
drones

Article

An Open Simulation Strategy for Rapid Control
Design in Aerial and Maritime Drone Teams:
A Comprehensive Tutorial

Omar Velasco 1 , João Valente 1,* , Pablo J. Alhama Blanco 2 and Mohammed Abderrahim 2

1 Information Technology Group, Wageningen University & Research, Hollandseweg 1,
6706 KN Wageningen, The Netherlands; omar.velascoanrar@wur.nl

2 Departamento de Ingeniería de Sistemas y Automática, Universidad Carlos III de Madrid,
Avda. de la Universidad, 30, 28911 Leganés, Spain; palhama@pa.uc3m.es (P.J.A.B.);
mohamed.abderrahim@uc3m.es (M.A.)

* Correspondence: joao.valente@wur.nl

Received: 3 May 2020; Accepted: 21 July 2020; Published: 23 July 2020
����������
�������

Abstract: The deployment of robot controllers into the real robotic platform is cumbersome and
time consuming, especially when testing scenarios involve several robots or are sites not easily
accessible. Besides this, most of the time, testing on the real platforms or real conditions provides
little value in the early stages of controller design and prototype, phases where debugging and
suitability of the controller are the main objectives. This paper proposes a simulation strategy
for developing and testing controllers for Unmanned Aerial and Surface Vehicle coordination and
interaction with the environment. The simulation strategy is based on V-REP and Matlab/Simulink
which provide a large set of features, modularity and compatibility across platforms. Results show
that this approach significantly reduces development and delivery times by providing an off-the-shelf
simulation environment and a step-by-step implementation guidelines. The source code to deploy
the simulations is available in an open-source repository.

Keywords: robotic simulation; open source; multi-robot system; unmanned aerial vehicle; unmanned
surface vehicle; water drone; limnology

1. Introduction

As remote sensing techniques become increasingly popular, unmanned robots such as aerial and
surface vehicles (UAV and USV) are making their way into diverse fields by providing access to new
technology approaches to data collection along with the augmented accessibility provided by these
platforms [1,2]. This application of unmanned robots can be used to access dangerous sites or places
where traditional manned sensing techniques are impossible to implement, and are being widely
adopted in various fields such as [3–5].

One of the fields where UAV and USV applications have kicked off is limnology, the branch of
science that studies inland aquatic ecosystems [6]. In limnological studies manual sampling techniques
are usually tedious or sometimes dangerous to perform. And the commonly lead to an increased
probability of inaccurate or faulty results due to erroneous field practices [1]. Besides this, autonomous
platforms tend to provide a reliable permanent record of the measured conditions which makes
revisiting and comparison over time possible and effortless.

Obtaining extensive and reliable on site limnological data within short delivery time windows
and tight operational budgets is one of the main advantages of the application of unmanned robots
in the field. This quality assessment of inland waters is directly in line with one of the main biodiversity
and habitat conservation action fields launched by European 2020 biodiversity policies [7].

Drones 2020, 4, 37; doi:10.3390/drones4030037 www.mdpi.com/journal/drones

http://www.mdpi.com/journal/drones
http://www.mdpi.com
https://orcid.org/0000-0002-8233-7189
https://orcid.org/0000-0002-6241-4124
https://orcid.org/0000-0001-6462-2755
https://orcid.org/0000-0003-4493-5927
http://dx.doi.org/10.3390/drones4030037
http://www.mdpi.com/journal/drones
https://www.mdpi.com/2504-446X/4/3/37?type=check_update&version=2

Drones 2020, 4, 37 2 of 20

This work presents a simulation strategy for a collaborative scheme between an autonomous
surface vehicle and an autonomous aerial vehicle. The objective of this multi-robot solution is to
provide a collaboration system to perform data collection tasks from calm water environments
in the frame of limnology studies. The selected aerial platform is based on the AR.Drone quadcopter
while the surface vehicle, the Strider V1.0, a catamaran vessel, is a prototype platform developed
specifically for this project [8] (see Figure 1).

Figure 1. The aerial-maritime robot system is shown both in the real and in the simulated environment.
The physical robots and workspace properties can range from the motors torques up to the wind speed.
On the other hand the parameters outcome from the simulations can range from control equations to
a waypoints list.

The USV acts as a mobile landing platform for the drone where on deck charging of the UAV
battery can be done. The UAV’s flexibility of operations allows the access to zones where the surface
vehicle cannot reach, along with different types of aerial surveys [9]. While the USV performs
this “piggybacking” duty, it can also be equipped with several surface based survey equipment to
complement and expand the data pool.

The main objective of this work is to provide a simulation strategy to prototype and quickly test
control strategies where interaction between the robots and the environment is needed. The ability to
test and prototype control architectures, path planning algorithms and sensors allows development
and deployment times in missions to be reduced. This also allows for better and more reliable data
acquisition by reducing the failure rate in missions due to invalid and/or inadequate approaches to
limnological sampling. This simulation strategy will provide a portable and flexible solution across
different platforms.

2. Related Work

With the recent wake in drone and multicopter popularity a lot of specific simulators for
UAVs can be found, for professional, research and commercial purposes. Most of the commercially
oriented simulators are aimed at hobbyists and gamers [10,11], while professional simulators tend
to be simulation platforms for training and simulating missions, mostly in the military field [12,13].
These simulators tend to be provided only with direct flight of the quadcopter. This basic control is
implented through the usual quadcopter joystick controllers without any other control implementation
or access to the internal states of the quadcopter [14].

Most of the UAV research oriented simulators are built into physics and visualization engines that
provide the ability to complete knowledge of the simulation environment and states. Some of these
research simulator examples can be found in [15] with a simulator based on Unreal Engine 4 or [16]
using the low fidelity quadcopter included in V-REP. Another example is [17], based on the Gazebo
simulator and used in the tum_Simulator [18] package, that uses it along the ardrone_autonomy package
as a driver to simulate the Parrot Ar.Drone quadcopter.

USV simulation faces a similar panorama as its UAV counterpart. Most of the professional
software is aimed at design prototyping and dynacmic studies in product development phases and

Drones 2020, 4, 37 3 of 20

usually have a higher cost of access. On the other hand commercial/hobbyist simulators usually do
not provide the necessary model accuracy needed for control prototyping due to the difficulty of
hydrodynamic effects and interactions.

