- M . o -
i \ N . ..\o- . - :
. - | 3 3 4 .
"o :
" L " 3 M .‘
. 3 . - Y A “«_
: L " ;| . S e PR ‘w
“ b o .. . obotd N . ° *rq
,t‘. -‘, ..‘ 3 , ‘ . ;
. WASY N sory 2 : g '
] L : ; . . s
. u‘.. ' vy . Fva,, " - r -
, L A PR 4 "0 . v §
.‘.'.. : ")) . ! .: o. : .. % ..' :
' Ll Veengd . » . 4 p
oo S SV CRPTRP ' :
‘> LR .'....".. e : '\o - 4 ;
s Qv - . : - .. -
. r 5 e -
E 3 - : .,
: ‘%‘ '.~' . --‘ .-‘ L ', .: .’
o T R e ¢
-,' ' - L .L »
..‘ s’" ..'\ ‘O'
- l......-q
".‘ '. " ..n
- Slavash Shmkhnadeh Anar ‘.'
'. ; '.. ' A 8 .
. .J) ..*'~ . .O -~ ..o '-’ “ ...o
- 2 ’\
. . . \ -
,‘l.." ..’. . s ...‘. ,A. !
- » 3" o . ‘l 2
. 4 i S L . 4
'l .;. : : ‘ : '
' v"l‘.' .-o. . z ‘ pe '. "
‘.{c -. ‘; 2 T L ar : '- ? - -
o '."' .‘ ",.-." wrte » "'
....'° ’ > . : .l \.-‘.'..“'0-'“‘. .‘-.. :
* \ 3 '..; : 3 % 1 .
.. ‘A-O.“ .'r: ¢ : :
e J ™ - % 1 . .
x ..~ X . TTeiees ‘ ‘. ‘
.’ { '.;'. ..i v.' '.‘.o" . ."
’. ". ." .. ;.. .‘..‘.
N7 '_.o -..0‘, .." s . .
q“- '_.' "_ .. " ‘ .,
‘:‘ I "l.. ’ D ..‘ ™ :

Towards comparative pan-genomics

Siavash Sheikhizadeh Anari

Thesis committee

Promotors

Prof. Dr D. de Ridder

Professor of Bioinformatics
Wageningen University & Research

Prof. Dr M.E. Schranz
Professor of Biosystematics
Wageningen University & Research

Co-promotor

Dr S. Smit

Assistant Professor, Bioinformatics Group
Wageningen University & Research

Other members
Prof. Dr M. Groenen, Wageningen University & Research
Prof. Dr S. Rahmann, University of Duisburg-Essen and
Technical University of Dortmund, Germany
Dr E.M. Zdobnov, University of Geneva Medical School, Switzeland
Dr G. Bonnema, Wageningen University & Research

This research was conducted under the auspices of the Graduate School of Experimental
Plan Sciences (EPS)

Towards comparative pan-genomics

Siavash Sheikhizadeh Anari

Thesis
submitted in fulfilment of the requirements for the degree of doctor
at Wageningen University
by the authority of the Rector Magnificus,
Prof. Dr A.P.]. Mol
in the presence of the
Thesis Committee appointed by the Academic Board
to be defended in public
on Thursday 12 November 2020
at 11 a.m. in the Aula.

Siavash Sheikhizadeh Anari
Towards comparative pan-genomics
109 pages

PhD thesis, Wageningen University, Wageningen, the Netherlands (2020)
With references, with summary in English

ISBN: 978-94-6395-568-3
DOI: https://doi.org/10.18174 /532136

Contents

Chapter 1 Introduction

Chapter 2 PanTools: representation, storage and exploration of pan-genomic data
Chapter 3 Efficient inference of homologs in large eukaryotic pan-proteomes
Chapter 4 ACE: accurate correction of errors using K-mer tries

Chapter 5 Pan-genomic read mapping

Chapter 6 Discussion

Summary

Acknowledgements

List of publications

21

37

59

79

97

104

106

108

Chapter 1

Introduction

‘ Introduction
1.1 Basics of molecular biology

When Friedrich Miescher isolated an unknown material from the nuclei of white blood cells
in 1869, he had no idea that these molecules encoded the information needed to perpetuate
life of all organisms. It took until the mid-1950s for researchers to elucidate the hereditary
role of these so-called deoxyribonucleic acid, or DNA, molecules and thus revolutionize our
understanding of biology and life on earth. DNA has a twisted ladder-like structure of
nucleotides, folded and packed in genetic units called chromosomes. The complete set of
chromosomes of a species is called the genome. Chromosomes appear in different numbers,
sizes and content in different species. Where prokaryotes have a single circular
chromosome as genome, the genome of eukaryotes are usually made up of sets of highly
similar homologous chromosomes, half of which are inherited from each parent. The
number of homologous chromosomes, called the ploidy, also varies between species. For
example, the human genome comprises of 23 pairs (diploid) of chromosomes but the wheat
genome has 6 homologous copies (hexaploid) of each of its 7 chromosomes.

Genomic differences do not occur by chance but as a result of billion years of evolution,
through which genomic content of species has been shuffled, mixed and mutated. By
investigating these differences scientists are able to trace back the evolutionary history of
different species to unravel their ancestral relationship. Genomic differences can also
explain important characteristics of species, for example resistance of a crop to a pest or
vulnerability of a person to a type of cancer. Casual genomic differences, leading to different
characteristics, often appear in functional parts of the genome, called genes, that encode for
building blocks of living cells. Genes are transcribed into transcripts, messenger RNA
(ribonucleic acid), which are then used by the translation machinery of the cell to produce
the macromolecule of proteins. There are numerous types of proteins within the cell,
forming its physical structure or regulating various biological functions. The entire set of
proteins of species is called the proteome. The human proteome, for example, consists of
~20,000 different proteins.

1.2 Genomics and the revolution of sequencing

To investigate genomes, first we must uncover the nucleotide sequence of chromosomes,
through whole-genome sequencing (WGS) or in specific regions/genes using targeted
amplicon sequencing (TAS) [1]. DNA material is sequenced in short/long overlapping
fragments called reads [2]. Sequencing reads are pieces of the original genome which can be
assembled into longer contiguous sequences (contigs), which may be ordered and oriented
into scaffolds to give a more complete picture of the genome. Finally, assembled genomes
are annotated to determine structure and function of genomic features, such as protein-
coding genes, tRNAs [3], miRNAs [4] and motifs [5].

Materialized in 1970s, DNA sequencing is now in the midst of a revolution which
currently allows us to read the entire 3.5 billion base pairs of the human genome in a single
day. The number of nucleotide records in the NCBI RefSeq database [6] has been annually
increasing by 50%, on average, since its foundation in 2003. The latest release (March 2020)
harbors 1.86 x 1012 nucleotides from 99,842 taxa (Figure 1.1). It is expected that the number

8

of assembled genomes will keep expanding in the coming decades. At the same time, the
quality and contiguity of genome assemblies will also improve, due to advances in
sequencing technologies. Second-generation sequencing reads are short (a few hundred
base pairs) and introduce ambiguity in assembling repetitive regions of the genome and also
in separating haplotypes. New technologies such as long-read sequencing (Oxford Nanopore
Technology) and optical mapping (Bionano Genomics) are very promising towards
chromosome-scale assembly of large and complex genomes [7,8]. Combined with high-
quality [llumina short reads, long reads can also facilitate haplotype-resolved assembly [9].

—Taxa —=Nucleotides

x 1013
x 1012
x 1011
x101° 1.86 x 10*2
x10°
x 108 4.67 x 10°
x 107
x 108 99,842
x10°% 2,005
x 104 /_//
x 103
R AR
P e O 2P0 o W R e e 2T 9 0

Figure 1.1. The NCBI RefSeq database has been growing exponentially. The green line indicates the number
of nucleotides and the red line shows the number of different taxa over a period of 18 years in this database
till March 2, 2020 (RefSeq release 99).

1.3 Comparative genomics

Individual genomes are not very useful without any knowledge about their structure and
function. The collective study of genomes enables us to use the existing knowledge on some
genomes to infer function and characteristics of other related genomes. Unraveling these
relationships has led to novel discoveries in many application domains, such as
microbiology to design medicines, plant breeding to improve the yield of crops and cancer
research to decide on effective treatments. Physical characteristics or traits of
individuals/species define their general phenotypes. Differences in phenotypes, besides
environmental factors, stem from variation in the genomic makeup or genotypes of species.
Comparative genomics is a branch of research that investigates the evolution of genotypes
and links to phenotypes by characterizing similarity and divergence of the genomes of
species. Genomic differences can vary from simple mutations, such as single nucleotide
polymorphisms (SNPs) and short insertions/deletions (indels), to large segmental
duplications, or drastic changes of karyotype and ploidy of the genomes [10]. Considering a
single gene of a species, the genotype of an individual with regard to that gene is determined
by the copies of that gene (two copies in diploids) in the homologous chromosomes, called

‘ Introduction

alleles. If the sequence of two alleles are identical, they are homozygous, otherwise they are
heterozygous at that locus.

Occurring randomly, most sequence mutations are neutral, however mutations in
functional features of the genome often impact biological functions of the cell. Evolution
preserves beneficial mutations (positive selection) and purifies populations from
deleterious mutations (negative selection). The evolutionary relationship of species is
usually visualized as a phylogenetic tree, where the leaves are species and internal nodes
represent the common ancestors. Genomic features which are conserved between two
species are ancestrally related (homologs). Homologous features may be inherited from a
single feature (orthologs) or from distinct duplicated features (paralogs) in their last
common ancestor. Orthologous features often preserve their order in a chromosome
(synteny).

Interspecies comparative genomics tries to detect the functional parts of genomes of
different species by pair-wise alignment of genomes [11]. The principle behind it is that
genomic features that encode/regulate proteins responsible for similar biological functions
are conserved between two species and, conversely, those that encode/regulate their
differences are diverged [12]. However, this is very challenging as computation becomes
harder with increasing genome sizes and the number of pair-wise comparisons grows
quadratically with the number of species. As a result, many research groups provide
precomputed browsable alignments and synteny maps of species of interest [13-16].
Different species can also be compared based on their functional features through orthology
inference. There are numerous tools and public databases which infer orthology based on
sequence similarity, phylogeny, synteny or a combination of those [17].

Intraspecies comparative genomics tries to find genomic variation between individuals
of the same species. In such studies, simple variation is detected between individuals by
aligning sequencing reads to a reference genome (read mapping) and collecting variable loci
such as SNPs and short indels from the pileup of reads (variant calling). Large regions in
which no reads map show large deletions in the sequenced genome, split reads help to
determine the boundaries of large structural events such as insertions, inversions and
translocations, and drastic changes in the average number of reads spanning a locus
(coverage) compared to flanking regions can indicate duplications.

It becomes clear that reference genomes play a central role in intraspecies comparative
genomics. However, a single reference genome cannot represent an entire species. In the
first place, it ignores the intraspecies variability. Second, a reference genome is a haploid
simplification of the genome of species that are often diploid or even polyploid and, as a
result, mapping reads against a single reference is always biased towards the reference
allele in highly heterozygous sites. This can mislead genotyping as the alternative alleles
may not be discovered due to failure of read mapping. Third, reads originating from genomic
regions that are absent in the reference will be ignored while they may contain important
rare variants, for example somatic mutations that are causal for cancer. To overcome these
limitations and make full use of the wealth of genomes available for many species, a

10

transition from reference-based to pan-genomic comparative genomics has emerged in
recent years [18].

1.4 Pan-genomes

In line with the number of sequenced individuals, research in the field of pan-genomics has
been growing rapidly in the recent decade. In the PubMed database [19], the term
“pangenome” or “pan-genome” receives hits (in title/abstract) since the year 2000, reaching
to over 1,000 hits by the end of 2019 (Figure 1.2). A collection of genomes, haplotypes,
genes, or any genomic feature from a phylogenetic clade which are analyzed jointly can be
called a pan-genome [18]. As a reference, pan-genomes are supposed to capture a wider
genomic landscape of species compared to a single reference genome.

1,100 ——Annually ———Cumulatively

1,000
900
800
700
600
500
400
300
200
100

PubMed hits

Figure 1.2. The number of publications with terms “pangenome” or “pan-genome” in the title or abstract has
been growing in PubMed database, since 2000. Red curve indicates cumulative number of hits, so 1000
publications by the end of 2019.

In literature, various definitions of pan-genomes are in use, in terms of genomic content,
taxonomy level, functionality and data structures. Initially, pan-genomes were defined at
the gene level in microbial species to study their gene repertoire and categorize genes as
core, dispensable or strain-specific [20]. Subsequent developments constructed pan-
genomes from complete genomes [21,22]. There are also examples of pan-genomes at the
transcriptome level (pan-transcriptome) utilized to investigate presence/absence variation
between transcriptomes [23]. Pan-genomes have been also defined at different taxonomic
levels. For example, viral quasi-species [24,25] are pan-genomes at the strain level, the
Vibrio cholerae pan-genome [26] is defined at the species level, and the Bacillus pan-genome
[27] atthe level of a genus. Pan-genomes have been built even from different meta-genomes,
for example, the Prochlorococcus pan-genome is a pan-metagenome used to link clusters of
genes to their environmental distribution in a marine metagenomics context [28].

The Computational Pan-Genomics Consortium, a group of researchers from different
application domains, from virology to microbiology, human and cancer genomics, have
presented the most comprehensive definition of a pan-genomic platform, in the literature

11

‘ Introduction

of the field [18] (Figure 1.3). In this view, it should be possible to construct pan-genomes
from whole-genome or targeted assemblies. Any representation requires efficient and
consistent retrieval and storage of data. To be used as a reference and detect small and large-
scale genomic variation, pan-genomes should facilitate read mapping and variant calling.
Variants should be expressed based on a consistent and stable pan-genomic coordinate
system which is efficiently projectable to individual genomes. Additional data stores might
be considered for discovered variants and haplotypes. To incorporate new genomes, the
pan-genome data structure and, in turn, the coordinates should be efficiently updated.
Structural features of genomes need be annotated in the pan-genome. Simplified
visualizations at different layers of aggregation are needed to unfold pan-genome
substructures. Finally, more realistic genome simulators can be developed considering the
common haplotypes and their frequency information. Such a platform can be even extended
to be able to answer other relevant biological questions. Currently, a lot of research is being

dedicated to exploring data structures and algorithms that can make such computational
infrastructure a reality.

2 &

sample 1 sample2 eee Samplen sample n+1
0 X0 0K 0
I 1 [l

DNA reads

. T)
G Caccccerc 9 i
i| Assembled contigs/ | | Assembled contigs/ Assembled contigs/ | |
i { whole genome whole genome whole genome) §

H poaenome

ACCCGCT

Alignment

Another

Pan-genome

Variant calling / Phasing

Restore

(Known. vaﬂams) CCCaCTC CCCCCTC

Novel variants Haplotypes

Update

| Annotate I | Simulate
T . T LT
'. =
‘Annotation D, Haplotypes

C——— 3
ECCCE TECTE00T0)-» (CTGGASTI)-H TATTAAIT

[P

Visualization

Haplotypes Variants

Figure 1.3. Functionalities suggested by the Computational Pan-Genomics Consortium to be supported in a
pan-genomic platform. This figure is re-used from [18]. Pan-genome is constructed from a given set of
samples/genomes and is permanently stored for future use. Reads from newly sequenced individuals are
mapped against the pan-genome to call novel variants and haplotypes which will be incrementally added to
the pan-genome and can be retrieved on demand. Population haplotype frequencies cab be used to simulate
new populations. Comparing two pan-genomes can narrow down the candidate genomic source of

phenotypes in different populations. Pan-genomes need to be annotated and visualized to be used in real
applications.

12

1.5 Data structures

In a pan-genomic platform, data organization directly affects the feasibility and efficiency of
the functionalities that manipulate the data. Given the wide range of potential uses, it is not
expected that a single data structure can be found which satisfies all the needs, equally well.
We classify existing pan-genomic data structures into two general representations:
variation-aware and multi-genome data structures. Variation-aware data structures enrich
a single reference with known variants, while multi-genome data structures combine
multiple assembled genomes.

1.5.1 Variation-aware structures

In a population of the same species with rare large-scale genomic rearrangements, a
reference genome plus a large number of simple variants/haplotypes can sufficiently
represent that population. The genomic makeup of any new individual can then be
expressed as a combination of alleles at the variable loci of a single reference. Such variation-
aware data structures have been extensively used in human pan-genomics [29], as a wealth
of variants have been already discovered in human genome. For example, dbSNP Build 152
contains more than 650 million short variants (<=50bp). Variation-aware data structures
can be categorized in reference-based and graph-based structures.

Reference-based variation-aware methods keep the reference genome separated from
the data structure of the variants. For example, RCSI [30] builds two indices for pattern
search in the genomes, one for the reference and the other for deviation of genomes from
the reference. Similarly, BWBBLE [31] extends the reference genome to a linear multi-
genome, by appending [IUPAC-coded variants in other genomes to the reference. This linear
structure is then BWT-indexed for read mapping against all the constituent genomes. In the
same vein, MuGI [32] constructs a variation database and a k-mer index for read mapping.
The journaled string tree [33] is a reference-based data structure which provides an
efficient simultaneous sequential search over a set of highly similar genomes.

Graph-based variation-aware methods combine the reference genome and known
variants or/and haplotypes in a graph structure, where paths represent the possible
recombinants in the population. For example, GraphTyper [34] constructs a directed acyclic
graph from a reference genome and a set of known variants. Unaligned/clipped reads
coming from complex regions of the genome are mapped to this augmented graph using a
k-mer index, haplotypes are called, variants are genotyped with respect to the reference,
and the novel variants are incorporated in the graph. Similarly, the population reference
graph [29] is a directed acyclic graph constructed from assembled haplotypes of MHC region
and SNPs from the 1000 Genomes Project and classical HLA alleles from IMGT [35], to
improve the accuracy of genome inference in this complex region. Likewise, the variation
graph (vg) toolkit [36] constructs a bi-directed variation-aware graph to improve read
mapping in highly polymorphic regions of human genome.

13

‘ Introduction
1.5.2 Multi-genome structures

Variation-aware data structures have been effectively utilized to improve variant calling in
highly polymorphic regions of the human genome, but they do not facilitate detection of
structural variation as found in dynamic genomes such as those of fungi and plants. They
assume a strong collinearity between genomes and require a large number of known
variants, beforehand. When a wealth of assemblies is available, genomes are highly
structurally dynamic, or the variability of the genomes is less well-known, use of a multi-
genome data structure is the desirable approach. Multi-genome data structures can be
categorized in alignment-based and graph-based structures.

Alignment-based data structures mostly use pre-calculated multiple sequence
alignments (MSA) to represent sequence similarities in the collinear segments of the
genomes. An advantage is that the columns of an MSA define a coordinate system over
sequences, which can be efficiently projected to original coordinates in each sequence [37].
Also, MSAs can be indexed for pattern search; for example, GCSA [38] uses a (Borrows-
Wheeler transform) BWT-index over a finite automaton representation of an MSA to allow
pattern search inside recombinants, and PanVC [39] constructs a hybrid index [40] to map
reads against the MSA. Such tools have been applied to short polymorphic regions of the
human genome. However, building an MSA of a large number of structurally variable
genomes is a large challenge [41-43].

Graph-based alignment structures, such as POA [44], A-Bruijn [45] and Cactus [46]
graphs have tried to address representation of recombinants, structural variation and
duplications, at the same time. ProgressiveMauve [47] takes a similar approach, although it
does not make a graph. It partitions genomes into locally collinear blocks (LCB) and builds
MSAs of each block in a multiple whole-genome alignment (MWGA). To extend an existing
MWGA with a new genome, seq-seq-pan [48] generates pairwise alignments between the
linear consensus of existing LCBs and the new genome and splits or merges the blocks to
update the alignment.

Graph-based multi-genome data structures are able to efficiently represent multiple
genomes by collapsing identical regions. In such graphs, nodes are labeled with pieces of
nucleotide sequences annotated with their coordinate in each genome, enabling traversing
the path of each genome in the graph. Nodes can be of constant or variable length and are
connected by directed edges, or by bi-directed edges to represent the strand of the
sequences. In a pan-genome graph, cycles represent repetitive sequences in one genome or
between multiple genomes. Cyclic pan-genome graphs can be replaced by their acyclic
version to preserve all copies of repeated sequences in the structure, of course at the cost of
redundant nodes. For example, in Figure 1.4, it is clear that pattern CCTC occurs twice in
tandem in both sequences, but in the cyclic version it is not clear how many times this
pattern is repeated in each sequence. This issue can also be addressed by annotating nodes
or edges with genomic coordinates. This also links coordinates of similar regions between
genomes, facilitating homology detection algorithms.

In the absence of a linear coordinate system, graph coordinates can be expressed by
pairs of node identifier and offset. Such coordinates demand some book-keeping when node

14

identifiers change, for example due to adding new sequences and splitting some nodes.
Alternatively, one of the genomes can be considered to be the reference and corresponding
loci in other genomes can be defined with respect to the reference coordinates. This has
been implemented in some human pan-genomes [29,34], but it is not applicable in the
presence of genomic rearrangements.

The De Bruijn graph (DBG) or colored DBG [49] has traditionally been used in genome
assemblers [50,51], but became popular as a multi-genome data structure as well [52,53].
It efficiently compresses multiple genomes by storing each k-mer of constituent genomes
only once. Figure 1.5A illustrates a DBG representing three sequences, where the first two
sequences share some k-mers but the third sequences shares no k-mer with either.
Compressing non-branching paths significantly reduces the size of this graph (Figure 1.5B).
Considering the reverse-complement k-mers in a stranded version of the graph reveals that
the third sequence also shares some k-mers with the first two sequences, but in reverse
direction. Genomic inversions between genomes can be detected in such a stranded graph
(Figure 1.5C).

(=] (]

A. Acyclic

M> (cere) @(.
(z) (c]

B. Cyclic

Figure 1.4. A. The acyclic and B. cyclic pan-genome graphs for two sequences AGTAGCCCTCCCTCGT (red)
and AGTTGCCCTCCCTCGC (green). Yellow nodes are shared between these two sequences. The tandem
repeat of CCTC in the longest node in the acyclic graph is represented by a loop in the cyclic graph, however
the number of copies needs to be annotated for the repeated part.

15

Introduction

-1
(58] [cae) [ona] [ame) (re) (os) [ooe) [oca) (cac)

A. De Bruijn graph

B. Compressed De Bruijn graph

Seq 2 Seq 3
C. Stranded De Bruijn graph

Figure 1.5. Three varieties of the De Bruijn graph (k = 3) for sequences AGTACCCTCCCTCCGT (red),
AGTGCCCTCCCTCCGC (green), and ACGGTGGGCAC (blue). Nodes shared between two or all three the
sequences are colored as determined in the legend. The number of nodes is much lower in the compressed
DBG compared to the original DBG. Reverse-complement of the blue sequence shares several parts with two
other sequences which can be captured in a stranded DBG.

1.6 Research objectives and outline of thesis

As outlined above, pan-genomes have received a lot of attention in recent years. However,
existing pan-genomic tools are mostly specialized to the human genome and do not scale to
large collections of structurally dynamic genomes, such as plant genomes. In this project, we
investigate computational methods to compress large sets of related genomes into a pan-
genome with basic functionalities for construction, update and exploration of such pan-
genomes. As a data representation, we develop a generalized De Bruijn graph which scales
to thousands of prokaryotic or hundreds eukaryotic genomes. The implemented pan-
genomic toolset, PanTools, provides useful functionality to construct and update the pan-
genome, add new genomes and annotations, retrieve genomic features/regions, add
proteome space, detect homology groups in this space, and finally map short sequencing
reads against a pan-genome.

In Chapter 2, we present our pan-genome representation, as well as the construction
algorithm and our annotation approach. We introduce a generalized De Bruijn graph as the
pan-genome data structure which is compressed, bi-directed, localized and indexed for

16

efficiency and applicability. We demonstrate applicability of our pan-genome toolbox,
PanTools, to large number of bacterial, fungal and plant genomes. In Chapter 3, we present
a method to incorporate proteomes in the pan-genome and detect homology groups in the
proteome space, de novo and efficiently. We show sensitivity and specificity of the
implemented k-mer-based approach, demonstrate its scalability to large bacterial, fungal,
plant and metazoan proteomes, and show its applicability to proteomes of species at various
evolutionary distances. In Chapter 4, we present a k-mer-based approach to correct for
substitution errors in short-read data. We show that this method increases the horizontal
and vertical coverage of read mapping, which are important to improve variant calling and
genome assembly, respectively. Finally, Chapter 5 introduces a pan-genome read mapping
approach capable of aligning millions of short reads to hundreds of eukaryotic or thousands
of prokaryotic genomes, simultaneously. We show that mapping against multiple genomes
reduces the number of unmapped reads. We also show how the implemented competitive
mapping approach can be effectively used for abundance estimation and binning of
metagenomics reads.

17

‘ Introduction

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

18

Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL, Clement M], et al. Targeted
amplicon sequencing (TAS): a Scalable next-gen approach to multilocus, multitaxa phylogenetics.
Genome Biol Evol. 2011;3:1312-23.

Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing
technologies. Nat Rev Genet. 2016;17(6):333-51.

Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA
genes. Nucleic Acids Res. 2016;44(W1):W54-7.

Agarwal V, Bell GW, Nam]J-W, Bartel DP. Predicting effective microRNA target sites in mammalian
mRNAs. Elife. 2015;4:e05005.

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif
discovery and searching. Nucleic Acids Res. 2009;37:W202-8.

O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq)
database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res.
2016;44(D1):D733-45.

Deschamps S, Zhang Y, Llaca V, Ye L, Sanyal A, King M, et al. A chromosome-scale assembly of the
sorghum genome using nanopore sequencing and optical mapping. Nat Commun. 2018;9(1):4844.
Jain M, Koren S, Miga KH, Quick], Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a
human genome with ultra-long reads. Nat Biotechnol. 2018;36(4):338-45.

Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM, Kingan SB, et al. De novo assembly of haplotype-
resolved genomes with trio binning. Nat Biotechnol. 2018;36(12):1174-82.

Parfrey LW, Lahr DJG, Katz LA. The Dynamic nature of eukaryotic genomes. Mol Biol Evol.
2008;25(4):787-94.

Earl D, Nguyen N, Hickey G, Harris RS, Fitzgerald S, Beal K, et al. Alignathon: a competitive assessment
of whole-genome alignment methods. Genome Res. 2014;24(12):2077-89.

de Crécy-Lagard V, Hanson A. Comparative genomics. In: Brenner’s Encyclopedia of Genetics. Elsevier;
2013.p. 102-5.

Florea L. EnteriX 2003: visualization tools for genome alignments of Enterobacteriaceae. Nucleic Acids
Res. 2003;31(13):3527-32.

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: computational tools for comparative
genomics. Nucleic Acids Res. 2004;32(Web Server):W273-9.

Haussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, et al. The UCSC genome browser
database: 2019 update. Nucleic Acids Res. 2019;47(D1):D853-8.

Cunningham F, Achuthan P, Akanni W, Allen], Amode MR, Armean IM, et al. Ensembl 2019. Nucleic
Acids Res. 2019;47(D1):D745-51.

Tekaia F. Inferring orthologs: open questions and perspectives. Genomics Insights. 2016;9:17-28.
Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A, et al. Computational pan-genomics:
Status, promises and challenges. Brief Bioinform. 2018;19(1):118-35.

PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed. 2020; Apr 21.

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple
pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc
Natl Acad Sci. 2005;102(39):13950-5.

Marcus S, Lee H, Schatz MC. SplitMEM: A graphical algorithm for pan-genome analysis with suffix
skips. Bioinformatics. 2014;30(24):3476-83.

Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with compressed suffix trees and the
Burrows-Wheeler transform. Bioinformatics. 2016;32(4):497-504.

Jin M, Liu H, He C, Fu], Xiao Y, Wang Y, et al. Maize pan-transcriptome provides novel insights into
genome complexity and quantitative trait variation. Sci Rep. 2016;6(1):18936.

Baaijens], Van der Roest B, Koster], Stougie L, Schonhuth A. Full-length de novo viral quasispecies
assembly through variation graph construction. bioRxiv. 2018;287177.

Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved
core genome shared by Estuarine and Oceanic Cyanopodoviruses. PLoS One. 2015;10(11):e0142962.
Dutilh BE, Thompson CC, Vicente ACP, Marin MA, Lee C, Silva GGZ, et al. Comparative genomics of 274
Vibrio cholerae genomes reveals mobile functions structuring three niche dimensions. BMC Genomics.
2014;15(1):654.

Kim Y, Koh I, Young Lim M, Chung W-H, Rho M. Pan-genome analysis of Bacillus for microbiome
profiling. Sci Rep. 2017;7(1):10984.

Delmont TO, Eren AM. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome.
Peer]. 2018;6:e4320.

29.

30.
. Huang L, Popic V, Batzoglou S. Short read alignment with populations of genomes. Bioinformatics.

32.
33.
34.
35.
36.

37.
38.

39.

40.
41.

42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

53.

Dilthey A, Cox C, Igbal Z, Nelson MR, McVean G. Improved genome inference in the MHC using a
population reference graph. Nat Genet. 2015;47(6):682-8.
Wandelt S, Starlinger], Bux M, Leser U. RCSI. Proc VLDB Endowment. 2014;6(13):1534-45.

2013;29(13):i361-70.

Danek A, Deorowicz S, Grabowski S. Indexes of large genome collections on a PC. PLoS One.
2014;9(10):109384.

Rahn R, Weese D, Reinert K. Journaled string tree-a scalable data structure for analyzing thousands of
similar genomes on your laptop. Bioinformatics. 2014;30(24):3499-505.

Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B, Masson G, et al. Graphtyper
enables population-scale genotyping using pangenome graphs. Nat Genet. 2017;49(11):1654-60.
Lefranc M-P, Giudicelli V, Ginestoux C, Jabado-Michaloud], Folch G, Bellahcene F, et al. IMGT(R), the
international ImMunoGeneTics information system(R). Nucleic Acids Res. 2009;37:D1006-12.
Garrison E, Sirén], Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation graph toolkit improves
read mapping by representing genetic variation in the reference. Nat Biotechnol. 2018;36(9):875-9.
Navarro G, Médkinen V. Compressed full-text indexes. ACM Comput Surv. 2007;39(1):2.

Sirén |, Valimaki N, Makinen V. Indexing finite language representation of population genotypes. LNCS.
2011.6833:270-81.

Valenzuela D, Norri T, Valimaki N, Pitkdnen E, Makinen V. Towards pan-genome read alignment to
improve variation calling. BMC Genomics. 2018;19(S2):87.

