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examine trait-environment relation-
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• Wecompare dc-CAwith CWM-RDA and
RLQ for analysis of trait-environment
relationships.

• We illustrate the application and bene-
fits of dc-CA to biological data analysis.

• Human impact onmacroinvertebrates is
of similar magnitude to the natural im-
pact.

• dc-CA may be useful to assess mecha-
nistic links between multiple stressors
and ecosystem health.
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Benthic macroinvertebrate communities are used as indicators for anthropogenic stress in freshwater ecosys-
tems. To better understand the relationship between anthropogenic stress and changes in macroinvertebrate
community composition, it is important to understand how different stressors and species traits are associated,
and how these associations influence variation in species occurrence and abundances. Here, we show the capac-
ity of the multivariate technique of double constrained correspondence analysis (dc-CA) to analyse trait-
environment relationships, and we compare it with the redundancy analysis method on community weighted
mean values of traits (CWM-RDA), which is frequently used for this type of analysis. The analyses were based
on available biomonitoring data for macroinvertebrate communities from the Danube River. Results from for-
ward selection of traits and environmental variables using dc-CA analyses showed that aquatic stages, reproduc-
tion techniques, dispersal tactics, locomotion and substrate relations, altitude, longitudinal and transversal
distribution, and substrate preferendumwere significantly related to habitat characteristics, hydromorphological
alterations and water quality measurements such as physico-chemical parameters, heavy metals, pesticides and
pharmaceuticals. Environmental variables significantly associated with traits using the CWM-RDAmethod were
generally consistent with those found in dc-CA analysis. However, the CWM-RDA does neither test nor explicitly
select traits, while dc-CA tests and selects both traits and environmental variables. Moreover, the dc-CA analysis
revealed that the set of environmental variables was much better in explaining the community data than the
available trait set, a kind of information that can neither be obtained from CWM-RDA nor from RLQ
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(Environment, Link and Trait data), which is a close cousin of dc-CA but not regression-based. Our results suggest
that trait-based analysis based on dc-CA may be useful to assess mechanistic links between multiple anthropo-
genic stressors and ecosystem health, but more data sets should be analysed in the same manner.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Freshwater ecosystems often receive a wide range of chemical in-
puts from urban, industrial and agricultural activities (Rico et al.,
2019; Loos et al., 2017). Chemical mixtures together with other anthro-
pogenic stressors such as habitat disturbance, hydrological alterations
or organic matter loads may negatively affect benthic macroinverte-
brate communities (Rico et al., 2016), which play an important role in
energyflow transfer across trophic levels and contribute to organicmat-
ter decomposition and nutrient cycling (Wallace and Webster, 1996;
Covich et al., 1999). On the other hand, benthic macroinvertebrates
are good candidates to assess the impact of humanpressure on freshwa-
ter ecosystems because of their short lifespan and their relatively high
sensitivity to some chemical classes (e.g. pesticides, home-care prod-
ucts) (Resh and Rosenberg, 1993), and are regularlymonitored to assess
the ecological status of surface waters (EC, 2000).

Traits are phenotypic or ecological characteristics of an organism,
usually measured at the individual level, but often applied to character-
ize the ecology of a given species, to reflect on their potential resilience
and resistance to environmental disturbances (Townsend and Hildrew,
1994; Van den Brink et al., 2011). For instance, maximal size, reproduc-
tivemethod, or feeding strategies have the potential to reflect the adap-
tation of species to relatively disturbed environments (Gayraud et al.,
2003). Trait-based approaches use species traits togetherwith their tax-
onomic classification to assess ecosystem responses against environ-
mental change (Baird and Van den Brink, 2007). Therefore, these
approaches can improve the ability to understand the structure and dy-
namics of ecological communities and potentially predict their sensitiv-
ity and recovery potential to natural or human disturbances (Keddy,
1992; Díaz and Cabido, 1997; Dray et al., 2014). In fact, biological traits
have been widely used in the field of ecological risk assessment (ERA)
and biomonitoring of aquatic ecosystems to reveal impacts of various
types of human disturbance on invertebrate communities, including or-
ganic pollution, heavy metal pollution, cargo-ship traffic, eutrophica-
tion, land use and hydrological alterations (e.g., Dolédec and Statzner,
2008; Statzner and Beche, 2010; Culp et al., 2011; De Castro-Català
et al., 2015; Rico and Van den Brink, 2015; Kuzmanović et al., 2017;
Lemm and Feld, 2017), especially in the temperate zone where biologi-
cal attributes of invertebrates arewell documented (Tachet et al., 2010).
For example, Kuzmanović et al. (2017) found that pesticides, highmetal
pollution, nutrients and flow alterations significantly affected trait com-
position of benthic macroinvertebrate assemblages in polluted Iberian
rivers.

There are several approaches to examine trait-environment rela-
tionships. Currently, the most widely used approach is perhaps redun-
dancy analysis (RDA) of community weighted mean trait values
(CWM-RDA), where the weights are the species abundances in the
monitoring samples (Lavorel et al., 2008; Kleyer et al., 2012) with RLQ
(Environment, Link and Trait data; Dray et al., 2014) as runner up. The
CWM-RDA approach is a community-based analysis and thus can only
test the significance of the effects of environmental variables but not
the significance of traits (Peres-Neto et al., 2017). Moreover, it yields el-
evated Type I error rate when only the environment is important in
structuring species distributions, i.e. when there is in fact no trait-
environment association (Peres-Neto et al., 2017). As a result, Peres-
Neto et al. (2017) proposed to replace the use of CWM-RDA bymore ro-
bust statistical methods. Recent advancements on statistical methods
show that double constrained correspondence analysis (dc-CA) is a
direct and powerful method to predict composition of community as-
semblages from environmental and trait predictors, which has advan-
tages over other methods like CWM-RDA and RLQ for measuring and
testing the direct link between variations in species traits and environ-
mental variables (Dolédec et al., 1996; Dray et al., 2014; Ter Braak et al.,
2018a). Dc-CA is very similar in spirit as RLQ; it is in fact its regression-
based cousin, whereas RLQ is covariance (coinertia) based. Both dc-CA
and RLQ are based on an ordination of a rectangular response data
table in which the scores of both rows (samples) and columns (spe-
cies) are constrained by linear combinations of predictor variables
(i.e., environmental variables and traits), which attempts to find a
low-dimensional representation of the interaction effects of traits
and environmental variables on invertebrate communities in a log-
linear model (Ter Braak et al., 2018a). Both do so by finding linear
combinations of traits and of environmental variables. RLQ does so
by maximizing covariance, whereas dc-CA does so by maximizing
the fourth corner correlation between these linear combinations
using weighted-least squares, where the weights are the site and
species totals (Ter Braak et al., 2018a). The power and efficiency of
the fourth corner correlation for testing trait-environment interac-
tion was shown in Ter Braak (2017). Compared to RLQ, dc-CA and
CWM-RDA take into account correlations among environmental var-
iables. Compared to CWM-RDA, dc-CA takes into account the correla-
tion among traits as well (Ter Braak et al., 2017, 2018a). More
importantly, in simulations dc-CA outperforms the RLQ and CWM-
RDA in terms of statistics' sampling accuracy and statistical power
(Peres-Neto et al., 2017; Ter Braak et al., 2018a). However, to the
best of our knowledge, there are no studies that apply dc-CA on
real biomonitoring data.

