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Abstract  
Soils are the major component of the terrestrial ecosystem and the largest organic carbon pool on earth 

and therefore soils have to be managed properly. To facilitate proper management , digital soil maps of 

good quality are needed. This study aims to help ISRIC understand the impact of local data and local 

modelling to improve their digital soil maps. 

This study aims to compare globally and locally calibrated SoilGrids (SG) models and assess the influence 

of adding local data to a globally calibrated SoilGrids model. This was assessed in three steps, using Soil 

Organic Carbon (SOC) and soil pH as soil properties to predict. The first step was calibrating an SG model 

using soil observations from a study area in India (Andhra Pradesh) and selecting local covariates. 

Predictions with this local SG model were compared to those of an SG model calibrated with soil 

observations from the entire globe and globally selected covariates, using a test dataset containing soil 

observations within Andhra Pradesh. The top ten most informative predictors differed 75% to 80%  

between the models. The predictions of local SG model were much closer to the observed values than 

those obtained by the global model with an RMSE of 0.286 for the local SOC model, 1.720 for the global 

SOC model, 0.467 for the local pH model, and 0.837 for the global pH model.  

The second step compared the global SG model with an SG model calibrated using all global soil 

observations and all local observations. The covariates used for both models were identical, and 

predictions were made for three areas, i.e.,  Andhra Pradesh - India, Nampula – Mozambique (similar to 

Andhra Pradesh in feature space) and the Netherlands (very dissimilar to Andhra Pradesh in feature 

space). It was anticipated that for Nampula differences between the two models would be relatively 

large whereas for the Netherlands they would be small. Results showed that this was not the case. The 

areas dissimilar to Andhra Pradesh in feature space showed more deviation in the difference maps of 

the SG global and SG local predictions than the areas close in feature space. A reason for this deviation 

can be the difference in variable importance between both models, where predictions for the 

Netherlands ware more influenced by in variable importance of the SG model calibrated using all global 

soil observations and all local observations, than Nampula was. To find out what the exact influence of 

covariate importance is, future research is needed. The out-of-bag (OOB) (see appendix I, OOB) model 

statistics of both models, showed that adding local soil observations to an SG model resulted in a better 

RMSE, ME and R2 for predictions around the entire globe. To find out if the model predictions accuracy 

also improved for Nampula and the Netherlands, future research is needed. 

The third and final step of this research was to gain insight into the influence of the size of the dataset 

added to a globally calibrated SG model. This was done by adding the local data in seven successive 

steps to the global soil observations and subsequent calibration of the global SG model, each time using 

the same covariates. The models were used to make soil pH predictions for Andhra Pradesh and showed 

that adding more local soil observations to the model increased prediction accuracy to a power-law (the 

more training data, the more accurate the model) and then reached a plateau from whereon the 

accuracy of the predictions is just slightly changing, as expected. 

This study shows that adding local data observations to the SoilGrids DSM changes the variable 

importance of the model. This resulted in different model results in areas close in feature space, but 

also areas distant in feature space. The OOB model statistics showed that adding local data to a global 

model positively influenced the model accuracy for predictions all over the globe. However, to make 

even more accurate predictions with a SoilGrids model, a combination between locally selected 

covariates and global soil observations can be used to make predictions for a local area.  
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Glossary: 
Calibrating a model Model calibration Is the process of adjustment of the model parameters. This 

includes that the model learns patterns, structures and parameters directly from 

the training data, and all settings that cannot be learned directly from the data 

are set manually. After a model is calibrated, it can be used to make predictions 

(Molnar, 2019). A synonym for calibration can also be; training a model.  

Covariates  A covariate is a variable that is correlated with the soil property of interest. 

According to this definition, any variable that is measurable, considered to have 

a statistical relationship with the dependent variable and that is available at all 

observation and prediction points would qualify as a potential covariate. (Fan, 

2019).  

Depth interval layers  The six layers used by Soil Grids to represent soil properties at different depth 

intervals (0-5 cm, 5-15cm, 15-30cm, 30-60 cm, 60-100cm and 100-200 cm 

depth interval layers) (Hengl et al., 2017).  

Global model  A model is a global model when: the input soil profiles contain data of the entire 

globe, the covariate stack covers the entire globe and the model is calibrated 

using both global soil profiles and covariates.  

Horizons A soil horizon is a layer in the earth with unique soil properties relative to parent 

and child layers (Zhang & Hartemink, 2019). 

Local model   A model is a local model when: the input soil profiles contain data of a country 

or region the covariate stack covers that same country or region and the model 

is calibrated using both country or region soil profiles and covariate stack. 

Machine Learning (supervised) Machine learning are algorithms which can be trained to recognise 

patterns based on past event or experience with respect to some class of tasks. 

ML Algorithms are able to predict future events for any new input after sufficient 

training (Frankenfield, 2018).  

Prediction depth This depth is the centre point of the depth interval layer you want to predict for 

(e.g. a prediction depth of 10 cm is used to predict for the 5-15 cm depth layer).  

Sample depth  The actual depth at which a soil observation sample was taken. This is the depth 

used as a covariate during model calibration. It stands apart from the depth 

interval layers and it should not be confused with prediction depth.  

Soil observations: Soil observations are soil samples taken in the field and analysed in a lab to give 

a measure of the soil p. For this research, soil observations for Soil pH and Soil 

Organic Carbon are used.   

Soil properties All soils contain mineral particles, organic matter, water and air. The 

combinations of these determine the soil’s properties – its texture, structure, 

porosity, chemistry and colour. Soil properties can therefore be e.g. soil organic 

carbon, soil pH, proportion of clay particles, total nitrogen or  

the proportion of sand particles. 
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1. Introduction 
 

Many global problems such as climate change, freshwater scarcity, loss of agricultural land through 

erosion, biodiversity decline and feeding 10 billion people by 2050 present immense challenges to 

humanity (Bouma, Montanarella, & Evanylo, 2019). Soil has a vital part to play in all these challenges 

(Sanchez et al., 2009). Soil degradation has, for example, detrimental consequences for the already 

limited land and water resources available for agricultural productivity (Koch et al., 2013). To be able to 

protect our carbon-rich and biodiverse rainforests, wetlands, and grasslands from changing into 

croplands and still be able to feed 10 billion people in the near future, we will have to increase current 

crop yields on existing farmland through sustainable intensification. In many areas, it is possible to 

sustainably intensify crop production through proper soil management and the use of fertilisers 

(Kopittke, Menzies, Wang, McKenna, & Lombi, 2019). Soil information is important to determine the 

amount of fertilisers needed to increase in yield. Another reason why soil is essential is that soil 

constitutes the earth’s largest terrestrial carbon (C) pool (Jobbágy & Jackson, 2000). Our challenge is to 

keep C in the soil through proper soil management and preferably increase soil C as a climate change 

mitigation measure. When soil is not rightly maintained (e.g. deforestation), it will release C into the 

atmosphere resulting in an aggravating climate change measure (Davidson & Janssens, 2006). Because 

the soil has a vital part to play in addressing global problems, the demand for soil information is 

increasing. 

The growing demand for soil information in combination with the increase in available detailed satellite 

data has led to the development of Digital Soil Mapping (DSM) (McBratney, Mendonça Santos, & 

Minasny, 2003). DSM produces soil maps using soil mapping based on supervised machine learning (ML) 

algorithms or geostatistical methods like kriging to predict soil properties from soil point observations 

and environmental covariate layers that are typically derived from satellite imagery and digital elevation 

models. These covariate layers related to the five major soil-forming factors that were identified by 

Pendleton & Jenny, 1945 and formalised into a model for soil development. These factors are climate 

(cl), organisms (o), relief (r), parent material (p) and time (t), or ‘CLORPT’ and are widely used as input 

for DSM.  

In many parts of the world, DSM has shifted from an academic pursuit to operational initiatives on both 

local (regional or national) (Hengl et al., 2015; Kempen, Brus, & de Vries, 2015) and global scale 

(Arrouays, Lagacherie, & Hartemink, 2017).  SoilGrids is a DSM framework developed by ISRIC that 

provides global (world covering) scale prediction maps for a standard set of numeric soil properties (Bulk 

density of the fine earth fraction, Cation exchange capacity of the soil, Volumetric fraction of coarse 

fragments, Proportion of clay particles, Total nitrogen, Soil pH, Proportion of sand particles, Proportion 

of silt particles, Soil organic carbon content, Organic carbon density and Organic carbon stocks) at six 

standard depths intervals (0-5 cm, 5-15 cm 15-30 cm 30-60 cm 60-100 cm and 100-200 cm). Those 

predictions are based on a collection of worldwide soil point observations and remote sensing-based 

soil covariates (Hengl et al., 2017)(see 2.1, the SoilGrids framework). These maps are used in various 

initiatives, for instance, to fill in the gaps for the Global Soil Organic Carbon Map (FAO & ITPS, 2018), as 

a data source for assessing land degradation trends (UNCCD & The Global Mechanism, 2016) and as 

data input for ecological niche modelling of plant species (Velazco, Galvão, Villalobos, & De Marco, 

2017).  

Because of its global nature, SoilGrids might not represent local patterns of the spatial distribution of 

soil well or give accurate local predictions, for instance, for a specific country or region. This could be 

caused by the lack of soil point observations for that specific county/region or predictive relationships 

that are locally different from globally. To address this, it might be more accurate to calibrate a DSM 



 

model locally. Kempen et al., 2019 uses a locally fitted ML model to predict Soil Organic Carbon content 

(SOC) for Tanzania instead of a globally fitted ML model. This model very likely captures local predictive 

relationships much better than a globally calibrated model would, and will thus result in much more 

accurate predictions (Hand & Vinciotti, 2003). A local model selects covariates that are locally relevant. 

This selection might differ from a covariate set that is selected by a global model. The latter might not 

be optimal for a more local application. In this way, the model will be better tuned to local conditions. 

A negative side of this is that an extensive calibration dataset is needed to ensure there is enough 

calibration data available to calibrate a DSM model locally. 

To provide more accurate local SoilGrids maps, one could consider serving the SoilGrids framework local 

data only (local soil samples and local covariates) and thereby make it a local model that has specifically 

tailored predictive relationships. Calibrating a local model requires more local data than calibrating a 

global model and may result in a patchwork of local models with sharp boundaries between them. If 

local data are available, then it can also be interesting to add these to the global model and analyse if 

this leads to locally improved (more accurate) predictions (Vitharana, Mishra, & Mapa, 2019). Therefore, 

this study aims to compare globally and locally calibrated SoilGrids models and assess the influence of 

adding local data to a globally calibrated SoilGrids model. To achieve this objective, three research 

questions will be answered.  

