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ABSTRACT

The Royal Netherlands Meteorological Institute (KNMI) operates two dual-polarization C-band

weather radars in simultaneous transmission and reception (STAR; i.e., horizontally and vertically

polarized pulses are transmitted simultaneously) mode, providing 2D radar rainfall products. Despite

the application of Doppler and speckle filtering, remaining nonmeteorological echoes (especially sea

clutter) mainly due to anomalous propagation still pose a problem. This calls for additional filtering

algorithms, which can be realized by means of polarimetry. Here we explore the effectiveness of the

open-source wradlib fuzzy echo classification and clutter identification based on polarimetric moments.

Based on our study, this has recently been extended with the depolarization ratio and clutter phase

alignment as new decision variables. Optimal values for weights of the different membership functions

and threshold are determined employing a 4-h calibration dataset from one radar. The method is applied

to a full year of volumetric data from the two radars in the Dutch temperate climate. The verification

focuses on the presence of remaining nonmeteorological echoes by mapping the number of exceedances

of radar reflectivity factors for given thresholds. Moreover, accumulated rainfall maps are obtained to

detect unrealistically large rainfall depths. The results are compared to those for which no further fil-

tering has been applied. Verification against rain gauge data reveals that only a little precipitation is

removed. Because the fuzzy logic algorithm removes many nonmeteorological echoes, the practice to

composite data from both radars in logarithmic space to hide these echoes is abandoned and replaced by

linearly averaging reflectivities.

1. Introduction

Quantitative precipitation estimation (QPE) from

ground-based weather radars can suffer from overesti-

mates due to nonmeteorological echoes. This can hinder

reliable nowcasting, can mislead the general public and

weather forecasters, and negatively affect hydrological

applications. Operational 2D radar rainfall products for

theNetherlands are extensively used for, e.g., nowcasting,

water management, and climatological purposes. For

example, the Royal NetherlandsMeteorological Institute

(KNMI) warning system for water authorities uses the

precipitation history, combined with nowcasting of pre-

cipitation from weather radar and a numerical weather

prediction model to forecast rainfall (Kok et al. 2011).
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Taking into account the local discharge and storage ca-

pacity, automatic warnings are issued if preselected

thresholds of rainfall depths are exceeded with a certain

probability. The occurrence of residual ground clutter in

radar data has led to several automatic warnings, hence

negatively affecting operational water management.

Nonmeteorological echoes are called clutter. For

weather radars these can be caused by, e.g., chaff, in-

sects, and birds. Clutter is often caused by anomalous

propagation, i.e., a larger-than-normal fraction of the

beam which will reach Earth’s surface due to super-

refraction. This occurs when the temperature decrease

with height is smaller than normal (or even increases).

This can also arise in case of a larger-than-normal de-

crease of moisture with height. These conditions may,

e.g., occur for inversions in high pressure areas. Hence,

Earth’s surface can give rise to a large backscatter. This

may also occur when no superrefraction takes place due

to nearby obstacles including buildings and mountains

(Fabry 2015). Although these artifacts can contain use-

ful finescale weather signatures for assessing the current

weather situation, they also hamper reliable QPE.

Many studies have considered a variety of techniques

to remove nonmeteorological echoes. Doppler filtering

is commonly applied, intended to remove the part of the

power caused by clutter, but it is especially difficult to

remove nonstationary clutter (e.g., waves, ships, wind

farms). Thus, often additional methods are needed to

further reduce nonmeteorological echoes. Many studies

employ fuzzy logic algorithms involving single-polarization

(single-pol) and/or dual-polarization (dual-pol) decision

variables (Berenguer et al. 2006; Gourley et al. 2007;

Vulpiani et al. 2012; Crisologo et al. 2014; Krause 2016),

where a range bin classified as clutter is entirely dis-

carded, although its value may be replaced by an inter-

polated value from neighboring range bins. This is often

accompanied by pre or postprocessing, where for the

latter the original classification made by the fuzzy logic

algorithm can be overruled (Gourley et al. 2007). Also,

statistical postprocessing is applied, e.g., by creating

clutter maps based on unrealistically large accumula-

tions or numbers of exceedances or by removing data

with high values of the spatial variability in the radar

reflectivity factor, called texture. More information is

provided by Fabry (2015), Zhang (2017), and Rauber

and Nesbitt (2018). Numerous other studies use hydro-

meteor classification algorithms, which may also include

clutter detection (e.g., Vivekanandan et al. 1999; Park

et al. 2009; Bechini and Chandrasekar 2015). Michelson

and Sunhede (2004) and Magaldi et al. (2009) remove

clutter by developing (precipitating cloud) masks con-

structed from geostationary satellite data and 2-m air

temperatures from a numerical weather prediction model.

Dual-pol radars offer additional possibilities to detect

nonmeteorological echoes, because of the often irreg-

ular surface of the scatterers in contrast to most me-

teorological echoes. Hydrometeors are usually near

spherical, except for, e.g., large rain droplets and tiny

ice crystals, and have low shape diversity, which

distinguishes them from nonmeteorological echoes.

Differences in amplitude and phase between hori-

zontally and vertically polarized backscattered signals

are therefore generally larger for nonmeteorological

echoes. A useful echo classification is possible by using

(the texture of) the polarimetric variables differential

reflectivity, two-way differential propagation phase,

and copolar correlation coefficient (Hubbert et al. 2009b;

Fabry 2015).

The goal of this study is to remove as many non-

meteorological echoes as possible while removing as few

precipitation echoes as possible from a full-year dataset

from two C-band radars in a temperate climate. This

study forms the basis for the extension of the wradlib

fuzzy echo classification with clutter phase alignment

(CPA; Hubbert et al. 2009a) and depolarization ratio

(DR; Ryzhkov et al. 2017). Hubbert et al. (2009b) al-

ready successfully use CPA in a fuzzy logic algorithm,

whereas Kilambi et al. (2018), who employ DR to suc-

cessfully classify nonmeteorological echoes, suggest the

inclusion of DR as an input to future identification al-

gorithms. This has, to the best of our knowledge, not

been attempted before. The main contribution of this

study is available through the open-source Python library

for weather radar data processing wradlib (Heistermann

et al. 2013). It is an extension to the original fuzzy logic

algorithm, which was applied to C-band radar data

fromMediterranean and mountainous climates in Italy

(Vulpiani et al. 2012) and from a tropical climate in the

Philippines (Crisologo et al. 2014). This study aims to

test the fuzzy logic algorithm for a temperate climate. A

method for determining optimal weights and threshold

of the fuzzy logic algorithm is presented and applied

to a 4-h calibration dataset. Occasionally, an Integrated

Multisatellite Retrievals for Global Precipitation

Measurement (IMERG) product is employed to assess

whether it is raining or not over ungauged areas.

