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Abstract

The semicircular ducts (SCDs) of the vestibular system play an instrumental role in equilibration and rotation perception of
vertebrates. The present paper is a review of quantitative approaches and shows how SCDs function. It consists of three parts.
First, the biophysical mechanisms of an SCD system composed of three mutually connected ducts, allowing endolymph to
flow from one duct into another one, are analysed. The flow is quantified by solving the continuity equations in conjunction
with the equations of motion of the SCD hydrodynamics. This leads to mathematical expressions that are suitable for further
analytical and numerical analysis. Second, analytical solutions are derived through four simplifying steps while keeping the
essentials of the coupled system intact. Some examples of flow distributions for different rotations are given. Third, the focus
is on the transducer function of the SCDs. The complex structure of the mechano-electrical transduction apparatus inside
the ampullae is described, and the consequences for sensitivity and frequency response are evaluated. Furthermore, both the
contributions of the different terms of the equations of motion and the influence of Brownian motion are analysed. Finally,

size limitations, allometry and evolutionary aspects are taken into account.
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1 Introduction and motivation

The semicircular ducts (SCDs) are the vertebrate sensors
for three-dimensional rotation. The SCD organ is a part
of the labyrinth, the latter being a cluster of several hair
bundle mechanoreceptors. These receptors, which belong to
the octavo-lateralis nerve system (8th brain nerves), can be
grouped into two essentially different types. A first group are
statocyst-like organs formed by the maculae of the utricu-
lus and the sacculus (both small sacs that form the principal
compartments of the labyrinth), using heavy particles—small
stones, so to speak which are currently called otoliths or oto-
conia—that exert inertial forces on the hair bundles forming
the top of the sensory cells. These organs sense gravitational
and linear inertial accelerations. A second group are hydro-
dynamic receptors, in which fluid flow actuates on the hair
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bundles (Fritsch and Straka 2014). The SCDs belong to the
latter group. The SCD organ consists of three mutually con-
nected ducts (Fig. 1a) filled with endolymph, a fluid with
physical properties close to those of water. At rotation, this
endolymph pushes against the ampullary mechano-electrical
transduction system of the hair cells of the SCDs, quite a com-
plex organ that will be described in detail in Sect. 8 (Fig. 10).
For more than a century, the SCDs have been considered
as three separate fluid circuits positioned perpendicularly to
each other.

As a student, I studied the morphology and histology of
SCDs, mainly from fishes, noticing that they were always
mutually connected allowing fluid to flow from one duct into
another one, and positioned obliquely in the head and that,
in many species, they were not perpendicular to each other.
Later, I became impressed by the charm and simplicity of
the current physical models but I also felt rather sceptical
about many aspects of them. In this article, a discussion of
the above features is given. I will also put forward some novel
ideas that have not been published yet.

In the present review, it is not the aim to give an up-to-date
overview of all the literature on this subject. I focus on my
own modelling and refer to related articles for other details.
To reduce its length, only essential mathematical expressions
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Fig.1 Construction of a (a)
three-dimensional semicircular
duct (SCD) system. A The
system in space: in a mammal
and as a model. Abbreviations: a
= anterior duct, aa = ampulla
anterior, pl, p2 = posterior duct,
ap = ampulla posterior, h1, h2
= horizontal duct, ah = ampulla
horizontalis, ¢ = crus commune,
u = utriculus. B The system
folded out in a flat plane. The
arrows indicate the positive sign
of the velocities. The system is
rotated anticlockwise by an
angular velocity w as indicated
in the origin M and suddenly
stopped at =0

a: Cynocephalus

(b)

amp. post.

C

b: Model

¥~ amp. ont.

are presented. Details can be found in the papers listed in
the References. Symbols are explained in the text and in the
figure captions.

2 A short history of semicircular duct
modelling

The history of SCD modelling begins with the discovery by
Flourens (1824, by ablation experiments in pigeons and fol-
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lowed by a description of their behaviour) that endolymph
flow mediates the stimulation of the mechano-electrical
transduction system and, in this way, gives information about
head rotation. Flourens did not know that birds also possess a
lumbar vestibular system, to control equilibrium of the body
(discovered by Necker 2006), and that certainly had influence
on the outcome of his experiments.

