottom types in Lac Bay .............................................................................................................................................. 82 

Appendix 11 Accuracy assessment of seagrass classification in Lac Bay ............................................... 83 

 
 
  



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 
 

v 
 

List of figures 
 
 
Figure 1. Location of the study area. ......................................................................................................................... 4 

Figure 2. Thick brown Sargassum mats floating near the beach................................................................... 5 

Figure 3. Examples of healthy (top row) and dead (bottom row) seagrasses and mangroves at 

Lac Bay during the invasion in 2018. ........................................................................................................................ 5 

Figure 4. Example of a decision tree diagram. ................................................................................................... 10 

Figure 5. Example of a validation curve depicting training and validation accuracies (scores). .. 11 
Figure 6. Example scatterplot between two variables. .................................................................................. 12 

Figure 7. Example illustration of the Triangle method for determining threshold value in a 

unimodal distribution. ................................................................................................................................................. 12 

Figure 8. Region of interest (ROI) depicting east shoreline of Bonaire. .................................................. 15 

Figure 9. Floating Sargassum (Sf) and Non-floating Sargassum (Non-Sf) validation samples for a 

scene taken on 18 May 2019. .................................................................................................................................... 17 

Figure 10. Subsets of image enhanced false colour composites depicting floating Sargassum 

(arrows) on greater east sea of Bonaire. The subsets are zoomed in to reveal Sargassum rafts 

more clearly. ..................................................................................................................................................................... 18 

Figure 11. Combined false colour composites of two scenes taken on 4 March 2019 with tile IDs 

T19PEP and T19PFP. .................................................................................................................................................... 20 

Figure 12. Example photos of turtle grass (left picture) and halophila (right picture). ................... 20 

Figure 13. Location of training sites for a scene taken on 8 January 2019. ........................................... 21 

Figure 14. Typical spectral signatures of water and land features. .......................................................... 22 

Figure 15.  Flowchart diagram illustrating the general approach and objectives of this study. ... 23 

Figure 16.  Spectral signature plot of each class sampled from the coast of Bonaire. ....................... 25 

Figure 17. Distribution of each class and input feature. The classes (Sf, Sl, etc.) are displayed on 

the y-axis, whereas the x-axis illustrates the distribution of the input features NDVI, REP, B05 

and B11. ............................................................................................................................................................................. 25 

Figure 18. Comparison between model and validation accuracies of the DTC and MLC models in 

classifying Sargassum and other coastal features. ........................................................................................... 26 

Figure 19. Sargassum classification examples for the validation scene taken on 18 May 2019. .. 27 

Figure 20. Sargassum (Sf and Sl) total classified area (ha) for various scenes taken during and 

outside the invasion periods. .................................................................................................................................... 28 

Figure 21. Comparison between DTC and MLC Sargassum classified scenes taken on 8 May 2019 

for a subset of Lagun. .................................................................................................................................................... 29 

Figure 22. Comparison between DTC and MLC Sargassum classified scenes taken on 13 May 

2019 for a subset of Lac Bay. ..................................................................................................................................... 29 

Figure 23. Comparison between DTC and MLC20% classification results for a scene taken on 12 

February 2019. ................................................................................................................................................................ 30 

Figure 24. Possible Sargassum strandings in February and November 2019 detected by the DTC 

and MLC20% models. ...................................................................................................................................................... 31 

Figure 25. Sargassum coverage maps of Lac Bay during the invasion in March 2018 and March 

and May 2019. ................................................................................................................................................................. 33 

Figure 26. Sargassum coverage maps of Lagun during the invasion in March 2018 and March and 

May 2019. .......................................................................................................................................................................... 34 

Figure 27. GNDVI distribution of each subset including the defined position of the threshold in 

red. ....................................................................................................................................................................................... 35 

Figure 28. Selected Principal Component images to be used as input for the Triangle algorithm.

 ............................................................................................................................................................................................... 36 



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 
 

vi 
 

Figure 29. Floating Sargassum classified area (ha) for various scenes taken on east sea of 

Bonaire. .............................................................................................................................................................................. 38 

Figure 30. Floating Sargassum (Sf) classification results on calm sea for a scene taken on 4 March 

2018 (subset C). Four classification methods were tested: DTC, MLCBase, PCATriangle and GNDVISlice.

 ............................................................................................................................................................................................... 38 

Figure 31. Floating Sargassum (Sf) classification results on rough sea for a scene taken on 9 

March 2019. Four classification methods were tested: DTC, MLCBase, PCATriangle and GNDVISlice. .. 39 

Figure 32. Inter-band parallax artefact found on a subset taken on 4 March 2018 with tile ID 

T19PEP. .............................................................................................................................................................................. 40 

Figure 33. Image striping found on a subset taken on 28 April 2019. ..................................................... 40 

Figure 34. Weather data of Bonaire for 4 March 2018. .................................................................................. 43 

Figure 35. Pixel-to-pixel similarity map showing the overlap between the GNDVISlice, PCATriangle, 

DTC and MLC floating Sargassum (Sf) classifications. .................................................................................... 44 

Figure 36. Comparison between MODIS Terra Alternative Floating Algae Index (AFAI) and 

MLCBase floating Sargassum (Sf) map products. ................................................................................................. 45 

Figure 37. Distributions of seagrass and non-seagrass classes for each input feature. .................... 47 

Figure 38. Comparison between model and validation accuracies of the DTC and MLC models in 

classifying Seagrass and non-Seagrass. ................................................................................................................ 48 

Figure 39. Seagrass classification validation results for a scene taken on 4 March 2019. .............. 48 

Figure 40. Cross-comparison between DTC and restricted MLC models classified seagrass area 

(ha) for three different depths in Lac Bay. .......................................................................................................... 49 

Figure 41. Cross-comparison between DTC and restricted MLC models classified seagrass 

distributions across multiple scenes. .................................................................................................................... 50 

Figure 42. Cross-comparison between true colour composites (Sentinel-2 bands 4,3 and 2) of 

Sorobon across different scenes. ............................................................................................................................. 51 

Figure 43. Cross-comparison between DTC and restricted MLC models classified seagrass area 

(ha) at Sorobon ............................................................................................................................................................... 51 

Figure 44. DTC and MLC20% models predicted seagrass distributions for a scene taken on 29 

November 2019 for a subset of Lac Bay. .............................................................................................................. 52 

Figure 45. Surface reflectances of Sargassum (a) from the Gulf of Mexico and Atlantic Ocean, 

Trichodesmium cyanobacteria (b) from Florida Keys and Ulva prolifera (c) from the Yellow Sea 

of Qingdao (China). ........................................................................................................................................................ 53 

Figure 46. Example false colour composites (Sentinel-2 bands 8, 3 and 2) with different spatial 

resolutions for a subset taken on 9 March 2019. .............................................................................................. 54 

Figure 47. Image enhanced true colour composites (Sentinel-2 bands 4,3,2) of Lac Bay taken in 

2019. .................................................................................................................................................................................... 55 
Figure 48. Spectral signature of an example sample point (yellow) from the coastline for a scene 

taken on 9 March 2019. ............................................................................................................................................... 56 

 
  



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 
 

vii 
 

List of tables 
 
 
Table 1. Sargassum beaching reports between 2017 and 2019. ................................................................... 6 

Table 2. Sentinel-2 Multispectral Instrument band specifications. .............................................................. 7 

Table 3. Reference table with critical chi-square values for eight different degrees of freedom .... 9 

Table 4. Scikit-learn Decision Trees parameters considered in this study. ........................................... 10 

Table 5. Example of a confusion matrix ................................................................................................................ 13 

Table 6. Description of classes used in this study ............................................................................................ 14 
Table 7. Spectral indices considered in this study. .......................................................................................... 16 

Table 8. Total area (ha) classified as Sargassum (Sf and Sl) for scenes taken during the invasions 

in 2018 and 2019. .......................................................................................................................................................... 32 

Table 9. Principal component score (Eigenvector loading) of each input band across different 

subsets. ............................................................................................................................................................................... 37 

Table 10. Principal component score (Eigenvector loading) of each input band for scenes taken 

on 4 March 2018 with tile IDs T19PEP and T19PFP. ...................................................................................... 41 

Table 11. Combined total classified area as floating Sargassum for two scenes taken on 4 March 

2018 with tile IDs T19PEP and T19PFP. .............................................................................................................. 42 

 
  



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 
 

viii 
 

  



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 

1 
 

Chapter 1 Introduction 
 
 

1.1 Context 
 
Sargassum is a genus of brown macroalgae or seaweed that can be found in shallow waters or 
free floating in the ocean. Sargassum patches on the open sea drift along sea currents and can 
aggregate into larger Sargassum rafts or long slicks. One of the early studies on Sargassum 
observations focused on defining the extent of Sargassum coverage in the Sargasso Sea 
(Krümmel, 1891). The Sargasso Sea is a large region in the North Atlantic Ocean, known for its 
great abundance of floating Sargassum. More than 89% of the species found in the Sargasso Sea 
can be classified into two species: Sargassum natans and Sargassum fluitans (Deacon, 1942). 
Both species are ‘holopelagic’ meaning that they spend their entire lifespan floating on the sea 
surface and reproduce exclusively by vegetative fragmentation (Winge, 1923).  
Sargassum seaweeds that accumulate in the Sargasso Sea originate from The Gulf of Mexico 
where it blooms in the spring (Laffoley et al., 2011). This Sargassum bloom is induced by 
nutrient loadings from land that are discharged via the Mississippi River into the sea (Lapointe, 
1995). Consequently, large populations of Sargassum seaweeds accumulate over the summer 
and form extensive Sargassum rafts in this region. Some Sargassum may get carried to inshore 
waters, but most of them dies off in the winter, to be restocked again next season (Laffoley, 
2011).  
 
Sargassum is not directly harmful on sea, in fact diverse biotic communities and animal species 
such as fishes, sea turtles and invertebrate depend on the seaweed for shelter and as a food 
source (Vos et al., 2016). However, Sargassum can potentially damage coastal ecosystems such 
as mangroves and seagrass beds if it accumulates on these coastal ecosystems. Therefore, 
monitoring of pelagic Sargassum is of great importance for managing coastal ecosystems. 
Attempts to map the abundance pelagic Sargassum in the Atlantic Ocean in the past has proven 
to be a complex problem that involves the dynamic sea environment such as seasonal biomass 
distribution, ocean climate and human-induced factors (Butler & Stoner, 1984; Krümmel, 1891; 
Parr, 1939). Therefore, a more sophisticated method of mapping pelagic Sargassum in the ocean 
is needed.  
 
Advances in earth observation and remote-sensing technologies provide a large amount of data 
and applications for land and marine resource management. Spaceborne remote sensing can be 
used for monitoring the impact of hazards affecting the marine ecosystems such as oil spills, 
plastic pollution, flooding, iceberg deterioration, marine debris and harmful algal blooms at 
global scale (Platt et al., 2008). Applications in spaceborne remote sensing combined with 
ancillary data, such as sea surface temperature and sea current models, are useful in the 
management and conservation of fish and marine mammal species (National Research Council, 
2011; Platt & Sathyendranath, 2008).  
 

1.2 Problem definition 
 
An unprecedented amount of pelagic Sargassum invaded the Caribbean islands in the summer of 
2011 (Higgins, 2011). Masses of Sargassum seaweed piled up on beaches trapping sea turtles 
and releasing high concentrations of toxic hydrogen sulfide gas when it decomposes (Atkin, 
2018). Beside sea turtles, local tourism was also affected by the Sargassum beaching which led 
to temporarily closure of hotel resorts and high-cleaning costs of beaches (Caribbean Regional 
Fisheries Mechanism, 2014; Higgins, 2011). Sargassum was before a rare occurrence in the 
Caribbean Sea, yet recent Sargassum influx suggest otherwise. Climate change in combination 
with nutrient pollution of the Caribbean Sea might have caused this phenomenon. Satellite 
observations from 2011 indicated new locations of Sargassum north of the coast of Brazil 
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(Gower et al., 2013), later dubbed as the great Atlantic Sargassum belt (GASB) (Wang et al., 
2019). Monthly satellite data were able to clearly show a massive Sargassum bloom extending 
from the Caribbean to West Africa in the summer of 2011. This bloom seems to recur every year 
resulting in multiple large-scale Sargassum events such as in 2014 on the shores of San Andreas 
Island (El Isleño, 2014) and in 2015 on the coasts of Haiti and Bonaire (Dutch Caribbean Nature 
Alliance, 2019; Haiti Libre, 2015) among other regions.  
 
Climate change and increasing nutrification of seas indicate that the amount of Sargassum in the 
Caribbean Sea might increase substantially within the near future. The global average 
temperature is estimated to increase every decade by 0.2 °C (Masson-Delmotte et al., 2018). 
Consequently, higher rates of precipitation, rising sea level, higher water temperatures and 
changes in ocean currents are expected due to global warming (Pink, 2018). Wang et al. (2019) 
suggest that changing ocean dynamic and high nutrient supplies from the Amazon River and 
West Africa may have fueled this massive Sargassum bloom in the central Atlantic. 
 
The highest record of Sargassum bloom, with approximately 20 million ton of wet biomass, 
occurred in the year of 2018 (Wang et al., 2019) in the Atlantic. Consequently, major Sargassum 
brown tides invaded the Dutch Caribbean Islands including Bonaire. Bonaire is one of the six 
Dutch Caribbean islands with the most extensive blue carbon ecosystem. Blue carbon 
ecosystems, like mangroves and seagrasses, can capture and store large amount of carbon in 
plants and subsurface, thus contributing to mitigating climate change and global warming effect 
(Tamis & Foekema, 2016). Besides, blue carbon systems have high biodiversity values by 
providing food and shelter for various coastal and in coastal water communities (Croft-
Cusworth, 2018). The 2018 Sargassum invasion covered the entire shorelines and beaches of 
Bonaire with rotting seaweed, which repel tourists. More importantly, accumulation of dead 
Sargassum in mangrove stands and in coastal waters deprived the area from oxygen resulting to 
die-offs of fishes and seagrass patches and damage to the mangrove ecosystem (Moons, 2018). 
Impacted seagrass areas may take several years to recover or may be lost completely if large-
scale Sargassum continue to wash up (Van Tussenbroek et al., 2017).  
 
The discovery of the great Atlantic Sargassum belt as a new source region followed by recurring 
large-scale beaching of Sargassum bring up concerns for the future of Bonaire and its coastal 
ecosystems. Measures must be taken to prevent irreparable damage on the coastal ecosystems 
due to Sargassum influx. STINAPA, the national park authority on Bonaire, has drafted a work 
plan together with the local government that explains the actions to be taken during future 
Sargassum influx events (Dutch Caribbean Nature Alliance, 2019). Clear protocols when a 
Sargassum influx is a disaster are still missing. Therefore, an early detection and monitoring 
system for Sargassum beaching is crucial for defining the extent and impact of Sargassum 
strandings on the coast (Hinds et al., 2016).  
 
Early studies on satellite detection of pelagic Sargassum in the ocean utilized the Medium 
Resolution Imaging Spectrometer (MERIS) and Moderate Resolution Imaging Spectroradiometer 
(MODIS) Terra and Aqua sensors (Gower et al., 2007; Gower & King, 2008; Gower et al., 2013). 
The MERIS sensor on-board of the Envisat satellite was operational from 2002 to April 2012. 
MERIS operated at a spatial resolution of 1200 or 300 m, while MODIS operates at 250, 500 and 
1000 m depending on selected bands. Sargassum patterns can be detected using, for instance, 
the infrared spectrum typical of vegetation (Gower et al., 2007). However, mixed signals 
between Sargassum and surrounding coastal features, such as mangrove forest, may occur when 
Sargassum patches are too small, partially submerged or sparsely distributed. This increases the 
need for higher spatial- and spectral resolution data to discriminate surface features from 
Sargassum. Midwood and Chow-Fraser (2010) used IKONOS satellite data (3.28 m) to detect 
floating vegetation in Canada. A similar study was done by Siddiqui  and Zaidi (2015) using 
Worldview-2 satellite data (1.84 m) to detect seaweed along Karachi Coast. However, very high 
spatial resolution satellite data like IKONOS and Worldview-2 are only commercially available, 
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making such data sources less attractive for frequent monitoring of Sargassum. The new 
Sentinel-2 mission provides free and global satellite data with a spatial resolution up to 10m in 
the visible spectrum and a revisit time of five days. Therefore, the use of the Sentinel-2 satellite 
platform might be excellent for monitoring Sargassum and assessing the impact of it on the 
ecosystems in coastal regions. This thesis will therefore assess the use of Sentinel-2 for 
monitoring Sargassum and seagrass on Bonaire.   
 

1.3 Objectives 
 
The main objective of this research is to use high-resolution multispectral Sentinel-2 data to 
detect and map Sargassum patches on open sea and the east coast of Bonaire. Accurate 
Sargassum maps will be useful information for the coastal authorities to assess the location and 
coverage of Sargassum mats that have washed up along the shores and beaches. Consequently, 
the extent to which these Sargassum seaweeds affect nearshore benthic habitats and coastal 
ecosystems in east Bonaire can be evaluated too. Detection of free-floating vegetation in the 
ocean has been done by many researchers around the world, using different methods and earth 
observation satellite sensors. In this study, the research questions will focus on finding the most 
suitable method to classify and assess the impact of pelagic Sargassum on coastal ecosystems 
using open source Sentinel-2 multispectral imagery. 
 