Valenzuela D, Makinen V. CHIC: a short read aligner for pan-genomic references. bioRxiv. 2017.
Nguyen ND, Mirarab S, Kumar K, Warnow T. Ultra-large alignments using phylogeny-aware profiles.
Genome Biol. 2015;16(1):124.

Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large
alignments. PLoS One. 2010;5(3):e9490.

Darling ACE. Mauve: multiple alignment of conserved genomic sequence with rearrangements.
Genome Res. 2004;14(7):1394-403.

Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics.
2002;18(3):452-64.

Raphael B, Zhi D, Tang H, Pevzner P. A novel method for multiple alignment of sequences with
repeated and shuffled elements. Genome Res. 2004;14(11):2336-46.

Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D. Cactus: algorithms for genome multiple
sequence alignment. Genome Res. 2011;21(9):1512-28.

Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and
rearrangement. PLoS One. 2010;5(6):e11147.

Jandrasits C, Dabrowski PW, Fuchs S, Renard BY. Seq-seq-pan: building a computational pan-genome
data structure on whole genome alignment. BMC Genomics. 2018;19(1):47.

Igbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using
colored De Bruijn graphs. Nat Genet. 2012;44(2):226-32.

Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc Natl
Acad Sci. 2002;98(17):9748-53.

Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using De Bruijn graphs.
Genome Res. 2008;18(5):821-9.

Minkin I, Pham S, Medvedev P. TwoPaCo: an efficient algorithm to build the compacted De Bruijn
graph from many complete genomes. Bioinformatics. 2016;33(24):4024-32.

Beller T, Ohlebusch E. A representation of a compressed De Bruijn graph for pan-genome analysis that
enables search. Algorithms Mol Biol. 2016;11(1):20.

19

Introduction

20

Chapter 2

PanTools: representation, storage and exploration of pan-genomic data

This chapter is published as:
Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. PanTools: representation,

storage and exploration of pan-genomic data. Bioinformatics. 2016;32(17):487-93.
DOI: 10.1093 /bioinformatics/btw455

‘ PanTools: representation, storage and exploration of pan-genomic data
Abstract

Next-generation sequencing technology is generating a wealth of highly similar genome
sequences for many species, paving the way for a transition from single-genome to pan-
genome analyses. Accordingly, genomics research is going to switch from reference-centric
to pan-genomic approaches. We define the pan-genome as a comprehensive representation
of multiple annotated genomes, facilitating analyses on the similarity and divergence of the
constituent genomes at the nucleotide, gene and genome structure level. Current pan-
genomic approaches do not thoroughly address scalability, functionality and usability. We
introduce a generalized De Bruijn graph as a pan-genome representation, as well as an
online algorithm to construct it. This representation is stored in a Neo4j graph database,
which makes our approach scalable to large eukaryotic genomes. Besides the construction
algorithm, our software package, called PanTools, currently provides functionality for
annotating pan-genomes, adding sequences, grouping genes, retrieving gene sequences or
genomic regions, reconstructing genomes and comparing and querying pan-genomes. We
demonstrate the performance of the tool using datasets of 62 E. coli genomes, 93 yeast
genomes and 19 Arabidopsis thaliana genomes. The Java implementation of PanTools is
publicly available at http://www.bif.wur.nl.

22

2.1 Introduction

Since the assembly of the first bacterial genome in 1995 [1], the concept of a reference
genome has been the cornerstone for gene discovery, functional analysis and comparative
genomics. Reference genomes are typically linear sequence representations that facilitate
genome browsing and sequence-based analyses. In recent years, large genome projects,
such as the 150 tomato genomes project [2] and the 3000 rice genomes project [3], have led
to a deluge of data. Thus, many species and phylogenetic groups are no longer represented
by a single reference genome but by numerous related genomes. In this situation, analyzing
hundreds of genomes by individual comparison to a single reference genome becomes
inefficient and misses genomic content not present in the reference, while ignoring the
availability of the other near-complete genomes. Likewise, pair-wise comparison of
hundreds of linear genomes is also far from practical. Hence, to capitalize on the genomic
diversity in large collections of genomes, we need to transition from a reference-centric
approach to a pan-genome approach.

Originally, the term pan-genome has been used to describe the totality of genes found
in a species or phylogenetic clade in order to classify specific genes as either core or
dispensable [4]. More recent conceptions of the pan-genome are defined at the sequence
level, compressing multiple genomes into a (compressed) De Bruijn graph (DBG) using
additional data structures such as a suffix tree [5], FM-index [6], Burrows-Wheeler
transform [7] or Bloom filter trie [8]. Accordingly, here we define the pan-genome as a
comprehensive representation of multiple annotated genomes, facilitating analyses on the
content and organization of the constituent genomes.

Aiming to replace linear genome representations, a computational pan-genome
solution should contain annotations, be mutable (to incorporate novel genomes), allow
long-term storage and be usable for comparative genomics. The storage property is
especially important when working on large eukaryotic genomes, where in-memory
solutions are no longer sufficient. Being able to update a pan-genome is essential as the rate
at which genomes are produced will only increase in the future. Existing pan-genome
approaches fulfill only part of these requirements.

To overcome these limitations and work towards a computational pan-genome
approach that allows to incorporate these desirable features, we developed an algorithm to
condense multiple annotated genome sequences into a single representation. As in other
approaches, the core of our pan-genome is a compressed De Bruijn graph. What
differentiates our method is that we construct the pan-genome in a Neo4j graph database
[9], which scales to arbitrary graph sizes and thus allows for the analysis of large collections
of complex eukaryotic genomes. Our pan-genome graph is created using an online algorithm
that, like current methods, has a runtime linear in the total sequence length. Besides
construction, we provide useful functionality for annotating pan-genomes, grouping genes,
retrieving sequences and comparing pan-genomes. The pan-genome is stored on disk and
new genomes or annotated features can be added. We have implemented a stand-alone
command-line Java application, called PanTools, for the representation, storage and

23

‘ PanTools: representation, storage and exploration of pan-genomic data

exploration of pan-genomic data. The software is publicly available on
http://www.bif.wur.nl

This article details our algorithm for pan-genome construction and discusses its
functionality, performance and applications. Primarily we explain the data structure, the
construction algorithm, and the implemented storage method. In addition, we address
running time, memory usage and scaling behavior of PanTools. We end by illustrating
possible applications that can be developed using our pan-genome representation as a
foundation.

2.2 Methods

2.2.1 Overview

In De Bruijn graphs (DBGs), nodes correspond to unique k-mers (words) in the input
sequences, and edges connect nodes whose words overlap by k-1 nucleotides. Storing only
one copy of each word, DBGs efficiently compress the input sequences. However, the
precision in detecting sequence similarities depends on the choice of k. DBGs have been
effectively employed for sequence applications such as de novo assembly [10,11], de novo
repeat classification [12], genotyping [13], synteny block finding [14] and, more recently,
for pan-genome representation [5-8].

As in some other existing approaches, the core of our pan-genome is a compressed DBG,
which is generalized through a number of key properties to make it efficient and applicable
to real data. It is:

1. Compressed, to preserve space and allow efficient traversal. Compressing non-
branching paths also improves the interpretability of the topology which is important for
mining structures in the graph, for example, using the graph database query language,
Cypher [15].

2. Bi-directed, to allow reverse complement sequences to be stored in the same nodes
of the graph. This property slightly reduces the size of the graph, but most importantly
makes it applicable to double-stranded data, for instance to detect inversions between
genomes.

3. Localized, to store the genomic positions at which each forward or reverse sequence
of a node appears.

4. Indexed, by all canonical k-mers of the dataset, to provide quick access to the node
where a given k-mer occurs. A k-mer is called canonical if it is smaller than its reverse
complement, lexicographically.

5. General, to allow storing ambiguous genomic regions in the pan-genome, which are
widespread in real datasets.

The most straightforward way of constructing a compressed DBG is to build the original
uncompressed DBG and compress non-branching paths. However, branch compression in a
graph with billions of nodes requires an amount of memory only found in high-end
machines. Therefore, efficient construction methods like those proposed in [6] and [7]
create a compressed DBG directly from input sequences. Below, we describe an alternative

24

direct method for construction of the compressed DBG which is optimized for disk-based
storage in a graph database. It is an online algorithm, i.e. the graph is updated as soon as the
next k-mer of the input is scanned. This property enables us to cumulatively add new
genomes to the pan-genome over time.

2.2.2 Data structures

The pan-genome is represented as a bi-directed graph, with two-sided nodes [forward (F)
and reverse (R)] corresponding to the nucleotide sequence and its reverse complement. As
a result, there are four types of edges (FF, FR, RF and RR) depending on the sides that are
connected. Figure 2.1 illustrates a pan-genome graph (k = 3) of two genomes, each with one
sequence, white and black, with shared parts colored gray. In this picture, circles, called
sequence nodes, locate the nodes of the pan-genome where a sequence starts and ends,
rectangles represent normal nodes and the rounded rectangle is an instance of a so-called
degenerate node representing the ambiguous region in the first sequence. Ambiguous
regions are sub-sequences in which all consecutive k-mers contain one or more ambiguous
bases. In this example, the first sequence contains an R (a purine, i.e. an A or G), which has
been stored in degenerate node 2. Degenerate nodes save the connectivity of the paths that
input sequences take through the graph and facilitate the reconstruction of the constituent
genomes or genomic regions. For simplicity, from here on we use the term ‘node’ as
shorthand for normal nodes. In the current implementation, we also use some other types
of nodes, which will be introduced in the Section 3. In Figure 2.1, all edges are of type FF
except for the loop over node 4 and the edge between nodes 10 and 1, which both are of
type FR (determined by the orientation of the arrows on the edge).

Table 2.1 lists the coordinates stored in each node. A coordinate determines the
genomes where the sequence of the node occurs, the position at which it occurs, and
whether the forward or reverse sequence occurs. As each genome may contain several
sequences (chromosomes, contigs etc.) coordinates are represented by three numbers:
genome, sequence and position. For example, in node 1, the forward sequence, AAA, occurs
in genome 1, sequence 1 at positions 0 and 1, and its reverse sequence, TTT, occurs in
genome 2, sequence 1 at position 8.

Figure 2.1. A pan-genome graph (k = 3) for two sequences, AAAARATAATCCGCG (in white) and
CATACTCCTTT (in black). Shared nodes are gray. Rectangle: normal node, rounded rectangle: degenerate
node, circle: sequence node. White sequence starts with a forward-forward loop over AAA followed by a
degenerate node. Nodes 3, 6,7 and 8 form a bubble structure representing a A-C SNP between two
sequences. Node 4 is an example of a forward-reverse loop. Sequence black ends with TTT captured by a
cycle back to the reverse strand of Node 1.

25

‘ PanTools: representation, storage and exploration of pan-genomic data

Table 2.1. Node properties for the graph in Figure 2.1. Coordinates are given as
(orientation:genome:sequence:position(s)). Orientation: F = forward, R = reverse. Positions are 0-based, for
example, Node 7 occurs in the first sequence of the second genome at position 2 which is actually the third
position.

Node Sequence Coordinates Node Sequence Coordinates

1 AAA F:1:1:0,1; R:2:1:8 6 TAATC F:1:1:6

2 AARAT F:1:1:2 7 TACTC F:2:1:2

3 ATA F:1:1:5; F:2:1:1 8 TCC F:1:1:9; F:2:1:5
4 CGC F:1:1:11; R:1:1:12 9 CCG F:1:1:10

5 CAT F:2:1:0 10 CCTT F:2:1:6

DBGs have proven useful to visualize short variations between sequences, as they
create various known substructures in the pan-genome graph, a fact well-known from
(co)assembly [10,13,16]. For example in Figure 2.1, the shared sequence ATA(C/A)TCC,
with one SNP in the middle, forms a bubble in the center of the graph (induced by nodes 3,
6, 7 and 8). Moreover, the bi-directed pan-genome allows for detecting inversions. For
instance, the subsequence TTT at the end of the second sequence can be detected as an
inverted translocation of AAA at the start of the first sequence, by comparing the
orientations of the coordinates stored in node 1.

Locating k-mers within the pan-genome is an essential operation for construction of the
pan-genome and facilitates applications such as sequence retrieval, read mapping and
sequence alignment. For these reasons, the pan-genome graph is accompanied by an
ordered k-mer index which quickly locates each canonical k-mer by giving the node number,
format (canonical or non-canonical) and relative position of its occurrence in the node (note
that each k-mer occurs just once in the graph). The format of the k-mer at its first visit is
stored and used by the construction algorithm. Table 2.1 shows the k-mer index of the
example graph in Figure 2.1. Positions are expressed left to right, starting at 0.

Table 2.2. The k-mer index for the graph in Figure 2.1. Pointers are given as (node:format:position). For
format, C = canonical, N = non-canonical. Since in a DBG every k-mer occurs only once, they can be pinpointed
by unique pointers, for example during construction of the graph k-mer AAT has been visited in Node 6,
position 1 in its canonical form (AAT).

k-mer Pointer k-mer Pointer k-mer Pointer
AAA 1:C:0 ATA 3:C:0 CGC 4:C:.0
AAG 10:N:1 ATC 6:C:2 CTC 7:C:2
AAT 6:C:1 GGA 8:N:0 GTA 7:N:0
ACT 7:C:1 ATG 5:N:0 TAA 6:C:0
AGG 10:N:2 CCG 9:C:.0

2.2.3 Online construction of the pan-genome graph

We employ KMC2 [17] to build a k-mer index. Our construction algorithm (Algorithm 1) is
then based on four elementary operations: Create, Extend, Follow and Split. In the main
algorithm, sequences are scanned in turn, and each subsequent k-mer is looked up in the
index. If a k-mer is not visited yet in either orientation, a new node of length k is added to

26

the graph by the function Create, which is then Extended until we encounter a previously
encountered k-mer. We locate a previously visited k-mer in the graph and, depending on the
orientation in which it appears in a node, one of the Follow-forward or Follow-reverse
operations will be performed. Both of these operations take advantage of the Split function
to divide a node into two, taking care of the bookkeeping.

Figure 2.2A illustrates how these four simple operations work when the first five 3-
mers of the black sequence (CATACTCCTTT) are added to the pan-genome of the white
sequence (Figure 2.2A). The first 3-mer, CAT, creates node 5 as it is not available in the white
sequence. ATA appears in node 3, so it is followed to reach the next 3-mer of the node, TAA,
which differs from the next 3-mer in the black sequence, TAC. Node 3 is therefore split, node
7 is initialized with TAC and is extended with ACT and CTC as these two 3-mers have not
been visited before. Continuing this process, the next 3-mer, TCC, appearing in the middle
of the node 6, results in another split to enter this node.

Algorithm 2.1. Pseudo-code of the construction algorithm. The algorithm simply scans the genomes one after
the other and keeps track of the k-mers to decide to create, extend or follow a node. As a result, the structure
of the graph is updated immediately after reading the next k-mer.

Data: one or more Genomes each containing one or more Sequences, k-mer length k
Result: a pan-genome Graph and k-mer Index

Initialize empty Graph, build Index of all canonical k-mers;
for g = 1..number of Genomes do
for s =1 .. number of Sequences in g do
position = 0;
while position < length(Genomes[g].Sequences|[s]) - k + 1 do
kmer = Genomes|g].Sequences|s][position . .. position + k - 1];
if kmer is visited for the first time then
n = Create(kmer);
Extend(n);
else
n = node where kmer occurs;
if kmer visited in this orientation then
Follow-forward(n, kmer);
else
Follow-reverse(n, kmer);
end
end
end
end
end

27

PanTools: representation, storage and exploration of pan-genomic data

AARAT}>—>| ATAATCCG @
1 2 3 4

(A)

Create Follow Split
@ CAT +|ATAk>—>|TAATCCG|
3 6

Create — Extend

1

(B)

Figure 2.2. Four basic operations of the construction algorithm (Create, Extend, Follow, Split). A. Pan-genome
of sequence AAAARATAATCCGCG. B. Adding the first five 3-mers of the sequence CATACTCCTTT to the pan-
genome of AAAARATAATCCGCG, results in creating node 5, splitting node 3 and creating and extending node
7.

2.2.4Choice of k

k-mers are the building blocks of every DBG, determining to a large extent its properties.
Chikhi and Medvedev [18] describe that in DBG-based assemblers, the best choice of kis the
one that provides the largest number of distinct, non-erroneous genomic k-mers to the
assembler. When using a (compressed) DBG to represent a pan-genome graph, although it
is not easy to define an optimal value for k, it is possible to suggest a lower bound to avoid
tangling the graph. Short k-mers increase the chance of single nodes representing unrelated
subsequences within and between different genomes, making the graph tangled and hard
to interpret. On the other hand, selecting a large value for k will decrease connectivity and
lead to distinct node sets representing each genome or at least will obscure small-scale
variation, e.g. SNPs less than k bases apart, which is not desirable for a pan-genome
representation. There is thus a trade-off between the specificity of k-mers and the resolution
of the pan-genome variation in the graph structure. We therefore choose the smallest
possible value of k which, with high probability, does not lead to the collapse of unrelated
sequences into single nodes. Call two k-mers identical if their canonical form is the same,
then the probability of a k-mer being identical to another k-mer is 2a¥*, where « is the
probability of a single identical symbol. For nucleotide sequences, we can set « = 0.25 or
take actual frequencies of occurrence into account. Given a set of n random k-mers, we are
interested in the number of non-unique k-mers in this set as a function of k. For odd values
of k, the probability that an arbitrary k-mer is different from all others in this random set is
(1 — 2a®)™* and the probability that a k-mer occurs at least twice (i.e. is non-unique)
is1 — (1 —2a*)" !, The ex- pected number of non-unique k-mers is then n[1—
(1 — 2a®)™1]. By setting this less than 1 and using the limit definition of the exponential
function, we can derive a lower bound for k:

n(1-2)

k >log, _Z(n—l) (D

28

Figure 2.3 shows the estimated number of non-unique k-mers for two different values
of a. It clearly shows that for a set of 100M random k-mers, this number drops abruptly and
exponentially when we increase k. For ¢ = 0.25, up to k = 11, almost all k-mers are non-
unique; for larger k, some k-mers start to be unique; and at k = 27 all k-mers are unique. In
contrast to random data, real genomic sequence data contains meaningfully identical k-
mers, which makes the righthand side of inequality (1) a (less tight) lower bound on k in
practice. Using this estimate and a @ = 0.3, the lower bound of k for the pan-genome of 1000
human genomes would be 49. The maximum value of k is limited to 256 by KMC2, which is
far larger than what is useful for pan-genome construction.

100,000,000
10,000,000 -
1,000,000 -
100,000 -
10,000 -
1,000 -

100

non-unique k-mers

10
1

3 5 7 9 1113 1517 19 21 23 25 27 29 31

Figure 2.3. The number of non-unique k-mers in a set of 100M random k-mers, as a function of k. The number
of unique random k-mers grows exponentially as size of k increase.

2.2.5Implementation

A major goal of our pan-genome project is to allow storage and exploration of variable pan-
genomes for large collections of crop genomes, for example maize, rice and tomato [2,3,19].
To achieve this goal, the pan-genome graph and accompanying data structures are not
maintained in memory, but in memory-mapped databases. The advantage is that the
operating system takes care of reading and writing required chunks of files (pages) and the
application just interacts with memory, which results in very fast I/O operations.
Furthermore, memory mapped databases can be shared between different processes, which
paves the way for developing multi-threaded pan-genomic applications in future. It should
be noted that interacting with large files using disproportionately small amounts of memory
increases the number of page faults, drastically reducing performance. Also, like any other
disk-based program, the performance of PanTools depends on disk speed. Thus, to achieve
the best performance we suggest to have a dedicated machine, preferably with a RAM drive
or a solid-state drive (SSD).

We use three memory mapped databases: the Neo4j graph database, the index database
and the genome database. The graph database contains information about nodes,
relationships (edges) and their properties. The index database is a set of files representing
the k-mer index, and the genome database, which is only used during the construction of the
pan-genome, stores the compressed input sequences. The only data structure which is kept

29

‘ PanTools: representation, storage and exploration of pan-genomic data

in memory is the small database of prefixes produced by KMC2. As a result, the memory
requirement of the construction algorithm (and any other application which needs the index
database) stays independent of the size of data. This enables us to create and explore graphs
with millions of nodes using a constant, limited amount of memory, say 8GB.

2.3 Results

In this section, we demonstrate the functionality and performance of our pan-genome
approach, and discuss its application in comparative genomics. To this end, we constructed
pan-genomes of two HIV-1 strains (AF069671.1 and AF413987.1), 62 Escherichia coli
genomes [5], 93 yeast genomes [20] and 19 Arabidopsis thaliana genomes [21]. Our
experiments were conducted on a Linux server (Ubuntu 14.04) with an Intel® Xeon®
X5660@2.8GHz, with 24 logical cores, 64GB RAM and a 32GB RAM disk.

2.3.1 Functionality

The current implementation of PanTools provides the following functionality:

1. Build, given a number of FASTA files, constructs the pan-genome.

2.Add, adds one or more new genomes to a given pan-genome.

3. Annotate, given one or more GFF files, adds gene nodes to the graph corresponding to the
annotated genes.

4. Group, adds group nodes to the graph linking genes by some criterion, for instance
orthology or name.

5. Retrieve, extracts the sequence of specified genes or genomic regions from the pan-
genome graph.

6. Reconstruct, reconstructs some/all of the constituent genomes from a given pan-genome.
7. Compare, compares the topology of two existing pan-genomes.

8. Query, gives a command prompt to run Cypher queries and receive the results.

To demonstrate the Build, Annotate and Group functionality, we constructed the pan-
genome of two HIV-1 strains, annotated the genomes and grouped the homologous genes.
Figure 2.4 visualizes the graph, with different types of nodes indicated by different colors
explained in the caption. The pan-genome node points to two genome nodes (1 and 2) each
containing a single sequence (1_1 and 2_1) (Figure 2.4A). Two instances of vpu genes of
equal length (246 nt) have been grouped together by a vpu group node (Figure 2.4B). One
of these genes begins and ends at a node of length 437, the other at another node of length
443. The exact position where each gene starts and ends in these nodes is stored as a
property in edges labeled begin and end. It is also clear in Figure 2.4C that the two
homologous pol genes have different lengths, 3012 and 3006, and begin and end in distinct
nodes. The pair of nodes where these genes begin and end belong to a bubble, which
indicates that there is some variation (indel or SNP) between them. The pol genes are rather
variable, as they are represented by the entire chain of bubbles at the top-right of the graph.
SNPs can be distinguished based on the fact that the length of both branching nodes equals
2k-1 (here 63), which means nodes differ in a single nucleotide in the middle of their
sequence (Figure 2.4D). Each edge has a three-letter label, starting with the two nucleotides

30

which appear at the borders of the k-1 overlap of the nodes and ending with a number in
the range 0-3 which codes for the four types of edges. The incoming and outgoing edges of
the top node have been labeled CAO and AGO, respectively, while those of the node at the
bottom are labeled CGO and GGO, indicating an A-G SNP.

D] " Cc

40 Aco

begin,

Figure 2.4. Visualization of the annotated pan-genome (k = 32) of two HIV strains, AF069671.1 and
AF413987.1, in the Neo4j browser. A. The single pan-genome node (gray) points to genome nodes (blue),
each pointing to their constituent sequence nodes (purple). B.C. Examples of group nodes (yellow) linking
genes (red), which point to DBG nodes (green) where they start and end in the pan-genome. D. An example

of a bubble structure created by an A-G SNP. Plenty of simple and complex bubbles are formed representing
the variation of these two genomes.

Our method allows to incrementally adding new genomes to an existing pan-genome.
To show this, we constructed a pan-genome of three yeast genomes and iteratively added
sets of 10 new yeast genomes. Then, we compared the nine intermediate pan-genomes with
those constructed directly from 13, .., 93 genomes from scratch (called Y13 to Y93). Using
the Compare functionality, we observed that pan-genomes containing the same genomes
but constructed in different ways (directly or iteratively) were identical, having the same
number of k-mers, nodes, edges and bases as well as the same properties stored in
corresponding nodes. We also verified that changing the order of the genomes in the input
dataset does not affect the construction, resulting in isomorphic pan-genomes.

31

‘ PanTools: representation, storage and exploration of pan-genomic data
2.3.2 Performance

To verify the resource requirements of the construction algorithm when it scales to larger
datasets, we constructed nine A. thaliana pan-genomes containing 3, 5, . . ., 19 genomes.
Table 2.3 reports properties of the resulting pan-genomes, as well as the resources
consumed during the construction. In all experiments, we set k=31.

PanTools created the pan-genome of 19 A. thaliana genomes in less than an hour using
just above 6 GB of memory. To verify that our method scales to arbitrary genome sizes, we
also successfully constructed a pan-genome graph of seven human genomes in a
preliminary experiment.

The numbers of k-mers, nodes and edges in the pan-genome grow in a sub-linear
fashion with respect to the size of the datasets. The ratio of the number of k-mers to the
number of nodes in the Arabidopsis pan-genomes ranges between 22 and 49, which
indicates the significant effect of compressing the non-branching paths. However, this ratio
declines as more genomes are added to the pan-genome.

Pan-genomes store far fewer base pairs than linear genomes because redundancy is
eliminated. Table 2.3 also shows that the number of base pairs stored in the pan-genome
representation of 19 A. thaliana genomes (A19) is just under one fourth of those stored in
the linear genomes. This difference becomes more significant as more genomes are added
to the pan-genome.

Table 2.3. Scalability of the program to large pan-genomes of up to 19 Arabidopsis genomes (A3-A19). As
expected, the number of k-mers and resource requirements levels off as the number of genomes increase.

k-mers Nodes Degenerate Edges Bases Time Memory

™) ™) ™) M) (M) (second) (MB)
A3 1431 2.9 0.05 4.1 236.8 977 3,578
A5 1581 4.3 0.09 5.9 2945 1,346 4,258
A7 1683 5.3 0.22 7.5 3448 1,644 4,692
A9 1774 6.2 0.25 8.7 3823 1,943 4,865
A1l 184.9 6.9 0.29 9.8 4143 2,284 4,974
Al13 189.6 7.5 0.47 10.8 4472 2,443 5,261
Al5 197.4 8.2 0.52 119 481 2,828 5,695
A17 203.9 8.9 0.55 129 5089 3,130 5,967
A19 209.5 9.4 0.58 13.7 5329 3,456 6,254

To compare our construction method with the existing in-memory methods we run the
FM-index based algorithm (FMI) presented by Beller and Ohlebusch [6] and the BWT-based
algorithm presented by Baier et al. [7], on datasets of 62 E. coli (E62), 93 yeast (Y93) and 19
A. thaliana (A19) genomes; results are presented in Table 2.4. We also tried to run SplitMEM
[5], but it ran out of memory even on the smallest dataset in this experiment. The DBGs
produced by the FMI- and BWT-based tools are exactly identical and these tools show the
same performance. However, their graph contains more nodes than the graph produced by
PanTools. The reason is that they do not build a bi-directed DBG and reverse complement
sequences are stored in different nodes. The smaller number of edges in our pan-genome is

32

explained by the fact that we store each edge only once, whereas the two other tools store
each individual transition. To conclude, besides the various useful features that our disk-
based approach provides, the amounts of time and memory it needs are comparable to the
best in-memory methods, in particular for larger datasets.

Table 2.4. Comparing PanTools with the two existing tools shows that PanTools requires comparable
computational resources as in-memory tools.

Tool Nodes (M) Edges (M) Time (Second) Memory (MB)

FMI-based 1.16 21.5 364 879

E62 BWA-based 1.16 21.5 370 879
PanTools 1.07 1.43 1,261 2,344
FMI-based 1.52 79.3 1,432 3,093

Y93 BWA-based 1.52 79.3 1,454 3,093
PanTools 1.47 2.01 4,827 1,621
FMI-based 9.9 123.1 2,878 6,044

A19 BWA-based 9.9 123.1 2,750 6,044
PanTools 9.4 13.7 3,456 6,254

Efficient extraction of genes, genomic regions and genomes from a pan-genome is a key
functionality for downstream pan-genome applications. A genomic feature is extracted by
traversing the path it takes in the pan-genome, which is determined using the genomic
positions of each node, stored as node properties. To examine annotation and retrieval
efficiency, we annotated and then retrieved all genes, extracted thousand 1000 nt-long
random genomic regions and reconstructed the whole set of constituent genomes in five
different yeast pan-genomes; Table 2.5 gives the run-times in milliseconds. PanTools
retrieves a gene in around one millisecond. As expected, the average annotation and
retrieval times increase slightly as the pan-genome grows.

Table 2.5. Average time (in milliseconds) for annotating one gene, retrieving one gene, retrieving 1 kbp and
reconstructing one genome increases slightly with the number of genomes.

Gene Gene 1 kbp Genome
annotation retrieval retrieval reconstruction
Y13 2.2 0.3 2.3 3,615
Y33 35 0.5 34 7,453
Y53 48 0.8 4.6 11,639
Y73 6.2 1.2 6.6 15,236
Y93 7.6 1.6 7.9 19,544

2.3.3 Pan-genome applications

Expecting an increasing rate of genome production, pan-genomes should ideally take over
the role of linear reference genomes in comparative genomics. This implies that in the
future, we will analyze novel genomic data with respect to all genomes in the pan-genome
at once, move from pairwise genome comparisons to multiple genome comparisons at once,
and browse pan-genomes rather than reference genomes. Another important application is
variation detection in pan-genomes, including single-nucleotide polymorphisms, structural

33

‘ PanTools: representation, storage and exploration of pan-genomic data

variation, copy-number variation, synteny, transposon-insertion polymorphisms, etc. A
prerequisite for such high-level applications is a solid data structure and construction
algorithm, as presented in this article, possibly enhanced with application-specific indices.

A basic application, underlying genome browsing and several analyses, is fast retrieval
of genes and genomic regions of interest and assess the variations. To demonstrate this
feature, we retrieved all instances of the well-known FRIGIDA gene from the pan-genome of
19 A. thaliana genomes (A19). This gene encodes a major determinant of natural variation
in flowering time and its allelic diversity among these 19 accessions is of interest to plant
biologists [21]. There is significant allelic variation in this gene, as shown in Figure 2.5. The
variants differ at the start of the gene, but are identical in the last 106 nucleotides. We can
distinguish types of variants by assessing the ‘bubbles’ in the graph: the 11 bubbles
correspond to 6 SNPs, 1 deletion and 4 mismatches less than k nucleotides apart. The exact
presentation of genomic variations like these needs to be worked out in more detail, but the
example illustrates that we can quickly assess genomic variation in multiple genomes at
once, rather than compose the full picture from many pairwise genome comparisons

Figure 2.5. Subgraph induced by 19 FRIGIDA genes contains a lot of bubbles representing variability of this
gene among different A. thaliana accession. Red and green nodes represent genes and nodes, respectively. The
pink node is a degenerate node caused by an M symbol in the fifth genome (Edi-0).