Results follow a twin track by systematically investi-

gating 1) the presence of remaining nonmeteorological

echoes by mapping the number of exceedances of

radar reflectivity factors for given thresholds and 2) the

consequences for QPE by means of annual rainfall ac-

cumulations, verification of hourly and daily rainfall

against gauges, and case studies. The latter encompasses

not only the detection of unrealistically large rainfall

depths, but also provides a means to quantify unwanted

precipitation removal. This is one of the few studies
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where nonmeteorological echo removal is applied to a

large dataset (i.e., a full year of data from two radars)

instead of merely a few or tens of case studies (or

events), or a few months (e.g., Berenguer et al. 2006;

Crisologo et al. 2014).

Section 2 gives a description of the employed radar,

rain gauge, and satellite data. In section 3 the non-

meteorological echo classification and removal, the deri-

vation of pseudo-constant-altitude plan position indicators

(pseudo-CAPPI) images, the compositing of those images

and the rainfall retrieval are explained. Section 4

evaluates the performance of the fuzzy logic algo-

rithm, and section 5 highlights a number of discussion

points. This paper ends with conclusions and some

recommendations in section 6.

2. Data

a. Radars

KNMIoperates twoGematronikMETEOR735CDP10

magnetron based C-band dual-pol Doppler weather ra-

dars, located in the Netherlands in Den Helder (52.9538N,

4.7908E, 51.0m MSL, WMO code 6234) and Herwijnen

(51.8378N, 5.1388E, 27.7m MSL, WMO code 6356).

They work in simultaneous transmission and reception

(STAR; i.e., horizontally and vertically polarized pulses

are transmitted simultaneously) mode, have an antenna

diameter of 4.3m, a wavelength of 5.326 cm (5.6GHz),

an antenna gain of 45 dB, a transmit peak power of

500 kW (i.e., 250kW per polarization), and a 3-dB

beamwidth of 0.9058. Solar monitoring is employed to,

e.g., detect deviations in the pointing of the antenna as

small as 0.058 (Beekhuis and Mathijssen 2018), and a

speckle filter is applied to remove isolated range bins

with valid data surrounded by range bins with no data

(Leijnse et al. 2016). Beekhuis and Mathijssen (2018)

provide more information on these radars, such as the

hardware calibration. The starting point for this study is

the 16-bit volumetric data from both radars from the

period 0800 UTC 31 July 2017–0800 UTC 31 July 2018,

with an availability of 98.8% and 99.2% for the radar

in Den Helder and Herwijnen, respectively. Note that

missing radar data are mainly caused by IT problems

and planned maintenance, but rarely by malfunctioning

radars. Every 5min, the radars perform 16 azimuthal

scans of 3608 around a vertical axis. Data from elevation

scans 5 (2.08), 6 (0.88), and 7 (0.38) were employed, since

these are used for deriving operational radar precipita-

tion products. Figure 1 displays the radar locations, as

well as the volume coverage pattern for these elevation

scans. Table 1 lists characteristics of the utilized eleva-

tion scans.

FIG. 1. (left) Map of the Netherlands with locations of KNMI’s weather radars, and automatic and manual rain gauges. (top right)

Volume coverage pattern showing the employed elevation scans and their height above the radar as a function of distance from the

radar with the radar tower in Herwijnen in the background. The thick black line denotes the pseudo-CAPPI height, and the gray-

shaded areas indicate the 18 beam for the lowest and highest employed elevation scan. (bottom right) Photos of the manual and

automatic rain gauge.
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b. Rain gauges

KNMI operates two rain gauge networks. Hourly

(each clock hour) and daily (0800–0800 UTC) rainfall

depths were obtained from the automatic network of

32 gauges (density of ;1 gauge per 1000km2) and the

manual network of 322 gauges (density of;1 gauge per

100 km2), respectively (Fig. 1). These are employed for

validation of hourly and daily radar rainfall depths. In

addition, the daily rainfall depths from manual gauges

were accumulated to annual rainfall depths for the val-

idation of annual radar rainfall depths. The automatic

gauges are electronic ones that measure the precipita-

tion depth using the displacement of a float placed in a

reservoir, whereas the manual rain gauges are read by

volunteers (KNMI 2000).

c. Satellites: IMERG

The IMERG V05B Final Run precipitationCal product

was obtained from NASA (Hou et al. 2014; Skofronick-

Jackson et al. 2018). ThisGlobal PrecipitationMeasurement

(GPM) level-3 product provides gridded rainfall infor-

mation every 30min at a spatial resolution of 0.18 3 0.18
(;7 3 11km2 at the latitudes of the Netherlands).

IMERG was only used to verify whether it was raining

or not for regions where no rain gauge data were avail-

able for five time intervals.

3. Methods

The flowchart in Fig. 2 provides an overview of the

radar data processing chain. The starting point is the

volumetric radar data from the two KNMI radars.

First, the fuzzy logic echo classification and clutter

identification based on polarimetric moments from

the open-source Python library for weather radar data

processing wradlib is applied (Heistermann et al. 2013).

Next, 1500-m pseudo-CAPPI images of radar reflectivity

factors are obtained for each radar, which are subse-

quently merged into one composite using either linear or

logarithmic averaging. Finally, 5-min rainfall intensities

are retrieved from the horizontal reflectivity composites

using theMarshall–PalmerZh–R relation (Zh5 200R1.6),

which are accumulated to hourly, daily, and annual

rainfall depths.

a. Nonmeteorological echo classification and removal

1) FUZZY LOGIC ALGORITHM

The function ‘‘clutter.classify_echo_fuzzy’’ fromwradlib,

version 1.4.2 (Mühlbauer and Heistermann 2019), is

employed to classify and remove nonmeteorological

echoes from volumetric radar data by utilizing a number

of decision variables. This fuzzy logic echo classifica-

tion is based on Vulpiani et al. (2012) and Crisologo

et al. (2014), where the latter added rHV as a decision

variable. Wradlib has been extended as of version

1.4.0 with the decision variables CPA and DR (function

‘‘dp.depolarization’’). The other decision variables are

texture of the differential reflectivity ZDR (TxZdr), tex-

ture of the copolar correlation coefficient rHV (TxRho),

texture of the two-way differential propagation phase

FDP (TxPhi), and the copolar correlation coefficient rHV

(Rho). The static clutter map (CMAP) and the Doppler

velocity (V) were not considered. Clutter maps may vary

depending on weather conditions (Zhang 2017) and a

static clutter map, based on long radar records, only

represents the average influence of clutter. Hence, it will

often be less representative for an individual time inter-

val. Because of this, the classification is entirely based on

the radar data from the considered time interval. Since

Doppler filtering has already been applied at the radar’s

signal processor (Leijnse et al. 2016), themain objective is

to remove nonstationary clutter. Hence, using radial ve-

locity seems unnecessary and could even interfere with

this objective, which is why it was discarded.

