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1.1 Basics	of	molecular	biology	

When	Friedrich	Miescher	isolated	an	unknown	material	from	the	nuclei	of	white	blood	cells	
in	1869,	he	had	no	idea	that	these	molecules	encoded	the	information	needed	to	perpetuate	
life	of	all	organisms.	It	took	until	the	mid-1950s	for	researchers	to	elucidate	the	hereditary	
role	of	these	so-called	deoxyribonucleic	acid,	or	DNA,	molecules	and	thus	revolutionize	our	
understanding	 of	 biology	 and	 life	 on	 earth.	 DNA	 has	 a	 twisted	 ladder-like	 structure	 of	
nucleotides,	 folded	and	packed	in	genetic	units	called	chromosomes.	The	complete	set	of	
chromosomes	of	a	species	is	called	the	genome.	Chromosomes	appear	in	different	numbers,	
sizes	 and	 content	 in	 different	 species.	 Where	 prokaryotes	 have	 a	 single	 circular	
chromosome	as	genome,	the	genome	of	eukaryotes	are	usually	made	up	of	sets	of	highly	
similar	 homologous	 chromosomes,	 half	 of	 which	 are	 inherited	 from	 each	 parent.	 The	
number	of	homologous	chromosomes,	called	the	ploidy,	also	varies	between	species.	For	
example,	the	human	genome	comprises	of	23	pairs	(diploid)	of	chromosomes	but	the	wheat	
genome	has	6	homologous	copies	(hexaploid)	of	each	of	its	7	chromosomes.	

Genomic	differences	do	not	occur	by	chance	but	as	a	result	of	billion	years	of	evolution,	
through	 which	 genomic	 content	 of	 species	 has	 been	 shuffled,	 mixed	 and	 mutated.	 By	
investigating	these	differences	scientists	are	able	to	trace	back	the	evolutionary	history	of	
different	 species	 to	 unravel	 their	 ancestral	 relationship.	 Genomic	 differences	 can	 also	
explain	important	characteristics	of	species,	for	example	resistance	of	a	crop	to	a	pest	or	
vulnerability	of	a	person	to	a	type	of	cancer.	Casual	genomic	differences,	leading	to	different	
characteristics,	often	appear	in	functional	parts	of	the	genome,	called	genes,	that	encode	for	
building	 blocks	 of	 living	 cells.	 Genes	 are	 transcribed	 into	 transcripts,	 messenger	 RNA	
(ribonucleic	acid),	which	are	then	used	by	the	translation	machinery	of	the	cell	to	produce	
the	 macromolecule	 of	 proteins.	 There	 are	 numerous	 types	 of	 proteins	 within	 the	 cell,	
forming	its	physical	structure	or	regulating	various	biological	functions.	The	entire	set	of	
proteins	of	species	 is	called	the	proteome.	The	human	proteome,	 for	example,	consists	of	
~20,000	different	proteins.		

1.2 Genomics	and	the	revolution	of	sequencing		

To	investigate	genomes,	first	we	must	uncover	the	nucleotide	sequence	of	chromosomes,	
through	 whole-genome	 sequencing	 (WGS)	 or	 in	 specific	 regions/genes	 using	 targeted	
amplicon	 sequencing	 (TAS)	 [1].	 DNA	 material	 is	 sequenced	 in	 short/long	 overlapping	
fragments	called	reads	[2].	Sequencing	reads	are	pieces	of	the	original	genome	which	can	be	
assembled	into	longer	contiguous	sequences	(contigs),	which	may	be	ordered	and	oriented	
into	scaffolds	to	give	a	more	complete	picture	of	the	genome.	Finally,	assembled	genomes	
are	annotated	 to	determine	structure	and	 function	of	genomic	 features,	 such	as	protein-
coding	genes,	tRNAs	[3],	miRNAs	[4]	and	motifs	[5].		

	Materialized	 in	 1970s,	 DNA	 sequencing	 is	 now	 in	 the	 midst	 of	 a	 revolution	 which	
currently	allows	us	to	read	the	entire	3.5	billion	base	pairs	of	the	human	genome	in	a	single	
day.	The	number	of	nucleotide	records	in	the	NCBI	RefSeq	database	[6]	has	been	annually	
increasing	by	50%,	on	average,	since	its	foundation	in	2003.	The	latest	release	(March	2020)	
harbors	1.86	́ 	1012	nucleotides	from	99,842	taxa	(Figure	1.1).	It	is	expected	that	the	number	
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of	assembled	genomes	will	keep	expanding	in	the	coming	decades.	At	the	same	time,	the	
quality	 and	 contiguity	 of	 genome	 assemblies	 will	 also	 improve,	 due	 to	 advances	 in	
sequencing	 technologies.	 Second-generation	 sequencing	 reads	 are	 short	 (a	 few	 hundred	
base	pairs)	and	introduce	ambiguity	in	assembling	repetitive	regions	of	the	genome	and	also	
in	separating	haplotypes.	New	technologies	such	as	long-read	sequencing	(Oxford	Nanopore	
Technology)	 and	 optical	 mapping	 (Bionano	 Genomics)	 are	 very	 promising	 towards	
chromosome-scale	 assembly	 of	 large	 and	 complex	 genomes	 [7,8].	 Combined	 with	 high-
quality	Illumina	short	reads,	long	reads	can	also	facilitate	haplotype-resolved	assembly	[9].		

	

1.3 Comparative	genomics	

Individual	genomes	are	not	very	useful	without	any	knowledge	about	their	structure	and	
function.	The	collective	study	of	genomes	enables	us	to	use	the	existing	knowledge	on	some	
genomes	to	infer	function	and	characteristics	of	other	related	genomes.	Unraveling	these	
relationships	 has	 led	 to	 novel	 discoveries	 in	 many	 application	 domains,	 such	 as	
microbiology	to	design	medicines,	plant	breeding	to	improve	the	yield	of	crops	and	cancer	
research	 to	 decide	 on	 effective	 treatments.	 Physical	 characteristics	 or	 traits	 of	
individuals/species	 define	 their	 general	 phenotypes.	 Differences	 in	 phenotypes,	 besides	
environmental	factors,	stem	from	variation	in	the	genomic	makeup	or	genotypes	of	species.	
Comparative	genomics	is	a	branch	of	research	that	investigates	the	evolution	of	genotypes	
and	 links	 to	 phenotypes	 by	 characterizing	 similarity	 and	 divergence	 of	 the	 genomes	 of	
species.	 Genomic	 differences	 can	 vary	 from	 simple	 mutations,	 such	 as	 single	 nucleotide	
polymorphisms	 (SNPs)	 and	 short	 insertions/deletions	 (indels),	 to	 large	 segmental	
duplications,	or	drastic	changes	of	karyotype	and	ploidy	of	the	genomes	[10].	Considering	a	
single	gene	of	a	species,	the	genotype	of	an	individual	with	regard	to	that	gene	is	determined	
by	the	copies	of	that	gene	(two	copies	in	diploids)	in	the	homologous	chromosomes,	called	
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Figure	1.1.	The	NCBI	RefSeq	database	has	been	growing	exponentially.	The	green	line	indicates	the	number	
of	nucleotides	and	the	red	line	shows	the	number	of	different	taxa	over	a	period	of	18	years	in	this	database	
till	March	2,	2020	(RefSeq	release	99).	
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alleles.	If	the	sequence	of	two	alleles	are	identical,	they	are	homozygous,	otherwise	they	are	
heterozygous	at	that	locus.		

Occurring	 randomly,	 most	 sequence	 mutations	 are	 neutral,	 however	 mutations	 in	
functional	 features	of	 the	genome	often	 impact	biological	 functions	of	 the	cell.	Evolution	
preserves	 beneficial	 mutations	 (positive	 selection)	 and	 purifies	 populations	 from	
deleterious	 mutations	 (negative	 selection).	 The	 evolutionary	 relationship	 of	 species	 is	
usually	visualized	as	a	phylogenetic	tree,	where	the	leaves	are	species	and	internal	nodes	
represent	 the	 common	 ancestors.	 Genomic	 features	 which	 are	 conserved	 between	 two	
species	are	ancestrally	related	(homologs).	Homologous	features	may	be	inherited	from	a	
single	 feature	 (orthologs)	 or	 from	 distinct	 duplicated	 features	 (paralogs)	 in	 their	 last	
common	 ancestor.	 Orthologous	 features	 often	 preserve	 their	 order	 in	 a	 chromosome	
(synteny).		

Interspecies	comparative	genomics	 tries	 to	detect	 the	 functional	parts	of	genomes	of	
different	 species	by	pair-wise	 alignment	 of	 genomes	 [11].	The	principle	behind	 it	 is	 that	
genomic	features	that	encode/regulate	proteins	responsible	for	similar	biological	functions	
are	 conserved	 between	 two	 species	 and,	 conversely,	 those	 that	 encode/regulate	 their	
differences	are	diverged	[12].	However,	 this	 is	very	challenging	as	computation	becomes	
harder	 with	 increasing	 genome	 sizes	 and	 the	 number	 of	 pair-wise	 comparisons	 grows	
quadratically	 with	 the	 number	 of	 species.	 As	 a	 result,	 many	 research	 groups	 provide	
precomputed	 browsable	 alignments	 and	 synteny	 maps	 of	 species	 of	 interest	 [13-16].	
Different	species	can	also	be	compared	based	on	their	functional	features	through	orthology	
inference.	There	are	numerous	tools	and	public	databases	which	infer	orthology	based	on	
sequence	similarity,	phylogeny,	synteny	or	a	combination	of	those	[17].		

Intraspecies	comparative	genomics	tries	to	find	genomic	variation	between	individuals	
of	 the	same	species.	 In	such	studies,	simple	variation	 is	detected	between	 individuals	by	
aligning	sequencing	reads	to	a	reference	genome	(read	mapping)	and	collecting	variable	loci	
such	as	SNPs	and	short	indels	from	the	pileup	of	reads	(variant	calling).	Large	regions	in	
which	 no	 reads	map	 show	 large	deletions	 in	 the	 sequenced	 genome,	 split	 reads	 help	 to	
determine	 the	 boundaries	 of	 large	 structural	 events	 such	 as	 insertions,	 inversions	 and	
translocations,	 and	 drastic	 changes	 in	 the	 average	 number	 of	 reads	 spanning	 a	 locus	
(coverage)	compared	to	flanking	regions	can	indicate	duplications.	

It	becomes	clear	that	reference	genomes	play	a	central	role	in	intraspecies	comparative	
genomics.	However,	a	single	reference	genome	cannot	represent	an	entire	species.	In	the	
first	place,	it	ignores	the	intraspecies	variability.	Second,	a	reference	genome	is	a	haploid	
simplification	of	the	genome	of	species	that	are	often	diploid	or	even	polyploid	and,	as	a	
result,	mapping	 reads	 against	 a	 single	 reference	 is	 always	 biased	 towards	 the	 reference	
allele	 in	highly	heterozygous	sites.	This	can	mislead	genotyping	as	 the	alternative	alleles	
may	not	be	discovered	due	to	failure	of	read	mapping.	Third,	reads	originating	from	genomic	
regions	that	are	absent	in	the	reference	will	be	ignored	while	they	may	contain	important	
rare	variants,	for	example	somatic	mutations	that	are	causal	for	cancer.	To	overcome	these	
limitations	 and	 make	 full	 use	 of	 the	 wealth	 of	 genomes	 available	 for	 many	 species,	 a	
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transition	 from	 reference-based	 to	 pan-genomic	 comparative	 genomics	 has	 emerged	 in	
recent	years	[18].	

1.4 Pan-genomes	

In	line	with	the	number	of	sequenced	individuals,	research	in	the	field	of	pan-genomics	has	
been	 growing	 rapidly	 in	 the	 recent	 decade.	 In	 the	 PubMed	 database	 [19],	 the	 term	
“pangenome”	or	“pan-genome”	receives	hits	(in	title/abstract)	since	the	year	2000,	reaching	
to	over	1,000	hits	 by	 the	 end	of	 2019	 (Figure	1.2).	A	 collection	of	 genomes,	 haplotypes,	
genes,	or	any	genomic	feature	from	a	phylogenetic	clade	which	are	analyzed	jointly	can	be	
called	a	pan-genome	[18].	As	a	reference,	pan-genomes	are	supposed	to	capture	a	wider	
genomic	landscape	of	species	compared	to	a	single	reference	genome.		
	

In	literature,	various	definitions	of	pan-genomes	are	in	use,	in	terms	of	genomic	content,	
taxonomy	 level,	 functionality	and	data	structures.	 Initially,	pan-genomes	were	defined	at	
the	gene	level	in	microbial	species	to	study	their	gene	repertoire	and	categorize	genes	as	
core,	 dispensable	 or	 strain-specific	 [20].	 Subsequent	 developments	 constructed	 pan-
genomes	from	complete	genomes	[21,22].	There	are	also	examples	of	pan-genomes	at	the	
transcriptome	level	(pan-transcriptome)	utilized	to	investigate	presence/absence	variation	
between	transcriptomes	[23].	Pan-genomes	have	been	also	defined	at	different	taxonomic	
levels.	 For	 example,	 viral	 quasi-species	 [24,25]	 are	 pan-genomes	 at	 the	 strain	 level,	 the	
Vibrio	cholerae	pan-genome	[26]	is	defined	at	the	species	level,	and	the	Bacillus	pan-genome	
[27]	at	the	level	of	a	genus.	Pan-genomes	have	been	built	even	from	different	meta-genomes,	
for	example,	the	Prochlorococcus	pan-genome	is	a	pan-metagenome	used	to	link	clusters	of	
genes	to	their	environmental	distribution	in	a	marine	metagenomics	context	[28].	

The	Computational	Pan-Genomics	Consortium,	a	group	of	 researchers	 from	different	
application	 domains,	 from	 virology	 to	 microbiology,	 human	 and	 cancer	 genomics,	 have	
presented	the	most	comprehensive	definition	of	a	pan-genomic	platform,	in	the	literature	

Figure	1.2.	The	number	of	publications	with	terms	“pangenome”	or	“pan-genome”	in	the	title	or	abstract	has	
been	 growing	 in	 PubMed	database,	 since	 2000.	Red	 curve	 indicates	 cumulative	 number	 of	 hits,	 so	 1000	
publications	by	the	end	of	2019.	
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of	the	field	[18]	(Figure	1.3).	In	this	view,	it	should	be	possible	to	construct	pan-genomes	
from	 whole-genome	 or	 targeted	 assemblies.	 Any	 representation	 requires	 efficient	 and	
consistent	retrieval	and	storage	of	data.	To	be	used	as	a	reference	and	detect	small	and	large-
scale	genomic	variation,	pan-genomes	should	facilitate	read	mapping	and	variant	calling.	
Variants	 should	 be	 expressed	 based	 on	 a	 consistent	 and	 stable	 pan-genomic	 coordinate	
system	which	is	efficiently	projectable	to	individual	genomes.	Additional	data	stores	might	
be	considered	 for	discovered	variants	and	haplotypes.	To	 incorporate	new	genomes,	 the	
pan-genome	 data	 structure	 and,	 in	 turn,	 the	 coordinates	 should	 be	 efficiently	 updated.		
Structural	 features	 of	 genomes	 need	 be	 annotated	 in	 the	 pan-genome.	 Simplified	
visualizations	 at	 different	 layers	 of	 aggregation	 are	 needed	 to	 unfold	 pan-genome	
substructures.	Finally,	more	realistic	genome	simulators	can	be	developed	considering	the	
common	haplotypes	and	their	frequency	information.		Such	a	platform	can	be	even	extended	
to	be	able	to	answer	other	relevant	biological	questions.	Currently,	a	lot	of	research	is	being	
dedicated	to	exploring	data	structures	and	algorithms	that	can	make	such	computational	
infrastructure	a	reality.	

	

Figure	1.3.	Functionalities	suggested	by	the	Computational	Pan-Genomics	Consortium	to	be	supported	in	a	
pan-genomic	 platform.	 This	 figure	 is	 re-used	 from	 [18].	 Pan-genome	 is	 constructed	 from	 a	 given	 set	 of	
samples/genomes	and	 is	permanently	stored	 for	 future	use.	Reads	from	newly	sequenced	 individuals	are	
mapped	against	the	pan-genome	to	call	novel	variants	and	haplotypes	which	will	be	incrementally	added	to	
the	pan-genome	and	can	be	retrieved	on	demand.	Population	haplotype	frequencies	cab	be	used	to	simulate	
new	 populations.	 Comparing	 two	 pan-genomes	 can	 narrow	 down	 the	 candidate	 genomic	 source	 of	
phenotypes	in	different	populations.	Pan-genomes	need	to	be	annotated	and	visualized	to	be	used	in	real	
applications.							
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1.5 Data	structures	

In	a	pan-genomic	platform,	data	organization	directly	affects	the	feasibility	and	efficiency	of	
the	functionalities	that	manipulate	the	data.	Given	the	wide	range	of	potential	uses,	it	is	not	
expected	that	a	single	data	structure	can	be	found	which	satisfies	all	the	needs,	equally	well.	
We	 classify	 existing	 pan-genomic	 data	 structures	 into	 two	 general	 representations:	
variation-aware	and	multi-genome	data	structures.	Variation-aware	data	structures	enrich	
a	 single	 reference	 with	 known	 variants,	 while	 multi-genome	 data	 structures	 combine	
multiple	assembled	genomes.		

1.5.1 Variation-aware	structures	

In	 a	 population	 of	 the	 same	 species	 with	 rare	 large-scale	 genomic	 rearrangements,	 a	
reference	 genome	 plus	 a	 large	 number	 of	 simple	 variants/haplotypes	 can	 sufficiently	
represent	 that	 population.	 The	 genomic	 makeup	 of	 any	 new	 individual	 can	 then	 be	
expressed	as	a	combination	of	alleles	at	the	variable	loci	of	a	single	reference.	Such	variation-
aware	data	structures	have	been	extensively	used	in	human	pan-genomics	[29],	as	a	wealth	
of	variants	have	been	already	discovered	in	human	genome.	For	example,	dbSNP	Build	152	
contains	more	than	650	million	short	variants	(<=50bp).	Variation-aware	data	structures	
can	be	categorized	in	reference-based	and	graph-based	structures.	

Reference-based	variation-aware	methods	keep	the	reference	genome	separated	from	
the	data	 structure	of	 the	variants.	For	example,	RCSI	 [30]	builds	 two	 indices	 for	pattern	
search	in	the	genomes,	one	for	the	reference	and	the	other	for	deviation	of	genomes	from	
the	 reference.	 Similarly,	 BWBBLE	 [31]	 extends	 the	 reference	 genome	 to	 a	 linear	multi-
genome,	by	appending	IUPAC-coded	variants	in	other	genomes	to	the	reference.	This	linear	
structure	is	then	BWT-indexed	for	read	mapping	against	all	the	constituent	genomes.	In	the	
same	vein,	MuGI	[32]	constructs	a	variation	database	and	a	k-mer	index	for	read	mapping.	
The	 journaled	 string	 tree	 [33]	 is	 a	 reference-based	 data	 structure	 which	 provides	 an	
efficient	simultaneous	sequential	search	over	a	set	of	highly	similar	genomes.		

Graph-based	 variation-aware	 methods	 combine	 the	 reference	 genome	 and	 known	
variants	 or/and	 haplotypes	 in	 a	 graph	 structure,	 where	 paths	 represent	 the	 possible	
recombinants	in	the	population.	For	example,	GraphTyper	[34]	constructs	a	directed	acyclic	
graph	 from	 a	 reference	 genome	 and	 a	 set	 of	 known	 variants.	 Unaligned/clipped	 reads	
coming	from	complex	regions	of	the	genome	are	mapped	to	this	augmented	graph	using	a	
k-mer	index,	haplotypes	are	called,	variants	are	genotyped	with	respect	to	the	reference,	
and	the	novel	variants	are	 incorporated	 in	the	graph.	Similarly,	 the	population	reference	
graph	[29]	is	a	directed	acyclic	graph	constructed	from	assembled	haplotypes	of	MHC	region	
and	 SNPs	 from	 the	 1000	 Genomes	 Project	 and	 classical	 HLA	 alleles	 from	 IMGT	 [35],	 to	
improve	the	accuracy	of	genome	inference	in	this	complex	region.	Likewise,	the	variation	
graph	 (vg)	 toolkit	 [36]	 constructs	 a	 bi-directed	 variation-aware	 graph	 to	 improve	 read	
mapping	in	highly	polymorphic	regions	of	human	genome.	
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1.5.2 Multi-genome	structures	

Variation-aware	data	structures	have	been	effectively	utilized	to	improve	variant	calling	in	
highly	polymorphic	regions	of	 the	human	genome,	but	 they	do	not	 facilitate	detection	of	
structural	variation	as	found	in	dynamic	genomes	such	as	those	of	fungi	and	plants.	They	
assume	 a	 strong	 collinearity	 between	 genomes	 and	 require	 a	 large	 number	 of	 known	
variants,	 beforehand.	 When	 a	 wealth	 of	 assemblies	 is	 available,	 genomes	 are	 highly	
structurally	dynamic,	or	the	variability	of	the	genomes	is	less	well-known,	use	of	a	multi-
genome	 data	 structure	 is	 the	 desirable	 approach.	 Multi-genome	 data	 structures	 can	 be	
categorized	in	alignment-based	and	graph-based	structures.		

Alignment-based	 data	 structures	 mostly	 use	 pre-calculated	 multiple	 sequence	
alignments	 (MSA)	 to	 represent	 sequence	 similarities	 in	 the	 collinear	 segments	 of	 the	
genomes.	 An	 advantage	 is	 that	 the	 columns	 of	 an	MSA	 define	 a	 coordinate	 system	 over	
sequences,	which	can	be	efficiently	projected	to	original	coordinates	in	each	sequence	[37].	
Also,	MSAs	 can	be	 indexed	 for	pattern	 search;	 for	 example,	GCSA	 [38]	uses	 a	 (Borrows-
Wheeler	transform)	BWT-index	over	a	finite	automaton	representation	of	an	MSA	to	allow	
pattern	search	inside	recombinants,	and	PanVC	[39]	constructs	a	hybrid	index	[40]	to	map	
reads	against	the	MSA.	Such	tools	have	been	applied	to	short	polymorphic	regions	of	the	
human	 genome.	 However,	 building	 an	 MSA	 of	 a	 large	 number	 of	 structurally	 variable	
genomes	is	a	large	challenge	[41-43].		

Graph-based	 alignment	 structures,	 such	 as	 POA	 [44],	 A-Bruijn	 [45]	 and	 Cactus	 [46]	
graphs	 have	 tried	 to	 address	 representation	 of	 recombinants,	 structural	 variation	 and	
duplications,	at	the	same	time.	ProgressiveMauve	[47]	takes	a	similar	approach,	although	it	
does	not	make	a	graph.	It	partitions	genomes	into	locally	collinear	blocks	(LCB)	and	builds	
MSAs	of	each	block	in	a	multiple	whole-genome	alignment	(MWGA).	To	extend	an	existing	
MWGA	with	a	new	genome,	seq-seq-pan	[48]	generates	pairwise	alignments	between	the	
linear	consensus	of	existing	LCBs	and	the	new	genome	and	splits	or	merges	the	blocks	to	
update	the	alignment.		

Graph-based	multi-genome	data	 structures	 are	 able	 to	 efficiently	 represent	multiple	
genomes	by	collapsing	identical	regions.	In	such	graphs,	nodes	are	labeled	with	pieces	of	
nucleotide	sequences	annotated	with	their	coordinate	in	each	genome,	enabling	traversing	
the	path	of	each	genome	in	the	graph.	Nodes	can	be	of	constant	or	variable	length	and	are	
connected	 by	 directed	 edges,	 or	 by	 bi-directed	 edges	 to	 represent	 the	 strand	 of	 the	
sequences.	In	a	pan-genome	graph,	cycles	represent	repetitive	sequences	in	one	genome	or	
between	 multiple	 genomes.	 Cyclic	 pan-genome	 graphs	 can	 be	 replaced	 by	 their	 acyclic	
version	to	preserve	all	copies	of	repeated	sequences	in	the	structure,	of	course	at	the	cost	of	
redundant	nodes.	For	example,	in	Figure	1.4,	it	is	clear	that	pattern	CCTC	occurs	twice	in	
tandem	 in	 both	 sequences,	 but	 in	 the	 cyclic	 version	 it	 is	 not	 clear	 how	many	 times	 this	
pattern	is	repeated	in	each	sequence.	This	issue	can	also	be	addressed	by	annotating	nodes	
or	edges	with	genomic	coordinates.	This	also	links	coordinates	of	similar	regions	between	
genomes,	facilitating	homology	detection	algorithms.	

In	the	absence	of	a	 linear	coordinate	system,	graph	coordinates	can	be	expressed	by	
pairs	of	node	identifier	and	offset.	Such	coordinates	demand	some	book-keeping	when	node	
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identifiers	 change,	 for	 example	 due	 to	 adding	 new	 sequences	 and	 splitting	 some	 nodes.	
Alternatively,	one	of	the	genomes	can	be	considered	to	be	the	reference	and	corresponding	
loci	 in	other	genomes	can	be	defined	with	respect	 to	 the	reference	coordinates.	This	has	
been	 implemented	 in	 some	 human	 pan-genomes	 [29,34],	 but	 it	 is	 not	 applicable	 in	 the	
presence	of	genomic	rearrangements.	

The	De	Bruijn	graph	(DBG)	or	colored	DBG	[49]	has	traditionally	been	used	in	genome	
assemblers	[50,51],	but	became	popular	as	a	multi-genome	data	structure	as	well	[52,53].	
It	efficiently	compresses	multiple	genomes	by	storing	each	k-mer	of	constituent	genomes	
only	once.	Figure	1.5A	illustrates	a	DBG	representing	three	sequences,	where	the	first	two	
sequences	 share	 some	 k-mers	 but	 the	 third	 sequences	 shares	 no	 k-mer	 with	 either.	
Compressing	non-branching	paths	significantly	reduces	the	size	of	this	graph	(Figure	1.5B).	
Considering	the	reverse-complement	k-mers	in	a	stranded	version	of	the	graph	reveals	that	
the	 third	sequence	also	shares	some	k-mers	with	 the	 first	 two	sequences,	but	 in	reverse	
direction.	Genomic	inversions	between	genomes	can	be	detected	in	such	a	stranded	graph	
(Figure	1.5C).		

	 	

Figure	1.4.	A.	The	acyclic	and	B.	cyclic	pan-genome	graphs	for	two	sequences	AGTAGCCCTCCCTCGT	(red)	
and	AGTTGCCCTCCCTCGC	(green).	Yellow	nodes	are	shared	between	 these	 two	sequences.	The	 tandem	
repeat	of	CCTC	in	the	longest	node	in	the	acyclic	graph	is	represented	by	a	loop	in	the	cyclic	graph,	however	
the	number	of	copies	needs	to	be	annotated	for	the	repeated	part.			

 

B. Cyclic 

A. Acyclic 



Introduction	

	16	

	

1.6 	Research	objectives	and	outline	of	thesis	

As	outlined	above,	pan-genomes	have	received	a	lot	of	attention	in	recent	years.	However,	
existing	pan-genomic	tools	are	mostly	specialized	to	the	human	genome	and	do	not	scale	to	
large	collections	of	structurally	dynamic	genomes,	such	as	plant	genomes.	In	this	project,	we	
investigate	computational	methods	to	compress	large	sets	of	related	genomes	into	a	pan-
genome	with	 basic	 functionalities	 for	 construction,	 update	 and	 exploration	 of	 such	 pan-
genomes.	As	a	data	representation,	we	develop	a	generalized	De	Bruijn	graph	which	scales	
to	 thousands	 of	 prokaryotic	 or	 hundreds	 eukaryotic	 genomes.	 The	 implemented	 pan-
genomic	toolset,	PanTools,	provides	useful	functionality	to	construct	and	update	the	pan-
genome,	 add	 new	 genomes	 and	 annotations,	 retrieve	 genomic	 features/regions,	 add	
proteome	space,	detect	homology	groups	in	this	space,	and	finally	map	short	sequencing	
reads	against	a	pan-genome.			

In	Chapter	2,	we	present	our	pan-genome	representation,	as	well	as	the	construction	
algorithm	and	our	annotation	approach.	We	introduce	a	generalized	De	Bruijn	graph	as	the	
pan-genome	 data	 structure	 which	 is	 compressed,	 bi-directed,	 localized	 and	 indexed	 for	

	
	
	
	
	
	

A.	De	Bruijn	graph	
	

	
	
	
	
	
	

B.	Compressed	De	Bruijn	graph	
	
	

	
	
	
	
	

C.	Stranded	De	Bruijn	graph	

Seq 1 

1&2 1&3

1&2&3 

2&3 

Seq 2 Seq 3 

Figure	 1.5.	 Three	 varieties	 of	 the	 De	 Bruijn	 graph	 (k	 =	 3)	 for	 sequences	 AGTACCCTCCCTCCGT	 (red),	
AGTGCCCTCCCTCCGC	 (green),	 and	 ACGGTGGGCAC	 (blue).	 Nodes	 shared	 between	 two	 or	 all	 three	 the	
sequences	are	colored	as	determined	in	the	legend.	The	number	of	nodes	is	much	lower	in	the	compressed	
DBG	compared	to	the	original	DBG.	Reverse-complement	of	the	blue	sequence	shares	several	parts	with	two	
other	sequences	which	can	be	captured	in	a	stranded	DBG.	
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efficiency	 and	 applicability.	 We	 demonstrate	 applicability	 of	 our	 pan-genome	 toolbox,	
PanTools,	to	large	number	of	bacterial,	fungal	and	plant	genomes.	In	Chapter	3,	we	present	
a	method	to	incorporate	proteomes	in	the	pan-genome	and	detect	homology	groups	in	the	
proteome	 space,	 de	 novo	 and	 efficiently.	 	 We	 show	 sensitivity	 and	 specificity	 of	 the	
implemented	k-mer-based	approach,	demonstrate	its	scalability	to	large	bacterial,	fungal,	
plant	and	metazoan	proteomes,	and	show	its	applicability	to	proteomes	of	species	at	various	
evolutionary	 distances.	 In	 Chapter	 4,	we	 present	 a	k-mer-based	 approach	 to	 correct	 for	
substitution	errors	in	short-read	data.	We	show	that	this	method	increases	the	horizontal	
and	vertical	coverage	of	read	mapping,	which	are	important	to	improve	variant	calling	and	
genome	assembly,	respectively.	Finally,	Chapter	5	introduces	a	pan-genome	read	mapping	
approach	capable	of	aligning	millions	of	short	reads	to	hundreds	of	eukaryotic	or	thousands	
of	prokaryotic	genomes,	simultaneously.	We	show	that	mapping	against	multiple	genomes	
reduces	the	number	of	unmapped	reads.	We	also	show	how	the	implemented	competitive	
mapping	 approach	 can	 be	 effectively	 used	 for	 abundance	 estimation	 and	 binning	 of	
metagenomics	reads.	
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PanTools:	representation,	storage	and	exploration	of	pan-genomic	data	
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Abstract	

Next-generation	 sequencing	 technology	 is	 generating	 a	wealth	 of	 highly	 similar	 genome	
sequences	 for	many	species,	paving	 the	way	 for	a	 transition	 from	single-genome	to	pan-	
genome	analyses.	Accordingly,	genomics	research	is	going	to	switch	from	reference-centric	
to	pan-genomic	approaches.	We	define	the	pan-genome	as	a	comprehensive	representation	
of	multiple	annotated	genomes,	facilitating	analyses	on	the	similarity	and	divergence	of	the	
constituent	 genomes	 at	 the	 nucleotide,	 gene	 and	 genome	 structure	 level.	 Current	 pan-
genomic	approaches	do	not	thoroughly	address	scalability,	functionality	and	usability.	We	
introduce	 a	 generalized	De	 Bruijn	 graph	 as	 a	 pan-genome	 representation,	 as	well	 as	 an	
online	algorithm	to	construct	 it.	This	representation	is	stored	in	a	Neo4j	graph	database,	
which	makes	our	approach	scalable	to	large	eukaryotic	genomes.	Besides	the	construction	
algorithm,	 our	 software	 package,	 called	 PanTools,	 currently	 provides	 functionality	 for	
annotating	pan-genomes,	adding	sequences,	grouping	genes,	retrieving	gene	sequences	or	
genomic	regions,	reconstructing	genomes	and	comparing	and	querying	pan-genomes.	We	
demonstrate	 the	 performance	 of	 the	 tool	 using	 datasets	 of	 62	E.	 coli	 genomes,	 93	 yeast	
genomes	 and	 19	Arabidopsis	 thaliana	 genomes.	 The	 Java	 implementation	 of	 PanTools	 is	
publicly	available	at	http://www.bif.wur.nl.	
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2.1 Introduction		

Since	 the	 assembly	 of	 the	 first	 bacterial	 genome	 in	 1995	 [1],	 the	 concept	 of	 a	 reference	
genome	has	been	the	cornerstone	for	gene	discovery,	functional	analysis	and	comparative	
genomics.	Reference	genomes	are	typically	linear	sequence	representations	that	facilitate	
genome	 browsing	 and	 sequence-based	 analyses.	 In	 recent	 years,	 large	 genome	 projects,	
such	as	the	150	tomato	genomes	project	[2]	and	the	3000	rice	genomes	project	[3],	have	led	
to	a	deluge	of	data.	Thus,	many	species	and	phylogenetic	groups	are	no	longer	represented	
by	a	single	reference	genome	but	by	numerous	related	genomes.	In	this	situation,	analyzing	
hundreds	 of	 genomes	 by	 individual	 comparison	 to	 a	 single	 reference	 genome	 becomes	
inefficient	 and	misses	 genomic	 content	 not	 present	 in	 the	 reference,	while	 ignoring	 the	
availability	 of	 the	 other	 near-complete	 genomes.	 Likewise,	 pair-wise	 comparison	 of	
hundreds	of	linear	genomes	is	also	far	from	practical.	Hence,	to	capitalize	on	the	genomic	
diversity	 in	 large	 collections	of	 genomes,	we	need	 to	 transition	 from	a	 reference-centric	
approach	to	a	pan-genome	approach.	

Originally,	the	term	pan-genome	has	been	used	to	describe	the	totality	of	genes	found	
in	 a	 species	 or	 phylogenetic	 clade	 in	 order	 to	 classify	 specific	 genes	 as	 either	 core	 or	
dispensable	[4].	More	recent	conceptions	of	the	pan-genome	are	defined	at	the	sequence	
level,	 compressing	multiple	 genomes	 into	 a	 (compressed)	 De	 Bruijn	 graph	 (DBG)	 using	
additional	 data	 structures	 such	 as	 a	 suffix	 tree	 [5],	 FM-index	 [6],	 Burrows–Wheeler	
transform	 [7]	 or	 Bloom	 filter	 trie	 [8].	 Accordingly,	 here	we	 define	 the	 pan-genome	 as	 a	
comprehensive	representation	of	multiple	annotated	genomes,	facilitating	analyses	on	the	
content	and	organization	of	the	constituent	genomes.	

Aiming	 to	 replace	 linear	 genome	 representations,	 a	 computational	 pan-genome	
solution	 should	 contain	 annotations,	 be	mutable	 (to	 incorporate	 novel	 genomes),	 allow	
long-term	 storage	 and	 be	 usable	 for	 comparative	 genomics.	 The	 storage	 property	 is	
especially	 important	 when	 working	 on	 large	 eukaryotic	 genomes,	 where	 in-memory	
solutions	are	no	longer	sufficient.	Being	able	to	update	a	pan-genome	is	essential	as	the	rate	
at	 which	 genomes	 are	 produced	 will	 only	 increase	 in	 the	 future.	 Existing	 pan-genome	
approaches	fulfill	only	part	of	these	requirements.	

To	 overcome	 these	 limitations	 and	 work	 towards	 a	 computational	 pan-genome	
approach	that	allows	to	incorporate	these	desirable	features,	we	developed	an	algorithm	to	
condense	multiple	annotated	genome	sequences	into	a	single	representation.	As	 in	other	
approaches,	 the	 core	 of	 our	 pan-genome	 is	 a	 compressed	 De	 Bruijn	 graph.	 What	
differentiates	our	method	is	that	we	construct	the	pan-genome	in	a	Neo4j	graph	database	
[9],	which	scales	to	arbitrary	graph	sizes	and	thus	allows	for	the	analysis	of	large	collections	
of	complex	eukaryotic	genomes.	Our	pan-genome	graph	is	created	using	an	online	algorithm	
that,	 like	 current	 methods,	 has	 a	 runtime	 linear	 in	 the	 total	 sequence	 length.	 Besides	
construction,	we	provide	useful	functionality	for	annotating	pan-genomes,	grouping	genes,	
retrieving	sequences	and	comparing	pan-genomes.	The	pan-genome	is	stored	on	disk	and	
new	genomes	 or	 annotated	 features	 can	be	 added.	We	have	 implemented	 a	 stand-alone	
command-line	 Java	 application,	 called	 PanTools,	 for	 the	 representation,	 storage	 and	
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exploration	 of	 pan-genomic	 data.	 The	 software	 is	 publicly	 available	 on	
http://www.bif.wur.nl.	

