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a b s t r a c t 

Genetic improvement of animals has been an important source of productivity growth in dairy farm- 

ing. Studying the effect of genetic progress on productivity growth of farms requires a long-term dy- 

namic perspective due to the long generation interval of dairy animals, and the slow, persistent and 

cumulative effects of genetics. It is also essential from a farm decision-making perspective to disentan- 

gle overall productivity growth in relation to each variable input and investment in quasi-fixed input 

while accounting for adjustment costs associated with the slow changes in quasi-fixed inputs. This paper 

contributes to the literature by combining input- and investment-specific dynamic productivity growth 

analysis with impulse response analysis. The application focuses on panel data of Dutch specialized dairy 

farms over 2007–2013. The results show that farms that adopt improved genetic materials, as proxied 

by farm expenses on artificial insemination and breeding stock investment spike, achieved higher input- and 

investment-specific productivity growth in the first two years after the year of the expenses/spike. That 

is, farms that produce more efficiently after adopting quality genetics are also those farms that utilise 

their resources efficiently. The positive relationships suggest a potential positive spill-over effect from 

using high quality genetics on managerial efficiencies. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Genetic improvement of animals and plants via selective

reeding has been an important source of productivity growth

n agriculture, producing permanent and cumulative changes in

erformance ( Atsbeha, Kristofersson & Rickertsen, 2012 ; Babcock

 Foster, 1991 ; Roibas & Alvarez, 2012 ). In dairy farming, ge-

etic improvement has been increasing both the quantity and

uality of output per unit of input. Subsequently, it influences

he evolution of dairy farms’ productivity growth and efficiency

cores. The genetic status of animals varies among farms due to

ifferences in the rate of adoption of improved genetic materials

nd the type of genetic materials adopted, which depend on

armers’ risk preferences, heterogeneity of production conditions

e.g. disease-resistant vs climate-tolerant genetics) and managerial

ecisions (e.g. choice of insemination method, breed of cows, and

eneration interval; Atsbeha et al., 2012 ). This variation in genetic

tatus of animals may result in productivity growth and efficiency

ifferences among farms. In addition, the genetic status of animals

ithin a farm could also vary over time due to investment spikes
∗ Corresponding author. 
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n (improved) genetic materials, which influences the evolution of

ne farm’s productivity growth and efficiency. To the best of our

nowledge, only a few studies (e.g. Atsbeha et al., 2012 ; Roibas

 Alvarez, 2010 ; 2012 ; Steine, Kristofersson & Guttormsen, 2008 )

ave tried to measure the effect of variations in farm-level genetic

tatus of animals on farm productivity and profitability. 

Atsbeha et al. (2012) measured, using the Malmquist produc-

ivity index, the productivity growth of Icelandic dairy production

ver the period 1997–2006, and decomposed it into genetic- and

on-genetic-based technical changes, efficiency change and scale

ffects. An aggregate breeding index (average of sire merit indices

sed on all cows in the farm weighted by the number of active

ilking days of a cow) was used as a measure of genetic-based

echnology. The genetic-based technical change accounted for 19%

rom the 1.6% average annual productivity growth rate. A study

y Roibas and Alvarez (2010) for Spanish commercial dairy farms

howed that the gross margin of dairy farms has increased by

p to 12% between 1999 and 2004 due to genetic progress. In a

ater study, Roibas and Alvarez (2012) analysed the role of genet-

cs in improving milk composition by considering genetic indices

i.e. breeding values of protein and fat) as allocable inputs. They

eported that a herd with a high genetic status (i.e. a herd with

igher breeding values relative to the population average breed-

ng values) produces 1048 kg of fat and 742 kg of protein more
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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than the average genetic herd. Farms with a high genetic status

herd have a 6.6% higher farm income than farms with an average

genetic status herd. For the Norwegian red cattle production sys-

tem, Steine et al. (2008) estimated the economic values 1 of ten

breeding goal traits from a translog profit function using a panel

data of 3259 farms (observed over 1999–2003). A weighted aver-

age of estimated breeding value (i.e. average of breeding values of

all the sires used on all cows in the farm weighted by the number

of active milking days of a cow per year) was used as a measure of

genetic progress for each trait. Seven of the ten traits showed sta-

tistically significant effects on farm profit, with the expected mag-

nitudes and signs. 

The main shortcoming of these existing studies is the assump-

tion that improvements in the genetic status of a herd result in

changes in productivity or profit in the same period. This assump-

tion is likely inaccurate as the return from current period genetic

statuses of dairy cows or bulls, for example, usually requires sev-

eral years before being realised (i.e. the lagged effects of genetic

improvement on farm performance); this is because the gener-

ation interval of cows is typically more than two years. More-

over, the effect of genetic improvement on dairy farm performance

(e.g. milk production) is expressed over several years (due to the

persistent and cumulative nature of genetics). Therefore, studying

the effect of genetic improvement on farm productivity changes

requires a long-term dynamic perspective. In this study, we use

an impulse response function by adopting the local projections

method of Jordà (2005) to measure the effect of improvement in

genetic status of animals on dynamic productivity growth. 2 The

impulse response functions are estimated by the two-step Gen-

eralised Method of Moments (GMM) technique ( Arellano & Bover,

1995 ), which uses information from both variation within a farm

over time and variation among farms. 

Yet another shortcoming of previous studies is that they did

not account for the intertemporal linkages of farm’s production

decisions. Investment in quasi-fixed inputs (e.g. buildings, milking

robots and breeding stock) involves an intertemporal decision that

affects current production while increasing future capital stock,

which in turn affects future production. It is costly for decision

makers (farmers) to adjust the level of quasi-fixed inputs instantly

to their optimal levels ( Penrose, 1959 ) due to technology-specific

learning costs and financial constraints. A period of adjustment

follows immediately after technology adoption, where productiv-

ity declines, since producers are learning to adjust their produc-

tion system to the new technology (e.g. Jovanovic & Nyarko, 1996 ;

Klenow, 1998 ). As a result, the short-term impacts of technology

adoption (e.g. deploying a milking robot in dairy farming) are ex-

pected to differ from their long-term impacts. The slow adjust-

ments in quasi-fixed inputs due to the high adjustment costs and

the resulting lag in adoption of technologies influence the evolu-

tions of dairy farms’ productivity and efficiency (e.g. Skevas, 2016 ).

It is also essential from a farm decision-making perspective to

disentangle the sources of productivity growth by exploring the
1 Economic values are marginal values that are derived as the change in farm 

profit due to a one unit change in the value of a trait while keeping all other traits 

unchanged. 
2 Atsbeha et al. (2012) and Roibas and Alvarez (2012) treated genetic progress, re- 

spectively, as a ‘technology’ and ‘input’ in their production function specifications. 

In this study, the effect of genetic progress on farm level productivity growth is 

measured by treating genetic progress as an explanatory variable (as described in 

Section 2.2 ). We used genetics expenses as a proxy for genetic progress (as de- 

scribed in Section 3 ). Genetics expense is excluded from variable costs during the 

estimation of the inefficiency scores (so not to treat it as an input). Its share in 

the total variable cost is small (e.g. less than 5% for the sample farms during 2007- 

2013). Although these farm genetics expenses are low, the sluggish resulting im- 

provement in the genetic status of animals is expected to influence the evolutions 

of dairy farms’ productivity and efficiency scores. 
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ontribution of each factor of production to the overall growth

 Kapelko, Oude Lansink & Stefanou, 2017a ). Previous studies (e.g.

tsbeha et al., 2012 ) measured overall productivity growth with-

ut linking productivity growth to the contributions of the specific

ariable and quasi-fixed inputs. However, productivity growth as-

ociated with some inputs (e.g. feed) might be positive while be-

ng negative or zero for some other inputs (e.g. capital). Identifying

he factors of production (e.g. feed, capital, breeding stock) that are

ources of inefficiency and productivity decline is crucial to char-

cterize and improve farm performance. 

In the light of the foregoing discussion, the objectives of this

tudy were twofold: (i) to measure the input- and investment-

pecific dynamic productivity growths (and their components:

echnical change, technical and scale inefficiency changes) of dairy

arms, and (ii) to explore the effects of (lagged) farm genetics

xpenses on input- and investment-specific dynamic productivity

rowth (and its components) using an impulse response analy-

is. To the best of our knowledge, this study is the first to com-

ine input/investment-specific dynamic productivity growth and

ts components with impulse response analysis. The study con-

ributes to the literature in three ways. First, it assesses the long-

erm effect of genetic progress on productivity growth by using an

mpulse response analysis. Second, it accounts for the adjustment

osts associated with changes in quasi-fixed inputs (i.e. capital

tocks and breeding stocks) when estimating productivity growth.

hird, it disentangles productivity growth in relation to each vari-

ble input and investment, and decomposes into technical change,

echnical and scale inefficiency changes. The empirical application

ocuses on panel data of Dutch specialized dairy farms over the

eriod 2007–2013. 

. Materials and methods 

.1. Dynamic Luenberger productivity growth indicator 

Distance functions are commonly used for modelling multiple

nput-multiple output technologies. In this study, an input dis-

ance function is used to represent the Dutch dairy farm produc-

ion technology, as during the sample period (2007–2013) the milk

uota gave Dutch dairy farmers more autonomy to adjust inputs

ather than outputs. 

The input-specific dynamic Luenberger productivity indicator of

apelko et al. (2017a) is employed to measure productivity and in-

fficiency changes associated with each variable input and invest-

ent in quasi-fixed inputs. It accounts for the adjustment costs as-

ociated with investment in quasi-fixed inputs (e.g. building and

achineries). Suppose J farms ( j = 1 , . . . , J ) produce M outputs

 = ( y 1 , . . . , y M 

) by using N variable inputs x = ( x 1 , . . . , x N ) , H fixed

nputs L = ( L 1 , . . . , L H ) , F quasi-fixed inputs K = ( K 1 , . . . , K F ) and

 gross investments corresponding to the quasi-fixed inputs I =
( I 1 , . . . , I F ) . Then, the dynamic production technology in time t that

ransforms x and I into y for a given level of L and K can be rep-

esented by an input requirement set ( Serra, Lansink & Stefanou,

011 ) as: 

 t 

(
y t : K 

t , L t 
)

= 

{(
x t , I t 

)
: x t , I t can produce y t , gi v en K 

t , L t 
}

(1)

here P t is the production technology (frontier) in time t . The fol-

owing properties are assumed for the input requirement set ( Silva

 Stefanou, 2003 ): P t ( y 
t : K 

t , L t ) is a closed and non-empty set

ith a lower bound, is positive monotonic in variable inputs, is

egative monotonic in gross investment, is a strictly convex set,

utput is freely disposable, and increases with capital stock and

xed inputs. 