CPA is a measure of the pulse-to-pulse phase vari-

ability of the signal for a range bin, and shows less fluc-

tuation in case of ground echoes (Hubbert et al. 2009a,b):

CPA5

������
N

i51

x
i

�����=
 
�
N

i51

jx
i
j
!
, (1)

where xi is an individual time series member. DR is a

2D combination ofZDR and rHV and a proxy quantity to

the circular depolarization ratio. DR can be computed

as follows (Ryzhkov et al. 2017; Kilambi et al. 2018):

DR5 10 log
10

"
Z

dr
1 12 2(Z

dr
)0:5r

HV

Z
dr
1 11 2(Z

dr
)0:5r

HV

#
, (2)

where Zdr is in linear scale. High depolarization ratios

point to nonmeteorological echoes, whereas meteoro-

logical echoes generally haveZDR values relatively close

TABLE 1. Technical characteristics of the employed radar ele-

vation scans.

Characteristic Scan 5 Scan 6 Scan 7

Elevation angle (8) 2.0 0.8 0.3

Pulse repetition

frequency (Hz)

600 and 800 600 and 800 450

Pulse duration (ms) 1.49 1.49 2.66

Antenna rotation speed (8 s21) 24 24 12

No. of azimuths 360 360 360

No. of range bins 838 838 802

Range bin width (m) 223.5 223.5 399.0

No. of pulses per azimuth bin ;29 ;29 ;38

1646 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/9/1643/4995764/jtechd190149.pdf by W
AG

EN
IN

G
EN

 U
R

 user on 28 Septem
ber 2020



to 0 dB (21,ZDR, 3 dB) and have low shape diversity

(high rHV); i.e., they have low polarization (Kilambi

et al. 2018). Note that all employed decision variables

can only be available for dual-pol radars, except for CPA.

The texture is computed over a 33 3 neighborhood, i.e.,

over 3 bins in azimuth and 3 bins in range, using function

‘‘dp.texture’’. This spatial variability is computed as the

root-mean-square difference of the 8 surrounding range

bins with respect to the center range bin, to which the

fuzzy logic algorithm is applied (Gourley et al. 2007).

The rationale for theuseof textures for nonmeteorological

echo removal is that nonmeteorological echoes have very

limited spatial extents, and hence textures will be large.

For many nonmeteorological echoes encountered in the

Netherlands (very limited topography), spatial extents

will typically be smaller than the size of the range bins.

Also note that radar sample volume sizes are dependent

on the range (in the azimuth dimension), so textures may

also be affected by that. Hence, employing a single set of

membership functions (see below) for different scans and

ranges is justified.

For each decision variable and range bin, the degree

of membership to the nonmeteorological target class is

computed by using trapezoidal transformation functions

(function ‘‘util.trapezoid’’). For instance, the degree

of membership d(Xj) is 0 for CPA# 0.6, thus considered

as meteorological. Then it increases linearly to 1 for

CPA 5 0.9. Values of CPA $ 0.9 are considered as

nonmeteorological. The degree of membership is com-

puted from membership values X (Vulpiani et al. 2012):

d(X
j
)5

8>>>><
>>>>:

0 if X
j
,X

1,j
or X

j
.X

4,j

(X
j
2X

1,j
)/(X

2,j
2X

1,j
) if X

1,j
,X

j
,X

2,j

(X
4,j
2X

j
)/(X

4,j
2X

3,j
) if X

3,j
,X

j
,X

4,j

1 if X
2,j
,X

j
,X

3,j

, (3)

where Xi,j is the ith vertex of the trapezoid relative to

the jth decision variable, and Xj is the value of the jth

decision variable. Subsequently, the degree of mem-

bership to the nonmeteorological target class is sub-

tracted from 1 to obtain the degree of membership to

the meteorological target class. This is multiplied by

the weight of the decision variable. Next, the contri-

butions from each decision variable are summed and

divided by the sum of the weights of all decision vari-

ables. The echo is assumed to be nonmeteorological in

case this weighted average of the degree of member-

ship to the meteorological target class is lower than a

threshold value (0.6 in this study). In this case the

horizontally polarized radar reflectivity factor (Zh) of

the range bin is set to a not available (NA) value.

Otherwise the echo is classified as meteorological. If a

decision variable is NA for a given range bin, its weight

becomes 0, implying that only other decision variables

are used for the classification, and effectively get a

larger relative weight.

FIG. 2. Flowchart of radar data processing.
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The wradlib default membership values are used

(Table 2) except for ‘‘Rho,’’ for which much lower

values are employed: 0.8–0.85 instead of 0.95–0.98

(wradlib’s), because values below 0.8 are generally asso-

ciated with nonmeteorological scatterers Kumjian (2013).

Crisologo et al. (2014) use 0.9–0.95 in a tropical climate,

whereas the values used for the United States by Krause

(2016), 0.75–0.9, encompass the ones employed in this

study. Themembership values for CPA are obtained from

Hubbert et al. (2009b). Kilambi et al. (2018) report that

DR exceeding 212dB and Zh lower than 35dBZh is

generally associated with nonmeteorological echoes.

Hence, the degree ofmembership to the nonmeteorological

target class is chosen to be 1 for DR $ 212dB. It is set to

linearly decrease to 0 forDR5220dB.A threshold forZh

is not considered since this enables to detect strong ground

echoes. Besides, the fuzzy logic does not solely depend on

DR, implying that moderate to heavy rainfall is not

necessarily removed. To better underpin the choice of the

membership values, the distribution for each decision

variable in the 4-h calibration dataset from Fig. 3 is visual-

ized in Fig. 4, distinguishing between nonmeteorological

and meteorological echoes. The distributions correspond

well with the chosen membership functions.

2) DETERMINING OPTIMAL WEIGHTS AND

THRESHOLD

Optimal weights are determined by employing data

from one radar to limit computational time. The coastal

radar in Den Helder is selected for this, because it is most

vulnerable to anomalous propagation, often resulting in

sea clutter. Four separate hours with data, each from a

TABLE 2. Parameters of themembership functions for the employed decision variables of the fuzzy logic echo classification procedure and

their weights. A threshold of 0.6 is applied. The clutter map (CMAP) and radial velocity (V) were not employed; i.e., their weight is 0.