 

1.1   Research questions 

1. What is the model prediction performance of a globally calibrated SoilGrids model compared to a 
SoilGrids model calibrated on local soil data only? 

2. What is the model prediction performance of the current SoilGrids model compared to a global 
SoilGrids model calibrated after adding local data?  
 

3. How does the effect of adding local data on prediction accuracy depend on the size of the local 
dataset?  

 

The methodology will be tested using Andhra Pradesh - India as case study area (chapter 2.5). The local 

SoilGrids model will be built according to the SoilGrids Framework, thereby using only soil observations 

from Andhra Pradesh and a local covariate feature selection. The soil properties chosen for this study 

are soil organic carbon content in % and soil pH in H2O.     



 

2. Methodology 
The research questions are answered using the SoilGrids framework as a basis. Chapter 2.1 describes 

the SoilGrids framework, which is used to answer the three research questions. Chapter 2.2, 2.3 and 2.4 

each describes the method of a research question: what the model inputs and settings are, where 

predictions will be made and how the accuracy/influence of data of those predictions is determined. 

Chapter 2.5 explains the case study and chapter 2.6 finishes the methodology with the used materials 

and data.  

2.1 The SoilGrids Framework 
DSM often makes use of supervised machine learning (ML) algorithms to predict soil properties. Figure 

1 shows the SoilGrids framework, which uses Random Forest (see appendix I, Theoretical background) 

as an ML algorithm. Each step in the framework is briefly explained below. See (Hengl et al., 2017) for a 

detailed step by step explanation of the SoilGrids DSM framework.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Soil observations 
The soil samples and observations dataset (part of step A, future explained in section 2.6 Data and 

materials) contains a compilation of soil profiles and sample data used for model calibration. The soil 

samples dataset is derived from soil observations made all over the world and samples analysed in the 

lab by multiple organisations.  ISRIC collects geo-referenced soil profile data from the world, harmonises 

the data, merges datasets and serves the result via the World Soil Information Service (Batjes et al., 

2017). SoilGrids soil profiles contain measured values of soil properties (e.g. pH in H2O, sand, silt and 

clay), sample depth and coordinates of the measured location. Besides the soil observations, the soil 

Figure 1. SoilGrids statistical framework (Hengl et al., 2017). 



 

sample dataset may also include expert-based pseudo-observations. Some large areas that have 

extreme climatic conditions and/or have very restricted access are significantly under-sampled. To 

ensure that the model can represent those under-sampled areas, pseudo-observations are inserted and 

fill the gaps in the feature space so the dataset can be used for model training (Hengl et al., 2017). 

 

B. Covariates 
A covariate is a variable that is correlated with the soil property of interest. According to this definition, 

any variable that is measurable, considered to have a statistical relationship with the dependent variable 

and that is available at all observation and prediction points would qualify as a potential covariate. A 

covariate is thus a possible predictive or explanatory variable of the dependent variable (Fan, 2019). 

Hengl et al. (2017) list all the covariates used by SoilGrids. These include e.g. land cover classes 

(cultivated land, forests, grasslands, shrublands, wetlands, tundra, artificial surfaces and bare land 

cover), long-term averaged mean monthly hours under snow cover, global water table depth in meters, 

average soil and sedimentary-deposit thickness in meters. The full list of used covariates is shown in 

appendix II. 

Covariates were generated using different remote sensing data repositories (e.g. MODIS land products), 

step B. Those data are stacked, so each location of the world has all covariate values (see Section 2.6). 

This covariate stack is used to extract the regression matrix (see below) used for training data and used 

as input for the model predictions.  

 

C. Regression matrix  
To be able to calibrate the model, each soil observation needs to be associated with information about 

the covariates. A regression matrix was built by extracting all covariates collocated with the soil profiles 

using a spatial overlay operation, step C. In this regression matrix, the sample depth of the soil 

observations is used as ‘depth’ covariate for model calibration.  

 

D. Model calibration 
Before the model is calibrated, first a correlation analyses and a random feature selection (RFE)(see 

appendix I, correlation analyses and RFE) are performed to gain the most optimal covariates to use in 

the Random Forest (RF, see appendix I; Random Forest) formula. RFE determines the covariate 

importance and the outcome of this function is a list with selected covariates which are most important 

for the RF predictions, without reducing the model performance. Next, the model parameters can be 

defined.  

A machine learning algorithm learns patterns from existing data. RF learns parameters and structures 

directly from the training data and creates an ensemble of different tree models (Molnar, 2019). 

Hyperparameters are all model settings which cannot be learned directly from the training data. For 

SoilGrids the RF model hyperparameters which are set are mtry and num.trees. The hyperparameter 

mtry sets the number of covariables available for splitting at each tree node. The num.trees 

hyperparameter set the number of trees to grow. Larger number of trees produce more stable models 

and covariate importance estimates, but require more memory and longer run times (Liaw & Wiener, 

2018).  To estimate those hyperparameters, a random subset of the regression matrix (5 – 10% of the 

total size) is used to calibrate and validate a list of models where a predefined combination of 



 

hyperparameters was tested. The optimal hyperparameters of the RF model were defined by the model 

with the lowest RMSE.  

The regression matrix was used to calibrate the random forest model, step D. Per soil property, a 

formula is defined, where: soil property is a function of all optimal covariates. The formula, regression 

matrix and hyperparameters together are used to calibrate the SoilGrids model. For each soil property, 

a separate model is calibrated.  

 

E. Prediction & Validation 
The fully calibrated RF model can be used to make predictions for any location and any depth where the 

covariates are known, Step E. The covariate raster stack built in step B is used as input data. ISRIC 

generates SoilGrids predictions at six standard depth intervals; 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 

60-100 cm and 100-200 cm. To make predictions for a depth interval layer, the prediction depth is added 

as a covariate to the covariate stack (sample depth is not part of the covariate stack). The prediction 

depth is the centre point of the depth interval layer to predict for and is calculated using the following 

formula 

𝑡𝑜𝑝 𝑜𝑓 𝑎 𝑙𝑎𝑦𝑒𝑟−𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑓 𝑎 𝑙𝑎𝑦𝑒𝑟

2
+ 𝑏𝑜𝑡𝑡𝑜𝑚 𝑜𝑓 𝑎 𝑙𝑎𝑦𝑒𝑟                                        (1) 

To determine the model performance (validation), the calibrated model was used to make predictions 

using 10-fold cross-validation (see appendix I, k-fold cross-validation. Each model was re-calibrated ten 

times using 90% of the data and predictions derived from the calibrated models are compared with 

observations of the remaining 10% to gain the model accuracy (Molnar, 2019). Assessments followed 

the same procedures as described in section 2.2. 

 

2.1.1 SoilGrids rebuild 
The original SoilGrids Framework was built in several different programs optimised for high-

performance computing (HPC) and generation of tiled predictions (De Sousa, Poggio, Dawes, Kempen, 

& van den Bosch, 2020). To make this research executable in a non-HPC environment, it was decided to 

rebuild the SoilGrids framework completely in R. The SoilGrids framework was rebuilt as close as 

possible to the existing framework to minimise the influences on the model results. To be able to 

compare globally and locally calibrated SoilGrids models and assess the influence of adding local data 

to a globally calibrated SoilGrids model, there should not be any differences between the SoilGrids 

framework and the rebuilt DSM framework. Therefore, all model results were predicted using this 

remake of the SoilGrids framework.  

 

2.2 Comparison of a global and local SoilGrids model 
The global SoilGrids model, here called SGGlobal, and the local SoilGrids model, here called SGLocal, were 

created using the SoilGrids framework for each soil property of interest. For the SGGlobal model, global 

soil samples and global covariates were used to create the regression matrix, as shown in Table 1. The 

global soil sample dataset did not include the local soil samples used in the SGLocal model. For the 

covariates, I used the 129 covariates remaining after the correlation analysis (performed by ISRIC) as 

input for the RFE performed for each soil property model. The results of the RFE were used as covariate 

stack and as input for the model formula. The next step was to calibrating the model. The 

hyperparameters of the model were copied from the original SoilGrids, as the function to calculate those 



 

hyperparameters should be performed on an HPC and takes much of time (around ten days for all 

SoilGrids properties). The models should be as close as possible to the original SoilGrids and we assumed 

that for local calibration the hyperparameter results would not differ much from the global calibration 

results. Therefore, all models built during this research used the hyperparameters of the original 

SoilGrids. For SOC, mtry was set to 14 and num.trees to 250 for OC while for pH, mtry was set to 12 and 

num.trees to 150. With the hyperparameters set and the regression matrix complete, the model was 

calibrated and used for predicting. The model was used to make predictions for the local study area at 

a depth interval of interest and for the soil properties of interest.  

The SGLocal model was created using local soil samples and the global covariates clipped to the local 

extent. The procedure of creating the SGLocal model was almost identical to SGGlobal. The only difference 

was; in the regression matrix, the standard depth of the local soil samples and a random number 

between 1-10 (later used as fold) was added.    

Table 1. SoilGrids model settings to compare a global and local model. 

 

 

 

 

 

 

Model comparison 
The SGGlobal and SGlocal model were assessed by comparing the used covariates and their relative 

importance. The importance of the variable is calculated using the Gini Importance. The Gini importance 

calculates each covariate importance as the sum of the number of splits (across all tress) that include 

the covariate, proportionally to the number of samples (soil observations) it splits (Strobl, Malley, & 

Tutz, 2009). The result can be shown as a bar plot with the covariates on the y-axis and the relative 

importance of the covariates on the x-axis. To be able to compare the results, the x-axes of SGGlobal was 

rescaled dividing the SGGlobal variable importance by the result of equation 3. 

 

  
𝑆𝐺𝐺𝑙𝑜𝑏𝑎𝑙 𝑠𝑜𝑖𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑆𝐺𝐿𝑜𝑐𝑎𝑙 𝑠𝑜𝑖𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
              (3) 

 

Variable importance plots were used to assess whether global and local variable importance are 

different, indicating local patterns. The ranger package also reports model calibration fit via the R2 based 

on out-of-bag (OOB) samples. Those statistics were also compared per model and per soil property.  

 
  

Model settings SGLocal SGGlobal 

Soil Observations Local Global 

Used covariates SGLocal RFE results SGGlobal RFE results 

Prediction area local study area local study area 

Soil Property OC and soil pH OC and soil pH 

Prediction depth interval  5-15 cm 5-15 cm 



 

Map  comparison 
The results of the SGLocal and SGGlobal predictions were compared by plotting them individually and 

plotting the difference between the two prediction maps by subtracting the SGGlobal results from the 

results SGLocal. A visual scan of the difference map was done to check for abnormalities, such as 

extremes, and the mean of the difference map was calculated to assess whether one model gives 

systematically higher or lower predictions. Next, descriptive statistics of both model predictions were 

calculated and compared.  

