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A B S T R A C T   

To obtain robust near-infrared (NIR) spectroscopy data calibration models, variable selection and model 
updating with recalibration approaches were used for predicting quality parameters in pear fruit. For variables 
selection, interval partial least-squares regression and covariate selection approaches were used and compared. 
Model updating with recalibration was performed by incorporating a few new samples in the calibration set of 
existing batch data. The interaction of variable selection and model updating was also explored. The results 
showed that with variable selection, the model performance when tested on a new independent batch of fruit was 
greatly improved. Further, the model updating with only a few new samples resulted in a reduction of the bias 
when tested on the new batch. In the case of MC prediction, the variable selection reduced the bias from 1.31 % 
to 0.19 % and the RMSEP from 1.44 % to 0.58 %, compared to the standard partial least-squares regression 
(PLS2R). In the case of SSC prediction, the variable selection reduced the bias from -0.62 % to 0.07 % and the 
RMSEP from 0.90 % to 0.63 %, compared to the standard PLS2R. With a combination of variable selection and 
model updating the bias and RMSEP were further reduced. The interval-based method performed better 
compared to the filter-based method. As few as only 10 samples from the new batch already lead to a significant 
improvement in model performance. In the case of MC, spectral regions of 749-759 nm and 879-939 nm were 
identified as the most important region. In the case of the SSC, 709-759 nm and 789-999 nm were found to be 
important spectral regions. Robust models made on selected variables combined with model updating strategy 
can support to make NIR spectroscopy a preferred choice for non-destructive assessment of quality features of 
fresh fruit.   

1. Introduction 

Fresh fruit are widely traded across the world. To make long-distance 
transport possible, fruit are often harvested in an immature stage. Fruit 
harvest date is often decided based on parameters such as soluble solids 
content (SSC) and moisture content (MC). This is because SSC and MC 
contribute to indirect estimations of fruit maturity and quality, where 
low SSC and low MC values implicate unripe, less tasty fruit (Palmer 
et al., 2010; Travers et al., 2014). A common non-destructive tool to 
achieve this is with near-infrared (NIR) spectroscopy (Nicolai et al., 
2007; Wang et al., 2015). In NIR spectroscopy, spectra of the fruit are 
acquired using dedicated spectrometers and calibration models are used 
to provide output as a prediction of quality parameters (Lu et al., 2020). 

Further, the prediction is combined with background physiological 
knowledge, such as a range of MC and SSC for raw fruit, to make de-
cisions. Apart from harvest decisions, NIR spectroscopy is increasingly 
being integrated with fruit sorting lines, ripening monitoring and for 
decisions on maturity levels of fruit in storage (Walsh et al., 2020). 

NIR spectroscopy data is multivariate and made up of several un-
derlying peaks related to multiple chemical compounds such as water, 
sugar, protein and fats (Lin and Ying, 2009). The modelling performed 
on the NIR spectroscopy data involves identification of the underlying 
peaks to avoid the collinearity problem and later using the information 
extracted from these corresponding peaks to calibrate the model (Saeys 
et al., 2019). Based on the requirement, classification or regression 
analysis can be performed. A common technique used for NIR 
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spectroscopy data modelling is the partial least-squares regression 
(PLS2R) (Wold et al., 2001). Here, the 2 in the PLSR indicates that 
multi-responses are considered by the same PLSR model. PLS2R works 
by identifying the latent variables (LVs) which explains the variance in 
the response variables. To perform the regression, the NIR spectroscopy 
data is transformed by projecting it to the identified LVs followed by a 
multi-linear regression. However, models developed on NIR spectros-
copy data usually work well for a single fruit batch but fail to perform 
well when tested on a different batch (Teh et al., 2020). Often when 
tested on data from a different batch, high bias and error are prevalent. 
Several physical, chemical and environmental effects can be accounted 
for the failure of models (Zeaiter et al., 2006). 

A reason for the poor performance of a model when applied to a new 
fruit batch could be due to the existing model being sub-optimal. Sub- 
optimal modelling in NIR spectroscopy could results as NIR data is a 
mixture of several overlapping peaks which are sometimes difficult to 
extract with methods such as PLS2R (Nørgaard et al., 2000). However, 
advanced variable selection methods were found to be complementing 
the PLS2R modelling to further optimise PLS-based models (Mehmood 
et al., 2012; Mehmood et al., 2020). Variable selection often results in 
the removal of variables that were estimated as being of least impor-
tance by either identifying and keeping the important wavelength in-
tervals over the spectral range or filtering discrete wavelengths. By 
doing so, the burden over the PLS2R to identify the optimal LVs is 
reduced and thus results in more efficient modelling (Mehmood et al., 
2012; Mehmood et al., 2020). NIR spectra (750 − 2500 nm) are made up 
of multiple peaks with specific wavelengths corresponding to chemical 
components (Mishra et al., 2017), such as for water and sugar predic-
tion, the 3rd overtones of OH and CH bonds can be related to the spectral 
range of 750-950 nm. This means that making a model for predicting e.g. 
MC and SSC in the fruit, using the information from wavelengths outside 
the region of OH and CH overtones may lead to sub-optimal models. 