It lasted until about 1873 before the first physical mod-
els were published, simultaneously by Mach (1873), Crum
Brown (1874), and Breuer (1873). These models did not



Biological Cybernetics

include the elastic properties of the mechano-electrical trans-
duction system. For elastic properties, several hypotheses
have been proposed (cf. Sect. 8), starting with the rotation
experiments of Steinhausen in 1933 on the pike (Esox). Stein-
hausen compared the deflection of the cupula, (an elastic
valve-like structure of mucopolysaccharides in the ampulla)
with a swinging door (“swinging-door” theory, see Sect. 8).

Based on Steinhausen’s data, Van Egmond et al. (1949)
constructed a model of the SCD system of a single circular
duct. The differential equation of this model contained an
inertial term, a frictional term and an elastic term. For about
40 years, this model was the principal base for most studies.
Oman et al. (1987) extended this model to a non-uniform
cross section of the circuit. Muller and Verhagen (1988a,
b) published the first three-dimensional model, composed
of three mutually interconnected ducts. Rabbitt (1999) pub-
lished an almost identical model, but also carried out some
very useful experiments (Rabbitt et al. 1995), which will be
discussed in Sect. 9.

3 Geometry of the semicircular duct system
and rotation

From now onwards, the dimensions of all equations will be
denoted within square brackets. So, [m] means [metres].

Virtually all physical analyses of biological systems have
to start with a geometrical abstraction. In the present case, a
simplified rotating SCD system is placed in an earth-bound
frame; see Fig. 1. A triangular semicircular duct ABC lying
in a flat plane in space with Cartesian coordinates x, y and z
of all three corner points A, B and C with respect to an origin
M can be described by the following equations (Muller and
Verhagen 1988b),

(A)x+B)y+(C)z+ (D) =0 (1a)

The coefficients (A), (B) and (C) are described by the fol-
lowing determinant equations,

(4) = YB—YA ZIB —ZA (1b)
Yc —YA ZCc —ZA

(B) = iB —ZA XB — XA (1c)
IC —ZA XC — XA

(€) = XB —XA YB— YA (1d)
XC —XA YC — YA

(D) = —[xa(A) + ya(B) +z4(C)] [m] (le)

A system composed of three such triangular ducts in a flat
plane is shown in Fig. 1b. The arrows in this figure indicate
the positive directions of the fluid (endolymph) flow within

the ducts. These triangular ducts can be mutually positioned
under angles (Fig. 1a), thus forming a three-dimensional SCD
system. This system is rotated in space around the origin M
by a rotation vector w [rad/s]. In Sects. 4 and 5, equations
will be given to explain how, based on this geometrical con-
struction of ducts, velocities and forces inside these ducts can
be calculated.

4 Initial velocities after rotation

In fact, the SCD system is dealing with three coordinate
frames: (I) an earth-bound frame which is considered com-
pletely stationary, (II) the frame of the duct connected to the
head and rotated around an origin M by a rotation vector
and (II) the frame of the moving endolymph fluid inside the
duct. As rotation starts, the fluid is set into motion, governed
mainly by inertia and friction and, to a very small extent,
by the elastic mechano-electrical transduction system. The
acceleration of the fluid in frame (IIT) with respect to frame
(D) has been described by Valentinuzzi 1967):

d’f dw 5
a:—+wx(wxr)+rx$+2wxva+aa [m/s7]

dr?
(2

where a is the acceleration of a point within the endolymph
with respect to the earth-bound frame, f is the position vec-
tor of the moving origin in the earth-bound frame, the first
term at the right-hand side is the acceleration of the moving
frame with respect to the earth-bound frame, the second term
is the centripetal acceleration, the third term the tangential
acceleration, the fourth term the Coriolis acceleration and the
fifth term the apparent acceleration of the endolymph point
relative to the moving frame (II), and x indicates a vector or
cross-product. The vector v, denotes the linear velocity of
an endolymph point with respect to the moving frame (II),
while a is the corresponding acceleration. w is the angular
velocity of the rotating SCD system around an origin M in
frame (I), and r [m] is the vector from the origin to a rotating
point.