Some examples are the VeSim Simulator developed by Sintef, and also some packages for
the Gazebo simulator can be found for USV simulation such as the Kingfisher/Heron USV package.
The lack of easily accessible USV simulators that can be operated outside professional or military
uses and involve interaction with the environment is notable. There are some scarce examples such
as [19,20] which are set up only for USV simulation, and [21], framed in the RIVERWATCH project.
The RIVERWATCH project is one of the notable UAV-USV multi-robot teams for riverine environments,
and their simulations are based on Robot Operating System (ROS) and Gazebo. More recently,
in Paravisi et al. the authors present a gazebo-based simulation environment that models waves, wind,
and water currents. The simulator also provide four USV and real scenario models. The authors
enhance the lack of research on USV control strategies and the need to develop further USV navigation
strategies [22].

Although some of the simulators mentioned above are provided with model simulations for their
respective platforms, the ones built on robotic simulators (such as V-REP and Gazebo among others),
are the only simulation platforms that allow easy implementation and simulation of multiple robotic
platforms over already existing models thanks to their capabilities. The ability to independently
control and quickly develop, prototype and deploy robotic experiments provided by this type of
simulation strategy makes it a valuable asset in most research environments and drastically reduces
result delivery times.

In particular, the selection of V-REP over a Gazebo based implementation (such as the
aforementioned [21]), is based on the different set of features that each software includes:

Some of the most relevant features of V-REP over Gazebo, are its ability to import CAD models
and its mesh manipulation and edition tools that allow their quick transformation into usable and
efficient robotic models. It also features more physics engines by default, multiple simulation
output formats, compatibility with various programming languages and includes particle systems.
Furthermore, V-REP’s easy integration with other services through external API implementations
and ROS immediately expands the usability of these simulation strategies thanks to the widespread
presence of ROS in the robot industry and research field.

Besides, V-REP provides a more robust execution, opposed to the sometimes common freezes
in Gazebo, it is more intuitive, has a very well documented API and a wide cross platform compatibility.
Overall, V-REP packs more features by default while a similar featured Gazebo installation relies
in a large set of external tools, however its main trade-off against Gazebo or other simulators is
the increased computational requirements, which limits its use in real time complex simulations.

A further and more thorough comparison can be found in [23,24] where a summary and evaluation
of both simulators is given.

3. Dynamic Modeling

This section covers the dynamic modeling of the UAV and USV selected for this work. In this case
the UAV selected is the AR.Drone 2.0 quadcopter, although the same obtained model can be applied to
any other quadcopter. The USV selected is the Strider V1.0 vessel as mentioned before.

Considering the scope of the simulation environment, a set of assumptions are taken into account
concerning both robotic systems. In the case of the quadcopter, the following typical assumptions are
considered in order to simplify the modelling task:

1. The body-fixed frame axes coincide with the principal axes of inertia of the body
2. The moments of inertia are constant.
3. The body-fixed frame origin oB is coincident with the centre of mass.
4. Body symmetry with respect to the centre of mass is assumed.

Drones 2020, 4, 37 4 of 20

5. Minor aerodynamic effects such as blade flapping or induced drag are not considered.

For the modelling of the Strider V1.0 manoeuvring theory [25], which concerns motion of
the vessel at slowly varying or constant speeds, is adopted. In Manoeuvring Theory, only surge,
sway and yaw motions are considered and calm and restricted waters assumed. Assumptions 1 to 4
coincide with the ones made for the UAV model, and are complemented by the following:

6. Restricted, calm and still water bodies is assumed. This implies that no currents or waves affect
the motion of the ship.

7. Heave, roll and pitch motions are neglected due to a zero frequency wave excitation assumption.
8. Surge motion is decoupled from sway and yaw motion due to the symmetry of the vessel hulls.
9. Added mass effects on the hulls are neglected since only steady motion will be considered.

3.1. Uav Modeling

Concerning quadcopter modeling, an inertial and a fixed-body frame is defined, following
the notation in Figure 2, where E is the inertial earth frame and B is the fixed-body frame, attached to
the quadcopter airframe and along the arms of the quadrotor.

Figure 2. Coordinate system schematic and notation for the quadcopter motion description.

Let us then define the following workspace within this two frames. Two vectors can be defined to
give a generalized overview of the position and velocity of the quadrotor in the space:

ξ =
[
ΓE ΘE

]T
=

[
x y z φ θ ψ

]T
(1)

ν =
[
VB ωB

]T
=

[
u v w p q r

]T
(2)

where ξ [+] represents the generalized position of the body in terms of the earth frame. and ν [+]

the generalized velocity in terms of the body frame. The vector VB [m s−1] represents the linear
velocity vector of the body frame with respect to the inertial frame, being u, v and ω the velocities
in the positive xB, yB and zB directions respectively. Similarly, the vector ωB [rad s−1] represents
the angular velocity of the quadrotor with respect to the inertial frame, being p, q and r the angular
velocities around the xB, yB and zB axes. ΓE [m] and ΘE [rad] represent the linear and angular position,
being x, y and z the position of the body frame with respect to the earth frame and φ stands for roll,
θ for pitch and ψ for yaw of the body frame with respect to the inertial frame.

Drones 2020, 4, 37 5 of 20

The rigid body dynamic equations of the quadrotor after the previously made assumptions come
from the application of Newton’s second law, according to Equation (3):

mΓ̈
E
= FE

m
˙̂

RΘVB = RΘFB

m(RΘV̇B
+ ṘΘVB) = RΘFB

mRΘ(V̇B
+ ωB ×VB) = RΘFB

m(V̇B
+ ωB ×VB) = FB (3)

where m [Kg] is the mass of the quadrotor, Γ̈
E [m s−2] is the second derivative of the linear position of

the body frame with respect to the earth frame, FE [N] and FB [N] are the forces vector with respect
to the earth and body frame, RΘ is the rotation matrix and VB and ωB are the body frame linear and
angular speeds of the quadrotor expressed in the body frame.

Similarly, we can develop the angular components of this motion equations:

IΘ̈
E
= τE

...

Iω̇B + ωB × (IωB) = øB (4)

where I [N m s2] is the inertia matrix of the body (with respect to the body frame), Θ̈
E [rad s−2] is

the second derivative of the angular position of the quadrotor with respect to the earth frame, τE [N m]
and τB [N m] are the torques vectors with respect to the earth and body frame.

Equations (3) and (4) are the generic expressions of Newton’s second law in a three dimensional
space for a 6-DOF rigid body. Equation (5) expresses this two equations in matrix form.
This matrix equation represents the generalized expression for the motion of any rigid body based
on the assumptions made before.[

mI3×3 03×3

03×3 I

] [
V̇B

ω̇B

]
+

[
ωB × (mVB)

ωB × (IωB)

]
=

[
FB

τB

]
(5)

We can characterize this expression to the quadcopter model by defining the force and torque
vector at the right side of the equation. In the case of the quadcopter model, this force and torque
vector can be divided into four basic components: gravitational, propeller’s thrust, gyroscopic effects
and exogenous forces [26].