In the domain of chemometrics, there are two main types of variable 
selection techniques exist i.e., interval-based and the filter-based tech-
niques (Mehmood et al., 2012; Mehmood et al., 2020). The interval-based 
techniques select a sub-region over the signal which are the most pre-
dictive of the response variables. The interval-based techniques are useful 
when the data has continuous variables such as in the case of the NIR 
spectroscopy (Nørgaard et al., 2000). The filter-based techniques aim to 
filter out the individual variables based on some criteria such as the 
maximum covariance or with the use of a user-defined threshold (Roger 
et al., 2011). Particular to the NIR spectroscopy of fresh fruit, variable 
selection with interval-based approaches have shown improved and 
generalised model performances. For examples, model based on selected 
intervals improved the firmness prediction in mango (Valente et al., 
2009), glucose and sucrose content prediction in potatoes (Rady and 
Guyer, 2015), and total soluble solids (TSS), dry matter (DM), flesh colour 
and acidity prediction in mango fruit (Nordey et al., 2017). 

One of the ways to deal with the poor performance of models when 
applied to a new batch is with the model updating. A study related to 
SSC prediction in apple fruit suggested that including more variability in 
the calibration set as new samples from varying orchards, season and 
cultivars, improved the model robustness (Peirs et al., 2003). Similarly, 
in another study related to SSC prediction in apple fruit, incorporating 
extra variability in the calibration set improved the predictive perfor-
mance of apple models for different cultivar, season, shelf-life and origin 
of the fruit (Bobelyn et al., 2010). A study related to plum fruit showed 
that incorporating extra samples from multiple cultivars improved the 
generalisability of NIR models for plum quality parameters prediction 
(Louw and Theron, 2010). In the case of mango fruit, incorporating data 
from multiple seasons improved the robustness of NIR models compared 
to models made on a single season data (Rungpichayapicheta et al., 
2016). The model updating with recalibration is performed by adding 
some extra measurements i.e., NIR spectroscopy and reference, from the 
new batch to the existing data or combining data from multi-season 
(Rungpichayapicheta et al., 2016), multi-cultivars (Louw and Theron, 

2010) and several measurement conditions (Peirs et al., 2003; Bobelyn 
et al., 2010; Nordey et al., 2017). The old model is then recalibrated with 
the new samples and used for the prediction of the new batch. Often, the 
model updating results in an improvement in model performance in 
terms of reduction in bias and error. However, the main drawback of the 
model updating with recalibration is that it requires new samples which 
are not always available. Also, it is not clear how many new samples are 
required for the model updating. In developing robust models, the first 
aim should be to optimise the PLS2R models (Nascimento et al., 2016) 
such that they can be used with acceptable performance on different 
batches without the need of the model updating and extra measure-
ments. Secondly, if the optimised models are still poor in performance 
then model updating should be incorporated to enhance the models. 
Both the model optimisation and model updating with recalibration 
require extra efforts, but the model optimisation step does not require 
any new measurements. 

The overall aim of this study was to achieve robust NIR spectroscopy 
models which perform well when tested on different fruit batches. To 
attain that, two variable selection approaches i.e., iPLS2R and covariate 
selection (CovSel), were compared. The models were explored for MC 
and SSC prediction in individual pear fruit. Further, a combination of 
model updating with recalibration and variable selection was explored 
to identify a minimum number of samples required to perform model 
updating. 