For a first analysis, the consideration of all terms of the
above equation would make the analysis of endolymph move-
ment unnecessarily complex. Both Muller and Verhagen
(1988a, b) and Rabbitt et al. (1995) have circumvented the
terms in Eq. (2) they did not want to consider by rather dif-
ferent approaches.

Rabbitt et al. stimulated the SCDs in the toadfish
(Opsanus) mechanically with a glass indenter, thus causing
endolymph flow. This has two advantages: (a) All endolymph
accelerations (and thus forces) occur in frame (I). The two
other coordinate frames coincide with frame (I). (b) It is pos-
sible to obtain frequency response curves.
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Fig.2 The external impulse Iex in a duct part (s) stretching from L1 to
L2, due to rotation by a vector  in the origin M. This leads to Eq. (4)
as explained in the main text

Muller and Verhagen (1988a, b) initially rotated the SCD
system for a relatively long time (i.e. much longer than the
longest time constant 71, see below). At r= 0, they stopped
the rotation instantaneously, generating a so-called pseudo-
impulse stimulation. Yet, all frames of coordinates (I, II, III)
coincide. The only acceleration of Eq. (2) that remains is the
tangential acceleration r x %—‘;’, which is integrated over the
practically infinitely short period [t =0 — ¢, =0+ ¢] in
which the SCD system is stopped, so as to obtain an initial
endolymph velocity inside a semicircular duct section s:

%5(0) =@ xr [m/s] 3

The subscript “s” stands for “section”, i.e. a particular part
of the SCD system. This will be explained in more detail later
in this section and is also indicated in Fig. 2.

Following Van Egmond et al. (1949), all single-duct theo-
ries have expressed mechanical quantities in rotational units.
That is, angular displacement replaces linear displacement;
analogously for angular velocity and angular acceleration,
moment instead of force, moment of inertia instead of mass,
etc. As the three-dimensional SCD system is composed of
three mutually connected ducts, it contains two common
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parts, i.e. the crus commune c and the utriculus u (Fig. 1).
When, for example, an anticlockwise rotation of endolymph
fluid would be considered positive, a sign conflict for the
endolymph movement in these common parts would occur.
To understand this, let us consider Fig. 4A. When the fluid
circuits ABC and ACD would be separate, the fluid in circuit
ABC would flow from C to A. Analogously, in circuit ACD
the fluid would flow from A to C. However, in the combined
system, as drawn, the fluid direction in part CA (i.e. duct
¢) must be defined separately and independently of rotation.
The same rules hold for duct uin Fig. 1. So, a linear instead of
a rotational approach resolves the sign conflicts of Fig. 1B).

In this paper, endolymph movements are always consid-
ered with respect to the moving frame of coordinates of the
duct walls. With laminar flow and, hence, without turbulence,
the endolymph moves along the longitudinal axis of a duct,
and perpendicularly to its cross-sectional area. This makes
flow considerations effectively one-dimensional. The posi-
tive directions of endolymph velocities in different duct parts
are given in Fig. 1B. Negative directions are opposite. Given
the ducts, no other flow directions exist.

Secondary flow is not considered here but has been anal-
ysed in detail by Muller (1999).

Yet, it is useful to also define normal vectors n. With ref-
erence to Fig. 1, these vectors are unit vectors orthogonal to
cross-sectional areas and their direction coincides with the
velocity vectors described above. They have length 1 and are
dimensionless. They can be applied so as to convert other
vectors to scalars while keeping their sign intact. Details will
become self-explanatory as we go along.

The rotation of the SCD system in Fig. 1 induces in all its
5 parts an amount of motion or, better, momentum. We have
called these momentums the “external impulses”, abbrevi-
ated by Iex. Accordingly, the external impulse in a particular
duct part is the momentum exclusively due to the motion of
that duct part. In the equations below, a duct part, or section
s, is indicated by a(n extra) subscript “s”.