Xj Description Weight X1,j X2,j X3,j X4,j

TxZdr Texture of ZDR 0.20 0.7 1.0 9999 9999

TxRho Texture of rHV 0.25 0.1 0.15 9999 9999

TxPhi Texture of FDP 0 15 20 10 000 10 000

Rho rHV 0.15 29999 29999 0.8 0.85

DR DR 0.20 220 212 9999 9999

CPA CPA 0.20 0.6 0.9 9999 9999

FIG. 3. Calibration dataset. (top) Maps of pseudo-CAPPI images of horizontally polarized radar reflectivity factors for the Netherlands

and surroundings from the radar in Den Helder. Each map is representative of 1 h of the calibration dataset, with (two first columns)

events with probably only nonmeteorological echoes, (third column) a stratiform rainfall event, and (fourth column) a convective rainfall

event. (bottom) Corresponding rainfall intensities from GPM IMERGV05B Final Run precipitationCAL (0600–0630 UTC 19 Apr 2018

seemed to provide erroneous data, so the next 30min is shown). The IMERG maps cover roughly half of the calibration period. See

supplemental material file S1.gif for a movie showing the reflectivities for the four complete calibration datasets.
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different day, are used as a calibration dataset for deter-

mining optimal weights and threshold of the fuzzy logic

algorithm. Two hours are considered dry and all echoes in

these hours are labeled as nonmeteorological, whereas the

other 2h are assumed to only contain meteorological ech-

oes. This is confirmed by visual inspection of the pseudo-

CAPPI images from theDenHelder radar in the top panels

of Fig. 3, showing maps of Zh representative for each hour,

as well as the movie in online supplemental material (see

S1.gif). For the 2h assumed to only contain meteorological

echoes, some nonmeteorological echoes seem to exist.

These are expected to have a negligible effect on the out-

come. Moreover, the dense daily rain gauge network does

not reveal any significant precipitation for the land surface

of theNetherlands for the 2h considered as dry. The lack of

significant precipitation for ungauged areas is confirmed by

the IMERG rainfall maps in the bottom panels of Fig. 3.

For each decision variable the weights are varied from 0

to 0.35 with steps of 0.05. Only combinations for which the

summed weights over all variables are 1 are considered,

similar to Berenguer et al. (2006). Using six decision vari-

ables this results in 15853 combinations, which are run for

four different values of the threshold used to classify echoes:

0.3, 0.4, 0.5, and 0.6. The number of correctly determined

nonmeteorological andmeteorological echoes aswell as the

number of wrongly classified nonmeteorological and me-

teorological echoes are computed for each of the combi-

nations and threshold values, resulting in four metrics. This

is only counted for range bins with Zh $ 7dBZh. Since this

corresponds to only 0.1mmh21 and this thresholding is also

applied in operational products, this helps to focus on ech-

oes strongenough tobe relevant forQPE.Next, theoptimal

values for weights and threshold are determined by select-

ing the highest percentage of correctly classified meteoro-

logical echoes under the condition that more than 95% of

nonmeteorological echoes are detected. Table 2 shows the

optimal values for the weight of each decision variable,

which result in removing 95.1% of the nonmeteorological

FIG. 4. The empirical distribution of the values for each decision variable in the 4-h calibration dataset, distinguishing between the 2-h

nonmeteorological (‘‘dry’’) and 2-h meteorological (‘‘rainy’’) dataset. The black lines represent the employed membership functions.
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echoes, whereas 88.8% of the meteorological echoes are

preserved in the calibration dataset. The weight of ‘‘TxPhi’’

is 0 implying that it does not contribute to the classification.

3) ILLUSTRATION

The application of the fuzzy logic algorithm with op-

timal weights and threshold is illustrated in Fig. 5 for one

time interval from the lowest elevation scan from the

coastal radar in Den Helder that is not part of the calibra-

tion dataset. Each of the six decision variables are displayed

together with their corresponding degree of meteorological

membership. The total degree of meteorological member-

ship is shown, as well as a map with the classification result.

The IMERG rainfall intensity map reveals no precipitation

except for small areas in the northwest and a larger area in

the southeast. The network of 321 manual rain gauges did

not report significant precipitation over the land surface of

the Netherlands for this day. Note that ‘‘TxPhi’’ has a

weight of 0, but it is nonetheless shown because it is often

employed for clutter classification, and was used as a po-

tential decision variable in our algorithm.

Three maps of Zh are provided. The first one shows

dramatic nonmeteorological echoes when Doppler fil-

tering and fuzzy logic are discarded. The second one

shows that the application of Doppler filtering effec-

tively reduces clutter. In the third map both the Doppler

filtering and the fuzzy logic algorithm are applied. The

range bins with blue values in the map with the classi-

fication result are set to NA in the map of Zh. This leads

to an additional strong reduction in nonmeteorological

echoes. It is clear that both the Doppler filter and the

fuzzy logic algorithm are important for removing clutter.

The fuzzy logic algorithm is especially effective over sea,

where most clutter targets are nonstationary.

b. Pseudo-CAPPI per radar

For each radar horizontal cross sections of horizon-

tally polarized radar reflectivity at constant altitude,

called pseudo-CAPPI, are constructed from the volu-

metric radar data. These pseudo-CAPPI images contain

8-bit reflectivity values, quantized in levels of 0.5 dBZh,

at ;1-km spatial resolution. Figure 2 displays the vol-

ume coverage pattern, where the thick line denotes the

pseudo-CAPPI at 1500m. To reduce the risk of ground

clutter and beam blockage near the radar, for the first

40 km from the radar only data from the 2.08 elevation
are used. For the domain from 40 to 121 km from the

radar, the pseudo-CAPPI is constructed by linear in-

terpolation of the reflectivity values (dBZh) of the

nearest elevation below and above the 1500-m height.

This interpolation is done in logarithmic space, which is

the default method in operational radar processing soft-

ware, to further reduce the influence of nonmeteorological

echoes. Only the reflectivity values of the lowest elevation

are used for areas located 121km and beyond from the

radar. Note that the middle of the beam of the lowest el-

evation is at 1500m for a range of 121km.

c. Compositing pseudo-CAPPI images

The pseudo-CAPPI images from the individual radars

are combined into one composite using range-weighted

compositing, where reflectivities close to the radar are

assigned lower weights to limit the impact of bright

bands and spurious echoes; i.e., the other radar is

assigned higher weights. This compositing method pre-

vents the occurrence of discontinuities in the radar-

derived rainfall images in the vicinity of the radar and at

the edge of the coverage of a radar (Overeem et al.