3.2. Usv Modeling

For the dynamic modeling of the Strider V1.0 a similar rigid-body mechanical model to the one
used in the previous section is adopted. An inertial and a body fixed frame will be defined to create
a suitable workspace for the model. The SNAME (Society of Naval Architects and Marine Engineers)
provides a standard notation and sign convention for the description of the motion of ships shown
in Figure 3.

Drones 2020, 4, 37 6 of 20

Figure 3. Standard notation and sign conventions for ship motion description on the Strider V1.0.

An inertial earth frame, following the NED convention, and a fixed-body frame, attached to
the vehicle’s platform, are defined following the notation shown in Figure 3. Generally for surface
ships the centre position for the body fixed frame is located in such a way that it gives hull symmetry
about the x0 − z0 plane and approximate symmetry about the y0 − z0 plane while the origin of the z0

axis is set on the calm water surface. In the particular case of this work, due to the symmetry and small
size of platform, the hydrodynamic forces and moments acting on the ship can be easily described when
the centre of the body-frame is coincident with the centre of gravity of the vessel. Thus, the position
of O0 will be assumed to be located at the centre of mass of the Strider V1.0. With this in mind
the following notation will be used.

ηE =
[
ΓE

Str ΘE
Str

]T
=

[
x y z φ θ ψ

]T
(6)

νB =
[
u v w p q r

]T
(7)

τB =
[

X Y Z K M N
]T

(8)

where ηE[+] is the linear and angular position with respect to the inertial frame, νB[+] the linear and
angular velocity of the ship with respect to the body frame and τB[+] represents the forces and torques
applied to the body in terms of the body fixed frame.

Following the assumptions made in the previous section we can propose the following 3DOF
dynamic model of the vessel, considering it as single rigid body system:m 0 0

0 m 0
0 0 Iz

u̇

v̇
ṙ

+

 0 −mr 0
mr 0 0
0 0 0

u

v
r

 =

X
Y
N

 (9)

We can characterize this expression to the Strider V1.0 model by defining the forces and torques
at play in the motion of the vessel. In the case of the Strider V1.0 model, this force and torque vector
can be divided into three components: the hydrodynamic effects modeled using the approach in [27],
control surfaces and propulsion and external forces.

4. Simulation Approach

The simulation strategy used in this work is based on Simulink and the V-REP robot simulator.
Although the performed simulations detailed in the experimental section of this paper were made
using a Windows 10 machine, both Matlab and V-REP provide great compatibility and portability
among different OS. This simulation strategy can be run independently of the machine’s OS or
auxiliary software since the communication interface between both programs is achieved by means of
the V-REP’s supported external API.

Simulink provides the controller and processing architecture and outputs the forces and torques
to be applied to the rigid body system. Rigid body and physics simulations are provided by any of
the included physic engines in VREP, which also provides a visualization environment. A more in depth

Drones 2020, 4, 37 7 of 20

description of these software platforms and their operation for the implementation of the simulation
strategy is covered in the next sections. Matlab–V-REP interaction is handled through a Matlab
S-function block written in C, interfacing through the remote V-REP API for C language as can be seen
in the scheme shown in Figure 4.

Figure 4. This diagram illustrates the simulation architecture implemented in this approach.
The controller, in Simulink, gets its inputs fed from the Matlab Workspace. After processing its
outputs, they are sent to V-REP through the “Vrep_API_Script”, implemented in a Matlab S-Function
block. The script deals with the remote API setup and controls the simulation pace in V-REP by
triggering the simulation steps. It also calls the embedded Lua scripts of the robots, thus transmitting
the controller ouput. The embedded scripts apply the received force and torque inputs and return
the defined state outputs of each robot through the remote API script.

The chosen software (shown in Table 1) provides great compatibility with ROS for future hardware
in the loop implementations and real world test. Matlab has an integrated toolbox (“Robotic System
Toolbox”) which provides support for ROS, and also direct support for the Ar.Drone 2.0 via its
embedded coder [28]. V-Rep also features a ROS interface, based on the C/C++ ROS API which allows
communication via ROS.

Table 1. Used software and addons.

Software Version License Description

Matlab 2017b Academic license Simulation environment
Simulink 9.0 (R2017b) Academic license Simulation environment

V-REP 3.4.0 (rev 1) GNU GPL Robot simulation environment
Vortex Studio Essentials 2017.2.0.64 Freeware Physics engine addon

4.1. Processing and Command

As it can be seen from Figure 4, the majority of the processing and the command input and
simulation pace control is made in Matlab and Simulink.

In this application, Simulink (Version 9.0 (2017b)) was used to build the control architecture and
the processing and communication blocks to allow and control the data flow between V-REP and
Simulink. A screenshot of the Simulink built architecture can be seen in Figure 5.

Drones 2020, 4, 37 8 of 20

Figure 5. Overview of the top level Simulink architecture.

In Figure 5 purple subsystems contain the path command blocks that read the necessary data from
the Matlab workspace. In the case of the quadcopter block, it also contains the block implementation
of the simple VTOL algorithm implemented to govern the commanded altitude. Orange subsystems
contain the controller architectures for both robotic platforms. The ones pertaining to the quadcopter
include the two variant implemented control architectures (a cascaded PID and an Inverse Kinematics
architecture). Next, green subsystems enclose the processing of the output of the controllers and
translate them to the forces and torques to be applied to the robot models in V-REP. This is where
the dynamic models of the robots calculated in the previous section are used.

Finally, the output of the green subsystems gets fed to the V-REP block. This block contains
the interfacing S-function, that receives as an input a vector of fourteen elements:

input = [FB ′ τB ′ Th′ Xrudder
′ Yrudder

′ X′ Y′ N′] (10)

Being the first two elements the thrust and torque of each of the propellers of the quadcopter and
the rest the thrust, rudder and hydrodynamic and exogenous forces and torque acting on the Strider
V1.0. The apostrophe (′) denotes the transpose of the vectors.

The V-REP block also outputs the state of the robots to provide the necessary feedback for
the controller and data collection. The output format of the block is:

output =
[
ξ ′ VB ′ V̇B ′ ΓE

Str
′ vB ′ ψ′

]
(11)

Being the first three elements the position, velocity and accelerations of the quadcopter and
the rest the position, velocity and yaw angle of the Strider V1.0.