The external impulse Iex in a straight duct section s, i.e.
Isex is given by the following formula (Fig. 2)

Lex = mX,(0) = (pAsl)(wg x hy)(sign)g [kg m/s] (4)

(Muller and Verhagen 1988b) where m; is endolymph mass,
X;(0) is the initial velocity of an endolymph point, p is
endolymph density, A is the cross-sectional area of the sec-
tion, ; is the length of the section, wy is the component of the
rotation vector in the section, hg is the vector perpendicular
from the origin of rotation M to the straight duct section (if
the section would be circular as in the case of Eq. (23), hg
would be the radius vector r, as in Eq. (3)), and (sign) is the
sign of the impulse that has to be determined in dependence
upon the position of the rotating section to the origin M. This
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need not be explained here in detail as it can be found in
Muller and Verhagen (1988b).

In fact, Iex is arather novel quantity, rarely used in physics.
The real momentum (“internal impulse”) in a duct part is
determined by the external impulses of all labyrinth parts.
The momentum equations of the separate duct parts can be
mutually connected by considering the pressures in the points
of confluence of the ducts (i.e. pc and pa, respectively) which
leads to three momentum equations (cf. Eq. (5)).

An example of coupling of the external momentums L.,
in ducts p and c (see the corresponding first row in Eq. (5); *
stands for duct a, p, h, c or u) is

ne (L, —Tpex) /Ap = n o (Ic — Teex) /Ac
= (pc — pa) At [kg/(ms)] (4a)

where At is the very short time interval in which the SCD
system is stopped. n is the normal unit vector defined above
and ¢ denotes the dot product (scalar product). A, and Ac
are the cross-sectional areas of ducts p and c, respectively
(Fig. 1).

Yet, it is necessary to consider the continuity equations
of the system, i.e. the conservation of mass. There are three
points of confluence of the system, so it is sufficient to con-
sider two of them. This leads to two continuity equations
thus describing the distribution of the flow at the point of
confluence from one duct into the two other ducts. Together
with the three impulse equations described above, they can
be combined into the following 5 x 5 matrix equations for
the determination of the five initial velocities

0 my/ Ap 0 —me/ Ac 0 % ©)
0 0 my/ An 0 —my/ Ay Xp (0)
my[ Ay my[ Ap my/ Ap O 0 % (0)
A, 0 An 0 Au i (0)
—As A 0 Ac Ac 5 )

(Ipex/Ap - Icex/Ac)

(Ihex/Ah - 1uex/Au)

= (Iaex/Aa + Ipex/Ap + Ihex/Ah)

’ 5)
0

The former three lines are impulse equations [kg/(m s)],
and the latter two represent the equations of continuity [m>/s].
It is explained below, under Eq. (6), that the initial velocities
are the boundary conditions that are needed to activate the
equations of motion.

5 Equations of motion

Having stated above the geometry and the kinematics of the
SCD system, we now turn to its dynamics. We still consider a
SCD system that is initially turned for a long period of time,
and instantaneously stopped at t =0, as described earlier. The
endolymph flow is then determined by endolymph inertia
(first term of Eq. (6a)), the Poiseuille friction inside the fluid
(second term) and the elastic force that is exerted on the fluid
by the mechano-electrical transduction system (third term).

For a single duct circuit, the equation of motion (EoM) is
expressed by the following second-order differential equa-
tion (a force equation),

Mi+Fx+Sx=0 [N] (6a)

where M is the endolymph mass, F is the friction coefficient
and S is the elasticity coefficient of the mechano-electrical
transducer system

M = pAqly (6b)
F =8mnly [kg] and [kg/s] (6¢)

where g is duct length, Aq is the duct cross-sectional area
and 7 is the dynamic viscosity of endolymph.