The purpose of this study is to demonstrate the effectiveness and limitations of spaceborne 
Sentinel-2 optical satellite imagery for the detection of Sargassum on open sea and on the coast 
based on their spectral image characteristics. This research will also evaluate the possibility of 
the multispectral sensor data for mapping coastal ecosystems, such as seagrass distribution on 
the east coast of Bonaire. A seagrass distribution map is important for evaluating the impact of 
Sargassum events on the quality of such an ecosystem.  
 

1.4 Research questions 
 
Based on the objectives, the following research questions are formulated: 
 

RQ 1. To what extent can Sargassum patches be classified on the coast and coastal waters of 
Bonaire using Sentinel-2 imagery? 

RQ 2. To what extent can floating Sargassum patches be classified on open sea using Sentinel-2 
imagery? 

RQ 3. Can the impact of Sargassum on seagrass distribution in Lac Bay be mapped with 
Sentinel-2? 

 

1.5 Thesis structure 
 
This thesis is structured in five chapters. Chapter two describes the study area and general 
research approach with respect to each objective. This chapter also elaborates on several image 
classification techniques used in this study. Classification maps and analysis results are 
presented in chapter three, whereas chapter four discusses the used methodology and research 
findings. Finally, the conclusions from this study are given in chapter five which includes a few 
recommendations.  
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Chapter 2 Data and methods 
 
 

2.1 Study area 
 

2.1.1 Overview  
 
Bonaire (12° 12' 6.8040'' N, 68° 15' 44.5788'' W) is one of the six Dutch Caribbean islands 
located about 70 kilometers from the north coast of Venezuela. The island has a semi-arid 
climate which receives about 463 mm of precipitation annually. Bonaire’s tropical region has dry 
and wet seasons which span from February to June and September to January, respectively 
(Homan, 2017). Two important mangrove sites: Lac Bay and Lagun can be found on the wind 
faces east coast of Bonaire.  
 
With an area of about 700 hectares, Lac Bay is a shallow non-estuarine bay that supports 
valuable habitats for mangrove forests, seagrass pastures, corals, sea turtles, fishes and 
invertebrates. Lac Bay is a protected Ramsar site and Important Bird Area (IBA) (Bettencourt & 
Imminga-Berends, 2015). Ramsar sites are wetlands that are designated by 170 countries under 
the Ramsar convention to be protected and managed sustainably (Van Dam, 2019). The lagoon 
has a maximum water depth of 4.5 m and a tidal range of about 0.3 m (Van Moorsel & Meijer, 
1994). The lagoon is protected from the open sea by a shallow coral barrier on the east side of 
Lac Bay. Sorobon beach, situated southwest of Lac Bay, is a popular leisure site that provides 
access to the shallower water area inside the coral dam. The shallower water site (1.5 m) is 
designated for snorkeling and windsurfing (STINAPA Bonaire, n.d.). A smaller bay area named 
Lagun located north of Lac Bay also functions as an IBA site. The smaller mangrove stands in this 
site also suffer from recurring Sargassum brown tides. 
 
 

 
Figure 1. Location of the study area. The mini map and satellite image on the left shows the extent of Bonaire and its 

location in the Caribbean Sea (red). The satellite images on the right show subsets of Lac Bay and Lagun. Mini map and 
satellite image by Google Maps ®. 
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2.1.2 Impact of Sargassum brown tides  
 
The east coast of Bonaire has been severely impacted by recent Sargassum brown tides since 
this part of the island is exposed to the prevailing easterly trade winds (National Oceanic and 
Atmospheric Administration, 2017). STINAPA and the local government have put effort to 
contain the brown tide at Lagun by using a floating boom (see figure 2). However, such measures 
are temporarily and difficult to deploy on larger bay area such as Lac. Accumulation of dead 
Sargassum deprives the area of oxygen, which leads to visible die-offs of mangrove trees and 
seagrass as shown in figure 3. Moreover, decomposing organic matter results into murky waters 
which limit light reaching deeper waters and further impeding the growth of seagrass meadows. 
 

 
Figure 2. Thick brown Sargassum mats floating near the beach. Left picture shows a floating boom used by STINAPA and 

local government to contain Sargassum brown tied at Lagun during the invasion in March 2019. Right picture shows 
Sargassum flooding the mangrove stands at Sorobon during the invasion in March 2018. Pictures retrieved from (Bonaire 

Nu, 2018, 2019). 

 

 
Figure 3. Examples of healthy (top row) and dead (bottom row) seagrasses and mangroves at Lac Bay during the 

invasion in 2018. Photos by Luuk Leemans, retrieved from (Radboud Universiteit, 2019). 
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A summary of recent Sargassum reports, including possible clean-up date, in Bonaire is shown in 
table 1. These reports were considered during selection of Sentinel-2 imageries.  
 

Table 1. Sargassum beaching reports between 2017 and 2019. Information adapted from 
https://bonaire.nu/?s=sargassum%20. 

Date Site Description Possible clean-up 
date 

25 
December 

2017 

Mostly 
Lagun 

Large-scale strandings of Sargassum at Lagun. 
High mortality of juvenile sea turtles, lobsters 
and fishes during this event. STINAPA, Junior 

Rangers and volunteers were involved in 
clearing the area. Possible first landing 1-2 days 

earlier. 

27 January 2018 

6 March 
2018 

Lac 
Bay, 

Lagun 

Massive Sargassum invasion in the first week of 
March at Lac Bay and Lagun. High priority to 
clear seaweed at Lac Bay Sorobon and Lagun. 

Subsequently, other coastal sites (e.g. Boka 
Washikemba and Kaminda). STINAPA, local 

government, volunteers and coast guards were 
involved in clearing the area. Possible first 

landing 1-2 days earlier. 

7, 8 and 9 March 
2018 at Sorobon and 
Lagun. Following few 

weeks at areas 
surrounding Sorobon 

and other coastal 
sites. 

19 July 
2018 

Mostly 
Lagun 

Sargassum influx at Lagun and other coastal 
areas. STINAPA employees were involved in 

clearing up the site. 

20 July 2018 

6 March 
2019 

Lac 
Bay, 

Lagun 

Large-scale Sargassum influx at coastal areas of 
Bonaire. STINAPA and the port warden set up 

seaweed booms at a few mangrove areas in Lac 
Bay. Possible first landing 1-2 days earlier. 

6 March 2019 

10 May 
2019 

Lac 
Bay, 

Lagun 

Large-scale Sargassum influx at coastal areas of 
Bonaire. STINAPA and volunteers were involved 

in clearing the Sargassum on Sorobon beach. 

11 May 2019 

 
The next paragraphs elaborate on the data and approaches to map Sargassum and seagrass. 
Section 2.2 explains the technical specifications and pre-processing of Sentinel-2 images, whilst 
section 2.3 addresses the supervised and unsupervised image classification techniques used in 
this study. Section 2.4 explains how to assess the classification accuracy. Finally, section 2.5 
summarizes the general research approach and objectives with respect to the research 
questions.  
 

2.2 Sentinel-2 data  
 

2.2.1. Sentinel-2 instrumentation 
 
Sentinel-2 is one of a series of Earth observation satellite missions developed by the European 
Space Agency (ESA) under the Copernicus program to monitor land- and sea surface conditions 
and the atmosphere. The Sentinel-2 mission includes two polar-orbiting satellites released in 
2015 (Sentinel-2A) and 2017 (Sentinel-2B). Consequently, a revisit time of five days (at the 
equator) can be achieved using both satellites and ten days with one satellite. Both missions 
have an operational life expectancy of seven years. Each satellite supports a Multispectral 
Instrument (MSI) which is a push-broom type of sensor that records rows of multispectral image 
data along the flight track. A single Sentinel-2 scene covers a swath width of 290 kilometers. 
Furthermore, the instrument can measure thirteen spectral bands at 10, 20- and 60 meters 

https://bonaire.nu/?s=sargassum%20
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ground resolution (European Space Agency, 2015). The full Sentinel-2 MSI band specifications 
are summarized in table 2.  
 
Table 2. Sentinel-2 Multispectral Instrument band specifications. Note that the native 10m resolution bands are provided 
in 20m and 60m resolutions as well, whereas the native 20m bands are also available in 60m. Band B10 (highlighted in 

yellow) is used for atmospheric correction in the Level-1C product and is not included in the Level-2A product. 

Band Band Description Wavelength 
range (nm) 

Central wavelength 
(nm) 

Ground resolution 
(m) 

B01 Coastal aerosol 433 – 453 443 60 
B02 Blue 458 – 523 490 10 
B03 Green 543 – 578 560 10 
B04 Red 650 – 680 665 10 
B05 Vegetation Red-Edge 698 – 713 705 20 
B06 Vegetation Red-Edge 733 – 748 740 20 
B07 Vegetation Red-Edge 773 – 793 783 20 
B08 Near-infrared 785 – 900 842 10 
B8A Vegetation Red-Edge 855 – 875 865 20 
B09 Water vapor 935 – 955 945 60 
B10 Shortwave infrared/ 

Cirrus 
1360 – 1390 1375 60 

B11 Shortwave infrared 1565 – 1655 1610 20 
B12 Shortwave infrared 2100 – 2280 2190 20 

 
2.2.2 Sentinel-2 data products and pre-processing 
 
Atmospheric correction  
Copernicus Open Access Hub is an online platform that provides access to free and complete 
Sentinel mission products. Two Sentinel-2 product types were downloaded via the platform: 
Level-1C and Level-2A. Level-1C data are geometrically and radiometrically corrected top of 
atmosphere reflectances (TOA). To assess surface properties of Sargassum accurately, an 
atmospheric correction is required to estimate the bottom of atmosphere reflectance (BOA) or 
also known as surface reflectance. Level-2A data contain atmospherically corrected surface 
reflectances. Note that the cirrus band B10 is not included in the Level-2A product (see table 
10). Sentinel-2 Level-2A products are globally available from December 2018 onwards, whereas 
older Sentinel-2 data in the archive only support Level-1C products. In this study, the Sen2Cor 
Processor was used to pre-process level-1C data to level-2A products (Main-Knorn et al., 2017).  
 
Cloud mask data  
Additional Sen2Cor data outputs include Aerosol Optical Thickness (AOT), Water Vapor (WV) 
and Scene Classification (SCL) (Main-Knorn et al., 2017). The Scene Classification data contains a 
cloud flag that can be used to mask clouds from the imagery. However, during the study it was 
found that low altitude clouds were not well detected and bright coastal features like the beach 
and white rooftops were misclassified as clouds. This is partially due to the lack of a thermal 
band (Frantz et al., 2018) . Therefore, cloud condition was carefully considered during scene 
selection and the rest of this study.  
 
Digital Number to Surface Reflectance 
The radiometric resolution of Sentinel-2 images is 12-bit, which means it can measure 4096 
(212) different intensities of reflected radiance. For analysis purposes, the image data was 
converted to its physical unit (surface reflectance) by applying a conversion formula: 

     

𝑆𝑅 =
𝐷𝑁

10000
 (1) 
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Wherein DN (Digital Number) is the original image pixel values and 10000 the Quantification 
Value (European Space Agency, 2017). 
 
Resampling 
Some Sentinel-2 multiband images are only available in 20- and 60 meters resolutions. For 
analysis purposes, a bilinear interpolation was performed using the Rasterio Python module 
(Gillies & others, 2013) to resample coarse band images into 10m resolution images. This 
resampling method basically splits the coarse pixel into smaller pixels based on the weighted 
distance of four neighboring pixels. The resulting image appears smoother but preserves 
sharpness and surface information (Teoh et al., 2008). 
 

2.3 Remote sensing image classification techniques 
 

2.3.1 Supervised- and unsupervised classifications 
 
Supervised classification  
In this study, several supervised and unsupervised image classification techniques were 
explored for mapping Sargassum and seagrass distributions. A supervised classification requires 
training samples with known class types collected from the study area or image. The classifier 
then compares the spectral signatures of the training samples with a pixel from an image and 
assigns it to a class based on certain decision rules (Li et al., 2014). Recent studies have used 
supervised Maximum Likelihood Classification for mapping seagrass and Sargassum 
distributions in coastal regions (Blanco & Tamondong, 2019; Thang et al., 2020). Another study 
used Decision Trees to map seagrass and macroalgal in estuaries (Pe’eri et al., 2016). Both 
supervised techniques were explored in this study. Sections 2.3.2 and 2.3.3 explain how these 
classification techniques were implemented in the study.  
 
Unsupervised classification  
In an unsupervised classification, the image data is naturally clustered or segmented into 
unknown classes based on their spectral characteristics. Image interpretation is often required 
to identify or group these classes (Gumma et al., 2019). Unsupervised classification is a suitable 
method for detecting floating Sargassum on open sea where ground truth data are difficult to 
collect. Histogram thresholding or density slicing of a spectral index image was used before to 
identify floating Sargassum in coastal waters and open sea (Dierssen et al., 2015; Hu et al., 
2015). Principle Component Analysis (PCA) is a data dimensionality reduction technique which 
is, to the best of the author’s knowledge, never been used before for mapping floating 
Sargassum. A PCA combined with histogram thresholding can be an effective method to segment 
objects of interest in images (Akurathi, 2016; Terletzky & Ramsey, 2016). In this study, a 
Principal Component Analysis combined with an automatic histogram thresholding method, 
namely Triangle algorithm, was explored apart from density slicing of a spectral index. Section 
2.3.4 explains how PCA and Triangle thresholding was implemented in the study.  
 
2.3.2 Maximum Likelihood Classification 
 
Maximum Likelihood Estimation 
A supervised Maximum Likelihood Classifier (MLC) was implemented in Python based on 
Richards (2013). Maximum Likelihood Classification is a parametric method that assumes a 
Gaussian distribution for each class. It aims to assign every pixel in an image to a class that has 
the largest probability (i.e. maximum likelihood) (Miranda et al., 2018). To estimate the largest 
probability of a pixel to a certain class the classifier applies a Maximum Likelihood Estimation 
(MLE) function based on Bayes’ theorem (Ballantyne, 2018; Richards, 2013):  
 

arg max 𝑝(𝜔𝑖|𝑥) =  arg 𝑚𝑎𝑥[−𝑙𝑛|𝐶𝑖|| − (𝑥 − 𝑚𝑖)𝑇𝐶𝑖
−1(𝑥 − 𝑚𝑖)] (2) 
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Wherein 𝑝(ω𝑖|𝑥) the posterior probabilities that pixel 𝑥 belongs to class ω𝑖 (after analysis) and 
𝑝(𝑥|ω𝑖) the conditional probabilities that a given class ω𝑖 is observed in pixel 𝑥. The prior 
probabilities 𝑝(ω𝑖) refer to the actual chance of finding a pixel from class ω𝑖 in the image. For N-
number of classes, the conditional probabilities 𝑝(𝑥|ω𝑖) were estimated from training samples 
based on a multivariate Gaussian probability density function:  
 

𝑝(ω𝑖|𝑥) = 2𝜋−
𝑁
2 |𝐶𝑖|−

1
2𝑒𝑥𝑝 {−

1

2
(𝑥 − 𝑚𝑖)𝑇𝐶𝑖

−1(𝑥 − 𝑚𝑖)} (3) 

 
Substituting equation 3 into equation 2 gives: 
 

𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝(ω𝑖|𝑥) = arg max [−
𝑁

2
𝑙𝑛 2𝜋 −  

1

2
𝑙𝑛|𝐶𝑖| −

1

2
(𝑥 − 𝑚𝑖)𝑇𝐶𝑖

−1(𝑥 − 𝑚𝑖)  +  ln 𝑝(ω𝑖)] (4) 

 

For operational purposes the first term −
𝑁

2
𝑙𝑛 2𝜋 can be ignored, as it is not related to the 

analysis. Besides, if there is no a priori knowledge about the features in the study area then the 
last term ln 𝑝(ω𝑖) can be omitted too. Consequently, all classes are assumed to have equal 
probabilities. Equation 4 can then be simplified to: 
 

𝑎𝑟𝑔 𝑚𝑎𝑥 𝑝(ω𝑖|𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥[−ln|𝐶𝑖| − (𝑥 − 𝑚𝑖)
𝑇𝐶𝑖

−1(𝑥 − 𝑚𝑖)] (5) 
 
Where 𝐶𝑖 and 𝑚𝑖 are the estimated covariance matrix and mean vectors for each class ω𝑖 in the 
training samples, |𝐶𝑖| the determinant of the covariance matrix, 𝐶𝑖

−1 the inverse of the 
covariance matrix and (𝑥 − 𝑚𝑖)𝑇 the transposed vector of (𝑥 − 𝑚𝑖). Finally, the 𝑎𝑟𝑔 𝑚𝑎𝑥 
operator dictates the class membership ω𝑖 based on the largest posterior probability with 
respect to its estimated probability density function.  

 
Chi-square threshold 
Misclassification of pixels may occur if the class distributions overlap. A threshold can be set to 
bound the maximum distance to which pixels are assigned to a class. Consequently, pixels 
outside this bound are assigned to a rejection class. The threshold rule (for equal prior 
probabilities) is defined as: 

 
𝑎𝑟𝑔 𝑚𝑎𝑥[−ln|𝐶𝑖| − (𝑥 − 𝑚𝑖)𝑇𝐶𝑖

−1(𝑥 − 𝑚𝑖)] > 𝑎𝑟𝑔 𝑚𝑎𝑥 [−𝜒2 − 𝑙𝑛|𝐶𝑖|] (6) 

 
Wherein 𝜒2 is the critical chi-square value for N degrees of freedoms (= input bands) (Swain & 
Davis, 1978). In this study, MLC models with chi-square probabilities (see table 3) of 10%, 20% 
and 50% (hereinafter referred to as MLCprobability%) were investigated apart from the base (= 0% 
probability) model (hereinafter referred to as MLCBase). For example, the MLC20% model implies 
that a pixel is classified if it falls within 80% of the class distribution or else the pixel is rejected 
The MLCBase model classify every pixel one the image, hence each pixel must belong to a class.  
 