2. Material and methods 

2.1. Plant material 

Two batches of ‘Conference’ pear fruit (Pyrus communis L.) were 
measured. 239 samples from Batch 1 and 240 samples from Batch 2. 
Both batches contained a mix of fruit from 10 different orchards 
throughout The Netherlands i.e., Randwijk, Broex, Tiel, Biolet, Deil, 
Zeeland, Westwoud, near Utrecht, west of Utrecht and near Rotterdam, 
and 1 from Belgium i.e., Sint Truiden, with one orchard from The 
Netherlands i.e., Randwijk, delivering two groups: one with normal 
irrigation and one subjected to an average soil water tension of − 100 
kPa during the month prior to harvest. The soil type was either the river 
clay or the sea clay. The samples were received at Wageningen, The 
Netherlands after 1-2 days of harvest in the middle of harvest season of 
year 2019. After harvest pear fruit were either stored under regular 
controlled atmosphere conditions for pear fruit (0.7 % CO2 and 3 % O2 at 
-0.5 ◦C and > 95 % RH) for 8 months or analysed immediately. The 
difference between two batches was that the batches were measured 8 
months apart. To obtain generalised models, the orchards had been 
selected for a wide diversity of pear fruit, based on size, amount of skin 
rusting and shape. 

2.2. Visible and near-infrared spectroscopy measurements 

The spectral measurements were carried out with a portable spec-
trometer (Felix F-750, Camas, WA, USA). The Felix utilises a Carl Zeiss 
MMS-1 spectrometer to record the reflected light in the spectral range of 
310-1135 nm with a spectral resolution of 8-13 nm. The spectrometer 
utilizes a Xenon Tungsten Lamp for illumination and a built-in white 
painted reference standard for estimating the reflectance. The data 
acquisition was performed by placing the fruit at the sample holder and 
by manually pressing the scan button on the Felix device. For a single 
pear fruit, spectral measurements were performed at centre belly part. 
The final scan was an automatic average of 6 scans from the same spot. 
The samples for reference measurements were taken to include at least 
part of the area recorded by the spectral measurements. The data were 
automatically radiometric calibrated by the Felix device and the 
reflectance spectra were extracted as excel files using the "Data-Viewer" 
software (Felix Instruments, Camas, WA, USA). The radiometric cali-
bration was performed as per Eq. 1: 
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Reflectance =
S − A − D

W − D
(1)  

where S is fruit spectra (acquired with shutter open, lamp on), A is 
ambient light spectra (acquired with shutter open, lamp off), D is dark 
reference spectra (acquired with shutter closed, lamp off), and W is 
white reference spectra (acquired with shutter closed, lamp off). 

2.3. Reference measurements 

MC and SSC measurements were performed as the reference to 
correlate with NIR spectroscopy data. A schematic of the sampling 
procedure is shown in Fig. 1. After NIR spectroscopy measurements on 
the fruit samples, a 1 cm thick slice was cut from the equator of the pear 
fruit belly, which was subsequently divided into 4 equal parts. Two of 
these parts were used to determine MC and SSC. MC was determined 
using an electronic balance XS10001 L (Mettler-Toledo GmbH, Giessen, 
Germany) by recording the weight of the parts before and after drying in 
a hot-air oven (FP 720, Binder GmbH, Tuttlingen, Germany) at 80 ̊C for 
96 h. SSC of extracted pear fruit juice was determined using a handheld 
refractometer (HI 96801, Hanna Instruments Inc, Woonsocket, RI, USA). 

2.4. Data analysis 

2.4.1. Spectral pre-processing 
The spectral range was reduced from 310-1135 nm to the NIR range 

700-1135 nm. This was done for two reasons: first to remove the in-
fluence of fruit colour from the models and second to focus on the 3rd 

overtones related to O-H and C-H bonds present in the spectral range of 
700-1135 nm. The MC and SSC can be correlated with the O-H and C-H 
containing compounds. The spectra were smoothened with Savitzky- 
Golay (SavGol) smoothing utilising a default window size of 15 and 
fitting a second order polynomial. The scatter was corrected using the 
standard normal variate (SNV) transform (Barnes et al., 1989). Further 
to reveal the underlying peaks, the 2nd derivative was estimated utilising 
a default window size of 15 and fitting a second order polynomial. In all 
the cases, the models were developed on Batch 1 and tested on Batch 2. 

2.4.2. Partial least-squares regression 
PLS2R is a common chemometric technique used for NIR spectros-

copy data modelling (Saeys et al., 2019; Wold et al., 2001). PLS2R deals 
with the multi-co-linearity in the multivariate signal by extracting the 
underlying peaks as the LVs. The LVs were extracted having maximum 
covariance with the response variables. To perform simultaneous pre-
diction of MC and SSC, a multi-response PLS2R known as PLS2R was 
used. The PLS2R is different from PLS2R in the way that it also de-
composes the response matrix into scores and loading, and the covari-
ance with the predictor block is maximised using the scores. Further, in 
the case of prediction, the scores are predicted for the response vari-
ables, which are multiplied with the loading to obtain actual responses. 
Before feeding to PLS2R, the data were mean centred. The LVs were 

selected utilising Venetian-blind cross-validation (10 random blocks) 
and the output of the regression is presented as coefficient of determi-
nation and root mean squared errors (RMSE). The corresponding MC 
and SSC measurements were also mean centred before regression anal-
ysis. Outlying samples were identified and kept out of modelling uti-
lizing the PLS inner relation plots. 