We can solve the homogenous Eq. (6a) by specifying two
boundary conditions, e.g. the position x(0) at # = 0 and the
velocity x (0) att= 0. Activation of the homogenous equation
in this way frees us from defining unknown external forces
[in the right-hand side of (6a)]. Its solution, i.e. the position
x of an endolymph point, and its derivatives are sums of two
exponentials (e-powers). Each exponential is characterized
by a time constant that indicates the time needed to increase
or decrease from its initial to its final value.

The two time constants of this damped mass—spring sys-
tem can be derived directly from the EoM,

T,=F/S (6d)
T,=M/F [s] (6e)
From Egq. (6) it can easily be derived that

pAdld r2
T, = = (7)
8mrnlyg  8v

where r is the radius of the duct and v is the kinematic vis-
cosity of the endolymph (i.e. the ratio of dynamic viscosity
and density).

From t= 0 onwards, the endolymph starts to move
rapidly (following 7'») until a maximum excursion is reached
(after about t= 5T;). The maximal endolymph excursion is
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found by differentiation of the increasing exponential of the
endolymph displacement. One approximately obtains

Xmax ~ £(0)T> [m] (8)

After this maximal excursion, the endolymph returns
slowly to its original position (following 7'1).

The solution of (6a) and the determination of the quan-
tities (6b, 6¢, 6d, 6e), (7) and (8) have been reported by
Muller (1999), who is mainly using Laplace transforms.
Graphs of the endolymph displacement can be found in
the Muller (1999) paper. The solution of second-order dif-
ferential equations with constant coefficients is treated in
numerous elementary university textbooks.

For a human-like system, the following values hold
(Muller 1999):

Ty ~ 20 [s],
~ 10 [pm],

T, ~ 5—10 [ms],
v~ 107% [m?/s]

Xmax

[The author has borrowed the value of 71 from a variety of
older cupulometry references (listed in Muller 1999). A more
precise value of T'; is about 5 [s] for the SCD system alone,
which has been measured in the squirrel monkey (Fernandez
and Goldberg 1971). Nevertheless, in the present discussion,
only the order of magnitude of 7’1 is important]. For the SCD
system, the damping ratio ¢ is in the order of ¢ = 30, i.e. a
heavily overdamped system (explained in Sect. 8.3).

To conclude, for a step-like stimulus of a single duct SCD
system, as described above, the endolymph moves from its
resting position to a maximal position, following a time
course characterized by T,. This can be considered as the
measuring phase of this system. Next, the endolymph restores
very slowly to its resting position again, thus caused by the
elastic force that presses to the fluid. This restoring phase
that is characterized by T acts as a mechanical memory.

Analogously to the momentum Eq. (4a), the equations of
motion for the separate parts of the system can be combined
while taking advantage of the pressure differences between
the points of confluence. An example of the result is (Muller
and Verhagen 1988b):

(Mpip + Fpkp + Spxp) [ Ap = (Mcic + Feiie) [ Ac = (pc — pa)  [Pal

At the far right of this equation, we see pressures. So,
contrarily to Eq. (6a), Eq. (9) is a pressure equation. The
far left expression is the EoM in duct p (cf. Figure 1 and
Eq. (6a)), divided by the cross-sectional area A, of duct p.
The left-hand side of the equation thus specifies the pressure
difference between points C and A in Fig. 1. The middle part
of the above equation is the EoM in duct ¢ divided by the
cross-sectional area A. of duct c. In the latter duct, no elastic
part S exists.

@ Springer

Three second-order differential equations, similar to
Eq. (9), emerge for the three semicircular ducts a, p and
h and for the common parts ¢ and u (cf. Fig. 1). Together
with the continuity equations (see the two lower lines of
formula (5)), the whole system can be combined (analo-
gously to formula (5)), leading to a 3 x 3-matrix equation
a la (9) for the endolymph excursions x(#) in the three ducts
a, p and h, as explained by Muller and Verhagen (1988b:
Egs. (6.1.9)—(7.1.3)).

At this stage, we assume three equal elasticity constants
S of the three cupular systems in the three ampullae (Fig. 1).
This condition can be relaxed straightforwardly in the future.
However, information about S is rather scarce and also
extremely hard to obtain.