Many pan-genome analyses will require searches in the highly connected graph
database. We will use the query language of Neo4j, Cypher, to search pan-genomes for
specific structures and properties. The efficiency of the queries depends on how constrained
the query is. Table 2.6 presents the result of some queries from a pan-genome of three yeast
genomes. The first three queries ask for the number of bubbles created by two branching
paths with at most 2 (simple bubble), 3 or 4 edges, respectively. As expected, the run-time
of such queries increases as the length of the branching path increases. The fourth query
returns all sequences that belong to simple SNPs (one node in each branch). The fifth query

34

gives the sequence of two branches of simple bubbles where one branch is a degenerate
node. The sixth query returns the occurrence arrays of nodes shared by chromosome 1 of
all the genomes, and the seventh one gives the number of nodes that are specific to
chromosome 1 of genome 1. These examples show that Cypher supports many different
queries, which can be done in reasonable time. Users can run these queries on their own
pan-genome using the query command of PanTools.

Table 2.6. Different types of substructures were mined in the pan-genome of three yeast genomes (k = 31)
using Cypher query language of the Neo4j graph database. Run-time depends on the complexity of the query
and the graph.

Cvph Hit Time

ypher query its)

1 match(n:node)->()->(m:node)<-()<-(n) return count(*) 120,778 6

2 match(n:node)->(a)-[*0.2]->(m:node)<-[*0.2]-(b)<-(n) where a<>b return count(*) 138,346 23

3 match(n:node)->(a)-[*0.3]->(m:node)<-[*0.3]-(b)<-(n) where a<>b return count(*) 367,300 89

4 match(n:node)->(a:node)->(m:node)<-(b:node)<-(n) where alength = b.length and a.length = 87,138 12
61 return a.sequence, b.sequence

5 match(n:node)->(a:node)->(m:node)<-(b:degenerate)<-(n) return a.sequence, b.sequence 16 0.34

6 match(n:node) where has(n.F1_1) and has(n.F2_1) and has(n.F3_1) return n.F1_1, n.F2_1,n.F3_1 1,273 0.72

7 match(n:node) where has(n.F1_1) and not has(n.F2_1) and not has(n.F3_1) return count(n) 602 0.65

2.4 Conclusion

Thanks to large sequencing efforts, many species or phylogenetic clades are no longer
represented by a single reference genome, but by a multitude of genomes. Besides the
sequence similarities between related genomes, there may be significant variation in
genomic content and organization, which was often the reason to sequence and study them.
To deal with this new data challenge, there is an increasing need for new ways of storing
and constructing unified representations of large collections of genomes. In addition, we
need accompanying algorithms to answer key questions, such as on core and dispensable
genes, recurring genetic variants and structural variation, which are cumbersome to
address using linear representations of large numbers of genomes. In this article, we have
presented PanTools, an implementation of a pan-genome representation based on the Neo4;j
graph database, focusing on the application to large sets of complex eukaryotic genomes.
The program allows for the construction of pan-genome databases of many genomes, and
contains extensions such as adding sequences, genes and orthology annotations, using
relatively modest computational resources.

PanTools offers a good starting point for developing various pan-genomic applications,
such as multi-genome read mapping, pan-genome exploration (visualization, browsing),
structure-based variation detection and comparative genomics. To efficiently implement
algorithms supporting such analyses it is likely that additional layers of annotation,
summaries (e.g. synteny blocks) or different indices will be needed. The current base
implementation in Neo4j is adaptable and extensible and offers an excellent foundation for
such extensions. In summary, we have presented a first implementation of a pan-genome
representation and construction algorithm, which can form the basis of a collection of tools
to allow pan-genomes to take over the role of linear reference genomes in genomics.

35

‘ PanTools: representation, storage and exploration of pan-genomic data

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

36

Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, et al. Whole-genome
random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995;269:496-512.

Aflitos S, Schijlen E, De Jong H, De Ridder D, Smit S, Finkers R, et al. Exploring genetic variation in the
tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. PlantJ. 2014;80(1):136-
48.

Li]-Y, Wang], Zeigler RS. The 3,000 rice genomes project: new opportunities and challenges for future
rice research. Gigascience. 2014;3(1):8.

Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple
pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc
Natl Acad Sci. 2005;102(39):13950-5.

Marcus S, Lee H, Schatz MC. SplitMEM: A graphical algorithm for pan-genome analysis with suffix
skips. Bioinformatics. 2014;30(24):3476-83.

Beller T, Ohlebusch E. A representation of a compressed De Bruijn graph for pan-genome analysis that
enables search. Algorithms Mol Biol. 2016;11(1):20.

Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with compressed suffix trees and the
Burrows-Wheeler transform. Bioinformatics. 2016;32(4):497-504.

Holley G, Wittler R, Stoye J. Bloom filter trie: an alignment-free and reference-free data structure for
pan-genome storage. Algorithms Mol Biol. 2016;11:3.

Have CT, Jensen LJ. Are graph databases ready for bioinformatics? Bioinformatics. 2013;29(24):3107-
8.

Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc Natl
Acad Sci. 2002;98(17):9748-53.

Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using De Bruijn graphs.
Genome Res. 2008;18(5):821-9.

Pevzner PA, Tang H, Tesler G. De novo repeat classification and fragment assembly. Genome Res.
2004;14(9):1786-96.

Igbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using
colored De Bruijn graphs. Nat Genet. 2012;44(2):226-32.

Minkin I, Patel A, Kolmogorov M, Vyahhi N, Pham S. Sibelia: A scalable and comprehensive synteny
block generation tool for closely related microbial genomes. LNCS. 2013. p. 215-29.

Van Bruggen R. Learning Neo4j. Birmingham: Packt Publishing Ltd; 2014.

Nijkamp JF, Pop M, Reinders MJT, De Ridder D. Exploring variation-aware contig graphs for
(comparative) metagenomics using MARYGOLD. Bioinformatics. 2013;29(22):2826-34.

Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2: Fast and resource-frugal k-mer
counting. Bioinformatics. 2014;31(10):1569-76.

Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly.
Bioinformatics. 2014;30(1):31-7.

Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley], et al. Maize HapMap2 identifies extant
variation from a genome in flux. Nat Genet. 2012;44(7):803-7.

Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The 100-genomes
strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and
emergence as an opportunistic pathogen. Genome Res. 2015;125(5):762-74.

Gan X, Stegle O, Behr], Steffen]G, Drewe P, Hildebrand KL, et al. Multiple reference genomes and
transcriptomes for Arabidopsis thaliana. Nature. 2011;477(7365):419-23.

Chapter 3

Efficient inference of homologs in large eukaryotic pan-proteomes

This chapter is published as:

Sheikhizadeh S, Schranz ME, de Ridder D, Smit S. Efficient inference of homologs in large
eukaryotic pan-proteomes. BMC Bioinformatics. 2018;19(1):340.

DOI: 10.1186/s12859-018-2362-4.

‘ Efficient inference of homologs in large eukaryotic pan-proteomes
Abstract

Identification of homologous genes is fundamental to comparative genomics, functional
genomics and phylogenomics. Extensive public homology databases are of great value for
investigating homology but need to be continually updated to incorporate new sequences.
As new sequences are rapidly being generated, there is a need for efficient standalone tools
to detect homologs in novel data. To address this, we present a fast method for detecting
homology groups across a large number of individuals and/or species. We adopted a k-mer
based approach which considerably reduces the number of pairwise protein alignments
without sacrificing sensitivity. We demonstrate accuracy, scalability, efficiency and
applicability of the presented method for detecting homology in large proteomes of bacteria,
fungi, plants and Metazoa. We clearly observed the trade-off between recall and precision
in our homology inference. Favoring recall or precision strongly depends on the application.
The clustering behavior of our program can be optimized for particular applications by
altering a few key parameters. The program is available for public use at
https://github.com/sheikhizadeh/pantools as an extension to our pan-genomic analysis
tool, PanTools.

38

3.1 Introduction

Detection of homologous genes (genes that share evolutionary ancestry) is fundamental to
comparative genomics, functional genomics and phylogenomics. Homologs inherited from
a single gene in the last common ancestor of two species are called orthologs, while those
inherited from distinct duplicated genes are called paralogs [1]. Orthologs are usually under
selection pressure, which conserves their sequence, structure and function; while paralogs
can diverge rapidly and lose their previous functions or achieve completely or partially new
functions [2].

With increasingly evolutionary distance and/or increased data-set sizes, there will be
greater sets of gene and genome changes, that can complicate orthology inference [3].
Whole-genome and segmental duplications increase genomic content, local and structural
mutations lead to gene losses and gains, and horizontal gene transfers mix genomic content
between species. As aresult, orthology detection is increasingly difficult in higher organisms
and across large evolutionary distances. In the presence of gene duplications, orthology is
not always a one-to-one relationship but rather can be a one-to-many or even many-to-
many relationship [4]. As a consequence, an orthology group may contain not only
orthologous pairs, but also pairs of homologs duplicated after the speciation of the two
species, so-called in-paralogs. In the rest of this text we therefore use the term homology
group instead of orthology group to be more precise.

To date, several databases of homology groups have been established, which need to be
continually updated to incorporate new genomes [5-8]. As genomic projects are generating
novel data at an unprecedented scale, the analysis of new data means that researchers have
to automate the process of inferring homology in their large gene sets. Consequently, in
parallel to the static databases there has been a development of standalone tools for
automatic detection of homologs [9-11]. Accurate homology detection tools rely on all-pairs
comparison of proteins. However, calculating all-pair similarity scores quickly becomes a
major computational burden as the number of proteomes increases. As the number of
eukaryotic proteomes keeps expanding in the coming years, there is a need for even more
efficient homology detection methods.

Here, we present an efficient graph-based approach towards homology detection. This
method extends the functionality of our pan-genomic data analysis tool, PanTools [12],
which integrates genomes, annotations and proteomes in a single graph database to
facilitate comparative studies at the levels of structure, variation and function [13]. The
motivation of this study was to detect homology groups de novo and efficiently, in large
datasets of hundreds of eukaryotic genomes. The presented method scales to large
proteome sets while maintaining its accuracy and can be tuned for different application
scenarios.

3.2 Methods

We represent a pan-genome by a hierarchy of genome, annotation and proteome layers
stored in a Neo4j graph database to connect different types of data (Figure 3.1). The genome
layer consists of pan-genome, genome, sequence and nucleotide nodes which contain some

39

‘ Efficient inference of homologs in large eukaryotic pan-proteomes

essential information about these entities. Nucleotide nodes form the generalized De Bruijn
graph [12] which enables the compression and reconstruction of the constituent genomes.
The annotation layer, currently, consists of the genomic features like genes, mRNAs, etc.
Finally, the proteome layer of the pan-genome is formed by proteins and homology nodes
which group the homologous proteins. Before homology detection, first the protein nodes
should be stored in a pan-genome graph. Instructions for constructing a pan-genome can be
found in the supplementary information. Having the proteins available in the proteome
layer of the pan-genome, we take the steps described in Algorithm 1 to cluster them in
homology groups.

¢
0((\ Homology
&
X

Q€

Figure 3.1. PanTools integrates heterogeneous data in a hierarchical pan-genome. The Neo4j graph data model
allows to store many properties in the nodes and edges of the graph.

Algorithm 3.1. Homology detection algorithm consist of 5 main stages: hexamerization of sequences,
intersection discovery, sequence alignment, similarity component discovery and clustering.

Input: the pan-genome containing the protein nodes

Output: the homology groups

Parameters: I intersection rate, T: similarity threshold, C: contrast, M: MCL inflation
1. //Hexamerize proteins:

2 for each protein p,

3. for each hexamer h of p,

4

append identifier of p to the list of proteins[h].
In parallel do A, B and C:
// What A produces, B consumes. What B produces, C consumes.
// A. Detect intersections:
for each protein p,
for each hexamer h of p,
append proteins[h] to the list of candidate intersecting proteins ofp, CIP[p].
for each candidate protein c in CIP[p],
if ¢ occurs more than I x min(length of p - 5, length of ¢ - 5) timesin CIP[p]
10. add intersecting pair (p, c) to the intersection queue 1Q
// B. Calculate similarity scores:
11. for each intersecting pair (p, ¢) in IQ,

© 0N o

12. if the normalized similarity score NSS(p, c) is greater than T,
13. add (p, ¢, NSS(p, c)) to the similarity queue SQ

40

// C. Add similarity links to the pan-genome :
14. for each (p, ¢, s) in SQ,
15. connect protein p to ¢ by an edge with similarity score s
In parallel do D, E and F:
// What D produces, E consumes. What E produces, F consumes.
// D. Build similarity components:
16. for each protein p,
17. build the similarity component s_comp through a breadth-first searchstarting from p,
18. put s_comp in the component queue CQ.
// E. Split similarity components:
19. for each s_comp in CQ,

20. for each pair of proteins (p1, p2) in s_comp belonging to species s1 and s2, resp.
21. calculate the distance dist(s1, s2).
22. similarity_matrix[p1, p2] = (similarity[p1, p2] - T + dist(s1,s2)) * C
23. pass the similarity _matrix to MCL algorithm with inflation
24. add the resulting homology groups h_group to the homology queue HQ,
// F. Add homology group annotation to the pan-genome:
25. for each homology group h_group in HQ,
26. create a homology node h_node in the pan-genome
27. connect h_node to the proteins in h_group

First, we extract the hexamers of all proteins and, for each hexamer, keep track of the
proteins containing that hexamer (lines 1-4). Then, we find all pairs of intersecting proteins
(lines 5-10) and calculate their similarity score by aligning them. Two proteins intersect
(Figure 3.2A-B) if the number of hexamers they share is greater than the product of the
intersection parameter (I) and the total number of hexamers of the shorter protein. We
connect the intersecting proteins with a similarity score greater than the similarity
threshold T (lines 11-15) to form the similarity graph (Figure 3.2C). For reasons of
efficiency, we have implemented this as three parallel routines A-C, in which B consumes
the output of A and C the output of B. A and C employ one working thread and B multiple
threads to maximize performance. Next, all the connectivity components of the resulting
similarity graph are found using a simple breadth-first search (lines 16-18). This search
allows to detect not only the directly connected proteins but also those connected through
a path in the graph, the potential distant homologs. Every similarity component is then
passed to the MCL (Markov clustering) algorithm [14] to be possibly broken into several
homology groups (lines 19-24) (Figure 3.2D). MCL has been frequently employed in
homology inference methods [11,15,16]. Finally, the members of each homology group are
connected to a single homology node in the graph (lines 25-27).

41

Efficient inference of homologs in large eukaryotic pan-proteomes

Pl: MALWMRLLP
P2: MALWMRLLE . . . e}

C. Similarity graph D. Homology groups

Figure 3.2. A) Two intersecting proteins, P1 and P2 share some hexamers. B) The intersection graph is built
from interesting pairs of proteins. C) The similarity graph consists of similarity components. Each bold edge
represents a similarity score greater than the threshold (7). D) Homology groups are detected in each
similarity component by MCL.

3.2.1 Normalizing the raw similarity scores

We compare intersecting pairs of proteins by a Smith-Waterman local alignment algorithm
with an affined gap penalty (opening = -10, extension = -1) using the BLOSUM62 (Blocks
Substitution Matrix 62) scoring matrix. After calculating the raw similarity scores, we
normalize them to be independent of the protein lengths. To this end we divide each raw
score by the score achieved by aligning the shorter protein to itself and multiply the result
by 100; this way, the normalized similarity scores will always be less than or equal to 100.
For the sake of simplicity, we use the term similarity score to refer to the normalized
similarity score between pairs of proteins.

3.2.2Rescaling the similarity scores

The pairwise similarity scores of highly similar homologs, which usually lie in the same
similarity component, are very close to each other. This makes it very hard for MCL to detect
the underlying substructures in such similarity components. To resolve this problem, we
rescale the similarity scores in three different ways (Algorithm 1, line 22). First, we subtract
the value T from these scores to emphasize small differences for the MCL process.
Furthermore, we would like the clustering to be relatively insensitive to evolutionary
sequence divergence. That is, within a similarity component pairs of homologs from two
distant species are ideally scored nearly as high as pairs from two closely related species.

42

To achieve this, in each similarity component we calculate the average distance between
each pair of species as 100 minus the average inter-species similarity score and add it to all
the similarity scores between those species within the similarity component.

Finally, to increase the contrast between the final similarity scores, before the similarity
component is passed to the MCL algorithm, we raise the scores to the power of C, the
contrast parameter. This operation is similar to one round of expansion as explained in [14]
and was experimentally observed to increase the specificity of the resulting clusters.

3.2.3 Choice of k

Short peptide k-mers may occur in many proteins. This raises the number of intersecting
proteins which will be aligned, increasing the resource consumption of the program
significantly. On the other hand, long k-mers are more specific and decrease the sensitivity
of the program in detecting the intersecting pair of proteins, thereby reducing the recall. As
a result, we calculate the smallest k value which keeps the probability of random
occurrences of a k-mer below a desirable probability p. For peptide sequences a = 20, and
considering L = 30,000 the length of the largest known protein [15] and setting p = 0.001,
the smallest suitable k will be 6 (see supplementary information). Therefore, we chose to
use hexamers for detecting the intersections.

To reduce the memory needs of the program and increase the specificity of the
intersections, we ignore extremely abundant hexamers (For example “QQQQQQ” in the
yeast datasets), which their frequency exceeds p xn + ¢ x m, where p = 0.001, n is the total
number of proteins, c = 50 is an a priori estimate of the maximum number of occurrences of
a hexamer in the proteome of a species, and m is the total number of species (proteomes).
Likewise, hexamers with frequency 1 are considered rare and thereby ignored. This
filtration notably improves the efficiency and the precision of the method.

3.2.4 Measures of accuracy for evaluation

To evaluate the accuracy of the method, we used the recall, precision and F-score measures
as defined previously [16,17] (Figure 3.3). Given a set of real and detected homology groups,
for each true homology group, THG, we find the detected homology group, DHG, which has
the largest overlap with the THG. Then we consider true positives (tp) as the number of
proteins in both THG and DHG, false negatives (fin) as the number of proteins in THG but not
in DHG, and false positives (fp) as the number of proteins avilable in DHG but not in THG.
Then TP, FP and FN are defined as the summation of the tp’s, fp’s and fn’s over all true
homology groups, respectively. Finally, the recall, precision and F-score measures are
calculated as follows:

recall = TP / (TP + FN)
precision = TP / (TP + FP)
F-score = 2 x (Recall x Precision) / (Recall + Precision)

43

‘ Efficient inference of homologs in large eukaryotic pan-proteomes

Recall represents the ability of the method to put the true homologs together in one
group, precision shows its ability to separate the non-homologs, and the F-score is the
harmonic mean of these two measures combining them in one. There is always a trade-off
between recall and precision, since detecting more TPs often leads to some FPs.

A\O|O

548 |[TP=17
112 [FN=4
1|2|1|FP=4

Figure 3.3. Proteins of three distinct homology groups are represented as triangles, circles and squares. Green
shapes are true positives (tp) which have been assigned to the true group; red shapes are false positives (fp)
for the group they have been incorrectly assigned to, and false negatives (fn) for their true group. Having these
three factors, recall, precision and F-score of the homology detection can be calculated.

In the following experiments, we need to know the real groups in various datasets to
serve as a ground truth for evaluation. For the S.cerevisiae datasets and the single E.coli
dataset, the real groups are defined based on the locus tags of the proteins extracted from
the GenBank files (Supplementary spreadsheet datasets.xlsx). For A.thaliana datasets the
real groups are defined based on the gene identifiers which end with .1, for example
AT3G54340.1, which correspond to the first annotated isoform of the genes. For the single
Metazoa dataset, we used the identifiers of the 70 protein families of OrthoBench as the real
group identifiers.

3.3 Results and discussion

Here, we present results demonstrating the accuracy, scalability, efficiency and applicability
of PanTools for detecting homology in large proteomes of bacteria, fungi, plants and
Metazoa (Supplementary Table 3.S1). We compare PanTools to the BLAST-based
OrthoFinder [16] orthology detector and to DIAMOND-based PanX [18], a pipeline
dedicated to microbial data (Supplementary Table 3.52-5). First, we evaluated the methods
on OrthoBench [17], a public benchmark of curated protein families from 12 metazoans.
Unfortunately, we were not able to run PanX on this data (M12), as this benchmark only
provides the protein sequences but not the gene sequences PanX requires. Next, we tested
scalability on 5 datasets of increasing size compiled from 93 Saccharomyces cerevisiae
strains [19] and 5 datasets compiled from 19 Arabidopsis thaliana accessions [20].
Additionally, we compared the performance of PanTools and PanX on a large dataset of 600
Escherichia coli; we did not run OrthoFinder, as we estimated it would need ~5000 hours
on this dataset. Finally, we studied the effect of evolutionary distance on homology detection
using 12 Brassicaceae species proteomes. Experiments were executed on an Ubuntu 14.04
server, Intel® Xeon® X5660@2.8GHz, with 64GB RAM using 16 processing cores and 32GB
of RAM disk.

44

3.3.1PanTools is adaptable to handle varying degrees of input divergence

PanTools has four main parameters that affect the homology clustering: intersection rate,
similarity threshold, contrast and MCL inflation. To examine the general effect of these
parameters on the accuracy of the method on proteomes of diverged species, we used the
set of 1695 proteins from the OrthoBench. Figures 3.4 and 3.5 present contour plots
illustrating the effect of these four parameters on the recall and precision of PanTools,
respectively; lighter colors represent higher values.

The first parameter, intersection rate (I) (in the range of 0.01-0.1), determines the
minimum number of hexamers that two proteins need to have in common to be considered
intersecting proteins in order to be selected for exact alignment. This number is calculated
as the product of the intersection rate parameter and the total number of hexamers of the
shorter protein. In general, by choosing lower intersection values the number of pairwise
alignments and, in turn, the resource consumption of the program increases significantly.
The lower the intersection value, the higher the recall and the lower the precision.

The second parameter affecting the clustering is the similarity threshold (T) (in the
range of 25-99). Two proteins are considered similar if the normalized similarity score of
their local alignment exceeds this threshold. Lower thresholds increase the number of
detected similarities, boosting the sensitivity of the homology detection. So, the lower the
threshold, the higher the recall, but the lower the precision.

The connectivity components of the similarity graph (similarity components) are the
candidate homology groups which are then passed to the MCL clustering algorithm to be
possibly split into more specific homology groups. To increase the granularity of the
clustering and split the similarity components into a larger number of groups, we choose
greater MCL inflations (M). Finally, we raise the scores to the power of the contrast
parameter (C) to increase the contrast between the final similarity scores. Like for I and T,
the lower the inflation and/or contrast, the higher the recall and the lower the precision.

The resulting F-scores (Supplementary Figure 3.S1) suggest that higher values of the
four parameters are not desirable for grouping the proteome of these distant species. In
support of this, we observed that increasing the parameter values improves the F-score of
the method when analyzing the proteomes of closely related species. Based on these
observations, we experimentally optimized 8 groups of default parameter settings (d1-d§),
ranging from strict to relaxed by linearly decreasing the 4 mentioned parameters
(Supplementary Table 3.S6). This allows the user to fine-tune the settings for different types
of datasets and/or downstream applications. We recommend users to either use Table 3.56
to choose appropriate settings based on the divergence of the proteomes or try multiple
settings and pick one based on the desired resolution from one-to-one orthologs to multi-
gene families. In our experiments, we used the most strict setting (d1) for the closely related
strains of E.coli and S.cerevisiae, the next strict setting (d2) for A.thaliana datasets, and the
most relaxed setting (d8) for the OrthoBench data.

45

Efficient inference of homologs in large eukaryotic pan-proteomes

55

12 14 16 18 2 22 24 26 28 3
Inflation

Intersection = 0.05
Contrast
Contrast
e
LI U I S
Contrast
O PO
PR IR

24 26 28 3 > 22 24 26 28 3
Inflation

2
Inflation

91

Intersection = 0.03
Contrast
P
Gwhowias oo
Contrast
e b wh b od
Contrast

IS
IS

2 14 16 18 2 22 24 26 28 3 2 14 16 18 2 22 24 26 28 3
Inflation Inflation

2 22 24 26 28 3
Inflation

Contrast
oS s
O

2

15 1.5+

Intersection =0.01
Contrast
~ © > o
I U
) Contrast
e
IR I I

1 E— P B e 53
12 14 16 1.8 2 22 24 26 28 12 14 16 18 2 22 24 26 28 3
Inflation Inflation

12 14 16 18 2 22 24 26 28 3
Inflation

Threshold = 20 Threshold =25 Threshold = 30

Figure 3.4. The effect of intersection rate, similarity threshold, contrast and inflation rate, on the recall of

PanTools. Each contour plot belongs to a pair of intersection and threshold values, with the x and y axis
representing inflation and contrast parameters.

5.5

Intersection = 0.05
Contrast
o N
bow b ow s
Contrast
o b winasbob
Contrast

12 14 16 18 2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 3
Inflation Inflation

2 22 24 26 28 3
Inflation

IS

Intersection =0.03
Contrast.
Contrast
= ~ w » o
R
Contrast
Gatofed s

12 14 16 18 2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 3 1 3 22 24 26 28 3
Inflation Inflation o
55 551 55
5 5. s
o 4.5 4.5¢ 4.5+
S - . .
I Zas %3 %3
2 2 £
S § § 3 § 3
o o o
S 2s 2.5 254
g 2
2 2 2.
S L5 15+ o1
12 14 16 18 2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 3
Inflation Inflation Inflation
Threshold =20 Threshold =25 Threshold = 30

Figure 3.5. The effect of intersection rate, similarity threshold, contrast and inflation rate, on the precision of
PanTools. Each contour plot belongs to a pair of intersection and threshold values, with the x and y axis
representing inflation and contrast parameters.

46

3.3.2PanTools is efficient and accurate on OrthoBench data

OrthoBench is a resource of 70 curated eukaryotic protein families from 12 metazoans
which was established to assess the performance of TreeFam [21], eggNOG [22], OrthoDB
[23], OrthoMCL [24], and OMA [25]. We call this benchmark M12 in the rest of this paper.
The homology relationships between these protein families are difficult to detect due to
differences in their rate of evolution, domain architecture, low-complexity regions/repeats,
lineage-specific losses/duplications, and alignment quality [17].

We compared the performance of PanTools to that of OrthoFinder, which previously
showed the highest accuracy on this benchmark data. We first created a mapping from the
1695 OrthoBench proteins to the 404,657 proteins of the 12 metazoans available in
Ensembl release 60. We then ran PanTools and OrthoFinder independently on these 12
complete proteomes and calculated the recall, precision and F-score using the same
procedure as proposed for OrthoFinder. In this experiment, PanTools achieved the same
recall as OrthoFinder but at a remarkably higher precision, resulting in a 3% higher overall
F-score of 85.5%. Additionally, there were significant differences in run-times. Running on
16 cores, PanTools terminated after 2 hours and OrthoFinder after 77.6 hours.

3.3.3PanTools scales to large eukaryotic datasets and maintains accuracy

To examine the scalability of our method to large eukaryotic datasets, we first ran it on 5
datasets of Saccharomyces cerevisiae (Y3, Y13, .., Y93) and on 5 datasets of Arabidopsis
thaliana accessions (A3, A7, ..., A19) with an increasing number of proteomes. We compared
the run-time and accuracy (F-score) of PanTools to those of OrthoFinder and PanX (Figure
3.6).

On the largest yeast dataset (Y93), PanTools was 112 times faster than OrthoFinder (0.9
hours vs. 4 days) and 7.6 times faster than PanX, with a slightly higher F-score. Similarly, on
the largest Arabidopsis dataset (19 accessions), PanTools was 42 times faster (1 hour vs.
2.7 days) than OrthoFinder and 5.2 times faster than PanX while maintaining its higher F-
score. Overall, OrthoFinder starts with a low accuracy but seems to level out at a higher
value as the number of proteomes grows, albeit at the cost of drastic increase in run-time.
Although PanX was almost as accurate as OrthoFinder on the S.cerevisiae data, its accuracy
fell below that of OrthoFinder on the A. thaliana data, likely because plants have more
diverse proteomes than the bacteria PanX was designed for.

3.3.4PanTools is applicable to large microbial datasets

To compare the performance of our approach to PanX, a recently published tool dedicated
to the microbial data, we applied both tools to the proteomes of 600 E.coli strains
downloaded from GenBank (Supplementary spreadsheet datasets.xlsx). Both PanX and
PanTools processed this large dataset in ~15 hours, resulting in F-scores of 71.6 and 72.9,
respectively. In this experiment, we ran PanX in divide-and-conquer mode to speed it up.

47

Efficient inference of homologs in large eukaryotic pan-proteomes

—a—PanTools -m-PanX -e-OrthoFinder —a—PanTools -m-PanX -e-OrthoFinder
100 S 100
90
80 (’(’. A A
A A A A
70 T —A—— &
o 9% *— —
£ 60 2 4 5]
3 50 / 2 97
T x =
)

x /’ *
20 <
9.
) R4

10 2 4
L |
0 S/! ———0—— 94
Y13 Y33 Y53 Y73 Y93 Y13 Y33 Y53 Y73 Y93
Dataset Dataset
@A) (B)
—a—PanTools -e-OrthoFinder -m-PanX —a—PanTools -m-PanX -e-OrthoFinder
70 100
*
o os A A A A
50
o
n & 3 9%
40 53
E / i ’/”4’
T 30 (2O
) * x: 0/
20 / Q/\/
10 2 4 80 a—H — n
m——n
0 ié. ./A A 75
A3 A7 All AlS A19 A3 A7 All Al A19
Dataset Dataset
© (D)

Figure 3.6. Run-time and accuracy of PanTools compared to those of PanX and OrthoFinder. Run-time and F-
score of the three tools were calculated on the pan-proteomes of 5 S. cerevisiae 5 A. thaliana accessions.

3.3.5PanTools significantly reduces the number of pairwise comparisons

The efficiency of PanTools is due to its k-mer-based approach, which significantly reduces
the number of fruitless protein alignments. Table 3.1 shows that the numbers of pairwise
comparisons in different experiments are thousands-fold less than what is needed in a naive
all-pairs approach.

Table 3.1. The number of PanTools comparisons is extremely less than what is needed in a naive all-pairs
approach, since we efficiently filter out un-related pairs of proteins.