2.4.3. Interval partial least-squares regression 
NIR spectroscopy data consists of a high number of variables. Pre- 

selecting the important wavelengths makes the modelling task easier 
and provides a better explanation for the modelling relation and the 
variables (Mehmood et al., 2012; Mehmood et al., 2020). In the present 
work, a common chemometric algorithm called interval partial 
least-squares regression (iPLS2R) was used for variable selection 
(Nørgaard et al., 2000; Zou et al., 2010). An interval is a subset of 
continuous wavelengths. iPLS2R selects intervals in following steps:  

1 An interval size (n) is defined by the user.  
2 For a spectra set of dimension p £m, where p is the sample size and 

m are the wavelengths (nm), the spectra are divided into m/n 
intervals.  

3 Using each spectral interval separate PLS2R models are developed 
and optimized using Venetian-blind cross-validation (10 random 
blocks).  

4 The cross-validation error obtained for each interval is compared to 
the PLS2R model developed using the full spectral range.  

5 The spectral interval carrying the lower cross-validation error 
compared to the full spectra model are retained.  

6 The final PLS2R model is recalibrated with the retained intervals 
using Venetian-blind cross-validation (10 random blocks). 

In this study, to find the optimal interval size, intervals in the range 
of 5-15 in step of 1 were explored. The iPLS2R was implemented in 
MATLAB 2017b, Natick, USA, using the freely available iPLS2R toolbox 
(http://www.models.life.ku.dk/iToolbox). 

2.4.4. CovSel 
The covariate selection (CovSel) is a popular chemometric technique 

for filtering important variables (Roger et al., 2011). The CovSel has the 
advantage over other chemometric techniques in that it can perform 
simultaneous variable selection for multi-responses. Furthermore, the 
CovSel has the benefit to be fast and easy to optimize. The background 
idea of the CovSel is like PLS2R in involving the selection of wavelengths 
based on response variables followed by orthogonalization steps to 
remove the variability already explained by the selected wavelengths. In 
the CovSel, variables are selected one at a time resulting in plots 
explaining the variance being captured in the function of the number of 
variables selected. The wavelengths selected from the CovSel are later 
used for MLR modelling. CovSel was used for simultaneous wavelengths 
selection for MC and SSC prediction. 

Fig. 1. Near-infrared (NIR) reflectance spectra (700-1135 nm) of fruit from two batches (Batch 1 in green solid lines and Batch 2 in red dashed lines). (A) raw 
reflectance data, and (B) standard normal variate (SNV) followed by 2nd derivative pre-processed spectra. 
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2.4.5. Model updating with recalibration using new sample 
To improve the model performance on the different batch, model 

updating with recalibration was performed. The model updating was 
achieved by incorporating a few samples from the new batch into the old 
batch and recalibration. The model updating was explored for three 
different sample numbers i.e. incorporating 20 samples, 10 samples and 
5 samples. This was done to have an idea about the minimum number of 
samples that should be sufficient to improve the model performance. 
The samples to incorporate were selected utilising the Kennard-Stone 
(KS) samples partition technique (Kennard and Stone, 1969). The 
model updating was explored in combination with the variable selection 
both with the iPLS2R and the CovSel. The results of the model updating 
are provided as the Q2, RMSEP and prediction bias. All data analyses 
were performed in MATLAB 2017b (Natwick, MA, USA). 

3. Results 

3.1. Spectra of pear fruit 

Fig. 1 shows the raw reflectance and pre-processed spectra of pear 
fruit from two batches i.e., Batch 1 (Red dashed lines) and Batch 2 (Blue 
solid lines). The spectra are presented in the spectral range of 709-1125 
nm as the region is dominated by the 3rd overtones of C-H and O-H bonds 
as useful for prediction of MC and SSC in fresh fruit. The raw reflectance 
spectra have mainly two dominated peaks around 820 nm and 1080 nm 
(Fig. 1A). The 2nd derivative revealed further underlying peaks (Fig. 1B). 