The solution of the system of differential equations as
specified above yields three equations for the endolymph
excursions in the three ducts a, p and h. These are each com-
posed of 6 terms (Muller and Verhagen 1988b),

6

Xg = Za,- exp(—t/Ti) (10a)
i=1
6

xp =Y biexp(—t/T) (10b)
i=1
6

xp =Y _ciexp(—t/T;) [m] (10c)
i=1

where a, b and ¢ are constants. The exponentials thus contain
three short time constants of type (6e) and three long time
constants of type (6d). It should be noticed that the flow
in each duct is influenced by all six time constants. This
considerably differs from the case of three independent ducts
where the flow in each individual duct is characterized by two
time constants, a short and a long one.

The determination of the 6 constants a, the 6 constants
b, the 6 constants ¢ and the 6 time constants T in Eq. (10)
requires the solution by means of an 18 x 18 matrix, which
is not explained here but treated in detail by Muller and Ver-
hagen (1988b: Eq. 7.1.3). Some important conclusions are:

(1) Because the canal radii are approximately equal, the
three short time constants are also approximately equal (see
Sect. 6 and Fig. 3).

(2) Two long time constants are approximately equal. The
third one has about half the value of the two other ones as
explained by Muller (1990).

6 Analytical solutions to the equations
of motion

The above analysis of a three-duct SCD system always needs
using a computer. It is, nevertheless, very helpful to attempt
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Fig.3 The function fy(y, X). The contour lines indicate the values of
this function for different  and A. Note that these values are close to
1. The dots are measurements for a variety of vertebrates after Muller
and Verhagen (2002a)

to simplify the system to obtain analytical solutions. The
following simplifying steps can be performed.

6.1 Simplifying step 1

A two-duct system is considered rather than a three-duct sys-
tem. Although a two-duct system cannot give the same results
as a three-duct one, a two-duct system keeps the essentials
of a three-duct one intact. It represents a three-dimensional
SCD system that has been rotated in space until t = 0. It also
keeps the essentials of a hydrodynamically coupled system
intact.

Because each duct contributes to the system with a second-
order differential equation, this rigorously simplifies the
system from a sixth-order one (three coupled ducts) to a
fourth-order one (two coupled ducts). If necessary, the results
of a two-duct SCD system can be checked against a numeri-
cal, computer-performed, calculation for a three-duct system.

6.2 Simplifying step 2: only the fast process is
considered

As stated already in Sect. 5, the fast process is the measuring
phase of the system, and so the most important one. This
simplification also eliminates the necessity to include the,
rather unknown, elastic properties of the mechano-electrical
transduction mechanisms. It is allowed as the fast and slow
time constants differ a factor 1000 or more, as often happens
in reality.

6.3 Simplifying step 3: only the maximal endolymph
excursions are considered

For a measuring instrument (think of a voltmeter), the final
results are most relevant (i.e. the volts to be measured). The

time course of the exponential functions is less or not even
at all interesting (i.e. you usually wait till the volts to be
measured are indicated).

6.4 Simplifying step 4: the two ducts have equal
lengths and radii

Measurements by Muller (1990, 1999) allow for this simpli-
fication. The length ratio of the ducts and the common part
and the ratio of radii are defined to be:

I

P (11a)
la

y=2= (11b)
rd

Simplifying the system in this way leads to rather manage-
able expressions. Itis even not necessary anymore to solve the
18 x 18 matrix for the endolymph excursions. To understand
the latter statements, the reader should consult the detailed
analysis in the original publications (Muller and Verhagen
2002a, b, c). The derivations require considerable algebra,
effort and space.

Muller and Verhagen (2002a) have shown that six quanti-
ties are now important.

(1) The fast time constants of the system.:

((AZ/ A*)M ] F. +2M.] F.)

) =1Tx

((42/ 42)M [ Fo+2m [ F)
2(.,2
y (y +2A)
ZZW =Tn fo(y,2) [s] (12)
M r2
I = T 5 [s] (13)

Note the similarity of Egs. (7) and (13).