Dataset Naive (millions) PanTools (thousands) Fold decrease
Y13 2,472 507 4,874
Y33 15,979 3,415 4,679
Y53 41,181 8,888 4,633
Y73 78,121 16,937 4,613
Y93 126,519 27,494 4,602
A3 4,284 508 8,435
A7 23,225 2,889 8,038
Al1 57,382 7,229 7,938
A15 105,111 12,904 8,146
A19 169,570 21,022 8,066
M12 81,873 20,094 4,074
E600 4,993,364 926,638 5,389

48

To scale to hundreds of eukaryotic or thousands of prokaryotic proteomes using
reasonable amount of resources, there were two main limitations to be resolved: first, the
local sequence alignment of proteins, which we tried to mitigate by distributing the
intersecting pairs among multiple threads to be aligned in parallel; second, the size of the
data structure used for detecting the intersecting proteins, which grows linearly with the
size of the input data. To reduce the memory needs, currently we ignore extremely abundant
and rare hexamers, which are less informative. By using space-efficient data structures, for
example MinHash sketches [26], we may be able to further decrease the memory
consumption of the program.

3.3.6 PanTools reproduced the majority of groups detected by other tools

In all experiments, PanTools was able to perfectly reproduce the majority of the groups
detected by OrthoFinder and PanX. Table 3.2 shows the percentage of the groups generated
by OrthoFinder and PanX which have an identical counterpart in the PanTools groups.
Generally, the overlap decreases as the size of data grows, because the probability of having
exactly identical groups drops, although the corresponding groups have highly similar
compositions.

Table 3.2. There is a large overlap between PanTools groups and those of OrthoFinder and PanX. The overlap
between PanTools and OrthoFinder drops slightly with the size of the pan-proteome. The overlaps with PanX
groups are generally larger especially on A.thaliana pan-proteomes.

Dataset Reproduced OrthoFinder groups Reproduced PanX groups
Y13 949 % 96.3 %
Y33 949 % 95.5%
Y53 93.9 % 94.8 %
Y73 93.6 % 94.5 %
Y93 933 % 93.8%
A3 721 % 80.1 %
A7 64.9 % 71.5%
Al1l 64.9 % 69.1 %
A15 64.8 % 72.5%
A19 64.6 % 79.8 %
M12 76.3 % -
E600 - 59.7 %

3.3.7 Parameters can affect the performance of different application scenarios

To investigate the effect of the 8 suggested parameter sets (from strict to relaxed) on
homology clustering, we used a large proteome of 12 phylogenetically diverse Brassicaceae
species, including the model plant Arabidopsis thaliana, plus Vitis vinifera as an outgroup.
We specifically considered four genes with different copy numbers in A.thaliana, including
three MADS-box genes - the floral homeotic protein APETALA 3 (AP3), the floral homeotic
protein AGAMOUS (AG) and the flowering locus C (FLC) - and one housekeeping gene: the
ubiquitin extension protein 1 (UBQ1), and looked into the composition of their homology
groups detected by PanTools using the 8 parameter settings from strictest (d1) to the most
relaxed (d8). Each column of Table 3.3 represents a homology group and each entry reflects

49

‘ Efficient inference of homologs in large eukaryotic pan-proteomes

the count of homologs of the genes AP3, AG, FLC and UBQ1 from different species in that
group.

With all settings, we detected a single AP3 homolog in arabidopsis, which indicates that
this MADS-box gene is significantly differentiated from other MADS-box genes. We also
found unique orthologues for most of the other species. We detected a single ortholog of AG
until d5, after which we also identify its ancient paralogs Shatterproof 1 and 2 (SHP1/2).
The duplication that gave rise to the split between AG and SHP1/2 is quite old (the gamma
triplication shared by most eudicot species). At d6 we also detect STK which comes from an
even earlier duplication (perhaps at the origin of angiosperms) [27]. At d7 and d8 we
identify many of the various MADS-box genes across different lineages. FLC is alone until d4,
where the transposition duplicate MAF1 (but not yet members of the MAF2-5 clade) is
added. Then MAF2-5 members derived from the At-alpha WGD (whole genome duplication)
from FLC come up, followed by inclusion of the tandem expansion of these genes. At
subsequent settings, we start picking up other MADS-box genes.

UBQ1 is a house-keeping gene that was duplicated by the ancient whole genome
duplication (WGD) At-alpha shared across the Brassicaceae (PGDD database) [28]. Our
method recovered both the ortholog and its in-paralog (UBQ2) even using the strictest
setting (d1), meaning that these genes are very similar despite having diverged around 40
mya. Thus, the function of the two genes is likely highly conserved. From d5 on, PanTools
identifies other, more distantly related homologs and ultimately (d8) all members of the
larger family (UBQ1-UBQ14) plus a few related genes.

Table 3.4 shows the distribution of the normalized similarity scores in each of the
detected homology groups. It is clear that more relaxed settings allow including more
diverse pairs of homologs, which are less similar in the final clusters.

Table 3.3. Entries represent the number of homologs of the 4 selected genes of A.thaliana (AP3, AG, FLC,
UBQ1) in the 12 other Brassicaceae species using different settings (d1-d8). The abrupt increase at d5 shows
that overly relaxed parameters (d5 to d8) are not suitable for homology detection at the level of the same
species.

AP3 AG FLC UBQ1
(AT3G54340) (AT4G18960) (AT5G10140) (AT3G52590)

d1 d2 d3 d4 d5 d6 d7 d8 |d1 d2 d3 d4 d5 d6 d7 d8 [d1 d2d3 d4 d5 d6 d7 d8 |d1 d2 d3 d4 d5 d6 d7 d8

Athaligna |1 1 1 1 1 1 1 1 1t 1 1 1 3 4 8 271 11 2 4 6 8 362 2 2 2 15 16 17 17
A. lyrata 111111130 111447 240 111 4 55 320 0 0 0 19 20 21 22
C. rubella 111111120 11134 8 2400 111 2 3 4 332 2 2 2 151518 19
Mmaritima |1 1 1 1 1 1 1 3 {1 1 1 1 4 4 7 2400 111 4 4 6 342 2 2 2 12 12 16 18
D.sophiades |1 1 1 1 1 1 1 3 1 1 1 1 4 4 9 260 111 7 9 1242 2 2 2 1112 12 12
S. irio o 1 11113610 0 2388 10260 002 4 4 11363 3 3 3 13 14 17 20
Mperfoliatum/t 1 1 1 1 1 1 2 1 1 1 1 4 4 8 28/0 111 3 5 8 353 3 3 3 13 13 18 21
T.salsuginea 1 1 1 1 1 1 1 3 1 1 114 4 8 270 111 5 5 7 332 2 2 2 1213 13 13
T halophila [0 0 2 2 2 2 2 300 0 0 46 9 13410 00 0 0 4 4 4844 4 4 4 1515 15 15
A. alpina 1111112390 12257 9 210013 6 7 11305 6 6 7 17 17 21 23
Esyriacum |1 1 1 1 1 1 12 0 0 00 2 3 7 210 011 3 5 9 313 3 3 3 1820 21 22
A.arabicum |0 1 1 1 2 3 450 1 2 28 1113240 12 3 4 5 7 253 3 3 3 1212 12 13
V.vinifera 0 0 0 01 1 1 4100 0 11 4 4 8 260 000 0 0 3 342 2 3 3 7 9 9 10

50

Table 3.4. The large difference between minimum and maximum of normalized similarity scores in the
detected homology groups of the 4 genes confirms that settings relaxer than d4 should not be used at the
species level.

Gene name (ID) di dz a3 d4 d5 dé d7 ds
AP3 Min 95.1 88.1 79.3 79.3 57.5 57.5 575 25.0
(AT3G54340) Avg 97.0 95.5 91.7 91.7 87.2 87.2 87.2 38.7
Max 98.8 98.8 98.8 98.8 98.8 98.8 98.8 100.0
AG Min 95.1 85.2 75.7 75.7 56.2 45.0 350 25.0
(AT4G18960) Avg 96.7 93.6 90.1 89.3 82.6 62.7 52.2 38.7
Max 99.5 99.5 99.5 98.0 99.5 100.0 100.0 100.0

FLC Min - 85.1 79.9 65.0 55.0 45.0 350 25.0

(AT5G10140) Avg - 87.3 85.2 75.1 68.3 62.7 52.2 38.7
Max - 94.4 94.4 100.0 100.0 100.0 100.0 100.0

UBQ1 Min 98.2 96.9 81.7 81.7 57.2 45.0 350 251

(AT3G52590) Avg 99.6 99.3 99.6 99.6 97.2 78.3 72.0 685
Max 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3.4 Conclusion

We presented an efficient method for detecting homology groups across a large number of
individuals and/or species. To make homology detection efficient we adopted a k-mer-
based approach, which substantially reduces the number of pairwise comparisons.
Specifically, we first count the number of peptide hexamers two proteins share, and only if
this number is high enough, we perform a local alignment of the so-called intersecting
proteins to calculate their exact similarity score.

We clearly observed a trade-off between recall and precision of the homology inference.
Favoring recall or precision strongly depends on the application [29]. In a phylogenetic
studyone may specifically be interested in identifying precise one-to-one
orthologs, while others may want to capture a complete protein family to achieve insights
into gene-duplication events across species. The four defined parameters (and the 8 default
settings) give users the flexibility to control the program’s behavior. It is important to note
that different types of genes may be under different selection pressures and constraints and
have different evolutionary dynamics. Thus, the optimal parameter setting will depend both
on the specific gene and on the desired application, as demonstrated by the four genes
across the Brassicaceae.

As we store the homology groups in the pan-genome, it is possible to query the pan-
genome graph database for statistics on, for example, the size of the homology groups, the
copy number of the genes and the conservation rate of the proteins in different groups. In
the future, we will extend PanTools with additional functionality to exploit this pan-genome
database for comparative genomics on large collections of complex genomes.

3.5 Supplementary materials

Here we present instructions for running the homology detection functionality of PanTools.

First, the PanTools package should be cloned to the home directory from GitHub:
cd
git clone https://github.com/sheikhizadeh/pantools

51

‘ Efficient inference of homologs in large eukaryotic pan-proteomes

You should already have installed Java (JDK 1.8 or higher) and the latest version of MCL
clustering program on your machine and have added the path to their executables to the
PATH shell environment variable.

3.5.1 Constructing the proteome layer of the pan-genome

To construct the proteome layer of a pan-genome from a set of protein sequences, collect
the paths to all the protein files in FASTA format in a text file (for example, proteins. txt)

which contains these lines:
$HOME/proteins/pl.faa
$HOME/proteins/p2.faa
$HOME/proteins/p3.faa

Then run:
java -jar pantools/dist/pantools.jar build_panproteome -dp ./DB -pf
./proteins.txt

To start homology detection using 4 threads and the most relaxed setting (8) type:

java -jar pantools/dist/pantools.jar group -dp ./DB -tn 4 -rn 8
Alternatively, you can start from genomes and GFF files and build a complete pan-genome.
First, you need to construct the genome layer of a pan-genome by collecting the path to all
the genome files in FASTA format in a text file (for example, genomes . txt) which contains
these lines:

$HOME/genomes/gl. fna

$HOME/genomes/g2.fna
$HOME/genomes/g2.fna

Then:
java -jar pantools/dist/pantools.jar build_pangenome -dp ./DB -gf
./genomes. txt

The genomes’ annotation should be added to build the annotation layer of the pan-genome
by giving the path to the GFF file for each genome as indicated by the number at the start of
each line (for example, in annotations. txt) which contains these lines:

1 $HOME/annotations/al.gff

2 $HOME/annotations/a2.gff

3 $HOME/annotations/a3.gff

Then run:
java -jar pantools/dist/pantools.jar add_annotations -dp ./DB -af
./annotations. txt

Now, the proteins are annotated in the pan-genome and homology detection can be started
by:
java -jar pantools/dist/pantools.jar group -dp ./DB -tn 4 -rn 8

52

3.5.2 Choice of K

Here, we calculate the smallest k value which keeps the probability of random occurrences
of a k-mer below a desirable probability p. Given sequences S of length L from an alphabet
of size , the probability of a given k-mer from this alphabet being present at a given position

of S by chance is:
x==)
then, the probability of the given k-mer being absent at a given position of S is:
1—x (2)
and the probability that the k-mer occurs nowhere in S will be:
(1-x)" (3)

, where n is the number of k-mers in sequence S: L—k + 1
so, the probability that it occurs somewhere in S would be:
1-(1-x)" 4)
Using the Taylor (or Maclaurin) series when |x| « 1, which holds here as a* > 1:
x2 x3 xt

ln(l—x)=—x—7—?—z—---z—x

nln(1 —x) = —nx
(1—x)" =~ exp (—nx)
So, the probability (4) is well approximated by:
1 — exp(—xn) (5)
setting this probability less than the desired value p we will have:
1—exp(—xn) <p
—xn >1In (1 -p)
c<n@-p)
-n
substituting x gives:
1 < In(1-p)

ak -n
-n
k > [loga - (1_p)] (6)

For peptide sequences a = 20, and considering n = L = 30,000 the length of the largest
known protein, and setting p = 0.001, the smallest suitable k is 6.

3.5.3 Experiments

We demonstrate the accuracy, scalability, efficiency and applicability of PanTools on 12
datasets of bacteria, fungi, plants and Metazoa. Y13-Y93 are 5 datasets of increasing size
compiled from 93 Saccharomyces cerevisiae strains and A3-A19 are 5 datasets compiled
from 19 Arabidopsis thaliana accessions. M12 is the OrthoBench data from 12 metazoans
and E600 a large dataset of 600 Escherichia coli strains. For most of these data sets we

53

‘ Efficient inference of homologs in large eukaryotic pan-proteomes

selected a subset of the total proteins for evaluation of the methods (Table 3.S1), because
we were not able to establish a ground truth for all. Columns “Intersecting” and “Similar”
give the number of intersecting resp. similar pairs of proteins in the constructed pan-
genome.

Table 3.S1. Statistics on the pan-proteomes constructed from the 12 different datasets.

Dataset k-mers All Selected Intersecting Similar
Y13 2,634,965 70,312 61,414 507,164 423,162
Y33 2,722,436 178,769 156,135 3,414,746 2,872,902
Y53 2,794,291 286,987 250,649 8,887,967 7,486,596
Y73 2,947,823 395,274 345,333 16,936,559 14,275,904
Y93 3,027,750 503,028 439,573 27,494,049 23,189,200
A3 8,324,590 92,564 92,564 507,874 139,384
A7 8,861,259 215,523 215,523 2,889,361 888,305
Al11 9,167,464 338,769 338,769 7,228,520 2,273,496
A15 9,425,939 458,499 458,499 12,903,576 4,197,580
A19 9,621,923 582,357 582,357 21,021,793 6,853,404
M12 29,193,967 404,657 404,657 20,094,137 12,942,693
E600 7,580,644 3,160,178 688,160 926,638,469734,423,473

Table 3.52 shows the number of groups detected by each of the three tools, the number of
real groups and the running time of tools in hours. For the Y datasets and the E600 dataset,
the real groups are determined by the valid locus tags of the proteins extracted from the
GenBank files. For A datasets, the real groups are the gene identifiers which end with .1,
corresponding to the first annotated isoform of the genes. For M12 we used the identifier of
the known 70 protein families in the OrthoBench as the real group identifiers.

Table 3.S2. Results of running PanTools, OrthoFinder and PanX on the 12 datasets. Run-times are
presented in hours.

Dataset PanTools OrthoFinder PanX Real PanTools OrthoFinder PanX
groups groups groups groups run-time run-time run-time

Y13 4,990 4,746 4,830 4,894 0.02 2.86 0.52
Y33 5,078 4,853 4,849 4,906 0.11 12.50 1.28
Y53 5,151 4,886 4,855 4,909 0.28 35.53 2.65
Y73 5,199 4,889 4,857 4,910 0.51 60.60 4.47
Y93 5,257 4,886 4,867 4,911 0.88 98.95 6.72
A3 32,236 29,231 30,065 30,971 0.05 2.58 1.77
A7 35,083 31,368 31,356 31,037 0.25 11.47 4.28
A11 36,842 33,367 32,048 31,046 0.43 25.02 5.12
A15 38,292 34,192 32,637 31,047 0.79 42.30 7.28
A19 39,579 34,896 33,095 31,049 1.55 65.20 8.13
M12 171 147 - 70 1.96 77.60 -
E600 10,196 - 7,843 10,152 15.65 - 15.48

54

Table 3.S3. Accuracy of PanTools on the 12 datasets.

Pan-genome TP FP FN Recall Precision F_score
Y13 61,101 1,339 313 99.5 97.9 98.7
Y33 155,361 3,659 774 99.5 97.7 98.6
Y53 249,402 5,679 1,247 99.5 97.8 98.6
Y73 343,636 7,852 1,697 99.5 97.8 98.6
Y93 437,305 10,435 2,268 99.5 97.7 98.6
A3 90,033 4,353 2,531 97.3 95.4 96.3
A7 207,675 11,168 7,848 96.4 94.9 95.6
Al11 325,625 19,646 13,144 96.1 94.3 95.2
A15 440,596 26,837 17,903 96.1 94.3 95.2
A19 558,677 34,412 23,680 95.9 94.2 95.1
M12 1,328 135 315 80.8 90.8 85.5
E600 665,167 472,215 22,993 96.7 58.5 72.9

Table 3.54. Accuracy of OrthoFinder on the 11 datasets.

Pan-genome TP FP FN Recall Precision F_score
Y13 61,356 6,678 58 99.9 90.2 94.8
Y33 155,945 6,457 190 99.9 96.0 97.9
Y53 250,363 9,532 286 99.9 96.3 98.1
Y73 344,989 13,859 344 99.9 96.1 98.0
Y93 439,192 17,943 381 99.9 96.1 98.0
A3 86,363 34,435 2,246 97.5 71.5 82.5
A7 205,912 74,595 6,657 96.9 73.4 83.5
Al11 325,099 82,904 10,849 96.8 79.7 87.4
A15 444,098 98,963 15,102 96.7 81.8 88.6
A19 560,002 119,627 19,534 96.6 82.4 88.9
M12 1,328 243 315 80.8 84.5 82.6

Table 3.S5. Accuracy of PanX on the 11 datasets.

Pan-genome TP FP FN Recall Precision F_score
Y13 61,302 1,717 19 100.0 97.3 98.6
Y33 155,800 5,566 58 100.0 96.6 98.2
Y53 250,144 9,176 68 100.0 96.5 98.2
Y73 344,660 13,193 79 100.0 96.3 98.1
Y93 438,691 18,460 108 100.0 96.0 97.9
A3 87,047 35,756 1,387 98.4 70.9 82.4
A7 208,010 101,599 4,072 98.1 67.2 79.7
Al11 328,418 153,371 6,688 98.0 68.2 80.4
A15 448,690 216,306 9,317 98.0 67.5 79.9
A19 568,800 280,513 11,987 97.9 67.0 79.5

E600 667,680 513,833 15,785 97.7 56.5 71.6

55

Efficient inference of homologs in large eukaryotic pan-proteomes

Table 3.S6. Pre-cooked default parameters: the values of the four parameters /, T, M and C in each of the
default pre-cooked set of parameters.

Parameter d1 dz a3 d4 d5 deé d7 ds
Similarity threshold 95 85 75 65 55 45 35 25
Intersection rate (/) 0.09 0.08 0.07 0.06 0.05 004 0.03 0.02
MCL inflation (M) 96 84 7.2 6.0 4.8 3.6 2.4 1.2
Contrast (C) 8 7 6 5 4 3 2 1

5 H

9 s
S 4 4]
L B Bss]
g 5 3 5 3 £
< © © o
3 254 251
g 2 2
)
= 15 15
1.2 14 16 1.8 2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 : 1.2 1.4 16 1.8 2 22 24 26 28 3
Inflation Inflation Inflation
5.5- 5.5+ 5.5
. 5 5 5
b | 45 X
? o e .
z B %35 %3 o1
-E é 3| 5 3 LS) 3
S 254 251 251
3 2 21 2
S 1.5+ 1.5 15/
2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 3
Inflation Inflation Inflation
55 5.5 55
5 5. 5!
3 | s 4.5
S L o 4
L s %)
S £ €
g 3 3 § 3.] 3]
S 2.5 2.5+ 2.5
g 2
B 2, 2,
F 1.5 1.5

1.5+

12 14 16 18 2 22 24 26 28 3 12 14 16 18 2 22 24 26 28 3
Inflation Inflation

Threshold = 20 Threshold = 25 Threshold = 30
Figure 3.S1. The effect of intersection rate, similarity threshold, contrast and inflation rate, on the F-score of

PanTools. Each contour plot belongs to a pair of intersection and threshold values, with the x and y axis
representing inflation and contrast parameters.

12 14 16 18 2 22 24 26 28 3
Inflation

56

References

_

Ul w

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Koonin E V. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet. 2005;39:309-38.

Zhu], Vinothkumar KR, Hirst J. Structure of mammalian respiratory complex 1. Nature.
2016;536(7616):354-8.

Tekaia F. Inferring orthologs: open questions and perspectives. Genomics Insights. 2016;9:17-28.
Tatusov RL. A genomic perspective on protein families. Science. 1997;278(5338):631-7.

Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas], et al. EggNOG v4.0: Nested
orthology inference across 3686 organisms. Nucleic Acids Res. 2014;42(D1).

Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simao FA, loannidis P, et al. OrthoDB v9.1:
cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and
viral orthologs. Nucleic Acids Res. 2017;45(D1):D744-9.

Huerta-Cepas], Capella-Gutiérrez S, Pryszcz LP, Marcet-Houben M, Gabaldén T. PhylomeDB v4:
zooming into the plurality of evolutionary histories of a genome. Nucleic Acids Res.
2014;42(D1): D897-D902.

Li H. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res.
2006;34(90001):D572-80.

Remm M, Storm CEV, Sonnhammer ELL. Automatic clustering of orthologs and in-paralogs from
pairwise species comparisons.] Mol Biol. 2001;314(5):1041-52.

Roth AC, Gonnet GH, Dessimoz C. Algorithm of OMA for large-scale orthology inference. BMC
Bioinformatics. 2008;9(1):518.

Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of ortholog groups for eukaryotic genomes.
Genome Res. 2003;13(9):2178-89.

Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. PanTools: representation, storage and
exploration of pan-genomic data. Bioinformatics. 2016;32(17):1487-93.

Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A, et al. Computational pan-genomics:
Status, promises and challenges. Brief Bioinform. 2018;19(1):118-35.

Enright AJ, Dongen S V, Ouzounis CA, Van Dongen S, Ouzounis CA. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575-84.

Opitz CA, Kulke M, Leake MC, Neagoe C, Hinssen H, Hajjar R], et al. Damped elastic recoil of the titin
spring in myofibrils of human myocardium. Proc Natl Acad Sci. 2003;100(22):12688-93.

Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons
dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16(1):157.

Trachana K, Larsson T a, Powell S, Chen W-H, Doerks T, Muller], et al. Orthology prediction methods:
A quality assessment using curated protein families. Bioessays. 2011;33(10):769-80.

Ding W, Baumdicker F, Neher RA. panX: pan-genome analysis and exploration. Nucleic Acids Res.
2018;46(1):e5-€5.

Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The 100-genomes
strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and
emergence as an opportunistic pathogen. Genome Res. 2015;125(5):762-74.

Gan X, Stegle O, Behr], Steffen]G, Drewe P, Hildebrand KL, et al. Multiple reference genomes and
transcriptomes for Arabidopsis thaliana. Nature. 2011;477(7365):419-23.

Ruan J, Li H, Chen Z, Coghlan A, Coin LJM, Guo Y, et al. TreeFam: 2008 Update. Nucleic Acids Res.
2007;36:D735-40.

Muller], Szklarczyk D, Julien P, Letunic I, Roth A, Kuhn M, et al. eggNOG v2.0: extending the
evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and
functional annotations. Nucleic Acids Res. 2010;38:D190-5.

Waterhouse RM, Zdobnov EM, Tegenfeldt F, Li], Kriventseva E V. OrthoDB: the hierarchical catalog of
eukaryotic orthologs in 2011. Nucleic Acids Res. 2011;39:D283-8.

Chen F. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic
Acids Res. 2006;34(90001):D363-8.

Altenhoff AM, Schneider A, Gonnet GH, Dessimoz C. OMA 2011: orthology inference among 1000
complete genomes. Nucleic Acids Res. 2011;39(Database):D289-94.

Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and
metagenome distance estimation using MinHash. Genome Biol. 2016;17(1):132.

Cheng S, van den Bergh E, Zeng P, Zhong X, Xu], Liu X, et al. The Tarenaya hassleriana genome provides
insight into reproductive trait and genome evolution of crucifers. Plant Cell. 2013;25(8):2813-30.
Lee T-H, Tang H, Wang X, Paterson AH. PGDD: a database of gene and genome duplication in plants.
Nucleic Acids Res. 2012;41(D1):D1152-8.

57

Efficient inference of homologs in large eukaryotic pan-proteomes

29. Altenhoff AM, Boeckmann B, Capella-Gutierrez S, Dalquen DA, DeLuca T, Forslund K, et al
Standardized benchmarking in the quest for orthologs. Nat Methods. 2016;13(5):425-30.

58

Chapter 4

ACE: accurate correction of errors using K-mer tries

This chapter is published as:

Sheikhizadeh S, de Ridder D. ACE: accurate correction of errors using K-mer tries.
Bioinformatics. 2015;31(19): 3216-18.

DOI: 10.1093/bioinformatics/btv332

‘ ACE: accurate correction of errors using K-mer tries

Abstract

The quality of high-throughput next-generation sequencing data significantly influences the
performance and memory consumption of assembly and mapping algorithms. The most
ubiquitous platform, Illumina, mainly suffers from substitution errors. We have developed
a tool, ACE, based on K-mer tries to correct such errors. On real MiSeq and HiSeq Illumina
archives, ACE yields higher gains in terms of coverage depth, outperforming state-of-the-art
competitors in the majority of cases. ACE is licensed under the GPL license and can be freely
obtained at https://github.com/sheikhizadeh/ACE/. The program is implemented in C++
and runs on most Unix-derived operating systems.

60

4.1 Introduction

Genome sequencing involves reading thousands or millions of genome fragments and
reconstructing the original genome, either by assembling these reads in de novo assembly
projects, or aligning them to a known reference genome in re-sequencing studies. Over the
last decade, next-generation sequencing (NGS) technology dramatically increased the ease
with which material can be sequenced, yielding millions of short reads in a short time. The
lower quality of the data (compared to Sanger sequencing) however significantly influences
performance and memory consumption of assemblers and alignment algorithms; as a result,
there has been a growing interest in correcting errors in short-read archives. Sequencing
errors can result in substitutions, insertions, deletions and unconfirmed nucleotides
represented by ‘N’ symbols. The most ubiquitous platform, Illumina, mostly suffers from
substitution errors while for others, like 454 and Ion Torrent, insertions and deletions are
most abundant.

As an error at a specific genomic position occurs infrequently and randomly, an
erroneous base can be detected and corrected taking advantage of the high frequency of the
reads that cover that position. This is the idea behind all count-based error correction
methods which count K-mers using various data structures.

For example, SHREC [1] constructs a generalized suffix trie while HiTEC [2] uses a suffix
array. Built upon SHREC, Hybrid-SHREC [3] captures InDel (insertion, deletion) errors as
well as substitutions. SGA [4] performs error-correction using the FM-index derived from
the compressed Burrows-Wheeler transform. BLESS [5] employs a bloom-filter and RACER
[6] organizes 2-bit-encoded K-mers as 64-bit integers and stores them in a hash table. Fiona,
based on partial suffix array, is also able to deal with InDel errors [7]. Alternatively, K-
spectrum based error correction methods, like Quake [8] and Musket [9] collect all K-mers
appearing in the set of reads, and align those with a small Hamming distance from each other
to achieve the correct consensus. Finally, MSA-based methods, like Coral [10], apply
multiple sequence alignment between reads that share K-mers to detect errors. A recent
survey provides a comprehensive review of error-correction methods, and establishes a
common set of benchmark data and evaluation criteria [11].

Here we present ACE, a new K-mer count-based algorithm. We employ the K-mer trie, a
data structure more time/space-efficient than the suffix trees employed in SHREC. K-mer
tries have been effective in solving some bioinformatics problems [12,13].

4.2 Methods

ACE is the C++ implementation of our algorithm, equipped with Open-MP directives to scale
with the number of available processors. It organizes the K-mers of short reads (and their
reverse-complement) in a K-mer trie.

A K-mer trie of a sequence s (or set of sequences) is a trie of depth K which contains all
K-mers of the sequence. Each edge has a label from the alphabet ; the concatenation of
edge labels along the path from root to a node is called the spelled string of that node. Each
leaf corresponds to one or more K-mers of s, and each node can contain the number of times
that its spelled string appears in the sequence. A K-mer trie gives constant-time access to all

61

‘ ACE: accurate correction of errors using K-mer tries

patterns of length at most K, useful for counting and storing K-mers, detecting zygosity,
determining ploidy and genome assembly.

To cope with large datasets, ACE constructs K-mer sub-tries one by one (Figure 4.1) by
applying a prefix-based classification on K-mers and shortening them to k-mers where k =
K - p and p is the prefix length, determined based on the amount of available memory and
the size of the input data. As the K-mer trie is very dense in the top levels, ACE further
reduces memory consumption (and the size of search space) by building a root array instead
of constructing the top triangle of the trie. Moreover, to efficiently organize billions of K-
mers in the trie ACE applies another prefix-based division to allow parallel construction of
the branches of each subtrie. In Figure 4.1, a branch has been divided into four sub-branches
to be constructed and scanned for errors by four independent parallel threads. Branches are
divided into 16, 64 or more sub-branches if more cores are available. More details on the
algorithm, including a pseudo-code description, can be found in the Supplementary
Material.

Dense levels

Root array AAAA:O0 AAAC:1 AAAG:2 ...

Figure 4.1. To reduce the memory consumption on large datasets, the full trie is broken into sub-tries which
are processed serially (AT sub-trie is shown). To speed-up the algorithm each sub-trie is divided into a few
branches to be processed in parallel by multiple threads.

4.3 Results

We experimentally compared the performance of ACE in increasing the coverage
depth/breadth of reads/K-mers to those of seven state-of-the-art tools, using the
benchmark data and following the same evaluation procedure as presented in a recent
survey [11]. To be consistent with the result of Molnar et al., we chose the same value of K =
20 for evaluations. The specifications of the MiSeq (M1-M9) and the HiSeq datasets (H1-
H13) are presented in Supplementary Table 4.S1. All experiments were conducted on a
Linux server (SUSE 3.8.6-2) with an Intel® Xeon® ES-2667 CPU, exploiting 16 logical cores
running at 2.9 GHz and 256 GB RAM.