2009). Composites are only obtained if the pseudo-

CAPPIs from both radars contain data, in which case

the reflectivity values are linearly averaged; i.e., the

arithmetic mean is computed. This linear averaging is

preferential for merging, but very high outliers remain if

clutter has not been sufficiently removed from the input

data. The reduction would then be 3dB, so, e.g., 60 dBZh

for one radar and 231dBZh for the other radar would

lead to a still very large value of ;57dBZh (not con-

sidering the range weighting). To hide the effect of

nonmeteorological echoes, averaging is also done in

logarithmic space. Thus, two datasets of composites are

obtained. Warren and Protat (2019) claim that interpo-

lation of Zh is more accurate than that of dBZh, whereas

Lakshmanan (2012) advocates the opposite.

d. Rainfall retrieval

Reflectivities below 7 dBZh (;0.1mmh21) are not

converted to rainfall intensities to avoid the accumulation

of noise. Reflectivities above 55dBZh (;100mmh21) are

set to 55dBZh to suppress the influence of echoes induced

by hail or strong residual clutter. Isolated pixels withZh$

7dBZh, i.e., pixels where none of the eight neighboring

pixels have values$7dBZh, are not used in the conversion

to rainfall intensity. Next, the reflectivities Zh (mm6m23)

of the pseudo-CAPPI images are converted to rainfall in-

tensities R (mmh21) with the fixed Zh–R relationship

(Marshall et al. 1955), independent of seasonor type of rain,

Z
h
5 200R1:6, (4)

implicitly assuming an exponential drop size distribution,

Rayleigh scattering and a power law for the terminal fall

speed of drops as a function of diameter. With 0.5-dBZh

classes this results in 97 possible levels of rainfall in-

tensities ranging from 0.1 to 100mmh21. One-hour

rainfall accumulations are constructed from the 5-min rain-

fall intensities if at least 10 images (minimum availability of
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FIG. 5.Maps of theNetherlands and surroundings dominated by nonmeteorological echoes, showing (first row),(third row) values of the

fuzzy logic decision variables, (second row),(fourth row) their associated degree of membership of meteorological echoes, and (fifth row)

radar reflectivity factors (Zh) and the rainfall intensities from GPM IMERG V05B Final Run precipitationCAL, for 0230 UTC 26 Aug

2017 from the validation dataset. Data are from the 0.38-elevation scan from the coastal radar in Den Helder. The fourth row also shows

the classification result from the fuzzy logic algorithm and the fifth row the resulting filteredZh. See supplemental material file S2.gif for a

zoomed-in movie of a 2.5-h period including this time interval, but based on the pseudo-CAPPI images from both radars, combined

employing linear compositing.
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83.3%) are available. Local outliers caused by accumulated

residual clutter are removed from the hourly accumulations

using a five-pixel median filter on nearest-neighbor pixels. If

one or two images are missing, the 1-h accumulated rainfall

is scaled by the fraction of available images.Next, only those

1-h depths are selected for which the data availability of the

corresponding 24-h (0800–0800 UTC) period is at least

83.3%. These minimum availabilities are demanded to

allow a fair comparison with rain gauge accumulations. The

resulting data availability of the images containing hourly

and daily rainfall depths is;97%.

4. Results

Now the fuzzy logic algorithm is applied to a 1-yr

dataset from elevation scans 5, 6, and 7 (see Table 1)

from two radars employing the (optimal) parameter

settings from Table 2. If Doppler filtering has not been

applied this is explicitly stated.

a. Relative frequency of exceedance of radar
reflectivity factors

The relative frequency of exceeding a threshold value

forZh, based on a full year, is visualized to spot suspicious

range bins, where high values point to nonmeteorological

echoes. This is done for the pseudo-CAPPI images from

the radar in Den Helder (DH), the radar in Herwijnen

(HW) and their composites, either averaged in linear or

in logarithmic space.

Figure 6 presents the relative frequency of exceedance

of 7 dBZh, i.e., the percentage to be converted to non-

zero rainfall intensity. When the fuzzy logic algorithm is

not applied, a lot of sea clutter is found for the Den

Helder radar, whereas the Herwijnen radar notably

suffers from interferences. The clutter above sea is likely

induced by moving waves, ships, and wind farms. The

fuzzy logic algorithm successfully removes a large part of

the (sea) clutter and of the interferences. Some clutter areas

become smaller due to the influence of the Herwijnen

radar. In the composites, it is apparent that west of the

Netherlands an increase in exceedance frequency is found

for some areas, with respect to the frequencies from the

individual radars. This is causedby the fact that the threshold

exceedances do not always occur simultaneously for both

radars. Application of the fuzzy logic algorithm leads to a

strong reduction in the frequency of these suspicious echoes.

It also shows that the large area with a frequency of 6%–

8% is somewhat reduced in size, which is an indication that

some precipitation is removed. Still some areas likely con-

taining sea clutter are present. Compositing in logarithmic

space is very effective in hiding clutter, although inter-

ferences and some sea clutter remain present. It performs

FIG. 6. Relative frequency (%) of$7 dBZh exceedance of radar reflectivity factors (Zh) for the Netherlands and surroundings based on

August 2017–July 2018. (top) Based on the pseudo-CAPPI images from the radar in Den Helder (DH) or Herwijnen (HW). (bottom)

Composited radar images in linear space and in logarithmic space. (first column),(second column) No fuzzy logic filtering. (third col-

umn),(fourth column) Fuzzy logic filtering has been applied.
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better than the linearly averaged composite in terms of

presence of clutter. However, the number of exceedances

of the 7dBZh threshold shows a more homogeneous

pattern over the Netherlands for linear compositing, in-

dicating that this may improve QPE quality over loga-

rithmic compositing in areas without clutter. A downside

of logarithmic compositing is that the overall exceedance

frequency is substantially reduced, which points to rain-

fall underestimation. This will be investigated in the next

subsection by verification with rain gauge data.

Similar results are obtained for the relative frequency of

exceedance of 35dBZh (Fig. 7), equivalent to moderate to

heavy rainfall, but with some exceptions: 1) interferences

are not noticeable; 2) shipping dominates for the Den

Helder radar; 3) the severity of clutter is less effectively

reduced by the fuzzy logic algorithm, although a large

reduction for shipping and wind farms is found for the

Den Helder radar; and 4) application of the fuzzy logic

algorithm leads to relative frequencies becoming 0 for

some areas at far range from an individual radar in the

northern part of the images.

b. Verification of hourly and daily rainfall depths

An independent verification of daily (0800–0800 UTC)

and hourly radar rainfall depths against rain gauges is

performed to quantify the influence of the fuzzy logic

algorithm. Since ground echoes at the gauge locations

will usually be rare, this is mainly meant to assess the

unwanted removal of precipitation. In addition, the

performance of logarithmic compositing is compared

to linear compositing. Table 3 shows metrics for the

relative bias of radar rainfall depths compared to

the corresponding gauge rainfall depths, the residual

standard deviation, the Pearson correlation coefficient,

and the mean absolute error for daily rainfall. Here a

residual is defined as the radar rainfall depth minus the

gauge rainfall depth. Results are presented for all

values and for those where radar and/or gauge exceed a

threshold value (the radar is also included in the se-

lection to show a possible influence of clutter). A

number of conclusions can be drawn from Table 3: 1)

radar severely underestimates rainfall by 44.9%–59.9%;