The function fy as defined by (12) is shown in Fig. 3. It
can be observed that this function is close to 1 for all exper-
imentally known values of y and A, as defined by Eq. (11).
From Eq. (12), it then follows that the fast time constants are
approximately equal. This can also be shown for a three-duct
SCD system, as mentioned earlier.

(2) The initial endolymph excursions in ducts a and p:

. 1 Iaex(yz + MIpexA + Leex

0)=— 14
%(0) M[ s [m] (142)
. 1 | TaexA + Ipex(V2 +A) + Leex

0)=— 14b
xp(0) i [ 220 [m] (14b)
and their ratio

_nex;(0)  me[Tyexh +Tpex(y? + 1) — Leex ] 15)

T nex(0)  ne[Luex(y2+ 1)+ Ipexh + Loex]
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(3) The maximal endolymph excursions in ducts a and p:

Xamax = X2 (0) T2 f1(y, A) + %p(0) T2 f2(y, 1)
T T T — T
:)'ca(O)( 0+ 21>+).Cp(0)< 222 21) [(m]

2
(16a)
Xpmax = Xp(0)T22 f1(y, A) + X2 (0) T2z f2 (v, 1)
T T T — T
=5cp(0)< 2242- 21)+f€a(0)< 22 21> [m]

2
(16b)

Or written in terms of external impulses Iex:

N T [ne (Taex (¥* + 1) + Ipex + Leex ) m
amax = (J/4+2)\)
(16¢)
_ 12 _Il o (Iaex)L + Ipex (V4 + )\) - Icexyz)
Xpmax = 5 - (v +20) [m]
(16d)

and their ratio

_ Xpmax _ e [Iaex)h + IpeX(V4 + )‘) - Icexyz]

k = =
S Xa max ne [Iaex (J/4 + )h) + IpexA + Icexyz]
a7

As has already been explained in Sect. 4, the normal vec-
torsnin Egs. (15)—(17) are dimensionless unit vectors that are
used to create scalar products making all terms in the equa-
tions scalar. They are perpendicular to the cross-sectional
areas of the ducts. In this way, the directions of the endolymph
velocities are kept intact through the signs. Flow distributions
will be treated in the next section and are shown in Figs. 4,
5,6,7.

The above equations provide important features of the
flow regime and the morphology of the SCD system. This is
discussed in the next sections.

7 Some examples of flow distribution
in the two-duct SCD system

Equations (15) and (17) can be used to evaluate the flow dis-
tribution in the SCD system. Although they obviously govern
a two-duct system, they provide also useful ideas for a three-
duct one. If one surmises that the flow in a three-duct system
would considerably deviate from the flow in a two-duct one,
one could check this by a computer simulation, as described
in Sect. 5.

Several examples of interest are now going to be presented.

(1) Serial coupling (Fig. 4)

@ Springer

From Fig. 4a, it is known:

M=M;=Mp, Ipex =laex =1, leex =0 (18a,b,¢)
From Eq. (15) it then follows
ke =1 (18d)

The flow regime is shown in Fig. 4b. In the common duct
no flow exists. So, the anterior and posterior ducts are in
series. The same rules for the anterior and the horizontal
ducts when they are rotated in an analogous way. This fact
will not be mentioned anymore.

(2) Parallel coupling (Fig. 5)

M=M;=Mp, Ipex=—laex, Leex =0 (192, b, ©)
From (15) we obtain
ke = —1 (19d)

Figure 5 exhibits the corresponding flow regime.
(3) 90° coupling (Fig. 6)

M=M;,=M,, Lex=0 Ie&=0 (20a, b, ¢)
Yet Eq. (15) gives
A
ko = 7—=——= = f3(y, 1) (20d)
(r?+2)

For equal radii and the geometry shown in Fig. 4, it follows
(Fig. 6A)

x,(0) = 0.29 - x,(0)
Xp(0) ~ (1 — kg) - X2(0) = 0.71 - X, (0) (20e)

Equation (20e) nicely demonstrates that in duct p a flow
is generated, if rotation takes place exclusively in the plane
of duct a.