In the present study, we assessed trait-environment relations of
benthic macroinvertebrate communities sampled from the Danube
River by using dc-CA. We also performed a CWM-RDA analysis and (to
a lesser extent) RLQ and compared their outcomes with those provided
by dc-CA. As such, we aimed to illustrate the application and the bene-
fits of dc-CA to biological data analysis, which is expected to expand its
application to establish causal relationships between specific stressors
and community responses in future evaluations.

2. Materials and methods

2.1. Background of dc-CA and comparison with CWM-RDA

Double constrained ordination is an ordination of a rectangular re-
sponse data table in which the scores of both rows (samples) and col-
umns (species) are constrained by linear combinations of predictor
variables (i.e., environmental variables and traits) (see Ter Braak et al.,
2018a for algorithms). In the present study, the predictor variables for
the rows are called environmental variables and the predictor variables
for the columns are called traits. As in RLQ, there are thus three data ta-
bles: a rectangular n × m table Y containing the abundances (or pres-
ence/absence) of species (m) in samples (n), a rectangular n × q table
E with the values of environmental variables (q) in samples (n), and a
rectangular m × p table T describing traits (p) of species (m). A brief
comparison of dc-CA with RLQ is provided in the Discussion section. In
dc-CA, a fourth table is needed, which is the transpose of the first one,
i.e. a rectangular m × n table YT containing the abundances (or pres-
ence/absence) of species (m) in the samples (n) (Ter Braak et al.,
2018a). The fourth table (YT) allows for species-level analysis, while
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the first table (Y) allows for community-level analysis. The fourth table
allows a) for permutation tests with the response variables (columns of
Y) as the statistical units so as to test for the significance of the trait ef-
fects on the response data Y and b) for determination of howmuch var-
iation in the abundance values can be explained by the traits. Without
any statistical testing and variation decomposition, the analysis can be
performed in a single step (a singular value decomposition), but often
it is also of interest howwell the traits and the environmental variables
each explain the community data using single constrained ordinations
(steps 1 and 3 below) and how well the environmental variables ex-
plain the trait-structured variation and how well the traits explain the
environmentally structured variation (Peres-Neto et al., 2017). The full
analysis thus needs four steps. Twomore steps are required a) to deter-
mine what the maximum strength of the trait-environment relation
could have been for a given abundance matrix Y (step 5 below) and
b) to clue the results of all steps together (step 6). The six steps for the
dc-CA are given below:

1. The first step is a canonical correspondence analysis (CCA; Y ~ E)
constraining the species composition by environmental variables.
This step allows to determine howmuch variation in the abundance
values can be explained by the environmental variables. It also gives
species scores (S*) to be used in the next step; S* is anm× q* table of
scores with q* the rank of the environmental variables and its en-
tries are species niche centroids (Peres-Neto et al., 2017) of the
orthonormalized environmental variables. S* represents the envi-
ronmentally structured variation in the abundance table.

2. The second step is a weighed RDA (S* ~ T), which turns the single
constrained ordination of step 1 into a double constrained ordination
(Ter Braak et al., 2018a). This step is a species-level analysis, which
gives a significance test of whether the traits modulate the species-
environment relationship and a measure of how well the traits ex-
plain the environmentally structured variation, namely the percent-
age variance in the species niche centroids (in S*) that is explained by
the traits.

3. The third step is a CCA (YT ~ T) constraining the transposed species
composition by traits. This step allows to determine howmuch varia-
tion in the abundance values canbe explained by the traits. It also gives
sample scores (R*) to be used in the next step; R* is an n × p* table of
scores with p* the rank of the trait data and its entries are community
weighted means (Peres-Neto et al., 2017) of the orthonormalized
traits. R* represents the trait-structured variation in the abundance
table.

4. The fourth step is a weighted RDA (R* ~ E), which turns the single
constrained ordination of step 3 into a double constrained ordination
that is identical to the one obtained in step 2 (Ter Braak et al., 2018a).
This step is a case-level (community-level) analysis, which gives a
significance test of whether the environmental variables modulate
the species-trait relationship and ameasure of howwell the environ-
mental variables explain the trait-structured variation, namely the
percentage variance in the community weighted means (in R*) that
is explained by the environmental variables.

5. The fifth step is a CA to find scores for samples and species that max-
imize the fourth-corner correlation without any constraints on rows
and columns of Y.

6. The last step is used for calculating the dc-CA scores from steps 1–4,
in which all resulting summary statistics and ordination scores are
collected. The number of double constrained axes is equal to themin-
imum of the number of environmental variables and the number of
traits.
Compared to dc-CA, CWM-RDA consists only of step 4 with R* being

simply the community weighted means of the individual traits. CWM-
RDA can therefore not establish whether the analysed traits are really
related to the environmental variables, because even random traits
may yield significant relationships (Peres-Neto et al., 2017). For this,
one also needs to perform a species-level analysis (such as in step 2).
2.2. Danube River dataset

The Danube River dataset was used in this study, which has been
previously described in detail in Rico et al. (2016). In that study, vari-
ancepartitioningwas used in an RDAandCMW-RDA approach to estab-
lish taxonomic and trait-environment relationships, and to evaluate
how much of the variation in trait means and species abundances can
be explained by different anthropogenic stressors (Rico et al., 2016). It
contains 55 sampling sites located in eight countries of Central and
Eastern Europe, and 393 macroinvertebrate taxa (see Dataset S1 in
Supporting Information A for taxa). Samples were collected between
the 13th of August and the 25th of September of 2013 (Fig. 1). Benthic
macroinvertebrates were sampled in the littoral zone (up to a maxi-
mum water depth of 1.5 m) using the Multi-Habitat Sampling (MHS)
method, stored in formaldehyde (4%) in-situ and identified to the low-
est taxonomic resolution. A more detailed description of sampling
methods can be found in Liška et al. (2015).

The environmental data were obtained from Rico et al. (2016). We
divided the full set of 285 environmental variables (Dataset S2) into
nine groups (number of parameters in parentheses): habitat character-
istics (13), hydromorphological alterations (10), physico-chemical
parameters (19), heavy metals (8), pesticides (39), pharmaceuticals
(134), industrial chemicals (46), home and personal care products
(HPCPs; 4) and miscellaneous compounds (12). Here habitat character-
istics and hydromorphological alterations were considered natural vari-
ables while the remaining seven groups were considered anthropogenic
variables. The substrate PC1 and substrate PC2 in the habitat characteris-
tics group were derived from PCA on seven substrate variables (Fig. S1),
which respectively correspond to scores on thefirst and second principal
components, as in Rico et al. (2016). Concentration values below the
limit of detection (LOD) were converted to half of the LOD for data anal-
ysis. In the present study we examined the trait-environment relation-
ships based on concentration data of individual chemicals, whereas
Rico et al. (2016) used the Toxic Unit (TU) approach based on acute tox-
icity data (EC50–48 h) for Daphnia magna to evaluate the toxic stress of
heavy metals and organic contaminants at each sampling site. Accord-
ingly, we were able to identify which evaluated environmental variables
and traits were associated with the variation in species occurrence and
abundances across the sampling sites.