Accuracy 
The accuracy of the prediction performance of both models was assessed using a test data 

corresponding to a subset of the local soil observations dataset that was set aside for testing. Details 

are provided in Section 2.6.  Accuracy was assessed separately for each of the two soil properties. The 

accuracy of the prediction performance was gained by calculating the root mean square error (RMSE) 

to get the overall accuracy (Eq. 4),  the mean error (ME) to quantify the prediction bias (Eq. 5), the R2 

to represent the fraction of explained variance (Eq. 6), and the prediction interval width as derived using 

QRF.  

The RMSE and ME should be close to 0 for the best performance and indicate highest accuracy, as they 

represent the differences between the measured values and observed values. A model calibrates the 

data well if the differences between the observed values and the model's predicted values are small 

and unbiased. The R2 is the fraction of the response variable variation that is explained by the model 

and it is expressed on a convenient 0 – 100% scale. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑧(𝑠𝑖) − �̂�(𝑠𝑖))2𝑛

𝑖=1    

 (4) 

 

𝑀𝐸 =
1

n
∑ 𝑧(𝑠𝑖) −  �̂�(𝑠𝑖)𝑛

𝑖=1    

 (5) 

 

where n is the total number of validation locations in the local study area. At each of these locations 

(𝑠𝑖), the difference between the actual value (𝑧(𝑠𝑖)) and the predicted value (�̂�(𝑠𝑖)) is computed. 

 

𝑅2 =  [ 1 −  
𝑆𝑆𝐸 

𝑆𝑆𝑇
 ] × 100    

 (6) 

 

where SSE is the sum of squared errors at validation points, and SST is the total sum of squares. An R2 

of 100 indicates a perfect model where the model explains 100 % of the variation.  

Scatter density plots of the predicted against observed values along with 1:1 lines were plotted. The 

closer the predictions are to the 1:1 line, the more accurate the model is. Lastly, for the two models the 

performance statistics, descriptive statistics and scatter plots were compared to assess the differences 

between model performances and conclude which model, the SGGlobal or the SGLocal was most accurate 

for the local study area. 

 



 

2.3 Influence of new soil observations 
To assess the influence of new local soil observations on the global model, the new local soil 

observations were added to the global soil observations. This resulted in a new SoilGrids model, called 

the SGPlus model. SGPlus was calibrated on a new regression matrix holding the same covariates as the 

SGGlobal model and the soil observations of the SGGlobal and SGLocal models, see table 2. For each soil 

property of interest, a prediction was made for all depth intervals of interest.  The SGGlobal model results 

of all three study areas were compared to SGPlus model. The results of the SGPlus and SGglobal predictions 

were assessed by plotting the difference between the two prediction maps. This was done by 

subtracting SGPlus results from the SGGlobal results. Assessments followed the same procedures as 

described in section 2.2. 

It is possible that adding local data not only influences the predictions in the local area but also 

elsewhere in the world. This may happen in areas that have comparable environmental conditions as 

the local area (i.e., areas that have comparable covariate values). To derive which parts of the world 

have similar soil-forming factors, the Homosoil concept (Miller, 2012) was used. The Homosoil method 

searches for the smallest taxonomic distance of the ‘CLORPT’ soil-forming factors between a reference 

area and the region of interest, in this case, the local area. This includes climate, physiography, and 

parent materials (Mallavan, Minasny, & McBratney, 2010). Because this method does not explicitly take 

all covariates of the SoilGrids model into account, two areas were selected to review the results. One 

area with a small taxonomic distance is selected (called the “std study area”), and one with a large 

taxonomic distance (called the “ltd study area”). The ltd study area was used as a reference area, I 

expected the std study area to show some deviation in the difference maps, while the ltd area should 

show very little to no deviation. If the ltd study area did show a large deviation, it might be because 

Homosoil did not take all covariates into account.  

Table 2. SoilGrids model settings to determine the influence of new soil observations.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

Model settings SGPlus SGGlobal 

Soil Observations Global + Local Global 

Used covariates SGGlobal RFE results SGGlobal RFE results 

Prediction area local, std & ltd study area local, std & ltd study area 

Soil Property OC and soil pH OC and soil pH 

Prediction depth interval  
0-5, 5-15 & 15-30 cm 

depth layer 
0-5, 5-15 & 15-30 cm 

depth layer 



 

Table 3. Number of added local sample data used for 
assessing the effect of local data density. 

Table 4. SoilGrids model settings to determine the 
influence of local data density. 

 

2.4 Local data density  
For traditional machine learning algorithms, accuracy typically increases according to a power-law (the 

more training data, the more accurate the model) and then reaches a plateau from whereon the 

accuracy of the predictions is just slightly changing. To analyse the influence of the local data density for 

the SGGlobal model, the prediction performance was evaluated for different newly added local data 

sample sizes. The goal hereby is to gain insight into the accuracy grown of the SGGlobal model for the local 

study area.  

The local data samples were added to the SGGlobal model in eight ascending steps (Table 3). The last step 

was the results of RQ2. The SGGlobal model, including the new soil samples, is called SGPlus𝑛. The model 

was re-calibrated seven times with the original SGglobal soil observations and the soil observations of the 

local area per ascending step (Table 4). The models are were used to make predictions for the local area 

and the local test dataset was used to gain the model accuracy. The results were presented as a learning 

curve. The prediction performance for the learning curve was calculated using the RMSE, calculated 

using from the test data.  
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2.5 Case study 
The methods were tested using three different study areas. For the local study area, Andhra Pradesh, 

located in India (Figure 2), was chosen. This area was chosen because it represents a low sampling 

density area in SGGlobal and new soil observations were present. To test the difference between a global 

and a local model, new local soil samples were needed for the local study area. Within ISRIC there were 

506704 new local soil samples of Andhra Pradesh pre-processed and in the same layout as the SGglobal 

soil samples ready to use. Nampula located in Mozambique was chosen as the std area. According to 

the Homosoil results (appendix III), this area is geographically most similar to the local study area. The 

Netherlands was chosen to represent the ltd study area. The Netherlands has a reasonable sample size 

in the SGGlobal model and it is taxonomically distinct from Andhra Pradesh.  

 
 
 
 

  RQ3 

 Model settings SGplus𝑛 

Soil Observations 
Global + 𝑛 local in 
ascending steps 

Used covariates SGGlobal RFE results 

Prediction area local study area 

Soil Property Soil pH 

Prediction depth 
interval 

5-15 cm 

Run number Number of new Soil samples 

 

 

Soil samples 

1 100 

2 200 

3 500 

4 1000 

5 2000 

6 5000 

7 10000 

8 36898 



 

Figure 2. Distribution of major soil types in Andhra Pradesh – India  (Maschinen et al., 2012). 

Andhra Pradesh 
The state Andhra Pradesh is located in the south-west of India (between 77° and 84° 40' East and 12° 

41' and 22° North) with a total surface area of 160,000 km2 and it is the fourth-biggest state in India. 

The state can be divided into three different zones. The Coastal Plains in the east is bordered by the 

Bay of Bengal and has a coastline of around 972 km. The Western Pediplains have considerable height 

differences. The elevation ranges from 0 to > 600 m above mean sea level. The Eastern Ghats follow 

the Coastal Plains closely. One outstanding area is the hill range in the North-East part. Here the 

elevation attains a height of 600 to 1200 m (P.Sudhakar, Reddy, Prasad, SatyaKumar, & Rao, 2017). 

Temperatures range from 12° to 30°C in winter to 20° to 41°C in summer. The monsoon season, which 

starts in July and continues till September, is the most extreme season where the state receives heavy 

rainfall (1150 mm). The State is dominated by cropland with large forests in the northern part and in 

the centre of the south (Rao & Wanmali, 2018). Figure 2 shows the soil map of Andhra Pradesh. The 

northern part is dominated by Nitisols, With Regosols near the sea. The southern part of the area is a 

mixture of Leptosols, Luvisols and Vertisols (Pike, 2018). 

 

 
Netherlands 
The Netherlands has a total surface area of 33.883 km2 and is located between the North Sea to the 

north and west, Germany to the east and Belgium to the south.  Most of the terrain consists of coastal 

lowlands, river deltas and reclaimed land, with some hills in the south-east. The elevation ranges from 

-7m till 321 meters above sea level. The Netherlands has a mild, maritime climate with generally warm 

summers and gentle winters. There is no rainy season in the Netherlands. Rain occurs throughout the 

whole year with spring as the driest season (Rowen & Heslinga, 2020). The centre and west part of the 

Netherlands is covered with thick layers of silt and gravel transported from the European mountains by 

the rivers Rhine and Maas (Cambisols and Fluvisols). Clay (Gleysols) is deposited in the sheltered lagoons 



 

behind the coastal dunes (Regosols) and Luvisols are mainly found in the southern part of the 

Netherlands. The rest of the Netherlands is covered by sand (podzols) with some Histosols between the 

Fluvisols and Podzols (Figure 3) (Maschinen, Investition, Beschaffungen, Ersatzbeschaffungen, & 

Mittelherkunft, 2012). 

 

Nampula - Mozambique 
Nampula is a province in the northern part of Mozambique and has a total area of 79.000 km². The 

Niassa Province borders Nampula to the north-west and west, the Zambezia Province to the south-west 

and the Indian Ocean is bordered to the east. The Ligonha River in the south-west of the area separates 

Nampula from Zambezia Province. In the west of are several hilly areas with mountains up to 1804m. 

Closer to the coastal area the land becomes less steep and near the coast, the rivers debouch into the 

Indian Ocean forming deltas at the northern and southern borders. The climate in Mozambique is 

tropical humid. There is a humid season from November to March and a dry season from April to 

October (Penvenne & Sheldon, 2020). Figure 4 shows the distribution of the major soil types in Nampula. 

The centre of the area is covered with Arenosols, with Lixisols to the east and west. The north-east of 

the area, from inland to the coast, is covered with Leptosols and Vertisols. The South-east of the area, 

also name from inland, is covered with Plansosols, Arenosols and Fluvisols (Maschinen et al., 2012).  

 

Figure 3. Distribution of major soil types in the Netherlands (Maschinen et al., 2012). 



 

 

Figure 4. Distribution of major soil types in Nampula (Maschinen et al., 2012). 

2.6 Data and materials 
Three data sources were used in this research; soil sample data, a stack of covariate layers and the ESA 

land cover map. ISRIC provided all data, and therefore not much further pre-processing was needed.  

