
Global scale land cover mapping using free 
and open-source geospatial software

Dainius Masiliūnas¹, Nandin-Erdene Tsendbazar¹, Martin Herold¹, 
Myroslava Lesiv², Marcel Buchhorn³, Bruno Smets³, Niels 
Souverijns³, Jan Verbesselt¹

1) 3)2)



Content

 Copernicus Global Land Operations – Land Cover project
 Global land cover fraction mapping
 Land cover change detection
 BFAST – breaks for additive season and trend
 OpenEO project



3

Land cover monitoring and updating
● Land cover maps: what we can see on the 

ground (trees, grass, water, urban, ...)
● Key variable for several UN Sustainable 

Development Goals

● Governments need to set policy

● Land owners want to know what is 
present

● LC change allows monitoring the 
current situation and predicting 
future change

● We can do it globally thanks to satellite 
imagery time series

 Updating is essential for effective 
monitoring



4

Copernicus Global Land Services

 Operational services for global land monitoring

 CGLS-LC100

● We have: 21 discrete classes and 10 

continuous covers (class fractions) globally

● From 2015 updated yearly, as an 

operational service

 My contribution:

1) Land cover fraction mapping 
methods

2) Change detection for yearly 
updating

land.copernicus.eu/global/lcviewer



5

Copernicus Global Land Services Land Cover Collection 3

 To be released in a few days! Keep track 
of the release progress:

● https://twitter.com/VITO_RS_
● https://twitter.com/CopernicusLa

nd
● https://twitter.com/CopernicusEU

 Includes yearly updates for the whole 
globe and quality indicators for each 
pixel!

Quality Indicators
(*) example over Africa, global maps under release test

Input data QI

Algorithm QI (7)

Spatial Accuracy
 Map*



6

CGLS-LC100 processing chain

scikit



7

CGLS-LC100 reference data

Training data: 150 405 points with fraction data for model training (IIASA)

Validation data: 21 752 points with fraction data for model validation (WUR)

Dominant LC class

Trees

Shrubs

Grassland

Lichen and moss

Wetland (herbaceous)

Crops

Urban/built-up

Bare

Snow and ice

Water

Not sure

Legend



8

PhD topics: 1) Global land cover fraction mapping



9

Objectives

 Compare machine 
learning models for global 
land cover fraction 
mapping

 Tune models to account 
for zero inflation inherent 
in fraction mapping

 Compare covariate 
importance

 Make a global map and 
check its errors

67% herbaceous
33% trees
0% water
0% shrubs
0% built-up
0% crops
...



10

Land cover fraction mapping: model input

 Proba-V satellite archive (2014-today, 
386 images), 4 bands: green, red, NIR, 
SWIR

 5 vegetation indices: NDVI, EVI, NDMI, 
NIRv, OSAVI

 Over 300 covariates (all global!):

● Spectral (TS, composites, etc.)

● Terrain (slope, roughness, etc.)

● Climate (temperature/month, 
etc.)

● Soil (SOC, bulk density, etc.)



11

Big data challenges

 Global datasets

 Importance of time series

 100 m to 20 m upscaling

 Multidimensionality: 
X*Y*Time*(Bands+VIs+covariates)

 CSVs don’t scale well

2010 2012 2014 2016 2018
t



12

Terrascope

 VM (4 cores, 8 GiB RAM, 1 TiB HDD, 
CentOS 7.4)

 Direct (NFS) access to L3 TOC composite 
data (radiometry + NDVI), including ARD, 
+ ASTER and MODIS VIs since 2009

 Access to Apache Spark cluster
 Some data (climate, soil) needs to be 

downloaded

 Takes a while to extract point time series: 
reading 386 files for each point (461892) 
takes over a month (using GDAL via Bash, 
similar to using GDAL via Python)



13

Land cover fraction mapping: algorithms

 Machine learning regression algorithms in R: 
general linear model (stats), fuzzy nearest 
centroid (GSIF), logistic regression (nnet), lasso 
regression (glmnet), Partial Least Squares 
regression (plsr), Random Forest (ranger), 
artificial neural networks (keras), Cubist 
(Cubist), support vector machines (liquidSVM)

 Keras for neural networks:

● Binding to Python (via reticulate)

● Backend: Tensorflow

● Accelerator: NVIDIA GTX 660

 Tried also MESMA, SuperLearner and 
MultivariateRandomForest but didn’t work



14

Land cover fraction mapping: model performance

 Random Forest is the most accurate: 
17.3 RMSE, 9.4 MAE, 0.66 NSE, 67±4% 
OA

 Can be optimised (2-step: separate 
model for zeroes, separate for non-
zeroes) to decrease MAE at the cost of 
RMSE for middle predictions

 Median voting: much better prediction 
of 0/100%, but more often completely 
misses

 3-step + median combination is best 
for MAE: 20.2 RMSE, 7.9 MAE, 0.54 
NSE, 72±2% OA

Most common machine learning models

Random Forest multi-step models



15

Errors per class



16

RF 1-step covariate permutation importance

Increase in RMSE after permuting all covariates in the group



17

Wall-to-wall map



18

Shrubs, trees, grass as RGB layers



19

PhD topics: 2) Land cover change detection for map updating

Time

EV
I

2010 2012 2014 2016 2018

50
0

10
00

20
00



20

Land cover change detection for updating

 Reusing the same model for 
the next year leads to too 
many spurious changes

 Expert rules: which 
transitions are possible/likely

 Use time series break 
detection to constrain 
changed pixels

 But which break detection 
algorithm and VI?