Table 3. Reference table with critical chi-square values for eight different degrees of freedom 

Probability 1 2 3 4 5 6 7 8 

0.50 0.455 1.386 2.366 3.357 4.351 5.348 6.346 7.344 

0.20 1.642 3.219 4.642 5.989 7.289 8.558 9.803 11.03 

0.10 2.706 4.605 6.251 7.779 9.236 10.645 12.017 13.362 
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2.3.3 Decision Tree Classification 
 
Decision Trees 
Decision Trees are a non-parametric method that recursively split the feature space (e.g. 
spectral bands) based on given training samples. It tries to stratify the training data with mixed 
classes into homogeneous classes while minimizing the variance in each class (Kingsford & 
Salzberg, 2008). The algorithm aims to find the best features in the dataset that can separate the 
classes. An example of a decision tree diagram is shown in figure 4. A Decision Tree consists of a 
root node, decision nodes and leaves. The root represents the entire population or a set of 
training samples, whereas decision nodes are sub-nodes that can split into more nodes or end at 
a leaf (= final class). 
 
Decision Tree Classifier 
In this study, a supervised Decision Tree Classifier from the Scikit-Learn Python module was 
used (Pedregosa et al., 2012). The classifier has many parameters that can be tuned. A list of 
Scikit-learn parameters that were considered is listed in table 4. In this study, the Entropy was 
widely used as splitting criterion: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑏𝑖𝑡𝑠) =  − ∑ 𝑃𝑖

𝑁

𝑖=1

𝑙𝑜𝑔2𝑃𝑖 (7) 

 
Where 𝑃𝑖 is the probability of class 𝑖 appearing in a dataset with N number of classes (Zhou, 
2019). The Entropy can also be used in a spatial context for mapping the uncertainty of the MLC 
results based on the class-posterior probabilities 𝑝(ω𝑖|𝑥) (Maselli et al., 1994).  
 

 

Figure 4. Example of a decision tree diagram. Figure adapted from (Pooja et al., 2011). 

 
Table 4. Scikit-learn Decision Trees parameters considered in this study.  

Parameter name Description 
max_depth Maximum depth of tree. A larger number increases the complexity of 

the tree. 
min_samples_split Minimum number of samples required to split a node. 

max_leaf_nodes Maximum number of leaf nodes (final classes) allowed. 
min_samples_leaf Minimum number of samples required at each leaf node. 

min_impurity_decrease A purity threshold that is used when splitting a node. 
criterion The splitting criterion (Gini or Entropy). 
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Tuning a Decision Tree Classifier 
A stratified K-fold cross validation was performed to tune the Decision Tree Classifier (DTC). A 
K-fold cross-validation partitions the input data into K (=10) number of training and validation 
subsets. For each K iteration, a subset was used as validation, whereas the rest (K-1) were used 
for training the classifier (Piragnolo et al., 2017). Subsequently, the training and validation 
accuracies were computed for plotting a validation curve (see example figure 5). This validation 
curve was used to assess the influence of the training samples with increasing model complexity 
(i.e. parameter value). Attention was given to parameter values that best balance bias and 
variance. A high bias versus low variance indicates underfitting, whereas low bias versus high 
variance indicates overfitting (Scheunders et al., 2018). Note that that the parameters listed in 
table 3 were evaluated individually using the default Scikit-Learn settings.  
 

 
Figure 5. Example of a validation curve depicting training and validation accuracies (scores). Figure adapted from 

(VanderPlas, 2016)  

 
2.3.4 Image Segmentation of Principal Component Image 
 
Principal Component Transformation  
 A Principal Component Analysis (PCA) is an unsupervised method that aims to reduce 
redundant information in the data. This is done by transforming a set of intercorrelated 
variables (e.g. Sentinel-2 bands) into fewer uncorrelated random variables, namely Principal 
Components (Torbick & Becker, 2009) (see example figure 6). Each component contains a 
specific piece of information from the original image. This information can be associated with 
meaningful surface features such as land and vegetation or noise like sun-glints and clouds. 
Hence, a Principal Component image can help visually enhance floating Sargassum on the image. 
The Principal Components for N number of components (= input Sentinel-2 bands) can be 
expressed in its simplest form as (Estornell et al., 2013): 
 

𝑌𝑁 =  𝑊𝑥 =  (

𝑤1,1 ⋯ 𝑤1,𝑁

⋮ ⋱ ⋮
𝑤𝑁,1 ⋯ 𝑤𝑁,𝑁

) (

𝑥1

⋮
𝑥𝑁

) (8) 

 

Wherein 𝑊 is the transformation matrix and 𝑥 the band vector from the original data. The 
coefficients of the transformation matrix refer to the Eigenvector loadings or also known as 
Principle Component scores. The scores pertain to the direction of the components. It is also an 
estimate of the influence of the bands in each Principal Component (Gupta et al., 2013; 
Weijerman et al., 2005). The Eigenvectors are ordered by the Eigenvalues which is the 
proportion of the original information (i.e. explained variance ratio) retained in each Principal 
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Component. Hence, most of the information can be found in the first few components which 
account for the largest explained variances in the data. In this study, a Principle Component 
Analysis from the Scikit-Learn Python module was used (Pedregosa, 2012). It should be noted 
that Scikit-Learn normalizes the data by centering the components around mean of zero. 
 
Triangle based image thresholding 
A linear combination of normal random variables is normally distributed (Hearn & Metcalfe, 
1995). This is also true for Principal Components; hence PC image data are unimodal. The peak 
of such distribution represents the dominant feature in the image such as land or sea surface 
pixels (i.e. the background). Contrarily, meaningful objects like floating Sargassum are found in 
the lower tail of the distribution. In this study, an image based Triangle method from Scikit-
Image Python module (van der Walt et al., 2014; Zack et al., 1977) was used. The Triangle 
algorithm is specially designed for threshold detection of a unimodal distribution. The algorithm 
estimates the cut-off point by finding the largest distance that lies perpendicular between the 
maximum and minimum line of the histogram (see example figure 7). The histogram value at 
which the largest distance is found best separates objects from its background, resulting into 
binary image segments for example: Sargassum or non-Sargassum.     
 

 
Figure 6. Example scatterplot between two variables. The green and red lines refer to the first and second Principal 

Components. Figure adapted from (ESRI, n.d.). 

 

 
Figure 7. Example illustration of the Triangle method for determining threshold value in a unimodal distribution. Figure 

adapted from (Terletzky, 2016). 
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2.4 Accuracy assessment  
 
An accuracy assessment was done to evaluate the model and predictive performances of the 
Maximum Likelihood and Decision Tree classifiers with respect to the training samples. In this 
study, a confusion matrix (see example table 5) was used to derive several classification 
accuracies. 
 
 

Table 5. Example of a confusion matrix 

 Observed 
Sargassum Non-Sargassum 

C
la

ss
if

ie
d

 Sargassum True Positive 
(TP) 

False Positive 
(FP) 

Non-
Sargassum 

False Negative 
(FN) 

True Negative 
(TN) 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑂𝐴, 𝑀𝐴, 𝑉𝐴) =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
(9) 

 

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑃𝐴) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(10) 

 

𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑃𝐴) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(11) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝐴 ∗ 𝑈𝐴

𝑃𝐴 + 𝑈𝐴
(12) 

 
Wherein True Positive (TP)  and True Negative (TN) refer to the cost of correct classifications, 
whereas False Negative (FN) and False Positive (FP) are the cost of misclassifications (Lai & Tsai, 
2019).  
 
The overall accuracy (OA) pertains to the proportion between number of correctly classified 
samples and total number of samples. Also, this study makes a distinction between model 
accuracy (MA) and validation accuracy (VA). The model accuracy was computed based on the 
training samples to which the classifier is trained upon. The validation accuracy was acquired 
from independent external samples. Both are calculated the same way as the overall accuracy.  
 
The producer’s- and user’s accuracies describe how well the pixels are classified on an image 
and the probability that the classified pixels are indeed found in the field (Ismail et al., 2009). 
The F1 score is the harmonic mean between producer’s- and user’s accuracies. For coastal 
managers, the user’s accuracy is particularly important because they need to be certain of the 
information on the ground, for example before dispatching park rangers to the Sargassum 
affected locations.  
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2.5 Research approach and objectives 
 
The general research approach with respect to each objective is explained in this paragraph. 
Section 2.5.1. pertains to research question 1, whereas sections 2.5.2 and 2.5.3 refer to research 
questions 2 and 3, respectively. An overview of the approach is illustrated in figure 15 on page 
23.  
 
2.5.1 Classifying Sargassum on the coast and coastal waters  
 
Sampling strategy for classifying Sargassum  
A supervised classification was performed to classify Sargassum on the coast and coastal waters. 
A labelled dataset is required to train the DTC and MLC. In this study, training samples were 
collected from four Sentinel-2 imageries taken during the invasion in March 2019 (4, 9, 14 and 
19 March). Training sites covering eight classes were drawn to extract reference pixels from 
each scene. The eight classes are described in table 6.   
 

Table 6. Description of classes used in this study 

Class name Abbreviation Description 
Floating 

Sargassum 
Sf Floating Sargassum mats found on water surface 

Sargassum on 
land 

Sl Sargassum mats found stranded on the coastline 

Beach Lb Bright sand pixels on Sorobon and along the coast 
Soil Ls Brown soil pixels mostly found north of Lac Bay and 

around Lagun 
Mangrove Vm Mangrove trees found on Lac Bay and Lagun 

Other vegetation Vo Vegetation other than mangrove 
Deep water Wd Dark pixels found on deep waters 

Shallow water Ws Shallow water pixels found on Lac Bay and along the 
coast 

 
Sargassum rafts have been reported to mainly have struck the southwest part of Lac Bay and the 
inland bay area of Lagun where they accumulate on beaches. Sargassum rafts have also been 
washing off along the shoreline on the east coast of Bonaire. A 200-meter buffer surrounding the 
east shoreline of Bonaire was created to limit the extent of the study area to this region of 
interest. Greater parts of Lac Bay and Lagun were also included in this region. Figure 8 shows 
the extent of the region of interest along with some examples of the training sites.  
 
Spectral indices 
Several spectral indices to classify Sargassum were considered in this study (see table 7). 
Spectral indices can aid in class discrimination based on the sensitivity of the classes toward 
specific band wavelengths. These indices also help in reducing soil and background reflectances 
which can cause misclassifications (Fang & Liang, 2014). The indices were widely used for 
detecting seaweed (SEI, FAI), algal blooms (VB-FAH, SABI) and studying vegetations (NDVI, REP, 
GNDVI). The GNDVI is identical to the NDWI by McFeeters (1996) which is widely used for 
mapping water bodies. The Floating Algae Index (FAI) is developed by Hu (2009) for detecting 
floating Sargassum on open sea. The original FAI uses a band centered at 1240nm, but a band 
centered at 1640nm can be used as well according to Hu (2009). Additionally, Sentinel-2 band 
B8A (865nm) was investigated as an alternative for B8 (842nm) in the NDVI because the band is 
narrower (see table 2) and might be more sensitive towards certain classes.  
  



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 

15 
 

 
Figure 8. Region of interest (ROI) depicting east shoreline of Bonaire. An example false colour composite (bands 8, 3 and 

2) is shown for a scene taken on 9 March 2019. Vibrant red pixels are associated with vegetation or Sargassum. The 
training sites for Sargassum (Sf and Sl) and other classes are also displayed for multiple subsets in the ROI. Grayscale 

base map by Google Maps ®. 
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Table 7. Spectral indices considered in this study. The formulation is noted according to the Sentinel-2 band central 
wavelength (nm). 

Index Name Formulation Reference 
NDVI  Normalized 

Difference Vegetation 
Index 

(𝑅842 − 𝑅665)

(𝑅842 + 𝑅665)
 

(Rouse et al., 
1973) 

NDVI 
B8A 

“” (𝑅865 − 𝑅665)

(𝑅865 + 𝑅665)
 

“” 

REP Red-Edge Position 
705 + 35

(
𝑅665 + 𝑅783

2
) − 𝑅705 

(𝑅740 + 𝑅705)
 

(Guyot & 
Frederic, 1988) 

GNDVI Green Normalized 
Difference Vegetation 

Index 

(𝑅842 − 𝑅560)

(𝑅842 + 𝑅560)
 

(Gitelson et al., 
1996) 

FAI Floating Algae Index 𝑅842 − 𝑅665 + (𝑅1610 − 𝑅665)0.187 (Hu, 2009) 
VB-FAH Virtual-Baseline 

Floating macroAlgae 
Height 

(𝑅842 − 𝑅560) + (𝑅560 − 𝑅665)0.614 (Xing & Hu, 2016) 

SEI Seaweed Enhancing 
Index 

(𝑅865 − 𝑅1610)

(𝑅865 + 𝑅1610)
 

(Siddiqui et al., 
2019) 

SABI Surface Algal Bloom 
Index 

(𝑅865 − 𝑅665)

(𝑅490 + 𝑅560)
 

(Alawadi, 2010) 

 
Feature selection process  
All twelve Sentinel-2 bands including eight spectral indices shown in table 5 were considered as 
input features for the DTC and MLC models. The Jeffries-Matusita distance was used to calculate 
the separability between the classes with respect to each input feature. The 
Jeffries-Matusita distance uses the Bhattacharyya distance as separability measure under the 
assumption that each class is normally distributed. The Bhattacharyya distance (B) between two 
classes is expressed as (Nussbaum & Menz, 2008): 
 

𝐵 =
1

8
(𝑚1 − 𝑚2)2

2

𝜎1
2 + 𝜎2

2 +
1

2
𝑙𝑛 [

𝜎1
2 + 𝜎2

2

2𝜎1𝜎2
] (13) 

 
Where 𝑚𝑖 and 𝜎𝑖

2  (𝑖 = 1,2) are the estimated mean and variance for two arbitrary classes in the 
training samples. 
Subsequently, the Jeffries-Matusita distance (J) can be derived: 
 

𝐽 = 2(1 − 𝑒𝑥𝑝{−𝐵}) (14) 
 
This produces a separability score between 0 (not separable) and 2 (completely separable). 
Input features with high separability scores were used in the DTC and MLC models. Special 
attention was given to the separability of both Sargassum classes (Sf and Sl).  
 
Accuracy assessment of Sargassum classification 
The model- and predictive performances of the DTC and MLC models were evaluated based on 
the accuracy metrics explained in section 2.4. The classifiers were trained upon 80% of the 
training samples. These samples were randomly selected with respect to the proportion of the 
classes. The remaining 20% test subset was used to calculate model accuracies (MA).  
 
An (independent) external validation set was also used to assess the predictive performance of 
the classifiers. The validation points were collected visually from a scene taken on 18 May 2019 
(see example figure 9). A minimum of two classes is required to assess the classification 
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accuracy. It should be noted that only floating Sargassum (Sf) and non-floating Sargassum 
classes (Non-Sf) were considered in this step. 80 sample points were collected for each class. 
Sargassum on land (Sl) was not sampled and validated because it was more difficult to assess on 
the images. Contrarily, floating Sargassum (Sf) was easier to sample when inspecting images 
before and during the invasion. Non-floating Sargassum points were mostly associated with 
other coastal features or classes as defined in table 6. Additionally, clouds and cloud shadows 
were also considered as non-floating Sargassum class.  
 

 

Figure 9. Floating Sargassum (Sf) and Non-floating Sargassum (Non-Sf) validation samples for a scene taken on 18 May 
2019. The samples are overlaid on top of a false colour composite of the same scene 

Comparative analysis of Sargassum classifications 
Cross-comparison between Sargassum classified Sentinel-2 images was performed to investigate 
the robustness of the classifiers in detecting Sargassum across different scenes. Scenes taken 
from two Sargassum influx periods were investigated: 4 to 19 March and 8 to 23 May 2019. 
Additionally, scenes taken outside the invasion periods were also considered: 28 January, 12 
February, 21 August and 29 November 2019. The total area of the classification result in 
hectares (ha) was used as comparative metric. For a 10m by 10m pixel the area is expressed as: 
 

𝑇𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 (ℎ𝑎) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠

100
(15) 

 
Sargassum coverage map 
Cumulative Sargassum coverage maps were calculated for scenes taken during the invasions in 
March 2018 and 2019 (scenes taken on 4, 9, 14 and 19 March) and May 2019 (scenes taken on 8 
, 13, 18 and 23 May). A cumulative coverage map helps to allocate which part of east Bonaire is 
most impacted by the Sargassum influx. The Sargassum coverage maps were computed on a 
20m by 20m grid based on the best model in terms of classification accuracy and robustness. 
The following expression was used to calculate the cumulative coverage: 
 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 (%) =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑎𝑐𝑟𝑜𝑠𝑠 𝑠𝑐𝑒𝑛𝑒𝑠

𝐴𝑟𝑒𝑎 𝑔𝑟𝑖𝑑
(16) 

 

2.5.2 Classifying Sargassum in open sea 
 
Regions of interests on open sea 
Sargassum rafts apt to float towards the east coast of Bonaire due to the prevailing early trade 
winds. An early warning and monitoring system should be able to accurately detect floating 
Sargassum (Sf) before it reaches the shore. Floating Sargassum on open sea can take the form of 
lines or narrow slicks (Gower, 2007). Sargassum lines aligned with the wind direction are called 
“windrows”. These windrows are commonly found in Brazil and near the Caribbean Islands 
according to Ody et al. (2019). This phenomenon might pose a challenge for satellite-based 
monitoring systems if the slicks are sparsely distributed and most of the reflectance is 
attenuated by water. In this study, floating Sargassum for different sea states and cloud 
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conditions were investigated. Seven subsets from scenes taken on 4 March 2018, 4 and 9 March, 
28 April 2019 were selected. Large abundance of floating Sargassum rafts were especially 
observed on 4 March 2018. An overview of the sea region of interest and the selected subsets 
are shown in figure 10. It should be noted that the subsets were cropped from two different tile 
IDs namely: T19PEP (tile covers entire Bonaire) and T19PFP (tile covers eastern seas).  
  