62

Table 4.1 compares the gain of ACE to that of its best competitor among seven state-of-
the-art read cleaners: BLESS, Coral, HITEC, Musket, RACER, SGA and SHREC; more detailed
results can be found in Supplementary Tables 4.S3-11. In these evaluations, Depth of
coverage indicates the average number of times each base is covered by reads/K-mers and
Breadth of coverage indicates the proportion of the genome covered by reads/K-mers [11].
The first criterion is useful for quantitative applications and overlap-layout-consensus
assembly, while the second is more applicable for De Bruijn graph-based genome assembly.

Table 4.1. The gain of ACE in increasing the depth/breadth of reads/K-mers, compared to that of the best tool
in [11]. Note: Highlights indicate the level of improvement.

Depth gain Breadth gain

Read K-mer Read K-mer

Best ACE Best ACE Best ACE Best ACE
M1| SGA 2630 | 5610 |RACER 37.42 | 5890 | BLESS 675 913 |SGA 000 -202.26
M2 | RACER 58.06 57.05 |RACER 49.48 5173 |RACER 631 623 |Cora 001 -11.48
M3 | RACER 13.09 1406 |RACER 19.05 2301 |RACER 194 208 |Cora -0.01 -3.92
M4 | RACER 7496 8391 |RACER 5872 | 7390 |RACER 7.73 860 |Cora 000 -0.94
M5 | RACER 088 0.89 |RACER 400 439 |RACER 0.098 0.096 |SGA -0.95 -13.53
M6 | RACER 1646 1803 |RACER 21.09 = 2601 |RACER 347 375 |Cora 000 -5.35
M7 | RACER 8611 90.26 |RACER 6559 | 7948 |RACER 2841 29.80 |Cora 000 -2.56
M8 | HiTEC 37.78 [R@38Y| HITEC 47.65 [(6947 BLESS 67.96 | 79.83 |HITE 500 -5.00
M9 | RACER 039 045 |HITEC 671 790 |BLESS 097 049 |Cora 000 -45.94

H1 | BLESS 61.72 @ 63.55 |Musket 51.28 | 67.67 | BLESS 5.66 543 |Cora -1.74 -7.49
H2 | BLESS 44.30 4493 | HITEC 33.03 34.86 | BLESS 4.54 4.56 SGA -1.73 -1.96
H3 | RACER 3413 34.69 |RACER 19.26 22.15 | BLESS 2.28 2.25 SGA -0.88 -1.20
H4 | RACER 92.27 = 93.71 | HITEC 8583 8877 | BLESS 4949 49.67 |Cora -036 -1.72
H5 | BLESS 13.70 13.80 | HITEC 9.27 9.48 | BLESS 4.63 4.58 SGA -9.83 -12.55
H6 | BLESS 86.16 | 9235 | HITEC 82.83 | 90.23 | BLESS 82.87 8546 |Cora 0.00 -8.12
H7 | SGA 52.89 54.26 |RACER 4735 ' 50.35 | BLESS 4.69 4.70 SGA -199 -24.40
H8 | RACER 26.77 27.83 |RACER 1192 13.74 | BLESS 4.06 4.10 SGA -2.84 -280.70
H9 | BLESS 1814 20.35 |RACER 16.19 @ 19.70 | BLESS 4.50 4.62 SGA -5.70 -27.11
H10| BLESS 26.13 27.53 |Musket 19.64 = 21.67 | BLESS 7.98 8.03 SGA -6.49 -31.77
H11| SGA 61.66 57.52 |RACER 3811 | 4619 | SGA 1292 12.03 |SGA -489 -11.59
H12| SGA 6546 62.61 |RACER 4242 | 4873 | SGA 16.15 1495 |SGA -5.63 -13.81
H13| SGA 2786 27.70 |RACER 3549 & 4035 | SGA 3.8 3.01 SGA -4.32 -11.29

ACE outperforms most other tools in terms of coverage depth gain, improving on the
best competitor on 18 resp. 22 out of 22 datasets for reads resp. K-mers. In particular for
MiSeq data, which contains more errors, the improvements can be significant. For coverage
breadth, the picture is less clear: ACE outperforms the best alternative tool on 13 datasets
on read coverage breadth gain, whereas K-mer coverage breadth gain was generally worse.
However, all tools actually yield low read coverage breadth on most MiSeq data (as low as
0.25%) and decrease K-mer coverage breadth compared to the raw data (see
Supplementary Tables 4.S5-6, 459-10).

Table 4.2 compares the time and memory consumption of ACE to those of the three
competitors which were able to successfully correct all datasets. While for most datasets

63

‘ ACE: accurate correction of errors using K-mer tries

memory consumption is reasonable, ACE has higher computational cost than most other
tools, trading speed for accuracy.

Table 4.2. Time and memory requirements of the tools that were able to successfully correct all datasets.

Time (s/Mb) Space (MB/Mb)

Musket RACER SGA ACE | Musket RACER SGA ACE

M1 0.05 0.55 2.07 10.22 3.64 17.80 10.02 3092
M2 0.14 0.18 0.85 3.14 4.31 10.00 540 530
M3 0.07 0.27 .12 3.76 3.47 7.20 452 621
M4 0.07 0.35 1.16 3.92 3.18 8.15 395 7.01
M5 0.07 0.25 0.56 3.48 2.95 6.24 4.02 552
Mé 0.07 0.34 1.25 3.90 235 6.78 3.10 5.70
M7 0.06 0.23 1.05 329 1.53 3.18 2.03 273
M8 0.06 0.43 1.82 8.29 0.26 2.24 090 12.86
M9 0.06 0.33 1.83 5.64 0.24 1.21 0.75 494
Average 0.07 0.32 1.30 5.07 2.44 6.98 3.86 @ 9.02
H1 0.27 0.17 0.87 4.28 4.49 9.40 599 5.6
H2 0.23 0.22 0.82 5.78 4.28 9.68 6.10 4.23
H3 0.20 0.16 0.75 5.21 293 7.59 428 5.12
H4 0.28 0.31 1.20 5.88 1.58 4.03 237 5.67
H5 0.20 0.24 092 4.77 1.17 3.01 1.73 245
Hé6 0.48 0.25 1.08 3.62 0.66 2.04 1.09 448
H7 0.29 0.30 .11 497 0.70 2.83 0.85 6.70
H8 0.27 0.31 1.09 4.56 0.52 2.36 0.56 4.83
H9 0.42 0.32 1.14 4.29 0.61 2.70 0.55 475
H10 0.32 0.31 122 4.17 0.62 2.26 046 4.64
H11 0.24 0.74 155 3.93 0.20 1.66 023 1.39
H12 0.28 0.47 1.69 3.92 0.19 2.28 023 1.36
H13 0.26 0.47 1.62 392 0.16 1.37 022 132
Average 0.29 0.33 1.16 4.56 1.39 3.94 1.90 = 4.01

4.4 Conclusion

We developed ACE, a command-line tool to accurately correct substitution errors in
[llumina short-read archives. ACE generally out- performs the best among seven state-of-
the-art read cleaners in terms of coverage depth, at higher computational cost. This makes
it a useful tool for small to medium-sized datasets or applications where accuracy
requirements warrant the investment in computational resources.

In future work, we aim to lower the runtime of ACE by updating the K-mer trie instead
of rebuilding it for each round of execution. This future version should also be able to handle
InDel errors to extend its application to all sequencing platforms.

64

4.5 Supplementary methods

4.5.1 K-mer trie

Supplementary Figure S4.1 shows the 3-mer trie for the sequence AATCAAT from X =
{A,C,G,T}. In this trie, for example, AAT occurs 2 times along the sequence. This data

KXy,
| 2%
29 C
) C 19 1
20 A
10

Figure S4.1. The 3-mer trie for the sequence AATCAAT.

structure could similarly be constructed over a set of sequences; in this case we could call it
generalized K-mer trie; however, for simplicity we excluded the term generalized in the

paper.

4.5.2 Algorithms

The pseudo-code of ACE is presented in Supplementary Table 4.S1. The first step is to load
the entire read bank into the memory (Line 1). We use 2-bit coding for nucleotides to reduce
the occupied memory by 75%. ACE consists of two main consecutive steps,
Construct_Subtrie() and Detect_and_Correct(), which iterate in a loop for all prefixes. For
each prefix of length p, ACE constructs its corresponding sub-tries (Line 4). The Construct-
Subtrie() method applies another prefix-based division to provide the possibility of parallel
construction of the branches of a subtrie. It invokes n parallel tasks, each responsible for
constructing a sub-branch by inserting K-mers into the corresponding sub-branch.

Detect_and_Correct() detects substitutions in parallel by traversing the deepest level of
the sub-tries. O is the frequency below which K-mers are classified as low-frequent. It is the
frequency at which the spectrum curve reaches its minimum. In each low-frequent K-mer,
ACE mutates each nucleotide to the three alternatives to see whether it turns into a high-
frequent K-mer; we call this process the 1-change search. In Supplementary Figure S4.2,
consider the low-frequent leaf GCA. To find the correct K-mer, the algorithm examines (at
most) nine leaves corresponding to GCN, GNA and NCA patterns, where each ‘N’ is replaced
with three other bases different from those appearing in GCA. The 1-change search stops
once ACE finds a high-frequent K-mer; otherwise, a 2-change search will be launched in the
hope of finding an alternative K-mer with two mismatches.

65

ACE: accurate correction of errors using K-mer tries

Table 4.51. Pseudo-code of ACE.

Main Algorithm

Load the entire (compressed) read bank R into memory
For seven rounds
Initialize K, p and 6 and set k = K-2;
For each prefix of length p
ST = Construct_Subtrie(k, prefix) // The subtrie of depth k associated with prefix
Detect_and_Correct(ST, 6)
If the available memory falls below a minimum
Free the whole trie and collect garbage
Store the corrected read bank into a new bank
Construct_Subtrie(prefix)
Determine n as the number of parallel tasks with regard to the number of available cores
In parallel, invoke ntasks t;, i = 0,1, 2, ... 4
For each K-mer in the read bank R beginning with i as prefix (or ending in reverse complement of i)
insert K-mer into i-branch of the subtrie
Return subtrie
Detect_and_Correct(subtrie ST, threshold 6)
In parallel, for each i-branch, i =0,1, 2, ... ,4»
For each leaf of this i-branch
If frequency of leaf is not greater than 6
Perform a 1_change search
If a high-frequent K-mer is found
Correct the erroneous base
Else
Perform a 2_change search
If a high-frequent K-mer is found
Correct the two erroneous bases

S

Figure S4.2. The 1-change search tries to find a highly frequent leaf among candidate leaves of the trie which
is in Hamming distance 1 to the the low-frequent (erroneous) K-mer.

4.5.3 Choice of parameters

Error correction based on K-mer counting relies heavily on high-frequent K-mers to correct
similar low-frequent ones. Normally, high-frequent i-mers occur due to high coverage,
sequencing biases and genomic repeats. They can also occur when K is disproportionately
small with respect to the length of the genome or the size of the read bank. These kinds of
repeats increase the number of wrong corrections and decrease performance. On the other
hand, long K-mers are more likely to be exposed to more than one error, which hampers
their correction.

66

Consequently, determining an appropriate value for K is vital to the performance of the
algorithm. In our experiments, we found the most efficient value for the length of K-mers to
be K = 10 + log§, where G is the approximate genome length.

The prefix length p is determined by the algorithm according to the amount of available
memory and the size of the input data, to guarantee fitting of one sub-trie in the available
memory. 0 is initialized by 2 + Coverage / 10. Coverage is computed as N x L / G, where N,
L and G are the number of reads, length of reads and genome length, respectively.

4.5.4Memory management

ACE is equipped with built-in memory management to successfully construct huge tries in
limited memory. First, as the full K-mer trie may not fit in the available memory, ACE
constructs its sub-tries, one by one, by applying a prefix-based classification on all K-mers.
In our experience, consecutive construction of sub-tries also improves the correction
performance of the algorithm, since corrections made in one sub-trie reduce the error rate
of the read bank and this, in turn, increases the accuracy of detections in the next sub-trie.
To save time, ACE reuses the structure of one sub-trie for building the next one reducing the
number of dynamic memory allocations. However, as this structure could grow rapidly on
large datasets it should be freed before saturating the entire memory. ACE performs this
task whenever the amount of free memory falls below a specified threshold.

4.5.5 Supplementary Tables

Table 4.S2 shows the specifications of the 9 MiSeq (M1-M9) and the 13 HiSeq (H1-H13)
datasets presented in the survey of Molnar, et al. Table 4.S2 gives an outline of the ACE
algorithm in pseudo-code. Supplementary Tables 4.S3-9 contain benchmarking results for
ACE, compared to results reported for seven state-of-the-art read cleaners recently in a
recent survey by Molnar and Ilie (11). Missing results are due to problems in running some
tools on certain datasets, because of their inability to deal with varying read length or the
algorithms simply taking too long.

67

ACE: accurate correction of errors using K-mer tries

Table 4.S2. The specifications of the MiSeq (M1-M9) and HiSeq (H1-H13) datasets.

Organism Accession Read Number of Totalbp Coverage Reference Genome

number Length Reads Genome Length

M1 E.coli SRR519926 251 801,192 201,099,192 43 NC000913. 4,639,675
M2 | M.tuberculosis ~ SRR1200797 50-250 1,482,716 348,224,181 79 NC.000962. 4,411,532
M3 Senterica SRR1203044 35-250 1,784,756 433,166,399 g9 NC.O011083. 4,888,768
M4 S.enterica SRR1206093 35-251 1,977,970 472,256,906 97 NC.011083. 4,888,768
M5 | L.monocytogenes SRR1198952 35-251 2,177,790 507,711,040 171 NC017546. 2,973,801
M6 P.syringae SRR1119292 35-251 2,576,622 639,853,726 105 NC.007005. 6,093,698
M7 B.dentium SRR1151311 35-251 3,926,618 984,280,778 373 NC-01371‘{- 2,636,367
M8 E.coli SRR522163 251 11,181,452 2,806,544,452 605 NC.000913. 4,639,675
M9 | O.tsutsugamushi ~ SRR1202083 301 10,315,434 3,104,945,634 1,460 NC700948§- 2,127,051
H1 M.tuberculosis ERR400373 151 2,092,946 316,034,846 72 NC-00096{- 4,411,532
H2 S.enterica ERR230402 100 3,257,972 325,797,200 67 NC011083. 4,888,768
H3 S.cerevisiae ERR422544 100 4,776,774 477,677,400 40 R64-1-1 12,071,326
H4 | L.pneumophila SRR801797 100 8,850,220 885,022,000 260 NC_002942. 3,397,754
H5 E.coli SRR1191655 101 11,726,414 1,184,367,814 255 NC000913. 4,639,675
H6 E.coli SRR490124 100 21,553,358 2,155,335,800 465 NC000913. 4,639,675
H7 Celegans SRX218989 100 31,642,176 3,164,217,600 32 WS222 100,286,070
H8 Celegans SRR543736 101 57,721,732 5,829,894,932 58 WS222 100,286,070
H9 | D.melanogaster ~ SRR823377 100 63,014,762 6,301,476,200 52 Release5 120,381,546
H10 | D.melanogaster ~ SRR988075 101 75,938,276 7,669,765,876 64 Release5 120,381,546
H11 Human ERX069715 100-102 1,357,751,670 137,132,918,670 43 Build 38 3,209,286,105
H12 Human ERX069504 100-102 1,637,816,924 165,419,509,324 52 Build 38 3,209,286,105
H13 Human ERX069505 101 1,708,169,546 172,525,124,146 54 Build 38 3,209,286,105

68

Table 4S3. Details of read depth coverage analyses for MiSeq datasets (TP: true positive, FP: false positive,
FN: false negative, TN: true negative).

BLESS Coral HIiTEC Musket RACER SGA ACE SHREC

TP 43,668,729 119,225 52,111,616 0 51,728,339 52,111,867 111,171,665 28,948,332

FP 1,506 0 2,042,136 0 0 0 0 2,442,230

M1 FN | 154,488,743 198,038,247 146,045,856 198,157,472 146,429,133 146,045,605 86,985,807 169,209,140
TN 2,940,214 2,941,720 899,584 2,941,720 2,941,720 2,941,720 2,941,720 499,490

TP 37,441,167 174,089 70,946,701 67,318,527 69,725,941 65,325,070

FP 10,076 202,786 26,192 19,438 44,908 59,446

M2 FN 84,701,060 121,968,138 51,195,526 54,823,700 52,416,286 56,817,157
TN 226,071,878 225,879,168 226,055,762 226,062,516 226,037,046 226,022,508

TP 34,078,092 241,956 43,577,951 38,479,415 46,783,362 45,770,835

FpP 32,223 36,655 23,750 23,253 23,999 86,877,007

M3 FN 298,565,704 332,401,840 289,065,845 294,164,381 285,860,434 286,872,961
TN 100,490,380 100,485,948 100,498,853 100,499,350 100,498,604 13,645,596

TP 137,281,061 1,659,328 167,793,410 148,087,585 187,822,776 81,037,228

FP 12,628 97,625 4,619 3,113 4,692 169,597,265

M4 FN 86,559,186 222,180,919 56,046,837 75,752,662 36,017,471 142,803,019
TN 248,404,031 248,319,034 248,412,040 248,413,546 248,411,967 78,819,394

TP 2,179,733 340,451 4,523,655 3,275,149 4,580,433 5,551,003

FP 97,221 32,888 157,730 84,281 165,402 11,843,552

M5 FN 493,590,159 495,429,441 491,246,237 492,494,743 491,189,459 490,218,889
TN 11,843,927 11,908,260 11,783,418 11,856,867 11,775,746 97,596

TP 73,904,029 48,804 93,366,114 82,815,864 102,268,102 55,399,341

FP 29,817 30,085 24,529 23,278 26,269 62,816,188

M6 FN 493,011,302 566,866,527 473,549,217 484,099,467 464,647,229 511,515,990
TN 72,908,578 72,908,310 72,913,866 72,915,117 72,912,126 10,122,207

TP 234,434,318 0 259,738,331 204,346,520 272,260,950 186,436,927

FP 13,037 0 4,258 0 251 287,229,870

M7 FN 67,210,155 301,644,473 41,906,142 97,297,953 29,383,523 115,207,546
TN 682,623,268 682,636,305 682,632,047 682,636,305 682,636,054 395,406,435

TP | 917,620,609 142,066 1,073,307,124 0 551,372,704 620,227,777 1,998,156,282 601,186,666

FpP 251 0 41,640,398 0 251 0 0 56,399,449

M8 FN | 1,812,741,07 2,730,219,61 1,657,054,561 2,730,361,685 2,178,988,981 2,110,133,908 732,205,403 2,129,175,019
TN 76,182,516 76,182,767 34,542,369 76,182,767 76,182,516 76,182,767 76,182,767 19,783,318

TP 11,606,259 7,224 20,560,407 0 12,166,721 5,476,996 13,908,909 18,752,902

FpP 6,923 0 8,584,520 0 15,351 4,816 6,923 8,601,677

M9 FN | 3,084,376,49 3,095,975,53 3,075,422,350 3,095,982,757 3,083,816,036 3,090,505,761 3,082,073,848 3,077,229,855
TN 8,955,954 8,962,877 378,357 8,962,877 8,947,526 8,958,061 8,955,954 361,200

69

ACE: accurate correction of errors using K-mer tries

Table 4S4. Details of read depth coverage analyses for HiSeq datasets (TP: true positive, FP: false positive,
FN: false negative, TN: true negative).

BLESS Coral HiTEC Musket RACER SGA ACE SHREC
TP 38,798,393 32,544,879 56,611,108 36,658,572 37,052,380 32,100,184 39,889,368 55,729,872
FP 82,748 20,687 19,971,411 86,674 9,664 7,248 24,462 23,563,248
H1 FN 23,933,500 30,187,014 6,120,785 26,073,321 25,679,513 30,631,709 22,842,525 7,002,021
TN | 253,220,205 253,282,266 233,331,542 253,216,279 253,293,289 253,295,705 253,278,491 229,739,705
TP 26,092,400 24,447,500 52,661,000 25,192,500 25,157,200 23,636,900 26,460,300 52,589,200
FP 14,100 218,200 27,131,500 17,800 13,300 12,700 13,100 27,488,700
H2 FN 32,769,300 34,414,200 6,200,700 33,669,200 33,704,500 35,224,800 32,401,400 6,272,500
TN | 266,921,400 266,717,300 239,804,000 266,917,700 266,922,200 266,922,800 266,922,400 239,446,800
TP 29,305,600 25,529,600 49,157,700 28,454,300 29,339,700 28,141,200 29,824,600 48,883,400
FP 22,600 1,109,200 20,430,600 15,100 8,700 7,200 10,800 21,757,000
H3 FN 56,640,800 60,416,800 36,788,700 57,492,100 56,606,700 57,805,200 56,121,800 37,063,000
TN | 391,708,400 390,621,800 371,300,400 391,715,900 391,722,300 391,723,800 391,720,200 369,974,000
TP | 269,792,900 163,889,400 286,237,400 254,853,500 271,647,000 255,971,600 275,909,400 282,598,900
FP 1,000 4,600 15,327,900 9,100 1,000 100 3,200 20,864,600
H4 FN 24,626,000 130,529,500 8,181,500 39,565,400 22,771,900 38,447,300 18,509,500 11,820,000
TN | 590,602,100 590,598,500 575,275,200 590,594,000 590,602,100 590,603,000 590,599,900 569,738,500
TP 83,739,302 76,462,050 339,677,847 81,013,817 82,654,461 76,475,180 85,475,189
FP 181,901 346,733 255,045,907 178,568 182,709 166,650 187,052
H5 FN| 534,120,320 541,397,572 278,181,775 536,845,805 535,205,161 541,384,442 532,384,433
TN | 566,326,291 566,161,459 311,462,285 566,329,624 566,325,483 566,341,542 566,321,140
TP | 918,033,300 46,606,600 981,535,800 842,711,500 882,718,300 592,452,800 984,066,200 881,970,900
FP 2,400 0 81,621,300 51,700 7,700 200 2,200 179,178,100
He FN | 147,509,600 1,018,936,300 84,007,100 222,831,400 182,824,600 473,090,100 81,476,700 183,572,000
TN (1,089,790,500 1,089,792,900 1,008,171,600 1,089,741,200 1,089,785,200 1,089,792,700 1,089,790,700 910,614,800
TP | 523,410,700 473,843,600 424,362,600 529,779,400 533,602,900 552,505,000
FP 2,527,500 4,986,700 5,232,200 1,028,700 226,100 5,242,500
H7 FN| 485,147,600 534,714,700 584,195,700 478,778,900 474,955,400 456,053,300
TN |2,153,131,800 2,150,672,600 2,150,427,100 2,154,630,600 2,155,433,200 2,150,416,800
TP | 454,178,214 439,078,411 443,450,701 477,389,933 458,849,666 510,661,656 814,419,459
FP 10,121,513 11,454,208 25,147,485 4,503,691 113,221 19,143,641 940,215,060
H8 FN |1,312,147,257 1,327,247,060 1,322,874,770 1,288,935,538 1,307,475,805 1,255,663,815 951,906,012
TN |4,053,447,948 4,052,115,253 4,038,421,976 4,059,065,770 4,063,456,240 4,044,425,820 3,123,354,401
TP | 654,362,400 397,459,800 609,199,000 617,239,100 580,178,600 709,691,700 1,834,496,800
FP 39,685,900 26,173,100 40,098,000 10,218,000 3,000,100 20,083,900 1,332,909,300
H9 FN |2,734,234,500 2,991,137,100 2,779,397,900 2,771,357,800 2,808,418,300 2,678,905,200 1,554,100,100
TN |2,873,193,400 2,886,706,200 2,872,781,300 2,902,661,300 2,909,879,200 2,892,795,400 1,579,970,000
TP (1,224,222,111 1,183,698,891 1,221,214,028 1,199,764,860 1,180,369,022 1,285,325,798 2,514,864,347
FP 23,094,155 75,877,967 24,294,439 8,466,931 2,325,323 19,902,252 1,391,574,566
H10 FN |3,372,129,521 3,412,652,741 3,375,137,604 3,396,586,772 3,415,982,610 3,311,025,834 2,081,487,285
TN |3,050,320,089 2,997,536,277 3,049,119,805 3,064,947,313 3,071,088,921 3,053,511,992 1,681,839,678
TP 37,150,982,594 40,075,406,388 42,985,454,686 40,113,218,550
FP 15,439,080 8,158,656 9,213,474 23,386,884
H11 FN 32,548,080,466 29,623,656,672 26,713,608,374 29,585,844,510
TN 67,418,416,530 67,425,696,954 67,424,642,136 67,410,468,726
TP 46,900,867,926 51,634,839,736 55,142,513,014 52,768,565,090
FP 15,343,576 10,163,820 10,120,212 32,801,606
H12 FN 37,321,732,986 32,587,761,176 29,080,087,898 31,454,035,822
TN 81,181,564,836 81,186,744,592 81,186,788,200 81,164,106,806
TP 7,752,423,468 9,660,964,514 10,145,209,317 10,090,726,647
FP 19,235,248 4,802,954 3,700,943 9,457,965
H13 FN 28,645,673,833 26,737,132,787 26,252,887,984 26,307,370,654
TN 136,107,791,597 136,122,223,891 136,123,325,902 136,117,568,880

70

Table 4.S5. Details of read breadth coverage analyses for MiSeq datasets (TP: true positive, FP: false
positive, FN: false negative, TN: true negative).

BLESS Coral HIiTEC Musket RACER SGA ACE SHREC

TP | 309,722 451 193,884 0 200,121 201,659 418923 103,654

FP 1 0 7 0 0 0 0 1

M1\ oy | 4279872 4,589,143 4395710 4,589,594 4,389,473 4,387,935 4,170,671 4,485,940

TN 11,671 11,672 11,665 11,672 11,672 11,672 11,672 11,671

TP 120,938 385 226,218 214,706 223,470 208,161

FP 40 1,119 110 78 240 278

M2 FN 3,459,821 3,580,374 3,354,541 3,366,053 3,357,289 3,372,598

TN 800,234 799,155 800,164 800,196 800,034 799,996

TP 68,946 316 89,002 77,786 95,461 78,077

FP 166 90 92 90 93 97

M3 | oy 4,509,779 4,578,409 4,489,723 4,500,939 4,483,264 4,500,648

TN 280,963 281,039 281,037 281,039 281,036 281,032

TP 262,268 1,233 322,454 284,073 358,940 278,406

FP 56 254 19 13 20 26

M| oy 3,909,569 4,170,604 3,849,383 3,887,764 3,812,897 3,893,431

TN 687,754 687,556 687,791 687,797 687,790 687,784

TP 2,469 332 3,534 2,918 3,524 3,275

FP 392 178 658 354 703 663

M5 | ey 2,927,702 2,929,839 2,926,637 2,927,253 2,926,647 2,926,896

TN 25,188 25,402 24,922 25,226 24,877 24,917

TP 161,402 71 203,331 184,119 219,281 150,584

FP 130 81 94 91 101 95

M6 | oy 5,690,622 5,851,953 5,648,693 5,667,905 5,632,743 5,701,440

TN 219,680 219,729 219,716 219,719 219,709 219,715

TP 277,933 0 309,814 246,419 324,955 291,445

FP 36 0 17 0 1 29

M7 1 812,524 1,090,457 780,643 844,038 765502 799,012

TN 1,523,359 1,523,395 1,523,378 1,523,395 1,523,394 1,523,366

TP | 2,941,766 471 2,357,552 0 1,456,582 1,614,136 3,455,630 1,463,894

FP 1 0 1 0 0 0 0 2

M8 | iy | 1386908 4328203 1971122 4,328,674 2,872,092 2,714,538 873,044 2,864,780

TN | 272591 272,592 272,591 272,592 272,592 272,592 272,592 272,590

TP 16,708 13 8,178 0 7,952 4,905 8,573 7,362

FP 20 0 105 0 32 16 23 23

MO\ v | 1712607 1729302 1721137 1729315 1,721,363 1,724,410 1,720,742 1,721,953

TN 17,608 17,628 17,523 17,628 17,596 17,612 17,605 17,605

71

ACE: accurate correction of errors using K-mer tries

Table 4S6. Details of read breadth coverage analyses for HiSeq datasets (TP: true positive, FP: false
positive, FN: false negative, TN: true negative).