A dynamic directional input distance function ( � D ) can be used

o represent the adjustment cost input requirement set: 
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t 
(
y t , K t , L t , x t , I t ; g t x , g 

t 
I 

)
= sup 

{ 

N ∑ 

n =1 

βn + 

F ∑ 

f=1 

γ f : 
(
x t n − βn g 

t 
xn , I 

t 
f + γ f g 

t 
I f , y 

t 
m 

, K t f , L 
t 
h 

)
∈ P t 

} 

(2) 

here g t x and g t 
I 

refer to directional vectors for scaling variable in-

uts and investment, respectively; βn and γ f refer to input n - and

nvestment f -specific dynamic technical inefficiencies, respectively.

he dynamic directional input distance function contracts variable

nputs by βn × g x while expanding gross investments by γ f × g I .

he values of βn and γ f can be estimated using Data Envelopment

nalysis (DEA). The estimation of Luenberger productivity growth

equires solving four linear programming models under constant

eturns to scale (CRS): two single-period and two mixed-period

odels. The two single-period models measure the performance

f farms in time t (and t + 1 ) relative to their respective technolo-

ies in time t (and t + 1 ) ( Eqs. (3) and 6 ). The mixed-period models

easure the performance of farms in time t relative to the technol-

gy in time t + 1 ( Eq. (4) ), and the performance of farms in time

 + 1 relative to the technology in time t ( Eq. (5) ). The four lin-

ar programming models to estimate the input- and investment-

pecific dynamic productivity growths are: 

�
 D 

t 
i 

(
y t , K 

t , L t , x t , I t ; g t x , g 
t 
I 

)
= ma x β1 

n ,γ
1 
f 
,λ1 

j 

( 

N ∑ 

n =1 

β1 
n + 

F ∑ 

f=1 

γ 1 
f 

) 

(3) 

Subject to 

 

t 
mi ≤

J ∑ 

j=1 

λ1 
j y 

t 
m j , m = 1 , . . . , M 

J ∑ 

j=1 

λ1 
j x 

t 
n j ≤ x t ni − β1 

n g 
t 
xn , n = 1 , . . . , N 

J ∑ 

j=1 

λ1 
j L 

t 
h j ≤ L t hi , h = 1 , . . . , H 

 

t 
f i + γ 1 

f g 
t 
I f − δ f K 

t 
f i ≤

J ∑ 

j=1 

λ1 
j 

(
I t f j − δ f K 

t 
f j 

)
, f = 1 , . . . , F 

1 
n , γ

1 
f , λ

1 
j ≥ 0 

�
 D 

t+1 
i 

(
y t , K 

t , L t , x t , I t ; g t x , g 
t 
I 

)
(4) 

= ma x β2 
n ,γ

2 
f 
,λ2 

j 

( 

N ∑ 

n =1 

β2 
n + 

F ∑ 

f=1 

γ 2 
f 

) 

Subject to 

 

t 
mi ≤

J ∑ 

j=1 

λ2 
j y 

t+1 
m j 

, m = 1 , . . . , M 

J ∑ 

j=1 

λ2 
j x 

t+1 
n j 

≤ x t ni − β2 
n g 

t 
xn , n = 1 , . . . , N 

J ∑ 

j=1 

λ2 
j L 

t+1 
h j 

≤ L t hi , h = 1 , . . . , H 

 

t 
f i + γ 2 

f g 
t 
I f − δ f K 

t 
f i ≤

J ∑ 

j=1 

λ2 
j 

(
I t+1 

f j 
− δ f K 

t+1 
f j 

)
, f = 1 , . . . , F 

2 
n , γ

2 
f , λ

2 
j ≥ 0 

�
 D 

t 
i 

(
y t+1 , K 

t+1 , L t+1 , x t+1 , I t+1 ; g t+1 
x , g t+1 

I 

)
(5) 

= ma x β3 
n ,γ

3 
f 
,λ3 

j 

( 

N ∑ 

n =1 

β3 
n + 

F ∑ 

f=1 

γ 3 
f 

) 
Subject to 

 

t+1 
mi 

≤
J ∑ 

j=1 

λ3 
j y 

t 
m j , m = 1 , . . . , M 

J ∑ 

j=1 

λ3 
j x 

t 
n j ≤ x t+1 

ni 
− β3 

n g 
t+1 
xn , n = 1 , . . . , N 

J ∑ 

j=1 

λ3 
j L 

t 
h j ≤ L t+1 

hi 
, h = 1 , . . . , H 

 

t+1 
f i 

+ γ 3 
f g 

t+1 
I f 

− δ f K 

t+1 
f i 

≤
J ∑ 

j=1 

λ3 
j 

(
I t f j − δ f K 

t 
f j 

)
, f = 1 , . . . , F 

3 
n , γ

3 
f , λ

3 
j ≥ 0 

�
 D 

t+1 
i 

(
y t+1 , K 

t+1 , L t+1 , x t+1 , I t+1 ; g t+1 
x , g t+1 

I 

)
(6) 

= ma x β4 
n ,γ

4 
f 
,λ4 

j 

( 

N ∑ 

n =1 

β4 
n + 

F ∑ 

f=1 

γ 4 
f 

) 

Subject to 

 

t+1 
mi 

≤
J ∑ 

j=1 

λ4 
j y 

t+1 
m j 

, m = 1 , . . . , M 

J ∑ 

j=1 

λ4 
j x 

t+1 
n j 

≤ x t+1 
ni 

− β4 
n g 

t+1 
xn , n = 1 , . . . , N 

J ∑ 

j=1 

λ4 
j L 

t+1 
h j 

≤ L t+1 
hi 

, h = 1 , . . . , H 

 

t+1 
f i 

+ γ 4 
f g 

t+1 
I f 

− δ f K 

t+1 
f i 

≤
J ∑ 

j=1 

λ4 
j 

(
I t+1 

f j 
− δ f K 

t+1 
f j 

)
, f = 1 , . . . , F 

4 
n , γ

4 
f , λ

4 
j ≥ 0 

The parameter λ j refers to peer weights (intensity vector) and

f refers to the depreciation rates of quasi-fixed inputs (e.g. capi-

al and breeding stock). When computing dynamic technical inef-

ciency in this study, the quasi-fixed input constraint in Eqs. (4) –

 6 ), which is presented in terms of capital stock K f , gross invest-

ent I f and depreciation rate δ f , is expressed as net investment

 I f ( N I t = K t+1 − K t ; where t is time). 

The Luenberger measures of input- and investment-specific dy-

amic productivity changes can be derived from the input- and

nvestment-specific dynamic technical inefficiencies under CRS as

 Kapelko et al., 2017a ; Oude Lansink, Stefanou & Serra, 2015 ): 

 xn = 

1 

2 

∗
(
β2 

n − β4 
n + β1 

n − β3 
n 

)
, n = 1 , . . . , N (7a)

 I f = 

1 

2 

∗
(
γ 2 

f − γ 4 
f + γ 1 

f − γ 3 
f 

)
, f = 1 , . . . , F (7b)

here L xn and L I f refer to the Luenberger measure of input n - and

nvestment f -specific dynamic productivity changes, respectively. 

The Luenberger measure of dynamic productivity change can

e decomposed into technical change, technical inefficiency change

nder variable returns to scale (VRS) and scale inefficiency change

 Kapelko et al., 2017a ; Oude Lansink et al., 2015 ) as presented be-

ow. The measure L xn can be decomposed into input-specific dy-

amic technical inefficiency change under CRS ( T EIC CRS 
xn ) and input-

pecific dynamic technical change ( T C xn ): 

 EIC CRS 
xn = β1 

n − β4 
n , n = 1 , . . . , N (8a)

 C xn = 

1 ∗
(
β4 

n − β3 
n + β2 

n − β1 
n 

)
, n = 1 , . . . , N (8b)
2 
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3 Since the main objective of this study is to assess the effect of genetic progress 

on dynamic productivity growth, other factors or events that might possibly influ- 

enced productivity growth during the study period (e.g. the 2008 financial crisis, or 

milk and input prices volatility) are not considered in the analysis. For example, the 

2008 financial crisis, the substantial decrease in milk prices in 2008 and 2009 from 

the 2007 spike, and high commodity price volatility are some of the major events 

occurred within the study period (2007–2013), which might have significant effect 

on the productivity growth of Dutch specialised dairy farms. For example, Kapelkoa 

et al. (2017b) found that, one year after its occurrence, the 2008 financial crisis had 

a positive (1%) effect on the productivity growth of Spanish dairy processing indus- 

tries. However, we have included a time trend common to all farms although a time 

trend does not capture the year-specific idiosyncrasies like time dummies (which 

were dropped due to collinearity problem). This approach has also been followed 

in the literature (e.g. Kapelko et al., 2015, 2017b ; Teulings and Zubanov, 2014 ). 
Dynamic technical inefficiency change measures the change in

the position of a farm relative to the frontier (which is defined

by the fully-efficient firms) between two time periods, whereas

dynamic technical change measures the shift of the frontier be-

tween two time periods. Similarly, the measure L I f can also be de-

composed into investment-specific dynamic technical inefficiency

change under CRS ( T EIC CRS 
I f 

) and investment-specific dynamic tech-

nical change ( T C IF ) 

T EIC CRS 
I f = γ 1 

f − γ 4 
f , f = 1 , . . . , F (9a)

T C I f = 

1 

2 

∗
(
γ 4 

f − γ 3 
f + γ 2 

f − γ 1 
f 

)
, f = 1 , . . . , F (9b)

The measures T EIC CRS 
xn and T EIC CRS 

I f 
can be further decomposed

into input- and investment-specific dynamic technical inefficiency

changes under VRS and input- and investment-specific dynamic

scale inefficiency changes, respectively. The input- and investment-

specific dynamic technical inefficiency changes under VRS ( T EIC V RS 
xn 

and T EIC V RS 
I f 

) are given by: 

T EIC V RS 
xn = β1V RS 

n − β4V RS 
n , n = 1 , . . . , N (10a)

T EIC V RS 
I f = γ 1V RS 

f − γ 4V RS 
f , f = 1 , . . . , F (10b)

The dynamic input- and investment-specific technical ineffi-

ciencies under VRS ( β1V RS 
n , β4V RS 

n , γ 1V RS 
f 

and γ 1V RS 
f 

) can be esti-

mated by re-running Eqs. (3) and (6) under VRS (by adding con-

vexity restrictions 
∑ J 

j=1 
λ1 

j 
= 1 in Eq. (3) and 

∑ J 
j=1 

λ4 
j 
= 1 in Eq.

(6) ). 

The input- and investment-specific dynamic scale inefficiency

changes ( SI C xn and SI C I f ) are given by: 

SI C xn = 

(
β1 

n − β4 
n 

)
−

(
β1V RS 

n − β4V RS 
n 

)
, n = 1 , . . . , N (11a)

SI C I f = 

(
γ 1 

f − γ 4 
f 

)
−

(
γ 1V RS 

f − γ 4V RS 
f 

)
, f = 1 , . . . , F (11b)

2.2. Impulse responses by local projections 

An impulse response analysis is used to track and measure

the effect of farm genetics expenses on the Luenberger dynamic

productivity change indicator and its components. An impulse re-

sponse function measures the responses of a system’s variables to

shocks. Jordà (2005) proposed the method of local projections for

deriving impulse responses that overcome the shortcomings of the

traditional analytical impulse responses which were multi-period-

ahead projections computed using autoregressive estimation tech-

niques as described below. Consider the following autoregressive

fixed effects panel data model of order r: 

y it = αi + 

R ∑ 

r=1 

βr y i,t−r + 

L ∑ 

l=0 

γl d i,t−l + v it (12)

where y it is the dependent variable (e.g. productivity change) for

farm i in year t; αi is farm fixed effect for farm i ; β and γ are pa-

rameters to be estimated; r denotes number of lags for y t ; d t refers

to a shock variable for a farm in year t and v it is the error term

that is independently and identically distributed: v it ∼ N( 0 , σ 2 ) .