Trait data of the benthic macroinvertebrate communities were
also obtained from Rico et al. (2016). However, there were no trait
data for ten macroinvertebrate taxa (i.e., Hemimysis anomala,
Katamysis warpachowsky, Limnomysis benedeni, Paramysis baukensis,
Paramysis intermedia, Paramysis lacustris, Paramysis sp., Paramysis
ullski, Schizorhamphus scabriusculus and Hydrachnidia Gen. sp.).
They were thus excluded from the present study. We divided the full
trait dataset presented in Rico et al. (2016) into biological and ecological
traits. Biological traits can provide a putative mechanistic link between
chemical exposure and the sensitivity or recovery potential of benthic
macroinvertebrate populations, and are less confounded by natural spa-
tial gradients, contributing to reliably assess human impact as compared
to ecological traits (Dolédec et al., 1999). The biological trait dataset
(Datasets S3 and S4) was comprised of 11 traits divided into 63 catego-
ries, while the ecological trait dataset (Datasets S5 and S6) consisted of
11 traits classified into 55 categories. Biological traits describe life cycle
features (maximal size, aquatic stages, life cycle duration, potential num-
ber of generations per year), resistance or resilience capacities (dispersal,
substrate relation, resistance stages), general physiology (respiration), as
well as reproduction and feeding behaviour (reproduction, feeding habits,
food) (Usseglio-Polatera et al., 2000; Menezes et al., 2010). Ecological
traits reflect habitat preferences, such as transversal distribution, longitu-
dinal distribution, substrate, current velocity and trophic status prefer-
ence (Usseglio-Polatera et al., 2000; Menezes et al., 2010). The original
trait datasets (Datasets S3 and S5) were used for dc-CA, while average
trait datasets (Datasets S4 and S6; see below for calculation) were used
for CWM-RDA.



Fig. 1. Location of sampling sites in the Danube River. Blue, yellow and red circle symbols represent sampling sites in the upper, middle and lower stretches of the river, respectively. Sites
3A and 12A are located in the downstream of the dam of a power plant and downstream of the urban area of Bratislava, respectively. Taken with permission from Rico et al. (2016). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.3. Data analysis

Because of the large number of environmental variables, we first de-
termined which of the nine groups of variables were significantly asso-
ciated with the species composition and then searched for trait-
environment relations in each significant group separately. Because of
the limited number of samples and the fact that human-impact trends
are likely correlated with geographical upstream-downstream differ-
ences,we did not attempt to adjust the effects of one group for the effect
of the others.

In detail, the procedure was as follows. We first applied CCA to each
group with Monte Carlo (MC) permutation tests and p-values were ad-
justed by Holm's sequential Bonferroni method. However, the number
of industrial chemicals (n = 46) and pharmaceuticals (n = 134) were
large compared to the number of samples (n = 55), which would
make the constrained ordination models effectively unconstrained
and the permutation tests unreliable. We thus pre-screened environ-
mental variables from these two groups for further statistical analyses;
only variables that were individually significant after Holm correction
were retained for further analysis (see Table S1 in Supporting Informa-
tion A for adjusted p-values of individual variables). Subsequently, to
search for trait-environment relationships, dc-CA analyseswith forward
selection of variables (see Text S1 in Supporting Information B for spe-
cific steps) were performed for each significant group of environmental
variables in combination with biological traits and ecological traits, sep-
arately. During the forward selection procedure of dc-CA, p-values of
environmental variables and traits were adjusted by false discovery
rate for multiple testing at the 5% significance level. The relations of en-
vironmental variable-trait, environmental variable-species, environ-
mental variable-site, trait-site, trait-species and species-site can be
interpreted from corresponding biplots.

For comparison with dc-CA, CWM-RDA analyses were performed
separately on aforementioned eight groups of environmental vari-
ables using average biological or ecological trait data (Datasets S4
and S6). CWM-RDA allowed for forward selection of environmental
variables, but not of traits. Traits were selected post-hoc on the
basis of their fit. This selection was solely to produce readable
graphs.
In above analyses, benthic macroinvertebrate abundance data were
quarter-root transformed to down-weigh high abundance values and
obtain approximately a normal distribution of the data (Van den Brink
et al., 2000). CWM trait values were calculated from standardized traits
and quarter-root-transformed abundance data. In addition, environmen-
tal variables (except substrate PC1 and PC2) were log10-transformed
prior to analysis to reduce the influence of outliers, with log10 of half
the smallest non-zero values being imputed for values equal to zero.
The RDA in CWM-RDAused only centring of the CWMvalues, but no fur-
ther standardization. The reason for this is that the CWM values are al-
ready on a common scale due to the standardization of the traits before
the CWM-calculation. Moreover, the standard deviation of the CWM
values of a particular trait is measure of the importance of the trait, so
that further standardization (by division by the standard deviation) in
the RDA would remove possibly important information (Ter Braak
et al., 2018a). The statistical significance was set as 5% after p-value cor-
rection and was determinedwithMonte Carlo simulation tests (number
of permutations=5000). Allmultivariate analyseswere performedwith
the Canoco 5.12 software (Ter Braak and Šmilauer, 2018), with an
Canoco project file with description and analyses as Supporting Informa-
tion C. Additionally, an R script for dc-CA is provided in Supporting
Information D.

3. Results

3.1. Double constrained correspondence analysis (dc-CA)

3.1.1. dc-CA based on the biological trait dataset
Concerning the effects of the groups of environmental variables on

species abundance, eight of the nine groups of environmental variables
showed significance as judged by overall tests using CCA (p=0.018 for
each, after Holm-correction for nine tests); only the HPCPs group was
non-significant. The group of pesticide variableswas the one that better
explained the abundance variation, as judged by the adjusted R2 (26%),
closely followed by the pharmaceuticals (23%) and physico-chemical
environmental variables (20%) (Table 1). The biological traits had an ad-
justed R2 of 9.7% (p = 0.0002). When the variables selected by dc-CA
(Table 1) were used to explain abundance by a CCA, the adjusted R2



Table 1
Environment and biological traits: summary of single and double constrained correspondence analyses performed on each group of environmental variables. All biological traits jointly
explain 22% of the abundance variation (52 df, adjusted R2 = 9.7%, p = 0.0002).