BLESS Coral HITEC Musket RACER SGA ACE SHREC
TP | 172808 135129 152,688 152,602 153,705 132,858 165,667 134,076
P 412 285 407 551 64 48 158 830
HL | oy | 2875020 2912708 2,895,149 2,895,235 2,894,132 2,914,979 2882170 2,913,761
TN | 1328069 1,328196 1,328,074 1,327,930 1,328,417 1,328,433 1,328,323 1,327,651
TP | 133118 123460 122,626 127,407 126,619 118,842 133,424 120,531
PP 134 2,076 134 175 135 127 132 193
H2 | gy | 2793086 2802744 2,803,578 2,798,797 2,799,585 2,807,362 2792780 2,805,673
TN | 1924522 1922580 1,924,522 1,924,481 1,924,521 1,924,529 1,924,524 1,924,463
TP | 196029 179,016 185,749 183,448 192,376 183,348 193,801 175,092
PP 167 17,345 262 161 102 87 117 208
H3 | pv | 8407698 8424711 8417,978 8,420,279 8,411,351 8,420,379 8409926 8428635
TN | 3096065 3078887 3,095,970 3,096,071 3,096,130 3,096,145 3096115 3,096,024
TP | 328204 205969 298,164 312,129 325,945 312,368 329,461 289,456
FP 12 31 26 73 17 4 39 97
H& | pv | 334983 457218 365,023 351,058 337,242 350,819 333,726 373,731
TN | 2716828 2716809 2,716,814 2,716,767 2,716,823 2,716,836 2716801 2,716,743
TP | 106,699 95417 100,388 100,828 102,148 94,175 105,717
FP 1,791 2,582 1,821 1,774 1,813 1,656 1,859
HS | oy | 2160433 2171715 2,166,744 2,166,304 2,164,984 2,172,957 2,161,415
TN | 2319618 2318827 2,319,588 2,319,635 2,319,596 2,319,753 2,319,550
P | 773111 12358 753819 724,219 740,486 553,995 797,319 640,084
FP 12 0 203 339 18 2 15 345
H6 | pv | 159818 920571 179,110 208,710 192,443 378,934 135,610 291,945
TN | 3655470 3,655482 3,655,189 3,655,143 3,655,464 3,655,480 3655467 3,655,137
TP | 3795965 3376412 2,977,786 3,730,012 3,733,768 3,835,798
PP 19,234 75,288 51,192 10,769 2,414 51,445
H7 | iy | 76,806,449 77,226,002 77,624,628 76,871,502 76,868,646 76,766,616
N | 17,767,359 17,711,305 17735401 17,775824 17784179 17,735,148
TP | 2815166 2,634766 2,558,045 2,786,766 2,678,506 2951320 1875372
FP 71,750 181,793 239,556 46,334 1361 183835 3,876,572
H8 | oy | 64751,070 64,931,470 65008191 64779470 64887730 64614916 65,690,864
TN | 30,768303 30,658,260 30,600,497 30793719 30838692 30,656218 26,963,481
TP | 4570399 2,579,150 3,854,813 3,967,219 3,725,736 4518676 3436012
FP | 354948 251,780 384,511 101,129 30,056 195,294 385,819
H9 | iy | 89010842 91,002,001 89726428 89614022 89855505 89,062,565 90,145,229
N | 22,000880 22,104,048 21,071,317 22254699 22325772 22,160,534 21,970,009
TP | 7,612,885 7,322,763 7,289,921 7,343,606 7,231,255 7644107 6,930,745
FP | 204628 715976 233,197 82,864 23,145 191,182 289,134
H10 | oy | 85180201 85470323 85503165 85449480 85561,831 85148979 85862341
TN | 22948023 22,436,675 22,019,454 23069787 23129506 22,961,469 22,863,517
TP 256571812 276655312 296,656390 276406914
PP 154,411 79,662 92,403 230,686
HIL oy 2,038938486 2,018854,986 1998853908 2,019,103384
™ 566366373 566,441,122 566428381 566,290,098
TP 302,538,890 331054805 354940902 328,002,412
PP 152,460 98,782 98,799 326,574
HIZ | oy 1,804,657,043 1,865241,128 1,842,255,031 1,868,293,521
N 664,682,689 664736367 664736350 664,508,575
TP 45,127,805 56164775 59212467 56,010,699
Fp 186,960 50,923 39,752 80,998
HI3 | oy 1,813,725556 1,802,688,586 1,799,640,894 1,802,842,662
N 1,002,990,761 1,003,126798 1,003,137,969 1,003,096,723

72

Table 4.S7. Details of K-mer depth coverage analyses for MiSeq datasets (TP: true positive, FP: false

positive, FN: false negative, TN: true negative).

BLESS Coral HiTEC Musket RACER SGA ACE SHREC

TP 21,893,438 34,274 44,305,488 0 34,389,661 8,730,200 54,149,062 36,832,223

FP 2,394,154 215 10,963,521 0 15,350 1 38,556 14,960,390

M1 FN 69,978,421 91,837,585 47,566,371 91,871,859 57,482,198 83,141,659 37,722,797 55,039,636
TN 91,610,531 94,004,470 83,041,164 94,004,685 93,989,335 94,004,684 93,966,129 79,044,295

TP 4,856,648 60,059 10,790,468 8,966,676 11,417,744 9,456,749

FpP 2,808 93,922 30,760 3,731 170,176 150,325

M2 FN 16,887,536 21,684,125 10,953,716 12,777,508 10,326,440 12,287,435
TN 298,305,585 298,214,471 298,277,633 298,304,662 298,138,217 298,158,068

TP 12,828,116 84,335 20,780,510 13,276,357 25,091,651 80,893,557

FpP 32,626 9,436 89,902 27,630 96,836 71,193,733

M3 FN 95,812,138 108,555,919 87,859,744 95,363,897 83,548,603 27,746,697
TN 290,583,153 290,606,345 290,525,879 290,588,151 290,518,945 219,422,048

TP 22,744,602 317,160 38,874,909 22,062,396 48,969,731 56,686,283

FP 5173 9,929 11,534 749 57,469 41,688,332

M4 FN 43,438,982 65,866,424 27,308,675 44,121,188 17,213,853 9,497,301
TN 368,486,719 368,481,963 368,480,358 368,491,143 368,434,423 326,803,560

TP 7,891,814 362,587 11,280,358 7,850,095 12,357,772 109,894,061

FP 152,339 28,024 287,169 129,662 291,995 114,632,174

M5 FN 267,209,287 274,738,514 263,820,743 267,251,006 262,743,329 165,207,040
TN 191,079,590 191,203,905 190,944,760 191,102,267 190,939,934 76,599,755

TP 21,970,326 26,998 40,702,447 21,722,408 50,154,244 133,655,363

FP 64,750 10,786 182,965 53,775 173,238 102,101,690

Mé FN 170,189,860 192,133,188 151,457,739 170,437,778 142,005,942 58,504,823
TN 398,672,972 398,726,936 398,554,757 398,683,947 398,564,484 296,636,032

TP 24,827,764 0 33,636,426 19,623,389 40,772,124 49,398,205

FpP 13,269 0 11,284 975 27,619 18,913,350

M7 FN 26,439,301 51,267,065 17,630,639 31,643,676 10,494,941 1,868,860
TN 858,394,702 858,407,971 858,396,687 858,406,996 858,380,352 839,494,621

TP | 340,610,162 9,076,621 585,869,161 0 302,048,660 116,207,551 683,416,830 502,807,883

FpP 18,758,031 104,255 117,448,985 0 507,788 1,176 468,541 153,389,743

M8 FN | 642,417,174 973,950,715 397,158,175 983,027,336 680,978,676 866,819,785 299,610,506 480,219,453
TN |1,592,311,49 1,610,965,27 1,493,620,543 1,611,069,528 1,610,561,740 1,611,068,352 1,610,600,987 1,457,679,785

TP 82,152,087 10,705,146 749,779,497 0 106,159,433 26,886,761 133,143,795 739,501,173

FP 11,028,358 494,406 638,265,470 0 3,365,501 157,737 1,934,286 644,101,171

M9 FN |1,578901,51 1,650,348,45 911,274,106 1,661,053,603 1,554,894,170 1,634,166,842 1,527,909,808 921,552,430
TN | 1,236,870,42 1,247,404,37 609,633,315 1,247,898,785 1,244,533,284 1,247,741,048 1,245,964,499 603,797,614

73

ACE: accurate correction of errors using K-mer tries

Table 4.S8. Details of K-mer depth coverage analyses for HiSeq datasets (TP: true positive, FP: false positive,

FN: false negative, TN: true negative).

BLESS Coral HIiTEC Musket RACER SGA ACE SHREC
TP 9,297,926 5,847,153 15,800,449 8,821,881 8,797,946 5,863,914 11,803,953 15,603,537
FP 532,563 6,129 7,059,095 32,587 37,403 2,819 206,355 8,431,569
H1 FN 7,841,484 11,292,257 1,338,961 8,317,529 8,341,464 11,275,496 5,335,457 1,535,873
TN 258,596,899 259,123,333 252,070,367 259,096,875 259,092,059 259,126,643 258,923,107 250,697,893
TP 5,853,038 5,006,149 17,606,358 5,562,270 5,777,671 4,870,210 6,466,719 17,598,076
FP 51,075 25,593 11,495,391 7,397 9,289 5,779 17,637 11,595,626
H2 FN 12,646,883 13,493,772 893,563 12,937,651 12,722,250 13,629,711 12,033,202 901,845
TN 245,344,736 245,370,218 233,900,420 245,388,414 245,386,522 245,390,032 245,378,174 233,800,185
TP 6,715,796 5,247,704 14,055,870 6,646,972 6,936,005 5,705,931 8,121,552 13,916,387
FpP 332,996 82,154 7,545,806 18,666 53,259 2,954 205,520 7,916,896
H3 FN 29,023,737 30,491,829 21,683,663 29,092,561 28,803,528 30,033,602 27,617,981 21,823,146
TN 350,846,165 351,097,007 343,633,355 351,160,495 351,125,902 351,176,207 350,973,641 343,262,265
TP 69,781,071 38,997,403 81,651,891 67,090,715 70,508,576 62,676,853 73,897,785 81,292,911
FpP 637,860 3,069 10,324,820 7,841 22,219 518 127,374 12,392,167
H4 FN 13,321,403 44,105,071 1,450,583 16,011,759 12,593,898 20,425,621 9,204,689 1,809,563
TN 633,127,486 633,762,277 623,440,526 633,757,505 633,743,127 633,764,828 633,637,972 621,373,179
TP 24,408,883 19,637,794 202,987,312 23,116,555 24,041,508 19,640,577 26,088,041
FP 350,952 123,677 177,607,518 95,514 114,545 82,165 142,374
H5 FN 249,341,042 254,112,131 70,762,613 250,633,370 249,708,417 254,109,348 247,661,884
TN 687,465,071 687,692,346 510,208,505 687,720,509 687,701,478 687,733,858 687,673,649
TP 192,667,583 7,083,845 232,202,234 174,081,685 189,580,164 100,690,680 218,182,920 222,018,320
FP 565,059 23,580 32,102,623 36,908 58,752 3,578 196,475 58,427,446
H6 FN 48,918,078 234,501,816 9,383,427 67,503,976 52,005,497 140,894,981 23,402,741 19,567,341
TN | 1,503,671,278 1,504,212,757 1,472,133,714 1,504,199,429 1,504,177,585 1,504,232,759 1,504,039,862 1,445,808,891
TP 103,291,755 85,423,973 91,520,472 111,079,256 98,206,533 121,727,928
FP 5,741,744 410,492 1,589,044 1,671,795 83,418 5,390,550
H7 FN 127,788,034 145,655,816 139,559,317 120,000,533 132,873,256 109,351,861
TN | 2,326,194,723 2,331,525,975 2,330,347,423 2,330,264,672 2,331,853,049 2,326,545,917
TP 107,017,510 85,281,799 111,060,650 120,723,993 89,174,601 143,720,203 388,443,620
FpP 8,224,557 567,682 4,284,718 1,991,390 34,971 6,825,599 368,431,665
Hg FN 888,990,088 910,725,799 884,946,948 875,283,605 906,832,997 852,287,395 607,563,978
TN | 3,728,949,869 3,736,606,744 3,732,889,708 3,735,183,036 3,737,139,455 3,730,348,827 3,368,742,761
TP 202,317,831 99,164,403 194,063,684 196,857,022 150,344,610 241,025,350 929,764,788
FP 35,375,270 8,821,549 15,861,059 9,514,193 1,102,157 13,141,006 764,976,340
H9 FN 954,636,724 1,057,790,152 962,890,871 960,097,533 1,006,609,945 915,929,205 227,189,767
TN | 3,911,865,897 3,938,419,618 3,931,380,108 3,937,726,974 3,946,139,010 3,934,100,161 3,182,264,827
TP 303,785,349 279,374,787 311,092,393 307,269,099 270,168,655 343,538,697 1,223,613,081
FP 23,911,995 24,705,560 9,773,448 7,396,974 1,000,241 11,039,941 938,030,041
H10 FN | 1,230,288,285 1,254,698,847 1,222,981,241 1,226,804,535 1,263,904,979 1,190,534,937 310,460,553
TN | 4,668,953,003 4,668,159,438 4,683,091,550 4,685,468,024 4,691,864,757 4,681,825,057 3,754,834,957
TP 2,384,660,385 2,521,496,564 2,047,453,498 3,091,834,935
FP 22,844,814 71,143,582 3,819,127 122,117,486
Hi1 FN 4,044,853,283 3,908,017,104 4,382,060,170 3,337,678,733
TN 104,883,278,458 104,834,979,690 104,902,304,145 104,784,005,786
TP 2,965,425,250 3,390,896,152 2,796,375,723 3,943,946,512
FpP 33,008,853 93,872,959 3,724,003 155,846,813
H12 FN 4,807,599,482 4,382,128,580 4,976,652,182 3,829,078,220
TN 126,494,954,183 126,434,090,077 126,524,235,860 126,372,116,223
TP 2,193,391,842 2,542,284,172 1,951,397,719 2,942,291,002
FpP 30,449,373 95,993,401 3,649,395 161,168,357
H13 FN 4,699,768,996 4,350,876,666 4,941,766,326 3,950,869,836
TN 133,146,292,561 133,080,748,533 133,173,089,332 133,015,573,577

74

Table 4.S9. Details of K-mer breadth coverage analyses for MiSeq datasets (TP: true positive, FP: false
positive, FN: false negative, TN: true negative).

BLESS Coral HIiTEC Musket RACER SGA ACE SHREC

TP 0 0 0 0 5 0 3 4

FP 250 0 1,604 0 22 0 272 151

M1 FN 133 133 133 133 128 133 130 129
TN | 4,541,767 4,542,017 4,540,413 4,542,017 4,541,995 4,542,017 4,541,745 4,541,866

TP 5 48 43 13 244 170

FP 955 44 4,038 2,424 7,192 4,052

M2 FN 60,527 60,484 60,489 60,519 60,288 60,362
TN 4,262,574 4,263,485 4,259,491 4,261,105 4,256,337 4,259,477

TP 51 30 259 9 201 1,009

FP 21,214 96 30,752 23,649 32,008 30,310

M3 FN 811,216 811,237 811,008 811,258 811,066 810,258
TN 3,986,045 4,007,163 3,976,507 3,983,610 3,975,251 3,976,949

TP 2 0 8 0 2 32

FP 425 0 731 438 1,132 1,131

M4 FN 120,125 120,127 120,119 120,127 120,125 120,095
TN 4,697,974 4,698,399 4,697,668 4,697,961 4,697,267 4,697,268

TP 84 73 363 235 364 1,644

FP 109,746 13,976 182,441 96,309 198,528 173,136

M5 FN 1,464,470 1,464,481 1,464,191 1,464,319 1,464,190 1,462,910
TN 1,364,326 1,460,096 1,291,631 1,377,763 1,275,544 1,300,936

TP 182 99 917 21 778 3,764

FP 39,520 40 66,792 42,902 69,642 65,059

M6 FN 1,285,818 1,285,901 1,285,083 1,285,979 1,285,222 1,282,236
TN 4,654,927 4,694,407 4,627,655 4,651,545 4,624,805 4,629,388

TP 0 0 1 0 1 1

FP 1 0 13 3 6 14

M7 FN 195 195 194 195 194 194
TN 2,604,046 2,604,047 2,604,034 2,604,044 2,604,041 2,604,033

TP 0 0 9 0 0 0 3 4

FP 8 0 3 0 6 1 9 7

M8 FN 120 120 111 120 120 120 117 116
TN | 4,542,022 4,542,030 4,542,027 4,542,030 4,542,024 4,542,029 4,542,021 4,542,023

TP 1,046 2,926 8,255 0 3,433 381 5,221 9,386

FP 126,501 8,311 136,797 0 136,470 48,656 150,337 126,496

M9 FN 314,851 312,971 307,642 315,897 312,464 315,516 310,676 306,511
TN 818,703 936,893 808,407 945,204 808,734 896,548 794,867 818,708

75

ACE: accurate correction of errors using K-mer tries

Table 4.510. Details of K-mer breadth coverage analyses for HiSeq datasets (TP: true positive, FP: false
positive, FN: false negative, TN: true negative).

BLESS Coral HIiTEC Musket RACER SGA ACE SHREC
TP 61 0 295 11 36 3 266 225
FP 2,003 1,100 4,222 2,546 1,932 1,322 4,992 2,853
H1 FN 63,068 63,129 62,834 63,118 63,093 63,126 62,863 62,904
TN 4,258,929 4,259,832 4,256,710 4,258,386 4,259,000 4,259,610 4,255,940 4,258,079
TP 0 0 21 5 34 15 33 28
FpP 5,598 5,627 5,588 5,449 5,584 5,105 5,791 5,570
H2 FN 293,703 293,703 293,682 293,698 293,669 293,688 293,670 293,675
TN 4,519,225 4,519,196 4,519,235 4,519,374 4,519,239 4,519,718 4,519,032 4,519,253
TP 10 55 176 78 46 0 67 187
FpP 2,138 10,170 2,674 1,934 2,268 1,756 2,450 2,215
H3 FN 198,661 198,616 198,495 198,593 198,625 198,671 198,604 198,484
TN 11,216,232 11,208,200 11,215,696 11,216,436 11,216,102 11,216,614 11,215,920 11,216,155
TP 17 0 2 11 2 8 1 7
FP 143 30 621 176 225 95 2,615 399
H4 FN 35,452 35,469 35,467 35,458 35,467 35,461 35,468 35,462
TN 3,326,335 3,326,448 3,325,857 3,326,302 3,326,253 3,326,383 3,323,863 3,326,079
TP 77 25 360 167 173 73 100
FP 83,918 72,191 85,300 82,308 84,682 71,129 90,839
H5 FN 722,838 722,890 722,555 722,748 722,742 722,842 722,815
TN 3,735,317 3,747,044 3,733,935 3,736,927 3,734,553 3,748,106 3,728,396
TP 0 0 13 1 0 0 0 3
FP 42 0 107 204 55 4 155 112
Heé FN 1,910 1,910 1,897 1,909 1,910 1,910 1,910 1,907
TN 4,540,198 4,540,240 4,540,133 4,540,036 4,540,185 4,540,236 4,540,085 4,540,128
TP 3,832 1,222 18,197 11,401 3,262 24,312
FpP 170,571 89,004 458,444 262,825 68,264 822,654
H7 FN 3,267,733 3,270,343 3,253,368 3,260,164 3,268,303 3,247,253
TN 86,888,901 86,970,468 86,601,028 86,796,647 86,991,208 86,236,818
TP 931 909 10,499 4,241 113 10,491 16,995
FpP 190,578 55,384 907,452 432,166 14,235 1,405,121 1,435,642
H8 FN 495,905 495,927 486,337 492,595 496,723 486,345 479,841
TN 89,643,623 89,778,817 88,926,749 89,402,035 89,819,966 88,429,080 88,398,559
TP 5,029 3,296 30,175 12,532 1,609 18,015 54,541
FP 2,330,548 1,271,660 2,632,483 1,329,931 439,431 2,100,960 2,610,962
H9 FN 7,678,630 7,680,363 7,653,484 7,671,127 7,682,050 7,665,644 7,629,118
TN | 102,855,170 103,914,058 102,553,235 103,855,787 104,746,287 103,084,758 102,574,756
TP 2,055 10,548 16,401 8,070 912 8,612 32,813
FP 1,277,631 2,038,716 1,570,921 1,003,571 337,009 1,654,216 1,759,713
H10 FN 5,178,012 5,169,519 5,163,666 5,171,997 5,179,155 5,171,455 5,147,254
TN | 106,411,679 105,650,594 106,118,389 106,685,739 107,352,301 106,035,094 105,929,597
TP 114,557 117,413 14,610 142,200
FP 1,681,767 1,626,134 1,231,081 3,027,118
H11 FN 24,778,064 24,775,208 24,878,011 24,750,421
TN 2,165,531,157 2,165,586,790 2,165,981,843 2,164,185,806
TP 124,522 131,834 20,816 209,891
FpP 1,747,295 1,755,678 1,299,126 3,345,399
H12 FN 22,575,726 22,568,414 22,679,432 22,490,357
TN 2,167,658,002 2,167,649,619 2,168,106,171 2,166,059,898
TP 180,126 194,414 22,569 213,213
FP 1,777,300 1,983,440 1,403,458 3,823,523
H13 FN 31,783,772 31,769,484 31,941,329 31,750,685
TN 2,158,364,347 2,158,158,207 2,158,738,189 2,156,318,124

76

Table

4.511. Details of

K-mer

breadth

coverage

analyses

for

MiSeq

datasets.
Coverage depth/breadth of reads/K-mers of ACE, compared to that of the best tool in (11). Highlights
indicate the level of improvement.

Coverage Depth Coverage breadth
Read Kmer Read Kmer

Best ACE| Best ACE| Best ACE| Best ACE
M1| SGA 27.38 56.74| RACER 69.0| 79.68| BLESS 6.98 9.36 SGA 100.00 99.99
M2 | RACER 85.29 84.93| RACER 96.5 96.72| RACER 23.43 23.36| Coral 98.58 98.44
M3 | RACER 33.26 34.00| RACER 779 79.05| RACER 7.61 7.75| Coral 82.72 82.50
M4 | RACER 88.13 92.37| RACER 93.7 96.03| RACER 20.79 21.54| Coral 97.50 97.48
M5 | RACER 3.21 3.22| RACER 43.3 43.59| RACER 0.963 0.961 SGA 46.89 4342
M6 | RACER 25.99 27.38| RACER 743 75.94| RACER 6.97 7.23| Coral 77.84 77.35
M7 | RACER 95.74 97.01| RACER 98.0 98.84| RACER 70.13 70.71| Coral 99.99 99.99
M8 | HiTEC 39.47 Z8I9# HiTEC 80.1| 8843| BLESS 69.85| 81.03| HiTEC 100.00 100.0
M9 | RACER 0.68 0.74| HIiTEC 46.7 47.41| BLESS 1.96 1.50| Coral 74.52 63.44
H1 | BLESS 92.40 92.76| Musket 96.9 97.99| BLESS 3429 34.14| Coral 98.51 9843
H2 | BLESS 89.94 90.05| HiTEC 953 95.43| BLESS 42417 42424 SGA 93.80 93.79
H3 | RACER 88.15 88.25| RACER 92.5 92.81| BLESS 28.14 28.12 SGA 98.24 98.23
H4 | RACER 97.43 97.91| HIiTEC 983 98.70| BLESS 90.09 90.13| Coral 98.94 98.87
H5 | BLESS 54.98 55.03| HiTEC 74.1 74.23| BLESS 52.88 52.85| SGA 82.52 82.09
H6 | BLESS 93.16 96.22| HiTEC 97.6 98.65| BLESS 96.51 97.04| Coral 99.96 99.95
H7 | SGA 84.98 85.42| RACER 95.2 95.52| BLESS 21916 21.924 SGA 96.31 95.49
H8 | RACER 77.81 78.13| RACER 81.4 81.85| BLESS 34.13 34.15 SGA 99.43 97091
H9 | BLESS 55.98 57.17 | RACER 81.0 81.80| BLESS 22.92 23.01 SGA 92.80 91.35
H1 | BLESS 55.73 56.57 | Musket 80.2 80.70| BLESS 2636 2640 SGA 95.11 93.95
H1 | RACER 80.51 78.41| RACER 96.4 96.89| SGA 30.16 29.44 SGA 98.81 98.73
H1 | RACER 82.41 80.97| RACER 96.6 97.03| SGA 35.63 34.71 SGA 98.91 98.82
H1 | RACER 84.78 84.75| RACER 96.8 97.06] SGA 37.12 37.01 SGA 98.48 98.38

Averag 65.34 68.73 84.6 86.11 34.60 35.22 92.27 91.30

77

‘ ACE: accurate correction of errors using K-mer tries

References

1.

2.

10.

11.
12.

13.

78

Schroder], Schroder H, Puglisi S, Sinha R, Schmidt B. SHREC: a short-read error correction method.
Bioinformatics. 2009;25(17):2157-63.

Ilie L, Fazayeli F, llie S. HiTEC: accurate error correction in high-throughput sequencing data.
Bioinformatics. 2011;27(3):295-302.

Salmela L. Correction of sequencing errors in a mixed set of reads. Bioinformatics. 2010;26(10):1284-
90.

Simpson JT, Durbin R. Efficient de novo assembly of large genomes using compressed data structures.
Genome Res. 2012;22(3):549-56.

Heo Y, Wu X-L, Chen D, Ma], Hwu W-M. BLESS: bloom filter-based error correction solution for high-
throughput sequencing reads. Bioinformatics. 2014;30(10):1354-62.

Ilie L, Molnar M. RACER: Rapid and accurate correction of errors in reads. Bioinformatics.
2013;29(19):2490-3.

Schulz MH, Weese D, Holtgrewe M, Dimitrova V, Niu S, Reinert K, et al. Fiona: a parallel and automatic
strategy for read error correction. Bioinformatics. 2014;30(17):1356-63.

Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and correction of sequencing
errors. Genome Biol. 2010;11(11):R116.

Liu Y, Schrdder], Schmidt B. Musket: a multistage k-mer spectrum-based error corrector for lllumina
sequence data. Bioinformatics. 2013;29(3):308-15.

Salmela L, Schroder]. Correcting errors in short reads by multiple alignments. Bioinformatics.
2011;27(11):1455-61.

Molnar M, llie L. Correcting Illumina data. Brief Bioinform. 2015;16(4):588-99.

Brudno M. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic
DNA. Genome Res. 2003;13(4):721-31.

Sheikhizadeh S, Hosseini S. SMOTER, a structured motif finder based on an exhaustive tree-based
algorithm. Curr Bioinform. 2014;9(1):34-43.

Chapter 5

Pan-genomic read mapping

This chapter is published as:

Sheikhizadeh S, de Ridder D, Schranz ME, Smit S. Pan-genomic read mapping. bioRxiv.
2019.

DOI: 10.1101/813634

Pan-genomic read mapping
Abstract

In modern genomics, mapping reads to a single reference genome is common practice.
However, a reference genome does not necessarily accurately represent a population or
species and as a result a substantial percentage of reads often cannot be mapped. A number
of graph-based variation-aware mapping methods have recently been proposed to remedy
this. Here, we present an alternative multi-reference approach, which aligns reads to large
collections of genomes simultaneously. Our pan-genomic approach is implemented as
extension to our pan-genomics suite PanTools". Through direct comparisons to state-of-the-
art tools, we show that it is as accurate and more efficient on large numbers of genomes. We
successfully applied PanTools to map genomic and metagenomic reads to large collections
of viral, archaeal, bacterial, fungal and plant genomes. Pan-genomic read mapping resolves
the reference bias in mapping approaches, by including regions that are entirely missing in
the reference (but present in another accession or strain) or very different from the
reference. This enables a more extensive analysis of the genetic makeup of non-reference

species or strains/accessions.

*https://git.wur.nl/bioinformatics/pantools

80

5.1 Introduction

Mapping short reads against a reference genome is the starting point of almost all
quantitative and comparative genomics pipelines [1]. However, it suffers from a systematic
bias towards the reference alleles (often referred to as reference bias): reads which are
highly polymorphic or totally absent in the reference are discarded. This means variants
that could be of great value, for example in disease diagnostics in humans or resistance
genes in plants, are potentially overlooked. Mapping reads against multiple genomes
representing a genus, a species or a population, i.e. a pan-genome, partially addresses this
problem, allowing the detection of variants that would not be detected using a single
reference. A variety of graph-based pan-genomic approaches have therefore emerged
recently, which can generally be categorized as either variation-aware or multi-reference.
Variation-aware mapping is useful for applications in which variation between individuals
is limited and measured extensively, such as in human genetics [2]. Multi-reference
approaches in contrast are more suited for applications in which more divergent individuals
are studied, such as in comparative genomics [3].

BWBBLE [4] is a variation-aware method that maps reads against a BWT-indexed
linear multi-genome reference, built from one reference and a set of variant (VCF) files.
Graphtyper [5] iteratively enriches a variation-aware graph with known or discovered
variants for read mapping and population-scale genotyping. Similarly, the variation graph
toolkit [6] constructs a bi-directed variation-aware graph as a reference to improve the
accuracy of mapping, specifically in highly polymorphic regions. GenomeMapper [7] is the
first multi-reference approach that represents a reference genome and its differences to a
set of other genomes in a hash-based graph structure against which reads can be aligned.
GCSA [8] converts a multiple sequence alignment (MSA) of genomes into a finite automaton
which is BWT-indexed to allow pattern search. PanVC [9] uses the MSA as a pan-genome
reference and map reads against the matrix, where the heaviest path serves as an ad hoc
reference to improve the accuracy of downstream variant callers.

These approaches, mostly targeting the human genome and/or focusing on specific
variable regions, demonstrate that using broader reference representations can improve
read mapping. However, they do not suffice to study collections of individual genomes of
highly dynamic species such as fungi and plants. In such collections, genome co-linearity is
often not preserved; moreover, scalability becomes an issue as the number of genomes
grows. To tackle these issues, we propose a multi-reference read mapping approach, as an
extension to PanTools. Briefly, PanTools is a suite of tools for large-scale comparative
analysis building on a pan-genome representation stored in a graph database [10]. Our
mapping method can align millions of short reads to hundreds of eukaryotic or thousands
of prokaryotic genomes simultaneously, producing one SAM/BAM file per genome. It also

provides a competitive mapping mode, which is useful for abundance estimation and

81

Pan-genomic read mapping

binning in metagenomics samples. We demonstrate that PanTools is as accurate as the state-
of the-art read mappers and per-genome mapping time decreases with increasing numbers

of genomes.

5.2 Results

We have extended our pan-genome tool suite, PanTools, with a method to efficiently map
genomic reads against multiple genomes in a graph-based representation (the algorithm is
described under Methods). Conceptually, this eliminates the strong reference bias, which
stems from mapping to a single genome. Reads that do not map on one genome may map on
another genome, yielding a more complete picture of the genomic makeup of a sample. In
application, PanTools offers two advantages that allow mapping efficiency to improve as the
number of genomes grows. First, a single joint k-mer index is available for all genomes,
resulting in fast identification of candidate hits that can then be targeted for full alignment.
Second, redundant sequence alignments are avoided by recording previous alignments; if
two genomes are similar, fewer alignments have to be made.

PanTools features two modes of read mapping. In ‘normal’ mode, genomic reads are
independently mapped against all genomes in the pan-genome, identifying the most likely
mapping location of each read in each genome. In contrast, in ‘competitive’ mode reads are
mapped to the most likely location in the entire pan-genome, such that a read with the
highest mapping score on genome A will not be mapped to genome B with a lower score.
Competitive mapping is useful in various applications involving mixed samples, such as
metagenomics samples, pathogen/host samples, or nuclear/organellar samples.

Here we present the performance of PanTools as a multi-genome read mapper on
various sets of simulated and real data from bacteria, fungi and plants. We describe the
accuracy and runtime of our approach, compared to a number of other read mappers. In
addition, we present two use cases, demonstrating scalability to large genomes and

application in metagenomics.

5.2.1PanTools is as effective as current read mappers

To learn about accuracy and speed of pan-genomic read mapping compared to state-of-the-
art single-reference mappers, we simulated read data from two [llumina platforms (HiSeq
2500 and MiSeq v3) and mapped these against the reference genomes of E. coli and S.
cerevisiae. There is often a trade-off between runtime and accuracy of read-mappers, i.e.
more accurate results can be attained by using more sensitive settings at the cost of a higher
runtime.