Then the impulse response function of y it to a shock d t , k years

after it starts can be stated as ( Jordà, 2005 ; Teulings & Zubanov,

2014 ): 

IRF ( k ) = E 
[
y i,t+ k | d it = d, y is , d is , s < t 

]
− E 

(
y i,t+ k | d it = 0 , y is , d is , s < t 

)
(13)

where IRF is the impulse response function; k refers to predic-

tion horizon; the conditional expectation E[ . | . ] indicates the best,

mean-squared error predictor and the rest as defined above. 
Traditionally, impulse response functions ( Eq. (13) ) are esti-

ated analytically for each prediction horizon k by solving the

onditional expectation of y i,t+ k as a function of the estimates of

he parameters of Eq. (12) ( Jordà, 2005 ; Teulings & Zubanov, 2014 ).

hese estimation techniques are criticised for being sensitive to

isspecification of the underlying model ( Eq. (12) ). The impulse

esponses become more sensitive to even slight specification er-

ors when the model includes more lags of the dependent variable

nd the shock variable, and when the prediction horizon increases

 Jordà, 2005 ; Teulings & Zubanov, 2014 ). They are also criticised

or the complications in calculating standard errors as the stan-

ard errors are non-linear functions of estimated parameters. How-

ver, the local projection estimator of Jordà (2005) directly derives

he coefficients of impulse responses for each time horizon, based

n sequential regressions of the dependent variable shifted sev-

ral steps ahead. Jordà (2005) demonstrated that impulse response

stimates from local projections are consistent and inferences can

e made using standard heteroscedastic and autocorrelation robust

tandard errors (e.g. as in Newy & West, 1987 ). 

The estimates from local projection methods of Jordà (2005) ,

owever, suffer from a systematic bias which increases with the

rediction horizon since the error term is correlated with cur-

ent shocks ( Teulings & Zubanov, 2014 ). Teulings and Zubanov

2014) proposed the inclusion of intermediate shocks in the model

i.e. shocks occurred between the current period t and the pre-

iction period t + k ) to obtain unbiased estimates of impulse re-

ponse function for prediction horizon k . Several studies followed

he (corrected) local projection technique for estimating impulse

esponses (e.g. Bernal-Verdugo, Furceri & Guillaume, 2013 ; Haug &

mith, 2012 ; Kapelko, Lansink & Stefanou, 2015 ; 2017b ). 

Following Teulings and Zubanov (2014) , the corrected local pro-

ection estimator of Jordà (2005) , for assessing the effect of genetic

rogress that occurred at time t on dynamic productivity growth

nd its components at time t + k can be stated as 3 : 

 i,t+ k −1 = α1 ik + α2 k t + 

R ∑ 

r=1 

βrk y i,t−r + 

L ∑ 

l=1 

γlk ge n i,t−l 

+ 

k −1 ∑ 

l=1 

τl ge n i,t+ k −1 −l + v ∗i,t+ k (14)

here y it is dynamic productivity change (and its components) for

arm i ( i = 1 , 2 , . . . , N) in year t ( t = 2 , 3 , . . . , T ) ; k indicates the

rediction horizon; α1 ik is farm fixed effect for farm i ; α2 k is a time

rend common to all farms; β , γ and τ are parameters to be es-

imated; r denotes number of lags for y t ; l denotes the number of

ags for ge n t ; ge n t refers to a dummy variable for genetic progress

ith values 1 for genetic progress and 0 otherwise for a farm in

ear t; and v ∗
i,t+ k = 

∑ k −1 
m =1 a m 

u i,t+ k −1 −m 

+ u i,t+ k −1 is the error term.

ince the error term no longer contains current values of shocks,

he inclusion of intermediate shocks in Eq. (14) (the third summa-

ion) produces unbiased estimates of impulse response function for

rediction horizon k ( Teulings & Zubanov, 2014 ). 
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Table 1 

Descriptive statistics of variables for Dutch specialised dairy farms over the period 2007–2014. 

Variables Mean Std. dev. Minimum Maximum 

Quantities 

Protein and fat corrected milk (kg) 725,431 318,109 116,582 2,887,738 

Other output (constant 2010 €) a 22,293 12,489 2,079 129,379 

Feed (constant 2010 €) a 51,441 26,861 4,214 257,999 

Other variable inputs (constant 2010 €) a 46,929 38,283 2,379 637,537 

Land (ha) 46 20 9 206 

Labour (AWU) 2 1 1 13 

Capital (constant 2010 €) a 344,259 293,194 10,954 2,495,164 

Breeding stock (constant 2010 €) a 79,485 36,325 13,327 356,374 

Net investment in capital (constant 2010 €) a 26,781 137,897 −1,758,952 1,625,509 

Net investment in breeding stock (constant 2010 €) a 4,607 12,454 −115,466 174,873 

Expense on genetics per cow (constant 2010 €) a 78 26 6 351 

Prices 

Other output 1.081 0.101 0.898 1.202 

Feed 1.192 0.152 0.997 1.378 

Other variable inputs 1.055 0.046 0.989 1.097 

Capital 0.987 0.011 0.972 1.000 

Breeding stock 1.126 0.107 1.000 1.288 

Expense on genetics 1.000 0.022 0.968 1.034 

a Implicit quantities. N = 8254. 
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In short panel data models with a large number of observa-

ions and few time periods, it has become a standard practice to

se Generalized Method of Moments (GMM) estimation and the

nstrumental Variables (IV) method to obtain consistent parame-

er estimates ( Anderson & Hsiao, 1981 ; Arellano & Bond, 1991 ;

rellano & Bover, 1995 ; Blundell & Bond, 1998 ). In the present

tudy, Eq. (14) is estimated using the system GMM estimator, also

alled the two-step GMM estimator. The system GMM estimator

ses the moment conditions of lagged levels as instruments for

ifferenced equation, and the lagged differences for the equation

n levels ( Arellano & Bover, 1995 ; Blundell & Bond, 1998 ). These in-

truments are potentially good predictors of endogenous variables,

ven in highly persistent (autocorrelated) series ( Blundell & Bond,

998 ). Unlike in the first-difference GMM procedure ( Arellano-

ond, 1991 ), the process of differencing in the system GMM does

ot remove the farm fixed effects αi , all other time-invariant vari-

bles (e.g. ge n it in the present study), and cross-farm variations in

evels. However, Windmeijer (2005) , using Monte Carlo simulation,

howed that the standard error estimates of a system GMM es-

imator suffer from downward bias in small samples. Windmeijer

2005) , therefore, proposed a correction term in the weighting ma-

rix 4 for estimating finite-sample corrected standard errors. The

ystem GMM estimator is consistent and asymptotically efficient

n the presence of heteroscedasticity. 

In the present study, the impulse responses of input- and

nvestment-specific dynamic productivity changes (and their com-

onents) to genetic progress during the period 2007–2013

 Eq. (14) ) are estimated for five prediction horizons ( k = 5 ). Se-

uential regressions using the two-step GMM estimator with ro-

ust standard errors ( Windmeijer, 2005 ) are applied in STATA Ver-

ion 13 (StataCorp LP, College Station, Texas, USA). The models are

tted using two lags for the dependent variables (i.e. dynamic pro-

uctivity changes). 5 The same models are applied for the produc-

ivity change’s components (i.e. technical, technical inefficiency and

cale inefficiency changes). The problem of too many instruments,

hich is a common feature in system GMM estimator, reduces the

oint validity of instruments ( Roodman, 2009 ). In this study, we

ollowed the suggestion of Roodman (2009) that combining instru-

ents into smaller sets through addition reduces the number of
4 A weighting matrix is the inverse of an estimate of v ariance [ Z ′ v ] , where Z is the 

nstrument vector and v is an error term ( Roodman, 2009 ). 
5 The models with two lags provide the best specification in terms of serial cor- 

elation and joint validity of instrument post estimation results ( Section 4 ). 

s

s

g

nstruments while retaining all information (as no lags are dropped

rom the list of instruments). 6 The Arellano–Bond test for the pres-

nce of autocorrelation, and the Hansen test of over-identifying re-

trictions for the joint validity of instruments are applied. To this

nd, the estimation of impulse response functions by the corrected

ocal projection method of Jordà (2005) , by itself, guarantees ro-

ustness. The method is more robust to misspecifications com-

ared to the traditional analytical autoregressive models of esti-

ating impulse responses ( Jordà, 2005 ). 

. Empirical application 

This study employs unbalanced panel data from 1317 Dutch

pecialised dairy farms from 2007 to 2014, which were obtained

rom the accountancy firm FLYNTH (www.flynth.nl). This sample

ize was reached based on the following criteria. First, only spe-

ialised dairy farms, where at least 85% of the total farm revenue

s obtained from milk production (average over the sample period,

ot in each individual year), are considered. Second, only farms

hat are observed for at least four consecutive years are included

n the sample as the impulse response analysis of productivity

hange requires at least four years to see the effect of lagged ge-

etic progress. Third, complete data were available for all variables

f interest ( Table 1 ). Fourth, outliers were removed following the

anker and Chang (2006) super-efficiency procedure for identify-

ng outliers in DEA models. The super-efficiency scores were com-

uted for each year (2007–2013). Then, we used a screen level of

.3 for detecting outliers (i.e. a farm with a super-efficiency score

f greater than 1.3 is considered as an outlier). 7 

Two outputs (i.e. milk production and other output); two vari-

ble inputs (i.e. feed and other variable inputs), two quasi-fixed

nputs (i.e. capital and breeding stock) and two fixed inputs (i.e.

and and labour) are distinguished. Milk production is measured

s fat and protein corrected milk yield in kg. This measurement ac-

ounts for the quality of milk in assessing the contribution of ge-

etics; as genetic progress improves the quality of output in addi-

ion to yield. The second output is measured as revenues (in euro)

rom livestock and livestock products (excluding milk) and crop
6 Practically, the ‘ collapse’ command was used in the xtabond command in STATA. 
7 Banker and Chang (2006, p. 1317) stated that “… the use of a more stringent 

creen level such as 1 is likely to misclassify many uncontaminated efficient ob- 

ervations as outliers, while the use of a less stringent screen level such as 1.6 or 

reater may fail to remove many contaminated observations”. 
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Fig. 1. Evolutions of net investments during 2007–2013 for Dutch specialised dairy farms. 
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production. The variable inputs feed and other variable inputs are

expressed in euros. Other variable inputs are expenses of energy,

veterinary, seed, fertiliser and other crop related expenses. Capital

is measured in euros as the book value of buildings and machinery.

Breeding stock is measured as the total value of breeding stock in

euros. The breeding stock value is calculated as the market value of

existing breeding animals plus the purchase value of incoming an-

imals minus the sales value of exiting animals. 8 The market value

of animals accounts for the changes in the values of animals fol-

lowing, for example, from growth (which results in an apprecia-

tion or a depreciation in the value of a breeding animal). Net in-

vestments (NI) associated with quasi-fixed inputs are derived from

capital stocks as N I t = K t+1 − K t (where t refers to years, 2007–

2014). Following this formula, dynamic productivity change (and

its components) are not estimated for the period 2013/14 as data

on net investment is not available for the year 2014. The evolution

of the average net investments in capital and breeding stock is de-

picted in Fig. 1 . Net investment in capital declined between 2007

and 2009 (including during the 2008 financial crisis) until it re-

covered in 2010. Net investment in breeding stock also declined fol-

lowing the 2008 financial crisis until it recovered in 2011. The two

fixed inputs are land in hectare and labour in annual working units

(AWUs). Since a large share of labour (more than 95% in the sam-

ple farms) comes from family members, labour is considered as a

fixed input. 