4.2. Physics, Sensor Simulation and Visualization

V-REP is a robot simulator environment developed by Coppelia Robotics and it implements
the physics and sensor simulation in this approach. It allows for individual control of different object
and models and features a wide arrange of programming and interacting environments such as
ROS, plugins, embedded scripts or remote API solutions in several programming languages, making
it a versatile software for multirobot simulation and interaction.

Along the multiple features of V-REP it allows to simulate a wide array of realistic sensors
such as vision or proximity sensors. This allows for a more accurate and complete representation of
the simulated robotic systems and easier development and testing. Figure 6 shows a screenshot of
the simulator in V-REP in a setup scene.

Drones 2020, 4, 37 9 of 20

Figure 6. Screenshot of the V-REP environment in a lake scene. V-REP allows for environment mock-up
models and multiple camera views for simulation and/or visualization.

V-REP was chosen in this work due to its easy API integration and its compatibility along different
platforms and portability.

The implementation of the robotic model is generally straightforward but it usually requires some
time to simplify and optimize the model for simulation. This involves a series of steps to be followed
to obtain the models of the robots in the simulation environment:

(1) The models of both robots have to be imported into the V-REP environment. This can be done by
importing a pre-existing CAD model of the robot or by building it directly in V-REP, which can
be later simplified to improve significantly simulation speed.

(2) After the import of the CAD models and their simplification, it is necessary to configure
the shape’s properties and the hierarchical relationship between them to build an operational
robot model for simulation. These shapes are usually divided into a visual and respondable
(collision and dynamically enabled) pair. An example of this model building structure can be
seen in Figure 7, where the visual appearance of the robot, and the respondable and dynamic
shapes are compared side by side.

(3) The implementation of the robotic models in V-REP, where the communication and behaviour
of each of the robot models has to be set. This is achieved by embedded scripts attached
to each model. These scripts handle the external API functions in order to receive and send
the commands and current states. After that, it applies these received commands as forces and
torques in the appropriate locations. These embedded scripts are written in Lua and an example
is shown in Figure 8.

Communications between the client (Matlab) and the server (V-REP) runs in synchronous mode,
that is, the next simulation pass in V-REP does not get started until a trigger signal is sent by the client
side. This ensures correct functioning and synchronization between the two parallel simulation
processes (simulink & V-REP) since the processing time of each simulation step in both platforms
is not the same. This way, once the client side is ready to initiate another simulation pass, after the
processing of the received and output data, it triggers the start of a new simulation pass.

Drones 2020, 4, 37 10 of 20

Figure 7. Robotic models setup in V-REP: (a) V-REP hierarchical relationships, (b) Quadrotor CAD
model (c) Strider CAD model and (d) Quadrotor mesh objects.

Figure 8. Code fragment with quadrotor primitives handles.

4.3. Parametrization of the Simulation

After the description of the dynamic models of both the UAV and the USV we can define the forces
that will be taken into account for each model:

In the case of the quadcopter only the contribution from the propellers will be explicitly introduced
into the model since gravitational and simple gyroscopic effects are already included in the simulation
engines. The forces corresponding to the thrusts and torques of each of the propellers is applied at
the centre of each of the four rotors. Exogenous forces, if considered, are applied directly to the centre
of mass of the quadcopter.

For the vessel model, all the described force and torque contributions will be explicitly introduced
in. In the case of Hydrodynamic Forces, the expressions from [27] can be simplified by neglecting
added mass (because of the made assumptions) and rudder component terms (due to the addition of
a more precise rudder model) to the model resulting in:

Y = Yvv + Yrr (12)

N = Nvv + Nrr (13)

both Hydrodynamic and exogenous forces are applied to the centre of mass of the vessel. Rudder
forces and propeller are applied at the Centre of pressure of the rudder CPB and the centre of
the propeller respectively.

For both the quadrotor and the vessel simulation, solid geometry, mass and inertia properties have
been directly imported from the existing CAD models. Table 2 provides the data concerning the rest
of variables not parametrized in the CAD models such as lift and drag coefficients and the value of
the hydrodynamic derivatives.

Drones 2020, 4, 37 11 of 20

Table 2. Simulation Parameters

Platform Variable Value

AR.Drone
cT 9.141̇0−6

cD 2.381̇0−9

Max. propeller rpm 5000 rpm

Strider V1.0

Yv −3.89950
Yr 1.77427
Nv −1.77427
Nr −0.80729

xcp − xcg 0.347 m
Air drag coefficient 0.2

Rudder lift coefficient 1.2
Rudder area 0.0064 m2

Water density 998 Kg m−3

Some of the parameters of the simulation have been obtained from external sources [29–32].
Detailed sourcing and comments on them is given below.

The data for the maximum RPM of the rotors along with the values for the thrust CT and drag
CD coefficients have been obtained from [29,30]. Both works present empirical results from model
identification tests of the AR.Drone 2.0. The values of the hydrodynamic derivatives have been
obtained from the expressions from [31].

Rudder lift coefficient is estimated based on the works of [32], where a general guideline based
on experimental results gives good estimations on lift coefficient in spade rudders.

Air drag coefficients for the vessel model have been obtained from the work made during
the development of the Strider V1.0 prototype.

Concerning the addition of more UAV or USV models to the simulation, the same architecture
scheme shown in Figure 5 could get replicated and run in parallel in the same model for each robot pair,
and small call modifications in the interfacing code for the calling of the new robots embedded scripts
included. Because of the modularity of this approach it is also possible to only duplicate the Matlab
S-function block with the necessary modifications to the remote API script to control another robot/s.

5. Control Architecture

This section presents the controller that enables the vehicles attitude and position control,
the minimum system requisites for vehicle autonomous navigation. The modularity of the Simulink
model allows for easy implementation of other control architectures by simply plugging directly
into the desired control stage of the architecture. Controllers were tuned during simulation using
the provided tools in Simulink.

5.1. Quadcopter Control

The quadcopter controller architecture features two different swappable controllers.
Both controllers are described next.

5.1.1. Cascaded Pid Architecture

In the case of the first quadcopter control system, a PID cascade architecture has been used to
obtain control of the robot. Cascade loops benefit from dividing the control problem into several
parts, adding complexity to the overall system but simplifying the individual nested loops. Figure 9
illustrates the control architecture used in this work for the quadcopter. The implemented architecture
features three nested PID feedback loops, each one controlling the position, velocity and attitude of
the quadcopter respectively.

Drones 2020, 4, 37 12 of 20

Figure 9. Cascade loop architecture used for the first implemented control option of the quadcopter.