This	 article	 details	 our	 algorithm	 for	 pan-genome	 construction	 and	 discusses	 its	
functionality,	performance	and	applications.	Primarily	we	explain	 the	data	structure,	 the	
construction	 algorithm,	 and	 the	 implemented	 storage	 method.	 In	 addition,	 we	 address	
running	 time,	 memory	 usage	 and	 scaling	 behavior	 of	 PanTools.	 We	 end	 by	 illustrating	
possible	 applications	 that	 can	 be	 developed	 using	 our	 pan-genome	 representation	 as	 a	
foundation.	

2.2 Methods	

 Overview	

In	 De	 Bruijn	 graphs	 (DBGs),	 nodes	 correspond	 to	 unique	 k-mers	 (words)	 in	 the	 input	
sequences,	and	edges	connect	nodes	whose	words	overlap	by	k–1	nucleotides.	Storing	only	
one	 copy	 of	 each	 word,	 DBGs	 efficiently	 compress	 the	 input	 sequences.	 However,	 the	
precision	 in	detecting	sequence	similarities	depends	on	 the	choice	of	k.	DBGs	have	been	
effectively	employed	for	sequence	applications	such	as	de	novo	assembly	[10,11],	de	novo	
repeat	classification	[12],	genotyping	[13],	synteny	block	finding	[14]	and,	more	recently,	
for	pan-genome	representation	[5-8].	

As	in	some	other	existing	approaches,	the	core	of	our	pan-genome	is	a	compressed	DBG,	
which	is	generalized	through	a	number	of	key	properties	to	make	it	efficient	and	applicable	
to	real	data.	It	is:	

1.	 Compressed,	 to	 preserve	 space	 and	 allow	 efficient	 traversal.	 Compressing	 non-
branching	paths	also	improves	the	interpretability	of	the	topology	which	is	important	for	
mining	 structures	 in	 the	 graph,	 for	 example,	 using	 the	 graph	 database	 query	 language,	
Cypher	[15].	

2.	Bi-directed,	to	allow	reverse	complement	sequences	to	be	stored	in	the	same	nodes	
of	 the	 graph.	 This	 property	 slightly	 reduces	 the	 size	 of	 the	 graph,	 but	most	 importantly	
makes	 it	 applicable	 to	 double-stranded	 data,	 for	 instance	 to	 detect	 inversions	 between	
genomes.	

3.	Localized,	to	store	the	genomic	positions	at	which	each	forward	or	reverse	sequence	
of	a	node	appears.	

4.	Indexed,	by	all	canonical	k-mers	of	the	dataset,	to	provide	quick	access	to	the	node	
where	 a	 given	k-mer	 occurs.	 A	k-mer	 is	 called	 canonical	 if	 it	 is	 smaller	 than	 its	 reverse	
complement,	lexicographically.	

5.	General,	to	allow	storing	ambiguous	genomic	regions	in	the	pan-genome,	which	are	
widespread	in	real	datasets.	

The	most	straightforward	way	of	constructing	a	compressed	DBG	is	to	build	the	original	
uncompressed	DBG	and	compress	non-branching	paths.	However,	branch	compression	in	a	
graph	 with	 billions	 of	 nodes	 requires	 an	 amount	 of	 memory	 only	 found	 in	 high-end	
machines.	 Therefore,	 efficient	 construction	 methods	 like	 those	 proposed	 in	 [6]	 and	 [7]	
create	a	compressed	DBG	directly	from	input	sequences.	Below,	we	describe	an	alternative	
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direct	method	for	construction	of	the	compressed	DBG	which	is	optimized	for	disk-based	
storage	in	a	graph	database.	It	is	an	online	algorithm,	i.e.	the	graph	is	updated	as	soon	as	the	
next	 k-mer	 of	 the	 input	 is	 scanned.	 This	 property	 enables	 us	 to	 cumulatively	 add	 new	
genomes	to	the	pan-genome	over	time.	

 Data	structures	

The	pan-genome	is	represented	as	a	bi-directed	graph,	with	two-sided	nodes	[forward	(F)	
and	reverse	(R)]	corresponding	to	the	nucleotide	sequence	and	its	reverse	complement.	As	
a	result,	there	are	four	types	of	edges	(FF,	FR,	RF	and	RR)	depending	on	the	sides	that	are	
connected.	Figure	2.1	illustrates	a	pan-genome	graph	(k	=	3)	of	two	genomes,	each	with	one	
sequence,	white	and	black,	with	shared	parts	 colored	gray.	 In	 this	picture,	 circles,	 called	
sequence	nodes,	 locate	 the	nodes	of	 the	pan-genome	where	a	 sequence	 starts	 and	ends,	
rectangles	represent	normal	nodes	and	the	rounded	rectangle	is	an	instance	of	a	so-called	
degenerate	 node	 representing	 the	 ambiguous	 region	 in	 the	 first	 sequence.	 Ambiguous	
regions	are	sub-sequences	in	which	all	consecutive	k-mers	contain	one	or	more	ambiguous	
bases.	In	this	example,	the	first	sequence	contains	an	R	(a	purine,	i.e.	an	A	or	G),	which	has	
been	stored	in	degenerate	node	2.	Degenerate	nodes	save	the	connectivity	of	the	paths	that	
input	sequences	take	through	the	graph	and	facilitate	the	reconstruction	of	the	constituent	
genomes	 or	 genomic	 regions.	 For	 simplicity,	 from	 here	 on	 we	 use	 the	 term	 ‘node’	 as	
shorthand	for	normal	nodes.	In	the	current	implementation,	we	also	use	some	other	types	
of	nodes,	which	will	be	introduced	in	the	Section	3.	In	Figure	2.1,	all	edges	are	of	type	FF	
except	for	the	loop	over	node	4	and	the	edge	between	nodes	10	and	1,	which	both	are	of	
type	FR	(determined	by	the	orientation	of	the	arrows	on	the	edge).	

Table	 2.1	 lists	 the	 coordinates	 stored	 in	 each	 node.	 A	 coordinate	 determines	 the	
genomes	 where	 the	 sequence	 of	 the	 node	 occurs,	 the	 position	 at	 which	 it	 occurs,	 and	
whether	 the	 forward	 or	 reverse	 sequence	 occurs.	 As	 each	 genome	may	 contain	 several	
sequences	 (chromosomes,	 contigs	 etc.)	 coordinates	 are	 represented	 by	 three	 numbers:	
genome,	sequence	and	position.	For	example,	in	node	1,	the	forward	sequence,	AAA,	occurs	
in	 genome	 1,	 sequence	 1	 at	 positions	 0	 and	 1,	 and	 its	 reverse	 sequence,	 TTT,	 occurs	 in	
genome	2,	sequence	1	at	position	8.	
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Figure	 2.1.	 A	 pan-genome	 graph	 (k	 =	 3)	 for	 two	 sequences,	 AAAARATAATCCGCG	 (in	 white)	 and	
CATACTCCTTT	(in	black).	Shared	nodes	are	gray.	Rectangle:	normal	node,	rounded	rectangle:	degenerate	
node,	circle:	sequence	node.	White	sequence	starts	with	a	forward-forward	loop	over	AAA	followed	by	a	
degenerate	 node.	 Nodes	 3,	 6,7	 and	 8	 form	 a	 bubble	 structure	 representing	 a	 A-C	 SNP	 between	 two	
sequences.	Node	4	is	an	example	of	a	forward-reverse	loop.	Sequence	black	ends	with	TTT	captured	by	a	
cycle	back	to	the	reverse	strand	of	Node	1.	
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Table	 2.1.	 Node	 properties	 for	 the	 graph	 in	 Figure	 2.1.	 Coordinates	 are	 given	 as	
(orientation:genome:sequence:position(s)).	Orientation:	F	=	forward,	R	=	reverse.	Positions	are	0-based,	for	
example,	Node	7	occurs	in	the	first	sequence	of	the	second	genome	at	position	2	which	is	actually	the	third	
position.			

	
Node	 Sequence	 Coordinates	 Node	 Sequence	 Coordinates	
1	 AAA	 F:1:1:0,1;	R:2:1:8	 6	 TAATC	 F:1:1:6	
2	 AARAT	 F:1:1:2	 7	 TACTC	 F:2:1:2	
3	 ATA	 F:1:1:5;	F:2:1:1	 8	 TCC	 F:1:1:9;	F:2:1:5	
4	 CGC	 F:1:1:11;	R:1:1:12	 9	 CCG	 F:1:1:10	
5	 CAT	 F:2:1:0	 10	 CCTT	 F:2:1:6	

	
DBGs	 have	 proven	 useful	 to	 visualize	 short	 variations	 between	 sequences,	 as	 they	

create	 various	 known	 substructures	 in	 the	 pan-genome	 graph,	 a	 fact	 well-known	 from	
(co)assembly	 [10,13,16].	 For	 example	 in	 Figure	 2.1,	 the	 shared	 sequence	ATA(C/A)TCC,	
with	one	SNP	in	the	middle,	forms	a	bubble	in	the	center	of	the	graph	(induced	by	nodes	3,	
6,	 7	 and	 8).	 Moreover,	 the	 bi-directed	 pan-genome	 allows	 for	 detecting	 inversions.	 For	
instance,	 the	 subsequence	TTT	at	 the	end	of	 the	 second	sequence	can	be	detected	as	an	
inverted	 translocation	 of	 AAA	 at	 the	 start	 of	 the	 first	 sequence,	 by	 comparing	 the	
orientations	of	the	coordinates	stored	in	node	1.	

Locating	k-mers	within	the	pan-genome	is	an	essential	operation	for	construction	of	the	
pan-genome	 and	 facilitates	 applications	 such	 as	 sequence	 retrieval,	 read	 mapping	 and	
sequence	 alignment.	 For	 these	 reasons,	 the	 pan-genome	 graph	 is	 accompanied	 by	 an	
ordered	k-mer	index	which	quickly	locates	each	canonical	k-mer	by	giving	the	node	number,	
format	(canonical	or	non-canonical)	and	relative	position	of	its	occurrence	in	the	node	(note	
that	each	k-mer	occurs	just	once	in	the	graph).	The	format	of	the	k-mer	at	its	first	visit	is	
stored	 and	 used	 by	 the	 construction	 algorithm.	 Table	 2.1	 shows	 the	k-mer	 index	 of	 the	
example	graph	in	Figure	2.1.	Positions	are	expressed	left	to	right,	starting	at	0.	

	
Table	2.2.	 The	k-mer	 index	 for	 the	graph	 in	Figure	2.1.	 Pointers	 are	 given	as	 (node:format:position).	 For	
format,	C	=	canonical,	N	=	non-canonical.	Since	in	a	DBG	every	k-mer	occurs	only	once,	they	can	be	pinpointed	
by	unique	pointers,	 for	 example	during	 construction	of	 the	 graph	k-mer	AAT	has	been	 visited	 in	Node	6,	
position	1	in	its	canonical	form	(AAT).	

	
k-mer	 Pointer	 k-mer	 Pointer	 k-mer	 Pointer	
AAA	 1:C:0	 ATA	 3:C:0	 CGC	 4:C:0	
AAG	 10:N:1	 ATC	 6:C:2	 CTC	 7:C:2	
AAT	 6:C:1	 GGA	 8:N:0	 GTA	 7:N:0	
ACT	 7:C:1	 ATG	 5:N:0	 TAA	 6:C:0	
AGG	 10:N:2	 CCG	 9:C:0	 	 	

 Online	construction	of	the	pan-genome	graph	

We	employ	KMC2	[17]	to	build	a	k-mer	index.	Our	construction	algorithm	(Algorithm	1)	is	
then	based	on	four	elementary	operations:	Create,	Extend,	Follow	and	Split.	In	the	main	
algorithm,	sequences	are	scanned	in	turn,	and	each	subsequent	k-mer	is	looked	up	in	the	
index.	If	a	k-mer	is	not	visited	yet	in	either	orientation,	a	new	node	of	length	k	is	added	to	
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the	graph	by	the	function	Create,	which	is	then	Extended	until	we	encounter	a	previously	
encountered	k-mer.	We	locate	a	previously	visited	k-mer	in	the	graph	and,	depending	on	the	
orientation	in	which	it	appears	in	a	node,	one	of	the	Follow-forward	or	Follow-reverse	
operations	will	be	performed.	Both	of	these	operations	take	advantage	of	the	Split	function	
to	divide	a	node	into	two,	taking	care	of	the	bookkeeping.	

Figure	2.2A	 illustrates	how	these	 four	simple	operations	work	when	 the	 first	 five	3-
mers	 of	 the	 black	 sequence	 (CATACTCCTTT)	 are	 added	 to	 the	pan-genome	of	 the	white	
sequence	(Figure	2.2A).	The	first	3-mer,	CAT,	creates	node	5	as	it	is	not	available	in	the	white	
sequence.	ATA	appears	in	node	3,	so	it	is	followed	to	reach	the	next	3-mer	of	the	node,	TAA,	
which	differs	from	the	next	3-mer	in	the	black	sequence,	TAC.	Node	3	is	therefore	split,	node	
7	is	initialized	with	TAC	and	is	extended	with	ACT	and	CTC	as	these	two	3-mers	have	not	
been	visited	before.	Continuing	this	process,	the	next	3-mer,	TCC,	appearing	in	the	middle	
of	the	node	6,	results	in	another	split	to	enter	this	node.	

	
Algorithm	2.1.	Pseudo-code	of	the	construction	algorithm.	The	algorithm	simply	scans	the	genomes	one	after	
the	other	and	keeps	track	of	the	k-mers	to	decide	to	create,	extend	or	follow	a	node.	As	a	result,	the	structure	
of	the	graph	is	updated	immediately	after	reading	the	next	k-mer.	
	
Data:	one	or	more	Genomes	each	containing	one	or	more	Sequences,	k-mer	length	k	
Result:	a	pan-genome	Graph	and	k-mer	Index	

Initialize	empty	Graph,	build	Index	of	all	canonical	k-mers;	
for	g	=	1	..	number	of	Genomes	do	
								for	s	=	1	..	number	of	Sequences	in	g	do	
																position	=	0;	
																while	position	<	length(Genomes[g].Sequences[s])	–	k	+	1	do		
																								kmer	=	Genomes[g].Sequences[s][position	.	.	.	position	+	k	−	1];	
																								if	kmer	is	visited	for	the	first	time	then	
																																n	=	Create(kmer);	
																																Extend(n);		
																								else	
																																n	=	node	where	kmer	occurs;	
																																if	kmer	visited	in	this	orientation	then	
																																								Follow-forward(n,	kmer);		
																																else	
																																								Follow-reverse(n,	kmer);		
																																end	
																								end	
																end	
								end	
end	
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 Choice	of	k	

k-mers	are	the	building	blocks	of	every	DBG,	determining	to	a	large	extent	its	properties.	
Chikhi	and	Medvedev	[18]	describe	that	in	DBG-based	assemblers,	the	best	choice	of	k	is	the	
one	 that	 provides	 the	 largest	 number	 of	 distinct,	 non-erroneous	 genomic	 k-mers	 to	 the	
assembler.	When	using	a	(compressed)	DBG	to	represent	a	pan-genome	graph,	although	it	
is	not	easy	to	define	an	optimal	value	for	k,	it	is	possible	to	suggest	a	lower	bound	to	avoid	
tangling	the	graph.	Short	k-mers	increase	the	chance	of	single	nodes	representing	unrelated	
subsequences	within	and	between	different	genomes,	making	the	graph	tangled	and	hard	
to	interpret.	On	the	other	hand,	selecting	a	large	value	for	k	will	decrease	connectivity	and	
lead	 to	 distinct	 node	 sets	 representing	 each	 genome	or	 at	 least	will	 obscure	 small-scale	
variation,	 e.g.	 SNPs	 less	 than	 k	 bases	 apart,	 which	 is	 not	 desirable	 for	 a	 pan-genome	
representation.	There	is	thus	a	trade-off	between	the	specificity	of	k-mers	and	the	resolution	
of	 the	 pan-genome	 variation	 in	 the	 graph	 structure.	 We	 therefore	 choose	 the	 smallest	
possible	value	of	k	which,	with	high	probability,	does	not	lead	to	the	collapse	of	unrelated	
sequences	into	single	nodes.	Call	two	k-mers	identical	if	their	canonical	form	is	the	same,	
then	 the	 probability	 of	 a	 k-mer	 being	 identical	 to	 another	k-mer	 is	2"! ,	where	"	 is	 the	
probability	of	a	single	identical	symbol.	For	nucleotide	sequences,	we	can	set	" = 0.25	or	
take	actual	frequencies	of	occurrence	into	account.	Given	a	set	of	n	random	k-mers,	we	are	
interested	in	the	number	of	non-unique	k-mers	in	this	set	as	a	function	of	k.	For	odd	values	
of	k,	the	probability	that	an	arbitrary	k-mer	is	different	from	all	others	in	this	random	set	is	
(1 − 2"!)"#$	 and	 the	 probability	 that	 a	 k-mer	 occurs	 at	 least	 twice	 (i.e.	 is	 non-unique)	
is1 − (1 − 2"!)"#$.	 The	 ex-	 pected	 number	 of	 non-unique	 k-mers	 is	 then	 +[1 −
(1 − 2"!)"#$].	By	setting	this	less	than	1	and	using	the	limit	definition	of	the	exponential	
function,	we	can	derive	a	lower	bound	for	k:	
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Figure	2.2.	Four	basic	operations	of	the	construction	algorithm	(Create,	Extend,	Follow,	Split).	A.	Pan-genome	
of	sequence	AAAARATAATCCGCG.	B.	Adding	the	first	five	3-mers	of	the	sequence	CATACTCCTTT	to	the	pan-
genome	of	AAAARATAATCCGCG,	results	in	creating	node	5,	splitting	node	3	and	creating	and	extending	node	
7.	
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Figure	2.3	shows	the	estimated	number	of	non-unique	k-mers	for	two	different	values	
of	".	It	clearly	shows	that	for	a	set	of	100M	random	k-mers,	this	number	drops	abruptly	and	
exponentially	when	we	increase	k.	For	" = 0.25,	up	to	. = 11,	almost	all	k-mers	are	non-
unique;	for	larger	k,	some	k-mers	start	to	be	unique;	and	at	. = 27	all	k-mers	are	unique.	In	
contrast	 to	 random	data,	 real	 genomic	 sequence	 data	 contains	meaningfully	 identical	k-
mers,	which	makes	the	righthand	side	of	inequality	(1)	a	(less	tight)	lower	bound	on	k	in	
practice.	Using	this	estimate	and	a	" = 0.3,	the	lower	bound	of	k	for	the	pan-genome	of	1000	
human	genomes	would	be	49.	The	maximum	value	of	k	is	limited	to	256	by	KMC2,	which	is	
far	larger	than	what	is	useful	for	pan-genome	construction.	

 Implementation	

A	major	goal	of	our	pan-genome	project	is	to	allow	storage	and	exploration	of	variable	pan-
genomes	for	large	collections	of	crop	genomes,	for	example	maize,	rice	and	tomato	[2,3,19].	
To	 achieve	 this	 goal,	 the	 pan-genome	 graph	 and	 accompanying	 data	 structures	 are	 not	
maintained	 in	 memory,	 but	 in	 memory-mapped	 databases.	 The	 advantage	 is	 that	 the	
operating	system	takes	care	of	reading	and	writing	required	chunks	of	files	(pages)	and	the	
application	 just	 interacts	 with	 memory,	 which	 results	 in	 very	 fast	 I/O	 operations.	
Furthermore,	memory	mapped	databases	can	be	shared	between	different	processes,	which	
paves	the	way	for	developing	multi-threaded	pan-genomic	applications	in	future.	It	should	
be	noted	that	interacting	with	large	files	using	disproportionately	small	amounts	of	memory	
increases	the	number	of	page	faults,	drastically	reducing	performance.	Also,	like	any	other	
disk-based	program,	the	performance	of	PanTools	depends	on	disk	speed.	Thus,	to	achieve	
the	best	performance	we	suggest	to	have	a	dedicated	machine,	preferably	with	a	RAM	drive	
or	a	solid-state	drive	(SSD).	

We	use	three	memory	mapped	databases:	the	Neo4j	graph	database,	the	index	database	
and	 the	 genome	 database.	 The	 graph	 database	 contains	 information	 about	 nodes,	
relationships	(edges)	and	their	properties.	The	index	database	is	a	set	of	files	representing	
the	k-mer	index,	and	the	genome	database,	which	is	only	used	during	the	construction	of	the	
pan-genome,	stores	the	compressed	input	sequences.	The	only	data	structure	which	is	kept	
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Figure	2.3.	The	number	of	non-unique	k-mers	in	a	set	of	100M	random	k-mers,	as	a	function	of	k.	The	number	
of	unique	random	k-mers	grows	exponentially	as	size	of	k	increase.			
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in	memory	is	the	small	database	of	prefixes	produced	by	KMC2.	As	a	result,	 the	memory	
requirement	of	the	construction	algorithm	(and	any	other	application	which	needs	the	index	
database)	stays	independent	of	the	size	of	data.	This	enables	us	to	create	and	explore	graphs	
with	millions	of	nodes	using	a	constant,	limited	amount	of	memory,	say	8GB.	

2.3 Results	

In	 this	 section,	 we	 demonstrate	 the	 functionality	 and	 performance	 of	 our	 pan-genome	
approach,	and	discuss	its	application	in	comparative	genomics.	To	this	end,	we	constructed	
pan-genomes	 of	 two	 HIV-1	 strains	 (AF069671.1	 and	 AF413987.1),	 62	 Escherichia	 coli	
genomes	 [5],	 93	 yeast	 genomes	 [20]	 and	 19	 Arabidopsis	 thaliana	 genomes	 [21].	 Our	
experiments	 were	 conducted	 on	 a	 Linux	 server	 (Ubuntu	 14.04)	 with	 an	 Intelâ	 Xeonâ	
X5660@2.8GHz,	with	24	logical	cores,	64GB	RAM	and	a	32GB	RAM	disk.	

 Functionality	

The	current	implementation	of	PanTools	provides	the	following	functionality:	
1.	Build,	given	a	number	of	FASTA	files,	constructs	the	pan-genome.	
2.	Add,	adds	one	or	more	new	genomes	to	a	given	pan-genome.	
3.	Annotate,	given	one	or	more	GFF	files,	adds	gene	nodes	to	the	graph	corresponding	to	the	
annotated	genes.	
4.	 Group,	 adds	 group	 nodes	 to	 the	 graph	 linking	 genes	 by	 some	 criterion,	 for	 instance	
orthology	or	name.	
5.	 Retrieve,	 extracts	 the	 sequence	 of	 specified	 genes	 or	 genomic	 regions	 from	 the	 pan-
genome	graph.	
6.	Reconstruct,	reconstructs	some/all	of	the	constituent	genomes	from	a	given	pan-genome.	
7.	Compare,	compares	the	topology	of	two	existing	pan-genomes.		
8.	Query,	gives	a	command	prompt	to	run	Cypher	queries	and	receive	the	results.	

To	demonstrate	the	Build,	Annotate	and	Group	functionality,	we	constructed	the	pan-
genome	of	two	HIV-1	strains,	annotated	the	genomes	and	grouped	the	homologous	genes.	
Figure	2.4	visualizes	the	graph,	with	different	types	of	nodes	indicated	by	different	colors	
explained	in	the	caption.	The	pan-genome	node	points	to	two	genome	nodes	(1	and	2)	each	
containing	a	 single	sequence	 (1_1	and	2_1)	 (Figure	2.4A).	Two	 instances	of	vpu	 genes	of	
equal	length	(246	nt)	have	been	grouped	together	by	a	vpu	group	node	(Figure	2.4B).	One	
of	these	genes	begins	and	ends	at	a	node	of	length	437,	the	other	at	another	node	of	length	
443.	 The	 exact	 position	where	 each	 gene	 starts	 and	 ends	 in	 these	 nodes	 is	 stored	 as	 a	
property	 in	 edges	 labeled	 begin	 and	 end.	 It	 is	 also	 clear	 in	 Figure	 2.4C	 that	 the	 two	
homologous	pol	genes	have	different	lengths,	3012	and	3006,	and	begin	and	end	in	distinct	
nodes.	 The	 pair	 of	 nodes	 where	 these	 genes	 begin	 and	 end	 belong	 to	 a	 bubble,	 which	
indicates	that	there	is	some	variation	(indel	or	SNP)	between	them.	The	pol	genes	are	rather	
variable,	as	they	are	represented	by	the	entire	chain	of	bubbles	at	the	top-right	of	the	graph.	
SNPs	can	be	distinguished	based	on	the	fact	that	the	length	of	both	branching	nodes	equals	
2k-1	 (here	 63),	 which	 means	 nodes	 differ	 in	 a	 single	 nucleotide	 in	 the	 middle	 of	 their	
sequence	(Figure	2.4D).	Each	edge	has	a	three-letter	label,	starting	with	the	two	nucleotides	
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which	appear	at	the	borders	of	the	k-1	overlap	of	the	nodes	and	ending	with	a	number	in	
the	range	0–3	which	codes	for	the	four	types	of	edges.	The	incoming	and	outgoing	edges	of	
the	top	node	have	been	labeled	CA0	and	AG0,	respectively,	while	those	of	the	node	at	the	
bottom	are	labeled	CG0	and	GG0,	indicating	an	A-G	SNP.	

	

Our	method	allows	to	incrementally	adding	new	genomes	to	an	existing	pan-genome.	
To	show	this,	we	constructed	a	pan-genome	of	three	yeast	genomes	and	iteratively	added	
sets	of	10	new	yeast	genomes.	Then,	we	compared	the	nine	intermediate	pan-genomes	with	
those	constructed	directly	from	13,	...,	93	genomes	from	scratch	(called	Y13	to	Y93).	Using	
the	Compare	functionality,	we	observed	that	pan-genomes	containing	the	same	genomes	
but	constructed	in	different	ways	(directly	or	iteratively)	were	identical,	having	the	same	
number	 of	 k-mers,	 nodes,	 edges	 and	 bases	 as	 well	 as	 the	 same	 properties	 stored	 in	
corresponding	nodes.	We	also	verified	that	changing	the	order	of	the	genomes	in	the	input	
dataset	does	not	affect	the	construction,	resulting	in	isomorphic	pan-genomes.	
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Figure	 2.4.	 Visualization	 of	 the	 annotated	 pan-genome	 (k	 =	 32)	 of	 two	 HIV	 strains,	 AF069671.1	 and	
AF413987.1,	in	the	Neo4j	browser.	A.	The	single	pan-genome	node	(gray)	points	to	genome	nodes	(blue),	
each	pointing	to	their	constituent	sequence	nodes	(purple).	B.C.	Examples	of	group	nodes	(yellow)	linking	
genes	(red),	which	point	to	DBG	nodes	(green)	where	they	start	and	end	in	the	pan-genome.	D.	An	example	
of	a	bubble	structure	created	by	an	A-G	SNP.	Plenty	of	simple	and	complex	bubbles	are	formed	representing	
the	variation	of	these	two	genomes.	
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 Performance	

To	verify	the	resource	requirements	of	the	construction	algorithm	when	it	scales	to	larger	
datasets,	we	constructed	nine	A.	 thaliana	pan-genomes	containing	3,	5,	 .	 .	 .,	19	genomes.	
Table	 2.3	 reports	 properties	 of	 the	 resulting	 pan-genomes,	 as	 well	 as	 the	 resources	
consumed	during	the	construction.	In	all	experiments,	we	set	k=31.		

PanTools	created	the	pan-genome	of	19	A.	thaliana	genomes	in	less	than	an	hour	using	
just	above	6	GB	of	memory.	To	verify	that	our	method	scales	to	arbitrary	genome	sizes,	we	
also	 successfully	 constructed	 a	 pan-genome	 graph	 of	 seven	 human	 genomes	 in	 a	
preliminary	experiment.		

The	 numbers	 of	 k-mers,	 nodes	 and	 edges	 in	 the	 pan-genome	 grow	 in	 a	 sub-linear	
fashion	with	respect	to	the	size	of	the	datasets.	The	ratio	of	the	number	of	k-mers	to	the	
number	 of	 nodes	 in	 the	 Arabidopsis	 pan-genomes	 ranges	 between	 22	 and	 49,	 which	
indicates	the	significant	effect	of	compressing	the	non-branching	paths.	However,	this	ratio	
declines	as	more	genomes	are	added	to	the	pan-genome.	

Pan-genomes	store	 far	 fewer	base	pairs	 than	 linear	genomes	because	redundancy	 is	
eliminated.	Table	2.3	also	shows	that	the	number	of	base	pairs	stored	in	the	pan-genome	
representation	of	19	A.	thaliana	genomes	(A19)	is	just	under	one	fourth	of	those	stored	in	
the	linear	genomes.	This	difference	becomes	more	significant	as	more	genomes	are	added	
to	the	pan-genome.	

	
Table	2.3.	Scalability	of	the	program	to	large	pan-genomes	of	up	to	19	Arabidopsis	genomes	(A3–A19).	As	
expected,	the	number	of	k-mers	and	resource	requirements	levels	off	as	the	number	of	genomes	increase.		
	

	 k-mers	
(M)	

Nodes	
(M)	

Degenerate	
(M)	

Edges	
(M)	

Bases	
(M)	

Time	
(second)	

Memory	
(MB)	

A3	 143.1	 2.9	 0.05	 4.1	 236.8	 977	 3,578	
A5	 158.1	 4.3	 0.09	 5.9	 294.5	 1,346	 4,258	
A7	 168.3	 5.3	 0.22	 7.5	 344.8	 1,644	 4,692	
A9	 177.4	 6.2	 0.25	 8.7	 382.3	 1,943	 4,865	
A11	 184.9	 6.9	 0.29	 9.8	 414.3	 2,284	 4,974	
A13	 189.6	 7.5	 0.47	 10.8	 447.2	 2,443	 5,261	
A15	 197.4	 8.2	 0.52	 11.9	 481	 2,828	 5,695	
A17	 203.9	 8.9	 0.55	 12.9	 508.9	 3,130	 5,967	
A19	 209.5	 9.4	 0.58	 13.7	 532.9	 3,456	 6,254	

	
To	compare	our	construction	method	with	the	existing	in-memory	methods	we	run	the	

FM-index	based	algorithm	(FMI)	presented	by	Beller	and	Ohlebusch	[6]	and	the	BWT-based	
algorithm	presented	by	Baier	et	al.	[7],	on	datasets	of	62	E.	coli	(E62),	93	yeast	(Y93)	and	19	
A.	thaliana	(A19)	genomes;	results	are	presented	in	Table	2.4.	We	also	tried	to	run	SplitMEM	
[5],	but	 it	 ran	out	of	memory	even	on	 the	smallest	dataset	 in	 this	experiment.	The	DBGs	
produced	by	the	FMI-	and	BWT-based	tools	are	exactly	identical	and	these	tools	show	the	
same	performance.	However,	their	graph	contains	more	nodes	than	the	graph	produced	by	
PanTools.	The	reason	is	that	they	do	not	build	a	bi-directed	DBG	and	reverse	complement	
sequences	are	stored	in	different	nodes.	The	smaller	number	of	edges	in	our	pan-genome	is	
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explained	by	the	fact	that	we	store	each	edge	only	once,	whereas	the	two	other	tools	store	
each	individual	transition.	To	conclude,	besides	the	various	useful	features	that	our	disk-
based	approach	provides,	the	amounts	of	time	and	memory	it	needs	are	comparable	to	the	
best	in-memory	methods,	in	particular	for	larger	datasets.	
Table	 2.4.	 Comparing	 PanTools	 with	 the	 two	 existing	 tools	 shows	 that	 PanTools	 requires	 comparable	
computational	resources	as	in-memory	tools.	
	

	 Tool	 Nodes	(M)	 Edges	(M)	 Time	(Second)	 Memory	(MB)	

E62	
FMI-based	 1.16	 21.5	 364	 879	
BWA-based	 1.16	 21.5	 370	 879	
PanTools	 1.07	 1.43	 1,261	 2,344	

Y93	
FMI-based	 1.52	 79.3	 1,432	 3,093	
BWA-based	 1.52	 79.3	 1,454	 3,093	
PanTools	 1.47	 2.01	 4,827	 1,621	

A19	
FMI-based	 9.9	 123.1	 2,878	 6,044	
BWA-based	 9.9	 123.1	 2,750	 6,044	
PanTools	 9.4	 13.7	 3,456	 6,254	

	
Efficient	extraction	of	genes,	genomic	regions	and	genomes	from	a	pan-genome	is	a	key	

functionality	for	downstream	pan-genome	applications.	A	genomic	feature	is	extracted	by	
traversing	 the	 path	 it	 takes	 in	 the	 pan-genome,	which	 is	 determined	 using	 the	 genomic	
positions	 of	 each	 node,	 stored	 as	 node	 properties.	 To	 examine	 annotation	 and	 retrieval	
efficiency,	 we	 annotated	 and	 then	 retrieved	 all	 genes,	 extracted	 thousand	 1000	 nt-long	
random	genomic	regions	and	reconstructed	the	whole	set	of	constituent	genomes	in	five	
different	 yeast	 pan-genomes;	 Table	 2.5	 gives	 the	 run-times	 in	 milliseconds.	 PanTools	
retrieves	 a	 gene	 in	 around	 one	 millisecond.	 As	 expected,	 the	 average	 annotation	 and	
retrieval	times	increase	slightly	as	the	pan-genome	grows.	

	
Table	2.5.	Average	time	(in	milliseconds)	for	annotating	one	gene,	retrieving	one	gene,	retrieving	1	kbp	and	
reconstructing	one	genome	increases	slightly	with	the	number	of	genomes.		
	

	 Gene	
annotation	

Gene	
retrieval	

1	kbp	
retrieval	

Genome	
reconstruction	

Y13	 2.2	 0.3	 2.3	 3,615	
Y33	 3.5	 0.5	 3.4	 7,453	
Y53	 4.8	 0.8	 4.6	 11,639	
Y73	 6.2	 1.2	 6.6	 15,236	
Y93	 7.6	 1.6	 7.9	 19,544	

 Pan-genome	applications	

Expecting	an	increasing	rate	of	genome	production,	pan-genomes	should	ideally	take	over	
the	 role	 of	 linear	 reference	 genomes	 in	 comparative	 genomics.	 This	 implies	 that	 in	 the	
future,	we	will	analyze	novel	genomic	data	with	respect	to	all	genomes	in	the	pan-genome	
at	once,	move	from	pairwise	genome	comparisons	to	multiple	genome	comparisons	at	once,	
and	browse	pan-genomes	rather	than	reference	genomes.	Another	important	application	is	
variation	detection	in	pan-genomes,	including	single-nucleotide	polymorphisms,	structural	
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variation,	 copy-number	 variation,	 synteny,	 transposon-insertion	 polymorphisms,	 etc.	 A	
prerequisite	 for	 such	 high-level	 applications	 is	 a	 solid	 data	 structure	 and	 construction	
algorithm,	as	presented	in	this	article,	possibly	enhanced	with	application-specific	indices.	