The directional vectors used in the estimation of the direc-

tional distance functions are the actual observed value of feed and

other variable inputs x . For investments in quasi-fixed inputs K,

the directional vectors are set to 20% of capital stock: ( g x , g I ) =
( x, 0 . 2 × K f ) , where f refers to capital stock and breeding stock . In

the dynamic productivity and efficiency literature (e.g. Dakpo &

Oude Lansink, 2019 ; Geylani, Kapelko & Stefanou, 2019 ; Kapelko,

2019 ; Kapelko et al., 2017a 2016 ; Oude Lansink et al., 2015 ), it is a

common practice to use 20% of capital stocks as a directional vec-

tor for investments in quasi-fixed inputs. As stated by Geylani et

al. (2019) ; p.), “the application of such a directional vector for in-

vestments follows from the high heterogeneity in the investment

variable, as well as its ability to approximate the usual size of in-
8 Since the farms are specialised dairy farms, where at least 85% of the total farm 

revenue is obtained from milk production, we assumed that the livestock value rep- 

resent the value of the breeding stock. 

a

fi

estments undertaken by firms [which is about 20% of their cap-

tal stock]”. Moreover, it accounts for the zero values of invest-

ents during the estimation of inefficiency scores ( Dakpo & Oude

ansink, 2019 ). That is, given Eq. (2) , the dynamic directional in-

ut distance function aims at contracting variable inputs by βn × g x 
hile expanding gross investments by γ f × g I . For zero values of

nvestments, the potential expansion in investment would be zero

or any level of inefficiency score associated with investment (i.e.

f ). 

All variables measured in monetary units are expressed in con-

tant 2010 prices. Producer price indices (PPIs) from the EUROSTAT

2016) database are used to compute the implicit quantities as the

atio of value and PPI. For capital (buildings and machinery), a

örnqvist price index is used to compute the implicit quantity of

apital. The final unbalanced panel dataset contains 8254 observa-

ions from 1317 farms (on average, a farm is observed for 6 consec-

tive years). Table 1 presents the descriptive statistics of the vari-

bles. 

In this study, expense on artificial insemination (in euro per cow)

s used as a measure of genetic progress ( Table 1 ). Genetics ex-

ense is excluded from variable costs during the estimation of the

nefficiency scores. Its share in the total variable cost is small (e.g.

ess than 5% for the sample farms during 2007–2013). We assumed

hat a farm experiences genetic progress (i.e. a shock to the sys-

em) in year t if its expenditure on semen per cow (in constant

010 prices) in that year is greater than the farm’s median expen-

iture over the study period (2007–2013). 9 It is used as a proxy

or the genetic index of sires (total merit index of bulls): it is as-

umed to measure the genetic levels of sires used in a farm in a

iven year compared to the population average genetic level. We

ypothesise that high expense on semen per dairy cow (compared

o the median expenditure) has a positive effect on farm produc-

ivity growth as a result of the use of higher quality genetics. This

easure is, however, imperfect as expenses on artificial insemina-

ion consist of two confounding components that cannot be dis-

inguished in the dataset used in this study. First, a higher genetic

xpense per cow implies acquisition of higher quality semen that

elps to enhance productivity. Second, (for the same or lower level
9 The analogy is similar with the concept of investment spikes, which refer to 

bnormally high investment episodes relative to the typical investment rate of a 

rm ( Kapelko et al., 2015 ). 
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Table 2 

Decomposition of Luenberger dynamic productivity change associated with feed for Dutch specialised dairy farms over the period 2007 to 2013 and comparing small versus 

large farms. 

LPC a TC b TIC_VRS c SIC d 

2007/2008 0.0030 0.0025 0.0027 −0.0022 

2008/2009 −0.0165 −0.0008 −0.0212 0.0055 

2009/2010 0.0673 0.0162 0.0591 −0.0080 

2010/2011 0.0200 0.0011 0.0077 0.0112 

2011/2012 −0.0078 0.0035 0.0025 −0.0139 

2012/2013 0.0142 0.0246 −0.0110 0.0007 

Average 0.0130 (0.001) 0.0082 (0.001) 0.0056 (0.001) −0.0009 (0.001) 

Small 0.0094 (0.001) 0.0064 (0.001) 0.0052 (0.002) −0.0022 (0.001) 

Large 0.0166 (0.001) 0.0099 (0.001) 0.0061 (0.002) 0.0005 (0.001) 

S-Z statistic e 6.8292 ∗∗∗ 1.5961 ∗ 5.7593 ∗∗∗ 0.4112 

Note: Standard errors in parentheses. 
a Luenberger productivity change. 
b Technical change. 
c Technical inefficiency change under variable returns to scale. 
d Scale inefficiency change. 
e ∗∗∗ , ∗∗ and ∗ denote significant differences between small and large farms at the critical 1%, 5% and 10% levels, respectively. 

Table 3 

Decomposition of Luenberger dynamic productivity change associated with other variable inputs for Dutch specialised dairy farms over the period 2007 to 2013 and comparing 

small versus large farms. 

LPC a TC b TIC_VRS c SIC d 

2007/2008 0.0138 −0.0117 0.0235 0.0020 

2008/2009 −0.0164 0.0566 −0.0313 −0.0417 

2009/2010 0.0609 −0.0100 0.0746 −0.0038 

2010/2011 −0.2028 −0.0306 −0.1658 −0.0065 

2011/2012 0.1761 −0.0173 0.2000 −0.0065 

2012/2013 −0.1439 −0.0252 −0.1138 −0.0049 

Average −0.0253 (0.003) −0.0070 (0.002) −0.0070 (0.003) −0.0112 (0.002) 

Small −0.0251 (0.004) −0.0067 (0.002) −0.0119 (0.005) −0.0065 (0.001) 

Large −0.0254 (0.004) −0.0072 (0.002) −0.0021 (0.004) −0.0161 (0.003) 

S-Z statistic e 6.9628 ∗∗∗ 0.2559 6.2031 ∗∗∗ 3.2557 ∗∗∗

Note: Standard errors in parentheses. 
a Luenberger productivity change. 
b Technical change. 
c Technical inefficiency change under variable returns to scale. 
d Scale inefficiency change. 
e ∗∗∗ , ∗∗ and ∗ denote significant differences between small and large farms at the critical 1%, 5% and 10% levels, respectively. 
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ductivity change (i.e. an increase in inefficiency over time, following Eqs. (8a ) and 

( 11a )). 
11 In this study, the distinction between small and large farms is based on the 

median number of cows in the sample. A farm is categorised as ‘small’ and ‘large’ 

if its average number of cows during the study period (2007-2013) is less/greater 

than the median number of cows of the sample farms (75), respectively. 
12 Simar and Zelenyuk (2006) adapted the Li (1996) test for comparing the distri- 

butions of efficiency scores of different groups that are estimated by the DEA tech- 

nique. The test is based on bootstrapping the Li (1996) statistic by smoothing the 
f productivity) a higher expense might also be due to farm-level

nefficiencies. Less fertile (unproductive) cows require several in-

eminations which raise semen expense (it might also be due to

anagerial inefficiency, for example, in detecting heat period). A

ow with a longer calving interval produces less milk per year

hile it may require several inseminations. In that case, the ex-

ense on genetics does not lead to an improved genetic level, but

t is spent to solve problems that may have their cause in other

ources of inefficiency. Since expense on artificial insemination is

ot corrected for managerial inefficiencies, its effect on productiv-

ty growth might be understated in the present study. As a robust-

ess check, we also used another measure of genetic progress, i.e.

reeding stock investment spike as a proxy for the genetic index of

ows (refer to Appendix A for the details). 

. Results and discussion 

.1. Decomposition of Luenberger dynamic productivity change 

The results of the decomposition of the input- and investment-

pecific Luenberger dynamic productivity growth into techni-

al change, technical inefficiency change and scale inefficiency

hange 10 for Dutch dairy farms over the period 2007–2013 are

resented in Tables 2 to 5 . Results of the estimation of produc-
10 Note that throughout this results section ( Tables 2 –5 ), negative technical inef- 

ciency change and scale inefficiency change imply a negative contribution to pro- 

o

t

Z

n

ivity growth associated with feed input are presented in Table 2 .

he differences in dynamic productivity measures (i.e. productivity

rowth, technical and scale inefficiency changes) between ‘small’

nd ‘large’ farms 11 are also assessed using the statistical test of

imar and Zelenyuk (2006) (henceforth called the S-Z test). 12 Pro-

uctivity associated with feed grew on average by 1.3% per year

uring the sample period ( Table 2 ). The average Luenberger dy-

amic productivity growth rate of 1.3% for feed implies that the use

f feed has reduced on average by 1.3% per year during the sam-

le period while still producing the same level of output, holding

ther variable inputs and investments in capital and breeding stock

onstant. The productivity increase might be attributable to nu-

ritional improvements and better feed management. On average,

echnical change accounted for about 56% of the 1.3% productiv-

ty growth associated with feed while technical inefficiency change
riginal DEA efficiency scores of the fully efficient firms (i.e. scores that are equal 

o one). In the present study, as implemented in Kapelko et al. (2017a) , Simar and 

elenyuk’s (2006) test is used without smoothing since productivity measures are 

ot truncated. 
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Fig. 2. Evolution of Luenberger productivity change associated with feed and its components over the period 2007/08 and 2012/13. 
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14 Such huge fluctuations are not uncommon in the non-parametric-based pro- 
accounted for about 38% of this growth. Although technical change

was, on average, the main component of the average productivity

change associated with feed over the sample period ( Table 2 ), fluc-

tuation in technical inefficiency change was the main driver of the

fluctuation in productivity change ( Fig. 2 ). These fluctuations might

be due to volatility of milk ( Oude Lansink et al., 2015 ) and input

prices. 13 The negative average scale inefficiency change associated

with feed input ( −0.09%) implies that productivity has slightly de-

clined as a result of non-optimal scale of operation (i.e. operat-

ing either at a too small or too large scale). There is a statisti-

cally significant difference in average performance (i.e. productiv-

ity growth, technical change and technical inefficiency change) be-

tween ‘small’ and ‘large’ farms ( Table 2 ). Productivity growth, tech-

nical change and technical inefficiency change were significantly

higher for large farms than small farms as shown by the S-Z test. 