3.2. Reference analysis 

A summary of reference measurements for Batch 1 and 2 is presented 
in Table 1. The reference MC values for Batch 1 and Batch 2 were in the 
range of 81.09- 88.25% and 80.12 – 87.23 % respectively. The reference 
SSC for Batch 1 and Batch 2 were in the range of 8.40 – 16.10 % and 
9.70–16.40 % respectively. The means for both the batches were similar. 

3.3. Partial least-squares regression on full spectra (700-1135 nm) 

Fig. 2 shows the PLS2R modelling performed without variable se-
lection and model updating. Fig. 2A shows the RMSEC and RMSECV in 
the function of LVs simultaneously extracted for SSC and MC. A total of 6 
LVs were selected for simultaneous prediction of SSC and MC, this was 
based on noting no further significant decrease in the error with addition 
of new LVs. The calibration plots for MC and SSC are shown in Fig. 2B 
and Fig. 2C. Q2’s of 0.81 and 0.70 were noted for MC and SSC, respec-
tively. In comparison to RMSEC, the RMSEP increased for the MC and 
SSC predictions, respectively. Further, there were high prediction biases 
for both MC and SSC predictions, indicating that the model trained on 
Batch 1 is sub-optimal to be applied to Batch 2. This high bias is also 
visible as the two parallel clouds corresponding to Batch 1 and Batch 2 in 
Fig. 3B-C. The bias was higher in the case of MC prediction compared to 
SSC. 

3.4. Interval selection with iPLS2R 

A summary of intervals explored for iPLS2R and the corresponding 
results are presented in Table 2. In the case of MC prediction, an interval 
size of 10 was identified as best, leading to an increase in Q2 (from 0.81 

to 0.84), a reduction in RMSEP (from 1.44 % to 0.58 %) and reduction in 
prediction bias (from 1.31 % to 0.19 %) compared to the PLS2R per-
formed without interval selection. In the case of SSC prediction, an in-
terval size of 8 was identified as best leading to an increase in Q2 (from 
0.70 to 0.71), reduction in RMSEP (from 0.90 % to 0.63 %) and 
reduction in prediction bias (from -0.62 % to 0.07 %) compared to the 
PLS2R performed without interval selection. The best model was 
selected based on high Q2, and low RMSEP and prediction bias. 

The best models with the selected intervals are shown in Fig. 3. In the 
case of MC, two spectral regions i.e., 743-779 nm and 879-939 nm, were 
selected corresponding to the model with best performance (Fig. 3A). 
This model with the selected regions required 4 LVs (Fig. 3B) to lead to 
the final model (Fig. 3C). In the case of SSC, two spectral regions i.e., 
709-759 nm and 789-999 nm, were selected corresponding to the model 
with the best performance (Fig. 3D). This model with the selected re-
gions required 5 LVs (Fig. 3E) to lead to the final model (Fig. 3F). The 
green and the red points in the Fig. 3C and 3 F are the samples from 
Batch 1 and 2 respectively. In summary, the spectral region selection 
prior to PLS2R improved the model performance i.e., high Q2, low 
RMSEP and bias. 

3.5. Discrete wavelength selection with CovSel 

Fig. 4A shows the explained variance in NIR spectroscopy data and 
the simultaneously explained variance in the MC and SSC. In total, 8 
wavelengths were selected based on the stability of variance explained 
in Fig. 4A. The selected bands for simultaneous prediction of MC and 
SSC were 736, 709, 961, 1109, 1125, 816, 912, 879 nm. The wave-
lengths are arranged based on decreasing co-variance. The calibration 
models with selected wavelengths for the MC and SSC are shown in 
Fig. 4C and D respectively. The different between two lines is the model 
bias. In the case of the MC, the Q2 was increased (from 0.81 to 0.84), 
RMSEP was reduced (from 1.44 % to 0.64 %) and prediction bias was 
reduced (from 1.31 % to -0.29 %) compared to the PLS2R performed 
without CovSel wavelength selection. In the case of the SSC, the Q2 was 
increased (from 0.70 to 0.73) but the RMSEP and prediction bias were 
not improved compared to the PLS2R performed without CovSel 
wavelength selection. 

3.6. Model updating with recalibration and iPLS2R modelling 

Model updating in general improved the performance of the both 
PLS2R and iPLS2R modelling in terms of higher Q2 and lower RMSEP 
and prediction bias, however, the performance of iPLS2R was better for 
both MC and SSC. In the case of model updating with 20 new samples, 
intervals of 9 and 11 were identified by iPLS2R as the best for predicting 
MC and SSC, respectively (Table 3). To MC prediction, the iPLS2R in 
comparison to PLS2R after model updating increased the Q2 (from 0.85 
to 0.87) and reduced the RMSEP (from 0.55 % to 0.52 %) and prediction 
bias (from 0.16 % to 0.10 %). To SSC prediction, the iPLS2R in com-
parison to PLS2R after model updating increased the Q2 (0.74 to 0.75) 
and reduced the RMSEP (from 0.60 % to 0.58 %) and prediction bias 
(0.08 % to 0.06 %). 