SoilGrids Soil observations 
The SoilGrids soil observations dataset is a compilation of hundred heterogeneous point datasets from 

all over the world that have been brought together in a standardised database (WoSIS). The WoSIS 

database itself is developed and maintained by ISRIC. The datasets which contribute to the final SoilGirds 

observations dataset are provided by several external soil-related organisations, governmental 

organisation and several databases available within ISRIC (e.g. WISE, AfSP and SCOTER) (Batjes et al., 

2017).  

For organic carbon, there are 152.350 records with soil sample locations and 602.979 soil observations 

in the Soil Sample dataset . For Soil pH, there are 150.798 records with soil sample data and 659.473 

observation spread over all continents (see Figure 5). Not all observations are sampled observation. 

Besides the soil observations, the soil sample dataset also includes expert-based pseudo-observations. 

Some large areas that have extreme climatic conditions and/or have very restricted access are 

significantly under-sampled (e.g. Greenland, the Sahara or northern parts of Russia) (Hengl et al., 2017). 

Soil samples are a mix of profile data (described and sampled horizons)  for fixed sample depths (de 

Sousa, n.d.).  



 

Table 5. Head of the global soil 
observations data. 

 

Figure 5. Locations of soil observations provided with the 'WoSIS September 2019 snapshot' (Batjes, Ribeiro, & Van 
Oostrum, 2020). 

The soil data includes the profile location, sampling depth and the soil property values. An overview of 

the data is shown in table 5. 

 

 
 
 

 

 

 

 

 

India soil observations 
The India soil observations were derived from the Soil Health Card Scheme program. The Soil Health 

Card scheme is an initiative launched by the Government of India in 2015. Soil Health Cards were 

distributed to farmers all around India. A soil sample from the topsoil (0-15 cm depth) of the farmers' 

field was analysed in the lab on 12 parameters including soil pH and soil organic carbon content (Mishra, 

Nair, Singh, Gazeley, & Kapoor, 2015). These data were published as open data and downloaded by 

ISRIC. ISRIC pre-processed the data and harmonises it to the SoilGrids framework.  

The India dataset represents 506704 soil sample locations covering the entire Andhra Pradesh region 

and represents profile location, and the soil property value (table 6). Because we wanted to assess the 

effect of adding new data and wanted to add a reasonable number of additional data points, only 10% 

of the data was used as training data and the remaining data as test data. To ensure that the spatial 

distribution of the data was retained during subsampling of the training data, the subsamples were 



 

based on a density estimate of the original observations. The r function Point process random 

subsample (pp.subsample) was used for this (Evans, 2018). The default settings of this model were used.  

To merge the local (India) soil observations dataset and the SGGlobal soil observations dataset , all 

covariates need a value for all locations. The column ‘sample depth’ is not present in the India dataset 

and needed to be added. Because the soil observations in the India dataset are sampled at a sample 

depth between 0-15 cm, the average soil sample depth of 7.5 was used as sample depth for all soil 

samples.  

  

 

 

 

 

 

 

 

 

 
 
Soil properties and depths 
The used soil properties for this research are; soil organic carbon (SOC) content in g/kg and soil pH in 

water. Organic carbon is together with pH, the best indicator of the health status of the soil structure 

(Maschinen et al., 2012). Therefore, the analysis was limited to these two soil properties.  

This research focused on the 5-15 cm depth layer, as the new local soil sample data are enclosed in the 

selected depth interval. Research question 2 also focuses on the influence of new local soil samples on 

higher and lower depth intervals. Therefore, for research question 2; influence of new soil observations, 

the 0-5, 5-15 and 15-30 cm depth intervals are used, predicting at 2.5 cm, 10 cm and 22.5 cm depth.  

 

Covariate stack 
The original covariate stack consisted of 405 different covariates, which are primarily based on remote 

sensing data. These covariates were selected to represent factors of soil formation, according to Jenny, 

1945. After the correlation analyses, performed by ISRIC, 129 covariates remained. Appendix II shows 

the table with all covariates and the description of their topic. All those covariates are stored in a raster 

stack with 250 x 250 m resolution and have the same spatial extent as the ESA land cover map  

 
ESA land cover map 
The global soil mask map derived from the latest ESA land cover map (Defourny, 2017) was used to 

mask out areas where no predictions of soil properties can be made because there is no soil present at 

these locations. Those areas were represented as NoData and turn up white in all maps. The classes 

Urban (code 190), inland water (code 210), glacier (code 220) and bare surface (code 200) were masked 

out as well (figure 5). No predictions are made for permanent ice areas since they are subject to extreme 

Table 6. Head of the local 
soil observations data. 

http://maps.elie.ucl.ac.be/CCI/viewer/download/CCI-LC_Maps_Legend.pdf


 

climatic conditions and therefore cannot be cultivated. The masked out areas are often under-

represented in soil surveys, making it difficult to calibrate a reliable statistical model. 

 

Statistical software  
Analyses were conducted using freely available R software, which is a language and environment for 

statistical computing and graphics (The R Foundation, 2020). The advantage of using a scripting 

language is that the study is reproducible and reported in the scripts. The main Packages that were used 

during this research are shown in table 7. 

 

Table 7. Used R libraries to create the results for the research. 

Library Usage 

raster manipulating and using calculations on raster data (Etten et al., 2020).  

sp manipulating and plotting spatial data (Hijmans et al., 2020).  

caret to create the random forest (ranger) and the RFE (Max et al., 2020).  

tidyverse gain RFE functionalities (Wickham, 2019).   

devtools Provide input data and functions to run the HomoSoil script (Hester, 2020).  

 

 

  



 

3 Results 
In this chapter, the results are described per research question. Results of modelling and mapping soil 

organic carbon and pH are provided separately, starting with the soil organic carbon results.  

3.1 Comparison of a global and local SoilGrids model 
The SGGlobal model and SGLocal model were compared firstly by analysing the variables which were most 

important in explaining the soil property and by comparing model statistics. Next, the prediction maps 

and difference maps were assessed using descriptive statistics and visual comparison. Lastly, the 

accuracy of the map was evaluated based on scatter plots and RMSE, ME and R-squared.  

3.1.1 Soil Organic Carbon content  

Model comparison  
Figure 6 shows the used covariates ranked by variable importance of the SGGlobal model. The full name 

of the covariates can be found in appendix II.  From the 129 covariates presented to the RFE function, 

the SGGlobal model selected 45 covariates in total to represent the global area, while the SGLocal model 

used 29 covariates. Both the global and the local model identified 29 identical covariates required to 

build an accurate model.  What strikes is, from the top 4 covariates used by SGGlobal, the SGLocal model 

used only one; total yearly radiation (CLM_WCL_SRCYRSUM). The remaining three global variables are, 

soil sample depth (DEPTH), SD yearly snowfall prob. at 500 m (CLM_ESA_SYRSTD) and annual 

temperature range (max temperature of the warmest month – min temperature of the coldest month) 

(CLM_WCL_BIO07). From the four most important covariates of SGLocal, two of them (total radiation for 

August; CLM_WCL_S08RAD and Digital Elevation model; MOR_ENV_DEMM) are also in the top 10 of 

the SGGlobal most important covariates. The other two, total monthly precipitation at 1 km for October 

(CLM_WCL_P10TOT) and precipitation of wettest quarter (CLM_WCL_BIO16), are in the bottom half of 

the SGGlobal covariate importance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Variable importance of the SGGlobal and SGLocal SOC models ranked by SGGlobal variable importance. 

 



 

Map comparison  
The SGLocal and SGGlobal SOC prediction maps are shown on the right side of figure 7. The SGLocal map (top 

right) predicts SOC percentage between 0% and 1% SOC in the south with some higher predictions to 

the north. The SGGlobal prediction map mainly shows predictions between 1.5% and 5% SOC, with some 

lower predictions in the south-west.  

he differences map between the SGGlobal and the SGLocal predictions is shown on the left side in Figure 7. 

Areas with relatively high SOC (between -2% and -3 % SOC difference) in the north correspond to forest 

areas and the areas in the south to mountain areas. For those areas the SGGlobal model predicts a higher 

pH than the SGLocal model. Most other areas representing a difference between -0.5% and -1.5% SOC. 

This implies that the SGGlobal model predicts higher SOC than the SGLocal model, which also shows op in 

Table 8. The mean difference is -0.41% SOC, revealing that SGGlobal predicts overall higher SOC values. 

The absolute mean, which shows the mean deviation between the maps without taking into account 

which model predicts higher, is 1.41% SOC. If the observed statistics are compared to the predicted 

statistics of both models, SGLocal seems to do a better job.  

 

 

Table 8. Descriptive statistics of the SOC models vs Observed values in Andhra Pradesh in % SOC. 

  SGLocal SGGlobal Observed Difference SGLocal - SGGlobal 

Min. 0.07 0.76 0.02 -7.29 

1st Qu. 0.42 1.59 0.32 -1.71 

Median 0.53 2.01 0.49 -1.27 

Mean 0.71 2.13 0.58 -0.41 

3rd Qu. 0.68 2.51 0.72 -0.94 

Max. 2.47 9.23 2.60 0.95 

Abs Mean    1.41 
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Figure 7. Soil pH prediction maps and difference map (top) of SGLocal (bottom left) and SGGlobal (bottom right)  for  Andhra Pradesh - 
India. 

 



 
2 

Accuracy 
To evaluate if SGLocal is more accurate than SGGlobal, scatter plots of the model predictions for the Organic 

Carbon models (Figure 8) were made. These plots show the predicted values vs the observed values and 

a 1:1 line. The more the dots are aligned around the line, the closer the predicted values are to the 

observed values. The observed values are based on the testing dataset of India, hence the scatter plots 

and the descriptive statistics (Table 9) are only representative for Andhra Pradesh. The legend shows 

the number of predictions per plot-pixel.  

The SGGlobal scatter plot shows that most of the dots are below the 1:1 line, indicating that the model 

predicts higher SOC values than observed. The scatterplot modelled with global data only, shows the 

densest area for predicted SOC between 1.2% and 1.9% SOC, while the densest area for observed SOC 

values is between 1.2% and 2.2% SOC. This also shows in the descriptive statistics (Table 9), where SG-

Global scores much higher for each validation metric. Therefore, the difference map shows more negative 

than positive values. The scatter plot of the SGLocal model is more around the 1:1 line. 

 

 

 

Table 9. Descriptive statistics of the global and local  SOC models with SOC in %.  