A	basic	application,	underlying	genome	browsing	and	several	analyses,	is	fast	retrieval	
of	 genes	 and	genomic	 regions	of	 interest	 and	assess	 the	variations.	To	demonstrate	 this	
feature,	we	retrieved	all	instances	of	the	well-known	FRIGIDA	gene	from	the	pan-genome	of	
19	A.	thaliana	genomes	(A19).	This	gene	encodes	a	major	determinant	of	natural	variation	
in	flowering	time	and	its	allelic	diversity	among	these	19	accessions	is	of	interest	to	plant	
biologists	[21].	There	is	significant	allelic	variation	in	this	gene,	as	shown	in	Figure	2.5.	The	
variants	differ	at	the	start	of	the	gene,	but	are	identical	in	the	last	106	nucleotides.	We	can	
distinguish	 types	 of	 variants	 by	 assessing	 the	 ‘bubbles’	 in	 the	 graph:	 the	 11	 bubbles	
correspond	to	6	SNPs,	1	deletion	and	4	mismatches	less	than	k	nucleotides	apart.	The	exact	
presentation	of	genomic	variations	like	these	needs	to	be	worked	out	in	more	detail,	but	the	
example	 illustrates	 that	we	can	quickly	assess	genomic	variation	 in	multiple	genomes	at	
once,	rather	than	compose	the	full	picture	from	many	pairwise	genome	comparisons	

Many	 pan-genome	 analyses	 will	 require	 searches	 in	 the	 highly	 connected	 graph	
database.	We	will	 use	 the	 query	 language	 of	 Neo4j,	 Cypher,	 to	 search	 pan-genomes	 for	
specific	structures	and	properties.	The	efficiency	of	the	queries	depends	on	how	constrained	
the	query	is.	Table	2.6	presents	the	result	of	some	queries	from	a	pan-genome	of	three	yeast	
genomes.	The	first	three	queries	ask	for	the	number	of	bubbles	created	by	two	branching	
paths	with	at	most	2	(simple	bubble),	3	or	4	edges,	respectively.	As	expected,	the	run-time	
of	such	queries	increases	as	the	length	of	the	branching	path	increases.	The	fourth	query	
returns	all	sequences	that	belong	to	simple	SNPs	(one	node	in	each	branch).	The	fifth	query	

Figure	2.5.	Subgraph	induced	by	19	FRIGIDA	genes	contains	a	lot	of	bubbles	representing	variability	of	this	
gene	among	different	A.	thaliana	accession.	Red	and	green	nodes	represent	genes	and	nodes,	respectively.	The	
pink	node	is	a	degenerate	node	caused	by	an	M	symbol	in	the	fifth	genome	(Edi-0).	

2494

128

127

70

127

380

127
127

134

97

112

127

201

91

127

206

127

134 120

127

127

147

99

127

99
127

127

293

120

127

71

127

127

168

127

127

137

125

152

106

70

127

78 119

127

132
71

124

115

64

68

82

127

127

195

2494

2429

2494

2429

2521

2429

2494

2429

2478

2478

2449

2494

2454

2494

2494

2448

2494 2478

Neo4j Graph Visualization



	 35	

gives	the	sequence	of	two	branches	of	simple	bubbles	where	one	branch	is	a	degenerate	
node.	The	sixth	query	returns	the	occurrence	arrays	of	nodes	shared	by	chromosome	1	of	
all	 the	 genomes,	 and	 the	 seventh	 one	 gives	 the	 number	 of	 nodes	 that	 are	 specific	 to	
chromosome	1	of	genome	1.	These	examples	 show	 that	Cypher	supports	many	different	
queries,	which	can	be	done	in	reasonable	time.	Users	can	run	these	queries	on	their	own	
pan-genome	using	the	query	command	of	PanTools.	

	
Table	2.6.	Different	types	of	substructures	were	mined	in	the	pan-genome	of	three	yeast	genomes	(k	=	31)	
using	Cypher	query	language	of	the	Neo4j	graph	database.	Run-time	depends	on	the	complexity	of	the	query	
and	the	graph.		
	
	

Cypher	query	 Hits	
Time	
(s)	

1	 match(n:node)–>()–>(m:node)<–()<–(n)	return	count(*)	 120,778	 6	
2	 match(n:node)–>(a)-[*0.2]–>(m:node)<–[*0.2]-(b)<–(n)	where	a<>b	return	count(*)	 138,346	 23	
3	 match(n:node)–>(a)-[*0.3]–>(m:node)<–[*0.3]-(b)<–(n)	where	a<>b	return	count(*)	 367,300	 89	
4	 match(n:node)–>(a:node)–>(m:node)<–(b:node)<–(n)	where	a.length	=	b.length	and	a.length	=	

61	return	a.sequence,	b.sequence	
87,138	 12	

5	 match(n:node)–>(a:node)–>(m:node)<–(b:degenerate)<–(n)	return	a.sequence,	b.sequence	 16	 0.34	
6	 match(n:node)	where	has(n.F1_1)	and	has(n.F2_1)	and	has(n.F3_1)	return	n.F1_1,	n.F2_1,	n.F3_1	 1,273	 0.72	
7	 match(n:node)	where	has(n.F1_1)	and	not	has(n.F2_1)	and	not	has(n.F3_1)	return	count(n)	 602	 0.65	

2.4 Conclusion	

Thanks	 to	 large	 sequencing	 efforts,	 many	 species	 or	 phylogenetic	 clades	 are	 no	 longer	
represented	 by	 a	 single	 reference	 genome,	 but	 by	 a	multitude	 of	 genomes.	 Besides	 the	
sequence	 similarities	 between	 related	 genomes,	 there	 may	 be	 significant	 variation	 in	
genomic	content	and	organization,	which	was	often	the	reason	to	sequence	and	study	them.	
To	deal	with	this	new	data	challenge,	there	is	an	increasing	need	for	new	ways	of	storing	
and	constructing	unified	representations	of	 large	collections	of	genomes.	 In	addition,	we	
need	accompanying	algorithms	to	answer	key	questions,	such	as	on	core	and	dispensable	
genes,	 recurring	 genetic	 variants	 and	 structural	 variation,	 which	 are	 cumbersome	 to	
address	using	linear	representations	of	large	numbers	of	genomes.	In	this	article,	we	have	
presented	PanTools,	an	implementation	of	a	pan-genome	representation	based	on	the	Neo4j	
graph	database,	focusing	on	the	application	to	large	sets	of	complex	eukaryotic	genomes.	
The	program	allows	for	the	construction	of	pan-genome	databases	of	many	genomes,	and	
contains	 extensions	 such	 as	 adding	 sequences,	 genes	 and	 orthology	 annotations,	 using	
relatively	modest	computational	resources.	

PanTools	offers	a	good	starting	point	for	developing	various	pan-genomic	applications,	
such	 as	multi-genome	 read	mapping,	 pan-genome	 exploration	 (visualization,	 browsing),	
structure-based	variation	detection	 and	 comparative	 genomics.	To	 efficiently	 implement	
algorithms	 supporting	 such	 analyses	 it	 is	 likely	 that	 additional	 layers	 of	 annotation,	
summaries	 (e.g.	 synteny	 blocks)	 or	 different	 indices	 will	 be	 needed.	 The	 current	 base	
implementation	in	Neo4j	is	adaptable	and	extensible	and	offers	an	excellent	foundation	for	
such	extensions.	In	summary,	we	have	presented	a	first	implementation	of	a	pan-genome	
representation	and	construction	algorithm,	which	can	form	the	basis	of	a	collection	of	tools	
to	allow	pan-genomes	to	take	over	the	role	of	linear	reference	genomes	in	genomics.	
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Abstract	

Identification	 of	 homologous	 genes	 is	 fundamental	 to	 comparative	 genomics,	 functional	
genomics	and	phylogenomics.	Extensive	public	homology	databases	are	of	great	value	for	
investigating	homology	but	need	to	be	continually	updated	to	incorporate	new	sequences.	
As	new	sequences	are	rapidly	being	generated,	there	is	a	need	for	efficient	standalone	tools	
to	detect	homologs	in	novel	data.	To	address	this,	we	present	a	fast	method	for	detecting	
homology	groups	across	a	large	number	of	individuals	and/or	species.	We	adopted	a	k-mer	
based	 approach	which	 considerably	 reduces	 the	number	of	 pairwise	protein	 alignments	
without	 sacrificing	 sensitivity.	 We	 demonstrate	 accuracy,	 scalability,	 efficiency	 and	
applicability	of	the	presented	method	for	detecting	homology	in	large	proteomes	of	bacteria,	
fungi,	plants	and	Metazoa.	We	clearly	observed	the	trade-off	between	recall	and	precision	
in	our	homology	inference.	Favoring	recall	or	precision	strongly	depends	on	the	application.	
The	 clustering	 behavior	 of	 our	 program	 can	 be	 optimized	 for	 particular	 applications	 by	
altering	 a	 few	 key	 parameters.	 The	 program	 is	 available	 for	 public	 use	 at	
https://github.com/sheikhizadeh/pantools	 as	 an	 extension	 to	 our	 pan-genomic	 analysis	
tool,	PanTools.	
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3.1 Introduction		

Detection	of	homologous	genes	(genes	that	share	evolutionary	ancestry)	is	fundamental	to	
comparative	genomics,	functional	genomics	and	phylogenomics.	Homologs	inherited	from	
a	single	gene	in	the	last	common	ancestor	of	two	species	are	called	orthologs,	while	those	
inherited	from	distinct	duplicated	genes	are	called	paralogs	[1].	Orthologs	are	usually	under	
selection	pressure,	which	conserves	their	sequence,	structure	and	function;	while	paralogs	
can	diverge	rapidly	and	lose	their	previous	functions	or	achieve	completely	or	partially	new	
functions	[2].		

With	increasingly	evolutionary	distance	and/or	increased	data-set	sizes,	there	will	be	
greater	 sets	 of	 gene	 and	 genome	 changes,	 that	 can	 complicate	 orthology	 inference	 [3].	
Whole-genome	and	segmental	duplications	increase	genomic	content,	local	and	structural	
mutations	lead	to	gene	losses	and	gains,	and	horizontal	gene	transfers	mix	genomic	content	
between	species.	As	a	result,	orthology	detection	is	increasingly	difficult	in	higher	organisms	
and	across	large	evolutionary	distances.	In	the	presence	of	gene	duplications,	orthology	is	
not	 always	a	one-to-one	 relationship	but	 rather	 can	be	a	one-to-many	or	even	many-to-
many	 relationship	 [4].	 As	 a	 consequence,	 an	 orthology	 group	 may	 contain	 not	 only	
orthologous	 pairs,	 but	 also	 pairs	 of	 homologs	 duplicated	 after	 the	 speciation	 of	 the	 two	
species,	so-called	in-paralogs.	In	the	rest	of	this	text	we	therefore	use	the	term	homology	
group	instead	of	orthology	group	to	be	more	precise.	

To	date,	several	databases	of	homology	groups	have	been	established,	which	need	to	be	
continually	updated	to	incorporate	new	genomes	[5-8].	As	genomic	projects	are	generating	
novel	data	at	an	unprecedented	scale,	the	analysis	of	new	data	means	that	researchers	have	
to	automate	 the	process	of	 inferring	homology	 in	 their	 large	gene	 sets.	Consequently,	 in	
parallel	 to	 the	 static	 databases	 there	 has	 been	 a	 development	 of	 standalone	 tools	 for	
automatic	detection	of	homologs	[9-11].	Accurate	homology	detection	tools	rely	on	all-pairs	
comparison	of	proteins.	However,	calculating	all-pair	similarity	scores	quickly	becomes	a	
major	 computational	 burden	 as	 the	 number	 of	 proteomes	 increases.	 As	 the	 number	 of	
eukaryotic	proteomes	keeps	expanding	in	the	coming	years,	there	is	a	need	for	even	more	
efficient	homology	detection	methods.		

Here,	we	present	an	efficient	graph-based	approach	towards	homology	detection.	This	
method	 extends	 the	 functionality	 of	 our	 pan-genomic	 data	 analysis	 tool,	 PanTools	 [12],	
which	 integrates	 genomes,	 annotations	 and	 proteomes	 in	 a	 single	 graph	 database	 to	
facilitate	 comparative	 studies	 at	 the	 levels	 of	 structure,	 variation	 and	 function	 [13].	 The	
motivation	of	 this	 study	was	 to	detect	homology	groups	de	novo	 and	efficiently,	 in	 large	
datasets	 of	 hundreds	 of	 eukaryotic	 genomes.	 The	 presented	 method	 scales	 to	 large	
proteome	 sets	while	maintaining	 its	 accuracy	 and	 can	be	 tuned	 for	different	 application	
scenarios.	

3.2 Methods	

We	represent	 a	pan-genome	by	 a	hierarchy	of	 genome,	 annotation	 and	proteome	 layers	
stored	in	a	Neo4j	graph	database	to	connect	different	types	of	data	(Figure	3.1).	The	genome	
layer	consists	of	pan-genome,	genome,	sequence	and	nucleotide	nodes	which	contain	some	
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essential	information	about	these	entities.	Nucleotide	nodes	form	the	generalized	De	Bruijn	
graph	[12]	which	enables	the	compression	and	reconstruction	of	the	constituent	genomes.	
The	annotation	 layer,	 currently,	 consists	of	 the	genomic	 features	 like	genes,	mRNAs,	etc.	
Finally,	the	proteome	layer	of	the	pan-genome	is	formed	by	proteins	and	homology	nodes	
which	group	the	homologous	proteins.	Before	homology	detection,	first	the	protein	nodes	
should	be	stored	in	a	pan-genome	graph.	Instructions	for	constructing	a	pan-genome	can	be	
found	 in	 the	 supplementary	 information.	Having	 the	 proteins	 available	 in	 the	 proteome	
layer	 of	 the	 pan-genome,	we	 take	 the	 steps	 described	 in	Algorithm	1	 to	 cluster	 them	 in	
homology	groups.	

	
Algorithm	 3.1.	 Homology	 detection	 algorithm	 consist	 of	 5	 main	 stages:	 hexamerization	 of	 sequences,	
intersection	discovery,	sequence	alignment,	similarity	component	discovery	and	clustering.	
	
Input:	the	pan-genome	containing	the	protein	nodes	
Output:	the	homology	groups	
Parameters:	I:	intersection	rate,	T:	similarity	threshold,	C:	contrast,	M:	MCL	inflation	
1.	
2.	
3.	
4.	
	
	
	
5.	
6.	
7.	
8.	
9.	
10.	
	
11.	
12.	
13.	

//	Hexamerize	proteins:	
for	each	protein	p,	
								for	each	hexamer	h	of	p,	
																append	identifier	of	p	to	the	list	of	proteins[h].	
In	parallel	do	A,	B	and	C:		
//	What	A	produces,	B	consumes.	What	B	produces,	C	consumes.	
//	A.	Detect	intersections:	
for	each	protein	p,	
								for	each	hexamer	h	of	p,	
																append	proteins[h]	to	the	list	of	candidate	intersecting	proteins	ofp,	CIP[p].	
								for	each	candidate	protein	c	in	CIP[p],	
																	if	c	occurs	more	than	I	×	min(length	of	p	-	5,	length	of	c	-	5)	timesin	CIP[p]	
																									add	intersecting	pair	(p,	c)	to	the	intersection	queue	IQ	
//	B.	Calculate	similarity	scores:	
for	each	intersecting	pair	(p,	c)	in	IQ,	
								if	the	normalized	similarity	score	NSS(p,	c)	is	greater	than	T,		
																add	(p,	c,	NSS(p,	c))	to	the	similarity	queue	SQ	

Figure	3.1.	PanTools	integrates	heterogeneous	data	in	a	hierarchical	pan-genome.	The	Neo4j	graph	data	model	
allows	to	store	many	properties	in	the	nodes	and	edges	of	the	graph.	
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14.	
15.	
	
	
	
16.	
17.	
18.	
	
19.	
20.	
21.	
22.	
23.	
24.	
	
25.	
26.	
27.	

//	C.	Add	similarity	links	to	the	pan-genome	:	
for	each	(p,	c,	s)	in	SQ,	
								connect	protein	p	to	c	by	an	edge	with	similarity	score	s	
In	parallel	do	D,	E	and	F:		
//	What	D	produces,	E	consumes.	What	E	produces,	F	consumes.	
//	D.	Build	similarity	components:	
for	each	protein	p,	
								build	the	similarity	component	s_comp	through	a	breadth-first	searchstarting	from	p,	
								put	s_comp	in	the	component	queue	CQ.	
//	E.	Split	similarity	components:	
for	each	s_comp	in	CQ,	
								for	each	pair	of	proteins	(p1,	p2)	in	s_comp	belonging	to	species	s1	and	s2,	resp.	
																calculate	the	distance	dist(s1,	s2).	
																similarity_matrix[p1,	p2]	=	(	similarity[p1,	p2]	–	T	+	dist(s1,	s2))	^	C	
								pass	the	similarity	_matrix	to	MCL	algorithm	with	inflation		
								add	the	resulting	homology	groups	h_group	to	the	homology	queue	HQ,		

//	F.	Add	homology	group	annotation	to	the	pan-genome:	
for	each	homology	group	h_group	in	HQ,	
								create	a	homology	node	h_node	in	the	pan-genome	
								connect	h_node	to	the	proteins	in	h_group	

	
First,	we	extract	the	hexamers	of	all	proteins	and,	for	each	hexamer,	keep	track	of	the	

proteins	containing	that	hexamer	(lines	1-4).	Then,	we	find	all	pairs	of	intersecting	proteins	
(lines	5-10)	and	calculate	 their	similarity	score	by	aligning	 them.	Two	proteins	 intersect	
(Figure	3.2A-B)	 if	 the	number	of	hexamers	 they	share	 is	greater	 than	 the	product	of	 the	
intersection	parameter	 (I)	 and	 the	 total	number	of	hexamers	of	 the	 shorter	protein.	We	
connect	 the	 intersecting	 proteins	 with	 a	 similarity	 score	 greater	 than	 the	 similarity	
threshold	 T	 (lines	 11-15)	 to	 form	 the	 similarity	 graph	 (Figure	 3.2C).	 For	 reasons	 of	
efficiency,	we	have	implemented	this	as	three	parallel	routines	A-C,	in	which	B	consumes	
the	output	of	A	and	C	the	output	of	B.	A	and	C	employ	one	working	thread	and	B	multiple	
threads	 to	maximize	performance.	Next,	all	 the	connectivity	components	of	 the	resulting	
similarity	graph	are	 found	using	a	 simple	breadth-first	 search	 (lines	16-18).	This	 search	
allows	to	detect	not	only	the	directly	connected	proteins	but	also	those	connected	through	
a	 path	 in	 the	 graph,	 the	 potential	 distant	 homologs.	 Every	 similarity	 component	 is	 then	
passed	to	the	MCL	(Markov	clustering)	algorithm	[14]	to	be	possibly	broken	into	several	
homology	 groups	 (lines	 19-24)	 (Figure	 3.2D).	 MCL	 has	 been	 frequently	 employed	 in	
homology	inference	methods	[11,15,16].	Finally,	the	members	of	each	homology	group	are	
connected	to	a	single	homology	node	in	the	graph	(lines	25-27).		
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3.2.1 Normalizing	the	raw	similarity	scores	

We	compare	intersecting	pairs	of	proteins	by	a	Smith-Waterman	local	alignment	algorithm	
with	an	affined	gap	penalty	(opening	=	-10,	extension	=	-1)	using	the	BLOSUM62	(Blocks	
Substitution	 Matrix	 62)	 scoring	 matrix.	 After	 calculating	 the	 raw	 similarity	 scores,	 we	
normalize	them	to	be	independent	of	the	protein	lengths.	To	this	end	we	divide	each	raw	
score	by	the	score	achieved	by	aligning	the	shorter	protein	to	itself	and	multiply	the	result	
by	100;	this	way,	the	normalized	similarity	scores	will	always	be	less	than	or	equal	to	100.	
For	 the	 sake	 of	 simplicity,	 we	 use	 the	 term	 similarity	 score	 to	 refer	 to	 the	 normalized	
similarity	score	between	pairs	of	proteins.	

3.2.2 Rescaling	the	similarity	scores	

The	pairwise	 similarity	 scores	of	 highly	 similar	homologs,	which	usually	 lie	 in	 the	 same	
similarity	component,	are	very	close	to	each	other.	This	makes	it	very	hard	for	MCL	to	detect	
the	underlying	substructures	in	such	similarity	components.	To	resolve	this	problem,	we	
rescale	the	similarity	scores	in	three	different	ways	(Algorithm	1,	line	22).	First,	we	subtract	
the	value	T	from	these	scores	to	emphasize	small	differences	for	the	MCL	process.		

Furthermore,	we	would	like	the	clustering	to	be	relatively	insensitive	to	evolutionary	
sequence	divergence.	That	 is,	within	a	similarity	component	pairs	of	homologs	 from	two	
distant	species	are	ideally	scored	nearly	as	high	as	pairs	from	two	closely	related	species.	

Figure	3.2.	A)	Two	intersecting	proteins,	P1	and	P2	share	some	hexamers.	B)	The	intersection	graph	is	built	
from	interesting	pairs	of	proteins.	C)	The	similarity	graph	consists	of	similarity	components.	Each	bold	edge	
represents	 a	 similarity	 score	 greater	 than	 the	 threshold	 (T).	D)	 Homology	 groups	 are	 detected	 in	 each	
similarity	component	by	MCL.	

C. Similarity graph  D. Homology groups 
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To	achieve	this,	 in	each	similarity	component	we	calculate	the	average	distance	between	
each	pair	of	species	as	100	minus	the	average	inter-species	similarity	score	and	add	it	to	all	
the	similarity	scores	between	those	species	within	the	similarity	component.			

Finally,	to	increase	the	contrast	between	the	final	similarity	scores,	before	the	similarity	
component	 is	 passed	 to	 the	MCL	 algorithm,	 we	 raise	 the	 scores	 to	 the	 power	 of	 C,	 the	
contrast	parameter.	This	operation	is	similar	to	one	round	of	expansion	as	explained	in	[14]	
and	was	experimentally	observed	to	increase	the	specificity	of	the	resulting	clusters.	

3.2.3 Choice	of	k	

Short	peptide	k-mers	may	occur	in	many	proteins.	This	raises	the	number	of	intersecting	
proteins	 which	 will	 be	 aligned,	 increasing	 the	 resource	 consumption	 of	 the	 program	
significantly.	On	the	other	hand,	long	k-mers	are	more	specific	and	decrease	the	sensitivity	
of	the	program	in	detecting	the	intersecting	pair	of	proteins,	thereby	reducing	the	recall.	As	
a	 result,	 we	 calculate	 the	 smallest	 k	 value	 which	 keeps	 the	 probability	 of	 random	
occurrences	of	a	k-mer	below	a	desirable	probability	p.	For	peptide	sequences	α	=	20,	and	
considering	L	=	30,000	the	length	of	the	largest	known	protein	[15]	and	setting	p	=	0.001,	
the	smallest	suitable	k	will	be	6	(see	supplementary	information).	Therefore,	we	chose	to	
use	hexamers	for	detecting	the	intersections.		

To	 reduce	 the	 memory	 needs	 of	 the	 program	 and	 increase	 the	 specificity	 of	 the	
intersections,	 we	 ignore	 extremely	 abundant	 hexamers	 (For	 example	 “QQQQQQ”	 in	 the	
yeast	datasets),	which	their	frequency	exceeds	p	´	n	+	c	´	m,	where	p	=	0.001,	n	is	the	total	
number	of	proteins,	c	=	50	is	an	a	priori	estimate	of	the	maximum	number	of	occurrences	of	
a	hexamer	in	the	proteome	of	a	species,	and	m	is	the	total	number	of	species	(proteomes).	
Likewise,	 hexamers	 with	 frequency	 1	 are	 considered	 rare	 and	 thereby	 ignored.	 This	
filtration	notably	improves	the	efficiency	and	the	precision	of	the	method.	

3.2.4 Measures	of	accuracy	for	evaluation		

To	evaluate	the	accuracy	of	the	method,	we	used	the	recall,	precision	and	F-score	measures	
as	defined	previously	[16,17]	(Figure	3.3).	Given	a	set	of	real	and	detected	homology	groups,	
for	each	true	homology	group,	THG,	we	find	the	detected	homology	group,	DHG,	which	has	
the	 largest	overlap	with	the	THG.	Then	we	consider	 true	positives	(tp)	as	 the	number	of	
proteins	in	both	THG	and	DHG,	false	negatives	(fn)	as	the	number	of	proteins	in	THG	but	not	
in	DHG,	and	false	positives	(fp)	as	the	number	of	proteins	avilable	in	DHG	but	not	in	THG.	
Then	TP,	 FP	 and	FN	are	defined	as	 the	 summation	of	 the	 tp’s,	 fp’s	 and	 fn’s	over	 all	 true	
homology	 groups,	 respectively.	 Finally,	 the	 recall,	 precision	 and	 F-score	 measures	 are	
calculated	as	follows:	
	
recall	=	TP	/	(TP	+	FN)	
precision	=	TP	/	(TP	+	FP)	
F-score	=	2	×	(Recall	×	Precision)	/	(Recall	+	Precision)	
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Recall	represents	the	ability	of	 the	method	to	put	the	true	homologs	together	 in	one	
group,	 precision	 shows	 its	 ability	 to	 separate	 the	 non-homologs,	 and	 the	 F-score	 is	 the	
harmonic	mean	of	these	two	measures	combining	them	in	one.	There	is	always	a	trade-off	
between	recall	and	precision,	since	detecting	more	TPs	often	leads	to	some	FPs.		

In	the	following	experiments,	we	need	to	know	the	real	groups	in	various	datasets	to	
serve	as	 a	 ground	 truth	 for	 evaluation.	For	 the	S.cerevisiae	 datasets	 and	 the	 single	E.coli	
dataset,	the	real	groups	are	defined	based	on	the	locus	tags	of	the	proteins	extracted	from	
the	GenBank	files	(Supplementary	spreadsheet	datasets.xlsx).	For	A.thaliana	datasets	the	
real	 groups	 are	 defined	 based	 on	 the	 gene	 identifiers	 which	 end	 with	 .1,	 for	 example	
AT3G54340.1,	which	correspond	to	the	first	annotated	isoform	of	the	genes.	For	the	single	
Metazoa	dataset,	we	used	the	identifiers	of	the	70	protein	families	of	OrthoBench	as	the	real	
group	identifiers.	

3.3 Results	and	discussion	

Here,	we	present	results	demonstrating	the	accuracy,	scalability,	efficiency	and	applicability	
of	 PanTools	 for	 detecting	 homology	 in	 large	 proteomes	 of	 bacteria,	 fungi,	 plants	 and	
Metazoa	 (Supplementary	 Table	 3.S1).	 We	 compare	 PanTools	 to	 the	 BLAST-based	
OrthoFinder	 [16]	 orthology	 detector	 and	 to	 DIAMOND-based	 PanX	 [18],	 a	 pipeline	
dedicated	to	microbial	data	(Supplementary	Table	3.S2-5).	First,	we	evaluated	the	methods	
on	OrthoBench	[17],	a	public	benchmark	of	curated	protein	 families	 from	12	metazoans.	
Unfortunately,	we	were	not	able	to	run	PanX	on	this	data	(M12),	as	this	benchmark	only	
provides	the	protein	sequences	but	not	the	gene	sequences	PanX	requires.	Next,	we	tested	
scalability	 on	 5	 datasets	 of	 increasing	 size	 compiled	 from	 93	 Saccharomyces	 cerevisiae	
strains	 [19]	 and	 5	 datasets	 compiled	 from	 19	 Arabidopsis	 thaliana	 accessions	 [20].	
Additionally,	we	compared	the	performance	of	PanTools	and	PanX	on	a	large	dataset	of	600	
Escherichia	coli;	we	did	not	run	OrthoFinder,	as	we	estimated	it	would	need	~5000	hours	
on	this	dataset.	Finally,	we	studied	the	effect	of	evolutionary	distance	on	homology	detection	
using	12	Brassicaceae	species	proteomes.	Experiments	were	executed	on	an	Ubuntu	14.04	
server,	Intel®	Xeon®	X5660@2.8GHz,	with	64GB	RAM	using	16	processing	cores	and	32GB	
of	RAM	disk.	

     

tp 5 4 8 TP = 17 
fn 1 1 2 FN = 4 
fp 1 2 1 FP = 4 

Figure	3.3.	Proteins	of	three	distinct	homology	groups	are	represented	as	triangles,	circles	and	squares.	Green	
shapes	are	true	positives	(tp)	which	have	been	assigned	to	the	true	group;	red	shapes	are	false	positives	(fp)	
for	the	group	they	have	been	incorrectly	assigned	to,	and	false	negatives	(fn)	for	their	true	group.	Having	these	
three	factors,	recall,	precision	and	F-score	of	the	homology	detection	can	be	calculated.	
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3.3.1 PanTools	is	adaptable	to	handle	varying	degrees	of	input	divergence	

PanTools	has	four	main	parameters	that	affect	the	homology	clustering:	intersection	rate,	
similarity	 threshold,	 contrast	 and	MCL	 inflation.	To	 examine	 the	 general	 effect	 of	 these	
parameters	on	the	accuracy	of	the	method	on	proteomes	of	diverged	species,	we	used	the	
set	 of	 1695	 proteins	 from	 the	 OrthoBench.	 Figures	 3.4	 and	 3.5	 present	 contour	 plots	
illustrating	 the	 effect	 of	 these	 four	 parameters	 on	 the	 recall	 and	 precision	 of	 PanTools,	
respectively;	lighter	colors	represent	higher	values.	

The	 first	 parameter,	 intersection	 rate	 (I)	 (in	 the	 range	 of	 0.01-0.1),	 determines	 the	
minimum	number	of	hexamers	that	two	proteins	need	to	have	in	common	to	be	considered	
intersecting	proteins	in	order	to	be	selected	for	exact	alignment.	This	number	is	calculated	
as	the	product	of	the	intersection	rate	parameter	and	the	total	number	of	hexamers	of	the	
shorter	protein.	In	general,	by	choosing	lower	intersection	values	the	number	of	pairwise	
alignments	and,	in	turn,	the	resource	consumption	of	the	program	increases	significantly.	
The	lower	the	intersection	value,	the	higher	the	recall	and	the	lower	the	precision.	

The	 second	parameter	 affecting	 the	 clustering	 is	 the	 similarity	 threshold	 (T)	 (in	 the	
range	of	25-99).	Two	proteins	are	considered	similar	if	the	normalized	similarity	score	of	
their	 local	 alignment	 exceeds	 this	 threshold.	 Lower	 thresholds	 increase	 the	 number	 of	
detected	similarities,	boosting	the	sensitivity	of	the	homology	detection.	So,	the	lower	the	
threshold,	the	higher	the	recall,	but	the	lower	the	precision.		

The	connectivity	components	of	the	similarity	graph	(similarity	components)	are	the	
candidate	homology	groups	which	are	then	passed	to	the	MCL	clustering	algorithm	to	be	
possibly	 split	 into	 more	 specific	 homology	 groups.	 To	 increase	 the	 granularity	 of	 the	
clustering	and	split	the	similarity	components	into	a	larger	number	of	groups,	we	choose	
greater	 MCL	 inflations	 (M).	 Finally,	 we	 raise	 the	 scores	 to	 the	 power	 of	 the	 contrast	
parameter	(C)	to	increase	the	contrast	between	the	final	similarity	scores.	Like	for	I	and	T,	
the	lower	the	inflation	and/or	contrast,	the	higher	the	recall	and	the	lower	the	precision.		

The	resulting	F-scores	(Supplementary	Figure	3.S1)	suggest	that	higher	values	of	the	
four	parameters	are	not	desirable	 for	grouping	 the	proteome	of	 these	distant	species.	 In	
support	of	this,	we	observed	that	increasing	the	parameter	values	improves	the	F-score	of	
the	 method	 when	 analyzing	 the	 proteomes	 of	 closely	 related	 species.	 Based	 on	 these	
observations,	we	experimentally	optimized	8	groups	of	default	parameter	settings	(d1-d8),	
ranging	 from	 strict	 to	 relaxed	 by	 linearly	 decreasing	 the	 4	 mentioned	 parameters	
(Supplementary	Table	3.S6).	This	allows	the	user	to	fine-tune	the	settings	for	different	types	
of	datasets	and/or	downstream	applications.	We	recommend	users	to	either	use	Table	3.S6	
to	choose	appropriate	settings	based	on	the	divergence	of	 the	proteomes	or	try	multiple	
settings	and	pick	one	based	on	the	desired	resolution	from	one-to-one	orthologs	to	multi-
gene	families.	In	our	experiments,	we	used	the	most	strict	setting	(d1)	for	the	closely	related	
strains	of	E.coli	and	S.cerevisiae,	the	next	strict	setting	(d2)	for	A.thaliana	datasets,	and	the	
most	relaxed	setting	(d8)	for	the	OrthoBench	data.	
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Figure	3.4.	 The	effect	 of	 intersection	 rate,	 similarity	 threshold,	 contrast	 and	 inflation	 rate,	 on	 the	 recall	 of	
PanTools.	 Each	 contour	 plot	 belongs	 to	 a	 pair	 of	 intersection	 and	 threshold	 values,	with	 the	 x	 and	 y	 axis	
representing	inflation	and	contrast	parameters.	
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Figure	3.5.	The	effect	of	intersection	rate,	similarity	threshold,	contrast	and	inflation	rate,	on	the	precision	of	
PanTools.	 Each	 contour	 plot	 belongs	 to	 a	 pair	 of	 intersection	 and	 threshold	 values,	with	 the	 x	 and	 y	 axis	
representing	inflation	and	contrast	parameters.	
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3.3.2 PanTools	is	efficient	and	accurate	on	OrthoBench	data		

OrthoBench	 is	 a	 resource	 of	 70	 curated	 eukaryotic	 protein	 families	 from	 12	metazoans	
which	was	established	to	assess	the	performance	of	TreeFam [21], eggNOG [22], OrthoDB 
[23], OrthoMCL [24], and OMA [25].	We	call	this	benchmark	M12	in	the	rest	of	this	paper.	
The	homology	 relationships	between	 these	protein	 families	are	difficult	 to	detect	due	 to	
differences	in	their	rate	of	evolution,	domain	architecture,	low-complexity	regions/repeats,	
lineage-specific	losses/duplications,	and	alignment	quality	[17].		

We	compared	the	performance	of	PanTools	to	that	of	OrthoFinder,	which	previously	
showed	the	highest	accuracy	on	this	benchmark	data.	We	first	created	a	mapping	from	the	
1695	 OrthoBench	 proteins	 to	 the	 404,657	 proteins	 of	 the	 12	 metazoans	 available	 in	
Ensembl	 release	 60.	We	 then	 ran	PanTools	 and	OrthoFinder	 independently	 on	 these	 12	
complete	 proteomes	 and	 calculated	 the	 recall,	 precision	 and	 F-score	 using	 the	 same	
procedure	as	proposed	 for	OrthoFinder.	 In	 this	experiment,	PanTools	achieved	the	same	
recall	as	OrthoFinder	but	at	a	remarkably	higher	precision,	resulting	in	a	3%	higher	overall	
F-score	of	85.5%.	Additionally,	there	were	significant	differences	in	run-times.	Running	on	
16	cores,	PanTools	terminated	after	2	hours	and	OrthoFinder	after	77.6	hours.	

3.3.3 PanTools	scales	to	large	eukaryotic	datasets	and	maintains	accuracy	

To	examine	the	scalability	of	our	method	to	large	eukaryotic	datasets,	we	first	ran	it	on	5	
datasets	 of	Saccharomyces	 cerevisiae	 (Y3,	 Y13,	…,	 Y93)	 and	 on	 5	 datasets	 of	Arabidopsis	
thaliana	accessions	(A3,	A7,	…,	A19)	with	an	increasing	number	of	proteomes.	We	compared	
the	run-time	and	accuracy	(F-score)	of	PanTools	to	those	of	OrthoFinder	and	PanX	(Figure	
3.6).		

On	the	largest	yeast	dataset	(Y93),	PanTools	was	112	times	faster	than	OrthoFinder	(0.9	
hours	vs.	4	days)	and	7.6	times	faster	than	PanX,	with	a	slightly	higher	F-score.	Similarly,	on	
the	largest	Arabidopsis	dataset	(19	accessions),	PanTools	was	42	times	faster	(1	hour	vs.	
2.7	days)	than	OrthoFinder	and	5.2	times	faster	than	PanX	while	maintaining	its	higher	F-
score.	Overall,	OrthoFinder	starts	with	a	 low	accuracy	but	seems	to	 level	out	at	a	higher	
value	as	the	number	of	proteomes	grows,	albeit	at	the	cost	of	drastic	increase	in	run-time.	
Although	PanX	was	almost	as	accurate	as	OrthoFinder	on	the	S.cerevisiae	data,	its	accuracy	
fell	 below	 that	 of	 OrthoFinder	 on	 the	A.	 thaliana	 data,	 likely	 because	 plants	 have	more	
diverse	proteomes	than	the	bacteria	PanX	was	designed	for.	