2) the average underestimation is ;7–9 percentage

points higher for composites averaged in logarithmic

space than for linearly averaged composites; 3) ap-

plication of the fuzzy logic algorithm slightly increases

the underestimation by 2–4 (logarithmic averaging) or

about 2–3 (linear averaging) percentage points; 4) the

fuzzy logic algorithm generally hardly affects the

values of the other metrics, except for the improve-

ment found for the residual standard deviation and

the correlation coefficient for the 10.0- and 20.0-mm

threshold in case of linear averaging; and 5) higher

threshold values lead to lower Pearson correlation

FIG. 7. Relative frequency (%) of$35 dBZh exceedance of radar reflectivity factors Zh for the Netherlands and surroundings based on

August 2017–July 2018, corresponding to moderate to heavy rainfall. (top) Based on the pseudo-CAPPI images from the radar in Den

Helder (DH) or Herwijnen (HW). (bottom) Composited radar images in linear space and in logarithmic space. (first column),(second

column) No fuzzy logic filtering. (third column),(fourth column) Fuzzy logic filtering has been applied.
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coefficients because many small or zero values are not

taken into account anymore.

Table 4 has the same layout as Table 3, but shows the

validation of hourly rainfall accumulations. The fol-

lowing conclusions can be drawn: 1) radar severely

underestimates rainfall by 40.7%–63.8%, which can

be more severe compared to Table 3; 2) the average

underestimation is ;7–11 percentage points higher

for composites averaged in logarithmic space with

respect to those obtained by averaging in linear space;

and 3) application of the fuzzy logic algorithm slightly

increases the underestimation by 3–5 (logarithmic av-

eraging) or about 3–6 (linear averaging) percentage

points. Conclusions 4), now for thresholds of 5.0 and

10.0mm, and 5) for Table 3 (daily rainfall) also hold for

Table 4 (hourly rainfall).

c. Annual rainfall depths

Annual rainfall maps are presented in Fig. 8. They

show the total impact of (the removal of) non-

meteorological echoes on the variable used for

many hydrometeorological applications. The fact that

rainfall variability in annual rainfall maps is relatively

smooth helps to detect radar pixels with unrealisti-

cally large rainfall depths due to clutter. Results are

shown for composites based on logarithmic and linear

averaging. The maps for which no Doppler and fuzzy

logic filtering are applied show a lot of artifacts, many

of which are removed when Doppler filtering is ap-

plied. For the accumulation based on linearly aver-

aged composites huge rainfall depths are found above

the North Sea. These are likely caused by maritime

transport, mainly to and from the Ports of Rotterdam

(the Netherlands) and Antwerp (Belgium). The ap-

plication of the fuzzy logic algorithm removes many

nonmeteorological echoes. An even more pro-

nounced removal is revealed in the maps presenting

the fraction of annual rainfall depth left after fuzzy

logic filtering, especially for the linearly averaged

composites. Despite a strong reduction, the shipping

tracks are still present. The notorious clutter area

known as ‘‘Maasvlakte (2),’’ which is part of the Port

of Rotterdam and hence contains many cranes and

containers giving strong backscatter in case of re-

fraction, is effectively removed. For the compositing

method in linear space, no overall reduction in annual

rainfall depths is found, which demonstrates that

precipitation echoes are not systematically removed

by applying the fuzzy logic algorithm, consistent with

the results in the previous subsection. In contrast, for

the composites averaged in logarithmic space, a re-

duction of 5%–15% at long range from the radars is

found when the fuzzy logic algorithm is applied. Given

the good performance and the fact that only little

TABLE 3. Validation of 24-h 0800UTC rainfall accumulations of radar composites. Mean daily rainfall depth of the manual rain gauges,

bias in the mean daily rainfall, residual standard deviation, Pearson correlation coefficient, and mean absolute error are given for the

validation with the manual rain gauge network over the period August 2017–July 2018. ‘‘Threshold’’ means that radar and/or gauge are

above the threshold value. Compositing data from both radars has been done in either logarithmic space or by linearly averaging

reflectivities.

Threshold (mm) Mean (mm) Relative bias (%) Std dev (mm) Correlation MAE (mm)

No fuzzy logic (logarithmic space)

2.37 255.9 2.97 0.86 1.45

0.1 4.26 255.9 3.66 0.83 2.61

10.0 16.48 257.4 5.21 0.70 9.66

20.0 28.25 252.3 7.37 0.57 15.14

Fuzzy logic (logarithmic space)

2.37 258.1 3.04 0.86 1.48

0.1 4.32 258.1 3.75 0.83 2.70

10.0 16.52 259.9 5.18 0.71 10.01

20.0 28.36 256.1 6.94 0.59 16.04

No fuzzy logic (linear space)

2.37 247.6 2.82 0.85 1.36

0.1 4.09 247.7 3.48 0.82 2.34

10.0 16.31 250.4 5.78 0.64 8.82

20.0 27.90 244.9 9.12 0.43 13.83

Fuzzy logic (linear space)

2.37 249.5 2.77 0.88 1.33

0.1 4.25 249.6 3.43 0.85 2.39

10.0 16.44 252.2 5.12 0.71 8.87

20.0 28.18 247.8 7.30 0.58 13.96
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precipitation is removed for the composites averaged

in linear space, there is no necessity to use composites

averaged in logarithmic space. Hence, in the remain-

der of this study only results based on compositing in

linear space are presented.

The gray areas in the map showing the fraction

of annual rainfall left after application of the fuzzy

logic algorithm (in linear space), contain values of

1 and larger. This seems unexpected as the fuzzy logic

algorithm can only remove echoes, but can be

explained by the way the pseudo-CAPPI images are

constructed. In the interpolation in azimuth and

height, a filtered range bin is seen as an NA value and

is replaced by the value from its nearest neighbor

(i.e., the value from the other azimuth or height),

which may have a higher value than that from the

original unfiltered range bin.