Unsupervised classification methods 
Two different unsupervised methods to classify floating Sargassum were explored namely:  
density slicing of a spectral index image and PCA in combination with Triangle thresholding. In 
this part of the study, the Green Normalized Difference Index (GNDVI) was preferred over eight 
other indices listed in table 5 (see paragraph 2.5.1). The GNDVI utilizes the water penetrating 
green band (B03 at 560nm), hence it was presumed to be able to detect partially submerged 
Sargassum in water more effectively. The GNDVI uses native 10m resolution bands (B08 and 
B03), thus having the advantage in detecting smaller patches. The NDVI and VB-FAH were not 
considered since it uses the red band (B04 at 665nm) which is sensitive to turbid water 
(Bustamante et al., 2009; Dogliotti et al., 2015) and may cause misclassification. Also, the NDVI is 
prone to variable environmental and observing conditions such as clouds and viewing angle (Hu, 
2009).  
 

 
Figure 10. Subsets of image enhanced false colour composites depicting floating Sargassum (arrows) on greater east sea 
of Bonaire. The subsets are zoomed in to reveal Sargassum rafts more clearly. The dashed lines on the mini map show to 
which extent the two tiles T19PEP (tile covers entire Bonaire) and T19PFP (tile covers eastern seas) overlap each other. 

Mini map by Google Maps ®. 
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GNDVI images were derived for each subset and the most suitable threshold value to segment 
the image was defined based on image interpretation. The threshold value indicates the 
minimum GNDVI value to separate Sargassum patches from the background (i.e. water surface, 
clouds and other noise). Attention was given to the sea state and cloud condition in each scene, 
which affect the visibility of Sargassum slicks on the water surface. The results of this method 
are referred to as GNDVISlice hereinafter.  
 
A PCA with five components was performed for each subset. All Sentinel-2 bands, except B01 
(443nm), B09 (945nm) and B10 (1375nm) were used as input images in the analysis. These 
bands were not used due to their coarse spatial resolution (60m) and sensitivity towards water 
vapor which limit the detection of Sargassum on open sea. Subsequently, the principal 
component images were visually inspected for each subset. Special attention was given to the PC 
images that support high contrast between floating Sargassum and the background (i.e. water 
surface, cloud and other noises). These images were then segmented using Triangle 
thresholding. The results of this method are referred to as PCATriangle hereinafter. 
 
Comparative analysis of floating Sargassum on open sea 
Cross-comparison between Sargassum classified Sentinel-2 images was performed to investigate 
the robustness of the unsupervised GNDVISlice and PCATriangle methods in detecting Sargassum 
across different scenes. Additionally, the supervised DTC and MLC models were also used to 
classify Sargassum on open sea. The total area (equation 15) of each classification result was 
used as comparative metric.  
 
Scalability of classification methods 
The performances of the GNDVISlice, PCATriangle, DTC and MLC classification methods were tested 
for larger subsets. The same scenes taken on 4 March 2018, which include Sentinel-2 tile IDs 
T19PEP and T19PFP, were classified. Note that subsets A and B from 4 March 2018 were part of 
the scene with tile ID T19PEP, whereas subset C was part of tile ID T19PFP. A false colour 
composite of the subsets combined is shown in figure 11. The two tiles overlap each other; 
hence each tile was classified individually and then merged using first layer priority. 
Subsequently, the total areas of the classification results were compared. It should be noted that 
the land and coastline, up to 200-meter into the sea, was masked from the final classification 
result.  
 
Additionally, the best classification method in terms of robustness was compared with the 
Adapted Floating Algae Index (AFAI) product from the Sargassum Watch System (SaWS) 
(University of South Florida Optical Oceanography Lab, n.d.). The Sargassum Watch Systems 
provide a general outlook of floating Sargassum condition in the Caribbean and central West 
Atlantic using a Moderately Resolution Imaging Spectroradiometer (MODIS) sensor among 
others. The original FAI, investigated for coastal waters (see paragraph 2.5.1), is sensitive to 
clouds. Hence, the AFAI was developed by Wang and Hu (2016) for MODIS data only. The AFAI is 
calculated by using MODIS 1000m spatial resolution spectral bands centered at 667nm, 748nm, 
869nm.  
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Figure 11. Combined false colour composites of two scenes taken on 4 March 2019 with tile IDs T19PEP and T19PFP. 
Large Sargassum rafts float at about 30km from the east coast of Bonaire. Image enhancement was applied on each 

scene to emphasize floating Sargassum. The white dashed lines indicate up to where the two tiles overlap. The sea region 
of interest is 59 km by 32 km large. 

 
2.5.3 Classifying seagrass in Lac Bay 
 
Sampling strategy for classifying seagrass 
Lac bay supports an extensive habitat for seagrasses. Four seagrass native species can be found 
in the lagoon: Thalassia testudinum (turtle grass), Syringodium filiforme (manatee grass) 
Halodule beaudettei (shoal grass) and Ruppia maritima (wigeon grass). The most dominant 
species in Lac Bay are turtle and manatee seagrasses. Since 2010, an invasive and fast growing 
seagrass species Halophila stipulacea (halophila) was also observed (Engel, 2013). Figure 12 
shows an example of turtle grass and halophila. In this part of the study, supervised 
classifications (DTC and MLC) were explored for mapping seagrass distribution regardless of 
species.  
 

  
Figure 12. Example photos of turtle grass (left picture) and halophila (right picture). Photos by Marjolijn Christianen, 

retrieved from (Christianen, 2015).   

 
Training samples were collected from three Sentinel-2 scenes taken on 8 and 28 January and 12 
February 2019 (see example figure 13). Training sites covering two classes: seagrass and non-
seagrass were drawn to extract reference pixels from each scene. Special attention was given to 
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dark patches, which are most likely associated with seagrass. Dark patches found on the east 
part of Lac Bay are known coral reefs, hence these were defined as non-seagrass.  
 
Additionally, annual seagrass monitoring data from 2019 by STINAPA Bonaire was used as 
reference. This data contains seagrass coverage of four species in Lac Bay: shoal grass, halophila, 
manatee grass and turtle grass. The seagrass coverage was sampled at 49 different locations at 
equi-distance interval. The measurements were done based on six 1m2 quadrants (Verweij, 
2018), thus each quadrant may contain mixed species. The samples were collected at multiple 
dates between 10 January and 18 February 2019.  
 

 

  
Figure 13. Location of training sites for a scene taken on 8 January 2019. Sea grass observations and training sites are 
overlaid on top of a true colour composite (bands 4, 3 and 2). Seagrass observations are only shown for several subsets 

for clarity. The observations are annotated with the mean seagrass cover (%) at each point. 

 
Selected bands for mapping seagrass 
Remote sensing of water bodies is more challenging than on land since water bodies absorb and 
transmit radiation. Clear water can only reflect about 10% of the incoming radiation (see figure 
14). Reflected radiance is more attenuated in turbid waters. Besides, infrared radiance is fully 
attenuated by water, resulting into dark pixels on the image. Consequently, only spectral bands 
in the visible spectrum are suitable for shallow water remote sensing. In this part of the study, 
the red (B04 at 665nm), green (B03 at 560nm) and blue (B02 at 490nm) bands from Sentinel-2 
data were used as input features for the DTC and MLC models.  
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Figure 14. Typical spectral signatures of water and land features. Figure adapted from (Dalezios, 2013).  

 
Accuracy assessment of seagrass classification  
The model and predictive performances of the DTC and MLC models were evaluated based on 
the accuracy metrics explained in section 2.4. The classifiers were trained upon 80% of the 
training samples. These samples were randomly selected with respect to the proportion of the 
classes. The remaining 20% test subset was used to calculate model accuracies (MA).  
 
In this part of the study, the 2019 seagrass monitoring data was used as external validation set 
to assess the predictive performance of the classifiers. It should be noted that the seagrass 
observations are labelled according to the mean coverage at each point. Points with a mean 
coverage greater than 0% were labelled as seagrass, else it was labelled as non-seagrass. A scene 
taken on 4 March 2019 was classified and validated accordingly.  
 
Comparative analysis of seagrass distribution  
Cross-comparison between Sargassum classified Sentinel-2 images was performed to investigate 
the robustness of the classifiers in mapping seagrass across different scenes.  
Four different Sentinel-2 scenes taken on 8 January, 4 March, 21 August and 11 November 2019 
were classified for seagrass and non-seagrass bottom types. Note that the scene taken on 4 
March marks the start of the Sargassum influx in that month. The total classified area was used 
as comparative metric (see equation 15).  
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Figure 15.  Flowchart diagram illustrating the general approach and objectives of this study. 
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Chapter 3 Results 
 
 

3.1 Classification of Sargassum on the coast and coastal waters 
 

3.1.1 Sampled dataset for Sargassum classification 
 
Resampled dataset 
Reference pixel values from multiple training sites covering eight predefined classes were 
obtained. The pixel values were sampled from four Sentinel-2 scenes taken during the 
Sargassum influxes on 4, 9, 14 and 19 March 2019. Class-imbalance was found in the collected 
samples, hence randomized undersampling was performed to create a more balanced dataset. 
This was done with respect to the sample size of the floating Sargassum (Sf) class, which was 
well represented on the image. Classes with sample sizes smaller than the floating Sargassum 
class were left intact. The resampled dataset was used for training the classifiers and further 
analyses in this study. Appendix 1 shows an overview of the training dataset before and after 
resampling. The band covariance matrices of the two Sargassum classes (Sf and Sl) are also 
given in this Appendix. The total number of samples in the resampled dataset is 4125 in which 
floating Sargassum (Sf) and Sargassum on land (Sl) accounts for 16.35% and 3.25% of the 
dataset, respectively.  
 
Spectral signature  
A spectral signature plot of each class is given in figure 17. Overall, the beach (Lb) has the 
highest reflectance compared to other classes. Deep waters (Wd) absorb most of the incoming 
light, hence they have a lower reflectance compared to shallow waters (Ws). Most of the visible 
light, especially blue and red (B02 and B03), is reflected from the bottom surface in the shallow 
waters of Lac Bay. Floating Sargassum (Sf) has a lower mean reflectance compared to Sargassum 
on land (Sl). Sargassum on land has a similar spectral curve as terrestrial vegetation (Vo and 
Vm), especially in the near-infrared spectrum between 740nm - 954nm (B06 -B09). However, it 
should be noted that B01 and B09 are in 60m resolution. Samples taken at Sorobon beach were 
adjacent to the water which may affect the spectral signature of these coarse resolution bands. 
Furthermore, most of the classes seem to separate well with B11.  
 
3.1.2 Best input features for Sargassum classification   
 
Heatmaps showing all the Jeffries-Matusita scores of all twelve bands and eight indices are given 
in Appendix 2. Based on these scores, the NDVI, REP, B05 and B11 were selected as the best 
input features for the DTC and MLC classifiers. The NDVI can separate Sargassum from land (Ls 
and Lb) and water (Ws and Wd) classes very well, whereas REP and B05 are suitable for 
discriminating Sargassum on land from mangroves (Vm) and other vegetations (Vo). 
Additionally, B11 provides a high separability score between floating Sargassum, Sargassum on 
land and other vegetations.  
 
The distribution of each feature and class is shown in figure 17. It was observed that a few 
classes have unimodal distributions but do not entirely resemble Gaussian bell curves. Floating 
Sargassum has a distinct mean value at around 703nm and 0.05 for REP and B11 features, 
respectively. Persisting overlap exists between mangrove and both Sargassum classes. This is 
mostly caused by a large variance in the mangrove sample. This characteristic is less 
pronounced in the REP feature as also suggested by the separability score (Vm-Sf = 1.2 and Vm-
Sl = 1.5) in appendix 2. Overlap also exists between Sargassum on land and soil (Ls) on most 
features except NDVI.  
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Figure 16.  Spectral signature plot of each class sampled from the coast of Bonaire. The mean reflectance value is plotted 

in this figure.  
 
 

 
Figure 17. Distribution of each class and input feature. The classes (Sf, Sl, etc.) are displayed on the y-axis, whereas the x-

axis illustrates the distribution of the input features NDVI, REP, B05 and B11. 
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3.1.3 Sargassum classification accuracy 
 
Tuning Decision Tree Classifier for classifying Sargassum   
The DTC was tuned using the resampled dataset prior to image classification. The training 
samples were stratified randomly split into 80% training (=3300 samples) and 20% test (=825 
samples) sets. Subsequently, six Decision Tree parameters were investigated and cross validated 
individually using the default settings in Scikit-learn. The cross-validation results and DTC 
model are shown in Appendix 3. Attention was given to parameter values that best balance bias 
and variance. Entropy was selected for split criterion instead of the Gini index due to its lower 
variance. Subsequently, the rest of the parameters were cross validated with Entropy. The most 
important splitting features in the Decision Tree model were NDVI and B11.  
 
Model and predictive performances in classifying Sargassum 
The model and predictive performances of the DTC and MLC in classifying Sargassum were 
evaluated. MLC models with probabilities of 10%, 20% and 50% were tested next to the base 
model (section 2.3.2). A degree of freedom equal to 4 (=number of input features) was used to 
select the critical value from the Chi-square distribution table for each probability (see section 
2.3.2). The model performances were evaluated based on the training and test sets (80:20). 
Additional floating Sargassum (Sf) samples were collected from a scene taken during another 
Sargassum invasion on 18 May 2019. This dataset was used as external validation to test the 
classifiers predictive performances. Appendix 4 summarizes the model and validation accuracy 
results for classifying Sargassum and other coastal features. Figure 18 shows a comparison 
between their overall accuracies along with the F1-scores of Sargassum. 
  

 
Figure 18. Comparison between model and validation accuracies of the DTC and MLC models in classifying Sargassum 
and other coastal features. The F1-scores of Sargassum are also plotted in this figure. Note that the model accuracy is 

based on all 8 classes in the sampling scheme, whereas the validation accuracy from 18 May 2019 is based on Sargassum 
and Non-Sargassum classes only.   

Based on the training and test sets, the DTC achieved an overall model accuracy of 92%. The 
MLC models yielded higher accuracies between 95% and 98% with increasing probabilities. It 
should be noted that internally the restricted MLC models introduce a rejection class which was 
not included in the accuracy assessment. Both the model accuracy and F1-Score of floating 
Sargassum (Sf) produce comparable results. The DTC yielded an overall validation accuracy of 
85%. The MLC10% produced the highest accuracy of 88% compared to other MLC models. 
Greater probabilities than 10% did not improve the overall accuracy nor F1-score of floating 
Sargassum (Sf).   
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An example classification result is shown in figure 19. The estimated probabilities of both 
floating Sargassum (Sf) and Sargassum on land (Sl) are also given in this figure. Based on the 
classification, it was observed that the DTC and MLC20% shows comparable results in detecting 
floating Sargassum. Many pixels along the coastline were classified as Sargassum on land, which 
is less pronounced in the restricted MLC models. Moreover, misclassification of Sargassum on 
land was noticeable at the fringes of a floating Sargassum raft. The probability map of Sargassum 
on land (referred to as p (Sl | X)) also suggested slightly higher values at this location. This effect 
is not visible in the MLC50% model in this example but was expected to occur to some degree in 
other situations since both Sargassum classes are ambiguous (see figure 17). 
 

 
Figure 19. Sargassum classification examples for the validation scene taken on 18 May 2019. An example subset located 
north of Lagun is shown in this figure. The MLC posterior probabilities p (Label | X) are given on the third row. A closeup 
of the subset shows noticeable overlap between the two Sargassum classes. Grayscale image and false colour composite 

(FCC) are based on the same scene.  
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3.1.4 Robustness of classifiers in classifying Sargassum  
 
Cross-comparison of Sargassum classified areas  
A cross-comparison between Sargassum classified Sentinel-2 images was performed to 
investigate the robustness of the classifiers in detecting Sargassum across different scenes. 
Scenes taken from two Sargassum influx periods were investigated: 4 to 19 March and 8 to 23 
May 2019. Additionally, scenes taken outside the invasion periods were also considered: 28 
January, 12 February, 21 August and 29 November 2019. During the study it was observed that 
persisting misclassification occurs between Sargassum and surface features such as deep waters, 
dead mangrove stands, (dark) mangrove fringes and clouds. Therefore, a mask was applied on 
the Sargassum classification results to exclude false positive pixels from a few mangrove areas 
(see appendix 5). A mask was also applied on the Sargassum on land classification to retain 
classified pixels around 25m from the coastline. No masks were created for water surfaces and 
clouds since these phenomena vary per scene.   
 