3.3.4 PanTools	is	applicable	to	large	microbial	datasets	

To	compare	the	performance	of	our	approach	to	PanX,	a	recently	published	tool	dedicated	
to	 the	 microbial	 data,	 we	 applied	 both	 tools	 to	 the	 proteomes	 of	 600	 E.coli	 strains	
downloaded	 from	 GenBank	 (Supplementary	 spreadsheet	 datasets.xlsx).	 Both	 PanX	 and	
PanTools	processed	this	large	dataset	in	~15	hours,	resulting	in	F-scores	of	71.6	and	72.9,	
respectively.	In	this	experiment,	we	ran	PanX	in	divide-and-conquer	mode	to	speed	it	up.	
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3.3.5 PanTools	significantly	reduces	the	number	of	pairwise	comparisons	

The	efficiency	of	PanTools	is	due	to	its	k-mer-based	approach,	which	significantly	reduces	
the	number	of	fruitless	protein	alignments.	Table	3.1	shows	that	the	numbers	of	pairwise	
comparisons	in	different	experiments	are	thousands-fold	less	than	what	is	needed	in	a	naïve	
all-pairs	approach.		
	
Table	3.1.	The	number	of	PanTools	comparisons	is	extremely	less	than	what	is	needed	in	a	naïve	all-pairs	
approach,	since	we	efficiently	filter	out	un-related	pairs	of	proteins.	
	

Dataset	 Naïve	(millions)	 PanTools	(thousands)	 Fold	decrease	
Y13	 2,472		 507		 4,874		
Y33	 15,979		 3,415		 4,679		
Y53	 41,181		 8,888		 4,633		
Y73	 78,121		 16,937		 4,613		
Y93	 126,519		 27,494		 4,602	
A3	 4,284		 508		 8,435		
A7	 23,225		 2,889		 8,038		
A11	 57,382		 7,229		 7,938		
A15	 105,111		 12,904		 8,146		
A19	 169,570		 21,022		 8,066	
M12	 81,873		 20,094		 4,074	
E600	 4,993,364		 926,638		 5,389	

	

Figure	3.6.	Run-time	and	accuracy	of	PanTools	compared	to	those	of	PanX	and	OrthoFinder.	Run-time	and	F-
score	of	the	three	tools	were	calculated	on	the	pan-proteomes	of	5	S.	cerevisiae	5	A.	thaliana	accessions.	
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To	 scale	 to	 hundreds	 of	 eukaryotic	 or	 thousands	 of	 prokaryotic	 proteomes	 using	
reasonable	amount	of	resources,	there	were	two	main	limitations	to	be	resolved:	first,	the	
local	 sequence	 alignment	 of	 proteins,	 which	 we	 tried	 to	 mitigate	 by	 distributing	 the	
intersecting	pairs	among	multiple	threads	to	be	aligned	in	parallel;	second,	the	size	of	the	
data	structure	used	for	detecting	the	intersecting	proteins,	which	grows	linearly	with	the	
size	of	the	input	data.	To	reduce	the	memory	needs,	currently	we	ignore	extremely	abundant	
and	rare	hexamers,	which	are	less	informative.	By	using	space-efficient	data	structures,	for	
example	 MinHash	 sketches	 [26],	 we	 may	 be	 able	 to	 further	 decrease	 the	 memory	
consumption	of	the	program. 

3.3.6 PanTools	reproduced	the	majority	of	groups	detected	by	other	tools	

In	 all	 experiments,	PanTools	was	able	 to	perfectly	 reproduce	 the	majority	of	 the	groups	
detected	by	OrthoFinder	and	PanX.	Table	3.2	shows	the	percentage	of	the	groups	generated	
by	 OrthoFinder	 and	 PanX	which	 have	 an	 identical	 counterpart	 in	 the	 PanTools	 groups.	
Generally,	the	overlap	decreases	as	the	size	of	data	grows,	because	the	probability	of	having	
exactly	 identical	 groups	 drops,	 although	 the	 corresponding	 groups	 have	 highly	 similar	
compositions.	
Table	3.2.	There	is	a	large	overlap	between	PanTools	groups	and	those	of	OrthoFinder	and	PanX.	The	overlap	
between	PanTools	and	OrthoFinder	drops	slightly	with	the	size	of	the	pan-proteome.	The	overlaps	with	PanX	
groups	are	generally	larger	especially	on	A.thaliana	pan-proteomes.		

	
Dataset	 Reproduced	OrthoFinder	groups	 Reproduced	PanX	groups	

Y13	 94.9	%	 96.3	%	
Y33	 94.9	%	 95.5	%	
Y53	 93.9	%	 94.8	%	
Y73	 93.6	%	 94.5	%	
Y93	 93.3	%	 93.8	%	
A3	 72.1	%	 80.1	%	
A7	 64.9	%	 71.5	%	
A11	 64.9	%	 69.1	%	
A15	 64.8	%	 72.5	%	
A19	 64.6	%	 79.8	%	
M12	 76.3	%	 -	
E600	 -	 59.7	%	

3.3.7 Parameters	can	affect	the	performance	of	different	application	scenarios	

To	 investigate	 the	 effect	 of	 the	 8	 suggested	 parameter	 sets	 (from	 strict	 to	 relaxed)	 on	
homology	clustering,	we	used	a	large	proteome	of	12	phylogenetically	diverse	Brassicaceae	
species,	including	the	model	plant	Arabidopsis	thaliana,	plus	Vitis	vinifera	as	an	outgroup.	
We	specifically	considered	four	genes	with	different	copy	numbers	in	A.thaliana,	including	
three	MADS-box	genes	–	the	floral	homeotic	protein	APETALA	3	(AP3),	the	floral	homeotic	
protein	AGAMOUS	(AG)	and	the	flowering	locus	C	(FLC)	–	and	one	housekeeping	gene:	the	
ubiquitin	extension	protein	1	(UBQ1),	and	looked	into	the	composition	of	their	homology	
groups	detected	by	PanTools	using	the	8	parameter	settings	from	strictest	(d1)	to	the	most	
relaxed	(d8).	Each	column	of	Table	3.3	represents	a	homology	group	and	each	entry	reflects	
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the	count	of	homologs	of	the	genes	AP3,	AG,	FLC	and	UBQ1	from	different	species	in	that	
group.		

With	all	settings,	we	detected	a	single	AP3	homolog	in	arabidopsis,	which	indicates	that	
this	MADS-box	 gene	 is	 significantly	 differentiated	 from	 other	MADS-box	 genes.	We	 also	
found	unique	orthologues	for	most	of	the	other	species.	We	detected	a	single	ortholog	of	AG	
until	d5,	after	which	we	also	identify	its	ancient	paralogs	Shatterproof	1	and	2	(SHP1/2).	
The	duplication	that	gave	rise	to	the	split	between	AG	and	SHP1/2	is	quite	old	(the	gamma	
triplication	shared	by	most	eudicot	species).		At	d6	we	also	detect	STK	which	comes	from	an	
even	 earlier	 duplication	 (perhaps	 at	 the	 origin	 of	 angiosperms)	 [27].	 At	 d7	 and	 d8	 we	
identify	many	of	the	various	MADS-box	genes	across	different	lineages.	FLC	is	alone	until	d4,	
where	 the	 transposition	 duplicate	MAF1	 (but	 not	 yet	members	 of	 the	MAF2-5	 clade)	 is	
added.	Then	MAF2-5	members	derived	from	the	At-alpha	WGD	(whole	genome	duplication)	
from	 FLC	 come	 up,	 followed	 by	 inclusion	 of	 the	 tandem	 expansion	 of	 these	 genes.	 At	
subsequent	settings,	we	start	picking	up	other	MADS-box	genes.	

UBQ1	 is	 a	 house-keeping	 gene	 that	 was	 duplicated	 by	 the	 ancient	 whole	 genome	
duplication	 (WGD)	 At-alpha	 shared	 across	 the	 Brassicaceae	 (PGDD	 database)	 [28].	 Our	
method	 recovered	 both	 the	 ortholog	 and	 its	 in-paralog	 (UBQ2)	 even	 using	 the	 strictest	
setting	(d1),	meaning	that	these	genes	are	very	similar	despite	having	diverged	around	40	
mya.	Thus,	the	function	of	the	two	genes	is	likely	highly	conserved.	From	d5	on,	PanTools	
identifies	other,	more	distantly	related	homologs	and	ultimately	(d8)	all	members	of	 the	
larger	family	(UBQ1-UBQ14)	plus	a	few	related	genes.		

Table	 3.4	 shows	 the	 distribution	 of	 the	 normalized	 similarity	 scores	 in	 each	 of	 the	
detected	 homology	 groups.	 It	 is	 clear	 that	 more	 relaxed	 settings	 allow	 including	 more	
diverse	pairs	of	homologs,	which	are	less	similar	in	the	final	clusters.	

	
Table	3.3.	Entries	represent	 the	number	of	homologs	of	 the	4	selected	genes	of	A.thaliana	 (AP3,	AG,	FLC,	
UBQ1)	in	the	12	other	Brassicaceae	species	using	different	settings	(d1-d8).	The	abrupt	increase	at	d5	shows	
that	overly	relaxed	parameters	(d5	to	d8)	are	not	suitable	for	homology	detection	at	the	level	of	the	same	
species.		

	
	 AP3	

(AT3G54340)	
AG	

(AT4G18960)	
FLC	

(AT5G10140)	
UBQ1	

(AT3G52590)	
	 d1	 d2	 d3	d4	d5	 d6	d7	d8	 d1	 d2	 d3	d4	d5	 d6	 d7	 d8	 d1	 d2	d3	d4	 d5	 d6	 d7	 d8	 d1	 d2	 d3	 d4	 d5	 d6	 d7	 d8	

A.	thaliana	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 3	 4	 8	 27	 1	 1	 1	 2	 4	 6	 8	 36	 2	 2	 2	 2	 15	 16	 17	 17	
A.	lyrata	 1	 1	 1	 1	 1	 1	 1	 3	 1	 1	 1	 1	 4	 4	 7	 24	 0	 1	 1	 1	 4	 5	 5	 32	 0	 0	 0	 0	 19	 20	 21	 22	
C.	rubella	 1	 1	 1	 1	 1	 1	 1	 2	 1	 1	 1	 1	 3	 4	 8	 24	 0	 1	 1	 1	 2	 3	 4	 33	 2	 2	 2	 2	 15	 15	 18	 19	
M.	maritima	 1	 1	 1	 1	 1	 1	 1	 3	 1	 1	 1	 1	 4	 4	 7	 24	 0	 1	 1	 1	 4	 4	 6	 34	 2	 2	 2	 2	 12	 12	 16	 18	
D.	sophiades	 1	 1	 1	 1	 1	 1	 1	 3	 1	 1	 1	 1	 4	 4	 9	 26	 0	 1	 1	 1	 7	 9	 12	 42	 2	 2	 2	 2	 11	 12	 12	 12	
S.	irio	 0	 1	 1	 1	 1	 1	 3	 6	 0	 0	 2	 3	 8	 8	 10	 26	 0	 0	 0	 2	 4	 4	 11	 36	 3	 3	 3	 3	 13	 14	 17	 20	
M.	perfoliatum	1	 1	 1	 1	 1	 1	 1	 2	 1	 1	 1	 1	 4	 4	 8	 28	 0	 1	 1	 1	 3	 5	 8	 35	 3	 3	 3	 3	 13	 13	 18	 21	
T.	salsuginea	 1	 1	 1	 1	 1	 1	 1	 3	 1	 1	 1	 1	 4	 4	 8	 27	 0	 1	 1	 1	 5	 5	 7	 33	 2	 2	 2	 2	 12	 13	 13	 13	
T.	halophila	 0	 0	 2	 2	 2	 2	 2	 3	 0	 0	 0	 4	 6	 9	 13	 41	 0	 0	 0	 0	 0	 4	 4	 48	 4	 4	 4	 4	 15	 15	 15	 15	
A.	alpina	 1	 1	 1	 1	 1	 1	 2	 3	 0	 1	 2	 2	 5	 7	 9	 21	 0	 0	 1	 3	 6	 7	 11	 30	 5	 6	 6	 7	 17	 17	 21	 23	
E.	syriacum	 1	 1	 1	 1	 1	 1	 1	 2	 0	 0	 0	 0	 2	 3	 7	 21	 0	 0	 1	 1	 3	 5	 9	 31	 3	 3	 3	 3	 18	 20	 21	 22	
A.	arabicum	 0	 1	 1	 1	 2	 3	 4	 5	 0	 1	 2	 2	 8	 11	 13	 24	 0	 1	 2	 3	 4	 5	 7	 25	 3	 3	 3	 3	 12	 12	 12	 13	
V.	vinifera		 0	 0	 0	 0	 1	 1	 1	 4	 0	 0	 1	 1	 4	 4	 8	 26	 0	 0	 0	 0	 0	 0	 3	 34	 2	 2	 3	 3	 7	 9	 9	 10	
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Table	 3.4.	 The	 large	 difference	 between	minimum	 and	maximum	 of	 normalized	 similarity	 scores	 in	 the	
detected	homology	groups	of	the	4	genes	confirms	that	settings	relaxer	than	d4	should	not	be	used	at	the	
species	level.			
	
Gene	name	(ID)	 	 d1	 d2	 d3	 d4	 d5	 d6	 d7	 d8	
AP3	
(AT3G54340)	

Min	 95.1	 88.1	 79.3	 79.3	 57.5	 57.5	 57.5	 25.0	
Avg	 97.0	 95.5	 91.7	 91.7	 87.2	 87.2	 87.2	 38.7	
Max	 98.8	 98.8	 98.8	 98.8	 98.8	 98.8	 98.8	 100.0	

AG	
(AT4G18960)	

Min	 95.1	 85.2	 75.7	 75.7	 56.2	 45.0	 35.0	 25.0	
Avg	 96.7	 93.6	 90.1	 89.3	 82.6	 62.7	 52.2	 38.7	
Max	 99.5	 99.5	 99.5	 98.0	 99.5	 100.0	 100.0	 100.0	

FLC	
(AT5G10140)	

Min	 -	 85.1	 79.9	 65.0	 55.0	 45.0	 35.0	 25.0	
Avg	 -	 87.3	 85.2	 75.1	 68.3	 62.7	 52.2	 38.7	
Max	 -	 94.4	 94.4	 100.0	 100.0	 100.0	 100.0	 100.0	

UBQ1	
(AT3G52590)	

Min	 98.2	 96.9	 81.7	 81.7	 57.2	 45.0	 35.0	 25.1	
Avg	 99.6	 99.3	 99.6	 99.6	 97.2	 78.3	 72.0	 68.5	
Max	 100.0	 100.0	 100.0	 100.0	 100.0	 100.0	 100.0	 100.0	

3.4 Conclusion	

We	presented	an	efficient	method	for	detecting	homology	groups	across	a	large	number	of	
individuals	 and/or	 species.	 To	make	 homology	 detection	 efficient	 we	 adopted	 a	 k-mer-
based	 approach,	 which	 substantially	 reduces	 the	 number	 of	 pairwise	 comparisons.	
Specifically,	we	first	count	the	number	of	peptide	hexamers	two	proteins	share,	and	only	if	
this	 number	 is	 high	 enough,	 we	 perform	 a	 local	 alignment	 of	 the	 so-called	 intersecting	
proteins	to	calculate	their	exact	similarity	score.		

We	clearly	observed	a	trade-off	between	recall	and	precision	of	the	homology	inference.	
Favoring	 recall	 or	 precision	 strongly	depends	 on	 the	 application	 [29].	 	In	 a	phylogenetic	
study	one	 may	 specifically	be	interested	 in	 identifying	 precise	 one-to-one	
orthologs,	while	others	may	want	to	capture	a	complete	protein	family	to	achieve	insights	
into	gene-duplication	events	across	species.	The	four	defined	parameters	(and	the	8	default	
settings)	give	users	the	flexibility	to	control	the	program’s	behavior.	It	is	important	to	note	
that	different	types	of	genes	may	be	under	different	selection	pressures	and	constraints	and	
have	different	evolutionary	dynamics.	Thus,	the	optimal	parameter	setting	will	depend	both	
on	 the	 specific	 gene	 and	 on	 the	 desired	 application,	 as	 demonstrated	 by	 the	 four	 genes	
across	the	Brassicaceae.		

As	we	store	the	homology	groups	in	the	pan-genome,	it	is	possible	to	query	the	pan-
genome	graph	database	for	statistics	on,	for	example,	the	size	of	the	homology	groups,	the	
copy	number	of	the	genes	and	the	conservation	rate	of	the	proteins	in	different	groups.	In	
the	future,	we	will	extend	PanTools	with	additional	functionality	to	exploit	this	pan-genome	
database	for	comparative	genomics	on	large	collections	of	complex	genomes.	

3.5 Supplementary	materials	

Here	we	present	instructions	for	running	the	homology	detection	functionality	of	PanTools.	
First,	the	PanTools	package	should	be	cloned	to	the	home	directory	from	GitHub:	
cd  
git clone https://github.com/sheikhizadeh/pantools 
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You	should	already	have	 installed	 Java	(JDK	1.8	or	higher)	and	the	 latest	version	of	MCL	
clustering	program	on	your	machine	and	have	added	the	path	to	their	executables	to	the	
PATH	shell	environment	variable.	

3.5.1 Constructing	the	proteome	layer	of	the	pan-genome	

To	construct	the	proteome	layer	of	a	pan-genome	from	a	set	of	protein	sequences,	collect	
the	paths	to	all	the	protein	files	in	FASTA	format	in	a	text	file	(for	example,	proteins.txt)	
which	contains	these	lines:	
$HOME/proteins/p1.faa 
$HOME/proteins/p2.faa 
$HOME/proteins/p3.faa 

	
Then	run:	
java -jar pantools/dist/pantools.jar build_panproteome -dp ./DB -pf 
./proteins.txt 

	
To	start	homology	detection	using	4	threads	and	the	most	relaxed	setting	(8)	type:	
java -jar pantools/dist/pantools.jar group -dp ./DB -tn 4 -rn 8 

Alternatively,	you	can	start	from	genomes	and	GFF	files	and	build	a	complete	pan-genome.	
First,	you	need	to	construct	the	genome	layer	of	a	pan-genome	by	collecting	the	path	to	all	
the	genome	files	in	FASTA	format	in	a	text	file	(for	example,	genomes.txt)	which	contains	
these	lines:	
$HOME/genomes/g1.fna 
$HOME/genomes/g2.fna 
$HOME/genomes/g2.fna 

	
Then:	
java -jar pantools/dist/pantools.jar build_pangenome -dp ./DB -gf 
./genomes.txt 

	
The	genomes’	annotation	should	be	added	to	build	the	annotation	layer	of	the	pan-genome	
by	giving	the	path	to	the	GFF	file	for	each	genome	as	indicated	by	the	number	at	the	start	of	
each	line	(for	example,	in	annotations.txt)	which	contains	these	lines:	
1 $HOME/annotations/a1.gff 
2 $HOME/annotations/a2.gff 
3 $HOME/annotations/a3.gff 

	
Then	run:	
java -jar pantools/dist/pantools.jar add_annotations -dp ./DB -af 
./annotations.txt 
 

Now,	the	proteins	are	annotated	in	the	pan-genome	and	homology	detection	can	be	started	
by:	
java -jar pantools/dist/pantools.jar group -dp ./DB -tn 4 -rn 8 
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3.5.2 Choice	of	K	

Here,	we	calculate	the	smallest	k	value	which	keeps	the	probability	of	random	occurrences	
of	a	k-mer	below	a	desirable	probability	p.	Given	sequences	S	of	length	L	from	an	alphabet	
of	size	α,	the	probability	of	a	given	k-mer	from	this	alphabet	being	present	at	a	given	position	
of	S	by	chance	is:	

			! = !
"!																																																																											(1)	

then,	the	probability	of	the	given	k-mer	being	absent	at	a	given	position	of	S	is:	
1 − !																																																																													(2)	

and	the	probability	that	the	k-mer	occurs	nowhere	in	S	will	be:	
(1 − !)#																																																																									(3)	

,	where	n	is	the	number	of	k-mers	in	sequence	S:	L−' + 1		
so,	the	probability	that	it	occurs	somewhere	in	S	would	be:	

1 − (1 − !)#																																																																					(4)	
Using	the	Taylor	(or	Maclaurin)	series	when	|!| ≪ 1,	which	holds	here	as	+$ ≫ 1:	

ln(1 − !) = −! − !
%

2 − !
&

3 − !
'

4 −⋯ ≈ −!	
4 ln(1 − !) ≈ −4!	

(1 − !)# ≈ exp	(−4!)	
So,	the	probability	(4)	is	well	approximated	by:	

1 − 9!:(−!4)																																																																				(5)	
setting	this	probability	less	than	the	desired	value	p	we	will	have:	

1 − 9!:(−!4) 	< :	
−!4 > ln	(1 − :)	
! < ln	(1 − :)

−4 	

substituting	x	gives:	
1
+$ <

ln	(1 − :)
−4 	

	
	'	 ≥ 	 >log" 	 (#

)*(!(,)A																																																																	(6)	
	
For	peptide	sequences	α	=	20,	and	considering	4 ≈ B	 = 	30,000	 the	 length	of	 the	 largest	
known	protein,	and	setting	p	=	0.001,	the	smallest	suitable	k	is	6.	
	

3.5.3 Experiments	

We	demonstrate	 the	 accuracy,	 scalability,	 efficiency	 and	 applicability	 of	 PanTools	 on	 12	
datasets	of	bacteria,	 fungi,	plants	and	Metazoa.	Y13-Y93	are	5	datasets	of	 increasing	size	
compiled	 from	93	Saccharomyces	 cerevisiae	 strains	and	A3-A19	are	5	datasets	 compiled	
from	19	Arabidopsis	thaliana	accessions.	M12	is	the	OrthoBench	data	from	12	metazoans	
and	E600	 a	 large	dataset	 of	 600	Escherichia	 coli	 strains.	 For	most	 of	 these	data	 sets	we	
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selected	a	subset	of	the	total	proteins	for	evaluation	of	the	methods	(Table	3.S1),	because	
we	were	not	able	to	establish	a	ground	truth	for	all.	Columns	“Intersecting”	and	“Similar”	
give	 the	 number	 of	 intersecting	 resp.	 similar	 pairs	 of	 proteins	 in	 the	 constructed	 pan-
genome.		
	
Table	3.S1.	Statistics	on	the	pan-proteomes	constructed	from	the	12	different	datasets.		

Dataset	 k-mers	 All	 Selected	 Intersecting	 Similar	

Y13	 2,634,965	 70,312	 61,414	 507,164	 423,162	
Y33	 2,722,436	 178,769	 156,135	 3,414,746	 2,872,902	
Y53	 2,794,291	 286,987	 250,649	 8,887,967	 7,486,596	
Y73	 2,947,823	 395,274	 345,333	 16,936,559	 14,275,904	
Y93	 3,027,750	 503,028	 439,573	 27,494,049	 23,189,200	
A3	 8,324,590	 92,564	 92,564	 507,874	 139,384	
A7	 8,861,259	 215,523	 215,523	 2,889,361	 888,305	
A11	 9,167,464	 338,769	 338,769	 7,228,520	 2,273,496	
A15	 9,425,939	 458,499	 458,499	 12,903,576	 4,197,580	
A19	 9,621,923	 582,357	 582,357	 21,021,793	 6,853,404	
M12	 29,193,967	 404,657	 404,657	 20,094,137	 12,942,693	
E600	 7,580,644	 3,160,178	 688,160	 926,638,469	734,423,473	

	
Table	3.S2	shows	the	number	of	groups	detected	by	each	of	the	three	tools,	the	number	of	
real	groups	and	the	running	time	of	tools	in	hours.	For	the	Y	datasets	and	the	E600	dataset,	
the	real	groups	are	determined	by	the	valid	locus	tags	of	the	proteins	extracted	from	the	
GenBank	files.	For	A	datasets,	 the	real	groups	are	the	gene	identifiers	which	end	with	 .1,	
corresponding	to	the	first	annotated	isoform	of	the	genes.	For	M12	we	used	the	identifier	of	
the	known	70	protein	families	in	the	OrthoBench	as	the	real	group	identifiers.	

	
Table	 3.S2.	 Results	 of	 running	 PanTools,	 OrthoFinder	 and	 PanX	 on	 the	 12	 datasets.	 Run-times	 are	
presented	in	hours.	
	

Dataset	
PanTools	
groups	

OrthoFinder	
groups	

PanX	
groups	

Real	
groups	

PanTools	
run-time	

OrthoFinder	
run-time	

PanX	
run-time	

Y13	 4,990	 4,746	 4,830	 4,894	 0.02	 2.86	 0.52	
Y33	 5,078	 4,853	 4,849	 4,906	 0.11	 12.50	 1.28	
Y53	 5,151	 4,886	 4,855	 4,909	 0.28	 35.53	 2.65	
Y73	 5,199	 4,889	 4,857	 4,910	 0.51	 60.60	 4.47	
Y93	 5,257	 4,886	 4,867	 4,911	 0.88	 98.95	 6.72	
A3	 32,236	 29,231	 30,065	 30,971	 0.05	 2.58	 1.77	
A7	 35,083	 31,368	 31,356	 31,037	 0.25	 11.47	 4.28	
A11	 36,842	 33,367	 32,048	 31,046	 0.43	 25.02	 5.12	
A15	 38,292	 34,192	 32,637	 31,047	 0.79	 42.30	 7.28	
A19	 39,579	 34,896	 33,095	 31,049	 1.55	 65.20	 8.13	
M12	 171	 147	 -	 70	 1.96	 77.60	 -	
E600	 10,196	 -	 7,843	 10,152	 15.65	 -	 15.48	
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Table	3.S3.	Accuracy	of	PanTools	on	the	12	datasets.	
	

Pan-genome	 TP	 FP	 FN	 Recall	 Precision	 F_score	
Y13	 61,101	 1,339	 313	 99.5	 97.9	 98.7	
Y33	 155,361	 3,659	 774	 99.5	 97.7	 98.6	
Y53	 249,402	 5,679	 1,247	 99.5	 97.8	 98.6	
Y73	 343,636	 7,852	 1,697	 99.5	 97.8	 98.6	
Y93	 437,305	 10,435	 2,268	 99.5	 97.7	 98.6	
A3	 90,033	 4,353	 2,531	 97.3	 95.4	 96.3	
A7	 207,675	 11,168	 7,848	 96.4	 94.9	 95.6	
A11	 325,625	 19,646	 13,144	 96.1	 94.3	 95.2	
A15	 440,596	 26,837	 17,903	 96.1	 94.3	 95.2	
A19	 558,677	 34,412	 23,680	 95.9	 94.2	 95.1	
M12	 1,328	 135	 315	 80.8	 90.8	 85.5	
E600	 665,167	 472,215	 22,993	 96.7	 58.5	 72.9	

  
Table	3.S4.	Accuracy	of	OrthoFinder	on	the	11	datasets.	
	

Pan-genome	 TP	 FP	 FN	 Recall	 Precision	 F_score	
Y13	 61,356	 6,678	 58	 99.9	 90.2	 94.8	
Y33	 155,945	 6,457	 190	 99.9	 96.0	 97.9	
Y53	 250,363	 9,532	 286	 99.9	 96.3	 98.1	
Y73	 344,989	 13,859	 344	 99.9	 96.1	 98.0	
Y93	 439,192	 17,943	 381	 99.9	 96.1	 98.0	
A3	 86,363	 34,435	 2,246	 97.5	 71.5	 82.5	
A7	 205,912	 74,595	 6,657	 96.9	 73.4	 83.5	
A11	 325,099	 82,904	 10,849	 96.8	 79.7	 87.4	
A15	 444,098	 98,963	 15,102	 96.7	 81.8	 88.6	
A19	 560,002	 119,627	 19,534	 96.6	 82.4	 88.9	
	M12		 1,328	 243	 315	 80.8	 84.5	 82.6	

 
Table	3.S5.	Accuracy	of	PanX	on	the	11	datasets.	
	

Pan-genome	 TP	 FP	 FN	 Recall	 Precision	 F_score	
Y13	 61,302	 1,717	 19	 100.0	 97.3	 98.6	
Y33	 155,800	 5,566	 58	 100.0	 96.6	 98.2	
Y53	 250,144	 9,176	 68	 100.0	 96.5	 98.2	
Y73	 344,660	 13,193	 79	 100.0	 96.3	 98.1	
Y93	 438,691	 18,460	 108	 100.0	 96.0	 97.9	
A3	 87,047	 35,756	 1,387	 98.4	 70.9	 82.4	
A7	 208,010	 101,599	 4,072	 98.1	 67.2	 79.7	
A11	 328,418	 153,371	 6,688	 98.0	 68.2	 80.4	
A15	 448,690	 216,306	 9,317	 98.0	 67.5	 79.9	
A19	 568,800	 280,513	 11,987	 97.9	 67.0	 79.5	
E600	 667,680	 513,833	 15,785	 97.7	 56.5	 71.6	
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Table	3.S6.	Pre-cooked	default	parameters:	the	values	of	the	four	parameters	I,	T,	M	and	C	in	each	of	the	
default	pre-cooked	set	of	parameters.	
	

Parameter	 d1	 d2	 d3	 d4	 d5	 d6	 d7	 d8	
Similarity	threshold	
(T)	

95	 85	 75	 65	 55	 45	 35	 25	
Intersection	rate	(I)	
		

0.09	 0.08	 0.07	 0.06	 0.05	 0.04	 0.03	 0.02	
MCL	inflation	(M)	 9.6	 8.4	 7.2	 6.0	 4.8	 3.6	 2.4	 1.2	
Contrast	(C)	 8	 7	 6	 5	 4	 3	 2	 1	

	
	
	 	

Figure	3.S1.	The	effect	of	intersection	rate,	similarity	threshold,	contrast	and	inflation	rate,	on	the	F-score	of	
PanTools.	 Each	 contour	 plot	 belongs	 to	 a	 pair	 of	 intersection	 and	 threshold	 values,	 with	 the	 x	 and	 y	 axis	
representing	inflation	and	contrast	parameters.	
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Abstract	

The	quality	of	high-throughput	next-generation	sequencing	data	significantly	influences	the	
performance	 and	memory	 consumption	 of	 assembly	 and	mapping	 algorithms.	 The	most	
ubiquitous	platform,	Illumina,	mainly	suffers	from	substitution	errors.	We	have	developed	
a	tool,	ACE,	based	on	K-mer	tries	to	correct	such	errors.	On	real	MiSeq	and	HiSeq	Illumina	
archives,	ACE	yields	higher	gains	in	terms	of	coverage	depth,	outperforming	state-of-the-art	
competitors	in	the	majority	of	cases.	ACE	is	licensed	under	the	GPL	license	and	can	be	freely	
obtained	at	https://github.com/sheikhizadeh/ACE/.	The	program	is	 implemented	 in	C++	
and	runs	on	most	Unix-derived	operating	systems.	
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4.1 Introduction		

Genome	 sequencing	 involves	 reading	 thousands	 or	 millions	 of	 genome	 fragments	 and	
reconstructing	the	original	genome,	either	by	assembling	these	reads	in	de	novo	assembly	
projects,	or	aligning	them	to	a	known	reference	genome	in	re-sequencing	studies.	Over	the	
last	decade,	next-generation	sequencing	(NGS)	technology	dramatically	increased	the	ease	
with	which	material	can	be	sequenced,	yielding	millions	of	short	reads	in	a	short	time.	The	
lower	quality	of	the	data	(compared	to	Sanger	sequencing)	however	significantly	influences	
performance	and	memory	consumption	of	assemblers	and	alignment	algorithms;	as	a	result,	
there	has	been	a	growing	interest	in	correcting	errors	in	short-read	archives.	Sequencing	
errors	 can	 result	 in	 substitutions,	 insertions,	 deletions	 and	 unconfirmed	 nucleotides	
represented	by	 ‘N’	symbols.	The	most	ubiquitous	platform,	 Illumina,	mostly	suffers	 from	
substitution	errors	while	for	others,	like	454	and	Ion	Torrent,	insertions	and	deletions	are	
most	abundant.	

As	 an	 error	 at	 a	 specific	 genomic	 position	 occurs	 infrequently	 and	 randomly,	 an	
erroneous	base	can	be	detected	and	corrected	taking	advantage	of	the	high	frequency	of	the	
reads	 that	 cover	 that	 position.	 This	 is	 the	 idea	 behind	 all	 count-based	 error	 correction	
methods	which	count	K-mers	using	various	data	structures.	

For	example,	SHREC	[1]	constructs	a	generalized	suffix	trie	while	HiTEC	[2]	uses	a	suffix	
array.	Built	upon	SHREC,	Hybrid-SHREC	[3]	captures	InDel	(insertion,	deletion)	errors	as	
well	as	substitutions.	SGA	[4]	performs	error-correction	using	the	FM-index	derived	from	
the	compressed	Burrows-Wheeler	transform.	BLESS	[5]	employs	a	bloom-filter	and	RACER	
[6]	organizes	2-bit-encoded	K-mers	as	64-bit	integers	and	stores	them	in	a	hash	table.	Fiona,	
based	 on	 partial	 suffix	 array,	 is	 also	 able	 to	 deal	with	 InDel	 errors	 [7].	 Alternatively,	K-
spectrum	based	error	correction	methods,	like	Quake	[8]	and	Musket	[9]	collect	all	K-mers	
appearing	in	the	set	of	reads,	and	align	those	with	a	small	Hamming	distance	from	each	other	
to	 achieve	 the	 correct	 consensus.	 Finally,	 MSA-based	 methods,	 like	 Coral	 [10],	 apply	
multiple	sequence	alignment	between	reads	that	share	K-mers	to	detect	errors.	A	recent	
survey	provides	 a	 comprehensive	 review	of	 error-correction	methods,	 and	establishes	 a	
common	set	of	benchmark	data	and	evaluation	criteria	[11].	

Here	we	present	ACE,	a	new	K-mer	count-based	algorithm.	We	employ	the	K-mer	trie,	a	
data	structure	more	time/space-efficient	than	the	suffix	trees	employed	in	SHREC.	K-mer	
tries	have	been	effective	in	solving	some	bioinformatics	problems	[12,13].	

4.2 Methods	

ACE	is	the	C++	implementation	of	our	algorithm,	equipped	with	Open-MP	directives	to	scale	
with	the	number	of	available	processors.	It	organizes	the	K-mers	of	short	reads	(and	their	
reverse-complement)	in	a	K-mer	trie.	

A	K-mer	trie	of	a	sequence	s	(or	set	of	sequences)	is	a	trie	of	depth	K	which	contains	all	
K-mers	of	the	sequence.	Each	edge	has	a	 label	 from	the	alphabet	å;	 the	concatenation	of	
edge	labels	along	the	path	from	root	to	a	node	is	called	the	spelled	string	of	that	node.	Each	
leaf	corresponds	to	one	or	more	K-mers	of	s,	and	each	node	can	contain	the	number	of	times	
that	its	spelled	string	appears	in	the	sequence.	A	K-mer	trie	gives	constant-time	access	to	all	
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patterns	of	 length	 at	most	K,	 useful	 for	 counting	 and	 storing	K-mers,	 detecting	 zygosity,	
determining	ploidy	and	genome	assembly.	

To	cope	with	large	datasets,	ACE	constructs	K-mer	sub-tries	one	by	one	(Figure	4.1)	by	
applying	a	prefix-based	classification	on	K-mers	and	shortening	them	to	k-mers	where	k	=	
K	-	p	and	p	is	the	prefix	length,	determined	based	on	the	amount	of	available	memory	and	
the	 size	of	 the	 input	data.	As	 the	K-mer	 trie	 is	 very	dense	 in	 the	 top	 levels,	ACE	 further	
reduces	memory	consumption	(and	the	size	of	search	space)	by	building	a	root	array	instead	
of	constructing	the	top	triangle	of	the	trie.	Moreover,	to	efficiently	organize	billions	of	K-
mers	in	the	trie	ACE	applies	another	prefix-based	division	to	allow	parallel	construction	of	
the	branches	of	each	subtrie.	In	Figure	4.1,	a	branch	has	been	divided	into	four	sub-branches	
to	be	constructed	and	scanned	for	errors	by	four	independent	parallel	threads.	Branches	are	
divided	into	16,	64	or	more	sub-branches	if	more	cores	are	available.	More	details	on	the	
algorithm,	 including	 a	 pseudo-code	 description,	 can	 be	 found	 in	 the	 Supplementary	
Material.	

4.3 Results	

We	 experimentally	 compared	 the	 performance	 of	 ACE	 in	 increasing	 the	 coverage	
depth/breadth	 of	 reads/K-mers	 to	 those	 of	 seven	 state-of-the-art	 tools,	 using	 the	
benchmark	 data	 and	 following	 the	 same	 evaluation	 procedure	 as	 presented	 in	 a	 recent	
survey	[11].	To	be	consistent	with	the	result	of	Molnar	et	al.,	we	chose	the	same	value	of	K	=	
20	for	evaluations.	The	specifications	of	the	MiSeq	(M1–M9)	and	the	HiSeq	datasets	(H1-
H13)	 are	 presented	 in	 Supplementary	 Table	 4.S1.	 All	 experiments	were	 conducted	 on	 a	

Linux	server	(SUSE	3.8.6-2)	with	an	Intelâ	Xeonâ	ES-2667	CPU,	exploiting	16	logical	cores	
running	at	2.9	GHz	and	256	GB	RAM.	