The average annual dynamic productivity growth for other vari-

able inputs during the sample period was negative (about −2.5%

per year; Table 3 ). Holding feed and investments in capital and

breeding stock constant, this implies that the use of other variable

inputs has increased on average by 2.5% per year during the sample

period while still producing the same level of output. The produc-

tivity decrease might be due to the fact that modern productive

breeds require more care to obtain the maximum output from a

given cow (e.g. expenses on energy and veterinary services). The

main source of productivity decline associated with other variable

inputs was an increase in scale inefficiency of about 1.1% per year,

which implies that productivity has declined due to a non-optimal

scale of operation. Technical and technical inefficiency changes also

contributed negatively to productivity growth of other variable in-

puts by the same magnitude. This means that the efficiency of

the sample farms in adopting and utilising variable inputs such

as veterinary services and energy has declined. Therefore, these

specialised dairy farms may improve productivity associated with
13 Milk price fluctuations “may explain the difficulties of producers to allocate re- 

sources efficiently from a technical and economic point of view in the long-run”

( Oude Lansink et al., 2015 ). Moreover, during the sample period (2007-2013), input 

(e.g. grain) price volatility was exceptionally high even after the 2008 financial cri- 

sis (e.g. Wright, 2011 ; Leibtag, 2009 ). Although we used the annual price deflator to 

capture annual price changes, input prices also vary within the years. Thus, the tim- 

ing of purchases of individual farms within a year may had a considerable impact 

on farms’ input prices, which cannot be corrected by the annual averages of price 

indices. This could explain part of the high volatility of the technical inefficiency 

scores. 
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m
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ther variable inputs by designing a better health and resource

anagement system. Although scale inefficiency change was, on

verage, the main component of the average productivity change

ssociated with other variable inputs over the sample period ( Table

 ), fluctuation in technical inefficiency change was the main driver

f the fluctuation in productivity change ( Fig. 3 ). These fluctua-

ions might also be due to the milk and input prices fluctuations

s stated before, and as a result of the non-parametric Luenberger

ndicator we used. 14 The difference in performance between ‘small’

nd ‘large’ farms is negligible ( Table 3 ). The performance differ-

nce between ‘small’ and ‘large’ farms in terms of technical change

s not statistically significant ( Table 3 ). However, the difference is

tatistically significant for productivity growth, technical and scale

nefficiency changes. 

The average annual dynamic productivity change associated

ith investment in capital (building and machineries) during the

ample period was 1.5 ( Table 4 ). This implies that the potential

or doing investments in capital has increased by about 30% of

he capital stock per year ( = 1 . 5 × 0 . 2 × 100% ) during the sample

eriod while producing the same level of output, for given lev-

ls of variable inputs and investment in breeding stock. This was

ainly due to reduction in technical inefficiency over time. For a

iven level of feed, other variable inputs and investment in breed-

ng stock, the increase in the potential for doing investments due

o technical inefficiency change ( 38% = 1 . 9 × 0 . 2 × 100% ) implies

hat the potential for doing investments in capital has increased

y about 38% of the capital stock per year following from im-

rovements in the optimal use of available capital. Technical ineffi-

iency decreased substantially during the sample period where the

ighest reductions were observed in 2007/08 and 2009/10. How-
uctivity and efficiency literature (e.g. Kapelko, 2019 ; Kapelko et al., 2017a, 2016 ; 

Oude Lansink et al., 2015 , Kapelko et al., 2012 ). As noted by one of the reviewers, 

the fact that the same method has produced highly volatile components of pro- 

uctivity change also in other datasets implies either a weakness of the method or 

he strength that reveals the true variations the other methods fail to reveal. How- 

ver, the volatility of the scores is not specific to the dynamic Luenberger approach. 

apelko et al. (2012) conducted a comparison between dynamic Luenberger- and 

tatic Malmquist-based components of productivity growth. They found that the 

cores of the dynamic approach are less volatile. Further studies are required to em- 

irically compare competing methods, by using similar datasets, to check the evolu- 

ion of inefficiency scores over time across different non-parametric and parametric 

ethods. Furthermore, a rigorous analysis of the sources of the high volatility of 

echnical inefficiency scores is required to draw business and policy implications. 
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Fig. 3. Evolution of Luenberger productivity change associated with other variable inputs and its components over the period 2007/08 and 2012/13. 

Table 4 

Decomposition of Luenberger dynamic productivity change associated with investment in capital for Dutch specialised dairy farms over the period 2007 to 2013 and compar- 

ing small versus large farms. 

LPC a TC b TIC_VRS c SIC d 

2007/2008 6.4366 −3.6773 10.0856 0.0283 

2008/2009 0.0756 −0.6932 1.2154 −0.4466 

2009/2010 10.3872 1.5526 6.9085 1.9260 

2010/2011 −3.3257 −2.2015 −0.7551 −0.3691 

2011/2012 0.1331 −0.3537 −0.2648 0.7516 

2012/2013 −0.0589 −0.1350 −0.0481 0.1241 

Average 1.4860 (0.101) −0.7119 (0.101) 1.8755 (0.126) 0.3224 (0.034) 

Small 1.7623 (0.167) −0.7569 (0.161) 2.5318 (0.211) −0.0127 (0.025) 

Large 1.2035 (0.111) −0.6660 (0.123) 1.2045 (0.136) 0.6650 (0.063) 

S-Z statistic e 9.3782 ∗∗∗ 6.2980 ∗∗∗ 10.5907 ∗∗∗ 3.2332 ∗∗∗

Note: Standard errors in parentheses. 
a Luenberger productivity change. 
b Technical change. 
c Technical inefficiency change under variable returns to scale. 
d Scale inefficiency change. 
e ∗∗∗ , ∗∗ and ∗ denote significant differences between small and large farms at the critical 1%, 5% and 10% levels, respectively. 
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ver, the dairy farms experienced a technical regress of about 14%

er year during the sample period ( −14% = −0 . 71 × 0 . 2 × 100% ).

lthough the efficiency of farmers increased in the utilisation of

echnologies (i.e. positive average technical inefficiency change)

ver the sample period, they were not successful in adopting new

echnologies for bringing in technical progress. This might be due

o higher costs to comply with environmental regulations such

s manure disposal and emission reducing measures, which im-

ose higher costs on dairy farms, but do not add directly to pro-

uction. Over the sample period, productivity associated with in-

estment in capital has increased by 6.4% of the capital stock

 = 0 . 32 × 0 . 2 × 100% ) as a result of improvement in scale of oper-

tion associated with capital (i.e. following from production tech-

ology movement from VRS towards CRS). The high average tech-

ical inefficiency change (38%) and technical change ( −14%) results

uggest that farmers were forced to utilise their available capital

fficiently rather than investing in new technologies for achieving

roductivity growth (30%) during the sample period, which might

e due to constraining capital for doing productive investments,

he 2008 financial crisis, the milk quota, and fluctuations of input

nd milk prices. The fluctuation in technical inefficiency change

as the main driver of the fluctuation in productivity change ( Fig.

 ). There is a statistically significant difference in average perfor-

ance between ‘small’ and ‘large’ farms ( Table 4 ). On average,
mall farms achieved higher productivity growth associated with

apital compared to large farms as a result of technical inefficiency

hange during the sample period. 

The average annual dynamic productivity change associated

ith investment in breeding stock during the sample period was

egative ( −0.05; Table 5 ). This suggests that the potential for doing

nvestments in breeding stock has declined on average by about

.0% per year ( = −0 . 05 × 0 . 2 × 100% ) during the sample period, for

 given level of feed, other variable inputs and investment in cap-

tal. The main source of productivity decline associated with in-

estment in breeding stock was technical regress (i.e. an average

echnical regress of about 2.6% per year ( = −0 . 13 × 0 . 2 × 100% )).

his might be due to the fact that investment in improved breed-

ng stock need to be accompanied by an expansion of other in-

uts (e.g. feed, veterinary services, labour) and an investment in

apital assets (e.g. a new milking robot) or expansion of output.

he optimization with respect to the quasi-fixed breeding stock is

onditional on the level of the other quasi-fixed input, i.e. capi-

al . Accordingly, the optimized breeding stock may not be optimal

f the capital stock is not optimal. The average technical inefficiency

hange is positive and the highest change was observed in 2012/13.

his suggests that over the sample period, the efficiency of farms

n utilising the available breeding stock has increased. Over the

ample period, productivity associated with investment in breed-
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Fig. 4. Evolution of Luenberger productivity change associated with investment in capital and its components over the period 2007/08 and 2012/13. 

Table 5 

Decomposition of Luenberger dynamic productivity change associated with investment in breeding stock for Dutch specialised dairy farms over the period 2007 to 2013 and 

comparing small versus large farms. 

LPC a TC b TIC_VRS c SIC d 

2007/2008 −0.4029 −0.6426 0.0933 0.1463 

2008/2009 0.8035 0.3315 0.4155 0.0565 

2009/2010 0.5397 0.4510 0.0591 0.0297 

2010/2011 −0.9971 −0.1914 −0.7325 −0.0732 

2011/2012 −0.3549 −0.4362 −0.0095 0.0908 

2012/2013 0.1476 −0.4334 0.5851 −0.0041 

Average −0.0510 (0.014) −0.1308 (0.009) 0.0511 (0.015) 0.0288 (0.005) 

Small −0.0382 (0.020) −0.1231 (0.014) 0.0766 (0.022) 0.0084 (0.003) 

Large −0.0641 (0.020) −0.1387 (0.013) 0.0250 (0.021) 0.0496 (0.010) 

S-Z statistic e 36.6395 ∗∗∗ 50.3151 ∗∗∗ 117.6238 ∗∗∗ 118.7675 ∗∗∗

Note: Standard errors in parentheses. 
a Luenberger productivity change. 
b Technical change. 
c Technical inefficiency change under variable returns to scale. 
d Scale inefficiency change. 
e ∗∗∗ , ∗∗ and ∗ denote significant differences between small and large farms at the critical 1%, 5% and 10% levels, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

i  

c

2  

t  

a  

t  

b  

(  

p  

s  

i  

c  

a  

F  

i  

s  

s  

t  

r  

a

ing stock has increased by about 0.6% ( = 0 . 03 × 0 . 2 × 100% ) as a

result of improvement in the scale of operation associated with

breeding stock (i.e. following from the shift/movement in the pro-

duction technology from VRS to CRS). The performance difference

between ‘small’ and ‘large’ farms in terms of productivity growth

associated with investment in breeding stock is statistically sig-

nificant ( Table 5 ). Technical inefficiency changes were significantly

higher for small farms than large farms as shown by the S-Z test,

whereas scale inefficiency changes were higher for large farms. 

The input- and investment-specific productivity change results

( Tables 2 –5 ) suggest that technical inefficiency change associated

with feed and other variable inputs showed a similar pattern over

the sample period, whereas a similar pattern is observed for tech-

nical changes associated with investment in- capital and breeding

stock . Moreover, the results also suggest that size-specific dynamic

productivity growth and its components for feed , other variable in-

puts and investment in breeding stock show similar patterns over

the sample period for small and large farms, whereas a different

pattern is observed for investment in capital. However, the aver-

age values of the productivity change and its components are very

sensitive to the inclusion or exclusion of a year from the sample

period (i.e. the average scores would be very different if, for ex-

ample, the first or last year is removed from the series; Figs. 2 –4 ).

From the decompositions of investment-specific dynamic produc-
ivity growths associated with investments in capital and breed-

ng stock ( Tables 4 and 5 ), we observe that the average technical

hanges are negative for Dutch dairy farms over the period 2007–

013. This implies that, for producing the same level of output,

he potential for doing investments in capital (e.g. milking robots)

nd breeding stocks to achieve technical progress has declined over

he sample period for a given level of variable inputs. This might

e due to higher costs to comply with environmental regulations

e.g. manure disposal and emission reducing measures), which im-

ose higher costs but do not add directly to production. Over the

ample period, Dutch dairy farms rather improved their productiv-

ty associated with investments by a better utilisation of available

apital and breeding stocks (i.e. by reducing technical inefficiency)

nd to some extent by improving the scale of their operations.

armers might have also been discouraged to make investments

n modern technologies and breeds as a result of the milk quota

ystem that posed an upper limit on milk production during the

ample period. 15 Therefore, there is a potential to improve produc-

ivity growth of Dutch dairy farms via technical progress. Further

esearch is required to study the causes behind lack of investments

nd to make business and policy recommendations accordingly. 
15 Note that the quota system was abolished in April 2015 in the Netherlands. 
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Fig. 5. Evolution of Luenberger overall productivity change and its components over the period 2007/08 and 2012/13. 