Dataset Single constrained-all
environmental variables

Single constrained-selecteda variables Double constrained-selected variables

Environmental variables Traits

dfb R2 adjusted-R2 p-value df R2 adjusted-R2 p-value df R2 adjusted-R2 p-value df_Env df_Traits R2 adjusted-R2 p-value

Habitat
characteristics

13 36% 16% 0.0018 6 23% 14% 0.0018 8 8.2% 6.2% 0.0018 6 8 4.0% 3.8% 0.0018

Hydromorphological
alterations

10 24% 7.3% 0.0018 2 7.9% 4.4% 0.0018 8 7.1% 5.2% 0.0018 2 8 1.2% 1.2% 0.0018

Physico-chemical
parameters

19 48% 20% 0.0018 5 22% 14% 0.0018 14 11% 7.6% 0.0018 5 14 4.8% 4.4% 0.0018

Heavy metals 8 25% 11% 0.0018 2 12% 8.4% 0.0018 9 8.5% 6.3% 0.0018 2 9 2.5% 2.5% 0.0018
Pesticides 39 79% 26% 0.0018 2 15% 12% 0.0018 9 8.7% 6.5% 0.0018 2 9 3.1% 3.0% 0.0018
Pharmaceuticals 27c 62% 23% 0.0018 5 23% 15% 0.0018 10 9.5% 7.0% 0.0018 5 10 4.4% 4.2% 0.0018
Industrial chemicals 8d 24% 11% 0.0018 3 14% 8.7% 0.0018 9 8.2% 6.0% 0.0018 3 9 2.1% 2.0% 0.0018
Miscellaneous
category

12 29% 8.5% 0.0018 1 7.2% 5.4% 0.0018 7 7.6% 5.9% 0.0018 1 7 1.9% 1.9% 0.0018

a Selected by dc-CA using forward selection; no more variables are added, if the false discovery rate of each variable considered in a step exceeds 5%.
b df, degrees of freedom; R2, explained variation; df_Env, degrees of freedom of the environmental variables; df_Traits, degrees of freedom of trait variables; p-value, significance level

after Holm correction for 9 groups of variables (the unadjusted p-value is 0.0002).
c Selected from 134 variables by prescreening using significance of each individual variable at 5% level after Holm correction for multiple testing.
d Selected from 46 variables by prescreening using significance of each individual variable at 5% level after Holm correction for multiple testing.
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dropped somewhat, for example from 26% to 12% for pesticides, and
from 9.7% to 6.5% for the biological traits, selected in conjunction with
pesticides. Constraining the analysis by both the selected traits and se-
lected environmental variables reduced the explained variation further,
e.g. to an adjusted R2 of 3.0% for pesticides (Table 1). The physico-
chemical environmental variables were most strongly associated with
the biological traits (4.4%), closely followed by the pharmaceuticals
(4.2%) and habitat characteristics (3.8%). The associations were signifi-
cant, even after Holm-correction (p = 0.018), despite the low percent-
age of variance that they explained.

Biological trait modalities significantly modulating the species-
environment relationships and environmental variables significantly
modulating the species-biological trait relationships are summarized
in Tables S1 and S2, respectively. Seven to fourteen out of 63 biological
trait modalities were significantly associated with each group of envi-
ronmental variables, where.

(a) habitat characteristics were represented by substrate PC1, area
(area of cross sections), river-km (distance to river mouth), dis-
tance to shore (distance of the macroinvertebrate sampling
point to the closest river shore), surface velocity (mean river
flow velocity measured during themacroinvertebrate sampling)
and mean sample depth (mean water depth measured during
the macroinvertebrate sampling),

(b) hydromorphological alterations by affected banks (banks af-
fected by artificial materials) and substrate alteration (near nat-
ural substrate mix or altered),

(c) physico-chemical parameters by SO4
2−, dissolved oxygen, ni-

trates, potassium total and ammonium,
(d) heavy metals by As and Cu,
(e) pesticides by atrazine-2-hydroxy and picoxystrobin,
(f) pharmaceuticals by triazolam, hydrochlorothiazide, 2-ethylidene-

1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), lamotrigine and
nordiazepam,

(g) industrial chemicals by tris(2-butoxyethyl)phosphate (TBEP),
perfluorooctanoic acid (PFOA) and dibutyltin-cation, and.

(h) miscellaneous chemicals by sucralose.

The results of the community-based and species-based dimen-
sionality tests showed that i) for habitat characteristics the first
four constrained axes were significant, ii) for hydromorphological al-
terations, heavy metals, pesticides and industrial chemicals the first
two constrained axes were significant, iii) for physico-chemical
parameters and pharmaceuticals the first three constrained axes
were significant, and iv) for miscellaneous chemical group only the
first axis was significant (p ≤ 0.0222; Table S3).

The trait-environment relations are displayed in Fig. 2. In these dia-
grams, both traits and environmental variables are represented by ar-
rows which point in the direction of higher values and which together
form a biplot of their fourth corner correlation. A few trait modalities
were commonly associated with several groups of environmental vari-
ables. For instance, locomotion and substrate relations of flier, laying
clutches in terrestrial habitats, and aerial active dispersal were posi-
tively correlated with surface velocity, river-km, dissolved oxygen, ni-
trates, picoxystrobin, hydrochlorothiazide, EDDP and TBEP. In contrast,
burrowing locomotion, egg and/or adult aquatic life stages, and asexual
reproduction were inversely correlated with the above environmental
variables, but were positively correlated with substrate PC1, SO4

2−,
potassium total, heavymetals (As and Cu), atrazine-2-hydroxy (a pesti-
cide), pharmaceuticals (lamotrigine and nordiazepam), PFOA (an
industrial chemical), and/or sucralose. Fig. S2 shows the relations be-
tween sampling sites and environmental variables. Sampling sites
lying close together have similar environmental variables, while those
with very different environmental variables lie far apart. For all groups
of environmental variables, except for hydromorphological alterations,
sampling sites in the upper (blue circles) are apart from those in the
middle (yellow circles) and lower (red circles) part of the river. Higher
surface velocity and river-km occurred in the upper part, while higher
content of fine sediments (substrate PC1), area, distance to shore,
mean sample depth occurred in the middle and lower parts of the river
(Fig. S2a). Regarding the parameters representing hydromorphological
alterations, most sampling sites overlapped (Fig. S2b). As to the remain-
ing six groups representing water quality measurements (Fig. S2c-h),
sampling sites in the upper (blue circles) and lower (red circles) part
of the river are respectively placed on the right and left side of the dia-
grams, showing differences in water quality between these sampling
sites. Fig. 3 shows the top 10 species' for which the most variation
is explained by environmental variables and traits in Fig. 2. The spe-
cies in the hydromorphological alteration group were different from
those in the remaining seven groups. In these seven groups, most of
the 10 species occurred more in the samples from the upper part of
the river; six insects (i.e., Cricotopus (cricotopus) sp., cricotopus
(cricotopus) triannulatus, Tanytarsus sp. “Traun”, Microtendipes cf.
britteni, Potthastia gaedii-Gr. and Baetis fuscatus) appeared in more
than half of diagrams (n = 4–7) and were more abundant in the
upper than the middle and lower parts of the river; the species