A 

AAAA : 0        AAAC : 1        AAAG : 2    . . .         

Dense levels 

Root array 

A C G T

T 
 

Figure	4.1.	To	reduce	the	memory	consumption	on	large	datasets,	the	full	trie	is	broken	into	sub-tries	which	
are	processed	serially	(AT	sub-trie	 is	shown).	To	speed-up	the	algorithm	each	sub-trie	 is	divided	into	a	few	
branches	to	be	processed	in	parallel	by	multiple	threads.		



	 63	

Table	4.1	compares	the	gain	of	ACE	to	that	of	its	best	competitor	among	seven	state-of-
the-art	read	cleaners:	BLESS,	Coral,	HiTEC,	Musket,	RACER,	SGA	and	SHREC;	more	detailed	
results	 can	 be	 found	 in	 Supplementary	 Tables	 4.S3–11.	 In	 these	 evaluations,	 Depth	 of	
coverage	indicates	the	average	number	of	times	each	base	is	covered	by	reads/K-mers	and	
Breadth	of	coverage	indicates	the	proportion	of	the	genome	covered	by	reads/K-mers	[11].	
The	 first	 criterion	 is	 useful	 for	 quantitative	 applications	 and	 overlap-layout-consensus	
assembly,	while	the	second	is	more	applicable	for	De	Bruijn	graph-based	genome	assembly.	

	
Table	4.1.	The	gain	of	ACE	in	increasing	the	depth/breadth	of	reads/K-mers,	compared	to	that	of	the	best	tool	
in	[11].	Note:	Highlights	indicate	the	level	of	improvement.	
	
		 	Depth	gain	

		
Breadth	gain		

				 	Read	
		

	K-mer	
		

	Read	
		

	K-mer	
				 		 Best	 ACE	 		 Best	 ACE	 		 Best	 ACE	 		 Best	 ACE	

M1	 SGA	 26.30	 56.10	 RACER	 37.42	 58.90	 BLESS	 6.75	 9.13	 SGA	 0.00	 -202.26	
M2	 RACER	 58.06	 57.05	 RACER	 49.48	 51.73	 RACER	 6.31	 6.23	 Cora

l	
0.01	 -11.48	

M3	 RACER	 13.09	 14.06	 RACER	 19.05	 23.01	 RACER	 1.94	 2.08	 Cora
l	

-0.01	 -3.92	
M4	 RACER	 74.96	 83.91	 RACER	 58.72	 73.90	 RACER	 7.73	 8.60	 Cora

l	
0.00	 -0.94	

M5	 RACER	 0.88	 0.89	 RACER	 4.00	 4.39	 RACER	 0.098	 0.096	 SGA	 -0.95	 -13.53	
M6	 RACER	 16.46	 18.03	 RACER	 21.09	 26.01	 RACER	 3.47	 3.75	 Cora

l	
0.00	 -5.35	

M7	 RACER	 86.11	 90.26	 RACER	 65.59	 79.48	 RACER	 28.41	 29.80	 Cora
l	

0.00	 -2.56	
M8	 HiTEC	 37.78	 73.18	 HiTEC	 47.65	 69.47	 BLESS	 67.96	 79.83		 HiTE

C	
5.00	 -5.00	

M9	 RACER	 0.39	 0.45	 HiTEC	 6.71	 7.90	 BLESS	 0.97	 0.49	 Cora
l	

0.00	 -45.94	
H1	 BLESS	 61.72	 63.55	 Musket	 51.28	 67.67	 BLESS	 5.66	 5.43	 Cora

l	
-1.74	 -7.49	

H2	 BLESS	 44.30	 44.93	 HiTEC	 33.03	 34.86	 BLESS	 4.54	 4.56	 SGA	 -1.73	 -1.96	
H3	 RACER	 34.13	 34.69	 RACER	 19.26	 22.15	 BLESS	 2.28	 2.25	 SGA	 -0.88	 -1.20	
H4	 RACER	 92.27	 93.71	 HiTEC	 85.83	 88.77	 BLESS	 49.49	 49.67	 Cora

l	
-0.36	 -1.72	

H5	 BLESS	 13.70	 13.80	 HiTEC	 9.27	 9.48	 BLESS	 4.63	 4.58	 SGA	 -9.83	 -12.55	
H6	 BLESS	 86.16	 92.35	 HiTEC	 82.83	 90.23	 BLESS	 82.87	 85.46	 Cora

l	
0.00	 -8.12	

H7	 SGA	 52.89	 54.26	 RACER	 47.35	 50.35	 BLESS	 4.69	 4.70	 SGA	 -1.99	 -24.40	
H8	 RACER	 26.77	 27.83	 RACER	 11.92	 13.74	 BLESS	 4.06	 4.10	 SGA	 -2.84	 -280.70	
H9	 BLESS	 18.14	 20.35	 RACER	 16.19	 19.70	 BLESS	 4.50	 4.62	 SGA	 -5.70	 -27.11	
H10	 BLESS	 26.13	 27.53	 Musket	 19.64	 21.67	 BLESS	 7.98	 8.03	 SGA	 -6.49	 -31.77	
H11	 SGA	 61.66	 57.52	 RACER	 38.11	 46.19	 SGA	 12.92	 12.03	 SGA	 -4.89	 -11.59	
H12	 SGA	 65.46	 62.61	 RACER	 42.42	 48.73	 SGA	 16.15	 14.95	 SGA	 -5.63	 -13.81	
H13	 SGA	 27.86	 27.70	 RACER	 35.49	 40.35	 SGA	 3.18	 3.01	 SGA	 -4.32	 -11.29	
	

ACE	outperforms	most	other	tools	in	terms	of	coverage	depth	gain,	improving	on	the	
best	competitor	on	18	resp.	22	out	of	22	datasets	for	reads	resp.	K-mers.	In	particular	for	
MiSeq	data,	which	contains	more	errors,	the	improvements	can	be	significant.	For	coverage	
breadth,	the	picture	is	less	clear:	ACE	outperforms	the	best	alternative	tool	on	13	datasets	
on	read	coverage	breadth	gain,	whereas	K-mer	coverage	breadth	gain	was	generally	worse.	
However,	all	tools	actually	yield	low	read	coverage	breadth	on	most	MiSeq	data	(as	low	as	
0.25%)	 and	 decrease	 K-mer	 coverage	 breadth	 compared	 to	 the	 raw	 data	 (see	
Supplementary	Tables	4.S5–6,	4S9–10).	

Table	4.2	compares	 the	 time	and	memory	consumption	of	ACE	 to	 those	of	 the	 three	
competitors	which	were	able	to	successfully	correct	all	datasets.	While	for	most	datasets	
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memory	consumption	 is	reasonable,	ACE	has	higher	computational	cost	 than	most	other	
tools,	trading	speed	for	accuracy.	

	
Table	4.2.	Time	and	memory	requirements	of	the	tools	that	were	able	to	successfully	correct	all	datasets.	
	

 Time ( s/Mb ) Space (MB/Mb) 
 Musket RACER SGA ACE Musket RACER SGA ACE 

M1 0.05 0.55 2.07 10.22 3.64 17.80 10.02 30.92 
M2 0.14 0.18 0.85 3.14 4.31 10.00 5.40 5.30 
M3 0.07 0.27 1.12 3.76 3.47 7.20 4.52 6.21 
M4 0.07 0.35 1.16 3.92 3.18 8.15 3.95 7.01 
M5 0.07 0.25 0.56 3.48 2.95 6.24 4.02 5.52 
M6 0.07 0.34 1.25 3.90 2.35 6.78 3.10 5.70 
M7 0.06 0.23 1.05 3.29 1.53 3.18 2.03 2.73 
M8 0.06 0.43 1.82 8.29 0.26 2.24 0.90 12.86 
M9 0.06 0.33 1.83 5.64 0.24 1.21 0.75 4.94 

Average 0.07 0.32 1.30 5.07 2.44 6.98 3.86 9.02 
H1 0.27 0.17 0.87 4.28 4.49 9.40 5.99 5.16 
H2 0.23 0.22 0.82 5.78 4.28 9.68 6.10 4.23 
H3 0.20 0.16 0.75 5.21 2.93 7.59 4.28 5.12 
H4 0.28 0.31 1.20 5.88 1.58 4.03 2.37 5.67 
H5 0.20 0.24 0.92 4.77 1.17 3.01 1.73 2.45 
H6 0.48 0.25 1.08 3.62 0.66 2.04 1.09 4.48 
H7 0.29 0.30 1.11 4.97 0.70 2.83 0.85 6.70 
H8 0.27 0.31 1.09 4.56 0.52 2.36 0.56 4.83 
H9 0.42 0.32 1.14 4.29 0.61 2.70 0.55 4.75 
H10 0.32 0.31 1.22 4.17 0.62 2.26 0.46 4.64 
H11 0.24 0.74 1.55 3.93 0.20 1.66 0.23 1.39 
H12 0.28 0.47 1.69 3.92 0.19 2.28 0.23 1.36 
H13 0.26 0.47 1.62 3.92 0.16 1.37 0.22 1.32 

Average 0.29 0.33 1.16 4.56 1.39 3.94 1.90 4.01 
	

4.4 Conclusion	

We	 developed	 ACE,	 a	 command-line	 tool	 to	 accurately	 correct	 substitution	 errors	 in	
Illumina	short-read	archives.	ACE	generally	out-	performs	the	best	among	seven	state-of-
the-art	read	cleaners	in	terms	of	coverage	depth,	at	higher	computational	cost.	This	makes	
it	 a	 useful	 tool	 for	 small	 to	 medium-sized	 datasets	 or	 applications	 where	 accuracy	
requirements	warrant	the	investment	in	computational	resources.	

In	future	work,	we	aim	to	lower	the	runtime	of	ACE	by	updating	the	K-mer	trie	instead	
of	rebuilding	it	for	each	round	of	execution.	This	future	version	should	also	be	able	to	handle	
InDel	errors	to	extend	its	application	to	all	sequencing	platforms.	
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4.5 Supplementary	methods	

4.5.1 K-mer	trie	

Supplementary	 Figure	 S4.1	 shows	 the	 3-mer	 trie	 for	 the	 sequence	 AATCAAT	 from	 Σ =
{$, &, ', (}.	 In	 this	 trie,	 for	 example,	 AAT	 occurs	 2	 times	 along	 the	 sequence.	 This	 data	

structure	could	similarly	be	constructed	over	a	set	of	sequences;	in	this	case	we	could	call	it	
generalized	K-mer	 trie;	 however,	 for	 simplicity	we	excluded	 the	 term	generalized	 in	 the	
paper.	

4.5.2 Algorithms	

The	pseudo-code	of	ACE	is	presented	in	Supplementary	Table	4.S1.	The	first	step	is	to	load	
the	entire	read	bank	into	the	memory	(Line	1).	We	use	2-bit	coding	for	nucleotides	to	reduce	
the	 occupied	 memory	 by	 75%.	 ACE	 consists	 of	 two	 main	 consecutive	 steps,	
Construct_Subtrie(	)	and	Detect_and_Correct(	),	which	iterate	in	a	loop	for	all	prefixes.	For	
each	prefix	of	length	p,	ACE	constructs	its	corresponding	sub-tries	(Line	4).	The	Construct-
Subtrie()	method	applies	another	prefix-based	division	to	provide	the	possibility	of	parallel	
construction	of	the	branches	of	a	subtrie.	It	invokes	n	parallel	tasks,	each	responsible	for	
constructing	a	sub-branch	by	inserting	K-mers	into	the	corresponding	sub-branch.	

Detect_and_Correct()	detects	substitutions	in	parallel	by	traversing	the	deepest	level	of	
the	sub-tries.	Ɵ	is	the	frequency	below	which	K-mers	are	classified	as	low-frequent.	It	is	the	
frequency	at	which	the	spectrum	curve	reaches	its	minimum.	In	each	low-frequent	K-mer,	
ACE	mutates	each	nucleotide	to	the	three	alternatives	to	see	whether	it	turns	into	a	high-
frequent	K-mer;	we	call	 this	process	 the	1-change	search.	 In	Supplementary	Figure	S4.2,	
consider	the	low-frequent	leaf	GCA.	To	find	the	correct	K-mer,	the	algorithm	examines	(at	
most)	nine	leaves	corresponding	to	GCN,	GNA	and	NCA	patterns,	where	each	‘N’	is	replaced	
with	three	other	bases	different	from	those	appearing	in	GCA.	The	1-change	search	stops	
once	ACE	finds	a	high-frequent	K-mer;	otherwise,	a	2-change	search	will	be	launched	in	the	
hope	of	finding	an	alternative	K-mer	with	two	mismatches.	
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Figure	S4.1.	The	3-mer	trie	for	the	sequence	AATCAAT.	
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Table	4.S1.	Pseudo-code	of	ACE.	
	
Main	Algorithm	
Load	the	entire	(compressed)	read	bank	R	into	memory	
For	seven	rounds	
					Initialize	K,	p	and	Ɵ	and	set	k	=	K-2;	
					For	each	prefix	of	length	p		
										ST	=	Construct_Subtrie(	k,	prefix	)					//	The	subtrie	of	depth	k		associated	with	prefix	
										Detect_	and_Correct(	ST	,	Ɵ	)	
										If	the	available	memory	falls	below	a	minimum	
															Free	the	whole	trie	and	collect	garbage	
Store	the	corrected	read	bank	into	a	new	bank	
Construct_Subtrie(prefix)	
Determine	n	as	the	number	of	parallel	tasks	with	regard	to	the	number	of	available	cores	
In	parallel,	invoke	n	tasks	ti,	i	=	0,1,	2,	…	,4p	
						For	each	K-mer	in	the	read	bank	R	beginning	with	i	as	prefix	(or	ending	in	reverse	complement	of	i)	
																	insert	K-mer	into	i-branch	of	the	subtrie	
Return	subtrie	
Detect_and_Correct(subtrie	ST	,	threshold	Ɵ	)	
In	parallel,	for	each	i-branch,	i	=0,1,	2,	…	,4p	
																							For	each	leaf	of	this	i-branch	
																												If	frequency	of	leaf	is	not	greater	than	Ɵ	
																																		Perform	a	1_change	search	
																																		If	a	high-frequent	K-mer	is	found	
																																						Correct	the	erroneous	base		
																																		Else		
																																						Perform	a	2_change	search	
																																						If	a	high-frequent	K-mer	is	found	
																																													Correct	the	two	erroneous	bases		

	

4.5.3 Choice	of	parameters	

Error	correction	based	on	K-mer	counting	relies	heavily	on	high-frequent	K-mers	to	correct	
similar	 low-frequent	 ones.	 Normally,	 high-frequent	 i-mers	 occur	 due	 to	 high	 coverage,	
sequencing	biases	and	genomic	repeats.	They	can	also	occur	when	K	is	disproportionately	
small	with	respect	to	the	length	of	the	genome	or	the	size	of	the	read	bank.	These	kinds	of	
repeats	increase	the	number	of	wrong	corrections	and	decrease	performance.	On	the	other	
hand,	long	K-mers	are	more	likely	to	be	exposed	to	more	than	one	error,	which	hampers	
their	correction.	

C 

A 

G 

A 

C 

A 

 

Figure	S4.2.	The	1-change	search	tries	to	find	a	highly	frequent	leaf	among	candidate	leaves	of	the	trie	which	
is	in	Hamming	distance	1	to	the	the	low-frequent	(erroneous)	K-mer.		
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Consequently,	determining	an	appropriate	value	for	K	is	vital	to	the	performance	of	the	
algorithm.	In	our	experiments,	we	found	the	most	efficient	value	for	the	length	of	K-mers	to	
be	* = 10 + ./0!" ,	where	G	is	the	approximate	genome	length.	

The	prefix	length	p	is	determined	by	the	algorithm	according	to	the	amount	of	available	
memory	and	the	size	of	the	input	data,	to	guarantee	fitting	of	one	sub-trie	in	the	available	
memory.	Ɵ	is	initialized	by	2	+	Coverage	/	10.	Coverage	is	computed	as	N	×	L	/	G,	where	N,	
L	and	G	are	the	number	of	reads,	length	of	reads	and	genome	length,	respectively.	

4.5.4 Memory	management	

ACE	is	equipped	with	built-in	memory	management	to	successfully	construct	huge	tries	in	
limited	 memory.	 First,	 as	 the	 full	 K-mer	 trie	 may	 not	 fit	 in	 the	 available	 memory,	 ACE	
constructs	its	sub-tries,	one	by	one,	by	applying	a	prefix-based	classification	on	all	K-mers.	
In	 our	 experience,	 consecutive	 construction	 of	 sub-tries	 also	 improves	 the	 correction	
performance	of	the	algorithm,	since	corrections	made	in	one	sub-trie	reduce	the	error	rate	
of	the	read	bank	and	this,	in	turn,	increases	the	accuracy	of	detections	in	the	next	sub-trie.	
To	save	time,	ACE	reuses	the	structure	of	one	sub-trie	for	building	the	next	one	reducing	the	
number	of	dynamic	memory	allocations.	However,	as	this	structure	could	grow	rapidly	on	
large	datasets	it	should	be	freed	before	saturating	the	entire	memory.	ACE	performs	this	
task	whenever	the	amount	of	free	memory	falls	below	a	specified	threshold.	

4.5.5 Supplementary	Tables	

Table	4.S2	shows	 the	specifications	of	 the	9	MiSeq	 (M1-M9)	and	 the	13	HiSeq	 (H1-H13)	
datasets	presented	 in	 the	 survey	of	Molnar,	et	al.	Table	4.S2	gives	an	outline	of	 the	ACE	
algorithm	in	pseudo-code.	Supplementary	Tables	4.S3-9	contain	benchmarking	results	for	
ACE,	 compared	 to	 results	 reported	 for	 seven	 state-of-the-art	 read	 cleaners	 recently	 in	 a	
recent	survey	by	Molnar	and	Ilie	(11).	Missing	results	are	due	to	problems	in	running	some	
tools	on	certain	datasets,	because	of	their	inability	to	deal	with	varying	read	length	or	the	
algorithms	simply	taking	too	long.	
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Table	4.S2.	The	specifications	of	the	MiSeq	(M1-M9)	and	HiSeq	(H1-H13)	datasets.		
	

	 Organism	 Accession	
number	

Read	
Length	

Number	of	
Reads	 Total	bp	 Coverage	 Reference	

Genome	
Genome	
Length	

M1	 E.coli	 SRR519926	 251	 801,192	 201,099,192	 43	 NC_000913.
2	

4,639,675	
M2	 M.tuberculosis	 SRR1200797	 50-250	 1,482,716	 348,224,181	 79	 NC_000962.

3	
4,411,532	

M3	 S.enterica	 SRR1203044	 35-250	 1,784,756	 433,166,399	 89	 NC_011083.
1	

4,888,768	
M4	 S.enterica	 SRR1206093	 35-251	 1,977,970	 472,256,906	 97	 NC_011083.

1	
4,888,768	

M5	 L.monocytogenes	 SRR1198952	 35-251	 2,177,790	 507,711,040	 171	 NC_017546.
1	

2,973,801	
M6	 P.syringae	 SRR1119292	 35-251	 2,576,622	 639,853,726	 105	 NC_007005.

1	
6,093,698	

M7	 B.dentium	 SRR1151311	 35-251	 3,926,618	 984,280,778	 373	 NC_013714.
1	

2,636,367	
M8	 E.coli	 SRR522163	 251	 11,181,452	 2,806,544,452	 605	 NC_000913.

2	
4,639,675	

M9	 O.tsutsugamushi	 SRR1202083	 301	 10,315,434	 3,104,945,634	 1,460	 NC_009488.
1	

2,127,051	
H1	 M.tuberculosis	 ERR400373	 151	 2,092,946	 316,034,846	 72	 NC_000962.

3	
4,411,532	

H2	 S.enterica	 ERR230402	 100	 3,257,972	 325,797,200	 67	 NC_011083.
1	

4,888,768	
H3	 S.cerevisiae	 ERR422544	 100	 4,776,774	 477,677,400	 40	 R64-1-1	 12,071,326	
H4	 L.pneumophila	 SRR801797	 100	 8,850,220	 885,022,000	 260	 NC_002942.

5	
3,397,754	

H5	 E.coli	 SRR1191655	 101	 11,726,414	 1,184,367,814	 255	 NC_000913.
2	

4,639,675	
H6	 E.coli	 SRR490124	 100	 21,553,358	 2,155,335,800	 465	 NC_000913.

2	
4,639,675	

H7	 C.elegans	 SRX218989	 100	 31,642,176	 3,164,217,600	 32	 WS222	 100,286,070	
H8	 C.elegans	 SRR543736	 101	 57,721,732	 5,829,894,932	 58	 WS222	 100,286,070	
H9	 D.melanogaster	 SRR823377	 100	 63,014,762	 6,301,476,200	 52	 Release	5	 120,381,546	
H10	 D.melanogaster	 SRR988075	 101	 75,938,276	 7,669,765,876	 64	 Release	5	 120,381,546	
H11	 Human	 ERX069715	 100-102	 1,357,751,670	 137,132,918,670	 43	 Build	38	 3,209,286,105	
H12	 Human	 ERX069504	 100-102	 1,637,816,924	 165,419,509,324	 52	 Build	38	 3,209,286,105	
H13	 Human	 ERX069505	 101	 1,708,169,546	 172,525,124,146	 54	 Build	38	 3,209,286,105	
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Table	4S3.	Details	of	read	depth	coverage	analyses	for	MiSeq	datasets	(TP:	true	positive,	FP:	false	positive,	
FN:	false	negative,	TN:	true	negative).	
		 	

BLESS	 Coral	 HiTEC	 Musket	 RACER	 SGA	 ACE	 SHREC	

M1	

TP	 43,668,729	 119,225	 52,111,616	 0	 51,728,339	 52,111,867	 111,171,665	 28,948,332	
FP	 1,506	 0	 2,042,136	 0	 0	 0	 0	 2,442,230	
FN	 154,488,743	 198,038,247	 146,045,856	 198,157,472	 146,429,133	 146,045,605	 86,985,807	 169,209,140	
TN	 2,940,214	 2,941,720	 899,584	 2,941,720	 2,941,720	 2,941,720	 2,941,720	 499,490	

M2	

TP	
	
37,441,167	

	
174,089	 70,946,701	 67,318,527	 69,725,941	 65,325,070	

FP	
	

10,076	
	

202,786	 26,192	 19,438	 44,908	 59,446	
FN	

	
84,701,060	

	
121,968,138	 51,195,526	 54,823,700	 52,416,286	 56,817,157	

TN	
	
226,071,878	

	
225,879,168	 226,055,762	 226,062,516	 226,037,046	 226,022,508	

M3	

TP	
	
34,078,092	

	
241,956	 43,577,951	 38,479,415	 46,783,362	 45,770,835	

FP	
	

32,223	
	

36,655	 23,750	 23,253	 23,999	 86,877,007	
FN	

	
298,565,704	

	
332,401,840	 289,065,845	 294,164,381	 285,860,434	 286,872,961	

TN	
	
100,490,380	

	
100,485,948	 100,498,853	 100,499,350	 100,498,604	 13,645,596	

M4	

TP	
	
137,281,061	

	
1,659,328	 167,793,410	 148,087,585	 187,822,776	 81,037,228	

FP	
	

12,628	
	

97,625	 4,619	 3,113	 4,692	 169,597,265	
FN	

	
86,559,186	

	
222,180,919	 56,046,837	 75,752,662	 36,017,471	 142,803,019	

TN	
	
248,404,031	

	
248,319,034	 248,412,040	 248,413,546	 248,411,967	 78,819,394	

M5	

TP	
	

2,179,733	
	

340,451	 4,523,655	 3,275,149	 4,580,433	 5,551,003	
FP	

	
97,221	

	
32,888	 157,730	 84,281	 165,402	 11,843,552	

FN	
	
493,590,159	

	
495,429,441	 491,246,237	 492,494,743	 491,189,459	 490,218,889	

TN	
	
11,843,927	

	
11,908,260	 11,783,418	 11,856,867	 11,775,746	 97,596	

M6	

TP	
	
73,904,029	

	
48,804	 93,366,114	 82,815,864	 102,268,102	 55,399,341	

FP	
	

29,817	
	

30,085	 24,529	 23,278	 26,269	 62,816,188	
FN	

	
493,011,302	

	
566,866,527	 473,549,217	 484,099,467	 464,647,229	 511,515,990	

TN	
	
72,908,578	

	
72,908,310	 72,913,866	 72,915,117	 72,912,126	 10,122,207	

M7	

TP	
	
234,434,318	

	
0	 259,738,331	 204,346,520	 272,260,950	 186,436,927	

FP	
	

13,037	
	

0	 4,258	 0	 251	 287,229,870	
FN	

	
67,210,155	

	
301,644,473	 41,906,142	 97,297,953	 29,383,523	 115,207,546	

TN	
	
682,623,268	

	
682,636,305	 682,632,047	 682,636,305	 682,636,054	 395,406,435	

M8	

TP	 917,620,609	 142,066	 1,073,307,124	 0	 551,372,704	 620,227,777	 1,998,156,282	 601,186,666	
FP	 251	 0	 41,640,398	 0	 251	 0	 0	 56,399,449	
FN	 1,812,741,07

6	
2,730,219,61

9	
1,657,054,561	2,730,361,685	 2,178,988,981	2,110,133,908	 732,205,403	 2,129,175,019	

TN	 76,182,516	 76,182,767	 34,542,369	 76,182,767	 76,182,516	 76,182,767	 76,182,767	 19,783,318	

M9	

TP	 11,606,259	 7,224	 20,560,407	 0	 12,166,721	 5,476,996	 13,908,909	 18,752,902	
FP	 6,923	 0	 8,584,520	 0	 15,351	 4,816	 6,923	 8,601,677	
FN	 3,084,376,49

8	
3,095,975,53

3	
3,075,422,350	3,095,982,757	 3,083,816,036	3,090,505,761	 3,082,073,848	 3,077,229,855	

TN	 8,955,954	 8,962,877	 378,357	 8,962,877	 8,947,526	 8,958,061	 8,955,954	 361,200	
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Table	4S4.	Details	of	read	depth	coverage	analyses	for	HiSeq	datasets	(TP:	true	positive,	FP:	false	positive,	
FN:	false	negative,	TN:	true	negative).	
	
		 		 BLESS	 Coral	 HiTEC	 Musket	 RACER	 SGA	 ACE	 SHREC	

H1	

TP	 38,798,393	 32,544,879	 56,611,108	 36,658,572	 37,052,380	 32,100,184	 39,889,368	 55,729,872	
FP	 82,748	 20,687	 19,971,411	 86,674	 9,664	 7,248	 24,462	 23,563,248	
FN	 23,933,500	 30,187,014	 6,120,785	 26,073,321	 25,679,513	 30,631,709	 22,842,525	 7,002,021	
TN	 253,220,205	 253,282,266	 233,331,542	 253,216,279	 253,293,289	 253,295,705	 253,278,491	 229,739,705	

H2	

TP	 26,092,400	 24,447,500	 52,661,000	 25,192,500	 25,157,200	 23,636,900	 26,460,300	 52,589,200	
FP	 14,100	 218,200	 27,131,500	 17,800	 13,300	 12,700	 13,100	 27,488,700	
FN	 32,769,300	 34,414,200	 6,200,700	 33,669,200	 33,704,500	 35,224,800	 32,401,400	 6,272,500	
TN	 266,921,400	 266,717,300	 239,804,000	 266,917,700	 266,922,200	 266,922,800	 266,922,400	 239,446,800	

H3	

TP	 29,305,600	 25,529,600	 49,157,700	 28,454,300	 29,339,700	 28,141,200	 29,824,600	 48,883,400	
FP	 22,600	 1,109,200	 20,430,600	 15,100	 8,700	 7,200	 10,800	 21,757,000	
FN	 56,640,800	 60,416,800	 36,788,700	 57,492,100	 56,606,700	 57,805,200	 56,121,800	 37,063,000	
TN	 391,708,400	 390,621,800	 371,300,400	 391,715,900	 391,722,300	 391,723,800	 391,720,200	 369,974,000	

H4	

TP	 269,792,900	 163,889,400	 286,237,400	 254,853,500	 271,647,000	 255,971,600	 275,909,400	 282,598,900	
FP	 1,000	 4,600	 15,327,900	 9,100	 1,000	 100	 3,200	 20,864,600	
FN	 24,626,000	 130,529,500	 8,181,500	 39,565,400	 22,771,900	 38,447,300	 18,509,500	 11,820,000	
TN	 590,602,100	 590,598,500	 575,275,200	 590,594,000	 590,602,100	 590,603,000	 590,599,900	 569,738,500	

H5	

TP	 83,739,302	 76,462,050	 339,677,847	 81,013,817	 82,654,461	 76,475,180	 85,475,189	 		
FP	 181,901	 346,733	 255,045,907	 178,568	 182,709	 166,650	 187,052	 		
FN	 534,120,320	 541,397,572	 278,181,775	 536,845,805	 535,205,161	 541,384,442	 532,384,433	 		
TN	 566,326,291	 566,161,459	 311,462,285	 566,329,624	 566,325,483	 566,341,542	 566,321,140	 		

H6	

TP	 918,033,300	 46,606,600	 981,535,800	 842,711,500	 882,718,300	 592,452,800	 984,066,200	 881,970,900	
FP	 2,400	 0	 81,621,300	 51,700	 7,700	 200	 2,200	 179,178,100	
FN	 147,509,600	1,018,936,300	 84,007,100	 222,831,400	 182,824,600	 473,090,100	 81,476,700	 183,572,000	
TN	 1,089,790,500	1,089,792,900	1,008,171,600	 1,089,741,200	 1,089,785,200	 1,089,792,700	 1,089,790,700	 910,614,800	

H7	

TP	 523,410,700	 473,843,600	 		 424,362,600	 529,779,400	 533,602,900	 552,505,000	 		
FP	 2,527,500	 4,986,700	 		 5,232,200	 1,028,700	 226,100	 5,242,500	 		
FN	 485,147,600	 534,714,700	 		 584,195,700	 478,778,900	 474,955,400	 456,053,300	 		
TN	 2,153,131,800	2,150,672,600	 		 2,150,427,100	 2,154,630,600	 2,155,433,200	 2,150,416,800	 		

H8	

TP	 454,178,214	 439,078,411	 		 443,450,701	 477,389,933	 458,849,666	 510,661,656	 814,419,459	
FP	 10,121,513	 11,454,208	 		 25,147,485	 4,503,691	 113,221	 19,143,641	 940,215,060	
FN	 1,312,147,257	1,327,247,060	 		 1,322,874,770	 1,288,935,538	 1,307,475,805	 1,255,663,815	 951,906,012	
TN	 4,053,447,948	4,052,115,253	 		 4,038,421,976	 4,059,065,770	 4,063,456,240	 4,044,425,820	 3,123,354,401	

H9	

TP	 654,362,400	 397,459,800	 		 609,199,000	 617,239,100	 580,178,600	 709,691,700	 1,834,496,800	
FP	 39,685,900	 26,173,100	 		 40,098,000	 10,218,000	 3,000,100	 20,083,900	 1,332,909,300	
FN	 2,734,234,500	2,991,137,100	 		 2,779,397,900	 2,771,357,800	 2,808,418,300	 2,678,905,200	 1,554,100,100	
TN	 2,873,193,400	2,886,706,200	 		 2,872,781,300	 2,902,661,300	 2,909,879,200	 2,892,795,400	 1,579,970,000	

H10	

TP	 1,224,222,111	1,183,698,891	 		 1,221,214,028	 1,199,764,860	 1,180,369,022	 1,285,325,798	 2,514,864,347	
FP	 23,094,155	 75,877,967	 		 24,294,439	 8,466,931	 2,325,323	 19,902,252	 1,391,574,566	
FN	 3,372,129,521	3,412,652,741	 		 3,375,137,604	 3,396,586,772	 3,415,982,610	 3,311,025,834	 2,081,487,285	
TN	 3,050,320,089	2,997,536,277	 		 3,049,119,805	 3,064,947,313	 3,071,088,921	 3,053,511,992	 1,681,839,678	

H11	

TP	 		 		 		 37,150,982,594	 40,075,406,388	 42,985,454,686	 40,113,218,550	 		
FP	 		 		 		 15,439,080	 8,158,656	 9,213,474	 23,386,884	 		
FN	 		 		 		 32,548,080,466	 29,623,656,672	 26,713,608,374	 29,585,844,510	 		
TN	 		 		 		 67,418,416,530	 67,425,696,954	 67,424,642,136	 67,410,468,726	 		

H12	

TP	 		 		 		 46,900,867,926	 51,634,839,736	 55,142,513,014	 52,768,565,090	 		
FP	 		 		 		 15,343,576	 10,163,820	 10,120,212	 32,801,606	 		
FN	 		 		 		 37,321,732,986	 32,587,761,176	 29,080,087,898	 31,454,035,822	 		
TN	 		 		 		 81,181,564,836	 81,186,744,592	 81,186,788,200	 81,164,106,806	 		

H13	

TP	 		 		 		 7,752,423,468	 9,660,964,514	 10,145,209,317	 10,090,726,647	 		
FP	 		 		 		 19,235,248	 4,802,954	 3,700,943	 9,457,965	 		
FN	 		 		 		 28,645,673,833	 26,737,132,787	 26,252,887,984	 26,307,370,654	 		
TN	 		 		 		136,107,791,597	 136,122,223,891	136,123,325,902	 136,117,568,880	 		

	 	



	 71	

Table	4.S5.	Details	 of	 read	breadth	 coverage	 analyses	 for	MiSeq	datasets	 (TP:	 true	positive,	 FP:	 false	
positive,	FN:	false	negative,	TN:	true	negative).	
	 	 	

BLESS	 Coral	 HiTEC	 Musket	 RACER	 SGA	 ACE	 SHREC	

M1	

TP	 309,722	 451	 193,884	 0	 200,121	 201,659	 418,923	 103,654	
FP	 1	 0	 7	 0	 0	 0	 0	 1	
FN	 4,279,872	 4,589,143	 4,395,710	 4,589,594	 4,389,473	 4,387,935	 4,170,671	 4,485,940	
TN	 11,671	 11,672	 11,665	 11,672	 11,672	 11,672	 11,672	 11,671	

M2	

TP	
	

120,938	
	

385	 226,218	 214,706	 223,470	 208,161	
FP	

	
40	

	
1,119	 110	 78	 240	 278	

FN	
	

3,459,821	
	

3,580,374	 3,354,541	 3,366,053	 3,357,289	 3,372,598	
TN	 		 800,234	 		 799,155	 800,164	 800,196	 800,034	 799,996	

M3	

TP	
	

68,946	
	

316	 89,002	 77,786	 95,461	 78,077	
FP	

	
166	

	
90	 92	 90	 93	 97	

FN	
	

4,509,779	
	

4,578,409	 4,489,723	 4,500,939	 4,483,264	 4,500,648	
TN	 		 280,963	 		 281,039	 281,037	 281,039	 281,036	 281,032	

M4	

TP	
	

262,268	
	

1,233	 322,454	 284,073	 358,940	 278,406	
FP	

	
56	

	
254	 19	 13	 20	 26	

FN	
	

3,909,569	
	

4,170,604	 3,849,383	 3,887,764	 3,812,897	 3,893,431	
TN	 		 687,754	 		 687,556	 687,791	 687,797	 687,790	 687,784	

M5	

TP	
	

2,469	
	

332	 3,534	 2,918	 3,524	 3,275	
FP	

	
392	

	
178	 658	 354	 703	 663	

FN	
	

2,927,702	
	

2,929,839	 2,926,637	 2,927,253	 2,926,647	 2,926,896	
TN	 		 25,188	 		 25,402	 24,922	 25,226	 24,877	 24,917	

M6	

TP	
	

161,402	
	

71	 203,331	 184,119	 219,281	 150,584	
FP	

	
130	

	
81	 94	 91	 101	 95	

FN	
	

5,690,622	
	

5,851,953	 5,648,693	 5,667,905	 5,632,743	 5,701,440	
TN	 		 219,680	 		 219,729	 219,716	 219,719	 219,709	 219,715	

M7	

TP	
	

277,933	
	

0	 309,814	 246,419	 324,955	 291,445	
FP	

	
36	

	
0	 17	 0	 1	 29	

FN	
	

812,524	
	

1,090,457	 780,643	 844,038	 765,502	 799,012	
TN	 		 1,523,359	 		 1,523,395	 1,523,378	 1,523,395	 1,523,394	 1,523,366	

M8	

TP	 2,941,766	 471	 2,357,552	 0	 1,456,582	 1,614,136	 3,455,630	 1,463,894	
FP	 1	 0	 1	 0	 0	 0	 0	 2	
FN	 1,386,908	 4,328,203	 1,971,122	 4,328,674	 2,872,092	 2,714,538	 873,044	 2,864,780	
TN	 272,591	 272,592	 272,591	 272,592	 272,592	 272,592	 272,592	 272,590	

M9	

TP	 16,708	 13	 8,178	 0	 7,952	 4,905	 8,573	 7,362	
FP	 20	 0	 105	 0	 32	 16	 23	 23	
FN	 1,712,607	 1,729,302	 1,721,137	 1,729,315	 1,721,363	 1,724,410	 1,720,742	 1,721,953	
TN	 17,608	 17,628	 17,523	 17,628	 17,596	 17,612	 17,605	 17,605	
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Table	 4S6.	 Details	 of	 read	 breadth	 coverage	 analyses	 for	 HiSeq	 datasets	 (TP:	 true	 positive,	 FP:	 false	
positive,	FN:	false	negative,	TN:	true	negative).	
		 	