Although the area over which texture is computed

increases with range, and no range-dependent correc-

tion is applied, no systematic differences in annual

rainfall can be found at far range from the radars for the

composites averaged in linear space.

d. Case studies

Case studies of daily and hourly rainfall depths

are presented regarding the effectiveness of the

fuzzy logic algorithm and its unwanted precipitation

removal. This is done by plotting rainfall maps based

on radar data excluding and including fuzzy logic

echo removal, and interpolated gauge data. Moreover,

the reduction in rainfall depth (mm) due to the fuzzy

logic algorithm is visualized. First, daily rainfall maps

are investigated in Fig. 9. The first row presents a suc-

cessful example of clutter removal, where ground

clutter is effectively removed, but sea clutter not en-

tirely. This day includes the time intervals presented in

Fig. 3 and supplemental material (see S1.gif). The other

rows are rainy days having a mixture of convective and

stratiform rainfall (second row), and stratiform rainfall

(third row). The fuzzy logic algorithm hardly removes any

rainfall. Figure 9 also reveals a large underestimation with

respect to the interpolated gauge data. It is difficult to at-

tribute this to specific sources of error, although it is likely

that the vertical profile of reflectivity plays a larger role for

the stratiform case and (radome) attenuation is more

dominant for the more convective case. Perhaps that the

values of the coefficients in the Zh–R relationship are

suboptimal.

Figure 10 presents zoomed-in hourly rainfall maps

from the eastern part of the Netherlands, including part

of Germany. Since few automatic gauge data are avail-

able it is not informative to display a gauge rainfall map.

The difference in 60-min rainfall is generally small,

but for some pixels severe underestimations exceeding

TABLE 4. Validation of 1-h (clock hour) rainfall accumulations of radar composites. Mean hourly rainfall depth of the automatic rain

gauges, bias in themean hourly rainfall, residual standard deviation, Pearson correlation coefficient, andmean absolute error are given for

the validation with the automatic rain gauge network over the period August 2017–July 2018. ‘‘Threshold’’ means that radar and/or gauge

are above the threshold value. Compositing data from both radars has been done in either logarithmic space or by linearly averaging

reflectivities.

Threshold (mm) Mean (mm) Relative bias (%) Std dev (mm) Correlation MAE (mm)

No fuzzy logic (logarithmic space)

0.09 251.3 0.33 0.81 0.06

0.1 0.82 252.3 0.91 0.74 0.55

5.0 8.08 256.9 3.53 0.53 4.88

10.0 14.67 258.7 4.97 0.41 8.94

Fuzzy logic (logarithmic space)

0.09 254.1 0.34 0.80 0.06

0.1 0.84 255.0 0.94 0.73 0.56

5.0 8.12 261.4 3.64 0.47 5.16

10.0 14.67 263.8 5.31 0.23 9.58

No fuzzy logic (linear space)

0.09 240.7 0.32 0.78 0.06

0.1 0.78 242.1 0.91 0.71 0.51

5.0 7.70 246.6 4.24 0.38 4.66

10.0 14.50 251.3 5.88 0.31 8.43

Fuzzy logic (linear space)

0.09 245.1 0.31 0.82 0.06

0.1 0.81 246.3 0.87 0.76 0.51

5.0 8.02 252.5 3.61 0.51 4.65

10.0 14.67 254.7 5.28 0.38 8.57

SEPTEMBER 2020 OVEREEM ET AL . 1655

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/9/1643/4995764/jtechd190149.pdf by W
AG

EN
IN

G
EN

 U
R

 user on 28 Septem
ber 2020



4mm, and sometimes even 12mm, are found. Thus, the

fuzzy logic algorithm can result in much lower 60-min ac-

cumulations in convective cases for some areas. Perhaps

some of these underestimations are related to the calcu-

lation of textures at the edges of convective rainfall.

5. Discussion

a. Determining optimal weights and threshold

Only optimal weights and threshold of the fuzzy logic

algorithm are determined, whereas the shape and the

values of the membership function are not. Ideally for

these also optimal values should be determined, al-

though this will be computationally (too) expensive. The

condition that more than 95% of nonmeteorological

echoes need to be detected in the calibration dataset

could be modified depending on the specific application

of the weather radar products. The chosen percentage

assures that the vast majority of nonmeteorological

echoes is removed, at the expense of a higher risk of

removing meteorological echoes.

It is difficult to provide an exact comparison for the

values of the weights with other studies, since different

sets of decision variables are utilized. Moreover, cli-

mate, types of radar and computation of textures may

vary as well. Crisologo et al. (2014) find similar weights

for ‘‘TxRho’’ (;21%) and ‘‘TxPhi’’ (;5%) for a tropi-

cal climate. Vulpiani et al. (2012) find a similar weight

for ‘‘TxRho’’ (20%), but a larger weight for ‘‘TxPhi’’

(20%) in mountainous areas in Italy. Both stud-

ies use a previous version of the wradlib fuzzy logic

algorithm. Krause (2016) finds a smaller weight for

‘‘TxRho’’ (;13%) and a much larger weight for

‘‘TxPhi’’ (25%).

The 10 highest ranked optimal values for weights can

be quite different. The eight ranked optimal values for

weights and threshold (now 0.4 instead of 0.6) show the

largest differencewith respect to the highest-ranked ones,

i.e., 0.6 when their absolute differences are summed. Part

of the analyses were also performed employing these

eight ranked weights and threshold to assess whether

different values make a large difference (not shown). The

eighth ranked values are chosen by selecting the eighth-

highest percentage of correctly classified meteorological

echoes under the condition that more than 95% of non-

meteorological echoes are detected. This results in re-

moving 95.4% (compared to 95.1% for the highest

ranked) of the nonmeteorological echoes, whereas 88.6%

(compared to 88.8% for the highest ranked) of the me-

teorological echoes are preserved in the calibration

dataset. Differences in the relative frequency of exceed-

ance of 7dBZh for the composites, as well as in the annual

rainfall depths, are small, irrespective of compositing

being done in logarithmic or linear space. With the eight

ranked values more shipping tracks are removed, but

more isolated echoes remain, likely related towind farms.

This suggests that rather different weights can give a

similar outcome, which suggests equifinality and gives

FIG. 8. Maps of annual rainfall accumulations for the Netherlands and surroundings for August 2017–July 2018 based on radar rainfall

composites where data from both radars have been composited in (top) logarithmic space and (bottom) linear space. (first column) No

Doppler and no fuzzy logic filtering (no clutter filtering). (second column) No fuzzy logic filtering. (third column) Fuzzy logic filtering.

(fourth column) The fraction of rainfall left after applying fuzzy logic filtering.

1656 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 37

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/9/1643/4995764/jtechd190149.pdf by W
AG

EN
IN

G
EN

 U
R

 user on 28 Septem
ber 2020



some confirmation of the robustness of the procedure to

find optimal values. With respect to the calibration

dataset, many weight and threshold combinations will

give similar results as the highest ranked optimal values,

since 6699 out of 63 412 combinations exceed the 95%

threshold for nonmeteorological echo removal. The

added decision variables CPA and DR have a large and

similar weight in the fuzzy logic algorithm of 0.20. The

variability in the weight values, e.g., the weight for CPA

changes to 0.05 and the weight for DR changes to 0.30

for the eight ranked weights and threshold, puts the

importance of CPA and DR into perspective. Although

it is shown that CPA andDR can be important in a fuzzy

logic algorithm, it could well be that many other combi-

nations of weights for the decision variables, where CPA

and DR play a less dominant or negligible role, would

provide only slightly worse results.