Table 6 

Correlation between overall and input-specific annual productivity changes. 

Inputs/Investments Productivity change and its components 

LPC TC TIC SIC 

Feed 0.59 0.35 0.57 0.16 

Other variable input 0.16 0.56 −0.07 −0.65 

Investment in capital 0.53 0.79 0.05 −0.11 

Investment in breeding stock 0.85 0.86 0.32 0.44 
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We have also computed the overall (total factor) pro-

uctivity change and its components 16 ( Fig. 5 ), by solving

q. (2) such that β f eed = βother v ariable inputs = γin v estment in capital = 

in v estment in breeding stock . The overall average productivity change over

he sample period is 0.85% per year ( Fig. 5 ), mainly as a result

f technical change (0.44% per year) and scale inefficiency change

0.36% per year). The contribution of technical inefficiency change

o average productivity growth is very low during the sample pe-

iod (0.05% per year), even though it was the second main driver

f the fluctuations in productivity change next to technical change

 Fig. 5 ). The differences between the input-specific and overall pro-

uctivity change scores (i.e. 1.3% for feed , −2.5% for other vari-

ble input , 30% for investment in capital and −1.0 for investment

n breeding stock vs 0.85% for the overall productivity change) un-

erline the importance of computing input-specific productivity

hange (and its components) for improving farm decision-making.

he correlation between the overall- and input-specific average an-

ual productivity changes are given in Table 6 . Overall productiv-

ty and technical changes have a strong positive correlations (85–

6%) with productivity and technical changes associated with in-

estment in breeding stock . On the other hand, overall technical

nefficiency change has a very low association with technical in-

fficiency changes associated with- investment in capital (5%) and

ther variable inputs ( −7%). These correlations suggest that the cal-

ulation of overall (total factor) productivity change and its compo-

ents does not provide full information regarding the actual level

f inefficiency in relation to each factor of production. 

The input-specific (dynamic) productivity change results of the

resent study are not directly comparable with other studies

s there are no studies on input-specific (dynamic) productivity
16 This is mainly as a robustness check and for comparing the overall productivity 

hange results of the present study with other studies since there are no studies on 

nput-specific (dynamic) productivity growth for dairy farms. 

u  

2  

o  

o  
rowth for dairy farms. As a result, here we compare the over-

ll productivity change results. Brümmer et al. (2002) measured

he productivity growth of Dutch dairy farms over 1991–1994 us-

ng a static model. They found an average annual productivity

rowth of 2.88%, technical change of 0.53%, technical efficiency

hange of 0.58% and scale effect of 0.22%. The respective values

rom our dynamic model for Dutch dairy farms over the period

007–2013 are 0.85%, 0.44%, 0.05% and 0.36%. The differences in

he sample period (1991–1994 vs 2007–2013) and the models used

static vs dynamic) could explain the difference between the re-

ults. The result of our study for the average productivity growth

0.85% per year) is also lower than the result of Oude Lansink et al.

2015) who found an average productivity growth of 1.5% per year

or the Dutch dairy farms over the period 1995–2005 using the

uenberger dynamic productivity indicator. In Oude Lansink et al.

2015) , technical change accounts for about 80% of the productiv-

ty growth whereas it accounts for 52% in our study. The fluctu-

tion in technical and technical inefficiency changes are the main

rivers of the fluctuation in the overall productivity change in the

resent study, whereas it was the fluctuation in technical ineffi-

iency change in Oude Lansink et al. (2015) . Skevas, Emvalomatis

nd Brümmer (2018) , using a dynamic stochastic frontier model,

easured the productivity growth of German dairy farming over

he period 20 01–20 09. The authors decomposed the productiv-

ty growth of 1.73% into technical change of 1.88%, technical effi-

iency change of −0.20% and scale effect of 0.05%. Atsbeha et al.

2012) also measured the productivity growth (1.63%) of Iceland

airy farming over the period 1997–2006, and decomposed it into

echnical change of 0.43%, technical efficiency change of −0.61%

nd scale effect of 1.81% using a static model. The respective val-

es from our dynamic model for Dutch dairy farms over the period

007–2013 are 0.85%, 0.44%, 0.05% and 0.36%. The consideration

f only specialised dairy farms in our sample, where at least 85%

f farm’s revenue is from milk, could also be one of the reasons
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Table 7 

Impulse responses of input- and investment-specific Luenberger dynamic productivity changes and their components to genetic progress using the measure of expense on 

artificial insemination a . 

Years after expenditure (k) LPC b TC c TIC d SIC e 

Feed 

1 −0.0123 ∗∗ 0.0027 −0.0144 −0.0150 ∗∗

2 0.0209 ∗∗∗ 0.0111 ∗∗ 0.0168 0.0117 ∗∗∗

3 0.0509 −0.0262 −0.0482 0.0170 

4 0.0034 0.0028 0.0069 −0.0066 ∗

5 0.0062 −0.0025 −0.0018 0.0073 ∗∗

Other variable inputs 

1 0.1421 ∗∗∗ −0.0088 0.2612 ∗∗∗ 0.0088 

2 −0.0350 ∗∗ 0.0131 −0.0913 ∗ −0.0048 

3 0.0441 0.0259 0.0710 ∗ 0.0105 

4 0.0160 −0.0101 0.0103 −0.0148 

5 −0.0083 0.0104 −0.008 0.0029 

Investment in capital 

1 4.5633 ∗∗∗ 1.0631 4.6907 ∗∗∗ 0.7255 ∗∗∗

2 −0.8688 0.0424 −1.2297 ∗ −0.4544 ∗∗∗

3 −1.6036 −3.9218 1.4326 ∗∗ 0.4541 

4 −0.7256 ∗ −0.2245 −0.3694 0.0748 

5 0.0352 −0.2168 −0.1912 −0.1309 

Investment in breeding stock 

1 1.4213 ∗∗∗ −0.3188 ∗∗∗ 1.7793 ∗∗∗ 0.1625 ∗∗∗

2 0.1266 ∗ 0.1124 0.1894 ∗ −0.0296 

3 −0.0642 −0.9609 ∗∗∗ −0.0043 0.1023 

4 −0.2510 ∗∗∗ 0.1772 ∗ −0.2032 ∗ 0.0455 

5 0.0391 0.0193 0.0084 0.0620 

∗∗∗ Significant at 1%. 
∗∗ Significant at 5%. 
∗ Significant at 10%. 
a According to this measure, if a farm’s expense on artificial insemination per cow in constant 2010 prices in a given year is greater than its median expenditure over 

2007–2013, a farm is assumed to experience genetic progress in that year. 
b Luenberger productivity change. 
c Technical change. 
d Technical inefficiency change under variable returns to scale. 
e Scale inefficiency change. 
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for the lower average productivity growth result the present study

compared to results from the literature. 

4.2. Effect of genetic progress on dynamic productivity growth and 

its components 

The results of the impulse response analysis for measuring the

effect of genetic progress on input- and investment-specific dy-

namic productivity growths and their components are presented

in Table 7 . The post estimation diagnostic test results (i.e. Wald

test for the joint significance of the explanatory variables included

in the model, the Arellano–Bond test for the presence of first-

and second-order autocorrelation, and the Hansen test of over-

identifying restrictions for the joint validity of instruments) as well

as the number of instruments and observations used in each se-

quential regression are reported in Appendix B ( Tables B1 –B4 ). The

Wald chi-squared test results showed that the explanatory vari-

ables included in each model are statistically significant, at the

critical 1% level, in jointly explaining the variations in productivity

changes and their components. Although the Arellano–Bond test

results show that there is a first-order autocorrelation, in almost

all the models, the null hypothesis of no second-order autocorrela-

tion is not rejected at the critical 5% level (i.e. there is no problem

of second-order serial correlation). The Hansen test results also

showed that the instruments in the model are jointly valid (i.e.

there is no problem of overidentification). 

Spending greater than the median farm genetics expenses is

positively related with productivity growths (and their compo-

nents) associated with- other variable inputs , and investments in

capital and breeding stock one year after the time of spending

at the critical 1% level; whereas it is negatively related for feed

( Table 7 ). Thereafter, these expenses have mixed relations with

most input- and investment-specific productivity growths and their
omponents from the second year onwards. The statistically signif-

cant results in the first two years ( Table 7 ) suggest that the ef-

ect of using purchased quality semen starts one year after its ap-

lication. This effect is not attributable to better efficiency of the

rogenies as the generation interval of dairy cows is longer than

wo years. The positive relationship suggests a potential positive

pill-over from using high quality genetics to efficient use of in-

uts. That is, farms that produce more efficiently after adopting

uality genetics are also those farms that utilise their resources ef-

ciently. Moreover, the statistically significant positive relations in

he first two years could also partly be due to the genetic status

ariations amongst farms (e.g. Atsbeha et al., 2012 ). 

When a farm spends more than its median expenditure on ar-

ificial insemination, productivity change associated with feed de-

reases by 1.23% and increases by 2.09% after one and two years

rom the spending time, respectively. Holding output, other vari-

ble inputs and investments constant, these results imply that

pending more than the median expenditure leads to an increase

nd a decrease in the use of feed by 1.23% and 2.09% per year

fter one and two years from the time of spending, respectively.

he second year effect is mainly attributed to the effect on tech-

ical change and scale inefficiency change, suggesting that farmers

hat adopt high quality genetics are also those farmers that under-

ake steps to improve their technical progress and scale of oper-

tion. Spending greater than the median expenditure on artificial

nsemination is negatively and positively related with scale ineffi-

iency change associated with feed after three and four years, re-

pectively. 

One year after spending more than the median expenditure,

roductivity growth associated with investment in capital increases

y 4.56. This implies that, holding output, feed and investment in

reeding stock constant, spending more than the median expen-

iture is associated with a greater potential for doing investments
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n capital. After one year, this potential for doing investments in-

reased by 91% of the capital stock (as g I = 0 . 2 × K). This effect is

ainly attributed to the effect of spending on technical inefficiency

hange. This implies that farms that use improved genetics have a

arger efficiency in utilising available resources (i.e. buildings and

achineries). This relation might be due to the spill-over effect

f using improved genetics on managerial efficiencies that allow

arms to use the under-utilised capital resources. 

The results of the impulse response analyses using the measure

f breeding stock investment spike are also comparable to the re-

ults of expense on artificial insemination ( Appendix A , Table A1 ).

he effects of genetics expenses on productivity growth and its

omponents are also robust to the inclusion of farm size (in Eq.