The DTC and MLC models were used to predict and calculate the total area of Sargassum for each 
scene. The results are presented in figure 20 for floating Sargassum (Sf) and Sargassum on land 
(Sl). Two example classifications (without false positive masks) from 8 and 13 May 2019 are 
shown in figures 21 and 22 for subsets of Lagun and Lac Bay, respectively.  
 
 

 

Figure 20. Sargassum (Sf and Sl) total classified area (ha) for various scenes taken during and outside the invasion 
periods. X-axis labels highlighted in red pertain scenes taken during the invasion. The black horizontal dashed lines on the 

y-axis indicate the means between the MlCBase and other models. The bottom row shows the total classified area by all 
models except MLCBase. The black arrow indicates an observed trend in Sargassum on land (Sl) during the March invasion. 

  



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 

29 
 

 
Figure 21. Comparison between DTC and MLC Sargassum classified scenes taken on 8 May 2019 for a subset of Lagun. 

Grayscale image and false colour composite (FCC) are based on the same scene. 

 

 
Figure 22. Comparison between DTC and MLC Sargassum classified scenes taken on 13 May 2019 for a subset of Lac Bay. 
A false colour composite from 8 May 2019 is also shown for a specific Sargassum affected mangrove site. Grayscale image 

and false colour composite (FCC) are based on the same scene. 
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Performance in classifying floating Sargassum  
Based on the graphs and maps in figures 20, 21 and 22, it was evident that the MLCBase model 
overestimated the classification of both Sargassum classes. This is mostly caused by aforesaid 
deep water and cloud (edges) pixels. The DTC and restricted MLC models were able to avoid 
these false positives more effectively. The average areal difference between the MLCBase and 
other models was about 47 hectares across all scenes. It is also noticeable that floating 
Sargassum (Sf), washed up ashore and into mangrove stands (see figure 21), is grossly 
misclassified as Sargassum on land (Sl). This effect is more pronounced in the DTC model than in 
other MLC models.  
 
Furthermore, multiple peaks were observed on 9 and 14 March, 8 and 18 May based on the 
restricted MLC models. Next to these dates, notable peaks were also observed outside the 
invasion periods on 12 February and 29 November by the DTC model. Upon closer inspection, it 
was found that these peaks were mostly caused by misclassification of cloud edges as shown in 
the example in figure 23. The MLC20% model was found to be more robust in detecting floating 
Sargassum (Sf) while minimizing false positive errors across different scenes.  
 

 
Figure 23. Comparison between DTC and MLC20% classification results for a scene taken on 12 February 2019. A subset 
showing misclassification of clouds and deep-water pixels is illustrated in this figure. Grayscale image and false colour 

composite (FCC) are based on the same scene. Mini map by Google Maps ®. 

 
Performance in predicting Sargassum on land  
Sargassum on land (Sl) was found to be more difficult to classify since the classifiers apt to 
confuse with land (Ls and Lb) and floating Sargassum (Sf) as suggested in figures 21 and 22. 
Based on figure 20, the DTC model shows noticeable peaks on 14 March and 18 May which were 
less prominent in the restricted MLC models. As floating Sargassum (Sf) continues to wash up 
ashore during the first few weeks of the invasion periods, it is very likely that many Sargassum 
rafts accumulated on land which the classifiers detected as said peaks. This trend is mostly 
noticeable for the Sargassum invasion in March. However, it should be noted that most models 
still overestimated Sargassum on land (Sl) outside the invasion periods. The MLC50% model was 
found applicable in minimizing these false positive errors. Sargassum on land (Sl) was mostly 
misclassified along the coastlines (see figures 19 and 21). Most of the northern coastlines of 
Bonaire are cliffed, hence Sargassum is less likely to accumulate at this site.  
 
Possibility of Sargassum detected outside invasion period 
Based on previous Sargassum events in earlier 2019 and 2018, it was observed that massive 
Sargassum beaching seems to recur around March in Bonaire. According to the Satellite-based 
Sargassum Watch System (SaWS) outlook bulletin (University of South Florida, n.d.), a large 
amount of Sargassum was detected with MODIS, among other sensors, in the Caribbean Sea in 
January and August 2019. The amount of Sargassum was found to be substantially reduced in 
November. Therefore, the possibility of small patches of Sargassum reaching Bonaire’s coastal 
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region outside the invasion period cannot be disregarded. In fact, the classifiers were presumed 
to have detected small Sargassum rafts (see example in figure 24) along the shorelines on 12 
February and 21 August 2019. These rafts were visible floating a few tens of meters away from 
the northeastern coast near Lagun.  
 

 
Figure 24. Possible Sargassum strandings in February and November 2019 detected by the DTC and MLC20% models. The 

white arrows indicate small Sargassum patches. Grayscale image and false colour composite (FCC) are based on the same 
scene. Mini map by Google Maps ®. 

 

3.1.5 Sargassum coverage maps 
 
Cumulative Sargassum coverage maps were calculated for scenes taken during the invasions in 
March 2018 and 2019 (4, 9, 14 and 19 March) and May (8 ,13, 18 and 23 May) 2019. A 
cumulative coverage map helps to allocate which part of east Bonaire is most impacted by the 
Sargassum influx. The floating Sargassum coverage maps were computed on a 20m by 20m grid 
based on the classification results of the MLC20% model. Despite the uncertainty of the MLC 
classifier in detecting Sargassum on land (Sl), a coverage map was also calculated for this class 
using the MLC50% model. The same false positive masks shown in Appendix 5 were applied on 
the final coverage maps. The Sargassum coverage maps are shown in figures 25 and 26 for 
subsets of Lac Bay and Lagun, respectively. False colour composite series of the same subsets are 
shown in appendix 6.  
 
The Sargassum coverage maps suggest that most Sargassum rafts float towards the southwest 
mangrove area in Lac Bay. These rafts were also observed to drift towards a few isolated 
mangrove trees (see appendix 6 and figure 25) located slightly north of this affected mangrove 
area. The northern mangrove area was found to be classified as floating Sargassum (Sf) as well. 
Furthermore, it is noteworthy that clusters of Sargassum on land pixels were mostly found next 
to floating Sargassum.  
 
The total Sargassum coverage area during each scene was calculated and presented in table 8. 
Note that the results from 2019 were presented before in figure 20 in section 3.1.4. About 18.79 
hectares of floating Sargassum (14.37 ha) and Sargassum on land (4.42 ha) were detected in the 
study area during the first three weeks of March 2018. This amount had doubled to 39.09 
hectares in March 2019, whereas about 26.35 hectares Sargassum were detected in May in the 
same year.    
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Table 8. Total area (ha) classified as Sargassum (Sf and Sl) for scenes taken during the invasions in 2018 and 2019. 

 
  

Date Sf  Sl  Date Sf  Sl  Date Sf  Sl  
2018-03-04 4.10 2.31 2019-03-04 2.07 1.57 2019-05-08 6.65 0.98 
2018-03-09 5.73 1.3 2019-03-09 13.11 1.96 2019-05-13 3.65 0.29 
2018-03-14 1.56 0.06 2019-03-14 13.55 3.76 2019-05-18 8.05 1.09 
2018-03-19 2.98 0.75 2019-03-19 2.63 0.44 2019-05-23 4.15 1.49 

Total 14.37 4.42 Total 31.36 7.73 Total 22.5 3.85 
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Figure 25. Sargassum coverage maps of Lac Bay during the invasion in March 2018 and March and May 2019. The Sargassum cover was calculated for a 20m x 20m grid. The cover map is 

displayed on top of a grayscale base map by Google Maps ®. The black arrow indicates the location of individual mangrove tree stands. 
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Figure 26. Sargassum coverage maps of Lagun during the invasion in March 2018 and March and May 2019. The Sargassum cover is calculated for a 20m x 20m grid. The cover map is 

displayed on top of a grayscale base map by Google Maps ®. 
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3.2 Classification of Sargassum in open sea 
 

3.2.1 Segmentation of spectral index images by density slicing 
 
Floating Sargassum (Sf) on open sea was classified through density slicing of Green Normalized 
Difference Index (GNDVI) image data. Seven subsets from scenes taken on 4 March 2018, 4 and 9 
March, 28 April 2019 were investigated (figure 10). GNDVI images were derived from each 
subset and the most suitable threshold value to segment the image was defined based on image 
interpretation. The threshold value indicates the minimum GNDVI value to separate Sargassum 
patches from the background (i.e. water surface, clouds and other noise). Attention was given to 
the sea state and cloud condition in each scene, which affect the visibility of Sargassum slicks on 
the water surface.  
 
The GNDVI distribution of each subset is presented in figure 27 along with the position of the 
selected threshold. Two groups of GNDVI values were identified based on the sea state. A GNDVI 
value between -0.25 and -0.30 was found suitable for detecting Sargassum patches in calm dark 
waters. The presence of sun-glint, whitecaps and clouds shift the recognition of these patches 
towards positive values. A GNDVI threshold value around 0.05 was found to be more applicable 
in such noisy scenes. Floating Sargassum pixels have a low frequency in the image compared to 
water pixels, hence they are often found in the tail of the histogram.  
 

 
Figure 27. GNDVI distribution of each subset including the defined position of the threshold in red. The black circle 

indicates the presence of cloud in a GNDVI image. The y-axes are limited to 1% and 0.5% of the data for scenes with calm- 
and rippled waters, respectively. 
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3.2.2 Segmentation of principal component images by Triangle algorithm 
 
Selected principal component images 
Principal Component Analysis was performed for seven different subsets located on open sea. 
Each PC image was visually inspected, and the best PC image that provides high contrast 
between floating Sargassum and the background was selected. The selected PC images are 
shown in figure 28. During image inspection, it was observed that PCs 1 and 2 reveal the most 
Sargassum patches in dark calm waters with some clouds in the scene. The presence of clouds 
sun-glint, and whitecaps shift the recognition of Sargassum towards PCs 4 and 5.  
 

 
Figure 28. Selected Principal Component images to be used as input for the Triangle algorithm. Contrast stretching was 

applied on each image to emphasizes floating Sargassum in white. The yellow arrow indicates where Sargassum patches 
are revealed behind a thin layer of cloud. The red arrow indicates where image striping occurs. 

 
Principal component scores 
Table 9 shows the principal component score of each input band across different subsets. An 
image band with a component score close to -1 or 1 has a significant influence on that 
component, whereas a score close to 0 shows a weak influence. It is noteworthy that most Red-
Edge bands B05 to B8A (705nm to 865nm) have large positive scores (0,18 to 0.47) for PCs 1 
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and 2 for scenes with dark calm waters. This is most likely associated with strong reflection of 
floating Sargassum which is indicated as bright pixels in the PC images in figure 28.  
In general, the visible bands (4, 3 and 2) and shortwave infrared bands (11 and 12) were found 
less significant for enhancing floating Sargassum on the water surface.  
 
Sargassum patches obscured by thin layer of clouds (figure 10, section 2.5.2) were observed in 
subset C for a scene taken on 4 March 2018. These patches were greatly enhanced (bright pixels) 
in PC image 2. The cloud pixels in this PC image appear dark, which corresponds to large 
negative component scores in the visible and shortwave infrared bands (PC 2 in table 9).  
 
Furthermore, it was observed that clouds, sun-glint and whitecaps are associated with bright 
pixels, apart from floating Sargassum, in PC images 4 and 5 for subsets with rough waters. Large 
positive scores (0.60 to 0.78) were found for near-infrared band B08 (at 842nm) across these 
subsets, which indicate strong reflection by floating Sargassum. Other Red-Edge bands were 
found less significant for enhancing floating Sargassum on rough waters, but this varies per 
subset. It should be noted that the Red-Edge bands, except band B08 (=10m), have a 20m spatial 
resolution. Consequently, a large portion of the pixels might be dominated by water which 
attenuates most of the surface reflectance in the Red-Edge spectrum.  
 
Table 9. Principal component score (Eigenvector loading) of each input band across different subsets. Positive scores are 

highlighted in green, whereas negative scores are in red. Scores close to zero are highlighted in yellow.

 Band PC 1 PC 1 PC 2 PC 4 PC 5 PC 4 PC 5 

B02 0,09 0,04 -0,31 -0,54 -0,28 -0,44 -0,51 

B03 0,18 0,16 -0,17 0,27 -0,45 0,08 -0,05 

B04 0,17 0,14 -0,21 -0,40 0,01 -0,36 -0,30 

B05 0,40 0,39 0,18 0,02 0,24 0,20 0,10 

B06 0,44 0,44 0,30 0,11 0,10 0,22 0,08 

B07 0,46 0,47 0,36 0,13 -0,06 0,21 0,02 

B08 0,43 0,45 0,33 0,61 0,76 0,60 0,78 

B8A 0,41 0,42 0,28 0,07 -0,20 0,09 -0,08 

B11 0,10 0,05 -0,45 -0,19 0,01 -0,21 0,07 

B12 0,07 0,04 -0,43 -0,19 -0,17 -0,34 -0,06 

Subset 
2018-03-

04 A 
2018-03-

04 B 
2018-03-

04 C 
2019-04-

28 A 
2019-04-

28 B 
2019-03-

04 
2019-
03-09 

Sea 
state 

Calm 
water 

Calm 
water 

Calm 
water 

Rough 
water 

Rough 
water 

Rough 
water 

Rough 
water 

Cloud 
Some 
clouds 

Some 
clouds Cloudy Cloudy Cloudy 

Cloud 
free 

Cloud 
free 

 
Principal component thresholding results 
The Triangle algorithm was carried out to automatically calculate the threshold value from the 
histogram of each PC image. Appendix 7 shows the distribution of each PC image along with the 
position of the threshold. Values greater than this threshold are associated with floating 
Sargassum. It is noteworthy that these values are positive as indicated by the bright floating 
Sargassum pixels in figure 28.  
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3.2.3 Robustness of different classification methods in classifying Sargassum in open sea 
 
Cross-comparison of floating Sargassum classified areas 
The classification performances between the GNDVISlice and PCATriangle were compared with those 
from the supervised classifiers (DTC and MLC). The MLCBase model was found to be applicable on 
open sea for both rough and dark calm waters. The total area of each classification was 
calculated for each subset. The results are presented in figure 29. Figures 30 and 31 show two 
example results for scenes taken on 4 March 2018 (calm waters) and 4 March 2019 (rough 
waters). 
 

 
Figure 29. Floating Sargassum classified area (ha) for various scenes taken on east sea of Bonaire. X-axis labels are 

annotated with the observed sea state and cloud condition in each subset. 
 
 

 
Figure 30. Floating Sargassum (Sf) classification results on calm sea for a scene taken on 4 March 2018 (subset C). Four 
classification methods were tested: DTC, MLCBase, PCATriangle and GNDVISlice. An image enhanced false colour composite 
(FCC) is shown as reference. The PCATriangle and GNDVISlice results are overlaid on top of a black background for clarity. 

Base map by Google Maps ®. 
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Figure 31. Floating Sargassum (Sf) classification results on rough sea for a scene taken on 9 March 2019. Four 

classification methods were tested: DTC, MLCBase, PCATriangle and GNDVISlice. An image enhanced false colour composite 
(FCC) is shown as reference. All classification results are overlaid on top of a black background for clarity. The yellow 

rectangle indicates sparsely distributed Sargassum slicks. Base map by Google Maps ®. 

 
Performance in classifying floating Sargassum on calm waters 
Based on figure 30, it was evident that most methods can detect large dense Sargassum rafts on 
calm waters effectively. The DTC was the least effective out of the four methods. For example, 
the DTC detected about 102 hectares of floating Sargassum on average for subsets taken on 4 
March 2018 (subsets A, B and C). The MLCBase, GNDVISlice and PCATriangle methods show 
comparable results for these subsets and detected about 210 hectares on average. However, it 
should be noted that the MLCBase model grossly overestimate cloud and cloud edge pixels as 
floating Sargassum (Sf) and few other classes (Vm and Ls). Other classification method were also 
found susceptible to clouds to a certain degree. Besides, sparsely distributed patches are often 
misclassified as deep water (Wd) pixels by the DTC and MLCBase models. It is also noteworthy 
that the DTC and MLCBase models do not misclassify floating Sargassum (Sf) as Sargassum on 
land (Sl) on open sea, which was more apparent on coastal waters (see section 3.1.4).  
 
Performance in classifying floating Sargassum on rough waters 
Floating Sargassum on rough waters has the tendency to stretch into long and sparsely 
distributed slicks. Consequently, Sargassum patches may appear like speckles on the classified 
image. For example, the slicks at the bottom right corner of figure 31 (yellow rectangle) are 
almost undetectable. The PCATriangle method was found more effective in revealing such 
Sargassum slicks compared to other methods. Moreover, persisting misclassification of clouds 
(edges) by MLCBase model were also noticeable in figure 31. 
 
Robustness of different methods in handling image artefact 
Inter-band parallax (see figure 32) was observed on a scene taken on 4 March 2018. It is a type 
of systematic error caused by overlapping odd and even detectors inside the Multispectral 
Instrument onboard Sentinel-2. Consequently, each spectral band may observe moving objects 
(i.e. clouds or airplanes) at a different time which shows as relative displacement of image pixels 
(Frantz, 2018). The PCATriangle method was found to be the most susceptible to such image 
artefact.  
 