Fig. 2. Biplots of the associations (fourth-corner correlations) between the selected environmental variables (black arrows) and biological trait modalities (blue arrows) in the Danube
River data set with 55 sampling sites and 383 invertebrate taxa, obtained from dc-CA on habitat characteristics (a), hydromorphological alterations (b), physico-chemical parameters
(c), heavy metals (d), pesticides (e), pharmaceuticals (f), industrial chemicals (g) and miscellaneous chemicals (h), respectively. Values along the axes are their corresponding
eigenvalues. EDDP, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine; PFOA, perfluorooctanoic acid; TBEP, Tris(2-butoxyethyl)phosphate. See text for interpretation. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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more abundant in the middle and/or lower than the upper part were
two snails (Theodoxus danubialis ssp. and Lithoglyphus naticoides),
four insects (Gomphus flavipes, Chironomus acutiventris, Polypedilum
nubeculosum and Coenagrionidae Gen. sp. juv.), one clam (Dreissena
polymorpha) and one annelid worm (Pristina aequiseta) (Fig. 3a, c,
d, h and Table S4).
3.1.2. dc-CA based on the ecological trait dataset
The environmental variables used for dc-CA on the ecological trait

dataset were the same as the biological trait dataset (Table 2 versus
1). The ecological traits explained 8.2% (adjusted R2) of the abundance
variation (p = 0.0002), which is slightly lower than that explained by
the biological traits (9.7%). Again, when the variables selected by dc-
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CA (Table 2) were used to explain abundance by a CCA, the adjusted R2

dropped, for example from 26% to 12% for pesticides, and from 8.2% to
6.7% for the ecological traits, selected in conjunction with pesticides.
Constraining the analysis by both the selected traits and selected envi-
ronmental variables reduced the explained variation further, e.g. to an
adjusted R2 of 3.1% for pesticides (Table 2). The habitat characteristics
weremost strongly associatedwith the ecological traits (4.4%), followed
by the pharmaceuticals (4.1%), physico-chemical parameters (3.7%),
pesticides (3.1%), heavy metals (2.4%), miscellaneous compounds
(2.0%), industrial chemicals (1.6%) and hydromorphological alterations
(1.2%). All associations were significant, even after Holm-correction
(p = 0.018).

All the eight groups of environmental variableswere significantly as-
sociated with ecological traits (p(adj)=0.0018; Table 2). For each group
of environmental variables, three to eleven out of 55 ecological traitmo-
dalities significantly modulated the species-environment relationship
(p ≤ 0.0460; Table S1). The environmental variables significantly
Fig. 3. Position of the species in thedc-CAbiplots of Fig. 2. Shownare the 10 species, whose varia
are unconstrained (i.e. derived from species abundance, instead of being constrained positions,
characteristics (a), hydromorphological alterations (b), physico-chemical parameters (c), heavy
chemicals (h), respectively. Species occurring only at one sampling site were excluded from th
modulating the species-ecological trait relationships were similar to
those for biological traits (p ≤ 0.0486; Table S2). The percentage varia-
tion of the environmentally structured variation explained by traits
(Table S1) was substantially lower than the reverse percentage, i.e.
the percent variation of the trait structured variation explained by envi-
ronmental variables (Table S2). The results of the community-based
and species-based dimensionality tests showed that i) the first three
constrained axes were significant concerning habitat characteristics,
physico-chemical parameters, and pharmaceuticals (p ≤ 0.0036; Ta-
ble S3), ii) the first two constrained axes were significant concerning
hydromorphological alterations and pesticides (p ≤ 0.0034), and iii)
only the first constrained axis was significant for heavy metals, indus-
trial chemicals and miscellaneous chemicals (p = 0.0002).

The biplots relating the selected traits and environmental variables
are shown in Fig. S3. Substrate preferendum for gravel, altitude of alpine
level, and crenon, epirithron ormetarithron as the longitudinal distribu-
tion typewere positively related to several environmental variables that
tion is best explained by the biological traits and environmental variables in Fig. 2. Positions
i.e. being a linear combination of the trait values) andwere obtained from dc-CA on habitat
metals (d), pesticides (e), pharmaceuticals (f), industrial chemicals (g) andmiscellaneous
e pesticide diagram (e). See text for interpretation.



Fig. 3 (continued).
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had higher levels in the upper part of the river, including river-km, sur-
face velocity, dissolved oxygen, nitrates, picoxystrobin, EDDP, hydro-
chlorothiazide, amisulpride, alpha-hydroxymidazolam, desvenlafaxine,
1H-benzotriazole, dibutyltin-cation and TBEP. On the contrary, sub-
strate preferendum for mud and river channel as the transversal distri-
bution type were positively related to several environmental variables
that showed higher levels in themiddle and lower parts of the river, in-
cluding substrate PC1, area, distance to shore, SO4

2−, potassium total,
ammonium, As, Cu, atrazine-2-hydroxy, N-formyl-4-aminoantipyrine
(FAA) and/or sucralose.

3.2. Redundancy analysis on community weighted means (CWM-RDA)

All the eight groups of environmental variables, except for
hydromorphological alterations, significantly explained the varia-
tion in both biological and ecological trait means (Table S5).
Hydromorphological alterations were only significantly associated
with biological trait means. Each group of environmental variables
were represented by one to three variables (Table S6), most of
which also showed significant associations with traits in the dc-
CA analyses (Table S2). For both datasets, habitat characteristics,
physico-chemical parameters and pharmaceuticals explained the
largest proportions of variance (adjusted estimates: 30–32% and
36–42% for biological and ecological traits, respectively), whereas
hydromorphological alterations and industrial chemicals ex-
plained the least proportions of variance (adjusted estimates:
5.3–12% and 0–10% for biological and ecological traits, respec-
tively). Additionally, heavy metals, pesticides, and miscellaneous
chemicals explained comparable proportions of variance (adjusted
estimates: 18–23% and 22–32% for biological and ecological traits,
respectively; Table S5).

For the biological trait dataset, among the 10 trait modalities' for
which the most variation is displayed in Fig. 4, i) laying free clutches
or in terrestrial habitats, interstitial, life cycle duration ≤1, maximal po-
tential size >0.25–0.5 cm, areal active/passive dispersal, and food pref-
erence for living microphytes were positively correlated with river-
km, substrate alteration, EDDP, alpha-hydroxymidazolam and TBEP
showing higher levels in the upper part, and ii) adult aquatic life stages,



Table 2
Environment and ecological traits: summary of single and double constrained correspondence analyses performed on each group of environmental variables. All ecological traits jointly
explain 18.8% of the abundance variation (44 df, adjusted R2 = 8.2%, p = 0.0002).