14) ) during the estimation of the impulse responses. 17 The re-

ults show that the effects of genetics expenses on productivity

rowth and its components do not depend on farm size (i.e. no

cale effect). The results of the impulse response analyses suggest

hat expense on genetics, using the measures of expenses on ar-

ificial insemination ( Table 7 ) and breeding stock investment spike

 Appendix A , Table A1 ) , has the potential to improve productivity

f dairy farms. 18 Productivity growth associated with inputs and

nvestments increases following from higher expense on genetics

n the first two years and then productivity starts to grow slowly

with very few exceptions). The negative coefficients do not imply

 reduction in productivity as a result of genetics expenses. They

ather imply that productivity growth declines, i.e. the productivity

n time t + 1 is lower than the productivity in time t . The benefits

f using a high quality genetics in the first two years could be at-

ributed to the spill-over effect on managerial efficiency, and the

ncrease in revenues following from sales of (at least 50% of) the

alves born in the first two years. The less statistically significant

esults for later prediction horizons (i.e. k ≥ 3 ) might also partly be

ue to the small sample sizes ( Appendix B ) remained for distant

rediction horizons after the differencing procedure in the system

MM estimator. 

. Conclusions 

This study measured the input- and investment-specific Luen-

erger dynamic productivity growth indicators and their compo-

ents for Dutch specialised dairy farms over the period 2007–2013.

he average yearly input-specific productivity changes are 1.3% for

eed , −2.5% for other variable inputs , 30% for investment in capi-

al and −1.0% for investment in breeding stock . Technical change

s the main component of productivity changes associated with-

eed (positively) and investment in breeding stock (negatively). On

he other hand, technical and scale inefficiency changes are the

ain components of productivity changes associated with- invest-

ent in capital (positively) and other variable inputs (negatively).

he fluctuations in technical inefficiency changes were the main

rivers of the fluctuations in the input- and investment-specific

roductivity changes during the sample period. The negative pro-

uctivity growth associated with breeding stock ( −1.0%) suggests

hat, holding output, variable inputs and investment in capital con-

tant, the potential for doing investments in breeding stock has

eclined by 1.0% per year over the sample period. The negative

echnical changes for investments in capital and breeding stocks

uggest that there is potential for Dutch dairy farms to increase

roductivity by raising technical progress (e.g. by doing productive
17 Results are not reported. 
18 However, these results of the impulse response analysis might not be generaliz- 

ble due to the high volatility of the components of productivity change ( Figs. 2 –4 ) 

nd the short sample period (2007-2013), which is too short to capture the full ef- 

ects of genetics. Further studies could implement the procedure using long panel 

ata (and other methods for estimating the components of productivity change). 

i  

y  

fi  

f  

v  

n  

a  
nvestments on top of unproductive investments that are done to

omply with environmental regulations such as manure disposal

nd emission reducing measures). Furthermore, the optimization

ith respect to the quasi-fixed breeding stock is conditional on the

evel of the other quasi-fixed input, i.e. capital . Accordingly, the op-

imized breeding stock may not be optimal if the capital stock is not

ptimal. 

This study also measured the effect of genetic progress—as

roxied by farm expenses on artificial insemination and breeding

tock investment spike —on input- and investment-specific dynamic

roductivity growth indicators and their components using an

mpulse response analysis. The results of the impulse response

nalyses show that farm genetics expenses have the potential to

mprove productivity of dairy farms. The results suggest that pro-

uctivity growth associated with inputs and investments increases

ollowing from higher expense on genetics in the first two years af-

er expense and then productivity starts to grow slowly (with very

ew exceptions). The benefits of using a high quality genetics in

he first two years could be attributed to the spill-over effects of

sing improved genetics on managerial efficiencies and increases

n revenues from sales of (at least 50% of) the calves born in the

rst two years. 

The combination of input-specific dynamic productivity growth

ndicators with impulse response analysis is a promising method

or measuring the contribution of the farm level genetic status of

airy cows to productivity growth associated with each variable in-

ut and investments. However, a long panel dataset and a good

easure of genetic progress are required. The present study used

 seven-years panel data, which is quite short to fully capture the

ffects of genetic progress on farm performance in dairy farming.

 long panel dataset (e.g. 20 years) is required to fully capture

he long-term (i.e. cumulative and persistent) effects of genetic

rogress in dairy farming. This study used expense on artificial in-

emination as a proxy for genetic progress. As already stated, this

easure is imperfect as expenses on artificial insemination con-

ist of two confounding components that cannot be distinguished

n the dataset used in this study. First, a higher genetic expense

er cow implies acquisition of higher quality semen that helps to

nhance productivity. Second, (for the same or lower level of pro-

uctivity) a higher expense might also be due to farm-level inef-

ciencies. Less fertile (unproductive) cows require several insemi-

ations which raise semen expense (it might also be due to man-

gerial inefficiency, for example, in detecting heat period). Since

xpense on artificial insemination is not corrected for managerial

nefficiencies, its effect on productivity growth is understated in

he present study. The negative effects of expense on artificial in-

emination on productivity and efficiency changes for some of the

nputs and investments might also be due to the outweigh of ex-

enditure following farm inefficiencies over expenditure on quality

enetics. A cow with a longer calving interval produces less milk

er year while it requires several inseminations. In this case, the

xpense on genetics does not lead to an improved genetic level,

ut it is spent to solve problems that may have their cause in other

ources of inefficiency. 

Future research may use the total merit index of a herd as a

easure of genetic levels at farm level using longer panel datasets

e.g. 20 years). The total merit index (also known as aggregate

enotype) is a linear function of economically important traits

 Miesenberger & Fuerst, 2006 ). It is a weighted average of breed-

ng goal traits (i.e. estimated breeding values of traits such as milk

ield, fat and protein contents, disease resistance and calving dif-

culty weighted by their respective economic values). Obtaining

arm level long panel data on total merit index and socio-economic

ariables requires collaborative efforts amongst breeding compa-

ies and other institutions that collect socio-economic data (e.g.

ccountancy firms). In the Netherlands, for example, CRV (a cattle
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breeding company) records farm level data on genetics (total merit

index) and FLYNTH (the accountancy firm) collects socio-economic

data. Normally, an overlap is expected in the two datasets that can

be used for measuring the long-term effects of genetic progress

on farm productivity growth. Estimated breeding values of traits

have already been employed in assessing the contribution of ge-

netic progress to farm productivity and profit using static mod-

els (in other countries), with the assumption that a high genetic

herd in the current period results in higher productivity or profit in

the same period (e.g. Atsbeha et al., 2012 ; Roibas & Alvarez, 2012 ;

2010 ; Steine et al., 2008 ). A long-term perspective with a dynamic

approach is required to better capture the effect of genetic progress

on farm performance. 
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Appendix A. The effect of breeding stock investment spike on 

productivity change 

Breeding stock investment spike is also used as a proxy for ge-

netic progress of farms. In this study, a spike is defined as a year
Table A1 

Impulse responses of input- and investment-specific Luenberger dynamic productivity cha

investment spike a . 

Years after spike (k) LPC b T

Feed 

1 0.0227 ∗∗∗ 0

2 0.0098 ∗∗ 0

3 −0.0027 0

4 −0.0146 ∗ −
5 0.0116 −
Other variable inputs 

1 0.0047 0

2 0.1254 ∗∗∗ 0

3 −0.1856 ∗∗∗ −
4 0.0620 ∗∗ 0

5 −0.0014 −
Investment in capital 

1 2.6704 ∗∗∗ 1

2 5.5527 ∗∗∗ 1

3 −3.6718 ∗∗∗ −
4 0.1655 0

5 −0.8050 −
Investment in breeding stock 

1 0.7318 ∗∗∗ 0

2 0.4386 ∗∗∗ 0

3 −0.2199 0

4 0.1193 −
5 −0.1425 0

∗∗∗ Significant at 1%. 
∗∗ Significant at 5%. 
∗ Significant at 10%. 
a According to this measure, if a farm’s net investment rate of breeding stock in a given 

a farm is assumed to experience genetic progress in that year. 
b Luenberger productivity change. 
c Technical change. 
d Technical inefficiency change under variable returns to scale. 
e Scale inefficiency change. 
n which a farm’s net investment rate (i.e. net investment in breed-

ng stock divided by total breeding stock) is greater than two times

he farm’s median net investment rate of breeding stock over the

tudy period (2007–2013). Previous studies (e.g. Geylani & Ste-

anou, 2013 ; Kapelko et al., 2015 ) defined investment spikes as a

ear in which the gross investment rate (i.e. gross investment di-

ided by capital stock) is greater than 2.5 times the firm’s median

ross investment rate. This relative definition of spike avoids the

ffect of potential size differences. We assumed that a farm ex-

eriences genetic progress (i.e. uses cows with high genetic level

ompared to the population average genetic level, which is a shock

o the system) in year t if an investment spike occurs in that year.

his measure is used as an alternative proxy for the genetic index

f cows (total merit index of cows). We hypothesise that a high

et investment rate of breeding stock has a positive effect on farm

roductivity growth as a result of the use of cows with better ge-

etic potential. 

The results of the impulse response analysis are presented in

able A1 . The impulse responses of input- and investment-specific

ynamic productivity changes (and their components) to genetic

rogress using the measure of breeding stock investment spike dur-

ng the period 2007–2013 are estimated for five prediction hori-

ons ( k = 5 ). The results show that genetic progress results in a

tatistically significant increase in productivity change associated

ith inputs and investments, and then it leads to a decline in pro-

uctivity change in the third year. 

ppendix B. Post estimation test results 
nges and their components to genetic progress using the measure of breeding stock 

C c TIC d SIC e 

.0162 ∗∗∗ 0.0062 0.0010 

.0169 ∗∗∗ −0.0028 −0.0002 

.0012 −0.0117 ∗∗ 0.0047 

0.0077 −0.0018 −0.0022 

0.0005 −0.0090 0.0072 

.0141 ∗ −0.0851 ∗∗∗ 0.0076 

.0145 0.0728 ∗∗ −0.0143 

0.0107 −0.1846 ∗∗∗ 0.0049 

.0191 0.1214 ∗∗∗ −0.0072 

0.0101 −0.0871 0.0079 

.5269 ∗∗∗ 1.7948 ∗∗∗ 0.3405 ∗∗∗

.0308 ∗ 4.6775 ∗∗∗ 0.5210 ∗∗∗

1.0954 ∗∗ −3.0863 ∗∗∗ −0.6146 ∗∗∗

.3424 −0.6544 0.1723 

0.7979 −0.4077 −0.0416 

 0.4602 ∗∗∗ 0.4704 ∗∗∗ −0.0085 

.0948 0.7550 ∗∗∗ −0.0078 

.2150 ∗∗∗ −0.7376 ∗∗∗ −0.0673 ∗∗

0.0728 0.1518 0.0650 ∗

.3717 ∗∗ −0.1039 −0.0290 

year is greater than two times the farm’s median net investment rate in 2007–2013, 
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Table B1 

Post estimation diagnostic test results for the impulse responses of input- and investment-specific Luenberger dynamic productivity change associated with feed to genetic 

progress. 