BLESS	 Coral	 HiTEC	 Musket	 RACER	 SGA	 ACE	 SHREC	

H1	

TP	 172,808	 135,129	 152,688	 152,602	 153,705	 132,858	 165,667	 134,076	
FP	 412	 285	 407	 551	 64	 48	 158	 830	
FN	 2,875,029	 2,912,708	 2,895,149	 2,895,235	 2,894,132	 2,914,979	 2,882,170	 2,913,761	
TN	 1,328,069	 1,328,196	 1,328,074	 1,327,930	 1,328,417	 1,328,433	 1,328,323	 1,327,651	

H2	

TP	 133,118	 123,460	 122,626	 127,407	 126,619	 118,842	 133,424	 120,531	
FP	 134	 2,076	 134	 175	 135	 127	 132	 193	
FN	 2,793,086	 2,802,744	 2,803,578	 2,798,797	 2,799,585	 2,807,362	 2,792,780	 2,805,673	
TN	 1,924,522	 1,922,580	 1,924,522	 1,924,481	 1,924,521	 1,924,529	 1,924,524	 1,924,463	

H3	

TP	 196,029	 179,016	 185,749	 183,448	 192,376	 183,348	 193,801	 175,092	
FP	 167	 17,345	 262	 161	 102	 87	 117	 208	
FN	 8,407,698	 8,424,711	 8,417,978	 8,420,279	 8,411,351	 8,420,379	 8,409,926	 8,428,635	
TN	 3,096,065	 3,078,887	 3,095,970	 3,096,071	 3,096,130	 3,096,145	 3,096,115	 3,096,024	

H4	

TP	 328,204	 205,969	 298,164	 312,129	 325,945	 312,368	 329,461	 289,456	
FP	 12	 31	 26	 73	 17	 4	 39	 97	
FN	 334,983	 457,218	 365,023	 351,058	 337,242	 350,819	 333,726	 373,731	
TN	 2,716,828	 2,716,809	 2,716,814	 2,716,767	 2,716,823	 2,716,836	 2,716,801	 2,716,743	

H5	

TP	 106,699	 95,417	 100,388	 100,828	 102,148	 94,175	 105,717	
	

FP	 1,791	 2,582	 1,821	 1,774	 1,813	 1,656	 1,859	
	

FN	 2,160,433	 2,171,715	 2,166,744	 2,166,304	 2,164,984	 2,172,957	 2,161,415	
	

TN	 2,319,618	 2,318,827	 2,319,588	 2,319,635	 2,319,596	 2,319,753	 2,319,550	 		

H6	

TP	 773,111	 12,358	 753,819	 724,219	 740,486	 553,995	 797,319	 640,984	
FP	 12	 0	 293	 339	 18	 2	 15	 345	
FN	 159,818	 920,571	 179,110	 208,710	 192,443	 378,934	 135,610	 291,945	
TN	 3,655,470	 3,655,482	 3,655,189	 3,655,143	 3,655,464	 3,655,480	 3,655,467	 3,655,137	

H7	

TP	 3,795,965	 3,376,412	
	

2,977,786	 3,730,912	 3,733,768	 3,835,798	
	

FP	 19,234	 75,288	
	

51,192	 10,769	 2,414	 51,445	
	

FN	 76,806,449	 77,226,002	
	

77,624,628	 76,871,502	 76,868,646	 76,766,616	
	

TN	 17,767,359	 17,711,305	 		 17,735,401	 17,775,824	 17,784,179	 17,735,148	 		

H8	

TP	 2,815,166	 2,634,766	
	

2,558,045	 2,786,766	 2,678,506	 2,951,320	 1,875,372	
FP	 71,750	 181,793	

	
239,556	 46,334	 1,361	 183,835	 3,876,572	

FN	 64,751,070	 64,931,470	
	

65,008,191	 64,779,470	 64,887,730	 64,614,916	 65,690,864	
TN	 30,768,303	 30,658,260	 		 30,600,497	 30,793,719	 30,838,692	 30,656,218	 26,963,481	

H9	

TP	 4,570,399	 2,579,150	
	

3,854,813	 3,967,219	 3,725,736	 4,518,676	 3,436,012	
FP	 354,948	 251,780	

	
384,511	 101,129	 30,056	 195,294	 385,819	

FN	 89,010,842	 91,002,091	
	

89,726,428	 89,614,022	 89,855,505	 89,062,565	 90,145,229	
TN	 22,000,880	 22,104,048	 		 21,971,317	 22,254,699	 22,325,772	 22,160,534	 21,970,009	

H10	

TP	 7,612,885	 7,322,763	
	

7,289,921	 7,343,606	 7,231,255	 7,644,107	 6,930,745	
FP	 204,628	 715,976	

	
233,197	 82,864	 23,145	 191,182	 289,134	

FN	 85,180,201	 85,470,323	
	

85,503,165	 85,449,480	 85,561,831	 85,148,979	 85,862,341	
TN	 22,948,023	 22,436,675	 		 22,919,454	 23,069,787	 23,129,506	 22,961,469	 22,863,517	

H11	

TP	
	 	 	

256,571,812	 276,655,312	 296,656,390	 276,406,914	
	

FP	
	 	 	

154,411	 79,662	 92,403	 230,686	
	

FN	
	 	 	

2,038,938,486	 2,018,854,986	 1,998,853,908	 2,019,103,384	
	

TN	 		 		 		 566,366,373	 566,441,122	 566,428,381	 566,290,098	 		

H12	

TP	
	 	 	

302,538,890	 331,954,805	 354,940,902	 328,902,412	
	

FP	
	 	 	

152,460	 98,782	 98,799	 326,574	
	

FN	
	 	 	

1,894,657,043	 1,865,241,128	 1,842,255,031	 1,868,293,521	
	

TN	 		 		 		 664,682,689	 664,736,367	 664,736,350	 664,508,575	 		

H13	

TP	
	 	 	

45,127,805	 56,164,775	 59,212,467	 56,010,699	
	

FP	
	 	 	

186,960	 50,923	 39,752	 80,998	
	

FN	
	 	 	

1,813,725,556	 1,802,688,586	 1,799,640,894	 1,802,842,662	
	

TN	 		 		 		 1,002,990,761	 1,003,126,798	 1,003,137,969	 1,003,096,723	 		
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Table	4.S7.	 Details	 of	K-mer	 depth	 coverage	 analyses	 for	MiSeq	 datasets	 (TP:	 true	 positive,	 FP:	 false	
positive,	FN:	false	negative,	TN:	true	negative).	
		 	

BLESS	 Coral	 HiTEC	 Musket	 RACER	 SGA	 ACE	 SHREC	

M1	

TP	 21,893,438	 34,274	 44,305,488	 0	 34,389,661	 8,730,200	 54,149,062	 36,832,223	
FP	 2,394,154	 215	 10,963,521	 0	 15,350	 1	 38,556	 14,960,390	
FN	 69,978,421	 91,837,585	 47,566,371	 91,871,859	 57,482,198	 83,141,659	 37,722,797	 55,039,636	
TN	 91,610,531	 94,004,470	 83,041,164	 94,004,685	 93,989,335	 94,004,684	 93,966,129	 79,044,295	

M2	

TP	
	

4,856,648	
	

60,059	 10,790,468	 8,966,676	 11,417,744	 9,456,749	
FP	

	
2,808	

	
93,922	 30,760	 3,731	 170,176	 150,325	

FN	
	
16,887,536	

	
21,684,125	 10,953,716	 12,777,508	 10,326,440	 12,287,435	

TN	 		 298,305,585	 		 298,214,471	 298,277,633	 298,304,662	 298,138,217	 298,158,068	

M3	

TP	
	
12,828,116	

	
84,335	 20,780,510	 13,276,357	 25,091,651	 80,893,557	

FP	
	

32,626	
	

9,436	 89,902	 27,630	 96,836	 71,193,733	
FN	

	
95,812,138	

	
108,555,919	 87,859,744	 95,363,897	 83,548,603	 27,746,697	

TN	 		 290,583,153	 		 290,606,345	 290,525,879	 290,588,151	 290,518,945	 219,422,048	

M4	

TP	
	
22,744,602	

	
317,160	 38,874,909	 22,062,396	 48,969,731	 56,686,283	

FP	
	

5,173	
	

9,929	 11,534	 749	 57,469	 41,688,332	
FN	

	
43,438,982	

	
65,866,424	 27,308,675	 44,121,188	 17,213,853	 9,497,301	

TN	 		 368,486,719	 		 368,481,963	 368,480,358	 368,491,143	 368,434,423	 326,803,560	

M5	

TP	
	

7,891,814	
	

362,587	 11,280,358	 7,850,095	 12,357,772	 109,894,061	
FP	

	
152,339	

	
28,024	 287,169	 129,662	 291,995	 114,632,174	

FN	
	
267,209,287	

	
274,738,514	 263,820,743	 267,251,006	 262,743,329	 165,207,040	

TN	 		 191,079,590	 		 191,203,905	 190,944,760	 191,102,267	 190,939,934	 76,599,755	

M6	

TP	
	
21,970,326	

	
26,998	 40,702,447	 21,722,408	 50,154,244	 133,655,363	

FP	
	

64,750	
	

10,786	 182,965	 53,775	 173,238	 102,101,690	
FN	

	
170,189,860	

	
192,133,188	 151,457,739	 170,437,778	 142,005,942	 58,504,823	

TN	 		 398,672,972	 		 398,726,936	 398,554,757	 398,683,947	 398,564,484	 296,636,032	

M7	

TP	
	
24,827,764	

	
0	 33,636,426	 19,623,389	 40,772,124	 49,398,205	

FP	
	

13,269	
	

0	 11,284	 975	 27,619	 18,913,350	
FN	

	
26,439,301	

	
51,267,065	 17,630,639	 31,643,676	 10,494,941	 1,868,860	

TN	 		 858,394,702	 		 858,407,971	 858,396,687	 858,406,996	 858,380,352	 839,494,621	

M8	

TP	 340,610,162	 9,076,621	 585,869,161	 0	 302,048,660	 116,207,551	 683,416,830	 502,807,883	
FP	 18,758,031	 104,255	 117,448,985	 0	 507,788	 1,176	 468,541	 153,389,743	
FN	 642,417,174	 973,950,715	 397,158,175	 983,027,336	 680,978,676	 866,819,785	 299,610,506	 480,219,453	
TN	 1,592,311,49

7	
1,610,965,27

3	
1,493,620,543	 1,611,069,528	1,610,561,740	 1,611,068,352	 1,610,600,987	 1,457,679,785	

M9	

TP	 82,152,087	 10,705,146	 749,779,497	 0	 106,159,433	 26,886,761	 133,143,795	 739,501,173	
FP	 11,028,358	 494,406	 638,265,470	 0	 3,365,501	 157,737	 1,934,286	 644,101,171	
FN	 1,578,901,51

6	
1,650,348,45

7	
911,274,106	 1,661,053,603	1,554,894,170	 1,634,166,842	 1,527,909,808	 921,552,430	

TN	 1,236,870,42
7	
1,247,404,37

9	
609,633,315	 1,247,898,785	1,244,533,284	 1,247,741,048	 1,245,964,499	 603,797,614	
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Table	4.S8.	Details	of	K-mer	depth	coverage	analyses	for	HiSeq	datasets	(TP:	true	positive,	FP:	false	positive,	
FN:	false	negative,	TN:	true	negative).	

	
		 		 BLESS	 Coral	 HiTEC	 Musket	 RACER	 SGA	 ACE	 SHREC	

H1	

TP	 9,297,926	 5,847,153	 15,800,449	 8,821,881	 8,797,946	 5,863,914	 11,803,953	 15,603,537	
FP	 532,563	 6,129	 7,059,095	 32,587	 37,403	 2,819	 206,355	 8,431,569	
FN	 7,841,484	 11,292,257	 1,338,961	 8,317,529	 8,341,464	 11,275,496	 5,335,457	 1,535,873	
TN	 258,596,899	 259,123,333	 252,070,367	 259,096,875	 259,092,059	 259,126,643	 258,923,107	 250,697,893	

H2	

TP	 5,853,038	 5,006,149	 17,606,358	 5,562,270	 5,777,671	 4,870,210	 6,466,719	 17,598,076	
FP	 51,075	 25,593	 11,495,391	 7,397	 9,289	 5,779	 17,637	 11,595,626	
FN	 12,646,883	 13,493,772	 893,563	 12,937,651	 12,722,250	 13,629,711	 12,033,202	 901,845	
TN	 245,344,736	 245,370,218	 233,900,420	 245,388,414	 245,386,522	 245,390,032	 245,378,174	 233,800,185	

H3	

TP	 6,715,796	 5,247,704	 14,055,870	 6,646,972	 6,936,005	 5,705,931	 8,121,552	 13,916,387	
FP	 332,996	 82,154	 7,545,806	 18,666	 53,259	 2,954	 205,520	 7,916,896	
FN	 29,023,737	 30,491,829	 21,683,663	 29,092,561	 28,803,528	 30,033,602	 27,617,981	 21,823,146	
TN	 350,846,165	 351,097,007	 343,633,355	 351,160,495	 351,125,902	 351,176,207	 350,973,641	 343,262,265	

H4	

TP	 69,781,071	 38,997,403	 81,651,891	 67,090,715	 70,508,576	 62,676,853	 73,897,785	 81,292,911	
FP	 637,860	 3,069	 10,324,820	 7,841	 22,219	 518	 127,374	 12,392,167	
FN	 13,321,403	 44,105,071	 1,450,583	 16,011,759	 12,593,898	 20,425,621	 9,204,689	 1,809,563	
TN	 633,127,486	 633,762,277	 623,440,526	 633,757,505	 633,743,127	 633,764,828	 633,637,972	 621,373,179	

H5	

TP	 24,408,883	 19,637,794	 202,987,312	 23,116,555	 24,041,508	 19,640,577	 26,088,041	
	

FP	 350,952	 123,677	 177,607,518	 95,514	 114,545	 82,165	 142,374	
	

FN	 249,341,042	 254,112,131	 70,762,613	 250,633,370	 249,708,417	 254,109,348	 247,661,884	
	

TN	 687,465,071	 687,692,346	 510,208,505	 687,720,509	 687,701,478	 687,733,858	 687,673,649	 		

H6	

TP	 192,667,583	 7,083,845	 232,202,234	 174,081,685	 189,580,164	 100,690,680	 218,182,920	 222,018,320	
FP	 565,059	 23,580	 32,102,623	 36,908	 58,752	 3,578	 196,475	 58,427,446	
FN	 48,918,078	 234,501,816	 9,383,427	 67,503,976	 52,005,497	 140,894,981	 23,402,741	 19,567,341	
TN	 1,503,671,278	 1,504,212,757	 1,472,133,714	 1,504,199,429	 1,504,177,585	 1,504,232,759	 1,504,039,862	 1,445,808,891	

H7	

TP	 103,291,755	 85,423,973	
	

91,520,472	 111,079,256	 98,206,533	 121,727,928	
	

FP	 5,741,744	 410,492	
	

1,589,044	 1,671,795	 83,418	 5,390,550	
	

FN	 127,788,034	 145,655,816	
	

139,559,317	 120,000,533	 132,873,256	 109,351,861	
	

TN	 2,326,194,723	 2,331,525,975	 		 2,330,347,423	 2,330,264,672	 2,331,853,049	 2,326,545,917	 		

H8	

TP	 107,017,510	 85,281,799	
	

111,060,650	 120,723,993	 89,174,601	 143,720,203	 388,443,620	
FP	 8,224,557	 567,682	

	
4,284,718	 1,991,390	 34,971	 6,825,599	 368,431,665	

FN	 888,990,088	 910,725,799	
	

884,946,948	 875,283,605	 906,832,997	 852,287,395	 607,563,978	
TN	 3,728,949,869	 3,736,606,744	 		 3,732,889,708	 3,735,183,036	 3,737,139,455	 3,730,348,827	 3,368,742,761	

H9	

TP	 202,317,831	 99,164,403	
	

194,063,684	 196,857,022	 150,344,610	 241,025,350	 929,764,788	
FP	 35,375,270	 8,821,549	

	
15,861,059	 9,514,193	 1,102,157	 13,141,006	 764,976,340	

FN	 954,636,724	 1,057,790,152	
	

962,890,871	 960,097,533	 1,006,609,945	 915,929,205	 227,189,767	
TN	 3,911,865,897	 3,938,419,618	 		 3,931,380,108	 3,937,726,974	 3,946,139,010	 3,934,100,161	 3,182,264,827	

H10	

TP	 303,785,349	 279,374,787	
	

311,092,393	 307,269,099	 270,168,655	 343,538,697	 1,223,613,081	
FP	 23,911,995	 24,705,560	

	
9,773,448	 7,396,974	 1,000,241	 11,039,941	 938,030,041	

FN	 1,230,288,285	 1,254,698,847	
	
1,222,981,241	 1,226,804,535	 1,263,904,979	 1,190,534,937	 310,460,553	

TN	 4,668,953,003	 4,668,159,438	 		 4,683,091,550	 4,685,468,024	 4,691,864,757	 4,681,825,057	 3,754,834,957	

H11	

TP	
	 	 	

2,384,660,385	 2,521,496,564	 2,047,453,498	 3,091,834,935	
	

FP	
	 	 	

22,844,814	 71,143,582	 3,819,127	 122,117,486	
	

FN	
	 	 	

4,044,853,283	 3,908,017,104	 4,382,060,170	 3,337,678,733	
	

TN	 		 		 		104,883,278,458	104,834,979,690	104,902,304,145	 104,784,005,786	 		

H12	

TP	
	 	 	

2,965,425,250	 3,390,896,152	 2,796,375,723	 3,943,946,512	
	

FP	
	 	 	

33,008,853	 93,872,959	 3,724,003	 155,846,813	
	

FN	
	 	 	

4,807,599,482	 4,382,128,580	 4,976,652,182	 3,829,078,220	
	

TN	 		 		 		126,494,954,183	126,434,090,077	126,524,235,860	 126,372,116,223	 		

H13	

TP	
	 	 	

2,193,391,842	 2,542,284,172	 1,951,397,719	 2,942,291,002	
	

FP	
	 	 	

30,449,373	 95,993,401	 3,649,395	 161,168,357	
	

FN	
	 	 	

4,699,768,996	 4,350,876,666	 4,941,766,326	 3,950,869,836	
	

TN	 		 		 		133,146,292,561	133,080,748,533	133,173,089,332	 133,015,573,577	 		
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Table	4.S9.	Details	of	K-mer	breadth	coverage	analyses	for	MiSeq	datasets	(TP:	true	positive,	FP:	false	
positive,	FN:	false	negative,	TN:	true	negative).	
	

	
	

BLESS	 Coral	 HiTEC	 Musket	 RACER	 SGA	 ACE	 SHREC	

M1	

TP	 0	 0	 0	 0	 5	 0	 3	 4	
FP	 250	 0	 1,604	 0	 22	 0	 272	 151	
FN	 133	 133	 133	 133	 128	 133	 130	 129	
TN	 4,541,767	 4,542,017	 4,540,413	 4,542,017	 4,541,995	 4,542,017	 4,541,745	 4,541,866	

M2	

TP	
	

5	
	

48	 43	 13	 244	 170	
FP	

	
955	

	
44	 4,038	 2,424	 7,192	 4,052	

FN	
	

60,527	
	

60,484	 60,489	 60,519	 60,288	 60,362	
TN	 		 4,262,574	 		 4,263,485	 4,259,491	 4,261,105	 4,256,337	 4,259,477	

M3	

TP	
	

51	
	

30	 259	 9	 201	 1,009	
FP	

	
21,214	

	
96	 30,752	 23,649	 32,008	 30,310	

FN	
	

811,216	
	

811,237	 811,008	 811,258	 811,066	 810,258	
TN	 		 3,986,045	 		 4,007,163	 3,976,507	 3,983,610	 3,975,251	 3,976,949	

M4	

TP	
	

2	
	

0	 8	 0	 2	 32	
FP	

	
425	

	
0	 731	 438	 1,132	 1,131	

FN	
	

120,125	
	

120,127	 120,119	 120,127	 120,125	 120,095	
TN	 		 4,697,974	 		 4,698,399	 4,697,668	 4,697,961	 4,697,267	 4,697,268	

M5	

TP	
	

84	
	

73	 363	 235	 364	 1,644	
FP	

	
109,746	

	
13,976	 182,441	 96,309	 198,528	 173,136	

FN	
	
1,464,470	

	
1,464,481	 1,464,191	 1,464,319	 1,464,190	 1,462,910	

TN	 		 1,364,326	 		 1,460,096	 1,291,631	 1,377,763	 1,275,544	 1,300,936	

M6	

TP	
	

182	
	

99	 917	 21	 778	 3,764	
FP	

	
39,520	

	
40	 66,792	 42,902	 69,642	 65,059	

FN	
	
1,285,818	

	
1,285,901	 1,285,083	 1,285,979	 1,285,222	 1,282,236	

TN	 		 4,654,927	 		 4,694,407	 4,627,655	 4,651,545	 4,624,805	 4,629,388	

M7	

TP	
	

0	
	

0	 1	 0	 1	 1	
FP	

	
1	

	
0	 13	 3	 6	 14	

FN	
	

195	
	

195	 194	 195	 194	 194	
TN	 		 2,604,046	 		 2,604,047	 2,604,034	 2,604,044	 2,604,041	 2,604,033	

M8	

TP	 0	 0	 9	 0	 0	 0	 3	 4	
FP	 8	 0	 3	 0	 6	 1	 9	 7	
FN	 120	 120	 111	 120	 120	 120	 117	 116	
TN	 4,542,022	 4,542,030	 4,542,027	 4,542,030	 4,542,024	 4,542,029	 4,542,021	 4,542,023	

M9	

TP	 1,046	 2,926	 8,255	 0	 3,433	 381	 5,221	 9,386	
FP	 126,501	 8,311	 136,797	 0	 136,470	 48,656	 150,337	 126,496	
FN	 314,851	 312,971	 307,642	 315,897	 312,464	 315,516	 310,676	 306,511	
TN	 818,703	 936,893	 808,407	 945,204	 808,734	 896,548	 794,867	 818,708	
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Table	 4.S10.	 Details	 of	K-mer	 breadth	 coverage	 analyses	 for	 HiSeq	 datasets	 (TP:	 true	 positive,	 FP:	 false	
positive,	FN:	false	negative,	TN:	true	negative).	

		 	
BLESS	 Coral	 HiTEC	 Musket	 RACER	 SGA	 ACE	 SHREC	

H1	

TP	 61	 0	 295	 11	 36	 3	 266	 225	
FP	 2,003	 1,100	 4,222	 2,546	 1,932	 1,322	 4,992	 2,853	
FN	 63,068	 63,129	 62,834	 63,118	 63,093	 63,126	 62,863	 62,904	
TN	 4,258,929	 4,259,832	 4,256,710	 4,258,386	 4,259,000	 4,259,610	 4,255,940	 4,258,079	

H2	

TP	 0	 0	 21	 5	 34	 15	 33	 28	
FP	 5,598	 5,627	 5,588	 5,449	 5,584	 5,105	 5,791	 5,570	
FN	 293,703	 293,703	 293,682	 293,698	 293,669	 293,688	 293,670	 293,675	
TN	 4,519,225	 4,519,196	 4,519,235	 4,519,374	 4,519,239	 4,519,718	 4,519,032	 4,519,253	

H3	

TP	 10	 55	 176	 78	 46	 0	 67	 187	
FP	 2,138	 10,170	 2,674	 1,934	 2,268	 1,756	 2,450	 2,215	
FN	 198,661	 198,616	 198,495	 198,593	 198,625	 198,671	 198,604	 198,484	
TN	 11,216,232	 11,208,200	 11,215,696	 11,216,436	 11,216,102	 11,216,614	 11,215,920	 11,216,155	

H4	

TP	 17	 0	 2	 11	 2	 8	 1	 7	
FP	 143	 30	 621	 176	 225	 95	 2,615	 399	
FN	 35,452	 35,469	 35,467	 35,458	 35,467	 35,461	 35,468	 35,462	
TN	 3,326,335	 3,326,448	 3,325,857	 3,326,302	 3,326,253	 3,326,383	 3,323,863	 3,326,079	

H5	

TP	 77	 25	 360	 167	 173	 73	 100	
	

FP	 83,918	 72,191	 85,300	 82,308	 84,682	 71,129	 90,839	
	

FN	 722,838	 722,890	 722,555	 722,748	 722,742	 722,842	 722,815	
	

TN	 3,735,317	 3,747,044	 3,733,935	 3,736,927	 3,734,553	 3,748,106	 3,728,396	 		

H6	

TP	 0	 0	 13	 1	 0	 0	 0	 3	
FP	 42	 0	 107	 204	 55	 4	 155	 112	
FN	 1,910	 1,910	 1,897	 1,909	 1,910	 1,910	 1,910	 1,907	
TN	 4,540,198	 4,540,240	 4,540,133	 4,540,036	 4,540,185	 4,540,236	 4,540,085	 4,540,128	

H7	

TP	 3,832	 1,222	
	

18,197	 11,401	 3,262	 24,312	
	

FP	 170,571	 89,004	
	

458,444	 262,825	 68,264	 822,654	
	

FN	 3,267,733	 3,270,343	
	

3,253,368	 3,260,164	 3,268,303	 3,247,253	
	

TN	 86,888,901	 86,970,468	 		 86,601,028	 86,796,647	 86,991,208	 86,236,818	 		

H8	

TP	 931	 909	
	

10,499	 4,241	 113	 10,491	 16,995	
FP	 190,578	 55,384	

	
907,452	 432,166	 14,235	 1,405,121	 1,435,642	

FN	 495,905	 495,927	
	

486,337	 492,595	 496,723	 486,345	 479,841	
TN	 89,643,623	 89,778,817	 		 88,926,749	 89,402,035	 89,819,966	 88,429,080	 88,398,559	

H9	

TP	 5,029	 3,296	
	

30,175	 12,532	 1,609	 18,015	 54,541	
FP	 2,330,548	 1,271,660	

	
2,632,483	 1,329,931	 439,431	 2,100,960	 2,610,962	

FN	 7,678,630	 7,680,363	
	

7,653,484	 7,671,127	 7,682,050	 7,665,644	 7,629,118	
TN	 102,855,170	 103,914,058	 		 102,553,235	 103,855,787	 104,746,287	 103,084,758	 102,574,756	

H10	

TP	 2,055	 10,548	
	

16,401	 8,070	 912	 8,612	 32,813	
FP	 1,277,631	 2,038,716	

	
1,570,921	 1,003,571	 337,009	 1,654,216	 1,759,713	

FN	 5,178,012	 5,169,519	
	

5,163,666	 5,171,997	 5,179,155	 5,171,455	 5,147,254	
TN	 106,411,679	 105,650,594	 		 106,118,389	 106,685,739	 107,352,301	 106,035,094	 105,929,597	

H11	

TP	
	 	 	

114,557	 117,413	 14,610	 142,200	
	

FP	
	 	 	

1,681,767	 1,626,134	 1,231,081	 3,027,118	
	

FN	
	 	 	

24,778,064	 24,775,208	 24,878,011	 24,750,421	
	

TN	 		 		 		 2,165,531,157	 2,165,586,790	 2,165,981,843	 2,164,185,806	 		

H12	

TP	
	 	 	

124,522	 131,834	 20,816	 209,891	
	

FP	
	 	 	

1,747,295	 1,755,678	 1,299,126	 3,345,399	
	

FN	
	 	 	

22,575,726	 22,568,414	 22,679,432	 22,490,357	
	

TN	 		 		 		 2,167,658,002	 2,167,649,619	 2,168,106,171	 2,166,059,898	 		

H13	

TP	
	 	 	

180,126	 194,414	 22,569	 213,213	
	

FP	
	 	 	

1,777,300	 1,983,440	 1,403,458	 3,823,523	
	

FN	
	 	 	

31,783,772	 31,769,484	 31,941,329	 31,750,685	
	

TN	 		 		 		 2,158,364,347	 2,158,158,207	 2,158,738,189	 2,156,318,124	 		
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Table	 4.S11.	 Details	 of	 K-mer	 breadth	 coverage	 analyses	 for	 MiSeq	 datasets.		
Coverage	depth/breadth	of	reads/K-mers	of	ACE,	compared	to	that	of	 the	best	tool	 in	(11).	Highlights	
indicate	the	level	of	improvement.	
	

Coverage	Depth	 Coverage	breadth	
	 Read	 Kmer	 Read	 Kmer	
	 Best	 	 ACE	 Best	 	 ACE	 Best	 	 ACE	 Best	 	 ACE	

M1	 SGA	 27.38	 56.74	 RACER	 69.0
7	

79.68	 BLESS	 6.98	 9.36	 SGA	 100.00	 99.99	
M2	 RACER	 85.29	 84.93	 RACER	 96.5

7	
96.72	 RACER	 23.43	 23.36	 Coral	 98.58	 98.44	

M3	 RACER	 33.26	 34.00	 RACER	 77.9
7	

79.05	 RACER	 7.61	 7.75	 Coral	 82.72	 82.50	
M4	 RACER	 88.13	 92.37	 RACER	 93.7

1	
96.03	 RACER	 20.79	 21.54	 Coral	 97.50	 97.48	

M5	 RACER	 3.21	 3.22	 RACER	 43.3
6	

43.59	 RACER	 0.963	 0.961	 SGA	 46.89	 43.42	
M6	 RACER	 25.99	 27.38	 RACER	 74.3

4	
75.94	 RACER	 6.97	 7.23	 Coral	 77.84	 77.35	

M7	 RACER	 95.74	 97.01	 RACER	 98.0
6	

98.84	 RACER	 70.13	 70.71	 Coral	 99.99	 99.99	
M8	 HiTEC	 39.47	 73.91	 HiTEC	 80.1

6	
88.43	 BLESS	 69.85	 81.03	 HiTEC	 100.00	 100.0

0	M9	 RACER	 0.68	 0.74	 HiTEC	 46.7
3	

47.41	 BLESS	 1.96	 1.50	 Coral	 74.52	 63.44	
H1	 BLESS	 92.40	 92.76	 Musket	 96.9

8	
97.99	 BLESS	 34.29	 34.14	 Coral	 98.51	 98.43	

H2	 BLESS	 89.94	 90.05	 HiTEC	 95.3
1	

95.43	 BLESS	 42.417	 42.424	 SGA	 93.80	 93.79	
H3	 RACER	 88.15	 88.25	 RACER	 92.5

4	
92.81	 BLESS	 28.14	 28.12	 SGA	 98.24	 98.23

9	H4	 RACER	 97.43	 97.91	 HiTEC	 98.3
6	

98.70	 BLESS	 90.09	 90.13	 Coral	 98.94	 98.87	
H5	 BLESS	 54.98	 55.03	 HiTEC	 74.1

7	
74.23	 BLESS	 52.88	 52.85	 SGA	 82.52	 82.09	

H6	 BLESS	 93.16	 96.22	 HiTEC	 97.6
2	

98.65	 BLESS	 96.51	 97.04	 Coral	 99.96	 99.95	
H7	 SGA	 84.98	 85.42	 RACER	 95.2

5	
95.52	 BLESS	 21.916	 21.924	 SGA	 96.31	 95.49	

H8	 RACER	 77.81	 78.13	 RACER	 81.4
7	

81.85	 BLESS	 34.13	 34.15	 SGA	 99.43	 97.91	
H9	 BLESS	 55.98	 57.17	 RACER	 81.0

0	
81.80	 BLESS	 22.92	 23.01	 SGA	 92.80	 91.35	

H1
0	

BLESS	 55.73	 56.57	 Musket	 80.2
0	

80.70	 BLESS	 26.36	 26.40	 SGA	 95.11	 93.95	
H1
1	

RACER	 80.51	 78.41	 RACER	 96.4
3	

96.89	 SGA	 30.16	 29.44	 SGA	 98.81	 98.73	
H1
2	

RACER	 82.41	 80.97	 RACER	 96.6
7	

97.03	 SGA	 35.63	 34.71	 SGA	 98.91	 98.82	
H1
3	

RACER	 84.78	 84.75	 RACER	 96.8
3	

97.06	 SGA	 37.12	 37.01	 SGA	 98.48	 98.38	
	 Averag

e	
65.34	 68.73	 	 84.6

7	
86.11	 	 34.60	 35.22	 	 92.27	 91.30	

	 	



ACE:	accurate	correction	of	errors	using	K-mer	tries	

	78	

References	

1.		 Schröder	J,	Schröder	H,	Puglisi	SJ,	Sinha	R,	Schmidt	B.	SHREC:	a	short-read	error	correction	method.	
Bioinformatics.	2009;25(17):2157–63.		

2.		 Ilie	 L,	 Fazayeli	 F,	 Ilie	 S.	 HiTEC:	 accurate	 error	 correction	 in	 high-throughput	 sequencing	 data.	
Bioinformatics.	2011;27(3):295–302.		

3.		 Salmela	L.	Correction	of	sequencing	errors	in	a	mixed	set	of	reads.	Bioinformatics.	2010;26(10):1284–
90.		

4.		 Simpson	JT,	Durbin	R.	Efficient	de	novo	assembly	of	large	genomes	using	compressed	data	structures.	
Genome	Res.	2012;22(3):549–56.		

5.		 Heo	Y,	Wu	X-L,	Chen	D,	Ma	J,	Hwu	W-M.	BLESS:	bloom	filter-based	error	correction	solution	for	high-
throughput	sequencing	reads.	Bioinformatics.	2014;30(10):1354–62.		

6.		 Ilie	 L,	 Molnar	 M.	 RACER:	 Rapid	 and	 accurate	 correction	 of	 errors	 in	 reads.	 Bioinformatics.	
2013;29(19):2490–3.		

7.		 Schulz	MH,	Weese	D,	Holtgrewe	M,	Dimitrova	V,	Niu	S,	Reinert	K,	et	al.	Fiona:	a	parallel	and	automatic	
strategy	for	read	error	correction.	Bioinformatics.	2014;30(17):i356–63.		

8.		 Kelley	 DR,	 Schatz	 MC,	 Salzberg	 SL.	 Quake:	 quality-aware	 detection	 and	 correction	 of	 sequencing	
errors.	Genome	Biol.	2010;11(11):R116.		

9.		 Liu	Y,	Schröder	J,	Schmidt	B.	Musket:	a	multistage	k-mer	spectrum-based	error	corrector	for	Illumina	
sequence	data.	Bioinformatics.	2013;29(3):308–15.		

10.		Salmela	 L,	 Schroder	 J.	 Correcting	 errors	 in	 short	 reads	 by	 multiple	 alignments.	 Bioinformatics.	
2011;27(11):1455–61.		

11.		Molnar	M,	Ilie	L.	Correcting	Illumina	data.	Brief	Bioinform.	2015;16(4):588–99.		
12.		Brudno	M.	 LAGAN	and	Multi-LAGAN:	 efficient	 tools	 for	 large-scale	multiple	 alignment	 of	 genomic	

DNA.	Genome	Res.	2003;13(4):721–31.		
13.		Sheikhizadeh	S,	Hosseini	S.	 SMOTER,	a	 structured	motif	 finder	based	on	an	exhaustive	 tree-based	

algorithm.	Curr	Bioinform.	2014;9(1):34–43.	
	