Datasets Single constrained-all
environmental variables

Single constrained-selecteda variables Double constrained-selected variables

Environmental variables Traits

dfb R2 adjusted-R2 p-value df R2 adjusted-R2 p-value df R2 adjusted-R2 p-value df_Env df_Traits R2 adjusted-R2 p-value

Habitat
characteristics

13 36% 16% 0.0018 6 23% 14% 0.0018 11 9.4% 6.7% 0.0018 6 11 4.7% 4.4% 0.0018

Hydromorphological
alterations

10 24% 7.3% 0.0018 2 7.6% 4.1% 0.0018 6 6.9% 5.4% 0.0018 2 6 1.2% 1.2% 0.0018

Physico-chemical
parameters

19 48% 20% 0.0018 5 22% 14% 0.0018 8 8.1% 6.1% 0.0018 5 8 3.9% 3.7% 0.0018

Heavy metals 8 25% 11% 0.0018 2 12% 8.4% 0.0018 5 6.6% 5.4% 0.0018 2 5 2.4% 2.4% 0.0018
Pesticides 39 79% 26% 0.0018 2 15% 12% 0.0018 10 9.2% 6.7% 0.0018 2 10 3.2% 3.1% 0.0018
Pharmaceuticals 27c 62% 23% 0.0018 6 24% 15% 0.0018 11 9.6% 6.9% 0.0018 6 11 4.5% 4.1% 0.0018
Industrial chemicals 8d 24% 11% 0.0018 3 13% 7.6% 0.0018 3 4.9% 4.2% 0.0018 3 3 1.7% 1.6% 0.0018
Miscellaneous
category

12 29% 8.5% 0.0018 1 7.2% 5.4% 0.0018 5 6.4% 5.1% 0.0018 1 5 2.1% 2.0% 0.0018

a Selected by dc-CA using forward selection; no more variables are added, if the false discovery rate of each variable considered in a step exceeds 5%.
b df, degrees of freedom; R2, explained variation; df_Env, degrees of freedom of the environmental variables; df_Traits, degrees of freedom of trait variables; p-value, significance level

after Holm correction for 9 groups of variables (the unadjusted p-value is 0.0002).
c Selected from 134 variables by prescreening using significance of each individual variable at 5% level after Holm correction for multiple testing.
d Selected from 46 variables by prescreening using significance of each individual variable at 5% level after Holm correction for multiple testing.
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aquatic passive dispersal, life cycle duration>1 and burrowerwere pos-
itively associatedwith environmental variables with higher levels being
found in the middle and lower parts of the river, including substrate
PC1, SO4

2−, chlorides, suspended solids, As, Cu, atrazine-2-hydroxy,
FAA, PFOA and sucralose (Figs. 4 and S4).

For the ecological trait dataset, among the 10 trait modalities' for
which the most variation is displayed in Fig. S5, i) altitude of alpine or
piedmont level, epirithron or crenon as longitudinal distribution type,
substrate preferendum for gravel and/or microphytes, trophic status
preferendum for oligotrophic, pH preferendum for >4–5 and current
velocity preferendum for fast (> 50 cm/s) were positively correlated
with river-km, EDDP and TBEP showing higher levels in the upper
part, and ii) altitude of lowlands, epipotamon ormetarithron as longitu-
dinal distribution type, substrate preferendum for mud, trophic status
preferendum for eutrophic and pH preferendum for >6 were positively
correlatedwith substrate PC1, SO4

2−, As, atrazine-2-hydroxy, FAA, sucra-
lose, cyclamate and/or genistein showing higher levels in the middle
and lower parts of the river.

4. Discussion

Here we examined trait-environment relationships of the macroin-
vertebrate community in the Danube River by dc-CA and compared re-
sults from dc-CA with those from CWM-RDA. Overall, results from both
dc-CA and CWM-RDA showed that there were significant relationships
between biological/ecological traits and all the evaluated groups of
environmental variables except for HPCPs, with the strongest association
being found with physico-chemical parameters, habitat characteristics
and pharmaceuticals and the weakest with hydromorphological alter-
ations (Tables 1, 2 and S5). These results suggest that human impact on
macroinvertebrate communities is of similar magnitude to the natural
impact. An important benefit of dc-CA over CWM-RDA is that it
contains a species-level analysis by which we ruled out that the relation-
ships found are an artefact of strong environmental impacts.1 Results
from dc-CA also showed that the variation inmacroinvertebrate commu-
nities could be better explained by the available environmental variables
than by the available traits, which cannot be assessed using CWM-RDA.
To obtainmore explanatory power by traits, itmight beworthwhile to es-
tablish in future research traits that can better represent macroinverte-
brate responses to anthropogenic stress (Van den Berg et al., 2019).
1 A blog worth reading on this is https://davidzeleny.net/blog/2019/01/20/five-years-
with-community-weighted-mean/.
All the evaluated groups of environmental variables except HPCPs
significantly influenced themacroinvertebrate community composition
in theDanube River. The lack of associations betweenHPCPs and species
abundance data could be attributed to their small variations across sam-
pling sites and/or their negligible effect on macroinvertebrates at the
concentration levels detected in the present study. For instance, both
benzophenone-3 and chlorophene were only detected at one sampling
site in the lower part of the river (Dataset S2). Concerning the remaining
environmental variables, several studies have found a significant corre-
lation betweenmacroinvertebrate composition and habitat characteris-
tics, hydromorphological alterations, physico-chemical parameters,
heavy metals, pesticides, pharmaceuticals and/or industrial organic
chemicals in European rivers (e.g., Dolédec and Statzner, 2008; De
Castro-Català et al., 2015; Kiesel et al., 2015; Kuzmanović et al., 2016;
Doretto et al., 2018). For instance, Kiesel et al. (2015) reported that sub-
strate composition, substrate stability and current velocity influenced
occurrences and abundances of benthic invertebrates in streams. In
fourMediterranean basins examining the relationships between emerg-
ing pollutants and invertebrate community, De Castro-Català et al.
(2015) found that pharmaceuticals significantly explained the inverte-
brate community composition in the Llobregat River and fungicides pri-
marily determined the structure of the invertebrate community in the
Júcar River (Iberian Peninsula).

Percentages of explained variation were generally low, and are logi-
cally lower in double constrained ordination compared to single
constrained or unconstrained ordination, due to the extra constraints
(Tables 1 and 2). These low percentages reflect the noisiness of macro-
invertebrate community data. Nevertheless, the patterns found in the
noisy data contain important information on thehuman andnatural im-
pacts andwhat shifts in trait values these impacts imply. It is worth not-
ing that RLQ would have led to even lower fits. As an example we
applied RLQ to similarly transformed abundance data and the selected
physico-chemical parameters and the biological traits (Table S3 and
Supporting Information D). The first two RLQ eigenvalues were 0.39
and 0.03, compared to 0.11 and 0.04 in dc-CA. However, the eigenvalues
in RLQ are in terms of coinertia, which in this case is equal to the sum of
pair-wise fitted squared fourth-corner correlations, whereas the eigen-
values in dc-CA are in terms of inertia of the abundance table analysed.
To put the RLQanddc-CA axes on equal footingwe calculated the inertia
fitted by the first RLQ axis. This inertia was only half that of the dc-CA
first axis (Supporting Information D). The mathematical explanation
is that dc-CA maximizes this fitted inertia, whereas RLQ is a compro-
mise between the axes of three unconstrained analyses, namely the