In the case of the model updating with 10 new samples, an interval 
size of 9 and 10 were identified as the best for predicting MC and SSC 
respectively (Table 3). To MC prediction, the iPLS2R in comparison to 
PLS2R after model updating increased the Q2 (from 0.83 to 0.86) and 

Table 1 
A summary of destructive measurements performed for moisture and soluble solids content.  

Batch 
Moisture content (%) Soluble solids content (%) 

Min Max Mean Std Min Max Mean Std 

Batch 1 81.09 88.25 84.61 1.37 8.40 16.10 12.80 1.31 
Batch2 80.12 87.23 84.26 1.38 9.70 16.40 12.74 1.17  
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reduced the RMSEP (from 0.64 % to 0.53 %)and prediction bias (from 
0.30 % to 0.14 %). To SSC prediction, the iPLS2R in comparison to 
PLS2R after model updating increased the Q2 (0.75 to 0.76) and reduced 
the RMSEP (from 0.59 % to 0.57 %) and prediction bias (0.07 % to 0.05 
%). 

In the case of the model updating with 5 new samples, an interval 
size of 6 and 15 were identified as the best for predicting MC and SSC 
respectively (Table 3). In the case of MC prediction, the iPLS2R in 
comparison to PLS2R after model updating there was no improvement in 
Q2 and RMSEP, but the prediction bias was reduced from 1.31 % to 0.09 
%. In the case of SSC prediction, the iPLS2R in comparison to PLS2R 
after model updating increased the Q2 (from 0.75 to 0.76) and reduced 
the RMSEP (from 0.59 % to 0.57 %). 

3.7. Model updating with recalibration and CovSel variable selection 

Like iPLS2R modelling, the CovSel modelling also showed improved 
prediction with the updated model (Table 4). The best performance was 
obtained with model updated using 20, followed by 10 and then 5 new 
samples. Compared to the CovSel modelling for MC prediction without 

Fig. 2. Partial least-squares regression (PLS2R) modelling on complete spectra. (A) Error plot for latent variables (LVs) selection for moisture content (dashed blue) 
and soluble solids content (Solid red) (6 LVs used selected), (B) model calibration (green circles) and test (red squares) for moisture content and (C) soluble solids 
content (%). 

Fig. 3. Summary of interval partial least-squares regression (iPLS2R) models for moisture content (MC) and soluble solids content (SSC) prediction. Selected regions 
for MC (%) (A) and SSC (%) (D), latent variables optimization for MC (B) and SSC (E), model calibration (green circles) and test (red squares) for MC (C) and SSC (F). 

Table 2 
Summary of model for moisture content (MC) and soluble solids content (SSC) 
prediction with varying intervals of interval partial least-squares regression 
(iPLS2R). An interval size of 10 was identified for the MC (%) and of size 8 was 
identified for the SSC (%) prediction. Q2 stands for coefficient of determination 
for test set and RMSEP stands for root mean squared error of prediction.  

Interval size 
Moisture content Soluble solids content 

Q2 RMSEP (%) Bias (%) Q2 RMSEP (%) Bias (%) 

5 0.84 1.08 0.93 0.71 0.74 − 0.40 
6 0.83 1.06 0.91 0.70 0.75 − 0.38 
7 0.82 1.04 0.86 0.73 0.67 − 0.29 
8 0.83 0.78 0.56 0.71 0.63 0.07 
9 0.84 1.26 1.14 0.73 0.78 − 0.50 
10 0.84 0.58 0.19 0.72 0.70 0.33 
11 0.80 0.98 0.78 0.68 0.70 − 0.21 
12 0.81 1.10 0.92 0.69 0.75 − 0.37 
13 0.84 0.64 0.33 0.70 0.67 0.19 
14 0.78 0.87 0.59 0.65 0.70 − 0.09 
15 0.81 1.04 0.84 0.68 0.70 − 0.24 
Full wavelength PLS2R 
All bands 0.81 1.44 1.31 0.70 0.90 − 0.62  
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model update, the Q2 was increased (from 0.84 to 0.85) and the RMSEP 
(from 0.64 % to 0.56 %) and the prediction bias (from -0.29 % to 0.15 %) 
were decreased. Compared to the CovSel modelling for SSC prediction 
without model updating, the Q2 was increased (from 0.73 to 0.77) and 
the RMSEP (from 1.08 % to 0.57 %) and the prediction bias (from 0.87 % 
to 0.04 %) were decreased. In summary, the CovSel improved the model 
performance and combined with model updating with data from new 
samples it further reduced the RMSEP and prediction bias. 