	 79	

 
 
 
Chapter	5 

Pan-genomic	read	mapping	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

This	chapter	is	published	as:	

Sheikhizadeh	 S,	de	 Ridder	 D,	 Schranz	ME,	 Smit	 S.	 Pan-genomic	 read	mapping.	 bioRxiv.	
2019.		

DOI:	10.1101/813634	 	



Pan-genomic	read	mapping	

	80	

Abstract	

In	modern	 genomics,	 mapping	 reads	 to	 a	 single	 reference	 genome	 is	 common	 practice.	

However,	 a	 reference	genome	does	not	necessarily	 accurately	 represent	a	population	or	

species	and	as	a	result	a	substantial	percentage	of	reads	often	cannot	be	mapped.	A	number	

of	graph-based	variation-aware	mapping	methods	have	recently	been	proposed	to	remedy	

this.	Here,	we	present	an	alternative	multi-reference	approach,	which	aligns	reads	to	large	

collections	 of	 genomes	 simultaneously.	 Our	 pan-genomic	 approach	 is	 implemented	 as	

extension	to	our	pan-genomics	suite	PanTools*.	Through	direct	comparisons	to	state-of-the-

art	tools,	we	show	that	it	is	as	accurate	and	more	efficient	on	large	numbers	of	genomes.	We	

successfully	applied	PanTools	to	map	genomic	and	metagenomic	reads	to	large	collections	

of	viral,	archaeal,	bacterial,	fungal	and	plant	genomes.	Pan-genomic	read	mapping	resolves	

the	reference	bias	in	mapping	approaches,	by	including	regions	that	are	entirely	missing	in	

the	 reference	 (but	 present	 in	 another	 accession	 or	 strain)	 or	 very	 different	 from	 the	

reference.	This	enables	a	more	extensive	analysis	of	the	genetic	makeup	of	non-reference	

species	or	strains/accessions.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
*	https://git.wur.nl/bioinformatics/pantools	
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5.1 Introduction		

Mapping	 short	 reads	 against	 a	 reference	 genome	 is	 the	 starting	 point	 of	 almost	 all	

quantitative	and	comparative	genomics	pipelines	[1].	However,	it	suffers	from	a	systematic	

bias	 towards	 the	 reference	 alleles	 (often	 referred	 to	 as	 reference	bias):	 reads	which	are	

highly	polymorphic	or	 totally	absent	 in	the	reference	are	discarded.	This	means	variants	

that	 could	be	of	 great	 value,	 for	 example	 in	disease	diagnostics	 in	humans	or	 resistance	

genes	 in	 plants,	 are	 potentially	 overlooked.	 Mapping	 reads	 against	 multiple	 genomes	

representing	a	genus,	a	species	or	a	population,	i.e.	a	pan-genome,	partially	addresses	this	

problem,	 allowing	 the	 detection	 of	 variants	 that	 would	 not	 be	 detected	 using	 a	 single	

reference.	 A	 variety	 of	 graph-based	 pan-genomic	 approaches	 have	 therefore	 emerged	

recently,	which	can	generally	be	categorized	as	either	variation-aware	or	multi-reference.	

Variation-aware	mapping	is	useful	for	applications	in	which	variation	between	individuals	

is	 limited	 and	 measured	 extensively,	 such	 as	 in	 human	 genetics	 [2].	 Multi-reference	

approaches	in	contrast	are	more	suited	for	applications	in	which	more	divergent	individuals	

are	studied,	such	as	in	comparative	genomics	[3].		

	BWBBLE	 [4]	 is	 a	 variation-aware	 method	 that	 maps	 reads	 against	 a	 BWT-indexed	

linear	multi-genome	 reference,	 built	 from	one	 reference	 and	a	 set	 of	 variant	 (VCF)	 files.	

Graphtyper	 [5]	 iteratively	 enriches	 a	 variation-aware	 graph	 with	 known	 or	 discovered	

variants	for	read	mapping	and	population-scale	genotyping.	Similarly,	the	variation	graph	

toolkit	 [6]	 constructs	 a	 bi-directed	 variation-aware	 graph	 as	 a	 reference	 to	 improve	 the	

accuracy	of	mapping,	specifically	in	highly	polymorphic	regions.	GenomeMapper	[7]	is	the	

first	multi-reference	approach	that	represents	a	reference	genome	and	its	differences	to	a	

set	of	other	genomes	in	a	hash-based	graph	structure	against	which	reads	can	be	aligned.	

GCSA	[8]	converts	a	multiple	sequence	alignment	(MSA)	of	genomes	into	a	finite	automaton	

which	is	BWT-indexed	to	allow	pattern	search.	PanVC	[9]	uses	the	MSA	as	a	pan-genome	

reference	and	map	reads	against	the	matrix,	where	the	heaviest	path	serves	as	an	ad	hoc	
reference	to	improve	the	accuracy	of	downstream	variant	callers.	

These	 approaches,	mostly	 targeting	 the	 human	 genome	 and/or	 focusing	 on	 specific	

variable	regions,	demonstrate	 that	using	broader	reference	representations	can	 improve	

read	mapping.	However,	they	do	not	suffice	to	study	collections	of	individual	genomes	of	

highly	dynamic	species	such	as	fungi	and	plants.	In	such	collections,	genome	co-linearity	is	

often	 not	 preserved;	moreover,	 scalability	 becomes	 an	 issue	 as	 the	 number	 of	 genomes	

grows.	To	tackle	these	issues,	we	propose	a	multi-reference	read	mapping	approach,	as	an	

extension	 to	 PanTools.	 Briefly,	 PanTools	 is	 a	 suite	 of	 tools	 for	 large-scale	 comparative	

analysis	 building	 on	 a	 pan-genome	 representation	 stored	 in	 a	 graph	 database	 [10].	 Our	

mapping	method	can	align	millions	of	short	reads	to	hundreds	of	eukaryotic	or	thousands	

of	prokaryotic	genomes	simultaneously,	producing	one	SAM/BAM	file	per	genome.	It	also	

provides	 a	 competitive	 mapping	 mode,	 which	 is	 useful	 for	 abundance	 estimation	 and	
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binning	in	metagenomics	samples.	We	demonstrate	that	PanTools	is	as	accurate	as	the	state-

of	the-art	read	mappers	and	per-genome	mapping	time	decreases	with	increasing	numbers	

of	genomes.	

5.2 Results	

We	have	extended	our	pan-genome	tool	suite,	PanTools,	with	a	method	to	efficiently	map	

genomic	reads	against	multiple	genomes	in	a	graph-based	representation	(the	algorithm	is	

described	under	Methods).	Conceptually,	this	eliminates	the	strong	reference	bias,	which	

stems	from	mapping	to	a	single	genome.	Reads	that	do	not	map	on	one	genome	may	map	on	

another	genome,	yielding	a	more	complete	picture	of	the	genomic	makeup	of	a	sample.	In	

application,	PanTools	offers	two	advantages	that	allow	mapping	efficiency	to	improve	as	the	

number	of	 genomes	 grows.	 First,	 a	 single	 joint	k-mer	 index	 is	 available	 for	 all	 genomes,	
resulting	in	fast	identification	of	candidate	hits	that	can	then	be	targeted	for	full	alignment.	

Second,	redundant	sequence	alignments	are	avoided	by	recording	previous	alignments;	if	

two	genomes	are	similar,	fewer	alignments	have	to	be	made.	

PanTools	 features	two	modes	of	read	mapping.	 In	 ‘normal’	mode,	genomic	reads	are	

independently	mapped	against	all	genomes	in	the	pan-genome,	identifying	the	most	likely	

mapping	location	of	each	read	in	each	genome.	In	contrast,	in	‘competitive’	mode	reads	are	

mapped	 to	 the	most	 likely	 location	 in	 the	 entire	 pan-genome,	 such	 that	 a	 read	with	 the	

highest	mapping	score	on	genome	A	will	not	be	mapped	to	genome	B	with	a	lower	score.	

Competitive	mapping	 is	 useful	 in	 various	 applications	 involving	mixed	 samples,	 such	 as	

metagenomics	samples,	pathogen/host	samples,	or	nuclear/organellar	samples.	

Here	 we	 present	 the	 performance	 of	 PanTools	 as	 a	 multi-genome	 read	 mapper	 on	

various	 sets	of	 simulated	and	 real	data	 from	bacteria,	 fungi	 and	plants.	We	describe	 the	

accuracy	and	runtime	of	our	approach,	compared	to	a	number	of	other	read	mappers.	In	

addition,	 we	 present	 two	 use	 cases,	 demonstrating	 scalability	 to	 large	 genomes	 and	

application	in	metagenomics.	

5.2.1 PanTools	is	as	effective	as	current	read	mappers		

To	learn	about	accuracy	and	speed	of	pan-genomic	read	mapping	compared	to	state-of-the-

art	single-reference	mappers,	we	simulated	read	data	from	two	Illumina	platforms	(HiSeq	

2500	 and	MiSeq	 v3)	 and	mapped	 these	 against	 the	 reference	 genomes	 of	E.	 coli	 and	 S.	
cerevisiae.	There	 is	often	a	 trade-off	between	runtime	and	accuracy	of	 read-mappers,	 i.e.	
more	accurate	results	can	be	attained	by	using	more	sensitive	settings	at	the	cost	of	a	higher	

runtime.		

While	the	speed	advantage	of	PanTools	becomes	apparent	in	a	multi-genome	context,	

this	experiment	demonstrates	that,	even	on	a	single	genome,	PanTools	achieves	comparable	

speed	and	accuracy	as	widely	used	methods.	Figure	5.1	shows	time-accuracy	plots	of	five	

read	mappers	(running	with	default	settings	on	a	single	processing	core):	PanTools;	 two	
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BWT-based	methods,	 BWA-MEM	 [11]	 and	 Bowtie2	 [12];	 and	 two	 hash-based	mappers,	

Stampy	[13]	and	NextGenMap	[14].	There	is	much	more	variation	in	running	time	than	in	

accuracy,	mostly	caused	by	Stampy	and	Bowtie2	deviating	from	BWA-MEM,	NextGenMap	

and	PanTools,	which	are	highly	comparable	in	terms	of	speed	and	accuracy	(Additional	file	

1:	Experiment	1).		

	

5.2.2 The	pan-genomic	approach	becomes	more	efficient	as	the	number	of	genomes	
grows	

We	 compared	 the	 scalability	 of	 the	 best	 performing	 tools	 (PanTools,	 BWA-MEM	 and	

NextGenMap)	to	large	sets	of	genomes.	To	learn	about	the	effect	of	evolutionary	distance	

between	genomes,	we	mapped	simulated	S.	cerevisiae	reads	against	four	pan-genomes	of	
ten	fungi	chosen	at	the	levels	of	strain	(ST),	species	(SP),	genus	(GN)	and	family	(FM)	(see	

Additional	 file	 1:	 Experiment	 2).	 Figure	 5.2A	 shows	 the	 average	 runtime	per	 genome	of	

mapping	reads	against	1-10	genomes.	For	PanTools,	as	a	multi-genome	read	mapper,	this	

time	 is	 calculated	 as	 the	 total	 runtime	 divided	 by	 the	 number	 of	 genomes	 in	 each	

experiment.	For	the	singe-genome	read	mappers,	BWA-MEM	and	NextGenMap,	it	reflects	

the	average	of	runtimes	up	until	each	point.	All	tools	were	running	with	8	threads.		

In	PanTools	the	runtime	per	genome	decreased	when	the	number	of	genomes	in	the	

pan-genome	increased;	the	more	related	the	genomes	were,	the	higher	the	speedup.	The	

runtime	of	BWA-MEM	was	very	 stable,	 around	30	 seconds	per	 genome,	whereas	 that	of	

NextGenMap	radically	increased	as	more	divergent	genomes	were	included	in	the	set.	All	

the	 tools	 had	 very	 similar	 mapping	 percentages	 at	 the	 strain	 and	 species	 levels,	 yet	

NexGenMap	had	 the	highest	mapping	percentage	on	diverged	genomes	at	 the	genus	and	

Figure	5.1.	Runtime	versus	accuracy	plots	of	five	read	mappers	on	four	simulated	Illumina	datasets	shows	
that	PanTools	is	as	accurate	as	the	other	tools	and	much	faster	than	Stampy	and	Bowtie2	especially	on	MiSeq	
data.	Accuracy	is	presented	in	terms	of	the	F-score	(see	Methods).	
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family	 levels	 (Figure	5.2B),	 correlated	with	 its	high	runtime.	The	mapping	percentage	of	

PanTools	 can	 likewise	be	 increased	 (at	 the	cost	of	a	higher	 runtime)	 through	parameter	

settings.	However,	we	chose	 less	sensitive	default	settings,	because	 in	many	applications	

read	mapping	is	limited	to	the	species	level.	PanTools	parameters	and	settings	are	described	

in	detail	in	the	Methods.	

PanTools’	speed	is	largely	due	to	avoiding	redundant	alignments	by	maintaining	a	list	

of	previous	alignments.	When	the	constituent	genomes	are	closely	related,	 the	chance	of	

finding	 an	 alignment	 in	 this	 list	 is	 high.	 Table	 5.1	 shows	 that	 this	 approach	 saves	

computations	in	this	experiment,	in	particular	when	genomes	are	highly	similar.	

	
Table	5.1.	PanTools	avoids	redundant	sequence	alignments.	
	

Taxonomy level Candidate hits Alignments performed Alignments avoided 

Strain S288C (ST) 12,767,990 1,030,981 91.9% 

Species S. cerevisiae (SP) 9,041,689 4,773,482 47.2% 

Genus Saccharomyces (GN) 5,611,299 5,015,910 10.6% 

Family Saccharomycetaceae (FM) 2,437,554 2,175,803 10,7% 
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Figure	5.2.	Mapping	simulated	reads	from	S.	cerevisiae	strain	S288C	on	four	pan-genomes	of	ten	fungi.	(A)	
Runtime	of	three	methods	at	the	level	of	strain	S288C,	species	S.	cerevisiae,	genus	Saccharomyces,	and	family	
Saccharomycetaceae.	Genomes	are	sorted	in	decreasing	order	by	the	average	number	of	reads	that	the	tools	
managed	to	map,	roughly	reflecting	their	similarity	to	the	reference	genome	of	S.	cerevisiae.	(B)	The	mapping	
percentage	depends	on	the	similarity	between	the	sequenced	strain	and	the	reference	genome	and	on	the	
default	sensitivity	of	the	methods.	
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5.2.3 Use	case	1:	Pan-genomic	read	mapping	in	plants			

To	illustrate	the	utility	of	mapping	to	a	panel	of	genomes	rather	than	to	a	single	reference,	

we	applied	PanTools	to	a	case	typically	encountered	in	plant	genomics:	mapping	reads	of	

various	 (often	 relatively	distant)	 accessions	 to	 a	 reference	 genome.	We	 started	with	 the	

model	plant,	Arabidopsis	thaliana,	and	mapped	reads	of	accession	DJA-1	(Illumina	library	
ERR2721960)	to	the	reference	genome	Col-0	(both	nuclear	and	organellar	sequences).	In	

this	 experiment,	 6.25%	 of	 reads	 could	 not	 be	 mapped	 to	 the	 reference,	 potentially	

preventing	the	discovery	of	important	variants.	We	next	mapped	these	unmapped	reads	to	

the	pan-genome	of	19	accessions	of	A.	thaliana	[15]	and	managed	to	map	4-6%	of	these	on	
other	 accessions.	 Clustering	 these	 reads	 based	 on	 overlap	 reveals	 moderately	 covered	

genomic	regions	(coverage	≥	10),	which	are	either	absent	 from	or	highly	different	 in	the	

reference	Col-0.	We	detected	from	476	to	915	of	such	regions	with	sizes	ranging	from	151	

to	6,124	base	pairs	in	the	other	accessions	(Table	5.2).		
	
Table	 5.2.	 Reads	 unmapped	 to	 the	 A.	 thaliana	 reference	 Col-0	 re-aligned	 to	 a	 pan-genome	 of	 19	
accessions.	Around	5%	of	reads	mapped	to	the	other	accessions	could	be	assembled	into	regions	which	
are	possibly	absent	or	highly	polymorphic	in	the	reference	of	A.	thaliana.	

Genome Accession 
Number of 

reads 

Mapping 

percentage 

Number of 

regions 

Length of regions 

(min-avg-max) 

1 Col-0 -    -    -    -  
2 Bur-0  95,362   5.72  803 (151-439-2917) 
3 Can-0  100,220   6.01  914 (151-398-2917) 
4 Ct-1  72,973   4.38  478 (151-461-2917) 
5 Edi-0  94,400   5.66  815 (151-429-6124) 
6 Hi-0  68,272   4.10  485 (151-409-2918) 
7 Kn-0  92,001   5.52  778 (151-404-2918) 
8 Ler-0  91,870   5.51  780 (151-407-5000) 
9 Mt-0  73,848   4.43  564 (151-386-2574) 
10 No-0  85,449   5.13  710 (151-437-3306) 
11 Oy-0  70,119   4.21  476 (151-447-3103) 
12 Po-0  72,800   4.37  590 (151-389-2085) 
13 Rsch-4  84,523   5.07  706 (151-434-2917) 
14 Sf-2  97,827   5.87  915 (151-397-2897) 
15 Tsu-0  90,339   5.42  780 (151-424-2903) 
16 Wil-2  93,771   5.63  798 (151-406-2903) 
17 Ws-0  90,897   5.45  745 (151-437-2917) 
18 Wu-0  81,783   4.91  652 (151-447-2917) 
19 Zu-0  90,171   5.41  759 (151-426-2917) 
	

As	an	example,	we	found	a	region	of	248	base	pairs	absent	in	the	reference	Col-0	(first	

row,	position	Chr1:24,201,231)	as	well	as	 in	accession	Wil-2	(position	Chr1:23,713,822),	

but	present	in	all	other	accessions.	Figure	5.3	shows	the	multiple	sequence	alignment	of	this	

region	in	all	accessions	and	reads	which	failed	to	be	mapped	against	this	region	in	Col-0	and	

Wil-2	but	mapped	to	the	other	accessions.	Similarly,	Figure	5.4	shows	such	an	alignment	for	

a	region	of	length	283bp	in	the	sequenced	DJA-1	individual,	which	is	highly	variable	in	all	

accessions.	 None	 of	 the	 36	 reads	 covering	 this	 region	 were	 mapped	 to	 Col-0,	 however	

between	24-33	reads	were	mapped	to	the	other	18	accessions.	There	were	24	SNPs	and	7	

short	indels	in	the	alignment	of	the	assembled	reads	and	the	corresponding	region	in	Col-0,	
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which	explains	the	read	mapping	problems.	This	experiment	shows	that	even	in	a	rather	

complete	reference	genome	like	for	Arabidopsis,	potentially	important	allelic	variants	are	

missed	using	a	biased	reference-based	approach.	

Next,	we	 investigated	whether	 PanTools’	 read	mapping	would	 scale	 to	 larger,	more	

complex	genomes.	To	this	end,	we	mapped	three	large	paired-end	sequencing	libraries	from	

the	 150	 Tomato	 Genome	 Resequencing	 Project	 [3]	 to	 the	 reference	 genome	 of	 tomato	

Solanum	 lycopersicum	 (Heinz	 1706)	 and	 the	 three	 additional	 species	 Solanum	 pennellii	
(LA716),	Solanum	pimpinellifolium	 (LA480),	 and	Solanum	habrochaites	 (LYC4).	 PanTools	
achieved	a	high	mapping	percentage	and	additionally	captured	a	large	number	of	regions	

absent	in	the	reference,	or	present	but	highly	variable	(Table	5.3).		
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A TAA T TG TAAG AAA TAA TG C TCC TACA T T TGAAC T TC TAG T T TCA TAAAAG A T TAAAAG AAC T T - AAG TC TA T T TG C T TGGA T TAA TG TG TG TG TA TG TG T T - - - - - - - A TA TAAA TC T T TGA TAAAAA TA T T T TCCA TAAA TGG TG A TAAAAGC TC TGA - - - - - - - - - - - - - - A T T T A TA T T TG - - - - - - T T T T TCCA TCAC T TA TA TC TAAAAA TGA T TC TCA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AA TC TCACCGA TG TGAAA TG AAAAA - T A TA TA T T TA - C TG TAC T TG T T TAG T TA T TG ACAG CAAAAA T TG A T TCG A T T TCAA TC T T TA T
GACAAAAAAAG AAACAA TG C TCC TACA T T TGAAC T TC TAG T T TCA TAAAAG AY TAAAAG AAC T T - AAG TC TA T T TG T T TGGA T TA - - G TG TG TG TA TG TG T T - - - - - - - A TA TAAA TC T T TGA TAAAAA TA T T T TCCA TAAA TGG TG ACAAAA TC TC TGA - - - - - - - - - - - - - - A T T T A TA T T TA - - - - - - - T T T TCCA TCAC T TG TA T T T TAAAACGA T TC TCA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AA TC TCACCGA TG TGAAA TG AAAAA - T A TA TA TG TA - C TG TAC T TG T T TAG T TA T TG ACAG CAAAAA T TG A T TCG A T T TCAA TC T T TA T
AAG ACAAAAAAAGCCAA TG C TC T TACAG T TGAAC T TC TA T T T TCA TAAAAG A T TAAAAG AA T T T - AAG TC TA T T TG C T TGGA T TAA TG TG TG TG TG TG TG T T - - - - - - - A TA TAAA TC T T TGA TAAAAA TA T T T TCCA TAAA TAA TG A TAAAAGC TC TGA - - - - - - - - - - - - - - A T T TG TA T T TA - - - - - - - T T T TCCA TCAC T TA TA T T T TAAAACGA T TC TAA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AA TC TCACCGA TG TGAAA TG AAAAA - T A TA TA TG TA - C TG TAC T TG T T TAG T TA T TG ACAG CAAAAA T TG A T TCG A T T TCAA TC T T TA T
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AC T TC TA T T T TCA TAAAAG A T TAAAAG AA T T T - AAG TC TA T T TG C T TGGA T TAA TG TG TG TG TG TG TG T T - - - - - - - A TA TAA T TC T T TCA TGAAAA TA T T T TCCA TAAA TGG TG ACAAAA TC TC TGA - - - - - - - - - - - - - - A T T TA TA T T TA - - - - - - - T T T TCCA TCAC T TG TA T T T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Figure	5.4.	A	highly	variable	region	starting	at	Chr1:4,302,854	in	the	reference	Col-0	detected	through	pan-
genomic	read	mapping.	The	large	number	of	SNPs	and	indels	in	Col-0	prohibits	alignment	of	reads	that	can	
be	mostly	mapped	to	the	other	accessions.	
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T TG C T TGG TA TA T T T T T TG AG T T TCG AG C T TCG AG T T T TG AG AG A TCCG TAG AAGGAAA TGGG T T TA T T T TA TA TG - T T T TG AG T T T TGG C TACGGG T TAAG A TG AACCG A T TC TCAAG T T T TAACA T T TG TAA TG AACCGG TACAGG T TA - - - - - - - - - -

Figure	5.3.	A	deletion	of	248	bp	in	chromosome	1	of	the	reference	Col-0	and	accession	Wil-2	detected	by	mapping	
reads	to	the	pan-genome.	
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Table	5.3.	Mapping	reads	of	three	libraries	unmapped	to	the	Heinz	tomato	reference	genome	to	a	pan-genome	
of	 four	 tomato	 accessions	 detected	 large	 number	 of	 regions	 which	 are	 absent	 or	 highly	 variable	 in	 the	
reference.	The	number	and	length	of	detected	regions	are	given	in	the	last	two	columns.	
	

Sequencing 

library 

Species Mapping 

percentage 

Number of 

regions 

Length of regions 

(min-avg-max) 

S.  lycopersicum 

LA2706 

Heinz 99.63 - - 
LA716 98.43            1,754  (101-461-7515) 
LA480 96.55            2,286  (101-417-6069) 
LYC4 95.42            1,273  (101-370-10586) 

S. pimpinellifolium 

LA1584 

Heinz 

1706

99.04 - - 
LA716 98.24         11,073  (101-533-7427) 
LA480 96.51         10,452  (101-462-6081) 
LYC4 95.44            8,072  (101-446-6096) 

S. pennellii 
LA716 

Heinz 

1706

96.09 - - 
LA716 95.55            6,550  (101-503-7912) 
LA480 99.20         47,042  (101-615-10505) 
LYC4 96.48         26,688  (101-538-7690) 

5.2.4 Use	case	2:	Abundance	estimation	and	binning	of	metagenomics	data		

In	metagenomics	studies	the	goal	is	often	to	identify	the	constituent	organisms	at	a	specific	

taxonomic	level	(e.g.	by	binning)	and	estimate	their	abundances.	Numerous	pipelines	are	

available,	 usually	 based	 on	 targeted	 sequencing	 of	 the	 16S	 ribosomal	 gene	 or	 on	whole	

metagenome	 shotgun	 (WMGS)	 sequencing	 [16].	 In	 the	 latter	 case,	 mapping	 to	 a	 set	 of	

reference	 genomes	 is	 an	 extremely	 computationally	 intensive	 step.	 PanTools	 provides	 a	

competitive	 mapping	 mode	 to	 support	 such	 analyses.	 To	 demonstrate	 its	 use,	 we	

competitively	mapped	a	metagenomics	stool	sample	(SRS011061)	from	HMRARG2	[17]	on	

the	pan-genome	of	the	reference	genome	database	of	the	Human	Microbiome	Project	(HMP)	

[18]	 (see	 Methods).	 A	 list	 of	 all	 strains	 and	 their	 estimated	 abundances	 is	 available	 in	

Additional	 file	 1:	 Experiment	 5.	 We	 found	 a	 strong	 correlation	 between	 our	 estimated	

abundances	and	those	found	in	the	HMSCP	report	[19]	(Supplementary	Figure	5.S1).	Two	

bacterial	 strains,	 Parabacteroides	 merdae	 (ATCC	 43184)	 and	 Bacteroides	 cellulosilyticus	
(DSM	14838),	were	the	most	abundant	strains	in	this	sample.	

We	 also	 evaluated	 the	 accuracy	 of	 abundance	 estimates	 of	 PanTools	 on	 three	

benchmark	 data	 sets	 provided	 by	 the	 CAMI	 (Critical	 Assessment	 of	 Metagenome	

Interpretation)	initiative	[20],	of	low,	medium	and	high	complexity	and	compared	it	to	those	

of	two	tools	specifically	developed	for	this	problem,	Kallisto	[21]	and	DiTASiC	[22].	We	ran	

PanTools	in	two	random-best	competitive	modes;	in	the	first	run,	we	uniformly	distributed	
shared	 reads	 between	 genomes,	 where	 in	 the	 second	 we	 considered	 the	 coverage	 of	

uniquely	mapped	reads	in	the	first	run	to	calculate	the	probabilities	by	which	shared	reads	

are	assigned	to	the	genomes.	The	idea	behind	this	approach	was	that	unique	reads	come	

from	the	strain-specific	regions	of	 the	genomes	and	their	abundance	reflects	 the	relative	

abundance	of	the	genome	in	the	sample.	This	approach	significantly	improved	the	accuracy	
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of	PanTools	on	the	medium	complexity	CAMI	data	set,	where	there	was	a	large	imbalance	

between	the	abundance	of	some	extremely	similar	strains.	

Table	 5.4	 shows	 the	 accuracy	 of	 the	 abundance	 estimates	 of	 Kallisto,	 DiTASiC	 and	

PanTools	 (see	 Supplementary	 Figure	 5.2)	 in	 terms	 of	 the	 root	mean	 squared	 error	 and	

correlation	coefficient	between	estimates	and	the	ground	truth.	In	this	experiment,	Kallisto	

performed	best	in	terms	of	speed	and	accuracy.	The	runtime	of	DiTASiC	grows	quadratically	

with	the	number	of	genomes,	as	it	needs	to	calculate	the	pairwise	similarity	between	the	

genomes.	On	the	high-complexity	dataset	of	1074	genomes	we	killed	the	process	after	10	

days.	In	contrast,	PanTools	was	able	to	handle	all	the	three	datasets	in	reasonable	time	with	

accuracy	 comparable	 to	 Kallisto,	 while	 additionally	 simultaneously	 binning	 reads	 in	

individual	SAM	files	which	could	in	principle	directly	be	passed	on	to	an	assembler	to	build	

the	contigs.	

	
Table	5.4.	PanTools	is	as	accurate	as	Kallisto	and	DiTASiC	in	abundance	estimation	of	metagenomic	samples	
with	different	levels	of	complexity.	Root	mean	square	error	(RMSE),	correlation	coefficient	between	estimates	
and	ground	truth	and	runtime	of	three	methods	have	been	presented	on	the	three	CAMI	benchmark	datasets.	

	
Dataset Tool RMSE 

Correlation 
coefficient 

Runtime 

(seconds) 

Low 

Kallisto 121,072 0.999 361 

DiTASiC 205,980 0.998 2,820 

PanTools 367,277 0.994 2,263 

PanTools (coverage-based) 148,138 0.999 4,619 

Medium 

Kallisto 141,309 0.996 542 

DiTASiC 121,824 0.997 52,200 

PanTools 707,460 0.881 2,218 

PanTools (coverage-based) 375,896 0.969 4,479 

High 

Kallisto 35,960 0.980 1,321 

DiTASiC - - >10days 

PanTools 42,404 0.972 5,585 

PanTools (coverage-based) 44,866 0.969 11,112 

5.3 Discussion	

Multi-genome	read	mapping	is	necessary	to	overcome	the	“reference	bias”	that	comes	from	

only	considering	reads	that	map	to	a	single	reference.	Unmapped	reads	are	 typically	not	

considered	for	downstream	analyses,	while	these	could	point	to	interesting	variants.	As	we	

have	demonstrated,	unmapped	reads	in	a	sample	can	originate	from	genomic	regions	absent	

in	or	highly	different	 from	 the	 reference.	 Ideally,	 the	known	variation	between	different	

genomes	 is	 exploited	 to	 improve	 read	mapping	 across	 these	 regions.	 Existing	 variation-

aware	 read	 mappers,	 such	 as	 Graphtyper	 [5],	 enrich	 a	 reference	 genome	 with	 known	

variants	 to	 improve	 read	 mapping	 across	 highly	 variable	 regions	 and	 capture	

polymorphisms,	which	are	finally	called	with	respect	to	the	reference.	This	approach	works	
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well	for	specific	genomic	regions,	e.g.	HLA	genes	in	human,	where	many	variants	are	already	

known	[23].		

Still,	reads	from	regions	not	present	in	such	enriched	references	will	remain	unmapped.	

In	studies	on	species	with	highly	dynamic	genomes,	e.g.	crops,	where	gene	content	varies	

and	 co-linearity	 is	 typically	 not	 preserved,	 a	 multi-genome	 read	 mapping	 approach	 is	

therefore	preferable.	PanTools	 is	not	variation-aware	 in	 the	sense	 that	 information	 from	

genome	A	is	used	to	map	a	read	to	genome	B,	but	it	efficiently	maps	reads	to	all	genomes	in	

a	(potentially	large)	set.	A	set	of	reads	may	be	mapped	to	a	region	in	genome	B,	while	they	

do	not	map	on	the	homologous	region	in	genome	A	because	of	SNPs	and	indels	(as	shown	in	

Figure	5.4).	By	detecting	homologous	regions	between	genomes,	it	is,	in	principle,	possible	

to	 project	 reads	 from	 one	 genome	 to	 the	 corresponding	 region	 in	 another	 genome,	

resembling	the	results	of	variation-aware	methods.		

PanTools	 can	 simultaneously	 generate	 alignment	 files	 (SAM/BAM)	 for	 multiple	

genomes.	These	can	be	fed	to	any	variant	caller	to	detect	variants	with	respect	to	all	 the	

constituent	genomes.	Variants	not	captured	in	one	reference	thus	may	be	found	with	respect	

to	 one	 or	 more	 of	 the	 other	 genomes.	 PanTools	 scales	 well	 to	 thousands	 of	 complete	

bacterial	or	 fungal	genomes	and	to	collections	of	 large	genomes,	such	as	 those	of	plants.	

However,	interacting	with	extremely	large	databases	(e.g.	tens	of	plant	genomes)	is	time-

consuming,	as	the	database	cannot	be	fully	buffered	in	memory.	A	high	repeat	content	of	

genomes	 also	 increases	 the	 runtime,	 as	 it	 causes	 certain	 nodes	 to	 have	 many	 genomic	

locations.	In	our	experiments	with	the	pan-genome	of	four	tomato	accessions,	we	overcame	

this	limitation	by	ignoring	low-complexity	nodes	when	collecting	candidate	hits.		

Our	current	method	is	designed	to	map	genomic	short	reads,	single	or	paired-end.	Soft	

clipping	has	been	implemented,	but	split	alignments	are	not	reported.	We	intend	to	develop	

this	further	in	the	future,	as	it	 is	required	for	the	detection	of	(some	forms	of)	structural	

variation.	Along	the	same	lines,	we	will	investigate	spliced	mapping	of	transcriptome	data,	

considering	 multiple	 partial	 hits	 per	 read.	 Mapping	 long	 reads,	 e.g.	 PacBio	 or	 Oxford	

Nanopore,	 would	 be	 another	 useful	 extension,	 but	 this	 requires	 additional	 work,	 for	

example	to	implement	an	additional	k-mer	index	with	smaller	k	to	handle	higher	rates	of	
error	 and	 an	 alternative	 (banded)	 alignment	 approach	 which	 would	 scale	 to	 longer	

sequences.		

5.4 Conclusions	

The	number	of	sequenced	species	is	increasing	rapidly	and	chromosome-scale,	haplotype-

resolved	genomes	are	now	within	reach	for	many	of	these.	This	necessitates	a	transition	

from	linear,	single-reference	to	pan-genome	approaches	in	genomics.	Graphs	can	represent	

such	 pan-genomes,	 large	 numbers	 of	 related	 sequences,	 in	 a	 compact	 fashion.	 PanTools	

offers	 a	 practical	 pan-genome	 sequence	 representation,	 indexed	 and	 stored	 in	 a	 graph	

database,	annotated	with	structural	and	functional	information.		
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In	this	work	we	have	extended	PanTools	with	read-mapping	functionality.	The	method	

generates	 accurate	 alignments	 to	 all	 (or	 a	 subset)	 of	 the	 constituent	 genomes	 at	 once.	

Simultaneous	mapping	of	reads	allows	avoiding	redundant	computations	and	can	optionally	

distribute	reads	over	genomes	in	a	competitive	manner,	required	in	applications	such	as	

metagenomics.	PanTools	thus	offers	a	solid	basis,	which	can	and	will	be	further	extended	to	

integrate	and	mine	different	types	of	-omics	data,	paving	the	way	towards	comparative	pan-

genomics.		

5.5 Methods	

Before	we	present	 the	read-mapping	algorithm,	 first	we	briefly	explain	 the	pan-genomic	

data	 structure	 to	 which	 the	 reads	 will	 be	 mapped.	 Then,	 we	 discuss	 our	 approach	 to	

competitive	 read	 mapping	 and	 finally	 introduce	 the	 data	 and	 methods	 used	 in	 the	

experiments.		

5.5.1 Structure	of	the	pan-genome	

PanTools	condenses	multiple	genomes	in	a	generalized	De	Bruijn	graph	(gDBG),	stored	with	

structural	annotations	and	proteomes	in	a	graph	database	[24].	There	are	two	additional	

databases,	 an	 index	 database	 and	 a	 genome	 database,	 which	 facilitate	 efficient	 graph	

indexing	and	sequence	retrieval	respectively.	A	memory-mapped	implementation	of	graph,	

index	and	genome	databases	minimizes	the	required	I/O	operations	even	in	random	access	

scenarios.		

The	gDBG	captures	 the	 similarity	 and	divergence	of	 genomes	at	 the	 resolution	of	k-
mers.	It	is	a	compressed,	bi-directed	DBG,	i.e.	there	is	no	non-branching	path	in	the	graph	

and	every	node	represents	a	piece	of	double-stranded	DNA	of	minimum	 length	k,	which	
occurs	 only	 once	 in	 the	 graph.	 Each	 sequence	 (contig,	 scaffold	 or	 chromosome)	 can	 be	

traversed	 as	 a	 continuous	 path	 in	 the	 graph	 in	 either	 forward	 or	 reverse	 direction.	 The	

positions	of	 the	node	 in	 the	constituent	sequences	are	stored	on	 the	edges	of	 the	graph.	