k Tests LPC b TC c TIC d SIC e 

1 Wald Test 363.06 ∗∗∗ 129.03 ∗∗∗ 481.42 ∗∗∗ 142.74 ∗∗∗
AR(1) in first differences 0.0 0 0 0.0 0 0 0.022 0.015 

AR(2) in first differences 0.132 0.072 0.064 0.659 

Hansen Test 0.195 0.522 0.191 0.109 

Number of instruments 6 6 6 6 

Number of observations 2655 2655 2655 2655 

Number of farms 1057 1057 1057 1057 

2 Wald Test 410.81 ∗∗∗ 120.37 ∗∗∗ 447.03 ∗∗∗ 144.96 ∗∗∗
AR(1) in first differences 0.031 0.0 0 0 0.108 0.094 

AR(2) in first differences 0.655 0.121 0.088 0.329 

Hansen Test 0.254 0.472 0.255 0.122 

Number of instruments 7 7 7 7 

Number of observations 1932 1932 1932 1932 

Number of farms 761 761 761 761 

3 Wald Test 18.09 ∗∗∗ 75.81 ∗∗∗ 40.49 ∗∗∗ 17.63 ∗∗∗
AR(1) in first differences 0.433 0.232 0.656 0.397 

Hansen Test 0.578 0.424 0.466 0.194 

Number of instruments 8 8 8 8 

Number of observations 1171 1171 1171 1171 

Number of farms 625 625 625 625 

4 Wald Test 38.28 ∗∗∗ 75.08 ∗∗∗ 36.69 ∗∗∗ 32.01 ∗∗∗
AR(1) in first differences 0.107 0.0 0 0 0.243 0.168 

Hansen Test 0.271 0.545 0.826 0.876 

Number of instruments 10 10 10 10 

Number of observations 1171 1171 1171 1171 

Number of farms 625 625 625 625 

5 Wald Test 34.40 ∗∗∗ 40.95 ∗∗∗ 44.67 ∗∗∗ 89.14 ∗∗∗
Hansen Test 0.214 0.828 0.779 0.870 

Number of instruments 11 11 11 11 

Number of observations 546 546 546 546 

Number of farms 284 284 284 284 

The models are fitted using two lags for the dependent variables and estimated using system GMM with Windmeijer (2005) corrected standard errors. 

The null hypothesis of the Wald test is Ho: the coefficients of the explanatory variables in the model are equal to zero. ∗∗∗ Significant at 1%; ∗∗ Significant at 5%; ∗ Significant 

at 10%. 

In the Arellano-Bond test for first- (AR(1)) and second-order autocorrelation (AR(2)), and for the Hansen test of the joint validity of instruments, p-values are reported. The 

null hypothesis of the Arellano-Bond test for autocorrelation is Ho: no autocorrelation. The null hypothesis of the Hansen test is Ho: overidentifying restrictions are valid. 

Table B2 

Post estimation diagnostic test results for the impulse responses of input- and investment-specific Luenberger dynamic productivity change associated with other variable 

inputs to genetic progress. 

k Tests LPC b TC c TIC d SIC e 

1 Wald Test 4387.89 ∗∗∗ 193.44 ∗∗∗ 1787.92 ∗∗∗ 224.60 ∗∗∗
AR(1) in first differences 0.343 0.0 0 0 0.148 0.015 

AR(2) in first differences 0.905 0.524 0.293 0.488 

Hansen Test 0.781 0.732 0.982 0.804 

Number of instruments 6 6 6 6 

Number of observations 2655 2655 2655 2655 

Number of farms 1057 1057 1057 1057 

2 Wald Test 2541.50 ∗∗∗ 172.50 ∗∗∗ 2116.42 ∗∗∗ 224.93 ∗∗∗
AR(1) in first differences 0.388 0.003 0.136 0.006 

AR(2) in first differences 0.927 0.758 0.433 0.841 

Hansen Test 0.497 0.376 0.839 0.914 

Number of instruments 7 7 7 7 

Number of observations 1932 1932 1932 1932 

Number of farms 761 761 761 761 

3 Wald Test 2275.52 ∗∗∗ 92.41 ∗∗∗ 838.86 ∗∗∗ 127.40 ∗∗∗
AR(1) in first differences 0.985 0.0 0 0 0.546 0.752 

Hansen Test 0.595 0.842 0.935 0.104 

Number of instruments 8 8 8 8 

Number of observations 1171 1171 1171 1171 

Number of farms 625 625 625 625 

4 Wald Test 2624.79 ∗∗∗ 113.45 ∗∗∗ 1497.91 ∗∗∗ 77.33 ∗∗∗
AR(1) in first differences 0.880 0.0 0 0 0.873 0.771 

Hansen Test 0.051 0.815 0.329 0.461 

Number of instruments 10 10 10 10 

Number of observations 1171 1171 1171 1171 

Number of farms 625 625 625 625 

5 Wald Test 1238.54 ∗∗∗ 104.62 ∗∗∗ 872.55 ∗∗∗ 185.37 ∗∗∗
Hansen Test 0.073 0.680 0.371 0.506 

Number of instruments 11 11 11 11 

Number of observations 546 546 546 546 

Number of farms 284 284 284 284 

The models are fitted using two lags for the dependent variables and estimated using system GMM with Windmeijer (2005) corrected standard errors. 

The null hypothesis of the Wald test is Ho: the coefficients of the explanatory variables in the model are equal to zero. ∗∗∗ Significant at 1%; ∗∗ Significant at 5%; ∗ Significant 

at 10%. 

In the Arellano-Bond test for first- (AR(1)) and second-order autocorrelation (AR(2)), and for the Hansen test of the joint validity of instruments, p-values are reported. The 

null hypothesis of the Arellano-Bond test for autocorrelation is Ho: no autocorrelation. The null hypothesis of the Hansen test is Ho: overidentifying restrictions are valid. 
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Table B3 

Post estimation diagnostic test results for the impulse responses of input- and investment-specific Luenberger dynamic productivity change associated with investment in 

capital to genetic progress. 

k Tests LPC b TC c TIC d SIC e 

1 Wald Test 685.97 ∗∗∗ 64.77 ∗∗∗ 175.97 ∗∗∗ 187.91 ∗∗∗

AR(1) in first differences 0.446 0.0 0 0 0.010 0.002 

AR(2) in first differences 0.008 0.546 0.625 0.141 

Hansen Test 0.118 0.389 0.779 0.461 

Number of instruments 6 6 6 6 

Number of observations 2655 2655 2655 2655 

Number of farms 1057 1057 1057 1057 

2 Wald Test 999.15 ∗∗∗ 68.82 ∗∗∗ 173.12 ∗∗∗ 272.09 ∗∗∗

AR(1) in first differences 0.016 0.0 0 0 0.048 0.019 

AR(2) in first differences 0.003 0.548 0.020 0.231 

Hansen Test 0.073 0.139 0.168 0.264 

Number of instruments 7 7 7 7 

Number of observations 1932 1932 1932 1932 

Number of farms 761 761 761 761 

3 Wald Test 134.64 ∗∗∗ 99.79 ∗∗∗ 37.99 ∗∗∗ 87.04 ∗∗∗

AR(1) in first differences 0.139 0.175 0.0 0 0 0.001 

Hansen Test 0.055 0.968 0.402 0.343 

Number of instruments 8 8 8 8 

Number of observations 1171 1171 1171 1171 

Number of farms 625 625 625 625 

4 Wald Test 196.95 ∗∗∗ 96.16 ∗∗∗ 38.69 ∗∗∗ 127.79 ∗∗∗

AR(1) in first differences 0.011 0.002 0.0 0 0 0.048 

Hansen Test 0.069 0.978 0.272 0.808 

Number of instruments 10 10 10 10 

Number of observations 1171 1171 1171 1171 

Number of farms 625 625 625 625 

5 Wald Test 54.41 ∗∗∗ 29.50 ∗∗∗ 32.99 ∗∗∗ 341.48 ∗∗∗

Hansen Test 0.042 0.365 0.228 0.098 

Number of instruments 11 11 11 11 

Number of observations 546 546 546 546 

Number of farms 284 284 284 284 

The models are fitted using two lags for the dependent variables and estimated using system GMM with Windmeijer (2005) corrected standard errors. 

The null hypothesis of the Wald test is Ho: the coefficients of the explanatory variables in the model are equal to zero. ∗∗∗ Significant at 1%; ∗∗ Significant at 5%; ∗ Significant 

at 10%. 

In the Arellano-Bond test for first- (AR(1)) and second-order autocorrelation (AR(2)), and for the Hansen test of the joint validity of instruments, p-values are reported. The 

null hypothesis of the Arellano-Bond test for autocorrelation is Ho: no autocorrelation. The null hypothesis of the Hansen test is Ho: overidentifying restrictions are valid. 

Table B4 

Post estimation diagnostic test results for the impulse responses of input- and investment-specific Luenberger dynamic productivity change associated with investment in 

breeding stock to genetic progress. 

k Tests LPC b TC c TIC d SIC e 

1 Wald Test 903.44 ∗∗∗ 919.06 ∗∗∗ 475.24 ∗∗∗ 224.98 ∗∗∗

AR(1) in first differences 0.0 0 0 0.0 0 0 0.0 0 0 0.002 

AR(2) in first differences 0.567 0.169 0.314 0.483 

Hansen Test 0.055 0.860 0.122 0.924 

Number of instruments 6 6 6 6 

Number of observations 2655 2655 2655 2655 

Number of farms 1057 1057 1057 1057 

2 Wald Test 877.54 ∗∗∗ 1037.00 ∗∗∗ 711.14 ∗∗∗ 239.79 ∗∗∗

AR(1) in first differences 0.0 0 0 0.0 0 0 0.0 0 0 0.011 

AR(2) in first differences 0.577 0.961 0.078 0.827 

Hansen Test 0.091 0.816 0.015 0.971 

Number of instruments 11 7 7 7 

Number of observations 1932 1932 1932 1932 

Number of farms 761 761 761 761 

3 Wald Test 1407.86 ∗∗∗ 203.63 ∗∗∗ 650.61 ∗∗∗ 138.76 ∗∗∗

AR(1) in first differences 0.002 0.0 0 0 0.001 0.090 

Hansen Test 0.024 0.313 0.056 0.845 

Number of instruments 8 8 8 8 

Number of observations 1171 1171 1171 1171 

Number of farms 625 625 625 625 

4 Wald Test 1227.13 ∗∗∗ 112.58 ∗∗∗ 680.17 ∗∗∗ 77.55 ∗∗∗

AR(1) in first differences 0.001 0.0 0 0 0.0 0 0 0.490 

Hansen Test 0.153 0.753 0.836 0.203 

Number of instruments 10 10 10 10 

Number of observations 1171 1171 1171 1171 

Number of farms 625 625 625 625 

5 Wald Test 945.06 ∗∗∗ 106.56 ∗∗∗ 497.00 ∗∗∗ 24.17 ∗∗∗

Hansen Test 0.021 0.278 0.911 0.042 

Number of instruments 11 11 11 11 

Number of observations 546 546 546 546 

Number of farms 284 284 284 284 

The models are fitted using two lags for the dependent variables and estimated using system GMM with Windmeijer (2005) corrected standard errors. 

The null hypothesis of the Wald test is Ho: the coefficients of the explanatory variables in the model are equal to zero. ∗∗∗ Significant at 1%; ∗∗ Significant at 5%; ∗ Significant 

at 10%. 

In the Arellano-Bond test for first- (AR(1)) and second-order autocorrelation (AR(2)), and for the Hansen test of the joint validity of instruments, p-values are reported. The 

null hypothesis of the Arellano-Bond test for autocorrelation is Ho: no autocorrelation. The null hypothesis of the Hansen test is Ho: overidentifying restrictions are valid. 
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