This controller architecture is set up to track the position of the Strider V1.0 and it is fed from
the workspace a yaw and altitude command and a configuration set of parameters for the VTOL
algorithm to work. The controller inputs are listed as follows:
“Alt_cmd” and “Psi_cmd” for altitude and yaw command. For the VTOL algorithm, “AppAlt” and
“e” control the approaching hover altitude before landing on the moving platform and the position
error threshold between the quadcopter and the landing pad before landing respectively. Finally,
“LandingSchedule” and “EnableVTOL” control the time when VTOL is commanded and enables
or disables the VTOL controller altogether, as their name suggests. When VTOL is disabled,
the quadcopter tracks the commanded altitude through “Alt_cmd”.

5.1.2. Inverse Kinematics Approach

The second implemented controller requires a short description of the control basis of this
approach. Using the given definition for ξ, and assuming that it coincides with the centre of mass of
the quadcopter, and the only forces acting on the system are gravity and the thrust from the rotors
the motion of the centre of mass is defined by:

mΓ̈ = U1zB −mgzE (14)

where m denotes the mass of the quadcopter, zB and zE are the direction of the z axis of the body and
inertial frame, and U1 is the sum of the thrusts of all rotors.

Taking Γ̈ as the input of the control scheme we need to define the desired orientation of
the quadcopter to achieve this input command. This can be done following [33], in order to
obtain the transformation matrix corresponding to this desired orientation and thus, the desired
pitch and roll angles function also of the commanded yaw angle:

zB =
t
‖t‖ , t = [ẋ, ẏ, ż + g]T (15)

xC = [cosψ, sinψ, 0]T (16)

yB =
zb × xC
‖zb × xC‖

(17)

xB = yB × zB (18)

Being xC the x axis of an intermediate reference frame attached to the quadcopter after the yaw
angle rotation. This results in:

W RB = [xB yB zB] (19)

Euler angles corresponding to the typical convention ZYX can be easily obtained from this
transformation matrix.

Concerning the relationship between the total thrust of the rotors and this desired orientation,
it is straightforward to see that:

U1 = m‖t‖ (20)

Drones 2020, 4, 37 13 of 20

Control Architecture

Now that the basis for the inverted kinematics controller approach has been taken care of we can
describe the architecture implemented (see Figure 10). It consists of a high level controller and
an attitude level controller. The High level controller receives the path commands and outputs
the necessary attitude commands to achieve them.

Figure 10. Inverse kinematics architecture used for the second selectable control option of the quadcopter.

In order to decouple the motion in the xy plane and the acceleration on the zE axis (height control),
the architecture shown in Figure 11 is proposed. Where the lifting acceleration needed is calculated
using a PID controller which input is the desired height. The inputs of the proposed controller are
the desired height and yaw angle, and the input accelerations ẋ and ẏ.

Figure 11. Simulink architecture for the Inverse Kinematic approach.

The controller outputs the Roll, Pitch and Yaw command as well as the throttle command to
the inner attitude control loop of the quadcopter. Attitude control is obtained through simple PID
controllers for the Roll, Pitch and Yaw of the quadcopter. The output of these PID controllers, along
with the thrust command feeds the control mixer, where the individual commands get translated into
the throttle speed for each of the rotors.

Path commands for this controller are, once again, “Alt_cmd” and “Psi_cmd” for altitude and
yaw command and “ax” and “ay” for the desired accelerations in the horizontal plane with respect to
the inertial frame of reference.

5.2. Vessel Control

The control architecture of the Strider V1.0 is easier to implement than the quadrotor system.
The system has two inputs: the rudder angle δr and the generated thrust T, compared to the four of
the quadrotor. Besides this, only two degrees of freedom of the vessel will be controlled. Two separate
PID controllers will command the surge speed u and the heading ψ of the vessel. Figure 12 illustrates
a simplified scheme of the control architecture implemented.

Figure 12. Architecture scheme for the Strider V1.0.

Drones 2020, 4, 37 14 of 20

A way-point trajectory tracking algorithm was also implemented in the control architecture of
the Strider V1.0 in order to perform planned sweeps and other autonomous path following tasks.
Way-points are defined in Cartesian coordinates (xk, yk, zk) for k = 1, 2, . . . , n. and represent an ordered
database of points in the working space. This way-point databases can be expressed as [25]:

wpt.pos = (x0, y0, z0), (x1, y1, z1), . . . , (xn, yn, zn) (21)

For the implementation of path control based on way-point trajectory planing Line Of Sight(LOS)
guidance was used. Once the vehicle has reached the way-point the next way-point is selected. For this
purpose, the concept of circle of acceptance is adopted. When the vehicle resides within the borders of
a circle of radius ρ0 [m] the next way-point in the database is selected. Figure 13 shows the Simulink
block architecture used for the controllers and implemented algorithms.

Figure 13. Simulink architecture for the USV controller.

6. Simulation Cases and Performance

This sections covers the experiments made to evaluate the simulation and controllers performance.
These simulations showcase its ability to become a basis for development of controllers for researchers
and implementation of V-REP and MATLAB’s existing features and tools. It also delves into its
utilization and the configuration of the used software. Trajectory tracking for the quadcopter using
the cascaded PID and the waypoint guidance controller for the Strider are tested and finally VTOL
(Vertical Take Off and Landing) of the quadcopter over the moving USV landing pad is evaluated.

To start using this simulation strategy first a V-REP scene with the provided models of the UAV
and USV and the Simulink model needs to be opened. This initializes Matlab’s workspace with
the minimum required data so the simulation can run. The demos included with the Simulator present
with some examples scenarios of its use.

The outputs of the simulation can be read from the “simout” (or “out”) workspace variables that
Simulink creates after finishing a simulation. The logged signals have to be marked using Simulinks
data logger. The attached Simulink model logs by default the output vector of the remote API script,
following the structure in Equation (11).

The simulation step in both programs and in the remote API interface script is set up to 100 Hz.
Although 100 Hz refresh rate on the control loop of the quadcopter may be small for some applications
it was selected as it was a middle ground between a high enough frequency rate for controller
deployment and small enough so simulation times would not be extremely high.

The Vortex physics engine is used since ODE and Bullet physics engines cannot deal with the three
degrees of freedom setup rig for the vessel since the masses of the rig are too small in relation to
the mass of the vessel. Also, Vortex provides additional simulation precision and the increased
reliability in the interaction between shapes over ODE and Bullet.

Drones 2020, 4, 37 15 of 20

Thanks to the use of a physics engine, contact forces and collisions between the simulated robotic
platforms do produce disturbances in both platforms. This would allow for disturbance rejection
studies and a more realistic behaviour of the platforms.