Figure	5.5	illustrates	a	node	of	this	graph,	a	piece	of	DNA	occurring	in	sequence	1	at	position	

8,	sequence	2	at	position	12,	both	in	forward	direction	(TAC);	and	in	sequence	3	at	position	

4,	 in	reverse	direction	(GTA).	During	the	gDBG	construction	we	build	a	k-mer	 index	that	
maps	canonical	k-mers	to	a	unique	graph	coordinate:	a	triple	of	the	identifier	of	the	node,	
the	zero-based	offset	of	the	k-mer	in	the	node	and	the	direction	of	the	k-mer.	For	example,	
the	2-mer	AC	is	mapped	to	coordinate	(56,	1,	F)	if	it	occurs	in	node	56	at	offset	1	in	forward	

direction.		
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5.5.2 Read	mapping	

Given	a	genomic	read,	α	(by	default	15)	equidistant	k-mers	are	sampled	from	it	and	looked	
up	in	the	k-mer	index	to	retrieve	the	graph	coordinates	where	the	reads	should	map.	The	k-
mer	size	used	for	read	mapping	is	the	same	as	the	k-mer	size	used	in	graph	construction,	
since	the	existing	k-mer	index	is	exploited.	The	number	of	k-mer	samples	α	should	be	chosen	
higher	when	the	error/mutation	rate	is	high.	The	collected	graph	coordinates	can	then	be	

translated	 into	 the	 start	 position	 of	 potential	 hits	 (the	 candidate	 hits)	 in	 the	 constituent	
sequences.	For	example,	again	consider	2-mer	AC	from	read	CCGTACTG.	The	position	of	AC	

in	sequence	1	is	the	position	of	node	56	in	this	sequence	(8)	plus	the	forward	offset	of	AC	

(1)	in	the	node,	i.e.	8	+	1	=	9.	The	offset	of	AC	in	the	read	is	4,	so	the	position	of	the	candidate	

hit	on	sequence	1	is	9	–	4	=	5.	Candidate	hits	could	be	supported	by	different	number	of	k-
mer	samples.	Candidate	hits	are	therefore	sorted	by	the	number	of	supporting	k-mers	(in	
decreasing	order)	and	local	alignments	are	only	calculated	for	the	first	ω	(by	default	15)	hits	
in	this	ordered	list.	Local	alignment	is	performed	using	a	Smith-Waterman	algorithm	with	a	

banded	matrix	 to	 reduce	 the	number	of	 calculations	by	 limiting	 the	number	of	 gaps	 (by	

default	5)	allowed	in	the	alignment.	As	PanTools	was	developed	for	short	reads,	where	a	

limited	number	of	insertions/deletions	is	expected,	this	seems	reasonable.	If	the	alignment	

identity,	defined	as	the	number	of	identical	positions	divided	by	the	length	of	alignment,	is	

higher	than	a	threshold	π	(by	default	0.5),	the	hit	will	be	reported	as	a	proper	hit	(Figure	
5.1B).	

Algorithm	1	shows	the	pseudocode	of	our	read	mapping	approach.	Ideally,	all	k-mers,	
sampled	from	a	read,	point	to	the	same	position	in	a	sequence.	However,	in	the	presence	of	

sequencing	 errors,	 polymorphisms	 and	 genomic	 duplications	 some	 k-mers	 may	 not	 be	
found	or	may	be	found	at	multiple	locations.	Hence,	these	locations	are	clustered,	collected	

in	Pos[S],	 based	on	 their	proximity	and	 the	 cluster	 size	 is	 considered	as	 a	 score	 for	 that	
candidate	hit.	As	many	candidate	hits	may	be	 false	positives	with	 low	scores,	only	 the	ω	
most	high-scoring	hits	are	considered	(Line	7).	If	all	of	these	hits	are	supported	only	by	one	

k-mer,	potentially	a	low-complexity	one,	we	just	consider	the	first	hit	for	the	alignment.	For	
each	 sequence,	 all	 proper	 hits,	 whose	 alignment	 identity	 is	 greater	 than	 a	 minimum	

Figure	5.5.	Pan-genomic	read	mapping.	A.	Structure	of	a	node	of	generalized	DBG;	this	piece	of	DNA	occurs	
in	three	sequences	S1,	S2	and	S3,	respectfully,	at	positions	8,	12	and	4.	B.	After	retrieving	the	candidate	hits	
in	each	sequence	and	performing	exact	alignments,	the	read	is	mapped	to	S1	and	S3	but	not	to	S2.	
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threshold,	are	collected	(Lines	8-9).	Users	have	the	option	of	reporting	all	the	highest-scored	

hits	 (all-best),	 a	 random	one	 if	 there	 are	multiple	 best	 choices	 (random-best),	 or	 all	 the	

collected	hits	(all).	

	
Algorithm	5.1.	Pseudocode	of	read-mapping	algorithm	of	PanTools.	

	
Input:	the	pan-genome,	reads	in	FASTQ	format		
Output:	alignments	in	SAM	or	BAM	format	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

for	each	read	R	
for	α	equidistant	k-mers	K	of	R	

find	node	N	containing	K	
for	each	sequence	S	passing	through	node	N	

Pos[S]	collects	candidate	hits	of	R	in	S	
for	each	sequence	S			

for	the	first	ω	members	in	sorted	list	of	candidate	hits	H	in	Pos[S]		
if	identity	of	H	aligned	to	R	is	greater	than	a	threshold	!	

put	H	in	Hits[R,S]	
Report	Hits[R,S]	in	random-best,	all-best	or	all	mode	

5.5.3 Competitive	mapping	

PanTools	is	able	to	map	reads	in	competitive	mode,	which	is	required	for	some	applications,	

e.g.	 metagenomics	 and	 contamination	 screening.	 In	 this	 mode,	 proper	 hits	 to	 all	 the	

constituent	genomes	are	collected	and	only	those	with	the	highest	alignment	identities	(best	

hits)	are	considered.	 If	 there	 is	a	single	best	hit	 it	 is	reported,	otherwise	PanTools	offers	

three	 options	 for	 reporting	 the	 multiple	 best	 hits.	 First,	 none-best	 does	 not	 report	 any	
ambiguous	hit;	second,	random-best	selects	one	of	the	best	hits	randomly,	either	uniformly	
or	based	on	some	probabilities	given	to	each	genome;	third,	all-best	which	reports	all	the	
best	hits.	The	random-best	option	works	best	for	abundance	estimation	in	metagenomics.	

When	read	mapping	is	followed	by	reference-guided	assembly	of	the	generated	SAM	files,	it	

is	preferable	to	use	the	all-best	option	to	increase	the	horizontal	coverage	of	the	genomes.	

5.5.4 Data	and	experimental	setup		

All	experiments	were	executed	on	an	Ubuntu	14.04	server,	Intel®	Xeon®	X5660@2.8GHz,	

with	6GB	RAM	and	16	processing	cores.	To	generate	synthetic	reads,	a	1%	mutation	rate	

was	 applied	 to	 the	 reference	 genomes	 of	 two	 model	 species	 E.	 coli	 (str.	 K-12	 substr.	
MG1655)	and	S.	cerevisiae	(S288C,	assembly	R64)	and	10x	HiSeq	2500	(2×100)	and	MiSeq	
v3	 (2×250)	 reads	 were	 simulated	 from	 the	 mutated	 genomes	 using	 the	 ART	 Illumina	

simulator	[26].	To	show	the	accuracy	and	efficiency	of	PanTools,	it	was	compared	to	four	

single-reference	methods:	Stampy,	Bowtie2	and	BWA-MEM	and	NextGenMap.	The	known	

genomic	origin	of	the	simulated	reads	allowed	to	compare	the	accuracy	of	the	methods	by	

counting	the	number	of	properly	mapped	(TP),	wrongly	mapped	(FP)	and	unmapped	(FN)	
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reads,	calculating	the	sensitivity	=	TP/(TP+FN)	and	specificity	=	TP/(TP+FP)	of	the	tools	

which	were	 then	combined	to	an	F-score	as	 the	ultimate	measure	of	accuracy:	F-score	=	

2×sensitivity×specificity/(sensitivity+specificity).		

5.5.5 PanTools	dependencies	and	parameters		

For	read	mapping,	PanTools	depends	only	on	KMC	[25]	for	construction	of	the	graph.	The	

parameters	affecting	its	mapping	behavior	are	listed	in	Table	5.5.	

	
Table	5.5.	PanTools	read	mapping	algorithm	comes	with	several	parameters	which	can	be	adjusted	to	trade-
off	between	accuracy	and	speed.		
	

Parameter Range Default 

Number of parallel working threads [1 .. cores] 1 

Minimum acceptable identity of the alignment (π) [0 .. 1) 0.5 

Number of k-mers sampled from the read (α) (0 .. r – k + 1]  15 

Minimum acceptable length of alignment after soft-clipping [10 .. 100] 13 

Maximum acceptable length of alignment [50 .. 5000] 1000 

Maximum acceptable length of fragment [50 .. 5000] 2000 

Maximum number of candidate hits to examine (ω) [1 .. 100] 15 

Length of band in banded alignment [1..100] 5 

Stringency of soft-clipping [0..3] 1 

Alignment mode (Negatives for competitive, see manual) [-3..3] 2 

	

To	demonstrate	 the	scalability	of	PanTools	compared	 to	 the	other	 tools,	 four	sets	of	

fungal	 genomes	 (pan-genomes)	were	 considered	 at	 different	 taxonomic	 levels.	 The	 first	

pan-genome	 consisted	 of	 ten	 copies	 of	 the	 reference	 genome	 (R64)	 of	 Saccharomyces	
cerevisiae	S288c.	The	second	one	contained	ten	different	strains	of	Saccharomyces	cerevisiae	
(including	the	reference	R64).	The	third	pan-genome	included	genomes	from	ten	different	

species	 in	 the	 Saccharomyces	 genus.	 Finally,	 the	 fourth	 pan-genome	 contained	 genomes	
from	ten	different	fungal	genera	in	the	family	of	Saccharomycetaceae	(see	Additional	file	1:	

Experiment	2).	For	this	experiment,	the	simulated	MiSeq	library	of	S.	cerevisiae	was	used.	
We	 demonstrated	 two	 real	 use	 cases	 on	 plant	 pan-genomes.	 First,	 a	 recent	 llumina	

HiSeq	 2500	 paired-end	 sequencing	 archive	 (ERR2721960)	 of	 ~13.3	 million	 paired-end	

reads	 from	DJA-1	accession	was	mapped	 to	 the	reference	and	18	additional	high-quality	

assemblies	 of	 Arabidopsis	 thaliana.	 Second,	 three	 large	 paired-end	 sequencing	 libraries	
from	 the	 150	 Tomato	 Genome	 Resequencing	 Project	 [3]	were	mapped	 to	 the	 reference	

genome	 of	 Solanum	 lycopersicum	 (Heinz	 1706)	 [27]	 and	 three	 additional	 accessions,	
Solanum	 pennellii	 (LA716)	 [28],	 Solanum	 pimpinellifolium	 (LA0480)	 [29],	 and	 Solanum	
habrochaites	(LYC4)	[3].	

To	 test	PanTools’	 competitive	mode	of	 read	mapping,	 a	 large	 library	of	89.6	million	

paired-end	reads	from	a	stool	sample	was	mapped	(competitive	random-best	mode	with	

uniform	 distribution)	 on	 a	 large	 pan-genome	 of	 the	 reference	 genome	 database	 of	 the	
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Human	 Microbiome	 Project.	 This	 database	 comprised	 of	 130	 archaeal	 strains	 over	 97	

species,	326	lower	eukaryotes	over	326	species,	3683	viral	strains	over	1420	species,	and	

1733	bacterial	strains	over	1253	species.	The	construction	of	this	pan-genome	took	17	CPU	

hours,	resulting	in	a	database	of	size	104	GB,	and	read	mapping	was	performed	in	4.3	CPU	

hours.	 Additionally,	 we	 constructed	 a	 pan-genome	 of	 the	 reference	 genomes	 from	 the	

“Critical	Assessment	of	Metagenome	Interpretation”	(CAMI)	benchmark,	and	compared	our	

abundance	estimates	to	those	achieved	by	Kallisto	quantification	and	DiTASiC	on	the	three	

provided	metagenomics	datasets	of	low,	medium	and	high	complexity.	Kallisto	is	based	on	

a	 fast	 pseudo-alignment	 followed	 by	 an	 expectation–maximization	 (EM)	 approach	 to	

resolve	 the	 read	 abundance	 ambiguities.	 DiTASiC	 takes	 the	 raw	 pseudo-alignments	 of	

Kallisto,	calculates	the	pairwise	similarity	of	genomes	and	fits	a	generalized	linear	model	

(GLM)	to	resolve	the	read	assignment	ambiguities.		
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Supplementary	 figure	 5.S1.	 There	 is	 a	 strong	 correlation	 between	 abundances	 estimated	 by	 Human	
Microbiome	project	(HMSCP	report)	and	PanTools.	
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Supplementary	 figure	5.S2.	There	 is	a	 strong	correlation	between	abundances	estimated	by	Kallisto,	
DiTASiC	and	PanTools	versus	the	ground	truth	provided	in	the	three	CAMI	benchmark	data	sets.	
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In	this	thesis	we	introduced	PanTools,	our	approach	to	pan-genomics,	and	presented	some	
key	functionalities	to	make	it	useful	in	practical	comparative	analysis.	Here,	we	put	forward	
ideas	on	the	future	challenges	and	opportunities	in	using	a	pan-genome	as	a	reference.		

6.1 The	emerging	pan-genome	paradigm	shift	

Since	the	publication	of	the	first	assembled	genome	in	1995	[1],	reference	genomes	have	
been	 effectively	 used	 for	 re-sequencing	 and	 genotyping	 of	 new	 individuals	 of	 the	 same	
species.	Advances	in	NGS	technologies	have	popularized	reference-based	re-sequencing	for	
comparative	 and	 functional	 genomics.	 However,	 taking	 a	 single	 genome	 or	 a	 consensus	
genome	as	a	reference	is	insufficient	in	many	domains	and	for	many	applications,	such	as	
human	genomics	and	agriculture	[2,3].	To	capture	the	wider	genomic	landscape	of	species,	
references	need	to	integrate	the	genomic	content	of	multiple	individuals	into	a	pan-genome.	
Pan-genomes	include	variants	and	genomic	regions	missed	in	the	reference	genomes,	and	
also	can	represent	the	structural	variability	in	populations	of	a	species.	We	are	entering	the	
pan-genomic	era,	replacing	linear	references	with	pan-genomes	[4].		

Switching	 to	 pan-genome	 references	 is	 a	 large	 paradigm	 shift,	 which	 demands	
substantial	 adjustments	 and	 redevelopments	 of	 existing	 reference-based	 methods	 and	
applications.	At	 the	core	of	pan-genomic	redevelopment	 lies	a	redefinition	of	an	efficient	
coordinate	 system	on	which	pan-genomic	 applications	 can	be	 reliably	based.	Reference-
based	variant	calling	approaches	pile	up	reads	on	a	reference	genome	and	call	variants	with	
respect	to	that	reference	as	a	simple	linear	coordinate	system.	With	pan-genomics,	variants	
should	be	called	with	respect	to	the	pan-genome	structure.	For	example,	in	a	graph-based	
pan-genome	representation	coordinates	are	defined	as	pairs	for	the	node	identifier	and	an	
offset	pointing	 to	a	position	 in	 that	node.	Pan-genome	coordinates	need	 to	be	efficiently	
translated	into	genomic	coordinates	in	order	to	map	variants	back	to	individual	genomes.	
The	 reverse	 conversion	 (from	 genomic	 coordinates	 to	 pan-genome	 coordinates)	 is	 also	
required	to	investigate	where	a	specific	locus	in	one	genome	occurs	in	other	genomes.		

The	 structural	 annotation	of	 genomes	 is	 another	 core	 functionality	 that	needs	 to	be	
redefined	for	pan-genomic	platforms.	Traditionally,	assembled	genomes	are	independently	
annotated	 through	 time-consuming	 ab	 initio	 and/or	 evidence-based	 gene	 model	
predictions.	These	annotation	pipelines	introduce	serious	bottlenecks	to	high-throughput	
genome	projects	 if	 large	numbers	of	related	genomes	are	sequenced	and	assembled	 in	a	
short	period	of	time.	At	the	same	time,	they	ignore	the	fact	that	related	individuals	share	the	
majority	of	 their	genes	and	will	have	highly	similar	gene	models.	By	 taking	 into	account	
RNA-Seq	 evidence	 and	 the	 phylogenetic	 relationships	 of	 samples,	 joint	 gene-structure	
models	have	reduced	annotation	errors	and	incompatible	predictions	at	close	to	medium	
evolutionary	distances	[5].	Using	similar	joint	gene	models,	collective	annotation	of	many	
genomes	can	be	achieved	through	mapping	transcriptome	reads	from	different	individuals	
to	a	pan-genome.	As	we	have	shown	in	Chapter	5,	such	a	read	mapping	approach	scales	sub-
linearly	with	the	number	of	genomes	and	thus	reduces	the	computational	cost	of	genome	
annotation.		
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6.2 Future	advances	for	pan-genome	representation	

Graph-based	 data	 structures	 have	 been	 frequently	 used	 to	 represent	 pan-genomes	 (e.g.	
Chapter	1).	 	However,	the	variability	of	genomes	at	the	sequence	and	structural	level	can	
increase	the	complexity	of	these	graphs	[6].	For	example,	a	compressed	DBG	is	not	suitable	
for	 representation	 of	 highly	 variable	 genomes,	 as	 every	 single	 mismatch	 between	 two	
genomes	adds	three	nodes	to	the	graph	(i.e.	a	simple	bubble).	As	a	result,	the	compressed	
DBG	 quickly	 approaches	 the	 uncompressed	 version	 of	 the	 graph	 as	 variability	 and	 the	
number	of	genomes	increase.		Alignment-based	structures,	such	as	the	Enredo	graph	[7]	or	
the	data	structure	introduced	in	PanCake	[8],	are	more	efficient	choices	for	highly	variable	
genomes	 as	 they	 tolerate	 simple	 variants	 in	 nodes.	 However,	 calculating	whole-genome	
alignments	 of	 large	 number	 of	 genomes	 using	 such	 alternative	 structures	 is	 not	 trivial.	
Similarly,	 structurally	variable	genomes	such	as	 those	of	plants,	with	many	duplications,	
inversions	 and	 translocations,	 induce	 (nested)	 cycles	 in	 the	 graph.	 Acyclic	 graph	
representations	can	avoid	such	complex	sub-structures	at	the	cost	of	introducing	redundant	
nodes,	however	finding	the	optimal	assignment	of	duplicated	or	translocated	segments	is	a	
non-trivial	task	[9].	Thus,	it	will	be	very	hard	to	develop	a	one-size-fits-all	pan-genome	data	
structure.	

Pan-genome	 representations	 try	 to	 condense	 a	 large	 number	 of	 linear	 genomes	 by	
storing	similar	nucleotide	sequences	only	once.	 	 In	a	 (compressed)	DBG,	only	sequences	
with	100%	identity	are	condensed	into	one	node.	Far	higher	rates	of	compression	can	be	
achieved	by	representations	which	allow	for	lower	identity	thresholds	between	aligned	sub-
sequences.	However,	setting	such	a	similarity	(or	identity)	threshold	is	not	straightforward,	
since	 it	 is	 strongly	 dependent	 on	 the	 species	 analyzed,	 variability	 of	 the	 genomes	 and	
conservation	of	the	aligned	regions.	In	highly	repetitive	genomes,	such	as	those	of	plants	
that	have	undergone	rounds	of	segmental	and	whole	genome	duplications,	 this	choice	 is	
even	more	critical	as	a	low	similarity	threshold	can	lead	to	collapsing	ancient	and	recent	
duplications	 making	 the	 representation	 highly	 noisy.	 At	 large	 evolutionary	 distances,	
nucleotide	 sequences	 are	 more	 diverged	 and	 choosing	 a	 high	 similarity	 threshold	
disconnects	the	sequences,	making	the	representation	less	informative.	This	suggests	that	
measures	of	similarity	have	a	major	impact	on	downstream	analyses	and	should	be	adopted	
carefully,	considering	variability	and	evolutionary	distance	of	species.			

There	 are	 many	 visualization	 tools	 to	 explore	 bacterial	 pan-genomes	 with	 useful	
features	for	orthologous	clustering,	pan-gene	profiling,	and	functional	classification	of	genes	
[10-13].	However,	visualization	of	eukaryotic	pan-genomes	has	hardly	been	explored,	due	
to	the	challenges	imposed	by	size	and	complexity	of	such	genomes.	Novel	approaches	are	
required	to	visualize	and	represent	whole-genome	differences	among	large	set	of	genomes	
from	 chromosome-level	 to	 nucleotide-level.	 To	 provide	 genomic	 scaling	 or	 zooming	 to	
different	levels	of	representation,	various	filtering	and	hierarchical	aggregations	might	be	
needed.	To	date,	such	approaches	for	scaling	have	not	yet	been	investigated	or	proposed.	
Another	 challenge	 is	 developing	 interactive	 visualizations	 of	 pan-genomes	 with,	 fast	
response	times.	This	would	require	ultra-fast	data	retrieval	and	rendering.	In	a	pan-genome	
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viewer,	users	should	be	able	to	switch	between	genomes	as	the	reference,	select	subset	of	
genomes	and	filter	for	common	or	unique	variants.		

6.3 Solving	the	scalability	problem		

Scalability	 has	 been,	 and	 will	 remain,	 a	 challenge	 in	 pan-genomics.	 The	 very	 first	 pan-
genome	(published	in	2005)	was	mainly	a	bag	of	genes	found	in	6	bacterial	strains	[14];	a	
decade	later,	pan-genomes	managed	to	condense	62	complete	E.	coli	genomes	[15],	and	one	
year	later	7	complete	human	genomes	were	successfully	represented	as	a	pan-genome	[16].	
In	the	last	decade,	scaling	to	both	larger	genomes	and	larger	numbers	of	genomes	has	been	
the	 main	 concern	 of	 pan-genomics.	 However,	 advances	 have	 been	 limited	 to	 the	
completeness	of	pan-genomes,	but	unfortunately	not	to	their	functionality	and	applicability.	
In	 our	 vision,	 a	 scalable	 pan-genomic	 solution	 should	 be	 able	 to	 address	 issues	 of	
completeness,	efficiency	and	applicability,	at	 the	same	time.	To	date,	 there	 is	no	scalable	
solution	capable	of	addressing	all	these	aspects	in	a	single	platform	[17].		

It	 is	not	straightforward	to	call	a	pan-genome	complete,	but	 ideally,	a	complete	pan-
genome	represents	the	entire	genomic	diversity	of	a	cohort	of	species	and/or	samples	of	
interest.	Bacterial	pan-genomes	are,	 traditionally,	called	closed	when	the	number	of	new	
genes	introduced	by	new	genomes	approaches	zero	[18].	This	definition	has	also	been	used	
for	some	crop	plant	pan-genomes	such	as	maize	[19],	wheat	[20]	and	rice	[21].	However,	a	
closed	 pan-genome	 is	 not	 essentially	 complete,	 as	 new	 individuals	 can	 introduce	 novel	
variants	(alleles	in	eukaryotes)	contributing	to	the	diversity	of	a	population.	In	a	practical	
setup,	a	pan-genome	can	be	considered	complete	when	it	includes	as	much	existing	genomic	
content	as	possible	and	is	generated	in	the	course	of	a	research	project.		

6.4 Opportunities	and	future	directions		

Future	pan-genome	approaches	will	be	highly	 influenced	by	advances	 in	sequencing	and	
assembly	technologies.	Long-read	sequencing	technologies	are	very	promising	to	overcome	
the	 limitations	 of	 current	 short	 read	 technologies,	 facilitating	 the	 resolution	 of	 large	
structural	variants	(SVs),	repetitive	regions,	and	haplotypes.	PacBio	technology	is	able	to	
achieve	read	lengths	over	10kbp-long	stretches	of	DNA	with	uniform	coverage	[22],	recently	
also	with	 lower	error	 rates	 [23].	Oxford	Nanopore	Technologies	 (ONT)	devices	generate	
reads	even	one	or	two	orders	of	magnitude	longer	[24],	but	still	with	high	base-calling	error	
rates.	 Combined	 with	 high	 quality	 Illumina	 short	 reads	 and	 data	 from	 scaffolding	
technologies	such	as	Bionano	Genomics	optical	maps	and	Hi-C	proximity	ligation,	long-read	
sequencing	 is	 very	 promising	 to	 deliver	 high-quality	 haplotype-separated	 chromosome-
level	genome	assemblies	[25,26].		

Structural	 variation	 (SV)	 drives	 many	 important	 traits	 such	 as	 genetic	 diseases	 in	
humans	[27]	and	grain	size	in	rice	[28].	SVs	are	very	hard	to	detect	using	NGS	short	reads	
as	they	are	usually	large	and	enriched	in	repeat	regions	[29].	SV	detection	has	recently	been	
significantly	 boosted	 using	 long	 reads	 [30].	 As	 accuracy	 and	 continuity	 of	 genome	
assemblies	will	be	increasingly	improved,	traditional	alignment-based	SV	detection	will	be	
replaced	by	pan-genomic	SV	detection	[31].	In	a	pan-genomic	approach,	maximal	collinear	
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blocks	among	large	sets	of	genomes	can	be	captured,	first,	then	SVs	are	detected	by	mining	
specific	substructures	that	signify	structural	differences	between	genomes.		

Simple	variants	are	also	detected	differently	in	pan-genomes.	First,	variants	are	called	
inside	 collinear	 blocks	 during	 the	 construction	 of	 a	 pan-genome,	 then,	 reads	 of	 newly	
sequenced	 individuals	 are	 mapped	 against	 those	 blocks	 to	 detect	 variants.	 As	 the	 vast	
majority	of	variants	observed	in	a	species	and/or	population	are	supposedly	available	in	the	
pan-genome,	the	recurring	variants	can	be	quickly	detected	and	genotyped	at	low-coverage	
and	thus	significantly	reducing	the	cost	of	re-sequencing	[32].	An	alternative	approach	is	to	
assemble	and	align	new	genomes	to	the	pan-genome,	which	depending	on	the	pan-genome	
representation	demands	novel	 indexing	and	alignment	approaches	 such	as	partial	 order	
alignment	[33].		

Besides	 the	 genomic	 content,	 pan-genomes	 need	 to	 be	 able	 to	 integrate	 other	
heterogeneous	 biological	 data	 to	 expand	 the	 general	 applicability	 of	 pan-genomes.	 For	
example,	 for	 plant	 breeding	 new	 entities	 such	 as	 traits	 and	 quantitative	 trait	 loci	 (QTL)	
should	be	defined	and	linked	to	the	genomes	to	be	able	to	identify	the	casual	variation	of	
agronomical	 traits	 of	 a	 crop	 by	 comparing	 mapped	 regions	 between	 genotypes	 with	
contrasting	 phenotypes	 [34].	 By	 integrating	 genotype	 and	 phenotype	 data	 for	 a	 large	
number	of	individuals,	pan-genomes	would	also	facilitate	genome-wide	association	studies	
(GWAS).	Graph	databases	are	very	powerful	for	representation	and	mining	of	various	types	
of	biological	data.	In	this	thesis,	we	integrated	genomes,	structural	features	and	proteomes	
of	 large	 number	 of	 species	 in	 a	 Neo4j	 graph	 database	 [35].	 Graph	 databases	 have	
demonstrated	 to	 significantly	 outperform	 relational	 databases	 on	 querying	 complex	
biological	 networks	 with	 protein-protein	 interaction,	 drug-target,	 and	 gene-disease	
relationships	[36].		

6.5 Concluding	remarks	

At	the	time	this	PhD	project	started	in	May	2015,	state-of-the-art	pan-genome	methods	were	
able	to	represent	only	tens	of	whole	bacterial	genomes	without	any	possibility	to	be	utilized	
in	real	practice.	In	this	thesis,	we	laid	the	foundation	for	practical	pan-genomics	specifically	
for	 large	and	complex	genomes,	opening	up	 the	way	 for	crop	pan-genomics.	PanTools	 is	
among	 the	 first	 pan-genomic	 platforms	 able	 to	 offer	 some	 useful	 key	 functionalities	 for	
comparative	 studies.	 The	 design	 and	 engineering	 introduced	 in	 this	 thesis	 contributes	
ample	novelty	to	the	field	which	can	be	reused	and	further	developed	in	future	pan-genomic	
platforms.	 There	 are	 extensive	 unexplored	 areas	 in	 the	 field	 which	 will	 open	 up	 new	
applications	and	interesting	bioinformatics	challenges.	At	the	time	of	this	writing,	people	
from	various	fields	of	biological	research	have	come	to	the	consensus	that	pan-genomes	will	
make	the	future	of	comparative	genomics.	Considering	the	growing	number	of	pan-genomic	
tools	and	the	amount	of	effort	on	new	developments,	applications	and	improvements,	there	
is	a	bright	future	ahead	for	the	field	of	pan-genomics.			
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Summary		
Comparative	genomics	investigates	the	genomic	makeup	of	species	to	unravel	their	

unique	 variations	 and	 evolutionary	 relationships.	 High-throughput	 sequencing	
technologies	have	enabled	reading	 the	DNA	content	of	a	wide	variety	of	 species	at	an	
unprecedented	rate.	With	the	ongoing	advances	in	these	technologies,	many	species	are	

or	will	soon	be	represented	by	a	large	number	of	genomes.	Such	genomes	can	be	highly	
similar,	 but	 their	 differences	 in	 sequence	 and	 structure	 are	 of	 interest	 in	 many	
applications	as	 they	usually	underlie	 specific	 traits.	Having	a	wealth	of	 genomes	 for	a	

species,	the	current	practice	of	basing	comparative	studies	on	a	single	reference	genome	
is	neither	efficient	nor	effective.	Traditional	reference-based	approaches	make	use	of	only	
a	single	reference	genome,	ignoring	the	potentially	novel	genomic	content	found	in	other	

individuals.	 As	 a	 result,	 over	 the	 last	 decade	 there	 has	 been	 a	 growing	 interest	 in	
developing	 pan-genome	 structures	 capable	 of	 capturing	 a	wide	 genomic	 landscape	 of	
species.	 In	 this	 thesis,	 we	 develop	 a	 pan-genomic	 platform	 based	 on	 a	 novel	

representation	of	genomes	with	some	functionalities	 for	sequence	retrieval,	structural	
annotation,	homology	detection	and	read	mapping.		

Chapter	 1	 briefly	 introduces	 molecular	 biology	 and	 the	 revolution	 in	 genome	
sequencing.	 Then	 we	 introduce	 evolution	 and	 some	 basic	 concepts	 in	 genomics	 and	
comparative	 genomics	 which	 are	 necessary	 for	 the	 readers	 to	 be	 able	 to	 follow	 the	
chapters	of	 this	 thesis.	We	emphasize	 the	shortcomings	of	 traditional	 reference-based	

approaches	 in	comparative	genomics	and	 introduce	pan-genomics	as	a	solution	which	
recently	 has	 received	 much	 attention.	 We	 introduce	 the	 essentials	 of	 a	 pan-genomic	

platform	 from	 the	 perspective	 of	 the	 Computational	 Pan-genomics	 Consortium,	 and	
classify	existing	pan-genomic	data	structures	 into	 two	general	 categories	of	variation-
aware	 and	 multi-genome	 data	 structures.	 Finally,	 we	 discuss	 the	 de	 Bruijn	 graph	

including	the	stranded	version	we	introduce	in	chapter	2.							
Chapter	 2	 highlights	 the	 necessity	 of	 a	 transition	 from	 reference-centric	 to	 pan-

genomic	approaches.	As	a	comprehensive	representation	of	 large	number	of	genomes,	

we	introduce	a	generalized	de	Bruijn	graph.	We	present	a	novel	algorithm	to	construct	
such	a	DBG	and	take	advantage	of	the	Neo4j	graph	database	for	consistent	and	scalable	
storage	of	the	graph.	We	develop	a	toolset,	called	PanTools,	which	provides	some	useful	

functionalities	e.g.	for	annotation,	graph	update	and	sequence	retrieval.	We	demonstrate	
the	performance	of	PanTools	on	large	datasets	of	bacterial,	fungal	and	plant	genomes.	We	
illustrate	 how	 sequence	 variation	 creates	 specific	 sub-structures	 in	 the	 pan-genome	

including	an	example	of	 the	variability	of	a	 famous	gene,	called	FRIGIDA,	among	19	A.	
thaliana	accessions.	

Chapter	3	emphasizes	the	need	for	highly	efficient	tools	to	detect	homology	in	the	
ever-increasing	genomic	data.	We	present	an	efficient	method	 for	detecting	homology	
across	a	large	number	of	individuals	at	various	evolutionary	distances.	The	presented	k-
mer	based	approach	considerably	reduces	the	number	of	alignments	between	pairs	of	

peptide	sequences	without	sacrificing	sensitivity.	We	demonstrate	accuracy,	scalability,	
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efficiency	and	applicability	of	the	presented	method	in	large	proteomes	of	bacteria,	fungi,	
plants	and	Metazoa.	The	detected	homology	groups	are	stored	in	the	pan-genome	graph	

database,	and	can	be	queried,	for	example,	for	their	size,	copy	number	and	conservation	
rate.	

Chapter	4	focuses	on	correcting	errors	in	next-generation	sequencing	reads	which	
can	improve	the	performance	of	assembly	and	increase	the	accuracy	and	sensitivity	of	
quantitative	 analyses	 such	 as	 differential	 expression	 analyses	 and	 variant	 calling.	We	
develop	a	tool,	called	ACE,	based	on	a	k-mer	trie	data	structure	to	correct	for	substitution	
errors	 in	 short	 read	data.	We	show	 that	ACE	yields	higher	gains	 in	 terms	of	 coverage	
depth,	outperforming	state-of-the-art	competitors	in	the	majority	of	cases,	on	both	MiSeq	
and	HiSeq	Illumina	data.		

Chapter	5	presents	a	multi-genome	read	mapping	approach	which	utilizes	the	index	
and	pan-genome	structure,	introduced	in	Chapter	2,	to	map	short	reads	to	large	number	
of	genomes,	simultaneously.	One	advantage	 is	 the	efficiency	as	 the	 joint	 index	enables	

anchoring	the	reads	to	all	the	genomes	at	once	avoiding	repetitive	alignments	when	the	
genomes	are	highly	similar.	Another	advantage	is	that	we	can	resolve	the	reference	bias	
by	including	regions	that	are	entirely	missing	in	the	reference	but	present	in	some	other	

accessions.	Moreover,	such	a	multi-genome	read	mapper	can	be	utilized	in	binning	and	
abundance	estimation	of	meta-genomic	samples.	In	this	chapter,	we	successfully	apply	
this	 approach	 to	 map	 genomic	 and	 metagenomic	 reads	 to	 large	 collections	 of	 viral,	

archaeal,	bacterial,	fungal	and	plant	genomes.		
Chapter	6	puts	forward	some	ideas	on	the	future	challenges	and	opportunities	in	the	

field	 of	 pan-genomics.	 We	 discuss	 the	 emerging	 shift	 from	 reference-centric	 to	 pan-
genomic	approaches	and	the	necessity	of	substantial	adjustments	and	redevelopments	of	
traditional	methods	 and	 applications	 such	 as	 genome	 annotation,	 structural	 variation	

detection	 and	 real-time	 pan-genome	 visualization.	 We	 conclude	 that	 the	 design	 and	
engineering	introduced	in	this	thesis	contributes	to	the	field	and	the	growing	number	of	
similar	efforts	indicates	a	bright	future	ahead	for	comparative	pan-genomics.			
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Propositions	

	
1. To	support	practical	use,	computational	pan-genomics	should	focus	more	on	including	

relevant	annotations	and	less	on	developing	novel	efficient	data	structures.	
(this	thesis)	
	

2. De	Bruijn	graphs	are	not	appropriate	representations	of	highly	diverged	sequences	as	their	
resolution	is	limited	by	the	k-mer	size.	
(this	thesis)		
	

3. Debugging	is	not	essentially	the	process	of	removing	bugs,	but	replacing	them	with	
preferably	less	fatal	ones	(rebugging).		
	

4. To	prevent	researchers	from	wasting	effort	on	resolving	inconsistencies	and	dependencies,	
FAIRness	principles	need	to	be	enforced	by	public	scientific	software	portals.	
		

5. Social	distancing	leads	to	an	appreciation	of	social	networking	even	by	those	who	did	not	
appreciate	this	earlier.	
	

6. Developing	countries	that	do	not	cherish	their	human	resources	should	be	classified	as	de-
developing	countries	by	UN.	
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