While the speed advantage of PanTools becomes apparent in a multi-genome context,
this experiment demonstrates that, even on a single genome, PanTools achieves comparable
speed and accuracy as widely used methods. Figure 5.1 shows time-accuracy plots of five

read mappers (running with default settings on a single processing core): PanTools; two

82

BWT-based methods, BWA-MEM [11] and Bowtie2 [12]; and two hash-based mappers,
Stampy [13] and NextGenMap [14]. There is much more variation in running time than in
accuracy, mostly caused by Stampy and Bowtie2 deviating from BWA-MEM, NextGenMap
and PanTools, which are highly comparable in terms of speed and accuracy (Additional file
1: Experiment 1).

00 500 ©OPanTools

Bowtie2
ABWA-mem
O NextGenMap
4= + +Stampy

w a
S]
3 S
w »
=1]
=] 3

E. coli
Run-time (seconds)

N

8

8

N

8

8

=
)
3
=
S
=]

0
98.0 98.5 99.0 99.5 100.0 98.0 98.5 99.0 99.5 100.0

600 600

S. cerevisiae
Run-time (seconds)
+

300 300
8 o ®

98.0 98.5 99.0 99.5 100.0 98.0 98.5 99.0 99.5 100.0
Accuracy (F-score) Accuracy (F-score)

HiSeq 2500 MiSeq v3

Figure 5.1. Runtime versus accuracy plots of five read mappers on four simulated Illumina datasets shows
that PanTools is as accurate as the other tools and much faster than Stampy and Bowtie2 especially on MiSeq
data. Accuracy is presented in terms of the F-score (see Methods).

5.2.2 The pan-genomic approach becomes more efficient as the number of genomes

grows

We compared the scalability of the best performing tools (PanTools, BWA-MEM and
NextGenMap) to large sets of genomes. To learn about the effect of evolutionary distance
between genomes, we mapped simulated S. cerevisiae reads against four pan-genomes of
ten fungi chosen at the levels of strain (ST), species (SP), genus (GN) and family (FM) (see
Additional file 1: Experiment 2). Figure 5.2A shows the average runtime per genome of
mapping reads against 1-10 genomes. For PanTools, as a multi-genome read mapper, this
time is calculated as the total runtime divided by the number of genomes in each
experiment. For the singe-genome read mappers, BWA-MEM and NextGenMap, it reflects
the average of runtimes up until each point. All tools were running with 8 threads.

In PanTools the runtime per genome decreased when the number of genomes in the
pan-genome increased; the more related the genomes were, the higher the speedup. The
runtime of BWA-MEM was very stable, around 30 seconds per genome, whereas that of
NextGenMap radically increased as more divergent genomes were included in the set. All
the tools had very similar mapping percentages at the strain and species levels, yet
NexGenMap had the highest mapping percentage on diverged genomes at the genus and

83

Pan-genomic read mapping

family levels (Figure 5.2B), correlated with its high runtime. The mapping percentage of
PanTools can likewise be increased (at the cost of a higher runtime) through parameter
settings. However, we chose less sensitive default settings, because in many applications
read mapping is limited to the species level. PanTools parameters and settings are described
in detail in the Methods.

Strain : =Q—PanTools
40 40 speCIeS =N ex tGenMap
=—zr—BWA-mem
30 30
38 G o o o o o &8 &8 &5 &8
£
§ 20 20
»
10 10

0 0

Seconds

Genomes Genomes
(A)
Genus Family —e—~PanTools
100% 100% —S—NextGenMap
==b=—BWA-mem
80% 80%
4 60% 60%
@
o 40% 40%
20% 20%
0% 0% ¢ s
12 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Genomes Genomes
(B)

Figure 5.2. Mapping simulated reads from S. cerevisiae strain S288C on four pan-genomes of ten fungi. (A)
Runtime of three methods at the level of strain S288C, species S. cerevisiae, genus Saccharomyces, and family
Saccharomycetaceae. Genomes are sorted in decreasing order by the average number of reads that the tools
managed to map, roughly reflecting their similarity to the reference genome of S. cerevisiae. (B) The mapping
percentage depends on the similarity between the sequenced strain and the reference genome and on the
default sensitivity of the methods.

PanTools’ speed is largely due to avoiding redundant alignments by maintaining a list
of previous alignments. When the constituent genomes are closely related, the chance of
finding an alignment in this list is high. Table 5.1 shows that this approach saves

computations in this experiment, in particular when genomes are highly similar.

Table 5.1. PanTools avoids redundant sequence alignments.

Taxonomy level Candidate hits Alignments performed Alignments avoided
Strain S288C (ST) 12,767,990 1,030,981 91.9%
Species S. cerevisiae (SP) 9,041,689 4,773,482 47.2%
Genus Saccharomyces (GN) 5,611,299 5,015,910 10.6%
Family Saccharomycetaceae (FM) 2,437,554 2,175,803 10,7%

84

5.2.3 Use case 1: Pan-genomic read mapping in plants

To illustrate the utility of mapping to a panel of genomes rather than to a single reference,
we applied PanTools to a case typically encountered in plant genomics: mapping reads of
various (often relatively distant) accessions to a reference genome. We started with the
model plant, Arabidopsis thaliana, and mapped reads of accession DJA-1 (Illumina library
ERR2721960) to the reference genome Col-0 (both nuclear and organellar sequences). In
this experiment, 6.25% of reads could not be mapped to the reference, potentially
preventing the discovery of important variants. We next mapped these unmapped reads to
the pan-genome of 19 accessions of A. thaliana [15] and managed to map 4-6% of these on
other accessions. Clustering these reads based on overlap reveals moderately covered
genomic regions (coverage = 10), which are either absent from or highly different in the
reference Col-0. We detected from 476 to 915 of such regions with sizes ranging from 151
to 6,124 base pairs in the other accessions (Table 5.2).

Table 5.2. Reads unmapped to the A. thaliana reference Col-0 re-aligned to a pan-genome of 19

accessions. Around 5% of reads mapped to the other accessions could be assembled into regions which
are possibly absent or highly polymorphic in the reference of A. thaliana.

. Number of Mapping Number of Length of regions

Genome Accession
reads percentage regions (min-avg-max)
1 Col-0 - - - -
2 Bur-0 95,362 5.72 803 (151-439-2917)
3 Can-0 100,220 6.01 914 (151-398-2917)
4 Ct-1 72,973 4.38 478 (151-461-2917)
5 Edi-0 94,400 5.66 815 (151-429-6124)
6 Hi-0 68,272 4.10 485 (151-409-2918)
7 Kn-0 92,001 5.52 778 (151-404-2918)
8 Ler-0 91,870 5.51 780 (151-407-5000)
9 Mt-0 73,848 443 564 (151-386-2574)
10 No-0 85,449 5.13 710 (151-437-3306)
11 Oy-0 70,119 4.21 476 (151-447-3103)
12 Po-0 72,800 4.37 590 (151-389-2085)
13 Rsch-4 84,523 5.07 706 (151-434-2917)
14 Sf-2 97,827 5.87 915 (151-397-2897)
15 Tsu-0 90,339 5.42 780 (151-424-2903)
16 Wil-2 93,771 5.63 798 (151-406-2903)
17 Ws-0 90,897 5.45 745 (151-437-2917)
18 Wu-0 81,783 4.91 652 (151-447-2917)
19 Zu-0 90,171 5.41 759 (151-426-2917)

As an example, we found a region of 248 base pairs absent in the reference Col-0 (first
row, position Chr1:24,201,231) as well as in accession Wil-2 (position Chr1:23,713,822),
but present in all other accessions. Figure 5.3 shows the multiple sequence alignment of this
region in all accessions and reads which failed to be mapped against this region in Col-0 and
Wil-2 but mapped to the other accessions. Similarly, Figure 5.4 shows such an alignment for
a region of length 283bp in the sequenced DJA-1 individual, which is highly variable in all
accessions. None of the 36 reads covering this region were mapped to Col-0, however
between 24-33 reads were mapped to the other 18 accessions. There were 24 SNPs and 7
short indels in the alignment of the assembled reads and the corresponding region in Col-0,

85

Pan-genomic read mapping

which explains the read mapping problems. This experiment shows that even in a rather
complete reference genome like for Arabidopsis, potentially important allelic variants are

missed using a biased reference-based approach.

T TR R U TN T TN T R T T T T I N IO P OO O O O I -

Bur-0.Chri-23753464
Can-0:Chr1:23759304
Ct-1:Chr1:23819941
Edr0.Chr1:23802152
HL0.Chr1:23870080.
Kn0:Chr1:23774752
Ler-0:Chr1:23806953
ML-0:Chr1:23733405
No-0:Chr1:23787329
0y-0:Chr1:23564371
Po-0:Chr1:23917979
Rsch-4:Chr1:23783511
S1-2.Chr1:23748154
Tsu0.Chrt:23737611
WiL2.Chr1:23713795
Ws-0.Chr1:23802706
Wu-0:Chr1:25733545
20-0:Chrt:23797273 G
ERR2721960.4002534 il
ERR2721960.7353439

1|

ERR2721960.7353438 ¥ .
R i
bluwcirin e o of i ¢ N T

i b duerrruie
i
ERR2721960.7137020 s ik 2 A

Figure 5.3. A deletion of 248 bp in chromosome 1 of the reference Col-0 and accession Wil-2 detected by mapping
reads to the pan-genome.

Bur0:Chr1:4262417

Eos-cc s oo -oas

ERR2721960.10619814
ERR2721960.7943531
ERR2721960.7043866
ERR2721960.11076740

G U
A el
rur

ERR2721960.5183508

Figure 5.4. A highly variable region starting at Chr1:4,302,854 in the reference Col-0 detected through pan-
genomic read mapping. The large number of SNPs and indels in Col-0 prohibits alignment of reads that can
be mostly mapped to the other accessions.

Next, we investigated whether PanTools’ read mapping would scale to larger, more
complex genomes. To this end, we mapped three large paired-end sequencing libraries from
the 150 Tomato Genome Resequencing Project [3] to the reference genome of tomato
Solanum lycopersicum (Heinz 1706) and the three additional species Solanum pennellii
(LA716), Solanum pimpinellifolium (LA480), and Solanum habrochaites (LYC4). PanTools
achieved a high mapping percentage and additionally captured a large number of regions
absent in the reference, or present but highly variable (Table 5.3).

86

Table 5.3. Mapping reads of three libraries unmapped to the Heinz tomato reference genome to a pan-genome
of four tomato accessions detected large number of regions which are absent or highly variable in the
reference. The number and length of detected regions are given in the last two columns.

Sequencing Species Mapping Number of Length of regions
library percentage regions (min-avg-max)
Heinz 99.63 - -
S. lycopersicum LA716 98.43 1,754 (101-461-7515)
LA2706 LA480 96.55 2,286 (101-417-6069)
LYC4 95.42 1,273 (101-370-10586)
Heinz 99.04 - -
S. pimpinellifolium LA716 98.24 11,073 (101-533-7427)
LA1584 LA480 96.51 10,452 (101-462-6081)
LYC4 95.44 8,072 (101-446-6096)
Heinz 96.09 - -
S. pennellii LA716 95.55 6,550 (101-503-7912)
LA716 LA480 99.20 47,042 (101-615-10505)
LYC4 96.48 26,688 (101-538-7690)

5.2.4 Use case 2: Abundance estimation and binning of metagenomics data

In metagenomics studies the goal is often to identify the constituent organisms at a specific
taxonomic level (e.g. by binning) and estimate their abundances. Numerous pipelines are
available, usually based on targeted sequencing of the 16S ribosomal gene or on whole
metagenome shotgun (WMGS) sequencing [16]. In the latter case, mapping to a set of
reference genomes is an extremely computationally intensive step. PanTools provides a
competitive mapping mode to support such analyses. To demonstrate its use, we
competitively mapped a metagenomics stool sample (SRS011061) from HMRARG2 [17] on
the pan-genome of the reference genome database of the Human Microbiome Project (HMP)
[18] (see Methods). A list of all strains and their estimated abundances is available in
Additional file 1: Experiment 5. We found a strong correlation between our estimated
abundances and those found in the HMSCP report [19] (Supplementary Figure 5.51). Two
bacterial strains, Parabacteroides merdae (ATCC 43184) and Bacteroides cellulosilyticus
(DSM 14838), were the most abundant strains in this sample.

We also evaluated the accuracy of abundance estimates of PanTools on three
benchmark data sets provided by the CAMI (Critical Assessment of Metagenome
Interpretation) initiative [20], of low, medium and high complexity and compared it to those
of two tools specifically developed for this problem, Kallisto [21] and DiTASiC [22]. We ran
PanTools in two random-best competitive modes; in the first run, we uniformly distributed
shared reads between genomes, where in the second we considered the coverage of
uniquely mapped reads in the first run to calculate the probabilities by which shared reads
are assigned to the genomes. The idea behind this approach was that unique reads come
from the strain-specific regions of the genomes and their abundance reflects the relative
abundance of the genome in the sample. This approach significantly improved the accuracy

87

Pan-genomic read mapping

of PanTools on the medium complexity CAMI data set, where there was a large imbalance
between the abundance of some extremely similar strains.

Table 5.4 shows the accuracy of the abundance estimates of Kallisto, DiTASiC and
PanTools (see Supplementary Figure 5.2) in terms of the root mean squared error and
correlation coefficient between estimates and the ground truth. In this experiment, Kallisto
performed best in terms of speed and accuracy. The runtime of DiTASiC grows quadratically
with the number of genomes, as it needs to calculate the pairwise similarity between the
genomes. On the high-complexity dataset of 1074 genomes we Kkilled the process after 10
days. In contrast, PanTools was able to handle all the three datasets in reasonable time with
accuracy comparable to Kallisto, while additionally simultaneously binning reads in
individual SAM files which could in principle directly be passed on to an assembler to build

the contigs.

Table 5.4. PanTools is as accurate as Kallisto and DiTASiC in abundance estimation of metagenomic samples
with different levels of complexity. Root mean square error (RMSE), correlation coefficient between estimates
and ground truth and runtime of three methods have been presented on the three CAMI benchmark datasets.

Correlation Runtime
Dataset Tool RMSE .
coefficient (seconds)
Kallisto 121,072 0.999 361
N DiTASIC 205,980 0.998 2,320
o PanTools 367,277 0.994 2,263
PanTools (coverage-based) 148,138 0.999 4,619
Kallisto 141,309 0.996 542
DIiTASIC 121,824 0.997 52,200
Medium
PanTools 707,460 0.881 2,218
PanTools (coverage-based) 375,896 0.969 4,479
Kallisto 35,960 0.980 1,321
DiTASIC - - >10days
High
PanTools 42,404 0.972 5,585
PanTools (coverage-based) 44,866 0.969 11,112

5.3 Discussion

Multi-genome read mapping is necessary to overcome the “reference bias” that comes from
only considering reads that map to a single reference. Unmapped reads are typically not
considered for downstream analyses, while these could point to interesting variants. As we
have demonstrated, unmapped reads in a sample can originate from genomic regions absent
in or highly different from the reference. Ideally, the known variation between different
genomes is exploited to improve read mapping across these regions. Existing variation-
aware read mappers, such as Graphtyper [5], enrich a reference genome with known
variants to improve read mapping across highly variable regions and capture

polymorphisms, which are finally called with respect to the reference. This approach works

88

well for specific genomic regions, e.g. HLA genes in human, where many variants are already
known [23].

Still, reads from regions not present in such enriched references will remain unmapped.
In studies on species with highly dynamic genomes, e.g. crops, where gene content varies
and co-linearity is typically not preserved, a multi-genome read mapping approach is
therefore preferable. PanTools is not variation-aware in the sense that information from
genome A is used to map a read to genome B, but it efficiently maps reads to all genomes in
a (potentially large) set. A set of reads may be mapped to a region in genome B, while they
do not map on the homologous region in genome A because of SNPs and indels (as shown in
Figure 5.4). By detecting homologous regions between genomes, it is, in principle, possible
to project reads from one genome to the corresponding region in another genome,
resembling the results of variation-aware methods.

PanTools can simultaneously generate alignment files (SAM/BAM) for multiple
genomes. These can be fed to any variant caller to detect variants with respect to all the
constituent genomes. Variants not captured in one reference thus may be found with respect
to one or more of the other genomes. PanTools scales well to thousands of complete
bacterial or fungal genomes and to collections of large genomes, such as those of plants.
However, interacting with extremely large databases (e.g. tens of plant genomes) is time-
consuming, as the database cannot be fully buffered in memory. A high repeat content of
genomes also increases the runtime, as it causes certain nodes to have many genomic
locations. In our experiments with the pan-genome of four tomato accessions, we overcame
this limitation by ignoring low-complexity nodes when collecting candidate hits.

Our current method is designed to map genomic short reads, single or paired-end. Soft
clipping has been implemented, but split alignments are not reported. We intend to develop
this further in the future, as it is required for the detection of (some forms of) structural
variation. Along the same lines, we will investigate spliced mapping of transcriptome data,
considering multiple partial hits per read. Mapping long reads, e.g. PacBio or Oxford
Nanopore, would be another useful extension, but this requires additional work, for
example to implement an additional k-mer index with smaller k to handle higher rates of
error and an alternative (banded) alignment approach which would scale to longer

sequences.

5.4 Conclusions

The number of sequenced species is increasing rapidly and chromosome-scale, haplotype-
resolved genomes are now within reach for many of these. This necessitates a transition
from linear, single-reference to pan-genome approaches in genomics. Graphs can represent
such pan-genomes, large numbers of related sequences, in a compact fashion. PanTools
offers a practical pan-genome sequence representation, indexed and stored in a graph
database, annotated with structural and functional information.

89

Pan-genomic read mapping

In this work we have extended PanTools with read-mapping functionality. The method
generates accurate alignments to all (or a subset) of the constituent genomes at once.
Simultaneous mapping of reads allows avoiding redundant computations and can optionally
distribute reads over genomes in a competitive manner, required in applications such as
metagenomics. PanTools thus offers a solid basis, which can and will be further extended to
integrate and mine different types of -omics data, paving the way towards comparative pan-

genomics.

5.5 Methods

Before we present the read-mapping algorithm, first we briefly explain the pan-genomic
data structure to which the reads will be mapped. Then, we discuss our approach to
competitive read mapping and finally introduce the data and methods used in the

experiments.

5.5.1Structure of the pan-genome

PanTools condenses multiple genomes in a generalized De Bruijn graph (gDBG), stored with
structural annotations and proteomes in a graph database [24]. There are two additional
databases, an index database and a genome database, which facilitate efficient graph
indexing and sequence retrieval respectively. A memory-mapped implementation of graph,
index and genome databases minimizes the required I/0 operations even in random access
scenarios.

The gDBG captures the similarity and divergence of genomes at the resolution of k-
mers. It is a compressed, bi-directed DBG, i.e. there is no non-branching path in the graph
and every node represents a piece of double-stranded DNA of minimum length k, which
occurs only once in the graph. Each sequence (contig, scaffold or chromosome) can be
traversed as a continuous path in the graph in either forward or reverse direction. The
positions of the node in the constituent sequences are stored on the edges of the graph.
Figure 5.5 illustrates a node of this graph, a piece of DNA occurring in sequence 1 at position
8, sequence 2 at position 12, both in forward direction (TAC); and in sequence 3 at position
4, in reverse direction (GTA). During the gDBG construction we build a k-mer index that
maps canonical k-mers to a unique graph coordinate: a triple of the identifier of the node,
the zero-based offset of the k-mer in the node and the direction of the k-mer. For example,
the 2-mer AC is mapped to coordinate (56, 1, F) if it occurs in node 56 at offset 1 in forward

direction.

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
s1:8 012 S1:A A G G G C C GTACCGC,C C
s2. 12 cceraceteaevy
2 2ra o>
3. 4 $2:C 6 A A G GCOCGTA AGCTA ATCTGAC
Y I 9|le— C C G TACT G X
Node_id: 56 S$3: 6 C C A G TA -G GCCC C
vVecacecrTacee
(A) (B)

Figure 5.5. Pan-genomic read mapping. A. Structure of a node of generalized DBG; this piece of DNA occurs
in three sequences S1, S2 and S3, respectfully, at positions 8, 12 and 4. B. After retrieving the candidate hits
in each sequence and performing exact alignments, the read is mapped to S1 and S3 but not to S2.

5.5.2 Read mapping

Given a genomic read, a (by default 15) equidistant k-mers are sampled from it and looked
up in the k-mer index to retrieve the graph coordinates where the reads should map. The k-
mer size used for read mapping is the same as the k-mer size used in graph construction,
since the existing k-mer index is exploited. The number of k-mer samples a should be chosen
higher when the error/mutation rate is high. The collected graph coordinates can then be
translated into the start position of potential hits (the candidate hits) in the constituent
sequences. For example, again consider 2-mer AC from read CCGTACTG. The position of AC
in sequence 1 is the position of node 56 in this sequence (8) plus the forward offset of AC
(1) in the node, i.e. 8 + 1 = 9. The offset of AC in the read is 4, so the position of the candidate
hit on sequence 1 is 9 - 4 = 5. Candidate hits could be supported by different number of k-
mer samples. Candidate hits are therefore sorted by the number of supporting k-mers (in
decreasing order) and local alignments are only calculated for the first w (by default 15) hits
in this ordered list. Local alignment is performed using a Smith-Waterman algorithm with a
banded matrix to reduce the number of calculations by limiting the number of gaps (by
default 5) allowed in the alignment. As PanTools was developed for short reads, where a
limited number of insertions/deletions is expected, this seems reasonable. If the alignment
identity, defined as the number of identical positions divided by the length of alignment, is
higher than a threshold 7 (by default 0.5), the hit will be reported as a proper hit (Figure
5.1B).

Algorithm 1 shows the pseudocode of our read mapping approach. Ideally, all k-mers,
sampled from a read, point to the same position in a sequence. However, in the presence of
sequencing errors, polymorphisms and genomic duplications some k-mers may not be
found or may be found at multiple locations. Hence, these locations are clustered, collected
in Pos[S], based on their proximity and the cluster size is considered as a score for that
candidate hit. As many candidate hits may be false positives with low scores, only the w
most high-scoring hits are considered (Line 7). If all of these hits are supported only by one
k-mer, potentially a low-complexity one, we just consider the first hit for the alignment. For

each sequence, all proper hits, whose alignment identity is greater than a minimum

91

‘ Pan-genomic read mapping

threshold, are collected (Lines 8-9). Users have the option of reporting all the highest-scored
hits (all-best), a random one if there are multiple best choices (random-best), or all the
collected hits (all).

Algorithm 5.1. Pseudocode of read-mapping algorithm of PanTools.

Input: the pan-genome, reads in FASTQ format
Output: alignments in SAM or BAM format

1 foreachread R

2 for a equidistant k-mers K of R
3 find node N containing K

4 for each sequence S passing through node N

5 Pos[S] collects candidate hits of Rin S

6 for each sequence S

7 for the first w members in sorted list of candidate hits H in Pos|[S]
8 if identity of H aligned to R is greater than a threshold 7z
9 put H in Hits[R,S]

10 Report Hits[R,S] in random-best, all-best or all mode

5.5.3 Competitive mapping

PanTools is able to map reads in competitive mode, which is required for some applications,
e.g. metagenomics and contamination screening. In this mode, proper hits to all the
constituent genomes are collected and only those with the highest alignment identities (best
hits) are considered. If there is a single best hit it is reported, otherwise PanTools offers
three options for reporting the multiple best hits. First, none-best does not report any
ambiguous hit; second, random-best selects one of the best hits randomly, either uniformly
or based on some probabilities given to each genome; third, all-best which reports all the
best hits. The random-best option works best for abundance estimation in metagenomics.
When read mapping is followed by reference-guided assembly of the generated SAM files, it
is preferable to use the all-best option to increase the horizontal coverage of the genomes.

5.5.4Data and experimental setup

All experiments were executed on an Ubuntu 14.04 server, Intel® Xeon® X5660@2.8GHz,
with 6GB RAM and 16 processing cores. To generate synthetic reads, a 1% mutation rate
was applied to the reference genomes of two model species E. coli (str. K-12 substr.
MG1655) and S. cerevisiae (S288C, assembly R64) and 10x HiSeq 2500 (2x100) and MiSeq
v3 (2x250) reads were simulated from the mutated genomes using the ART Illumina
simulator [26]. To show the accuracy and efficiency of PanTools, it was compared to four
single-reference methods: Stampy, Bowtie2 and BWA-MEM and NextGenMap. The known
genomic origin of the simulated reads allowed to compare the accuracy of the methods by

counting the number of properly mapped (TP), wrongly mapped (FP) and unmapped (FN)

92

reads, calculating the sensitivity = TP/(TP+FN) and specificity = TP/(TP+FP) of the tools
which were then combined to an F-score as the ultimate measure of accuracy: F-score =
2xsensitivityxspecificity /(sensitivity+specificity).

5.5.5PanTools dependencies and parameters

For read mapping, PanTools depends only on KMC [25] for construction of the graph. The

parameters affecting its mapping behavior are listed in Table 5.5.

Table 5.5. PanTools read mapping algorithm comes with several parameters which can be adjusted to trade-
off between accuracy and speed.

Parameter Range Default
Number of parallel working threads [1 .. cores] 1
Minimum acceptable identity of the alignment () [0..1) 0.5
Number of k-mers sampled from the read (@) O.r—k+1] 15
Minimum acceptable length of alignment after soft-clipping [10..100] 13
Maximum acceptable length of alignment [50 .. 5000] 1000
Maximum acceptable length of fragment [50 .. 5000] 2000
Maximum number of candidate hits to examine (w) [1..100] 15
Length of band in banded alignment [1..100] 5
Stringency of soft-clipping [0..3]

Alignment mode (Negatives for competitive, see manual) [-3..3] 2

To demonstrate the scalability of PanTools compared to the other tools, four sets of
fungal genomes (pan-genomes) were considered at different taxonomic levels. The first
pan-genome consisted of ten copies of the reference genome (R64) of Saccharomyces
cerevisiae S288c. The second one contained ten different strains of Saccharomyces cerevisiae
(including the reference R64). The third pan-genome included genomes from ten different
species in the Saccharomyces genus. Finally, the fourth pan-genome contained genomes
from ten different fungal genera in the family of Saccharomycetaceae (see Additional file 1:
Experiment 2). For this experiment, the simulated MiSeq library of S. cerevisiae was used.

We demonstrated two real use cases on plant pan-genomes. First, a recent llumina
HiSeq 2500 paired-end sequencing archive (ERR2721960) of ~13.3 million paired-end
reads from DJA-1 accession was mapped to the reference and 18 additional high-quality
assemblies of Arabidopsis thaliana. Second, three large paired-end sequencing libraries
from the 150 Tomato Genome Resequencing Project [3] were mapped to the reference
genome of Solanum lycopersicum (Heinz 1706) [27] and three additional accessions,
Solanum pennellii (LA716) [28], Solanum pimpinellifolium (LA0480) [29], and Solanum
habrochaites (LYC4) [3].

To test PanTools’ competitive mode of read mapping, a large library of 89.6 million
paired-end reads from a stool sample was mapped (competitive random-best mode with

uniform distribution) on a large pan-genome of the reference genome database of the

93

Pan-genomic read mapping

Human Microbiome Project. This database comprised of 130 archaeal strains over 97
species, 326 lower eukaryotes over 326 species, 3683 viral strains over 1420 species, and
1733 bacterial strains over 1253 species. The construction of this pan-genome took 17 CPU
hours, resulting in a database of size 104 GB, and read mapping was performed in 4.3 CPU
hours. Additionally, we constructed a pan-genome of the reference genomes from the
“Critical Assessment of Metagenome Interpretation” (CAMI) benchmark, and compared our
abundance estimates to those achieved by Kallisto quantification and DiTASiC on the three
provided metagenomics datasets of low, medium and high complexity. Kallisto is based on
a fast pseudo-alignment followed by an expectation-maximization (EM) approach to
resolve the read abundance ambiguities. DiTASiC takes the raw pseudo-alignments of
Kallisto, calculates the pairwise similarity of genomes and fits a generalized linear model

(GLM) to resolve the read assignment ambiguities.

PanTools estimate
= N w
(9,] N (9] w v
®

[y

£
&
e
0 25 50 75 100 125 150 175 200
HMSCP depth

Supplementary figure 5.S1. There is a strong correlation between abundances estimated by Human
Microbiome project (HMSCP report) and PanTools.

o
n

OKallisto CIDITASIC * PanTools O Kallisto [JDiTASIC PanTools O Kallisto CJDITASIiC ¢ PanTools

1E+08 1E+08 1E+07

LE407 LE+07 1E+06

1E+06
1.E+06 1E+05

1E+05 #'

LE+04 @
@ LE+03

o
ion

LE+05
1E+04

Estimation
Estimati
Estimation

1E+04
1E+03

o | P 162

d
1E+02 LE+01 LE+01
1E+02 1E+03 LE+04 1E+05 1E+06 1E+07 1E+08 1E+01 1E+02 1E+03 LE+04 LE+05 1E+06 1E+07 1.E+08 1LE+01 1E+02 1E+03 1E+04 1E+05 1E+06 1.E+07

Ground truth Ground truth Ground truth

Supplementary figure 5.S2. There is a strong correlation between abundances estimated by Kallisto,
DiTASiC and PanTools versus the ground truth provided in the three CAMI benchmark data sets.

94

References

1.

2.

10.

11.

12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Reinert K, Langmead B, Weese D, Evers D]. Alignment of next-generation sequencing reads. Annu Rev
Genomics Hum Genet. 2015;16(1):133-51.

Gibbs RA, Boerwinkle E, Doddapaneni H, Han Y, Korchina V, Kovar C, et al. A global reference for
human genetic variation. Nature. 2015;526(7571):68-74.

Aflitos S, Schijlen E, De Jong H, De Ridder D, Smit S, Finkers R, et al. Exploring genetic variation in the
tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 2014;80(1):136-
48.

Huang L, Popic V, Batzoglou S. Short read alignment with populations of genomes. Bioinformatics.
2013;29(13):i361-70.

Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B, Masson G, et al. Graphtyper
enables population-scale genotyping using pan-genome graphs. Nat Genet. 2017;49(11):1654-60.
GarrisonE, Sirén], Novak AM, Hickey G, Eizenga JM, Dawson ET, et al. Variation graph toolkit improves
read mapping by representing genetic variation in the reference. Nat Biotechnol. 2018;36(9):875-9.
Schneeberger K, Hagmann], Ossowski S, Warthmann N, Gesing S, Kohlbacher O, et al. Simultaneous
alignment of short reads against multiple genomes. Genome Biol. 2009;10(9):R98.