6.1. Trajectory Tracking

This test showcases the tracking performance of the UAV and the waypoint guidance algorithm
for the UAV in action. Two scenarios, for a boxlike path and a sweep mission, have been implemented.
These scenarios could be accurate representations of what a research vessel could encounter during
a mission.

During this mission the vessel is set to follow a planned path described by a set of waypoints,
while the UAV is tasked with tracking and hovering continuously over the position of the vessel.
During this missions it is assumed that the drone has complete awareness of the location of the vessel’s
landing platform.

These two scenarios correspond to the demo 1 and 2 included in the simulator files. The plots
shown in Figure 14 represent the path taken by both the vessel (solid line) and the quadcopter (dotted
line) along with the representation of the programmed waypoints for both performed tests. Starting
both at the origin and moving clockwise in the case of the box like pattern. The main reasons for
the overshoots between closeby way-points seen in the tests are the constant speed and the maximum
rudder angle limit the maximum turning angle of the vessel.

0 5 10 15 20

X position (m)

0

5

10

15

20

Y
 P

os
iti

on
 (

m
)

Strider V1.0 position
Quadcopter position
Waypoints

Figure 14. Path following and tracking plots for a sweep mission (left) and a boxlike pattern (right).

Figure 15 illustrates the tracking error of the quadcopter with respect to the Strider V1.0 is very
good in straight line passages and has a quick settling time when the Strider V1.0 changes direction.

0 10 20 30 40 50 60 70 80

t (s)

-0.5

-0.3

-0.1

0.1

0.3

0.5

S
w

ee
p

tr
aj

ec
to

ry
 p

os
iti

on
 e

rr
or

 (
m

)

X position error
Y position error

Figure 15. Total position error of the UAV position with respect to the vessel’s position during
the sweep mission experiment.

6.2. Vertical Take of and Landing over a Moving Platform

In this test the implemented VTOL algorithm is used to perform an autonomous VTOL flight.
The maximum error threshold between the position of the quadcopter and the centre of the Strider

Drones 2020, 4, 37 16 of 20

V1.0 landing pad was set to e = 0.1 m and the approaching altitude before landing 65 cm above
the landing pad.

As in the previous simulation case, it is assumed that the drone has complete awareness of
the location of the vessel’s landing platform.

The results of the performance of the VTOL tests are shown in Figure 16. It can be seen that
the designed algorithm functions properly and that the quadcopter is able to safely land in the platform
within the error constrains that were set. In the plots, the three stages of the controller can be easily
identified and are separated in different areas. Also a small dip in altitude can be seen around
the seventh second, corresponding to a starting “Landing” phase due to the tracking error going
below the programmed threshold, however the landing gets quickly aborted and approaching altitude
re-established once the tracking error spikes again.

Figure 16. Altitude (solid) and reference altitude (dashed) and absolute position error of the quadcopter
with respect to the moving landing platform during the VTOL manoeuvre.

Figure 17 shows a short ghost sequence of a VTOL manoeuvre in the V-REP environment where
another successful VTOL operation over a moving platform is attained.

Figure 17. Ghost sequence of a VTOL manoeuvre in V-REP. Starting from the rightmost ghost, where
the quadcopter is starting take off, to the leftmost, where the landing on the moving platform is
achieved. The ghosts are one second apart from each other.

6.3. Simulation Performance

Simulation performance has been evaluated by comparing simulated time vs elapsed time for
the simulation. To do this a series of simulations have been performed to obtain a small data pool
to make an assessment on performance. The tests were performed on a Windows 10 (x64) machine
with an AMD Phenom II X4 965 (3.4 GHz) processor, 8 Gb of RAM and an AMD Radeon HD7700
graphics card.

For data collection, the timing meta-data from the simulation output file and the Simulink profiler
were used. On the V-REP side, profiling timings for the tests were not logged since it introduced

Drones 2020, 4, 37 17 of 20

significant overheads. However simulation pass execution time was measured (for the tests performed
on “Lake Scene”) and yielded 1 ms while there was no collision between shapes was detected up to
9ms after the quadcopter lands on the vessel deck. The tests and elapsed times were obtained using
the threaded rendering option in V-REP, which speeds up simulation speed.

Figure 18 shows the results of the performed measurements. To obtain a fair comparison,
all simulations recreate the same scenario setup in “demo1”, log the output of the simulation and
run in normal simulation mode. For each different simulation the tests were performed twice and
are, in order: a short 15 s simulation with VTOL disabled (Test 1-2), a longer 35 s simulation with
VTOL disabled (Test 3-4) and finally another 35 s simulation with contact between the platforms are
performed, VTOL enabled and scheduled to land after 5 s (Test 5-6).

Recorded time Elapsed time Recorded time Elapsed time
Test 1: R = 0.78 Test 2: R = 0.64

0

5

10

15

20

25

T
im

e
(s

)

Simulation phase
Init and Termination
Intialization
Execution
Termination

Recorded time Elapsed time Recorded time Elapsed time
Test 3: R = 0.68 Test 4: R = 0.67

0

10

20

30

40

50

60

T
im

e
(s

)

Simulation phase
Init and Termination
Intialization
Execution
Termination

Recorded time Elapsed time Recorded time Elapsed time
Test 5: R = 0.54 Test 6: R = 0.51

0

10

20

30

40

50

60

70

T
im

e
(s

)

Simulation phase
Init and Termination
Intialization
Execution
Termination

Figure 18. Simulation time data for the performance evaluation tests from the Simulink profiler and
the simulation output file.

Real time factors (R), across the performed tests show values in the range of [0.5–0.7] depending
on the length of simulation, increasing the longer the simulations goes. Since the initialization and
termination phases of all the performed tests present very similar time values, the profiler simulation
phase time and the elapsed execution time (from the timing meta-data) were used for real time
factor calculation.

It is important to note the difference between the elapsed time during simulation recorded by
Simulink and the recorded simulation time by the profiler, which is very similar in both iterations of
the tests. This difference is due to the introduced external API lag, needed for data transmissions which
is proportional to the number of simulation steps performed, and the processing time for each step
needed by the physics engine in V-REP which depends on the complexity of the simulation scenario.

Tests 3-4 and 4-6 demonstrate this as a ten second difference between both experiments can be
observed. This is due to the added computation time needed by the physics engine once the quadcopter
lands on the vessel deck.

The figure showcases the main drawbacks of using an external API based on TCP connections is
the additional overhead due to the time it takes the connection to transfer the data. Although ping
times between the client and the server were not extremely high (averaging 4 ms), the need for
a synchronous operation forces the simulation to transfer data each simulation step. e.g., for each
5 s of simulation, 2 s of processing time (considering a 4 ms average) are “wasted” in waiting for
the data connections. It is easy to see from the figures how the actual simulation time recorded by

Drones 2020, 4, 37 18 of 20

Simulink’s profiler actually renders values of R ≥ 1, being the API overhead one of the bigger factors
in the reduction of the real time factor.