The odd and even detectors also have slightly different viewing angles which cause spectral 
response non-uniformity near the detector boundaries (Markuse, 2017). This is mostly apparent 
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as a near vertical striping in the image. As a result, each half of the image records a different 
intensity of radiance. An example of image striping is shown in figure 33 for a scene taken on 28 
April 2019 (rough waters). This image artefact was also noticeable in other PC images in figure 
28. Both PCATriangle and GNDVISlice were prone to misclassify this detector boundary as floating 
Sargassum (Sf). This explains the peak (247 hectares) detected by the PCATriangle method for a 
scene taken on 28 April 2019 (subset A). Other methods detected less than 100 hectares for the 
same scene. 
 

 
Figure 32. Inter-band parallax artefact found on a subset taken on 4 March 2018 with tile ID T19PEP. The classification 
results of the four methods: MLCBase, DTC, GNDVISlice and PCATriangle are depicted in this figure along with the true colour 
(RGB) and false colour composites (FCC). The typical rainbow colour in the RGB composite reveals the displacement in 

each band. 

 
Figure 33. Image striping found on a subset taken on 28 April 2019. Four classification methods were tested: DTC, 

MLCBase, PCATriangle and GNDVISlice. An image enhanced false colour composite (FCC) is shown as reference. The 
PCATriangle and GNDVISlice results are overlaid on top of a black background for clarity. The white arrows indicate, 

though very faintly, where image striping occurs. Base map by Google Maps ®. 
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3.2.4 Scalability performances  
 
Scene selection for large scale floating Sargassum classification  
The scalability of the four previously mentioned classification methods was tested for a larger 
sea region east of Bonaire. Two previously investigated scenes (calm dark waters) taken on 4 
March 2018, which include Sentinel-2 tile IDs T19PEP (tile covers entire Bonaire) and T19PFP 
(tile covers eastern seas), were classified using GNDVISlice, PCATriangle, DTC and MLCBase methods.  
 
Threshold selection for Green Normalized Difference Index 
The increased spatial extent leads to greater scene disturbances such as clouds and specular 
reflection. Therefore, a GNDVI threshold of 0.0 was used for both scenes instead of a value 
between -0.25 and -0.30 that was proposed in section 3.2.2. for dark calm waters.  
 
Selected principal component images for larger subsets 
The increased spatial extent also affects the Principal Component Analysis of the ten input 
Sentinel-2 bands. Initially, PC images 1 (subsets A and B 4 March 2018) and 2 (subset C 4 March 
2018) were selected in paragraph 3.2.2 for smaller subsets. However, during visual inspection it 
was found that PC 3 (tile ID=T19PEP) and 2 (tile ID=T19PFP) show better contrast between 
floating Sargassum and open water for larger subsets. The principal component scores of the 
subsets are shown in table 10. Large positive scores (0.29 to 0.39) are found in the Red-Edge 
bands B06 to B8A (740nm to 865nm), which indicate strong reflection of floating Sargassum and 
land vegetation.   
 
Cloud mask creation 
The classification results of both scenes were merged (first layer priority). Based on the outcome 
of paragraph 3.2.3, it was found that most methods were susceptible to clouds. Masking these 
clouds is crucial for effectively calculating the areal coverage of floating Sargassum on open sea. 
This was not performed in previous paragraphs since the standard Level-2 Sentinel-2 cloud 
mask data were not satisfactory. The blue band (B02 at 492nm) has a high reflectance for dense 
cloud pixels and can therefore be used to mask clouds (Coluzzi et al., 2018) by defining a 
threshold. However, such procedure is a laborious task for multiple scenes since the threshold 
value may vary per scene. In this part of the study, a cloud mask was created just for the 
investigated scenes. A surface reflectance greater than 0.09 was found suitable for masking 
clouds in both scenes taken on 4 March 2018 with tile IDs T19PEP and T19PFP. It should be 
noted that the created cloud masks do not take cloud edges well into account. Additionally, a 
sieve filter was applied to reduce leftover isolated pixels in the final merged classifications. 
 
Table 10. Principal component score (Eigenvector loading) of each input band for scenes taken on 4 March 2018 with tile 
IDs T19PEP and T19PFP. Positive scores are highlighted in green, whereas negative scores are in red. Scores close to zero 

are highlighted in orange.

 Band PC 3 PC 2 

B02 -0.24 -0.35 

B03 -0.31 0.17 

B04 -0.24 -0.21 

B05 -0.07 0.21 

B06 0.31 0.32 

B07 0.36 0.38 

B08 0.29 0.32 

B8A 0.39 0.29 

B11 -0.38 -0.40 

B12 -0.42 -0.42 
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Table 10 (continued). 

Subset 
T19PEP 2018-

03-04 
T19PFP 2018-

03-04 

Sea 
state 

Calm water Calm water 

Cloud Cloudy Cloudy 

 
Total classified floating Sargassum area on greater east sea of Bonaire 
The calculated floating Sargassum (Sf) classified area is summarized in table 11 for each method. 
A pixel-to-pixel similarity map (see figure 35) was also created to assess the degree of overlap 
across different classification results. The pixel-to-pixel similarity map suggests that most 
methods can detect large blobs of Sargassum, but not sparsely distributed slicks as previously 
investigated in section 3.2.3. Based on table 11, the MLCBase and PCATriangle methods were found 
effective in classifying Sargassum on calm dark waters, although not all Sargassum slicks on the 
image could be detected (see blue arrow figure 35). The PCATriangle model detected the most 
Sargassum on the open sea with 3911.25 hectares, whereas the GNDVISlice method detected the 
least with 805.33 hectares. However, the PCATriangle method was more susceptible to clouds 
edges as suggested by the mini map in figure 35. Surprisingly, the MLCBase did not misclassify 
these cloud pixels as floating Sargassum (Sf) in these scenes, which was the case in previous 
section 3.2.3 (see figures 30 and 31). The MLCBase model classified about 3078.22 hectares of 
floating Sargassum. Therefore, for larger subsets, the MLCBase was found to be more robust and 
effective in detecting Sargassum on calm open sea. An effective overlap of 797.09 hectares was 
found across all classification results.   
 

Table 11. Combined total classified area as floating Sargassum for two scenes taken on 4 March 2018 with tile IDs 
T19PEP and T19PFP. Four different classification methods were compared: MLC, DTC, GNDVI density slicing and PCA 

with triangle algorithm. The sea region of interest is 59 km by 32 km large. 

 DTC MLCBase GNDVISlice  PCATriangle Effective 
overlap 

Area (ha) 1041.26 3078.22 805.33 3911.25 797.09 
 
Classification comparison with Sargassum Watch System  
Floating Sargassum (Sf) was detected by Sargassum Watch System (SaWS) on the same date (4 
March 2018) as the scenes used in this part of study. The Sargassum Watch System used the 
Alternative Floating Algae Index (AFAI) from the MODIS Terra and Aqua sensors to detect 
floating Sargassum. An AFAI value greater than zero indicates the presence of floating 
Sargassum. The original FAI was previously investigated in this study (see paragraph 3.1) for 
coastal waters. However, the results were found not satisfactory, hence it was not investigated in 
the rest of the study.  
 
Figure 36 shows a comparison between MODIS Terra AFAI1 and MLCBase floating Sargassum (Sf) 
map products. The original scenes were taken at 15:05 (MODIS Terra) and 15:07 (Sentinel-2A) 
Greenwich Mean Time (GMT). An abundance of floating Sargassum (Sf) was observed about 5-10 
kilometers away from the east coast of Bonaire in the MODIS Terra AFAI map. The same chunk 
of floating Sargassum was observed to drift about 1-2 kilometers towards east based on the 
MLCBase map. A light west wind, which presumably caused this drift, was confirmed based on 
Bonaire’s weather data (see figure 34).  

                                                             
1 Note that both FAI and AFAI are in the same scale. The Sargassum Watch System bulletin page displays 
AFAI products but the colorbar is labelled as FAI.   
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Figure 34. Weather data of Bonaire for 4 March 2018. Image adapted from Time and Date webpage 

(https://www.timeanddate.com/weather/@7609816/historic?month=3&year=2018). 

  

https://www.timeanddate.com/weather/@7609816/historic?month=3&year=2018
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Figure 35. Pixel-to-pixel similarity map showing the overlap between the GNDVISlice, PCATriangle, DTC and MLC floating Sargassum (Sf) classifications. The pixel-to-pixel similarity layer is 

overlaid on top of a merged grayscale image of the two classified scenes taken on 4 March 2018 with tile IDs T19PEP and T19PFP. The white dashed lines indicate up to where the two tiles 
overlap. Two mini maps are shown in false colour for reference. The white arrow indicates where misclassification of floating Sargassum (Sf) occur. The blue arrow indicates where a 

Sargassum slick is not classified.  
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Figure 36. Comparison between MODIS Terra Alternative Floating Algae Index (AFAI) and MLCBase floating Sargassum (Sf) map products. Both scenes were taken on 4 March 2018 at 15:05 
(Sentinel-2A) and 15:07 (MODIS Terra) GMT. The mini map shows the Sargassum influx in greater east Caribbean Sea. The black pixels refer to no data areas in which presumably clouds, 
and land were masked from the MODIS Terra AFAI product. The white arrow indicates an observed abundance of floating Sargassum. MODIS Terra AFAI image courtesy of the Sargassum 

Watch System of University of South Florida Optical Oceanography Lab (https://optics.marine.usf.edu/projects/saws.html). 

  

https://optics.marine.usf.edu/projects/saws.html
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3.3 Classification of seagrass in Lac Bay 
 

3.3.1 Sampled dataset for seagrass classification  
 
Purposive sampling was carried out to build a training dataset for the supervised Decision Tree 
and Maximum Likelihood classifiers. Pixel values from multiple training sites covering seagrass 
and non-seagrass bottom types were obtained in Lac Bay. The pixel values of bands 2,3 and 4 
were sampled from three Sentinel-2 scenes taken on 8 and 28 January and 12 February 2019. 
Appendix 8 shows an overview of the sampled dataset. The band covariance matrix of each 
bottom type is also given in this appendix. The total number of samples in the dataset is 819 in 
which seagrass and non-seagrass have about equal sample sizes.   
 
The distribution of each class and input feature is shown in figure 37. Severe overlap exists 
between seagrass and non-seagrass classes across the visible spectrum. A bimodal distribution 
was observed in B02 (490nm) and B03 (560nm) for non-seagrass bottom type. This was 
presumably caused by dark coral reefs (low value) and shallow water pixels (high value). This 
phenomenon is most pronounced in B04 (665nm). The Jeffries-Matusita separability score 
suggests that B02 (score =0.559) is the most effective for separating both classes compared to 
B03 (score = 0.398) and B04 (score = 0.161). All bands were used as input features for the 
classifiers.  
 

 
Figure 37. Distributions of seagrass and non-seagrass classes for each input feature. The x-axis is limited to 0.5 for better 

comparison. 

3.3.2 Seagrass classification accuracy  
 
Tuning Decision Tree Classifier for classifying seagrass 
The DTC and MLC model performances were evaluated prior image classification. The training 
samples were stratified randomly split into 80% training (=963 samples) and 20% test (=241 
samples) sets. A cross-validation was performed to tune the DTC hyperparameters. The cross-
validation results and DTC model are shown in appendix 9. The most important splitting feature 
in the Decision Tree model was B02 based on the Entropy criterion.  
 
Uncertainty of Maximum Likelihood Classification results 
Class posterior probability and Entropy maps were created to assess the degree of uncertainty 
of the MLC model. These maps are shown in appendix 10 for scenes taken on 8 January, 4 March, 
8 August and 29 November 2019. Note that scenes from August and November were not used to 
train the classifier. The probability maps suggest that the likelihood of a pixel belonging to a 
certain bottom type varies per scene. High seagrass probabilities were observed in between 
shallow and deep waters in Lac Bay. Such patterns were found for non- seagrass as well. This 
indicated that many pixels were assigned equal probabilities for both bottom types. Equal 
probabilities imply high uncertainty as suggested by the Entropy maps. Contrarily, the MLC was 
able to predict bare-sand sites (i.e. shallowest waters) with high certainty (Entropy = 0).  
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Model and predictive performances in classifying seagrass 
The model and predictive performances of the DTC and MLC classifiers were evaluated. MLC 
models with probabilities of 10%, 20% and 50% were tested next to the base model. A degree of 
freedom equal to 3 (= number of input features) was used to select the critical chi-square value 
of each probability. The model performances were evaluated based on the training and test sets. 
The 2019 seagrass observation dataset was used as external validation to test the classifiers 
predictive performances. The classification results for a scene taken on 4 March 2019 was 
validated. Appendix 11 summarizes the model and validation accuracy results for classifying 
seagrass. Figure 38 shows a comparison between their overall accuracies along with the F1-
scores of the seagrass class. Figure 39 displays the classification validation results.  
 

 
Figure 38. Comparison between model and validation accuracies of the DTC and MLC models in classifying Seagrass and 

non-Seagrass. The F1-scores of seagrasses are also plotted in this figure. 

 
 

 
Figure 39. Seagrass classification validation results for a scene taken on 4 March 2019. A subset of Sorobon is shown in 
the second row. The seagrass observations of 2019 are annotated with the mean cover (%) of the four species found at 

each site. The black arrows indicate a site with mixed bottom types. Grayscale and true colour base maps by Bing Maps ® 
2019.VA = validation accuracy 
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Based on the training and test sets, the DTC achieved an overall model accuracy of 88%, whereas 
the MLC achieved accuracies between 79 and 81% for increasing probabilities between 0% 
(base model) and 50%, respectively. The DTC yields an overall validation accuracy of 81%, 
whereas the MLC achieved significantly lower accuracies between 46% and 73% for the same 
confidence interval. The MLC10% model was found to performs best, with the lowest variance, 
compared to other MLC models. Also, the F1-score of seagrass in the validation step was found 
to be the highest (F1-score = 79%) for the MLC10% model.  
 
The classification results in figure 39 suggest that both classifiers can predict seagrass situated 
in-between shallow and deep waters. Dissimilarities between classifiers were found more 
severe on sites with mixed bottom types and on shallowest waters (e.g. Sorobon). These mixed 
bottom types were better discriminated by the MLC models.   
 
3.3.3 Robustness of classifiers in classifying seagrass  
 
Cross-comparison of seagrass classified area in Lac Bay 
Four different Sentinel-2 scenes taken on 8 January, 4 March, 21 August and 11 November 2019 
were classified for seagrass and non-seagrass bottom types. Note that scenes from January and 
March were used to train and validate the classifiers. The DTC and restricted MLC models were 
used to predict the scenes. Figure 40 summarizes the total seagrass classified area for three 
different depths in Lac Bay.  The classification results are shown in figure 41. In this figure, the 
MLC classifications were aggregated into a pixel-to-pixel similarity map. The same was done for 
DTC and MLC10% classifications. This MLC model was selected for its low variance (see 
paragraph 3.3.2). 
 

 
Figure 40. Cross-comparison between DTC and restricted MLC models classified seagrass area (ha) for three different 

depths in Lac Bay.  
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Figure 41. Cross-comparison between DTC and restricted MLC models classified seagrass distributions across multiple 

scenes. The first column shows the similarities between DTC and MLC10% models, whereas the second and third columns 
depict the similarities between various MLC models. The black arrow indicates the location of fringing coral reefs. 

Grayscale and true colour base maps by Bing Maps ® 2019. 
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Based on figures 40 and 41, it was evident that the DTC model predicted the most seagrass 
bottom type compared to the MLC models. The predicted seagrass distribution varies severely 
across scenes. The greatest difference between DTC (total area = 272 hectares) and MLC models 
(total area between 87 and 183 hectares) was observed on 4 March 2019. This is mostly caused 
by the large predicted seagrass area (=137 hectares) in deep waters by the DTC model. The 
MLCBase and MLC10% models show comparable results across different scenes. The MLC models 
predicted the least seagrass classified area on 21 August which is illustrated as sparsely 
distributed pixels in figure 43. Sudden increase of seagrass classified area was observed on 29 
November for all MLC models across different water depths. This was less pronounced in the 
DTC classifications, except at the shallowest waters.   
 
Cross-comparison of seagrass distribution at Sorobon beach 
It should be noted that both the DTC and MLC models misclassify fringing reef as seagrass, which 
causes a gross overestimation of the total area in the shallowest waters. Large seagrass beds in 
these waters are mostly situated at Sorobon. Figure 42 shows true colour composites of Sorobon 
across various scenes. The total classified seagrass area is given in figure 43. The restricted MLC 
models classified the least seagrass beds at Sorobon, whereas the DTC model classified the most. 
Almost no seagrass was detected by the MLC models on 21 August as previously indicated in 
figure 41. Overall, both the DTC and MLC models show a comparable trend in estimating 
seagrass area at Sorobon.  
 

 
Figure 42. Cross-comparison between true colour composites (Sentinel-2 bands 4,3 and 2) of Sorobon across different 

scenes. The seagrass beds mask is used to calculate the total area within the mask. A higher resolution true colour base 
map by Bing Maps ® 2019 is also given as reference. 

 
Figure 43. Cross-comparison between DTC and restricted MLC models classified seagrass area (ha) at Sorobon  
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Misclassification of isolated mangrove stands in Lac Bay 
It is also noteworthy that the DTC and MLC20% models were more robust in avoiding 
misclassification of isolated mangrove stands (see example in figure 44) located west of Lac Bay. 
Lesser restricted MLC models than MLC20% cannot discriminate mangrove and seagrass 
effectively, whereas the MLC50% model rejected many seagrass pixels in general.  
 