  
   SGLocal SGGlobal 

RMSE (% SOC) 0.286 1.720 

ME 0.008 1.497 

R2 (% of the variation) 42.5 0.4 

Figure 8. Scatterplots of the global (left) and local (right) SOC model. 
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3.1.2 Soil pH  

Model comparison  
After the RFE for the soil pH models, the SGGlobal model selected 31 covariates and SGLocal model selected 

29 covariates (Figure 9). 23 covariates were identically selected in both models. The top five covariates 

of the SGGlobal model only have one covariate that was also selected for the SGLocal model; total monthly 

precipitation at 1 km in April (CLM_WCLP04TOT). The other four were not selected; global 30m tree 

cover (LUC_GFC_TRELY10), soil sample depth (DEPTH), total monthly precipitation at 1 km in October 

(CLM_WCL_P10TOT) and precipitation of wettest quarter (CLM_WCL_BIO16). Of the four most 

interesting peeks in SGLocal, two are in the lowest 8 covariates of SGGlobal; Total monthly precipitation at 

1 km for September (CLM_WCL_P09TOT) and Precipitation of Warmest Quarter (CLM_WCL_BIO18). 

SGGlobal does not use one of the four most important covariates of the SGLocal model; Bioclimatic zones: 

zone 32 (ECO_USG_Z32).  

 

 

Figure 9. Variable importance of the global and local soil pH models. 
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Map comparison 
The left map in Figure 10 shows the pH difference map between SGLocal minus SGGlobal. The legend 

represents the difference between the two models in soil pH. Most of the map is represented by areas 

where SGLocal predicts a higher pH than SGGlobal. This also shows in the mean of the descriptive statistics 

table (Table 10), where SGGlobal has a mean of 6.73 pH and SGLocal a mean of 7.37 pH. Other descriptive 

statistics show that the SGGlobal and SGLocal model predicts 0.64 and 0.38 pH higher than the minimum 

soil observation. The maximum pH predicted with the SGGlobal model is 0.9 pH lower than the maximum 

prediction of soil pH, while SGLocal has a 0.07 pH difference.  

 

Table 10. Descriptive statistics of the Soil pH models vs Observed values in Andhra Pradesh. 

  SGLocal SGGlobal Observed Difference SGLocal - SGGlobal 

Min. 5.18 5.44 4.80 -1.81 

1st Qu. 7.01 6.46 6.90 0.24 

Median 7.29 6.80 7.41 0.51 

Mean 7.37 6.73 7.38 0.52 

3rd Qu. 7.79 7.05 7.90 0.81 

Max. 9.05 8.01 9.12 2.22 

Abs Mean    0.56 
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Figure 10. Soil pH prediction maps and difference map (top) of SGLocal (left) and SGGlobal (right)  for  Andhra Pradesh. 
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Accuracy 
Figure 11 shows scatter plots of the SGGlobal and SGLocal models. Note that the observed values are based 

on the testing dataset of India, meaning that the scatter plots and the statistics are only representative 

for Andhra Pradesh. The scatter plot modelled with global data shows that the densest point area lies 

above the 1:1 line, meaning the model predicts lower soil pH values than observed. This also shows in 

the descriptive statistics (Table 10) where the SGGlobal model prediction mean is 0.85 pH units lower than 

the observed value mean.   

The scatter plot modelled with local data only is close to the 1:1 line. The predicted values below 7.5 pH 

diverge a bit below the 1:1 line, indicating that the model predicts too high pH values, while the 

predicted values above 7.5 pH diverge a bit above the 1:1 line, indicating the model predicts too low. 

This also shows in the descriptive statistics (Table 11), the minimum value is higher than the observed 

value, while the maximum predictive value is lower than the observed value.   

 

 

  

  SGLocal SGGlobal 

RMSE (soil pH) 0.467 0.837 

ME -0.001 -0.490 

R2 (% of the variation) 59.1 14.6 

Figure 11. Scatterplots of the global (left) and local (right) soil pH model. 

 

Table 11. Descriptive statistics of the local and Global soil pH models. 
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3.2 Influence of new soil observations 
For each study area, the difference maps between SGplus and SGGlobal  (SGplus minus SGGlobal ) are shown 

per soil property at three different depths. The main highlights per study area and soil property are 

stated, starting with Andhra Pradesh, then Nampula and ending with The Netherlands. The section 

starts with the model statistics and variable importance.  

3.2.1 model comparison 
Figure 12 shows the variable importance for the SGGlobal and SGPlus models for SOC. Both models use the 

same RFE selected covariates, but the importance deviates. In the top four most important covariates 

from the SGGlobal models the CLM_WCL_SRDYRSUM (Total Yearly Solar radiation at 1 km), 

CLM_ESA_SYRST (SD yearly snowfall prob. at 500 m) and CLM_WCL_BIO07 (annual temperature range; 

maximum temp of the warmest month minus minimum temp of the coldest month) deviate most.  

Table 12 shows the OOB error statistics for the SGGlobal and SGPlus models. The OOB error is based on all 

global observations. The RMSE is lower for the SGPlus model and the ME is even significantly lower for 

the SGPlus. The R2 however is almost equal.  

 

  

 

 

 

 

 

 

 

 

 

 

Table 12. OOB statistics for SGGlobal and 
SGPlus for SOC (%). 

  

 

 

 

  SGGlobal SGPlus 

RMSE (% SOC) 3.056 2.950 

ME 9.341 8.704 
R2 (% of the 
variation) 71.7 72.1 

Figure 12. Variable importance of the SGGlobal and SGPlus SOC models based on 
the variable importance ranking of SGGlobal. 
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Figure 12 shows the variable importance for the SGGlobal and SGPlus models for soil pH. Both models use 

the same RFE selected covariates, but the importance deviates. From the six most deviation covariate 

importance, five are the top five most important covariates from the SGGlobal model. Those covariates 

are; LUC_GFC_TRELY10 (Global 30m Tree Cover), Depth (sample depth), CLM_WCL_P04TOT (Total 

monthly precipitation at 1 km for April), CLM_WCL_P10TOT (Total monthly precipitation at 1 km for 

October) and CLM_WCL_BIO16 (Precipitation of Wettest Quarter). The other deviating covariate is 

CML_WCL_BI09 (Mean Temperature of Driest Quarter). 

Table 12 shows the OOB error statistics for the SGGlobal and SGPlus models. All model statistics are almost 

equal for both models, but the SGPlus model scores slightly better.   

 

 

 

 

 

 

 

 

 Table 13. OOB statistics for SGGlobal 

and SGPlus for soil pH. 

  

 

   

  SGGlobal SGPlus 

RMSE (pH) 0.539 0.535 

MSE 0.290 0.286 
R2 (% of 
variation) 0.842 0.842 

Figure 13.Variable importance of the SGGlobal and SGPlus soil pH models. 
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3.2.2 Andhra Pradesh 

Organic Carbon 
The 0-5 cm depth map (left map of Figure 14) shows mainly areas with a difference between 0% and -

1% SOC. In the centre of the area and in the south-west part, the difference is between -1% and -3% 

SOC. In the south-east part, the difference is between 1% and 2% SOC. This also shows in the statistics 

table (Table 14) where the difference between the SGPlus and the SGGlobal mean is 0.35% SOC, the least 

difference of all three SOC depth maps. The minimum and median are similar, while the maximum 

deviates around 1% SOC.  

The 5-15 cm depth map (middle map of Figure 14) shows mainly areas with a difference between -2% 

and -3% SOC. This means the SGGlobal model predicts higher SOC values than the SGPlus model. This also 

shows in the statistics table, where the mean of SGPlus is 0.71% SOC, and the mean of SGGlobal is 2.13 % 

SOC. This is the highest mean difference between all three SOC depth maps. 

The 15-30 cm depth map (right map of Figure 14) shows mainly areas with a deviation between 0% and 

-1% SOC. The southern part of the area shows a deviation between -1% till -2% SOC, with in northern 

part a small area representing a difference between 0.5% and 1.5% SOC. The statistics table also shows 

that the SGGlobal predictions are higher than the SGLocal predictions, though the mean difference is smaller 

than the 5-15 cm depth map.  

  

Table 14. Statistics table of SOC (%) in Andhra Pradesh – India. 

      0 - 5 cm 5 - 15 cm 15 - 30 cm 

  SGPlus SGGlobal SGPlus SGGlobal SGPlus SGGlobal 

Min. 0.76 0.89 0.08 0.76 0.17 0.58 

Median 2.37 2.75 0.63 2.01 0.76 1.43 

Mean 2.55 2.90 0.71 2.13 0.84 1.59 

Max. 11.1 10.00 7.22 9.23 7.26 9.34 

Figure 14. Difference maps of SOC (%)  for three interval depths. 
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Soil pH 
Figure 15 shows the difference maps of soil pH for Andhra Pradesh. The difference maps for al depths 

show similar patterns, where the 0-5 cm depth map has the least deviation, meaning the difference 

between the model results is lower. The 5-15 cm and 15 – 30 cm depth maps have the most deviation, 

meaning the difference between the model results is larger. The largest difference areas, where the 

SGPlus model predicts higher, are located in the centre of the difference maps. Closer to the borders, the 

difference gets less and there are some areas near the border where the SGGlobal predicts higher soil pH. 

Table 15 shows that all the differences between de statistics are largest for the 5-15 cm depth map and 

smallest for the 0-5 cm depth map. The median, mean and max are for all SGPlus models at all tree depths 

higher than the SGGlobal model.  

 

 

Table 15. Statistics table of soil pH for Andhra Pradesh – India. 

  0 - 5 cm 5 - 15 cm 15 - 30 cm 

  SGPlus SGGlobal SGPlus SGGlobal SGPlus SGGlobal 

Min. 5.24 5.47 5.18 5.44 5.20 5.41 

Median 7.22 6.75 7.29 6.80 7.28 6.85 

Mean 7.15 6.70 7.26 6.73 7.25 6.77 

Max. 8.69 7.00 9.05 8.01 8.97 7.92 

 

  

Figure 15. Difference maps of soil pH  for three interval depths, Andhra Pradesh – India. 
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3.2.3 Nampula 

Organic Carbon 
Figure 16 shows the results for Organic Carbon in Nampula. Overall, the three depth maps do not show 

substantial differences. In the 0 - 5 cm depth map, the most considerable difference is located in the 

north-east and south-eastern part of the area (near the coast). In the north-eastern part of the area, 

there is a small strip where the deviation is between -1% and -1.5% SOC. In the south-eastern part of 

the area, there is a small area where the deviation is between 1% and 2% SOC.  

At the eastern border of the 5-15 cm depth difference map, there is a deviation between -1% and -3% 

SOC. In the southern point of the study area, there is a deviation between 0.5% and 1% SOC. In the 16 

– 30 cm depth map, the same areas show the most considerable differences, where the deviation in the 

south is more spread. The statistic table for Organic Carbon (Table 16) also shows that the deviation 

between the two models for all depths is small. The maximum mean deviation is 0.5% SOC, and the min, 

max and median for each model and depth are almost equal.  