https://davidzeleny.net/blog/2019/01/20/five-years-with-community-weighted-mean/
https://davidzeleny.net/blog/2019/01/20/five-years-with-community-weighted-mean/
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unconstrained analysis of the abundance, environment and trait ta-
bles (Dray et al., 2014). Whereas dc-CA allows comparison between
double, single and unconstrained ordination (as all eigenvalues are
in terms of inertia of the abundance table), RLQ compares the
three-table analysis with unconstrained ordinations only (namely
with the CA of the abundance table, the PCAs, or similar methods,
of the environmental and trait tables). The focus in dc-CA is thus
clearly on explaining the community assemblage by the traits and
environmental variables, whereas in RLQ the focus is diffuse as it
also aims to fit the trait and environment data tables. Because the ei-
genvalues in dc-CA are in terms of inertia of the abundance table
analysed, the values in Tables 1, 2 and S3 can be validly compared
among the groups of environmental variables, so that we are able
to rank the groups in terms of explanatory power. It would not be
straightforward to construct a similar table on the basis of RLQ.
Fig. 4. Biplots of CWM-RDA relating the significant environmental variables (black arrows) and
and 383 invertebrate taxa, obtained from CWM-RDA on habitat characteristics (a), hydromorph
pharmaceuticals (f), industrial chemicals (g) and miscellaneous chemicals (h), respectively. I
diagram are shown. Values along the axes are their corresponding eigenvalues. FAA, N-form
perfluorooctanoic acid; TBEP, Tris(2-butoxyethyl)phosphate. See text for interpretation. (For in
web version of this article.)
The percentage variation explained by CWM-RDA is in our experi-
ence generally of the same order of magnitude as that of step 4 of the
dc-CA algorithm (compare for example Tables S2 and S6 and Tables S5
and S7). Note, however, that these percentages are not strictly compara-
ble as dc-CA in step 4 calculates CWMswith respect to orthonormalized
traits instead of just standardized traits in CWM-RDA. In contrast with
RLQ and CWM-RDA, dc-CA allows to determine how much of the envi-
ronmentally structured variation can be explained by traits and we
found on the basis this that the traits are currently the limiting factor
in getting higher explanatory power.

The results of the dc-CA showed that macroinvertebrates
(e.g., Oligochaeta: Tubificidae Gen. sp.) using asexual reproduction, egg
and/or adult aquatic life stages and aquatic passive dispersal tactics,
burrowing, and preferring to live in river channels characterized by
muddy substrate were more abundant in the middle and lower parts
biological trait means (blue triangles) in the Danube River data set with 55 sampling sites
ological alterations (b), physico-chemical parameters (c), heavymetals (d), pesticides (e),
n all the eight graphs, only the 10 traits for which the most variation is explained in the
yl-4-aminoantipyrine; EDDP, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine; PFOA,
terpretation of the references to colour in this figure legend, the reader is referred to the
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of the Danube River where higher content of fine sediments and higher
concentrations of SO4

2−, potassium, heavy metals (e.g., As and Cu),
pesticides (e.g., atrazine-2-hydroxy), pharmaceuticals (e.g., FAA,
lamotrigine andnordiazepam), industrial chemicals (e.g., PFOA) and su-
cralose occurred compared to the upper part (Figs. 2, S2 and S3). This
may suggest that different trait combinations are specific to different
habitats in running waters (e.g., Dolédec et al., 1999; Statzner and
Beche, 2010; Mondy et al., 2016; Berger et al., 2018). Similar results
have been reported for macroinvertebrates from 422 monitoring sites
in Germany, where adult aquatic life stages and substrate preferendum
for mud were found to be consistently associated with taxa tolerant to
the evaluated 20 water quality stressors including basic water quality
parameters (e.g., ammonium, conductivity and sulphate) and organic
micropollutants (e.g., N,N-diethyl-m-toluamide and caffeine) (Berger
et al., 2018). Also, it has been reported that biological traits describing
reproductive techniques had high potential to discriminate the level of
multiple human impacts on invertebrate communities in 190 large
river reaches in Europe (Gayraud et al., 2003). In contrast, macroinver-
tebrates (e.g., Insecta: Cricotopus (cricotopus) sp.) flying or temporarily
attaching to substrate, using aerial active dispersal tactics, laying
clutches in terrestrial habitats, and preferring to live in habitats charac-
terized by gravelly substrate, altitude of alpine level and crenon/
epirithron/metarithron were more abundant in the upper part showing
larger distance to the river mouth, higher surface velocity and higher
levels of dissolved oxygen, nitrates, pesticides (e.g., picoxystrobin),
pharmaceuticals (e.g., EDDP) and industrial chemicals (e.g., TBEP) as
compared to the middle and lower parts of the river (Figs. 2, 3, S2 and
S3). This combination of attributes are likely to reflect the adaptation
and/or recovery of organisms to stress caused by pesticides, pharma-
ceuticals and/or industrial chemicals. Indeed, it has been reported that
locomotion and substrate relations and dispersal reflect resistance and
resilience capacities of European benthic invertebrate genera (Dolédec
et al., 2017). From the upper to the middle and lower parts of the
river, there was a substrate preferendum gradient from gravel to mud
(Figs. S2 and S3), which perfectly corresponded to the changes in sub-
strate composition along the river (Fig. S1), suggesting an effect of hab-
itat utilization on macroinvertebrates. A similar distribution pattern of
substrate preferendumhasbeen reported for benthicmacroinvertebrate
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taxa identified in French freshwaters (Usseglio-Polatera et al., 2000).
Moreover, in the upper part of the river the longitudinal distribution
was dominated by crenon, epirithron, and/or metarithron and the alti-
tude by alpine level (Figs. S2 and S3). Taken together, these findings
clearly indicate the crucial roles of substrate, longitudinal and altitude
gradient in the composition of instream invertebrate communities
(Grubaugh et al., 1996; Kiesel et al., 2015; Van Looy et al., 2017;
Doretto et al., 2018). Overall, our results suggest that both biological
and ecological traits reflected adaptations of macroinvertebrates to
dominant environmental characteristics and/or stresses of habitats. Un-
like the present study, a previous study found that ecological traits of
macroinvertebrate communities poorly indicated human impact on
the French Rhône River (Dolédec et al., 1999). This might be attributed
to the larger-scale environmental conditions in the Danube River rela-
tive to Rhône River, which would result in larger anthropogenic and/or
natural environmental gradients, such as pollutants, flow velocity, sub-
strate and geographic location. Therefore, at large scales the ecological
traits are likely to modulate the species-environment relations better.

Environmental variables had a stronger influence on species abun-
dance compared to traits. Unlike the present study, a recent study re-
ported that environmental variables (i.e., Cd and phosphorus) and the
trait (reproduction: asexual reproduction) explained a comparable
amount of the variance (53% and 55%) in themacroinvertebrate assem-
blages collected from six rivers in Guangzhou City (South China) (Peng
et al., 2020). This difference may be related to the difference in the ex-
amined environmental variables (e.g., measured in the water versus
sediment samples), which would affect their relations with the traits
and/or species composition. Additionally, the larger number of taxa
and sampling sites in the current study than that study could have
lowered the trait-environment relationship. Overall, the results of dc-
CA suggest that life cycle attributes (e.g., aquatic stages), dispersal tac-
tics, locomotion and substrate relation, and reproduction techniques
can serve as multiple probes for different human impact and/or habitat
characteristics.