 
Figure 44. DTC and MLC20% models predicted seagrass distributions for a scene taken on 29 November 2019 for a subset 

of Lac Bay. Small isolated mangrove stands can be found in this figure. Grayscale and true colour base maps by Bing Maps 
® 2019. 
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Chapter 4 Discussion 
 
 
The use of Sentinel-2 remotely sensed images for mapping Sargassum and seagrass are 
influenced by many factors including image classification techniques, environmental conditions 
and complexity of the objects of interest. This chapter will review these factors.  
 

4.1 Spectral discrimination of Sargassum 
 
Other floating materials on open sea 
In this study, Sargassum was effectively classified based on a combination of bands (B05 and 
B11 at 705nm and 1610nm) and spectral indices (NDVI and REP) in the visible and near-
infrared spectral regions. NDVI uses bands B08 (842nm) and B04 (665nm), whereas the REP 
uses B05, B06 (740nm) and B07 (783nm). However, Sargassum is not the only floating object 
found on the Atlantic Ocean with an enhanced near-infrared reflectance. A study by Hu et al., 
(2015) showed that Syringodium (manatee seagrass) wrack, Trichodesmium cyanobacteria (sea 
sawdust), Ulva prolifera, garbage and oil spill are regularly found on the Gulf of Mexico and part 
of the Atlantic Ocean east of Florida. Seagrass wrack, Ulva prolifera and Trichodesmium 
cyanobacteria have been observed in the Caribbean Sea as well (Brocke et al., 2018; Debrot et al., 
2018; Littler & Littler, 2006). Ulva prolifera is a type of green macroalgae which is commonly 
found on shorelines but also free floating on the water surface. On the other hands, 
Trichodesmium is a cyanobacteria that is found in nutrient-poor waters (Capone et al., 1997) and 
can form surface slicks similar to Sargassum.  
 
Green algae and floating Sargassum  
A comparison between the spectral signatures of Sargassum, Trichodesmium cyanobacteria and 
Ulva from the study of Hu et al., (2015) is given in figure 45. The spectral curve of Sargassum has 
a unique local minimum at around 630 nm. This is due to the absorption of chlorophyll-c 
pigment in Sargassum (Margulis & Chapman, 2009). Unfortunately, the MSI onboard of Sentinel-
2 does not support such spectral feature, hence this local minimum is not visible in figure 16 in 
section 3.1.2. The spectral shape of Sargassum is comparable with Ulva prolifera based on the 
reflectance intensity around 550 nm (green band) and the near-infrared region. Contrarily, 
Trichodesmium cyanobacteria has a greater intensity at 550 nm compared to Sargassum.   
 
Nevertheless, misclassification of Sargassum might occur if other floating materials with 
enhanced near-infrared reflectance are present on the satellite image. In this study, objects on 
the image with enhanced reflectance in the near-infrared region were presumed to be associated 
with floating Sargassum exclusively. Therefore, the possibility of other macroalgae on the coast, 
coastal waters and open sea was not investigated.  
 

 
Figure 45. Surface reflectances of Sargassum (a) from the Gulf of Mexico and Atlantic Ocean, Trichodesmium 

cyanobacteria (b) from Florida Keys and Ulva prolifera (c) from the Yellow Sea of Qingdao (China). The surface 
reflectances are measured using a field spectrometer. Figure is adapted from (Hu et al., 2015) 
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4.2 Spatial limitation to detect floating Sargassum 
 
Partial coverage required for detecting floating materials  
Hu et al. (2015) also investigated the spatial requirement of remote measurements of Sargassum 
in the Gulf of Mexico and Atlantic Ocean using a WorldView-2 (2m) satellite image. The high-
resolution image was resampled (spatial averaging) to a 60m resolution image to assess the 
proportion of water and Sargassum in a pixel using a linear unmixing model. His results showed 
that a Sargassum mat with a width greater than 0.6-1.2m (1-2% partial coverage) and length of 
180m can be detected on water. The 180 m limit implies three times the pixel length to exclude 
single-pixel anomaly. The 1-2% partial coverage range depends on the chlorophyll-a 
concentration (0.14-0.8 mg  m-3) in the water, which was used as a metric for turbidity in the 
study of Hu et al., (2015). High chlorophyll concentration is associated with high water turbidity 
which limits the detectability of Sargassum. 
 
Partial coverage required for detecting floating Sargassum 
In this study, 20m spatial resolution images were resampled to 10m resolution images. 
Therefore, theoretically, any floating materials on clear water with a width greater than 0.1-
0.2m (1-2% of 10m) and length of 30m (3 times 10m pixel) can be detected by Sentinel-2. Hu et 
al., (2015) also indicated that a partial coverage greater than 20-30% or 2-3m for a 10m image is 
required to spectrally distinguish Sargassum from other floating materials.  
 
Theoretical minimum Sargassum mat size in this study 
An example comparison between false colour composites with different down sampled (spatial 
averaging) resolutions is shown in figure 46. Based on this comparison, a 30m resolution sensor 
is still viable for detecting Sargassum slicks. At 60m resolution, the slicks become patchy 
because most of the reflectance of Sargassum is attenuated by water. At 100m resolution and 
greater, the Sargassum mat is barely distinguishable from water pixels. The smallest detectable 
Sargassum mat shown in figure 46 is conservatively estimated between 0.1m (1% of 10m) and 
0.6m (1% of 60m) large.  
 

 
Figure 46. Example false colour composites (Sentinel-2 bands 8, 3 and 2) with different spatial resolutions for a subset 
taken on 9 March 2019. A Sargassum slick near the east coast of Bonaire is illustrated here. The white arrows indicate 

where the Sargassum line is not detectable anymore. 

 



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 

55 
 

4.3 Remote sensing of seagrass in shallow waters 
 
Factors influencing downwelling light 
Non-seagrass bottom types were often misclassified as seagrass, because the class distributions 
are not spectrally separable (see figure 38 section 3.3.1). Deep water pixels tend to be classified 
as seagrass in Lac Bay. This could be explained due to light attenuation which is inversely 
related to water depth (Traganos & Reinartz, 2018). Besides, optical properties of water can also 
influence the scattering, transmission and absorption of downwelling light (Mobley, 2010). 
Water optical properties depend on the composition and concentration of particles in water and 
how the light propagates through or out the water. Optically active water constituents (OACs) 
like phytoplankton, colored dissolved organic matter (CDOM) and non-algal particles can affect 
remote sensing measurements and classifications (Werdell et al., 2018). In this study, these 
water elements were not addressed.  
 

Variable light condition and cloudy waters in Lac Bay  

It was observed that some water areas in Lac Bay are more turbid which might affect bottom 
reflectance. This phenomenon can be observed in the water as a faint white substance flowing 
along the west mangrove fringes of Lac Bay (see figure 47). Moreover, specular reflections, 
clouds and cloud shadows were also present in the Sentinel-2 images and can affect surface 
reflectances. The white substance in the water seems to be variable across different scenes and 
is mostly situated east of Lac Bay. Variable light and cloud conditions depend on the wind and 
time of the day. It is noteworthy that the Sentinel-2 images used in this study are always taken at 
15:07 local time due to its sun-synchronous orbit. However, Sentinel-2 near nadir-viewing 
sensor ( ± 10.3° from nadir) is also prone to sun-glint (Roy et al., 2017). According to Mobley 
(2000), a sensor with a 40° viewing angle from nadir is required to avoid sun-glint. 
Nevertheless, specular reflection and cloudy water parts could lead to misclassifications.   
 

 
Figure 47. Image enhanced true colour composites (Sentinel-2 bands 4,3,2) of Lac Bay taken in 2019. The red arrows 

indicate where the water is often turbid (faint white substance). Sun-glint due to water ripples is observed on the middle 
panel. 

 

4.4 Remote sensing of Sargassum  
 

The adjacency effects 

Based on the Jeffries-Matusita distance (Sf-Sl score = 1.6) (appendix 2) both Sargassum classes 
should be well separated by band B11 (1610nm). However, floating Sargassum (Sf) is often 
misclassified as Sargassum on land (Sl). It should be noted that misclassification only occurs on 
Sargassum mats floating close to the coastline and against the mangroves (see figures 19 and 21 
in sections 3.1.3 and 3.1.4). This phenomenon might be caused by the adjacency effect which 
contaminates surface reflectance due to aerosol scattering from neighborhood pixels (Tanre et 
al., 1981). Adjacency effect can reduce the reflectance over bright pixels because aerosol diffuses 
outgoing light. It can also reflect incoming light causing increased reflectance over dark pixels 



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 

56 
 

(Lyapustin & Kaufman, 2001). The latter case might have caused a higher reflectance intensity of 
floating Sargassum, which the DTC and MLC confuse as Sargassum on land.  
 
Mixed pixel of Sargassum on the coast and beach 

Pure pixels in the training samples dictate class membership. In reality, multiple classes might 
occur in a single pixel (Shivakumar & Nagaraja, 2019). Such mixed pixels in the training samples 
could lead to spectrally mixed reflectances and misclassifications. Figure 48 shows the spectral 
curve of an example sample point from the coastline. The spectral curve at this site highly 
resembles Sargassum on land (Sl) which explains why coastline pixels were misclassified as 
Sargassum. To acquire pure pixels, large homogenous training areas are required (Clevers & 
Zurita-Milla, 2008). In this study, it was difficult to create such training sites for Sargassum on 
land (Sl). Most of the eastern coastlines of Bonaire are cliffed, hence Sargassum is less likely to 
accumulate on the coast but sinks to the bottom of the sea.  
 
Sargassum is more likely to accumulate on flatter shorelines near Lac Bay and on Sorobon beach. 
It should be noted that the width of Sorobon beach is smaller than 10m, hence Sargassum is 
partially on land and on water. Moreover, the trees and buildings are very close to the beach 
which also contributes to mixed pixels and limits the detection of Sargassum with Sentinel-2 
images. Consequently, the study put more emphasis on detecting floating Sargassum (Sf) which 
is in abundance on coastal waters.          
 

 
Figure 48. Spectral signature of an example sample point (yellow) from the coastline for a scene taken on 9 March 2019. 

The surface reflectances (mean values) of the two Sargassum classes (Sf and Sl) from the training samples are also 
plotted for comparison. 

   

4.5 Performance of image classification techniques 
 
Decision Tree Classification 
In this study, multiple DTC parameters were individually assessed using a validation curve. In 
practice, each parameter could influence one and another. For example, Entropy was mostly 
used in this study as splitting criterion because it yielded the highest cross-validation accuracy 
(see Appendices 3 and 8) despite the small difference with Gini (≈1%). However, other studies 
reported higher classification accuracies when using Gini (Faramarzi et al., 2014; Zambon et al., 
2006). Nevertheless, in this study, the influence of the parameter values with respect to the 
classification results and accuracies were not addressed extensively. 
 
Maximum Likelihood Classification 
Maximum Likelihood Classifier is considered as a hard classifier because it assigns a pixel to a 
class without considering sub-pixel information (mixed pixel) (Das & Singh, 2009). 
Consequently, it is prone to misclassification due to spectrally similar classes and subclasses  
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(Kavzoglu & Reis, 2008). Such cases were observed in this study for Sargassum (Sf and Sl) and 
seagrass classes.  
 
Principal Component Analysis  
For operational purposes, a Principal Component Analysis might be less suitable since image 
interpretation is required to select the best PC image. The scalability performance results in this 
study also suggest that the recognition of floating Sargassum in the PC images can shift 
according to the scale of the scene. Moreover, Gupta et al., (2013) stress that temporal variability 
of other pixels in the image might affect the detection of a target (e.g. Sargassum) in PC images 
apart from its intrinsic properties. In this study, land pixels (covering east Bonaire) were 
masked after performing PCA. Mangroves and other terrestrial vegetations are subject to 
seasonality which influence the feature-space of the near-infrared bands. Consequently, this 
could shift the contrast of Sargassum to other PC images. This study did not address to what 
extent seasonality of land pixels could affect the PCA and classifications. Also, the effect of 
masking land pixels before and after performing PCA was not investigated.  
 
Triangle thresholding 
Triangle thresholding is considered a global threshold because it uses the entire image 
histogram for segmentation. The caveat of such algorithm is that it apts to fail if there is a low 
contrast between the subject and the background or if the intensity varies across the image 
(Rogowska, 2009). Low contrast in remote sensing images is mostly caused by atmospheric 
scattering. The Triangle algorithm implementation in Scikit-Image Python module allows 
variable bin size that may affect the position of the threshold. Larger bin size implies that very 
slight differences in pixel intensities could be distinguished in the histogram. In this study, the 
default value (=256 bins) was used. The effect of variable bin size on the classification results 
was not explored.  
 
Density slicing  
Density slicing is a simple method to segment a grayscale image. This study only explored the 
effectiveness of the GNDVI which uses a combination of green and near-infrared bands (B03 and 
B08 at 560mn and 842nm). The water penetrating green band was presumed to be effective in 
detecting partially submerged Sargassum. It should be noted that this study did not investigate 
the submerged depth of Sargassum, hence the actual effectiveness of the green band could not 
be assessed. Therefore, the near-infrared band could be more contributing for the detection of 
floating Sargassum (Sf) with GNDVI. However, this could be a limiting factor since NIR 
reflectance is strongly attenuated by water. Hu et al., (2015) estimated a decrease of 47% of the 
reflectance at 752nm when Sargassum is submerged in water for 0.15m. The absorption of 
water is weaker in the Red-Edge region, therefore a spectral index using band B05 (at 705nm) 
might be more effective for detecting submerged Sargassum.     
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Chapter 5 Conclusions and recommendations 
 
 
This research explored the limitation and capability of Sentinel-2 imageries for mapping 
Sargassum and seagrass in Bonaire. The data and Sargassum map in this research can be used as 
a reference for selecting suitable methods for monitoring Sargassum on coastal waters and open 
sea in other regions. Besides, the seagrass results may support further studies in improving 
mapping seagrass in shallow waters. Research questions that were addressed in this study are 
answered in this chapter. Additionally, a few recommendations are given for further studies.  
 

5.1 Conclusion 
 
RQ 1. To what extent can Sargassum patches be classified on the coast and coastal                                               

waters of Bonaire using Sentinel-2 imagery? 
 

Supervised DTC and MLC were employed to map Sargassum on land and water (Sf and Sl) 
among other coastal features in Bonaire. Based on the training samples, the NDVI, REP, B05 and 
B11 were found to be useful for classifying both Sargassum classes. The MLC20% model achieved 
a validation accuracy of 87% and was found to be the most robust model in classifying floating 
Sargassum across different scenes while minimizing false positives due to cloud edges and dark 
mangrove fringes.  
 
Persisting overlap exists between Sargassum on land (Sl) and floating Sargassum (Sf) in the 
training samples. Consequently, Sargassum on land cannot be classified effectively in this study. 
The DTC results were comparable with MLC10%, but grossly misclassify floating Sargassum (Sf) 
as Sargassum on land (Sl) across different scenes. Nevertheless, the MLC50% model was found 
applicable for classifying Sargassum on land while minimizing overestimation due to coastline 
pixels.  
 
RQ 2. To what extent can floating Sargassum patches be classified on open sea with  

Sentinel-2 imagery? 
 

In this part of the study, unsupervised density slicing of GNDVI image data (GNDVISlice) and PCA 
combined with Triangle thresholding (PCATriangle) were explored for classifying floating 
Sargassum (Sf) on east sea of Bonaire. Additionally, the performances of supervised DTC and 
MLC models on open sea were tested as well. Small subsets located on the east sea of Bonaire 
were classified to assess the performance of the four classification methods. The result showed 
that most methods were able to detect large dense Sargassum patches but apt to misclassify 
cloud edges as floating Sargassum to a certain degree. The PCATriangle method was found the most 
effective in classifying floating Sargassum (Sf) on calm and rough waters. This method is 
excellent in revealing sparsely distributed slicks on the image. However, it should be noted that 
the PCATriangle method is more susceptible to image artefacts such as image striping and inter-
band parallax.  
 
A larger sea region east of Bonaire was also classified to assess the scalability of the four 
classification methods in calm open sea. Based on the results, the PCATriangle method classified the 
most floating Sargassum of 3911 hectares on 4 March 2018. The MLCBase model classified the 
second most Sargassum with about 3078 hectares, whereas the GNDVISlice and DTC methods 
classified less than 1100 hectares. The pixel-to-pixel similarity map suggested that the PCATriangle 
method grossly overestimated cloud edges as floating Sargassum (Sf). This effect was less 
pronounced in the MLCBase classification results. Therefore, the MLCBase was considered the most 
robust and effective method in detecting floating Sargassum for a larger sea region under calm 
sea condition.  
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RQ 3. Can the impact of Sargassum on seagrass distribution in Lac Bay be mapped with  
Sentinel-2? 

 
Supervised Decision Trees and Maximum Likelihood classifications were employed to map 
seagrass distribution in Lac Bay. The intention was to assess the seagrass distributions from 
before and after the Sargassum invasion in 2019 to reveal most impacted sites. However, the 
training samples showed severe overlap between seagrass and non-seagrass bottom types 
which causes gross overestimation of the seagrass classified area. Therefore, in this study, 
seagrass cannot be classified effectively nor can the impact of Sargassum on its distribution be 
assessed properly. The comparative study did indicate that fringing coral reefs, deep water 
pixels and mangrove stands in Lac Bay are most likely misclassified as seagrass. 
 