 

Table 16. Statistical table of SOC (%) in Nampula – Mozambique. 

 

 

 

 

 

 

  

  0 - 5 cm 5 - 15 cm 15 - 30 cm 

  SGPlus SGGlobal SGPlus SGGlobal SGPlus SGGlobal 

Min. 0.73 0.73 0.34 0.33 0.40 0.34 

Median 1.57 1.54 1.31 1.28 1.05 1.02 

Mean 1.70 1.66 1.38 1.36 1.13 1.08 

Max. 13.63 15.96 9.08 12.34 7.94 9.17 

 
 

Figure 16. Difference maps of SOC (%)  for three interval depths, Nampula – Mozambique. 
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Soil pH 
Figure 17 shows that the difference map for soil pH for all three depth is almost equal. The areas with a 

difference higher than 0.25 pH show near the east border a slightly bigger area in the 15-30 cm depth 

map than the 0-5 cm depth map, but the areas with a difference higher than 0.25 pH in the western 

part of the area shows less dark red in the 15-30 cm depth map. This also shows in the statistic table for 

soil pH (Table 17), the mean of all predictions is equal for 0-5 and 5-15 cm depth and differs 0.01 pH of 

15-30 cm depth.   

 

 

Table 17. Statistical table of soil pH in Nampula – Mozambique. 

 
0 - 5 cm 5 - 15 cm 15 - 30 cm 

  SGPlus SGGlobal SGPlus SGGlobal SGPlus SGGlobal 

Min. 5.13 5.19 5.13 5.15 5.08 5.08 

Median 6.07 6.07 6.06 6.06 6.04 6.03 

Mean 6.08 6.08 6.07 6.07 6.05 6.04 

Max. 7.62 7.62 7.72 7.66 7.70 7.65 

  

 

  

Figure 17. Difference maps of soil pH  for three interval depths, Nampula – Mozambique. 
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3.2.4 Netherlands 

Organic Carbon 
The 0-5 depth difference map (Figure 18, left map) shows big areas with large differences in the 

northern and north-eastern part of the area and some in the western part, where the SGPlus model 

predicts between -1.5% and -2% SOC higher. The centre and southern part of the area show a significant 

amount of pixels indicating that the SGGlobal model predicts higher SOC values than the SGLocal model. 

The statistics table (Table 18) also shows that the means are quite similar, but a slightly higher mean for 

SGPlus; SGPlus 9.82% and SGGlobal 9.40% SOC. 

The 5-15 cm Organic Carbon difference map shows an area of predominantly large differences (between 

1.5% and 3% SOC) in the northern part of the Netherlands. This indicates that the SGPlus model predicts 

higher Organic Carbon than the SGGlobal model. Compared to the 0-5 and 15-30 cm depth maps, this 

prediction maps shows the least deviation, indicating that the model predictions are close to each other. 

The means of both maps are similar.  

The 15-30 cm depth map shows bigger areas with higher negative differences (between -2% and -3% 

SOC) than the other depth maps. Those areas indicate that SGGlobal predicts a higher SOC %. Only the 

centre and southern part of the area show small dense areas of positive prediction values, which 

indicates that the SGGlobal model predicts higher SOC values that the SGPlus model. The statistics table 

shows that the median and mean both are around 1 %  higher for SGGlobal than for SGLocal. 

 

Table 18. Statistical table of SOC (%) in the Netherlands. 

  0 - 5 cm 5 - 15 cm 15 - 30 cm 

  SGPlus SGGlobal SGPlus SGGlobal SGPlus SGGlobal 

Min.   1.90     1.88 1.23 1.16 0.61 0.53 

Median   9.88     9.41 5.09 4.85 6.63 7.49 

Mean   9.82     9.40 5.48 5.18 7.11 8.11 

Max. 37.71 36.18 36.78 34.87 42.44 43.66 

  

  
Figure 18. Difference maps of soil SOC (%)  for three interval depths in the Netherlands. 
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Soil pH 
The 0-5 cm depth map (Figure 19, left map) shows the most diverge results of the three difference 

maps. Equally spread over the entire area, there are clusters of high difference areas (between 0.25 and 

1 pH) and areas with low differences (around 0.0 pH). In between there are some outliers till -1 pH. Still, 

the overrepresented deviation between 0.5 and 1 pH indicates that the SGPlus model predicts higher pH 

values than the SGGlobal model. The statistical table (Table 19) only shows a difference of 0.04 pH in the 

mean of the predictions.  

The difference maps for 5-15 cm and 15-30 cm depth (Figure 19, middle and right map) are quite similar. 

There is a cluster of high deviation (0.5 pH till 1.0 pH) near the western part, but no future outstanding 

areas with high differences. The rest of the area deviates between 0.5 pH and -0.5 pH deviation. The 

statistics table shows no significant differences between the two models.  

 

Table 19. Statistical table of soil pH in the Netherlands. 

  0 - 5 cm 5 - 15 cm 15 - 30 cm 

  SGPlus SGGlobal SGPlus SGGlobal SGPlus SGGlobal 

Min. 3.69 3.69 3.75 3.74 3.82 3.79 

Median 5.98 5.99 6.01 6.01 7.61 5.99 

Mean 5.94 5.90 6.13 6.12 6.11 6.11 

Max. 8.18 8.13 8.07 8.05 7.26 9.34 

  

  

Figure 19. Difference maps between SGPlus and SGGlobal  of soil pH for three interval depths – the Netherlands. 
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3.3 Local data density  
Figure 21 shows a series of maps where, with each step, the amount of new local soil observations 

added to the SGGloabl model increases. The maps show the difference between the SGplus𝑛 model and the 

SGGlobal model. For each map predicted with more local observations as the previous one, the difference 

between the two models becomes larger. This starts at the centre of the area and spreads out more to 

the North and South.  Most parts of the map contain deviation that indicate that the SGplus𝑛 model 

predicts a higher soil pH than the SGGlobal model (from 0 till -2). Still there are a few areas, mainly in the 

south near the borders and some in the north, where the SGGlobal model predicts higher.  

Table 20 shows the model statistics for each prediction map and the observed values. Hereby noting 

that the observed values are randomly taken soil observations (around 37.000) and therefore do not 

cover the entire study area. It might be possible that the real minimum and maximum differ from the 

one stated here, but it gives a general overview of minimum values for min and max are. Figure 20 

shows how the statistics slowly move closer to the observed values as 𝑛 increases, lifting steeper at the 

beginning of let line and flattening around n2000.  

 

Table 20. Descriptive statistics of SGPlus𝑛  models, compared to the SGGlobal predictions and observed values all 
predicted for Andhra Pradesh for the soil property soil pH. 

  n100 n200 n500 n1000 n2000 n5000 n10000 n36898 SGGlobal Observed 

Min. 5.34 5.50 5.37 5.41 5.31 5.43 5.15 5.18 5.44 4.8 

Median 7.11 7.17 7.21 7.02 7.25 7.26 7.29 7.29 6.80 7.41 

Mean 7.00 7.07 7.13 7.14 7.21 7.22 7.25 7.26 6.73 7.38 

Max. 8.54 8.38 8.60 8.69 8.73 8.81 8.91 9.05 8.01 9.12 

abs. Mean diff 0.28 0.35 0.40 0.42 0.48 0.50 0.54      
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Figure 20. Learning curve of the predicted mean of the SGPlusn model with respect to the mean observed soil 
observations, for soil pH in Andhra Pradesh – India, with the size of the dataset used for calibrating the model. 



 
16 Figure 21. Difference maps with ascending new data samples used for calibrating the model for soil pH in Andhra Pradesh 

– India. 
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4 Discussion 
This chapter briefly discusses all results, additional clarification is given to conflicting results and 

unexpected findings. Hereafter the limitations of the study are explained, and the chapter ends by 

summarising the importance of some results. 

4.1 Comparison of a global and local SoilGrids model 
Figure 7 and 10 show the SOC and soil pH prediction results of the SGGlobal and SGLocal. For each soil 

property the prediction results are of SGGlobal deviate from the SGLocal model, which resulted in a 

deviation map with large deviations. Figures 8 and 11 and Tables 9 and 11 imply that the SGLocal model 

is a better model than the SGGlobal model to make predictions for the Andhra Pradesh study area. The 

scatterplots of the SGLocal model are closer to the 1:1 line, the RMSE, ME are closer to 0 and R-squared 

is higher for SGLocal. Tifafi et al. (2018) also showed large differences between the globally calibrated 

SoilGrids predictions and local reference data.  

There could be two reasons, or a combination of both options, why SGLocal predicts better for Andhra 

Pradesh then SGGlobal. Firstly, the SGLocal model uses other covariates which are better suited for Andhra 

Pradesh. Secondly, the number of soil observations to predict SOC and soil pH in the SGGlobal model are 

not representative enough to make accurate predictions for Andhra Pradesh. Even if there are only four 

soil observations present for Andhra Pradesh in the SGGlobal model, other soil observations with 

covariates equal to Andhra Pradesh in feature space, might compensate for the lack of local soil 

observations but they have to be present in the SGGlobal model and have similar covariates.   

To analyse if the number of local soil observations causes the difference between SGGlobal and SGGlobal, 

the SGPlus model results (Table 14  for SOC and Table 15 for soil pH) were compared to the SGGlobal model 

results (as the SGPlus model contains the SGGlobal and SGLocal soil observations and uses the same 

covariates as the SGGlobal model). Tables 12 and 14 show the statistics for the tree SOC models and Tables 

13 and 15 show the statistics for the soil pH models, all at the 5-15 cm depth interval. Those statistics 

show that for both models, the RMSE, ME and R2 of the SGPlus model are significantly improved in 

comparison with the SGGlobal model. Other researches also showed that adding more data to an RF model 

improves the prediction accuracy (Caubet et al. 2019; Fassnacht et al., 2014). All together, we can 

conclude that most of the extreme deviation between the SGGlobal and SGLocal model has to do with the 

number of local soil samples in the training data. Still, the SGLocal model predictions are slightly better 

compared to the SGPlus model. This difference is the result of global modelling or local modelling. 

Influences might be from the global soil observations in SGGlobal model or the locally selected covariates 

from the SGLocal model, as those are the only two differences between the models. To tell if the locally 

selected covariates have an influence on the difference between SGGlobal and SGLocal model, the variable 

importance for both models are compared.  