Sirén |, Valimaki N, Médkinen V. Indexing finite language representation of population genotypes. LNCS.
2011.p.270-81.

Valenzuela D, Norri T, Valimaki N, Pitkdnen E, Makinen V. Towards pan-genome read alignment to
improve variation calling. BMC Genomics. 2018 May 9;19(S2):87.

Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. PanTools: representation, storage and
exploration of pan-genomic data. Bioinformatics. 2016;32(17):1487-93.

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009;25(14):1754-60.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9.
Lunter G, Goodson M. Stampy: A statistical algorithm for sensitive and fast mapping of Illumina
sequence reads. Genome Res. 2011;21(6):936-9.

Sedlazeck FJ, Rescheneder P, Von Haeseler A. NextGenMap: fast and accurate read mapping in highly
polymorphic genomes. Bioinformatics. 2013;29(21):2790-1.

Gan X, Stegle O, Behr], Steffen]G, Drewe P, Hildebrand KL, et al. Multiple reference genomes and
transcriptomes for Arabidopsis thaliana. Nature. 2011;477(7365):419-23.

Breitwieser FP, Lu], Salzberg SL. A review of methods and databases for metagenomic classification
and assembly. Brief Bioinform. 2019;20(4):1125-36.

NIH Human Microbiome Project - HMRARG2. https://www.hmpdacc.org/hmrarg2. 2019;Feb 8.
Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree], Orvis], Hall AB, et al. Strains, functions and
dynamics in the expanded Human Microbiome Project. Nature. 2017;550(7674):61-6.

NIH Human Microbiome Project - HMSCP. https://www.hmpdacc.org/hmrarg2. 2019;Feb 8.

Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge], et al. Critical assessment of
metagenome interpretation - a benchmark of metagenomics software. Nat Methods.
2017;14(11):1063-71.

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat
Biotechnol. 2016;34(5):525-7.

Fischer M, Strauch B, Renard BY. Abundance estimation and differential testing on strain level in
metagenomics data. Bioinformatics. 2017;33(14):i124-32.

Dilthey AT, Gourraud P-A, Mentzer AJ, Cereb N, Igbal Z, McVean G. High-accuracy HLA type inference
from whole-genome sequencing data using population reference graphs. Franke A, editor. PLOS
Comput Biol. 2016;12(10):e1005151.

Storm CE V, Sonnhammer ELL. Automated ortholog inference from phylogenetic trees and calculation
of orthology reliability. Bioinformatics. 2002;18(1):92-9.

Kokot M, Dtugosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics.
2017;33(17):2759-61.

Huang W, Li L, Myers JR, Marth GT. ART: A next-generation sequencing read simulator. Bioinformatics.
2012;28(4):593-4.

The tomato genome sequence provides insights into fleshy fruit evolution. Nature.
2012;485(7400):635-41.

Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, et al. The genome of the stress-tolerant
wild tomato species Solanum pennellii. Nat Genet. 2014;46(9):1034-8.

95

Pan-genomic read mapping

29. Razali R, Bougouffa S, Morton MJL, Lightfoot D], Alam [, Essack M, et al. The genome sequence of the
wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front Plant Sci.
2018;9:1402.

96

Chapter 6

Discussion

‘ Discussion

In this thesis we introduced PanTools, our approach to pan-genomics, and presented some
key functionalities to make it useful in practical comparative analysis. Here, we put forward
ideas on the future challenges and opportunities in using a pan-genome as a reference.

6.1 The emerging pan-genome paradigm shift

Since the publication of the first assembled genome in 1995 [1], reference genomes have
been effectively used for re-sequencing and genotyping of new individuals of the same
species. Advances in NGS technologies have popularized reference-based re-sequencing for
comparative and functional genomics. However, taking a single genome or a consensus
genome as a reference is insufficient in many domains and for many applications, such as
human genomics and agriculture [2,3]. To capture the wider genomic landscape of species,
references need to integrate the genomic content of multiple individuals into a pan-genome.
Pan-genomes include variants and genomic regions missed in the reference genomes, and
also can represent the structural variability in populations of a species. We are entering the
pan-genomic era, replacing linear references with pan-genomes [4].

Switching to pan-genome references is a large paradigm shift, which demands
substantial adjustments and redevelopments of existing reference-based methods and
applications. At the core of pan-genomic redevelopment lies a redefinition of an efficient
coordinate system on which pan-genomic applications can be reliably based. Reference-
based variant calling approaches pile up reads on a reference genome and call variants with
respect to that reference as a simple linear coordinate system. With pan-genomics, variants
should be called with respect to the pan-genome structure. For example, in a graph-based
pan-genome representation coordinates are defined as pairs for the node identifier and an
offset pointing to a position in that node. Pan-genome coordinates need to be efficiently
translated into genomic coordinates in order to map variants back to individual genomes.
The reverse conversion (from genomic coordinates to pan-genome coordinates) is also
required to investigate where a specific locus in one genome occurs in other genomes.

The structural annotation of genomes is another core functionality that needs to be
redefined for pan-genomic platforms. Traditionally, assembled genomes are independently
annotated through time-consuming ab initio and/or evidence-based gene model
predictions. These annotation pipelines introduce serious bottlenecks to high-throughput
genome projects if large numbers of related genomes are sequenced and assembled in a
short period of time. At the same time, they ignore the fact that related individuals share the
majority of their genes and will have highly similar gene models. By taking into account
RNA-Seq evidence and the phylogenetic relationships of samples, joint gene-structure
models have reduced annotation errors and incompatible predictions at close to medium
evolutionary distances [5]. Using similar joint gene models, collective annotation of many
genomes can be achieved through mapping transcriptome reads from different individuals
to a pan-genome. As we have shown in Chapter 5, such a read mapping approach scales sub-
linearly with the number of genomes and thus reduces the computational cost of genome
annotation.

98

6.2 Future advances for pan-genome representation

Graph-based data structures have been frequently used to represent pan-genomes (e.g.
Chapter 1). However, the variability of genomes at the sequence and structural level can
increase the complexity of these graphs [6]. For example, a compressed DBG is not suitable
for representation of highly variable genomes, as every single mismatch between two
genomes adds three nodes to the graph (i.e. a simple bubble). As a result, the compressed
DBG quickly approaches the uncompressed version of the graph as variability and the
number of genomes increase. Alignment-based structures, such as the Enredo graph [7] or
the data structure introduced in PanCake [8], are more efficient choices for highly variable
genomes as they tolerate simple variants in nodes. However, calculating whole-genome
alignments of large number of genomes using such alternative structures is not trivial.
Similarly, structurally variable genomes such as those of plants, with many duplications,
inversions and translocations, induce (nested) cycles in the graph. Acyclic graph
representations can avoid such complex sub-structures at the cost of introducing redundant
nodes, however finding the optimal assignment of duplicated or translocated segments is a
non-trivial task [9]. Thus, it will be very hard to develop a one-size-fits-all pan-genome data
structure.

Pan-genome representations try to condense a large number of linear genomes by
storing similar nucleotide sequences only once. In a (compressed) DBG, only sequences
with 100% identity are condensed into one node. Far higher rates of compression can be
achieved by representations which allow for lower identity thresholds between aligned sub-
sequences. However, setting such a similarity (or identity) threshold is not straightforward,
since it is strongly dependent on the species analyzed, variability of the genomes and
conservation of the aligned regions. In highly repetitive genomes, such as those of plants
that have undergone rounds of segmental and whole genome duplications, this choice is
even more critical as a low similarity threshold can lead to collapsing ancient and recent
duplications making the representation highly noisy. At large evolutionary distances,
nucleotide sequences are more diverged and choosing a high similarity threshold
disconnects the sequences, making the representation less informative. This suggests that
measures of similarity have a major impact on downstream analyses and should be adopted
carefully, considering variability and evolutionary distance of species.

There are many visualization tools to explore bacterial pan-genomes with useful
features for orthologous clustering, pan-gene profiling, and functional classification of genes
[10-13]. However, visualization of eukaryotic pan-genomes has hardly been explored, due
to the challenges imposed by size and complexity of such genomes. Novel approaches are
required to visualize and represent whole-genome differences among large set of genomes
from chromosome-level to nucleotide-level. To provide genomic scaling or zooming to
different levels of representation, various filtering and hierarchical aggregations might be
needed. To date, such approaches for scaling have not yet been investigated or proposed.
Another challenge is developing interactive visualizations of pan-genomes with, fast
response times. This would require ultra-fast data retrieval and rendering. In a pan-genome

99

‘ Discussion

viewer, users should be able to switch between genomes as the reference, select subset of
genomes and filter for common or unique variants.

6.3 Solving the scalability problem

Scalability has been, and will remain, a challenge in pan-genomics. The very first pan-
genome (published in 2005) was mainly a bag of genes found in 6 bacterial strains [14]; a
decade later, pan-genomes managed to condense 62 complete E. coli genomes [15], and one
year later 7 complete human genomes were successfully represented as a pan-genome [16].
In the last decade, scaling to both larger genomes and larger numbers of genomes has been
the main concern of pan-genomics. However, advances have been limited to the
completeness of pan-genomes, but unfortunately not to their functionality and applicability.
In our vision, a scalable pan-genomic solution should be able to address issues of
completeness, efficiency and applicability, at the same time. To date, there is no scalable
solution capable of addressing all these aspects in a single platform [17].

It is not straightforward to call a pan-genome complete, but ideally, a complete pan-
genome represents the entire genomic diversity of a cohort of species and/or samples of
interest. Bacterial pan-genomes are, traditionally, called closed when the number of new
genes introduced by new genomes approaches zero [18]. This definition has also been used
for some crop plant pan-genomes such as maize [19], wheat [20] and rice [21]. However, a
closed pan-genome is not essentially complete, as new individuals can introduce novel
variants (alleles in eukaryotes) contributing to the diversity of a population. In a practical
setup, a pan-genome can be considered complete when it includes as much existing genomic
content as possible and is generated in the course of a research project.

6.4 Opportunities and future directions

Future pan-genome approaches will be highly influenced by advances in sequencing and
assembly technologies. Long-read sequencing technologies are very promising to overcome
the limitations of current short read technologies, facilitating the resolution of large
structural variants (SVs), repetitive regions, and haplotypes. PacBio technology is able to
achieve read lengths over 10kbp-long stretches of DNA with uniform coverage [22], recently
also with lower error rates [23]. Oxford Nanopore Technologies (ONT) devices generate
reads even one or two orders of magnitude longer [24], but still with high base-calling error
rates. Combined with high quality Illumina short reads and data from scaffolding
technologies such as Bionano Genomics optical maps and Hi-C proximity ligation, long-read
sequencing is very promising to deliver high-quality haplotype-separated chromosome-
level genome assemblies [25,26].

Structural variation (SV) drives many important traits such as genetic diseases in
humans [27] and grain size in rice [28]. SVs are very hard to detect using NGS short reads
as they are usually large and enriched in repeat regions [29]. SV detection has recently been
significantly boosted using long reads [30]. As accuracy and continuity of genome
assemblies will be increasingly improved, traditional alignment-based SV detection will be
replaced by pan-genomic SV detection [31]. In a pan-genomic approach, maximal collinear

100

blocks among large sets of genomes can be captured, first, then SVs are detected by mining
specific substructures that signify structural differences between genomes.

Simple variants are also detected differently in pan-genomes. First, variants are called
inside collinear blocks during the construction of a pan-genome, then, reads of newly
sequenced individuals are mapped against those blocks to detect variants. As the vast
majority of variants observed in a species and/or population are supposedly available in the
pan-genome, the recurring variants can be quickly detected and genotyped at low-coverage
and thus significantly reducing the cost of re-sequencing [32]. An alternative approach is to
assemble and align new genomes to the pan-genome, which depending on the pan-genome
representation demands novel indexing and alignment approaches such as partial order
alignment [33].

Besides the genomic content, pan-genomes need to be able to integrate other
heterogeneous biological data to expand the general applicability of pan-genomes. For
example, for plant breeding new entities such as traits and quantitative trait loci (QTL)
should be defined and linked to the genomes to be able to identify the casual variation of
agronomical traits of a crop by comparing mapped regions between genotypes with
contrasting phenotypes [34]. By integrating genotype and phenotype data for a large
number of individuals, pan-genomes would also facilitate genome-wide association studies
(GWAS). Graph databases are very powerful for representation and mining of various types
of biological data. In this thesis, we integrated genomes, structural features and proteomes
of large number of species in a Neo4j graph database [35]. Graph databases have
demonstrated to significantly outperform relational databases on querying complex
biological networks with protein-protein interaction, drug-target, and gene-disease
relationships [36].

6.5 Concluding remarks

Atthe time this PhD project started in May 2015, state-of-the-art pan-genome methods were
able to represent only tens of whole bacterial genomes without any possibility to be utilized
in real practice. In this thesis, we laid the foundation for practical pan-genomics specifically
for large and complex genomes, opening up the way for crop pan-genomics. PanTools is
among the first pan-genomic platforms able to offer some useful key functionalities for
comparative studies. The design and engineering introduced in this thesis contributes
ample novelty to the field which can be reused and further developed in future pan-genomic
platforms. There are extensive unexplored areas in the field which will open up new
applications and interesting bioinformatics challenges. At the time of this writing, people
from various fields of biological research have come to the consensus that pan-genomes will
make the future of comparative genomics. Considering the growing number of pan-genomic
tools and the amount of effort on new developments, applications and improvements, there
is a bright future ahead for the field of pan-genomics.

101

‘ Discussion

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, et al. Whole-genome
random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995;269:496-512.

Yang X, Lee W-P, Ye K, Lee C. One reference genome is not enough. Genome Biol. 2019;20(1):104.
Tao Y, Jordan DR, Mace ES. Crop genomics goes beyond a single reference genome. Trends Plant Sci.
2019;24(12):1072-4.

Marschall T, Marz M, Abeel T, Dijkstra L, Dutilh BE, Ghaffaari A, et al. Computational pan-genomics:
Status, promises and challenges. Brief Bioinform. 2018;19(1):118-35.

Konig S, Romoth LW, Gerischer L, Stanke M. Simultaneous gene finding in multiple genomes.
Bioinformatics. 2016;32(22):3388-95.

Igbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using
colored De Bruijn graphs. Nat Genet. 2012;44(2):226-32.

Paten B, Herrero], Beal K, Fitzgerald S, Birney E. Enredo and Pecan: genome-wide mammalian
consistency-based multiple alignment with paralogs. Genome Res. 2008;18(11):1814-28.

Ernst C, Rahmann S. PanCake: a data structure for pangenomes. Proc Ger Conf Bioinforma. 2013;34:35-
45.

Kahn CL, Hristov BH, Raphael BJ. Parsimony and likelihood reconstruction of human segmental
duplications. Bioinformatics. 2010;26(18):i446-52.

Chen X, Zhang Y, Zhang Z, Zhao Y, Sun C, Yang M, et al. PGAweb: a web server for bacterial pan-genome
analysis. Front Microbiol. 2018;9(1910).

Ding W, Baumdicker F, Neher RA. panX: pan-genome analysis and exploration. Nucleic Acids Res.
2018;46(1):e5-€5.

PengY, Tang S, Wang D, Zhong H, Jia H, Cai X, et al. MetaPGN: a pipeline for construction and graphical
visualization of annotated pangenome networks. Gigascience. 2018;7(11):giy121.

Clarke TH, Brinkac LM, Inman JM, Sutton G, Fouts DE. PanACEA: a bioinformatics tool for the
exploration and visualization of bacterial pan-chromosomes. BMC Bioinformatics. 2018;19(1):246.
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple
pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc
Natl Acad Sci. 2005;102(39):13950-5.

Marcus S, Lee H, Schatz MC. SplitMEM: A graphical algorithm for pan-genome analysis with suffix
skips. Bioinformatics. 2014;30(24):3476-83.

Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with compressed suffix trees and the
Burrows-Wheeler transform. Bioinformatics. 2016;32(4):497-504.

Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat Rev Genet. 2020;21(4):243-
54.

Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin
Microbiol. 2008;11(5):472-7.

Jin M, Liu H, He C, Fu J, Xiao Y, Wang Y, et al. Maize pan-transcriptome provides novel insights into
genome complexity and quantitative trait variation. Sci Rep. 2016;6(1):18936.

Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan C-KK, et al. The pangenome of hexaploid
bread wheat. Plant J. 2017;90(5):1007-13.

Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, et al. Genomic variation in 3,010 diverse
accessions of Asian cultivated rice. Nature. 2018;557(7703):43-9.

Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet.
2010;19(R2):R227-40.

Vollger MR, Logsdon GA, Audano PA, Sulovari A, Porubsky D, Peluso P, et al. Improved assembly and
variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Ann Hum
Genet. 2020;84(2):125-40.

Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinlON: delivery of nanopore sequencing
to the genomics community. Genome Biol. 2016;17(1):239.

Deschamps S, Zhang Y, Llaca V, Ye L, Sanyal A, King M, et al. A chromosome-scale assembly of the
sorghum genome using nanopore sequencing and optical mapping. Nat Commun. 2018;9(1):4844.
Jiao W-B, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, et al. Improving and correcting the
contiguity of long-read genome assemblies of three plant species using optical mapping and
chromosome conformation capture data. Genome Res. 2017;27(5):778-86.

Brandler WM, Antaki D, Gujral M, Noor A, Rosanio G, Chapman TR, et al. Frequency and complexity of
de novo structural mutation in autism. Am / Hum Genet. 2016;98(4):667-79.

Wang Y, Xiong G, Hu], Jiang L, Yu H, Xu J, et al. Copy number variation at the GL7 locus contributes to
grain size diversity in rice. Nat Genet. 2015;47(8):944-8.

102

29.

30.

31

32.

33.

34.

35.
36.

Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet.
2011;12(5):363-76.

Huddleston], Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, et al. Discovery and
genotyping of structural variation from long-read haploid genome sequence data. Genome Res.
2017;27(5):677-85.

Jandrasits C, Dabrowski PW, Fuchs S, Renard BY. Seq-seq-pan: building a computational pan-genome
data structure on whole genome alignment. BMC Genomics. 2018;19(1):47.

Zan Y, Payen T, Lillie M, Honaker CF, Siegel PB, Carlborg O. Genotyping by low-coverage whole-
genome sequencing in intercross pedigrees from outbred founders: a cost-efficient approach. Genet
Sel Evol. 2019;51(1):44.

Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics.
2002;18(3):452-64.

Tao Y, Zhao X, Mace E, Henry R, Jordan D. Exploring and exploiting pan-genomics for crop
improvement. Mol Plant. 2019;12(2):156-69.

Van Bruggen R. Learning Neo4j. Packt Publishing; 2014.

Yoon B-H, Kim S-K, Kim S-Y. Use of graph database for the integration of heterogeneous biological
data. Genomics Inform. 2017;15(1):19.

103

Summary

Comparative genomics investigates the genomic makeup of species to unravel their
unique variations and evolutionary relationships. High-throughput sequencing
technologies have enabled reading the DNA content of a wide variety of species at an
unprecedented rate. With the ongoing advances in these technologies, many species are
or will soon be represented by a large number of genomes. Such genomes can be highly
similar, but their differences in sequence and structure are of interest in many
applications as they usually underlie specific traits. Having a wealth of genomes for a
species, the current practice of basing comparative studies on a single reference genome
is neither efficient nor effective. Traditional reference-based approaches make use of only
a single reference genome, ignoring the potentially novel genomic content found in other
individuals. As a result, over the last decade there has been a growing interest in
developing pan-genome structures capable of capturing a wide genomic landscape of
species. In this thesis, we develop a pan-genomic platform based on a novel
representation of genomes with some functionalities for sequence retrieval, structural
annotation, homology detection and read mapping.

Chapter 1 briefly introduces molecular biology and the revolution in genome
sequencing. Then we introduce evolution and some basic concepts in genomics and
comparative genomics which are necessary for the readers to be able to follow the
chapters of this thesis. We emphasize the shortcomings of traditional reference-based
approaches in comparative genomics and introduce pan-genomics as a solution which
recently has received much attention. We introduce the essentials of a pan-genomic
platform from the perspective of the Computational Pan-genomics Consortium, and
classify existing pan-genomic data structures into two general categories of variation-
aware and multi-genome data structures. Finally, we discuss the de Bruijn graph
including the stranded version we introduce in chapter 2.

Chapter 2 highlights the necessity of a transition from reference-centric to pan-
genomic approaches. As a comprehensive representation of large number of genomes,
we introduce a generalized de Bruijn graph. We present a novel algorithm to construct
such a DBG and take advantage of the Neo4j graph database for consistent and scalable
storage of the graph. We develop a toolset, called PanTools, which provides some useful
functionalities e.g. for annotation, graph update and sequence retrieval. We demonstrate
the performance of PanTools on large datasets of bacterial, fungal and plant genomes. We
illustrate how sequence variation creates specific sub-structures in the pan-genome
including an example of the variability of a famous gene, called FRIGIDA, among 19 A.
thaliana accessions.

Chapter 3 emphasizes the need for highly efficient tools to detect homology in the
ever-increasing genomic data. We present an efficient method for detecting homology
across a large number of individuals at various evolutionary distances. The presented k-
mer based approach considerably reduces the number of alignments between pairs of
peptide sequences without sacrificing sensitivity. We demonstrate accuracy, scalability,

104

efficiency and applicability of the presented method in large proteomes of bacteria, fungi,
plants and Metazoa. The detected homology groups are stored in the pan-genome graph
database, and can be queried, for example, for their size, copy number and conservation
rate.

Chapter 4 focuses on correcting errors in next-generation sequencing reads which
can improve the performance of assembly and increase the accuracy and sensitivity of
quantitative analyses such as differential expression analyses and variant calling. We
develop a tool, called ACE, based on a k-mer trie data structure to correct for substitution
errors in short read data. We show that ACE yields higher gains in terms of coverage
depth, outperforming state-of-the-art competitors in the majority of cases, on both MiSeq
and HiSeq Illumina data.

Chapter 5 presents a multi-genome read mapping approach which utilizes the index
and pan-genome structure, introduced in Chapter 2, to map short reads to large number
of genomes, simultaneously. One advantage is the efficiency as the joint index enables
anchoring the reads to all the genomes at once avoiding repetitive alignments when the
genomes are highly similar. Another advantage is that we can resolve the reference bias
by including regions that are entirely missing in the reference but present in some other
accessions. Moreover, such a multi-genome read mapper can be utilized in binning and
abundance estimation of meta-genomic samples. In this chapter, we successfully apply
this approach to map genomic and metagenomic reads to large collections of viral,
archaeal, bacterial, fungal and plant genomes.

Chapter 6 puts forward some ideas on the future challenges and opportunities in the
field of pan-genomics. We discuss the emerging shift from reference-centric to pan-
genomic approaches and the necessity of substantial adjustments and redevelopments of
traditional methods and applications such as genome annotation, structural variation
detection and real-time pan-genome visualization. We conclude that the design and
engineering introduced in this thesis contributes to the field and the growing number of
similar efforts indicates a bright future ahead for comparative pan-genomics.

105

Acknowledgements

[would like to start this piece of writing with my upmost gratitude to my beloved
wife for all the support, patience, and love she has devoted to our married life. Samin, you
were the one who motivated me to take this overseas adventure, and stood by me till it is
about to be finished now. Since we arrived to Wageningen in that gloomy afternoon of
October 15t 2014, you have been giving me warmth, confidence and love in every single
moment; you made everything easy. Over these years, you have been always ambitious
and strong: you gave up your prestigious position as a faculty member to take this
adventure with me, you overcame the challenge of achieving a Bioinformatics MSc here
at WUR and endured the labor of bringing our sweetest present ever, Raybod, to this
world; I am just proud of you.

My deepest sense of appreciation also goes to my beloved parents. Dear baba and
maman, | left you for my bachelor studies when I was 18, and since then the story of my
studies and separation never came to an end. That is of course a pity, but you embraced
it all the time to let me grow and experience. I cannot put into the words my passion
towards you, but can remark it that I have been always proud of you and feel very
thankful for having you in my life. Thank you for making my childhood like a sweet dream.
I also would like to express my appreciation to my dearest family members, my sisters
Sahar and Sorour and my brothers Siamak and Soroush, and of course my beloved nieces
and nephews. Over these years, [always missed you and all the beautiful moments we
used to spend together. Thank you for looking after our parents and undertaking part of
the responsibilities that I should have taken care of if | was there.

[also would like to extend my gratitude to my parents in law. Having three of four
children apart pursuing their wishes has not been a favorable life style for you, but you
have been so loving to accept that in favor of our preferences. Thank you for all your
support and patience. Also, I would like to thank my sister in law, Hadis and her husband
Amir for taking many family responsibilities in Iran. We were also so lucky to have
Mohsen, Pauline and Sara, my brother and sisters in law here in Wageningen, for quite a
long period. Knowing you are here and we are not alone in this land gave us the
confidence to stay and study. Thank you for all your support and help.

I am also very grateful of our Iranian friends for their company giving us the warm
feeling of being home, in the Netherlands. Thank you, Mohsen, Leila, Nikdad, Arman,
Nafiseh, Narges, Mehdi, Mohammad, Hamed, Behzad, Naser, Mahrooz, Farshid, and other
friends whose name does not appear here. I cherish our time together and hope to meet
you again. My special thanks to Ehsan for being such a great friend and colleague. I never
forget the wonderful time we had together in Wageningen. Thank you for all your
support, advice and fantastic memories. I also would like to thank my best friends in Iran,
Keyvan, Ali, Pouya and Bijan.

[also would like to extend my gratitude to all my colleagues in Bioinformatics group.
Thank you Harm for teaching me Advanced Bioinformatics, and many other lessons during
our meetings and retreats. You are very kind, knowledgeable and modest. Thank you

106

Marnix, Aalt-jan and Justin for your efforts and contribution to make such a flourishing
group. [learned a lot from you and felt very proud of working next to you. I also never
forget the wonderful time I had working with the other PhDs, PostDocs and master
students, sitting in the corridor or the open space at Radix west. Thank you, Judith, Ben,
Mohammad, Rens, Sander, Sevgin, Miguel, Vittorio, Satria, Carlos, Christian, Eef, Ronald,
Raul, Hernando, Victoria, Barbara, Roven, Margi, and my dear paranymphs Mehmet and
Janani. 1 appreciate all sweet memories we share from retreats, courses and conferences
over these years. | am sure that we have made friendships for life; I hope we can catch up
every once in a while.

Also, my sincere thanks to the secretaries Maria and Marie-José for all their endless
help and also all people from applied Bioinformatics group for being present to share
their experiences and expertise. During my PhD studies, I also met great scientists in
workshops and conferences which I would like to recognize their impact in my learning
process: many thanks to Tobias Marschall, Thomas Abeel, Paul Kersey, Veli Mdkinen, Eric
Rivals, Rayan Chikhi, Paul Medvedev, Sven Rahmann, Erik Garrison, Alexander Schénhuth
and Jasmijn Baaijens. I also would like to thank David Judge and Freek Bakker for their
wonderful style of teaching during the courses that I had the chance to participate in. I
also would like to express my appreciation for my current KeyGene’s colleagues, in
particular, managers of our group and department, Antoine Janssen and Roeland van Ham,
firstly for hiring me in their team after my PhD period and, secondly for giving me
sufficient free time to wrap up my thesis after being employed.

Last but not least, I would like to appreciate all kind supports from my supervisors
and promotors. Sandra, this thesis would not have been reached to such a rewarding end
without your continuous supervision and guidance. Believe or not, you were my best
teacher ever with the greatest sense of responsibility. Thank you very much for all your
efforts you dedicated to my training and research. Eric, I received precious support from
you in experimental design of my research. The certainty of your guidance gave me the
drive to run all the experiments you suggested. Without your guidance, PanTools would
not have been demonstrated as an applicable pan-genomic platform. I also would like to
thank to my external supervisor, Jaap Heringa for his precious input to my project. I
would like to finish the acknowledgements with my uppermost appreciation to you Dick.
You believed me as a MSc graduate from Iran, hired me and provided me the chance to
grow here. When first arrived in the Netherlands, I got a great reception from you which
was beyond my expectation. [cannot show my gratitude within these lines, but I will
always recall that on October 15t 2014, you drove to the Schiphol airport with your own
car to pick me and Samin up, took us to an apartment you had already rented, and invited
us to join you, Barbara and your beautiful children for dinner; that just meant a lot to us.
You are a great professor full of understanding. Thank you very much.

107

List of publications

Sheikhizadeh S, de Ridder D, Schranz ME, Smit S. Pan-genomic read mapping. bioRxiv,
2019.DO0I1: 10.1101/813634.

Sheikhizadeh S, de Ridder D, Schranz ME, Smit S. Efficient inference of homologs in large
eukaryotic pan-proteomes. BMC Bioinformatics. 2018;19(1):340.

The Computational Pan-Genomics Consortium. Computational pan-genomics: status,

promises and challenges. Briefings in Bioinformatics, 2018; 19(1):118-35,

Sheikhizadeh S, Schranz ME, Akdel M, de Ridder D, Smit S. PanTools: representation,
storage and exploration of pan-genomic data. Bioinformatics. 2016;32(17):487-93.

Sheikhizadeh S, de Ridder D. ACE: accurate correction of errors using K-mer tries.

Bioinformatics. 2015;31(19): 3216-18.

Sheikhizadeh S, Hosseini S. SMOTER, a structured motif finder based on an exhaustive

tree-based algorithm. Current Bioinformatics. 2014;9(1):34-43.

108

This PhD project Pan-genomics for crops, was funded by the Graduate School Experimental
Plant Sciences (EPS), Wageningen University & Research, in 2015.

Thesis layout: Siavash Sheikhizadeh Anari
Cover design: Samad Bahrami Kashkooli, kashkoolisamad@gmail.com
Printed by: ProefschriftMaken, www.proefschriftmaken.nl

Propositions

1. To support practical use, computational pan-genomics should focus more on including
relevant annotations and less on developing novel efficient data structures.
(this thesis)

2. De Bruijn graphs are not appropriate representations of highly diverged sequences as their
resolution is limited by the k-mer size.

(this thesis)

3. Debugging is not essentially the process of removing bugs, but replacing them with

preferably less fatal ones (rebugging).

4. To prevent researchers from wasting effort on resolving inconsistencies and dependencies,

FAIRness principles need to be enforced by public scientific software portals.

5. Social distancing leads to an appreciation of social networking even by those who did not

appreciate this earlier.

6. Developing countries that do not cherish their human resources should be classified as de-

developing countries by UN.

Prepositions belonging to the thesis, entitled

Towards comparative pan-genomics

Siavash Sheikhizadeh Anari
Wageningen, 14 July 2020

	Lege pagina