4. Discussion 

NIR spectroscopy models of fresh fruit lack robustness when tested in 
a new batch of fruit measured in a different physical, chemical and 

environmental conditions (Roger et al., 2003). This problem has been 
highlighted in multiple scientific pieces of literature (Mishra et al., 2020; 
Nicolai et al., 2007; Saeys et al., 2019; Walsh et al., 2020), however, a 
clear solution to the problem is still lacking. In the present work, the use 
of variable selection has been demonstrated for building robust NIR 
spectroscopy models that work well on a different batch. Further, model 
updating with new samples and its combination with the variable se-
lection is demonstrated to gain further improvement in the robustness. 
The study showed that the models developed on selected region-
s/specific wavelengths can drastically improve the model performance 
and it works well when used on a new batch. Further, in combination 
with model updating with a few new samples, a further reduction in bias 
and RMSEP was obtained. 

Fig. 4. Covariate selection (CovSel) modelling. (A) Variance plot for selecting variables, 8 variables were selected, (B) selected bands (vertical lines), (C) model 
calibration (green circles) and test (red squares) for moisture content (%) and (D) soluble solids content (%). 

Table 3 
A summary of recalibrated partial least-squares regression (PLS2R) and interval 
partial least-squares regression (iPLS2R) models with addition of 20, 10 and 5 
new samples from new batch. Q2 stands for coefficient of determination for test 
set and RMSEP stands for root mean squared error of prediction.  

Models (PLS2R 
and iPLS2R) 

Moisture content Soluble solids content 

Q2 RMSEP 
(%) 

Bias 
(%) 

Q2 RMSEP 
(%) 

Bias 
(%) 

Recalibration with 20 new samples 
PLS2R 0.85 0.55 0.16 0.74 0.60 0.08 
iPLS2R 0.87 0.52 0.10 0.75 0.58 0.06 
Recalibration with 10 new samples 
PLS2R 0.83 0.64 0.30 0.75 0.59 0.07 
iPLS2R 0.86 0.53 0.14 0.76 0.57 0.05 
Recalibration with 5 new samples 
PLS2R 0.84 0.52 1.31 0.75 0.59 0.02 
iPLS2R 0.82 0.59 0.09 0.76 0.57 0.05  

Table 4 
A summary of multi-linear regression (MLR)corrected models made on CovSel 
selected variables for prediction MC and SSC by incorporating new samples in 
the calibration set. Q2 stands for coefficient of determination for test set and 
RMSEP stands for root mean squared error of prediction.  

CovSel 

Moisture content Soluble solids content 

Q2 RMSEP 
(%) 

Bias 
(%) 

Q2 RMSEP 
(%) 

Bias 
(%) 

No new sample 0.84 0.64 − 0.29 0.73 1.08 0.87 
20 samples from 

batch 2 
0.85 0.56 0.15 0.77 0.57 0.04 

10 samples from 
batch 2 

0.84 0.57 0.14 0.77 0.58 0.09 

5 samples from 
batch 2 

0.85 0.57 0.20 0.77 0.62 0.25  
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In literature, several studies were performed related to the prediction 
of MC and SSC and the problem of model robustness is very persistent in 
the case of pear fruit. In a study related to SSC predicting in pear fruit 
with the absorption and scattering affects a good calibration R2 was 
obtained but when tested on a validation set the performance was 
decreased by 50 % (He et al., 2016). In the present work, a similar 
decrease in performance was observed with the standard PLS2R 
modelling, but with variable selection, the model performance for the 
new batch was similar as of the calibration set. This indicates that the 
models learned with key spectral regions or wavelengths are optimal. 
Spectral region selection or key wavelengths identification is a logical 
step as for a fruit property-specific NIR spectral region capture the 
overtones. For example: to predict MC it is optimal to use the spectral 
region or key wavelengths that capture the OH bond overtones, rather 
using the complete spectral range. There are also several other studies 
on pear fruit quality prediction, but they mostly lack either a new batch 
(Sun et al., 2009; Wang et al., 2017; Yu et al., 2018; Yuan et al., 2020) or 
the modelling only involved calibration and cross-validation step and no 
independent test step (Adebayo et al., 2017; Travers et al., 2014). To 
have a better understanding of model robustness it is highly recom-
mended to always perform multi-batch experiments in NIR spectroscopy 
related to fruit. 