To study the importance of DR and CPA in the fuzzy

logic algorithm, the whole optimization procedure and

application of the algorithm to a 1-yr dataset was also

performed without these two decision variables (results

not shown). This removes the effects of sea clutter more

effectively in annual rainfall accumulations. The perfor-

mance in terms of the relative frequency of exceedance of

7dBZh is also better, although more interferences can be

seen. An important shortcoming is that the relative fre-

quency of exceedance of 35dBZh shows a general de-

crease, indicating that too many moderate to heavy

rainfall echoes are removed when DR and CPA are not

used. Such a reduction is also apparent in the annual

rainfall accumulations.

b. Compositing

Compositing in logarithmic space effectively hides

nonmeteorological echoes, but negatively affects the

overall quality of precipitation estimates compared to

linear compositing, daily rainfall depths being ;7–8

percentage points lower on average. One could object

FIG. 9. Maps of daily rainfall accumulations for the Netherlands and surroundings for a day (top) dominated by nonmeteorological echoes,

(middle) with a mixture of stratiform and convective rainfall, and (bottom) with stratiform rainfall. Based on (first column) interpolated data

from;321manual rain gauges, (second column) radar rainfall composites without and (third column) with fuzzy logic filtering. (fourth column)

The difference in rainfall depth of fuzzy logic with respect to no fuzzy logic filtering.Data fromboth radars have been composited in linear space.
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that compositing in logarithmic space seems not to

make sense from a physical viewpoint, and thus linear

compositing is desirable. The fact that construction of

pseudo-CAPPI images is always done in logarithmic

space, however, puts this discussion in perspective.

Because the fuzzy logic algorithm removes most clutter,

compositing in linear space is preferred.

c. Five-point median clutter filter

Finally, Fig. 11 shows a comparison of the annual

rainfall map without and with application of the five-

point median clutter filter. This filter leads to a clear

reduction in sea clutter, which is why it has been em-

ployed in all results. The statistics from Tables 3 and 4

for fuzzy logic are also computed for the dataset with-

out median clutter filter (not shown). The values are

similar for the hourly and daily rainfall where compos-

ites have been averaged in logarithmic space, although

the underestimation is about 0–1.5 percentage points

less when no median clutter filter is applied. For the

composites averaged in linear space small differences

are sometimes found, e.g., always about 1–5 percentage

points less underestimation when no median clutter fil-

ter is applied. Taking the median value tends to only

slightly reduce the radar rainfall depths on average as

well as the effective spatial resolution, whereas it leads

to an additional reduction in sea clutter.

6. Conclusions

The effectiveness of the open-source wradlib fuzzy

echo classification was tested on a 1-yr dataset from

two C-band weather radars in a temperate climate.

The chosen settings, including the optimal weights and

threshold from a 4-h calibration dataset, successfully re-

moved many nonmeteorological echoes while removing

FIG. 10. Zoomed-in maps of hourly rainfall accumulations for radar rainfall composites (left) without and (center) with fuzzy logic

filtering. (right) The difference in rainfall depth of fuzzy logic with respect to no fuzzy logic filtering. Data from both radars have been

composited in linear space. The black line represents the border between the Netherlands and Germany.

FIG. 11. Maps of annual rainfall accumulations for the Netherlands and surroundings for August 2017–July 2018 based on (left) in-

terpolated data from 322 manual rain gauges, and (center),(right) radar rainfall composites where data from both radars have been

composited in linear space and fuzzy logic filtering has been applied. The five-point median clutter filter has not been applied in the

center panel.
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a little precipitation. This was confirmed by maps of

exceedances of radar reflectivity factors for given

thresholds, accumulated annual rainfall maps, case stud-

ies with hourly or daily rainfall maps, and an extensive

verification of hourly and daily rainfall depths against rain

gauges. Because the fuzzy logic algorithm removes many

nonmeteorological echoes, the current practice in the

Netherlands to composite data from both radars in log-

arithmic space to hide these echoes is abandoned and

replaced by linearly averaging reflectivities. This research

has led to extension of the wradlib fuzzy logic algorithm

with two new variables: Clutter phase alignment (CPA)

and depolarization ratio (DR), which plays a large role in

the presented fuzzy logic algorithm. Despite limitations

concerning the length of the calibration period, the sys-

tematic evaluation over a full year gives confidence that

the proposed method and, hence, the wradlib fuzzy logic

algorithm, would work well in an operational setting.

We concludewith some recommendations.Application

to long, e.g., 1-yr, datasets is valuable to determine the

robustness of algorithms and their chosen settings. The

rise of cloud computing could bring the full-scale opti-

mization of, e.g., fuzzy logic algorithms on long datasets to

our fingertips. Often calibration datasets are on the order

of hours or days, such as 4h in this study, and their short

length can make them less representative for a full year.

Hence, much longer calibration datasets could be used to

find optimal values. A drawback of this approach is that

classification of echoes in calibration datasets can be la-

borious, especially when considering images containing

both nonmeteorological and meteorological echoes.

Another approach could be to just apply many different

plausible combinations of weights or other plausible

parameter settings to a 1-yr dataset. Next, the extensive

approach presented in this study could be followed,

which involves a verification against rain gauges, to

verify whether sufficient nonmeteorological echoes are

removedwhile keepingmost precipitation. If good results

can be established on such large datasets, it is likely to

work on other datasets from a similar radar and climate.

Hence, there is no need for an independent verification

on a separate dataset for such a big data approach.

Remaining sea clutter shows the need for further

improvement of clutter removal algorithms or testing of

other algorithms on the dataset from this study. A pos-

sible way forward is quality-based compositing in linear

space, where suspicious range bins get a lower weight,

e.g., based on the value of the membership of the non-

meteorological target class. The latter implies that for

range bins classified as meteorological a probability

that they are actually nonmeteorological is taken into

account. Another option is to apply other weights and

threshold values for the fuzzy logic algorithm for known

locations of wind farms, although this may result in

discontinuities in the rainfall image. Finally, different

nonmeteorological echo classes could be distinguished,

each of themwith their own settings (Dufton andCollier

2015; Park et al. 2009).

Finally, Fig. 11 shows that the radars strongly under-

estimate rainfall with respect to interpolated rain gauge

data for the Netherlands, which is not caused by the

clutter removal algorithm. Follow-up studies will address

this by improving QPE through application of vertical

profile of reflectivity correction algorithms (Hazenberg

et al. 2013) or through polarimetry, e.g., by attenuation

correction via specific differential phase.
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