Simulation time consistency is within 2 to 3 s, probably due to the random seed initialization
in physics engines and CPU maximum usage bottlenecks.

7. Conclusions

This work presents a simulation strategy for a multi-robot collaboration scheme between
a UAV and a USV. Although its initial motivation was the development of a prototyping platform
for deployment of control architectures for both the UAV and USV in limnology related surveys,
the strategy proposed in this paper also allows testing and developing both autonomous vehicles
independently. Thanks to the modularity provided by Simulink models and the independent control
of robotic models in V-REP the simulation strategy is highly flexible and customizable.

The dynamic modelling of both platforms provide a suitable scenario for testing and validation
of coordinated behaviours between aerial and maritime platforms. An initial control strategy design
can be obtained as the results from this work portray. However the lack of heave and roll dynamics
on the surface vessel models provided could lead to differences in behaviour between the simulated and
real platforms in scenarios where those dynamics are relevant. Nonetheless, inclusion of the missing
degrees of freedom on the USV platform and other exogenous effects not considered in this work could
be easily included thanks to the ease of implementation robotic simulators such as V-REP provide.

This can be seen in works such as [34] or [18] where simple simulation environments implemented
using V-REP have been successfully used. In these and similar works the simulated response of
the system yielded very comparable responses in the real experiments. This performance is only
dependent on the correct modelling parameters of the robotic plants used, and the requirements for
simulation fidelity.

The used software (Matlab and V-REP) provides great compatibility and portability among
different OS and platforms and does not require additional software to be run. V-REP allows
the inclusion of realistic sensors and camera feeds which support visual processing algorithms,
expanding the scope of the work to be done within the environment and thanks to the popularity of
both platforms there exist a great availability of pluggins and addons that can expand the extension of
tasks to be achieved.

V-REP’s selection over a Gazebo based implementation provides a more robust execution, a wider
set of features by default and a more intuitive use. Besides this, unlike Gazebo, it has the ability to
directly import CAD models and includes mesh manipulation tools that allow for quick modelling of
usable and efficient robot models among other various key features over Gazebo.

Thanks to this, the simulation strategy provides a quick way for prototyping of control strategies
for collaborative or individual operation and the study of the interaction between the different robotic
platforms and the environment.

Some of the future improvements to the simulation environment are an increase in simulation
speed performance and the inclusion of more features such as more detailed hydrodynamic model of
the Strider V1.0 including a six degrees of freedom model, more complex control architectures and
ROS integration. Other improvements to be considered are the addition of a friendly GUI, a model
library with different robots and support for control of multiple copies of the same robot.

But since this is a project that aims to be open-source and available we are looking
forward to the community to contribute with advanced control architectures and robot models
libraries to improve the usability and utility of this prototyping platform. This project along
with video resources (goo.gl/hRC5GM) of the simulations is available at the github repository
(github.com/OmarVelascoAnrar/UAV_USV_Simulator).

Author Contributions: Conceptualization, O.V. and J.V.; methodology, O.V.; software, O.V.; validation, O.V.,
J.V. and P.J.A.B.; formal analysis, O.V.; investigation, O.V.; resources, J.V. and M.A.; data curation, O.V.;
writing—original draft preparation, O.V. and J.V.; writing—review and editing, all; visualization, O.V.; supervision,

Drones 2020, 4, 37 19 of 20

J.V.; project administration, J.V.; funding acquisition, J.V. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was partially supported by the project MARS4Earth: Modular Aerial Robotic Systems for
Sustainable Living on Earth (RAAK.PRO03.112), which is funded by the Netherlands Organisation for Scientific
Research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Polvara, R.; Sharma, S.; Wan, J.; Manning, A.; Sutton, R. Vision-Based Autonomous Landing of a Quadrotor
on the Perturbed Deck of an Unmanned Surface Vehicle. Drones 2018, 2, 15. [CrossRef]

2. Raber, G.T.; Schill, S.R. Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for
Mapping and Monitoring Coral Reefs. Drones 2019, 3, 38. [CrossRef]

3. Casado, M.; Gonzalez, R.; Kriechbaumer, T.; Veal, A. Automated Identification of River Hydromorphological
Features Using UAV High Resolution Aerial Imagery. Sensors 2015, 15, 27969–27989. [CrossRef] [PubMed]

4. Martins, A.; Dias, A.; Almeida, J.; Ferreira, H.; Almeida, C.; Amaral, G.; Machado, D.; Sousa, J.; Pereira, P.;
Matos, A.; et al. Field experiments for marine casualty detection with autonomous surface vehicles.
In Proceedings of the 2013 OCEANS-San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–5.

5. Woodget, A.S.; Carbonneau, P.E.; Visser, F.; Maddock, I.P. Quantifying submerged fluvial topography using
hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf. Process. Landf.
2015, 40, 47–64. [CrossRef]

6. Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications
and Future Opportunities. Drones 2018, 2, 35. [CrossRef]

7. Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.;
Notte, A.L.; Zulian, G.; et al. Mapping ecosystem services for policy support and decision making in
the European Union. Ecosyst. Serv. 2012, 1, 31–39. [CrossRef]

8. Borreguero, D.; Velasco, O.; Valente, J. Experimental Design of a Mobile Landing Platform to Assist Aerial
Surveys in Fluvial Environments. Appl. Sci. 2018, 9, 38. [CrossRef]

9. Hildmann, H.; Kovacs, E.; Saffre, F.; Isakovic, A.F. Nature-Inspired Drone Swarming for Real-Time Aerial
Data-Collection Under Dynamic Operational Constraints. Drones 2019, 3, 71. [CrossRef]

10. Drone Racing League. FLY-DRL Sim. Available online: https://thedroneracingleague.com/ (accessed on
5 November 2019).

11. RDS. REAL DRONE SIMULATOR. Available online: https://www.realdronesimulator.com/ (accessed on
5 November 2019).

12. H-Sim. SIMDRONE. Available online: http://www.h-sim.com/ (accessed on 5 November 2019).
13. Quantum3D. Quantum3D UAV Simulator. Available online: https://quantum3d.com/uav-simulator/

(accessed on 5 November 2019).
14. Garzón, M.; Valente, J.; Roldán, J.J.; Garzón-Ramos, D.; de León, J.; Barrientos, A.; del Cerro, J. Using ROS

in Multi-robot Systems: Experiences and Lessons Learned from Real-World Field Tests. In Robot Operating
System (ROS): The Complete Reference; Koubaa, A., Ed.; Springer International Publishing: Cham, Switzerland,
2017; Volume 2, pp. 449–483. [CrossRef]

15. Mueller, M.; Smith, N.; Ghanem, B. A Benchmark and Simulator for UAV Tracking. In Proceedings of
the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–16 October 2016; Leibe, B., Matas, J.,
Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 445–461.