Unlikely land cover change: from 
urban to water



21

BFAST

 Components subdivided 
into stable segments 
(determined by BIC), 
segment divisions are 
breaks

 Detects all breaks, as 
long as it’s less than h 
samples away from the 
ends of the time series (h 
= minimum segment size)

 BFAST: Breaks For Additive Season and Trend
 Decomposition of time series into seasonal, trend and 

remainder components



22

BFAST0N (BFAST Lite)
 Detecting breaks in all components at once in a single pass
 Can handle missing values
 Can use harmonics or seasonal dummies or external regressors 

to fit the data
 Is an order of magnitude faster than BFAST (in addition to 

speed improvements by Marius Appel)

2010 2012 2014 2016 2018 2020

0.
00

0.
10

0.
20

Time

V
eg

et
at

io
n 

in
de

x

Observed data Fitted model

Detected break

Break magnitude



23

BFAST Monitor

 BFAST0N has the limitation of not being able to detect breaks 
at the end of the time series

 BFAST Monitor is made specifically to detect changes at the 
end of the time series

 Used for the 
“NRT” map 
(2019, as there 
is not yet a 
whole year of 
data available 
since then)



24

Running BFAST models on Spark
 Terrascope provides a Spark 

cluster with ~1200 cores
 Split each MODIS tile into ~2000 

chunks using gdalbuildvrt
 BFAST is implemented in R: 

SparkR used to send R script to 
driver and executors

 Result mosaicked back to a tile 
locally

 Gdalbuildvrt to make a global 
mosaic

 In production uses rpy2: Python 
for I/O and R for processing data 
cubes



25

BFAST model parameter optimisation

 We can detect changes, but how 
good can we do that?

 Change reference data by IIASA 
and WUR

 Optimised the parameters of 
BFAST and BFAST Monitor using 
global data

 Generally overestimates change 
(BFAST Monitor more so)

 Pairing with classifier output 
and expert rules needed to 
further reduce spurious change



26

Future outlook: big data challenges

 Scaling down to 20 m
● Sentinel-2 (20 m) instead of Proba-V 

(100 m), 25x
● Landsat (30 m) instead of MODIS (250 

m), 70x
● Add Sentinel-1 20 m data for gap filling

 A cluster is nice, but even that is insufficient 
(and doesn’t have the data)

● Google Earth Engine?
● Amazon?
● DIASes?
● BFAST on GPUs?



27

OpenEO

 Framework for handling large amounts of EO data
 Using a client (R/Python/JavaScript), can write a script that 

generates a language-agnostic process graph that is sent to a 
backend (GEE/GRASS/WCPS/JEODPP/GeoPySpark etc.)

 The backend accesses data locally (VITO also allows remote), 
runs the process graph and returns results: download only 
what you need

 Can run UDFs!
e.g. BFAST



28

Other things I work on

 Geoscripting course: https://geoscripting-wur.github.io
 Lecturing (Master of Geo-information Science and Remote 

Sensing)
 SENSECO project and sun-induced fluorescence

● Time series analysis
● Point-based hyperspectral measurements from drones 

for photosynthesis efficiency and plant stress
 BFAST package maintenance



Thank you for 
your attention! To explore

the potential
of nature to
improve the 
quality of life



Practicals

 Explore CGLS-LC100:
https://lcviewer.vito.be

 Make your own land cover map:
https://code.earthengine.google.com/?accept_repo=users/
GreatEmerald/opengeohub2020
Extra/inspiration: https://code.earthengine.google.com/?
accept_repo=users/vitorsveg/scripts

 Detect breaks in time series:
https://verbe039.github.io/BFASTforAEO/



BFAST0N

 In the development version of BFAST: 
install_github(“bfast2/bfast”)

 bfast::bfastpp(), +
 strucchange::breakpoints(formula, data, h)

● data: any data.frame/matrix with numbers or `ts`
● formula: e.g. response ~ trend + harmon
● h: minimum segment size, either fraction of the time 

series length or integer defining the number of samples
 Output: `breakpointsfull` that indicates breakpoint timing and 

confidence interval, in sample numbers (mapping to `data`)



Principle of breakpoints()

 Piece-wise linear regression:
● Given that we want one break, what’s the optimal location to put it 

so that the RSS of two segments is minimised?
● What if we want two breaks?
● Etc. etc. to get a triangular matrix of possible breaks and model RSS

 But how many breaks does the time series have?
● An Information Criterion: if we increase degrees of freedom by 

adding breaks, data will fit better, so penalise for each degree of 
freedom added

● AIC (k=2) is too weak, BIC (k=log(n)) is also often too weak
● LWZ (k=0.299 × log(n)2.1) seems to do better



Breakpoints using LWZ vs BIC



bfastpp()
 How to get data with response ~ trend + harmon?
 bfastpp(ts, order): preprocessing of time series

● ts must be a `ts` with frequency > 1
● order is the harmonic order

 Output is a data.frame with:



New in BFAST0N

 Ability to use LWZ for selecting breaks
 Extra information when printing the results:

● LWZ statistics
● R²
● Break magnitude, using difference between segment 

models and the difference in last/first predicted value
 Parameter for customisable seasonal dummy number