In this work, without model updating with new samples, the interval- 
based approach (iPLS2R) worked better compared to the filter-based 
method (CovSel) in terms of high Q2, and low RMSEP and prediction 
bias. However, when the model was updated with a few new samples 
than both the variable selection approaches showed similar performance 
in-term of Q2 and the RMSEP. The prediction bias was lower for the 
model made on selected spectral regions with iPLS2R compared to in-
dividual wavelengths selected with the CovSel. The better performance 
of interval-based approach can be linked to the basics of NIR spectros-
copy as the NIR spectroscopy data is made of underlying peaks which are 
expressed over specific spectral regions rather than a single wavelength. 
Based on the physical, chemical and environmental conditions these 
peaks might shift or increase or decrease in intensity (Roger et al., 2003; 
Zeaiter et al., 2006). In such cases, a model based on the selected single 
band might lead to over or underestimation of property to be predicted, 
whereas a model with the selected region should be more robust. A point 
of key importance is to explore the interval size in the case of iPLS2R as 
different underlying peaks can be of different width and using a single 
interval size might lead to sub-optimal spectral region selection. 

Model updating with a few new samples has the main benefit of 

reducing the prediction bias. However, it is always challenging to decide 
on how many samples are required from the new batch. In this work, 
three different samples sizes (5, 10 and 20) were explored in combina-
tion with variable selection. The results showed that 5 samples were not 
enough to improve the model performance as the RMSEP and prediction 
bias were higher, but 10 samples were sufficient to keep the RMSEP and 
prediction bias low. Using 20 samples could improve the performance 
further, but it is generally better to have minimum new samples to 
reduce the time and work on new measurements and reap the complete 
benefit of NIR spectroscopy. On other hands, if a slightly higher RMSEP 
and prediction bias are allowed then the iPLS2R modelling without 
model updating with new samples is sufficient to predict MC and SSC in 
a new batch. Based on the findings from this study, we suggest a NIR 
spectroscopy modelling procedure for robust NIR spectroscopy data 
modelling and for using it on new batches. The procedure is shown in 
Fig. 5. The methodology suggests that for a single batch the model 
optimisation should be performed with variable selection. Later, to use it 
on new batch either the optimised model can be directly applied on new 
samples, or a few selected samples can be used for model updating and 
later the updated model can be used on the new batch. 

5. Conclusion 

Pear fruit quality parameter such as MC and SSC are key parameters 
used to decide on harvest date or effect of postharvest storage condi-
tions. NIR spectroscopy is widely explored for that purpose but NIR 
spectroscopy models often fails when used in a new batch such as 
samples from a new season, a new cultivar and if samples are measured 
under different temperature conditions. The results from this study 
showed that a combination of variable selection and model updating 
allowed development of robust NIR spectroscopy models for pear fruit 
that works well when used in a different batch. The results showed that 
developing models with the key spectral ranges and wavelengths are 
more robust compared to the standard PLS2R modelling using complete 
spectra. The CovSel showed less improvement compared to iPLS2R 
approach. In the case of MC prediction, the variable selection (iPLS2R) 
reduced the bias (from 1.31 % to 0.19 %) and the RMSEP (from 1.44 % 
to 0.58 % in) compared to the standard PLS2R. In the case of SSC pre-
diction, the variable selection (iPLS2R) reduced the bias (from -0.62 % 
to 0.07 %) and the RMSEP (from 0.90 % to 0.63 %) compared to the 
standard partial least-squares regression. Further, the model updating 
with recalibration using just 10 new samples drastically reduced the 

Fig. 5. Proposed near-infrared spectroscopy (NIRS) data modelling strategy for robust models and application to a new batch.  
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RMSEP and prediction bias, for both MC and SSC prediction. In the case 
of MC, spectral regions of 749-759 nm and 879-939 nm were identified 
as the most important region. In the case of the SSC, 709-759 nm and 
789-999 nm were found to be important spectral regions. To develop 
robust models for NIR spectroscopy related to fruit, it is highly recom-
mended that PLS2R models should be optimised with the use of variable 
selection methods. If variable selection does not improve model per-
formance on new batch, then model should be updated with a few 
samples from the new batch. The spectral regions identified in this work 
can also be used in other studies which uses similar instrument. The 
presented approach should not be limited to pear fruit but in general the 
spectral region selection and key wavelengths identification can support 
robust NIR spectroscopy model development. 
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