16. Olivares-Mendez, M.A.; Kannan, S.; Voos, H. Setting up a testbed for UAV vision based control using V-REP
& ROS: A case study on aerial visual inspection. In Proceedings of the 2014 International Conference on
Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 447–458. [CrossRef]

17. Meyer, J.; Sendobry, A.; Kohlbrecher, S.; Klingauf, U.; von Stryk, O. Comprehensive Simulation of Quadrotor
UAVs using ROS and Gazebo. In Proceedings of the 3rd International Conference on Simulation, Modeling
and Programming for Autonomous Robots (SIMPAR), Tsukuba, Japan, 5–8 November 2012.

18. Huang, H.; Sturm, J. Tum Simulator. 2018. Available online: http://wiki.ros.org/tum_simulator (accessed
on 5 July 2019).

http://dx.doi.org/10.3390/drones2020015
http://dx.doi.org/10.3390/drones3020038
http://dx.doi.org/10.3390/s151127969
http://www.ncbi.nlm.nih.gov/pubmed/26556355
http://dx.doi.org/10.1002/esp.3613
http://dx.doi.org/10.3390/drones2040035
http://dx.doi.org/10.1016/j.ecoser.2012.06.004
http://dx.doi.org/10.3390/app9010038
http://dx.doi.org/10.3390/drones3030071
https://thedroneracingleague.com/
https://www.realdronesimulator.com/
http://www.h-sim.com/
https://quantum3d.com/uav-simulator/
http://dx.doi.org/10.1007/978-3-319-54927-9_14
http://dx.doi.org/10.1109/ICUAS.2014.6842285
http://wiki.ros.org/tum_simulator

Drones 2020, 4, 37 20 of 20

19. Svec, P.; Schwartz, M.; Thakur, A.; Anand, D.K.; Gupta, S.K. A Simulation Based Framework for Discovering
Planning Logic for Autonomous Unmanned Surface Vehicles. In Proceedings of the ASME 2010 10th Biennial
Conference on Engineering Systems Design and Analysis, Istanbul, Turkey, 12–24 July 2010; pp. 711–720.

20. Thakur, A.; Gupta, S.K. Real-time dynamics simulation of unmanned sea surface vehicle for virtual
environments. J. Comput. Inf. Sci. Eng. 2011, 11, 031005. [CrossRef]

21. Mendonça, R.; Santana, P.; Marques, F.; Lourenço, A.; Silva, J.; Barata, J. Kelpie: A ROS-Based Multi-robot
Simulator for Water Surface and Aerial Vehicles. In Proceedings of the 2013 IEEE International Conference
on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 3645–3650. [CrossRef]

22. Paravisi, M.; Santos, D.H.; Jorge, V.; Heck, G.; Gonçalves, L.M.; Amory, A. Unmanned Surface Vehicle
Simulator with Realistic Environmental Disturbances. Sensors 2019, 19, 1068. [CrossRef] [PubMed]

23. Nogueira, L.S.C. Comparative Analysis Between Gazebo and V-REP Robotic Simulators. SICA 2014.
[CrossRef]

24. Pitonakova, L.; Giuliani, M.; Pipe, A.; Winfield, A. Feature and Performance Comparison of the V-REP,
Gazebo and ARGoS Robot Simulators. In Towards Autonomous Robotic Systems; Giuliani, M., Assaf, T.,
Giannaccini, M.E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 357–368.

25. Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011.
26. Velasco, O.; Blanco, P.J.A.; Valente, J. Smooth Autonomous Take-off and Landing Maneuvers over

a Double-hulled Watercraft. In Proceedings of the 14th International Conference on Informatics in Control,
Automation and Robotics-Volume 2: ICINCO, Madrid, Spain, 26–28 July 2017; pp. 389–396. [CrossRef]

27. Davidson, K.; Schiff, L. Turning and Course Keeping Qualities of Ships. Trans. SNAME 1946, 4, 49.
28. MathWorks. AR.Drone 2.0 Support from Embedded Coder. Available online: https://www.mathworks.

com/hardware-support/ar-drone.html (accessed on 12 December 2019).
29. Sun, Y. Modeling, Identification and Control of a Quad-Rotor Drone Using Low-Resolution Sensing. Master’s

Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2012.
30. Li, Q. Grey-Box System Identification of a Quadrotor Unmanned Aerial Vehicle. Master’s Thesis, Delft

University of Technology, Delft, The Netherlands, 2014.
31. Newman, J.N. Marine Hydrodynamics; MIT Press: Cambridge, MA, USA, 1977; p. 402.
32. Miller, P.H. Dynamic Lift Coefficients for Spade Rudders on Yachts. In Proceedings of the 18th Chesapeake

Sailing Yacht Symposium, Annapolis, MD, USA, 2–3 March 2007.
33. Mellinger, D.; Kumar, V. Minimum snap trajectory generation and control for quadrotors. In Proceedings of

the 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, 9–13 May
2011; pp. 2520–2525.

34. Olivares-Mendez, M.A.; Kannan, S.; Voos, H. Vision based fuzzy control autonomous landing with UAVs:
From V-REP to real experiments. In Proceedings of the 2015 23rd Mediterranean Conference on Control and
Automation (MED), Torremolinos, Spain, 16–19 June 2015; pp. 14–21.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1115/1.3617443
http://dx.doi.org/10.1109/SMC.2013.621
http://dx.doi.org/10.3390/s19051068
http://www.ncbi.nlm.nih.gov/pubmed/30832355
http://dx.doi.org/10.13140/RG.2.2.18282.36808
http://dx.doi.org/10.5220/0006435303890396
https://www.mathworks.com/hardware-support/ar-drone.html
https://www.mathworks.com/hardware-support/ar-drone.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Dynamic Modeling
	Uav Modeling
	Usv Modeling

	Simulation Approach
	Processing and Command
	Physics, Sensor Simulation and Visualization
	Parametrization of the Simulation

	Control Architecture
	Quadcopter Control
	Cascaded Pid Architecture
	Inverse Kinematics Approach

	Vessel Control

	Simulation Cases and Performance
	Trajectory Tracking
	Vertical Take of and Landing over a Moving Platform
	Simulation Performance

	Conclusions
	References