Environmental variables significantly associated with biological or
ecological traits in the CWM-RDA analyses were generally consistent
with those found by dc-CA analyses (Tables S2 and S6). However, in
the CWM-RDA analyses the number of significant environmental vari-
ables was somewhat lower than those identified by the dc-CA analyses,
except for the analyses on the miscellaneous chemicals group for eco-
logical traits. For instance, concerning physico-chemical parameters
only SO4

2− and water temperature were significantly associated with
the variance in ecological trait means (Table S6), whereas the dimen-
sionality tests showed that there were three significant gradients in
the dc-CA on ecological traits (Table S3). In fact, there are a few draw-
backs on using CWM-RDA to examine trait-environment relationships.
For instance, it does not have a principled way to select traits and it ne-
glects any existing correlations among traits and only does a sample-
level analysis (Peres-Neto et al., 2017). In contrast, double constrained
ordination accounts for such correlations, allows for trait selection,
and does both sample-level and species-level analysis (Ter Braak et al.,
2018a, 2018b). These differences are likely to be responsible for the dif-
ferent trait-environment relationships detected by the CWM-RDA and
dc-CA. For instance, we found significant correlations between several
ecological traits and dams/substrate alteration in the dc-CA but not in
the CWM-RDA (Figs. S3b and S5). Additionally, in the dc-CA we can
rank traits and environmental variables according to their relative impor-
tance for drivingmacroinvertebrate community assembly (Tables S1 and
S2). However, there is aweakness in dc-CA compared to CWM-RDA. If the
underlying correspondence analysis detects outliers, e.g. sites with spe-
cies that are unique to these sites, then dc-CA can be heavily influenced
by these outliers. This influence becomes reality when the constraining
environmental variables and traits are able to distinguish such sites and
species from the other sites and species. An example is in the Danube
data set the most upstream site, which contains so many species that
are unique to this site, that it becomes an outlier on the second axis of
correspondence analysis. But this site had high picoxystrobin level and
there is a combination of traitmodalities that largely identifies the species
that are unique to this site. Therefore, this site becomes anoutlier in dc-CA
as well (Fig. S2e). We kept the site and picoxystrobin in the analysis, as
picoxystrobin (and the site) also contributes importantly to the first
axis, which represents a dominant gradient in pesticides.

We now compare results of the CWM-RDA in the present studywith
those in Rico et al. (2016), where chemical concentrations were re-
placed by TUs for CWM-RDA analysis to explore relations between
chemicals and trait means. Our results indicate that all groups of
chemicals, except for HPCPs, correlated significantly with both biologi-
cal and ecological trait means (Table S5), whereas in Rico et al. (2016)
only pharmaceutical and miscellaneous contaminant group showed
significant correlations with biological trait means or with biological
in combination with ecological trait means. Additionally, usage of
TUpharmaceuticals implicitly assumes that all pharmaceuticals are related
in the same type of way to traits, whereas the results of dc-CA suggest
that pharmaceuticals differ in the way they correlate with traits as the
arrows for different pharmaceuticals in Figs. 2f and S3f point in different
directions. Therefore, replacing chemical concentrations by TUs has
drawbacks for such data analysis.

Wagner (2004) shows how to apply geostatistical methods in the
context of CA and CCA leading to multi-scale ordination by which one
can determine whether species-environment relations are dependent
on spatial scale. If strong, such scale dependence makes the overall
‘scale-ignorant’ effect lessmeaningful, analogously to the case in regres-
sion analysis of interpreting main effects in the presence of interaction.
The author also developed a diagnostic tool to determinewhether there
is spatial autocorrelation in the residuals. With spatial correlation, sta-
tistical tests become too liberal. Braga et al. (2018) solve this issue by
proposing a statistical significance test of the fourth-corner correlation
that adjusts for spatial and phylogenetic correlation. The test is based
on correlation-preserving randomization. Whether or not to adjust is
not only a statistical question but also a matter of which question one
wants to answer precisely. The practical statistical consequence of ad-
justment for spatial and phylogenetic correlation is that the statistical
test implicitly uses effectively fewer samples and species compared to
the unadjusted analysis so that the resulting test becomesmore conser-
vative and has less power. The ideas from these papers could also be ap-
plied in the context of dc-CA.

Pavoine et al. (2011) propose an integrated, RLQ-based method to
relate phylogeny and traits to space and environment with five RLQ-
based significance tests; a global test for the joint relationship (phylog-
eny & traits ↔ space & environment) and four tests on the individual
components, namely traits↔ environment, phylogeny↔ environment,
traits ↔ space and phylogeny ↔ space. In their approach, the data on
phylogeny and space are each converted to rectangular data tables (if
they are not so already) using principal coordinate analysis. For the
joint analysis, these matrices must be brought to a comparable scale
for which the user must select a scaling method. The above mentioned
analyses and statistical tests can also be performed using dc-CA. In our
view, this would be advantageous for two main reasons: (1) dc-CA is
scale-invariant, so that the user does not need to select a scalingmethod
and (2) dc-CA allows variation partitioning (Peres-Neto et al., 2006;
Rico et al., 2016) whereas RLQ does not, because dc-CA is regression-
based while RLQ is covariance-based. Variation partitioning allows one
to determine which part of the variation in the abundance data is
uniquely attributable to the environmental variables, which part
uniquely attributable to space and which part is shared, because of the
spatial structure in the environmental variables. With dc-CA, these
parts concern the trait-structured variation. For example, analogously
to standard variation partitioning (Peres-Neto et al., 2006), the part
that is uniquely attributable to the environment is obtained by
subtracting the explained variance of the dc-CA analysis using envi-
ronment and traits-with-phylogeny from the explained variance of
the analysis using environment-with-space and, again, traits-with-
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phylogeny. Such a subtractionmakesmathematical sense in dc-CA as
its explained variance is in terms of inertia of the abundance table,
whereas in RLQ such analyses can be performed, and are so in
Pavoine et al. (2011), but a similar comparison of explained vari-
ances cannot be made (and Pavoine et al. (2011) did not do so), as
RLQ does not use the same scale to measure variance in the different
analyses. Using partial dc-CA (in Canoco, obtained by specifying the
environmental variables as explanatory data and the space variables
as covariate data), the statistical significance of the uniquely envi-
ronmental part can be tested. In this paper, we chose not to try to
separate the spatial component from the environmental one for the
reason that there is hardly a statistical way to separate these compo-
nents in a river data set in whichmost variables are highly correlated
with distance from the source. Our point of view is that the large-
scale spatial variation can largely be explained by changes in the en-
vironment and that our sampling points are generally far enough
apart to rule out small-scale spatial correlation. We acknowledge
that the relations that we discovered require validation in later
studies.

In summary, in this large-scale study we found that aquatic life
stages, dispersal tactics, reproduction techniques, locomotion and sub-
strate relations, transversal and longitudinal distribution, altitude, and
substrate preferendum were significantly associated with all the evalu-
ated nine groups of environmental variables except HPCPs. These envi-
ronmental variables can thus function as filters selecting those traits
that allow species to adapt to or recover from stress (Dolédec and
Statzner, 2008; Kuzmanović et al., 2017). These results suggest that
trait composition of macroinvertebrate assemblages can reflect the
strategies that assemblages used to cope with environmental stressors.
These results also demonstrate that double constrained ordination is a
promising, powerful approach to monitor specific effects of multiple
stressors on macroinvertebrate communities in rivers and streams, and
helps to improve our diagnostic ability on stressor-specific alterations.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.142171.
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