An interesting finding in the variable importance comparison between the SGGlobal and SGLocal models is 

that the variable importance of both models is very different for both soil pH and SOC (Figure 6 for SOC 

and Figure 9 for soil pH). The variable importance is only meaningful if the model fits the data well 

(Ando, 2014). Here the models are calibrated at a different scale. The SGGlobal model predicts soil 

properties for a global scale quite well. However, when we only look at a local scale, the model does not 

perform very well. Therefore, the variable Importance of the SGGlobal model does not tell us much for 

local scale. The Variable importance of the SGLocal model, on the other hand, really shows what 

covariates are important for the local scale. Especially for the soil pH model covariates differ between a 

globally calibrated model and a locally calibrated model. Research of (Ando, 2014; Bolourchi, Moradi, 

Demirel, & Uysal, 2018) all show that selecting representative covariates is essential for an accurate 

prediction of local patterns. An example of a possible local pattern is shown in the SGLocal prediction map 
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of Figure 10 (bottom maps). The northeast part of SGLocal map shows more deviation in soil pH than the 

SGGlobal prediction map. This may be explained by the deviation in variable importance between the two 

models. Based on this information we can also assume that the difference between the SGPlus and SGLocal 

which was not explained by the new local soil samples is explained by the covariates.  

Another interesting observation in Table 8 is that the minimum 

difference between SGGlobal and SGLocal model is extremely high, 

namely -7.29 % SOC. This while the min and max SOC % are 0.07 

and  2.47 for SGLocal and 0.76 and 9.23 for SGGlobal. When looking 

at the histogram of the occurrence (Figure 21) of prediction 

values, it is clear that predictions above 5.0 % SOC only occur in 

a few cases and therefore, do not influence further results.  

 

4.2 Influence of new soil observations 
One thing I expected is that adding more local data points to a 

model would improve the accuracy of a random forest model for 

the local area. The results of RQ1 show that more local points 

indeed improved the accuracy of the local study area for both 

soil properties. I also expected that the std study area (Nampula) 

would show substantial differences and the ltd study area (the 

Netherlands) would show little to no differences when adding 

new datapoints. However, the opposite occurred, especially for 

the SOC models. The std study area showed little to no 

differences for SOC predictions after adding new local data in 

India, while the ltd study area showed substantial differences. 

This does not necessarily mean that other ltd and std areas also show this deviation. To see other areas 

also show this deviation future research is needed (see section 5.4) Also unexpected is that the 0 -5 cm 

and 5-15 cm depth interval layers show more deviation than the 5-10 cm depth interval layer, while this 

is the depth interval for which new local soil samples where added. The soil pH model showed for both 

Nampula and the Netherlands visually the same amount of deviation. The mean of all maps stayed the 

same however. To find out what caused the deviation, the SOC results of the Netherlands were 

compared to other studies and the variable importance plot was examined. 

Because the SOC maps for the Netherlands have the largest differences between the two models, the 

results were compared to other work. Figure 19 Shows the SOC maps based on two different data 

sources in % SOC. Even if both maps look different at first sight, there are some similar patterns in the 

data. All values predicted higher than 11.63% SOC (dark brown) show up in the same areas with similar 

patterns. And at the centre of the map (the Veluwe) show similar patterns. The Costal area and the 

south-west of the area both show uniform colours, although the right map predicts lower than 1.74 % 

SOC and the left map predicts values between 1.74% and 2.91 % SOC.  

Figure 22. Prediction value Occurrence for SGLocal 

and SGGlobal for SOC. 
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Figure 24. Estimated SOC (%) for 0 - 30 depth interval layer in the Netherlands according to the SGPlus model 
(left) and the SGGlobal model (right). 

 

 

 

 

 

 

 

 

 

The maps in Figure 23 show the SOC in % for the depth interval layer of 0 – 30. To be able to compare 

the SGGlobal and SGPlus maps to those maps the weighted mean of the prediction maps for both models 

was calculated and plotted (Figure 24). When comparing the SGGlobal and SGPlus maps in Figure 24, both 

maps seem almost similar, while the difference maps show a lot of deviation (Figure 18).  This probably 

happened because the 0-5cm and 5-15cm interval depth maps show mainly positive difference, while 

the 15-30 cm depth map mainly shows a negative difference, neutralising each other in the weighted 

mean map of figure 24. When comparing figure 24 to the maps shown in Figure 23, the predicted values 

higher than 11.63 % SOC seem to follow the same patterns in all four maps. The north-west part of the 

area shows different prediction values for both maps in figure 23 and the maps in figure 24. Figure 24 

Show a predicted value between 5.84% SOC and 11.63% SOC while the maps of figure 23 show a 

predicted value lower than 1.74% SOC and between 2.91 and 5.84% SOC. The south-east part of the 

area shows for figure 24 a predicted value lower than 1.74% SOC, the lowest predictions of the area. All 

together, the comparison did not show any explanation why both SOC models deviated so much. 

  

Figure 23. Estimated SOC (%) for 0 - 30 cm depth layer in the Netherlands according to two different 
sources. Left: Dutch soil map, land use map and LSK data (Lesschen et al., 2012) and right HWSD based 
on soil types (figure 3) from Hiederer & Köchy, 2012.. The legend represents the SOC % for both maps. 
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The comparison of the variable importance of SGPlus and SGGlobal resulted in something interesting. 

Figures 12 and 13 show the variable importance of SOC and soil pH. The SGPlus showed different variable 

importance after adding the local soil observations to the model for both soil properties. The soil pH 

models showed the least deviation in variable importance and in OOB statistics. The deviation between 

the Soil pH maps was also smaller for all areas. The differences in variable importance probably caused 

the deviation between the models in Nampula and the Netherlands but do not explain why prediction 

results in the Netherlands deviated more than in Nampula. To examine why exactly the Netherlands 

showed higher differences, future research is needed (see 5.1; recommendations). 

 

4.3 local data density 
The results of the local data density analyses (Figure 22 and 23 and Table 21) show that adding more 

local observations increased the deviation between the SGPlus𝑛 model and the SGGlobal model. From this 

we can tell that increasingly adding more local soil observations has a tremendous effect on the local 

predictions. The descriptive statistics of adding more local soil observations is also shown in Table 21, 

where Figure 23 shows the course of the mean predictions. Even though the minimum and maximum 

fluids when new soil samples are added, the median, mean and absolute mean difference all move 

slowly to the observed values. It is interesting to see that the mean prediction course starts off lifting 

steeper at the beginning of the line and flattens around n2000. This confirms our expectations that 

accuracy typically increases according to a power-law (the more training data, the more accurate the 

model) and then reaches a plateau from whereon the accuracy of the predictions is just slightly 

changing. Although accuracy is here measured as the mean and median of the predictions and not as 

RMSE, ME or R2
.  It is interesting that even when a large number of new soil observations are added, the 

statistics in Table 21 do not reach the observed values. When the results of the comparison of a global 

and a local SoilGrids model (Table 11; the descriptive statistics of the Soil pH models vs Observed values 

in Andhra Pradesh), especially the SGLocal results, are compared to the SGPlus𝑛36898 and observed 

values, it is interesting to see what the influence of locally selected covariates is. Since SGLocal is calibrated 

using all local soil observations and uses local covariates, and SGPlus𝑛36898 is calibrated also using all 

local soil observations but uses globally selected covariates, the difference between the two model 

statistics (mean of 7.37 pH for SGLocal, 7.26 pH for SGPlus𝑛36898 and 7.38 as observed mean pH) is the 

influence of locally selected covariates.   

 

4.4 limitations of this study 
For this study, it was not tested how many soil observations were already in the SGGlobal dataset with a 

small taxonomic distance to the soil observations in Andhra Pradesh and Nampula. This may influence 

how extreme the differences between the SGGlobal and SGLocal are. The more std soil observations there 

are in SGGlobal,  the smaller the differences will be between the models.  

It was also not tested what the influence of adding clustered data to the SoilGrids model has. Research 

showed that for other machine learning models, well-distributed sampling methods have a huge 

influence on the accuracy of the results (Caubet et al., 2019). Even if RF does not take sampling locations 

into account and is well known for its ability to handle skewed data and small numbers of observations, 

it might increase the accuracy of the model. To test this, further research is needed.  

Because the SoilGrids DSM model was rebuilt, this may have caused some small deviations in the results. 

The original SoilGrids DSM predictions were compared with the SGGlobal results for the 5-15 cm depth 

layer for SOC and soil pH. It was expected that the results would be almost similar, but there was a large 



 
21 

difference between the two prediction maps. Even when the original trained SoilGrids DSM model was 

used to make predictions for the Andhra Pradesh study area, there was a deviation between the original 

and the rebuilt model results. A possible reason for this may be differences in the covariate stack used 

to make predictions. Due to time limits, this was not investigated. This could possibly influence the 

prediction results when being compared to other study results, but since the same data were used to 

build all SoilGrids DSM models, this did not influence the comparison between models.  

It might happen that the covariates selected after the correlation analyses and RFE are still correlated. 

This was not taken into account during the interpretation of the results. If there is still a correlation 

between covariates, RF will randomly select one of the covariates as important and the other as less 

important. When two models each pick the other covariate as important, this will result in a differing 

variable importance plot.  

The accuracy of the model results for the local data density research question is now measured in the 

mean of the prediction map. To gain better insight in the accuracy, it is better to use the RMSE or R2. 

For the interpretation of this research, the mean was good enough, however the RMSE might show 

different results.  
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5 Conclusions and recommendations  
This study aim was to compare globally and locally calibrated SoilGrids models and assess the influence 

of adding local data to a globally calibrated SoilGrids model. To achieve this objective, the three research 

questions are answered in this chapter. This chapter ends with recommendations for future study.  

5.1 Comparison of a global and local SoilGrids model 
The SGGlobal and the SGLocal model differ in each aspect considered in the comparison. In the model 

comparison, map comparison and accuracy, the SGLocal model performed better than the SGGlobal model. 

This was due to the local soil samples used to calibrate SGLocal and the locally performed RFE. Together 

they caused the changes to the covariates selection and covariate importance for the random forest 

predictions, which had a direct effect on the accuracy.  

5.2 Influence of new soil observations 
When the local soil observations were added to the global model, the accuracy of the predictions 

increased substantially. It was expected that the areas close in covariate feature space would benefit 

most from local soil observations and the areas distant in feature space would benefit least. Results 

showed that it was not the case. In this research, the area distant in covariate feature space showed 

more deviation than the area close in feature space. Future research is needed to find out why the 

distant area showed such deviation. The OOB model statistics showed that adding the local soil 

observations had a positive influence on the model accuracy on predictions around the entire globe. To 

tell if the new local samples also had a positive influence on Nampula and the Netherlands specific, a 

test dataset is needed for future research.     

5.3 Effect of local data density 
The effect of adding local data on prediction accuracy first increased steadily as the size of the local data 

increased and then flattened off. This shows that the first set of new local data samples has the biggest 

effect on the local prediction accuracy and that adding more local soil observations to the model keeps 

increasing model the accuracy, but there is a tremendous amount of local soil samples needed to slowly 

rise the accuracy until it completely flattens out. From this point, only calibration with locally selected 

covariates can increase the model accuracy.  