5.2 Recommendation 
 
Data collection and validation 

1. The annual seagrass monitoring dataset is acquired in the field with small (1m2) 
quadrants with mixed species. For remote sensing and mapping purposes, homogeneous 
plots with respect to the minimal mapping unit (MMU) of Sentinel-2 (10m x 10m) are 
desirable. Roelfsema, Kovacs, et al. (2015) and Roelfsema, Lyons, et al. (2015) presented 
a georeferenced photo transect sampling method to rapidly collect seagrass coverage 
data over shallow water (<5m). The method is specially designed to be integrated with 
remote sensing images for mapping benthic habitats. Such method could be used to 
collect homogenous samples over a large area like Lac Bay.  
 

2. This study suggested that floating Sargassum (Sf) is often misclassified as deep water 
(Wd). Therefore, collecting more reference pixels of floating Sargassum and deep-water 
features on coastal waters and open sea could help improving the separability between 
these classes. Besides, more reference pixels also mean a larger training dataset that 
could increase the classification accuracy of the classifier.  
 

3. This study did not assess the validity of Sargassum on land (Sl) because the feature is 
difficult to interpret on the image. Proper ground truth data is required to accurately 
validate this class. The coverage maps in the study suggest that flatter shorelines around 
Lac Bay could be investigated for accumulation of Sargassum during future influxes. 
Sargassum samples on this site could be collected for training or validating the 
classification results.  
 

4. Image differencing is a change detection method that could be used to map the effective 
area of Sargassum between two dates. This is done by subtracting two images (e.g. NDVI) 
with and without Sargassum. The result is useful for validating classification results or 
mapping the extent of Sargassum on the coast. The caveat for Sentinel-2 images is that it 
suffers from multi-temporal registration errors of 10m and 12m (Sentinel-2A and 
Sentinel-2B) (European Space Agency, 2019) which is roughly the size of a single pixel. 
Aligning the images before analysis is recommended to avoid errors in the subtracted 
image.  

 
Classification technique 

5. Sub-pixel (or soft) classifiers could be useful for classifying Sargassum and seagrass over 
heterogeneous areas. Sub-pixel classifiers can better address mixed pixels and 
ambiguous classes by producing fraction maps. These maps depict the partial class 
membership within a pixel (Congalton, 2015). Dierssen (2015) and Hu et al. (2015) used 
Linear Spectral Mixture Analysis (LSMA) to unmix seagrass and Sargassum pixels, 
respectively. Another study by  Frazier and Wang (2011) used Soft Maximum Likelihood 
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Classification (SMLC) to characterize the distribution of invasive plant species. SMLC 
uses the posterior probabilities from MLC, also used in this study (see figure 19 and 
appendix 9), as the sub-pixel fractional covers. Therefore, the MLC implementation in 
this study could be further developed into a SMLC algorithm.   
 

6. Object-based image analysis (OBIA) is a classification technique that includes contextual 
information such as texture, shape and size apart from spectral information. Contextual 
information could be useful for improving the separability between spectrally similar 
classes such as seagrass and corals. OBIA has been effectively used for mapping benthic 
habitats (Anggoro et al., 2018; Su and Huang, 2019).  

 
Remote sensing sensor 

7. Hu et al., (2015) suggested in their study that that the local reflectance minimum around 
630 nm combined with the reflectance ratio between 555 (green) and 650 (red) nm can 
be used to improve the spectral discrimination of Sargassum from other floating 
materials on open sea. Current spaceborne remote sensing sensors that closely support 
this unique spectral fingerprint include: Landsat-8 Operational Land Imager (3rd band 
with bandwidth: 630-680 nm) and Sentinel-3 Ocean and Land Colour Instrument (7th 
band with bandwidth: 615-625 nm ) (Blix et al., 2018; Knight & Kvaran, 2014). These 
sensors have higher signal-to-noise ratio (SNR) than Sentinel-2, which could be more 
effective is detecting Sargassum on rough waters. Note that Landsat-8 and Sentinel-3 
operate at 30m and 300m spatial resolutions with revisit times of 16 and 27 days, 
respectively.  

 
General 

8. For an early warning system, the transport and distribution of floating Sargassum on 
open sea should be further studied. Modelling the transportation of Sargassum requires 
ancillary information such as sea surface currents and wind data. Recent studies that 
integrated satellite monitoring and ocean data have shown promising results in 
predicting the trajectories of Sargassum on open sea (Kwon et al., 2019; Prakash et al., 
2018; Putman et al., 2018). These studies used coarse resolution images, therefore the 
use of Sentinel-2 high-resolution classification data should have the advantage of 
supporting a more accurate Sargassum forecast.   
 

9. The study revealed that clouds, especially cloud edges, often led to misclassification of 
Sargassum and other coastal features. The original Sentinel-2 cloud flag was not 
implemented due to its poor performance. Therefore, a better cloud detection algorithm 
should be included for future studies. Current state-of-the-art cloud detection 
frameworks implement a deep learning model that is capable in detecting multitemporal 
clouds at pixel-level (Tuia et al., 2018). Such cloud detection algorithm is essential for 
operational monitoring purposes and accurate mapping of Sargassum or seagrass. 
Moreover, a more effective comparative analysis across different scenes could be 
performed, which is beneficial for image interpretation and assessing the best 
classification method.   
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Appendix 1 Sampled dataset covering eight classes obtained from 

the coast and coastal waters 
 
 
 
 

 
 
 
 
 
 
 
 

  
  

Number of sampled pixels from each Sentinel-2 scene 
before undersampling  

Number of sampled pixels from each Sentinel-2 scene 
after undersampling 

Statistical summary of total dataset before 
undersampling 

Statistical summary of total dataset after 
undersampling 
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Band covariance matrix of floating Sargassum from the resampled dataset. The sampling variance is highlighted in 
the diagonal. 

Band covariance matrix of Sargassum on land from the resampled dataset. The sampling variance is highlighted in 
the diagonal. Note that Sargassum on land was not under sampled hence the variance before-and after resampling is 

the same. 
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Appendix 2 Jeffries-Matusita distance heatmap 

 
 

 
 
  

Heatmaps showing the Jeffries- Matusita separability scores between eight classes for each remote sensing index. 
Values greater than 1.5 indicate high separability. 

Heatmaps showing the Jeffries- Matusita separability scores between eight classes for each band. Values greater 
than 1.5 indicate high separability. 
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Appendix 3 Hyperparameters tuning and cross-validation of 
Decision Tree Classifier for Sargassum classification 
 
 

 
 

 
 

K-fold cross-validation curves (K=10) based of five DTC hyperparameters from Scikit-learn library. Note that 
the parameters were tuned with the default settings and Entropy as split criterion. Input features are: NDVI, 

REP, B05 and B11 

Decision Tree model with four input features: NDVI, REP, B05 and B11. The selected hyperparameters in Scikit-
learn are shown at the bottom left corner. 
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Appendix 4 Accuracy assessment of Sargassum classification in 
Lac Bay 
 
 
DTC and MLC models accuracies (MA) in predicting Sargassum and other coastal features. The MLC based rejection class 

is not included in the accuracy assessment. 

Model acc. Lb Ls Sf Sl Vm Vo Wd Ws Classified UA F1-score Classifier 

Lb 67 3 - - - - - - 70 0.96 0.98 DTC 
 

Ls - 104 - - - 3 - - 107 0.97 0.97 

Sf - - 122 7 3 1 - 2 135 0.9 0.91 

Sl - - - 26 - 1 - - 27 0.96 0.83 

Vm - - 10 3 112 8 1 1 135 0.83 0.9 

Vo - - - - - 85 - - 85 1 0.93 

Wd - - - - - - 131 - 131 1 0.93 

Ws - - - - - - 19 116 135 0.86 0.91 

Observed 67 107 132 36 115 98 151 119 825 - - 

PA 1 0.97 0.92 0.72 0.97 0.87 0.87 0.97 - 0.92 (MA) 
 

Lb 70 - - - - - - - 70 1 1 MLCBase 
 

Ls - 105 - - - 2 - - 107 0.98 0.99 

Sf - - 127 2 6 - - - 135 0.94 0.93 

Sl - - - 25 1 1 - - 27 0.93 0.93 

Vm - - 10 - 120 4 - 1 135 0.89 0.92 

Vo - - - - - 85 - - 85 1 0.96 

Wd - - - - - - 131 - 131 1 0.94 

Ws - - - - - - 16 119 135 0.88 0.93 

Observed 70 105 137 27 127 92 147 120 825 - - 

PA 1 1 0.93 0.93 0.94 0.92 0.89 0.99 - 0.95 (MA) 
 

Lb 54 - - - - - - - 54 1 1 MLC10% 

Ls - 97 - - - 1 - - 98 0.99 0.99 

Sf - - 120 - 6 - - - 126 0.95 0.95 

Sl - - - 24 - 1 - - 25 0.96 0.98 

Vm - - 7 - 117 3 - - 127 0.92 0.94 

Vo - - - - - 74 - - 74 1 0.97 

Wd - - - - - - 122 - 122 1 0.95 

Ws - - - - - - 13 105 118 0.89 0.94 

Observed 54 97 127 24 123 79 135 105 744 - - 

PA 1 1 0.94 1 0.95 0.94 0.9 1 - 0.96 (MA) 
 

Lb 50 - - - - - - - 50 1 1 MLC20% 
 

Ls - 84 - - - 1 - - 85 0.99 0.99 

Sf - - 113 - 6 - - - 119 0.95 0.95 

Sl - - - 22 - 1 - - 23 0.96 0.98 

Vm - - 6 - 112 1 - - 119 0.94 0.95 

Vo - - - - - 72 - - 72 1 0.98 

Wd - - - - - - 115 - 115 1 0.95 

Ws - - - - - - 12 98 
 
 

110 0.89 0.94 
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DTC and MLC models accuracies (MA) in predicting Sargassum and other coastal features. The MLC based rejection class 
is not included in the accuracy assessment (continued). 

Observed 50 84 119 22 118 75 127 98 693 - - 
 

PA 1 1 0.95 1 0.95 0.96 0.91 1 - 0.96 (MA) 0.95  
(Kappa) 

Lb 40 - - - - - - - 40 1 1 MLC50% 

 Ls - 65 - - - - - - 65 1 1 

Sf - - 83 - - - - - 83 1 0.99 

Sl - - - 12 - 1 - - 13 0.92 0.96 

Vm - - 1 - 102 1 - - 104 0.98 0.99 

Vo - - - - - 51 - - 51 1 0.98 

Wd - - - - - - 79 - 79 1 0.96 

Ws - - - - - - 7 84 91 0.92 0.96 
 

40 65 84 12 102 53 86 84 526 - - 

PA 1 1 0.99 1 1 0.96 0.92 1 - 0.98 (MA) 
 

 
 
External validation (VA) accuracies of DTC and MLC models for a scene taken on 18 May 2019. The validation was based 

on floating Sargassum (Sf) (= 80 samples) and non- floating Sargassum (Non-Sf) (= 80 samples) classes. 

Validation acc. Non-Sf Sf Classified UA F1-score Classifier 

Non-Sf 70 10 80 0.88 0.85 DTC 
 Sf 14 66 80 0.82 0.85 

Observed 84 76 160 - - 

PA 0.83 0.87 - 0.85 (VA) 
 

Non-Sf 68 12 80 0.85 0.86 MLCBase 
 Sf 11 69 80 0.86 0.86 

Observed 79 81 160 - - 

PA 0.86 0.85 - 0.86 (VA) 
 

Non-Sf 73 7 80 0.91 0.88 MLC10% 
 Sf 12 68 80 0.85 0.88 

Observed 85 75 160 - - 

PA 0.86 0.91 - 0.88 (VA) 
 

Non-Sf 77 3 80 0.96 0.88 MLC20% 
 Sf 18 62 80 0.78 0.86 

Observed 95 65 160 - - 

PA 0.81 0.95 - 0.87 (VA) 
 

Non-Sf 80 - 80 1 0.81 MLC50% 
 Sf 38 42 80 0.52 0.69 

Observed 118 42 160 - - 

PA 0.68 1 - 0.76 (VA) 
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Appendix 5 Sargassum misclassification masks   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

Masks used to exclude false positive pixels from mangrove areas (Sf mask) and retain Sargassum pixels around 
25m from the coastline (Sl mask). Satellite image by Google Maps ®. 
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Appendix 6 False colour composite series of Lac Bay and Lagun 
 

 

 Image enhanced false colour composite series of Lac Bay during the invasion periods in March 2018, March and May 2019. The black arrows indicate location of floating Sargassum. 
The presence of clouds was noticeable in most of the scenes in the series. 



Mapping Sargassum on beaches and coastal waters of Bonaire using Sentinel-2 imagery 
 

77 
 

 

Image enhanced false colour composite series of Lagun during the invasion periods in March 2018, March and May 2019. The presence of clouds was noticeable in most of the scenes in 
the series. 
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Appendix 7 Triangle thresholding of Principal Component images  
 
 

 
Principle Component image data distribution of each subset including the position of the computed threshold in red. The 

y-axes are limited to 0.5% of the data. 
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Appendix 8 Sampled dataset covering seagrass and non-seagrass 
bottom types obtained from Lac Bay 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Number of sampled pixels from each Sentinel-2 scene 

Statistical summary of sampled dataset 

Band covariance matrix of  seagrass class 
from the sampled dataset. The sampling 
variance is highlighted in the diagonal. 

Band covariance matrix of non-seagrass class  
from the sampled dataset. The sampling 
variance is highlighted in the diagonal. 
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Appendix 9 Hyperparameters tuning and cross-validation of 
Decision Tree Classifier for bottom type classification 
 
 

 
K-fold cross-validation curves (K=10) based of five DTC hyperparameters from Scikit-learn library. Note that the 

parameters were tuned with the default settings and Entropy as split criterion. Input features are: B02, B03 and B04. 
  
 
 
 
 
  

Decision Tree model with three input features: B02, B03 and B04. The selected hyperparameters in Scikit-learn are 
shown at the bottom. 
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Appendix 10 Maximum Likelihood Classifier probability and 
Entropy maps for predicting bottom types in Lac Bay 
 
 

 
MLC class posterior probability p (Bottom type | X) and Entropy maps across four different scenes. Entropy and 
probabilities equal to zero are set to transparent for clarity. Entropy value close or equal to 1 refers to complete 

uncertainty or equal class probabilities. Grayscale and true colour base maps by Bing Maps ® 2019. 
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Appendix 11 Accuracy assessment of seagrass classification in Lac 
Bay  
 
 

DTC and MLC models accuracies (MA) in predicting bottom types 

Classified/ 
observed 

Non-seagrass Seagrass Total classified User's acc. F1-score Classifier 

Non-seagrass 68 6 74 0.92 0.87 DTC 
 Seagrass 14 76 90 0.84 0.88 

Total observed 82 82 164 - - 

Producer's acc. 0.83 0.93 - 0.88 (MA) 
 

Non-seagrass 65 14 79 0.82 0.81 MLCBase 
 Seagrass 17 68 85 0.8 0.81 

Total observed 82 82 164 - - 

Producer's acc. 0.79 0.83 - 0.81 (MA) 
 

Non-seagrass 65 14 79 0.82 0.81 MLC10% 

 Seagrass 17 68 85 0.8 0.81 

Total observed 82 82 164 - - 

Producer's acc. 0.79 0.83 - 0.81 (MA) 
 

Non-seagrass 68 17 85 0.8 0.82 MLC20% 
 Seagrass 13 65 78 0.83 0.81 

Total observed 81 82 163 - - 

Producer's acc. 0.84 0.79 - 0.82 (MA) 
 

Non-seagrass 52 21 73 0.71 0.79 MLC50% 
 Seagrass 6 49 55 0.89 0.78 

Total observed 58 70 128 - - 

Producer's acc. 0.9 0.7 - 0.79 (MA) 
 

 
 
External validation (VA) accuracies of DTC and MLC models for a scene taken on 4 March 2019. The validation was based 

on seagrass monitoring dataset 2019.  

Classified/ 
Observed 

Non-seagrass Seagrass Total classified User's acc. F1-score Classifier 

Non-seagrass 8 5 13 0.62 0.64 DTC 
 Seagrass 4 31 35 0.89 0.87 

Total observed 12 36 48 - - 

Producer's acc. 0.67 0.86 - 0.81 (VA) 
 

Non-seagrass 9 12 21 0.43 0.55 MLCBase 
 Seagrass 3 24 27 0.89 0.76 

Total observed 12 36 48 - - 

Producer's acc. 0.75 0.67 - 0.69 (VA) 
 

Non-seagrass 10 11 21 0.48 0.61 MLC10% 

 Seagrass 2 25 27 0.93 0.79 

Total observed 12 36 48 - - 

Producer's acc. 0.83 0.69 - 0.73 (VA) 
 

Non-seagrass 11 16 27 0.41 0.56 MLC20% 
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External validation (VA) accuracies of DTC and MLC models for a scene taken on 4 March 2019. The validation was based 
on seagrass monitoring dataset 2019 (continued).  

Seagrass 1 20 21 0.95 0.7 
 

Total observed 12 36 48 - - 

Producer's acc. 0.92 0.56 - 0.65 (VA) 
 

Non-seagrass 11 25 36 0.31 0.46 MLC50% 
 Seagrass 1 11 12 0.92 0.46 

Total observed 12 36 48 - - 

Producer's acc. 0.92 0.31 - 0.46 (VA) 
 

 
 