5.4 Recommendations 
SoilGrids implementation 
This study shows that it is important to realise that adding new data observations to the globally 

calibrated SoilGrids model influences model results in areas close in feature space, but also areas distant 

in feature space, according to the Homosoil principle. The OOB model statistics showed that adding 

local data did influence the model accuracy all over the globe in a positive way. Therefore, global 

modelling has its benefits, as soil observations from the entire globe can be used to make predictions 

for a local area. However, Other researches have shown that at some point having a good covariate 

selection is more important than having more available soil samples (Fassnacht et al., 2014).  To make 

even more accurate predictions with a SoilGrids model, a combination between locally selected 

covariates and global soil observations can be used to make predictions for a local area. To find out if 

this combination is technical feasible, what the best local area size is and how to deal with border areas, 

future research is needed.  
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Influence of local data on other areas 
The differences in variable importance probably caused the deviation between the models in Nampula 

and the Netherlands but did not explain why prediction results in the Netherlands deviated more than 

in Nampula. There was no logical explanation of why adding local data had such a high effect on areas 

which we expected to be far in feature space and such little effect on areas close in feature space. It 

might be that the selected areas from the Homosoil script were not as close in feature space as 

expected. The Homosoil script uses other covariates to select regions (based on Euclidean distance) 

than the covariates used for modelling. To find out if this was the case, a different selection method 

should be used to select the std and ltd study areas. The research report of A. Schoneveld, 2020 shows 

that Euclidean distance is not always the best method to calculate the distance in feature space and 

that other methods such as the Manhattan may calculate feature space distance better. Besides, could  

It be useful to introduce more study areas to investigate whether the deviation in the ltd and std study 

area will occur in different areas with different environmental conditions. For further research, more 

study areas may give further insights into how new local soil samples influences other areas. 

Another possibility to find out why adding local data had such a high effect on predictions in the 

Netherlands, is analysing which variables have the most effect on the predictive model by performing a 

sensitivity analyses. To explain the relationship between model variables and predictions .. presents a 

method to look inside the black box of RF. It computes the contribution of each covariate to the RF 

model. The GINI variable importance used during this study is, according to Palczewska, 2013 often 

insufficient for the complete understanding of the relationship between covariates and the predicted 

value. Kuz’min et all., 2011 propose a new technique to calculate the contribution of a covariate. In this 

method, feature contribution is computed separately for each prediction and provides detailed 

information about relationships between variables and the predicted value (Palczewska, Palczewski, 

Marchese Robinson, & Neagu, 2013). 

P. Grover, 2017 presents a methods to find for a given data point and associated prediction, which 

covariables (or combinations of covariables) explain this specific prediction. They use the treeinterpreter 

package in Python to show the sorted list of bias (mean of data at starting node) and individual node 

contributions for a given prediction (Grover, 2017). This local interpretation determines which 

covariables are used to come to that final prediction. This can be used to find out which covariates 

contributed most to the predictions with the largest deviation in all study areas. If the covariates used 

for the predictions in the Netherlands show similarity to the covariates used for predictions in Andhra 

Pradesh, then it could be an explanation why the predictions in the Netherlands show such high 

deviation.  
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Appendix 

I Theoretical background 
K-fold Cross-validation 
Cross-validation is a resampling procedure used to estimate the accuracy of a machine learning model 

on unseen data. The parameter called k refers to the number of groups that a data sample will be split 

into. K-fold cross-validation shuffles the dataset randomly and splits the dataset into k groups 

(Brownlee, 2019). Each model ire-calibrateded 10 times using 90% of the data and predictions derived 

from the calibrated models are compared with observations of the remaining 10% (de Sousa, n.d.). If k 

is set to 10, there will be 10 different test and training sets which are used to estimate the model 

accuracy. The dataset can be divided into k-groups by using folds. The dataset is equally divided and 

each data value in a fold is assigned the fold number (between 0 and k). The training dataset is used to 

calibrate the model and make predictions. Those predictions are evaluated on the corresponding test 

datasets. All the runs together arsummariseded and represent the accuracy of a model.  

Random Forest 
SoilGrids maps are produced using automated soil mapping based on the machine learning algorithm 

Random Forest (RF). RF has a simple yet powerful concept. It consists of a large number of individual 

decision trees that operate as a group. A simple example of a decision tree is shown in figure 25 Each 

time the path splits into two is called a node, and the question asked is based on the covariates (e.g. is 

red? Is probably based on the covariate; number colour and is underlined? On the covariate that tells if 

a number is underlined or not). At a node observations are split, observations that meet the criteria go 

down the Yes branch and ones that don’t go down the No branch. At each node the model will ask: 

What covariate will allow me to split the observations in a way that the ‘Yes’ groups are as different 

from each other as possible and the members of each resulting subgroup are as similar to each other 

as possible (Yiu, 2019)? The hyperparameter mtry sets the number of covariables available for splitting 

at each tree node. The ntree hyperparameter set the number of trees to grow. Larger number of trees 

produce more stable models and covariate importance estimates, but require more memory and longer 

run times (Liaw & Wiener, 2018).  

 

 

 

 

 

 

 

 

 

 

 

Each decision tree is trained on a different data subset, where sampling is done with replacement and 

uses a different covariates subset to reduce correlation between trees. All individual decision trees are 

Figure 25. Random Forest decision tree example to predict numbers and their 
colours (Yiu, 2019). 
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then used to make predictions (Breiman, 2001). The conditional mean of all those predictions is used to 

get the final RF regression prediction (Meinshausen, 2006). Because there is a low correlation between 

the trees, trees can produce ensemble predictions that are more accurate than any of the individual 

predictions. All trees together overcome errors of individual trees.  

correlation analyses  
For this research, it is important to use covariates which also have a low correlation. Reducing the 

number of covariates used in a model reduces calculation time and processing power needed. Besides, 

keeping two covariates which are highly correlated, can lead to incorrect conclusions when interpreting 

the variable importance. When a dataset has two highly correlated feature, RF can pick any of those 

covariates as important predictor and the other as not important, with no concrete preference for which 

covariate. If the RF models we want to compare in this study both pick another covariate as main 

predictor, conclusions based on that variable importance are then incorrect (Ando, 2014). correlation 

analyses assessed bi-variate correlations between covariates with the Pearson correlation coefficient. If 

this coefficient was larger than 0.85, then one of the correlated covariates was excluded randomly.    

RFE 
Variables with high importance have a significant impact on the model prediction values. On the other 

side, variables with low importance might be omitted from a model, making model calibration and 

prediction simpler and faster.  

Automatic feature selection methods can be was used to identify attributes covariates that are and are 

not required to build an accurate model to be used. An automatic method for feature selection provided 

by the caret R package is called Recursive Feature Elimination or RFE. RFE builds 𝑛 models with different 

subsets of a dataset and states the most important variables based on the GINI index (see chapter 2.2 

model comparison) (Kuhn, 2009). SoilGrids uses 𝑛 = 4 to determine the covariates. This results in four 

differently selected covariate tables. If a covariate occurs in all those covariate tables, this covariate is 

selected for the final model. When the amount number of selected covariates for the final model is less 

than 25% of the input covariable, also the covariates that occurs three times are used in the final model 

(de Sousa, n.d.). 

Table 22 and table 23 show the OOB accuracy of the SGLocal model before and after the RFE. This shows 

that you can remove x variables that are not that significant and have similar or better performance in 

with much shorter training time.  

Table 22. SOC (%) OOB statistics for the SGLocal model.  Table 23. soil pH OOB statistics for the SGLocal model. 

  All covariates RFE covariates    All covariates RFE covariates 

RMSE 0.29 0.29      RMSE 0.48 0.47 

MSE 0.08 0.08  MSE 0.23 0.22 

R2 0.42 0.42  R2 0.58 0.59 
 

 

OOB error 
Each tree in the Random Forest is trained on a subset of the data, which is sampled with replacement 

from the original data. This results in around ~2/3 of distinct observations in each tree. The out-of-bag 

error is calculated on all the observations, but for calculating each row’s error, the method only 

considers trees that have not seen this row during training. This is similar to evaluating the model on a 

validation set. 
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Soil Properties - soil pH and Soil Organic Carbon.  
Organic Carbon is together with pH, the best simple indicator of the health status of the soil. Moderate 

to high amounts of organic carbon are associated with fertile soils with a good structure (Maschinen et 

al., 2012).  Soil organic carbon (SOC) is the largest carbon (C) stock in most terrestrial ecosystems, 

containing  approximately 2344 Gt of organic C globally (Davidson & Janssens, 2006). Moreover, soil 

irecogniseded as the second largest C pool after the oceans and one of the most important components 

of the biosphere, delivering major ecosystem services and functions  (Ogle & Paustian, 2005). SOC refers 

only to the carbon component of organic compounds. The main influences of the amount of SOC are 

soil type, climate and land/soil management. Where for soil, clay binds to organic matter, helping it 

from being decomposed, while sandy soils are coarse-textured which causes SOC to be rapidly 

decomposed. For climate SOC increase with rainfall, this is because increasing rainfall supports plant 

growth. Temperature also plays a part as decreasing temperatures slow the decomposer of SOC. 

Because SOC mainly exist in the top 0-10 cm of soils, land and soil management can have a big influence 

of SOC. Deforestation for example lay SOC bare for erosion, and transfers soil down the slope into the 

lower parts of the landscape, leaving the slope with low SOC content and the lower parts with increased 

soc content (Griffin & Edwards, 2019).  

 

The acidity or alkalinity of a substance is measured in pH units, a scale running from 0 to 14. A Soil pH 

lower than 7 is a high acidity soil, a pH of 7 is neutral and a pH higher than 7 is a high alkalinity soil. Most 

cultivated plants enjoy slightly acidic conditions with a pH of about 6.5. but some plants grow best under 

slightly acidic conditions (Mosaic, 2020). There are three main reasons when soil tends to become acidic. 

First is rainwater. Soils formed under low rainfall conditions tend to be natural as rainwater leaches 

basic ions away. Soils formed under conditions of high annual rainfall are more acidic than are soils 

formed under more arid conditions. Second is nitrogefertilisersrs. Intensive farming can result in soil 

acidification over a number of years with nitrogefertilisersrs or manures. Last main influencer of soil pH 

are plants. Decomposing organic matter and root respiration release Carbon dioxide which dissolves in 

soil water to form a weak organic acid (Bickelhaupt, 2020).  
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II Covariates explanation 
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III Homosoil results 
 