Figure 6B shows the flow for different values of y. In
Fig. 6BA, y is very small. Thus, the flow generated in
the horizontal duct (through rotation indicated by the inner
arrow) continues (almost) entirely through the vertical duct.
In Fig. 6BB, y is larger and a coupled-flow regime occurs, as
indicated in Fig. 6A. In Fig. 6BC, y is very large and hardly
any flow occurs in the vertical duct. The pressure difference

between the points of confluence of the ducts is much reduced
(shunted).
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(a) A B

amp. post.

(b)

"pitCh"

Fig. 4 Serial coupling of ducts. Abbreviations are the same as in Fig. 1. In AA, the bold ducts indicate the parts wherein external impulses are
generated. In AB, the resulting flow is shown. B gives a three-dimensional view of the flow. No flow exists in the common part

Fig.5 Parallel coupling of (a) (b)
ducts. Abbreviations are the
same as in Fig. 1. In A, the bold
ducts indicate the parts wherein
external impulses are generated.
In B, the flow is shown. Now, in
ducts a and p equal but opposite
flows occur. In duct c, these
flows are added
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Fig.6 Coupling of
perpendicular ducts.
Abbreviations are the same as in
Fig. 1. In A, the bold duct
indicates the part wherein an
external impulse is generated. In
B, the flow is shown. The
external impulse in duct a
generates a Poiseuille flow in
circuit ABC. This flow causes a
pressure difference between
points A and C. Consequently,
also flow occurs in circuit ACD
(ductp).InB, a
three-dimensional picture of the
flow is shown. Three situations
are considered: (A) for a very
narrow common part, (B) for a
common part which has the
same radius as the other parts,
(C) for a very wide common
part. In (A), almost the whole
fluid flows through the ducts and
hardly any flow is present in the
common part. In (C), the flow in
the vertical duct is much reduced

Fig.7 Coupling of ducts
positioned obliquely.
Abbreviations are the same as in
Fig. 1. In A, the bold ducts
indicate the parts wherein
external impulses are generated.
In B, the flow is shown. The
external impulse in a is now
counteracted by the external
impulse in p. This impulse is
unequal to the impulse in a and
has opposite sign causing the
flow in p to be zero. For the
given geometry, the angle
between the ducts is 73°
(diagram C)
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Fig. 8 Diagrammatic survey of fluid flow in glass models of two-duct
semicircular ducts. The flow in pitch rotation is shown by continuous
arrows, the flow in roll by broken arrows. Abbreviations are the same as
in Fig. 1. A: original model with equal ducts a and p. Reference planes
with rotations are shown. B: Enlargement of duct a, as in the angler fish

(4) 73° coupling (Fig. 7)

The question now arises under which condition no flow is
generated in duct p when rotation takes place exclusively in
the plane of duct a. We then find

M =M, =M, (21a, b, ¢)

Substitution of these conditions in (15) reveals:

new, w, cos (T — o)

=—fy, )= ——=-f3(y. )
new, Wa

= a = —arccos [— f3(y, 1)] (21d)

For a labyrinth similar to Fig. 4, this leads to an angle
between the ducts of 73°. An analogous computer simulation
of a three-duct system revealed exactly the same angle. This
once more shows that a two-duct approximation of a three-
duct system often gives surprisingly accurate results.

(5) Glass models

In order to discover interesting features of possible flow
in the SCD system that are difficult to study in a mathemati-
cal way, we have studied the flow in glass models of an odd

(Lophius). C: the same system as in A but points A and C reversed.
D: duct a enlarged, as in birds. E: the same system as in D but duct a
exaggeratedly enlarged. F: the same system as in D but part of duct a
has been cut off. In all cases, except F in roll, the flow in ducts a and p
is the same: after Muller and Verhagen (2002c)

shape in which the shape of ducts is exaggerated or other-
wise changed. This is allowed under certain conditions of
Reynolds numbers and observability of flows that are not
explained here (cf. Muller and Verhagen (2002c)). The flow
is visualized using polystyrene spheres within the fluid that
the glass ducts contain.

Figure 8 A shows the two-duct SCD system with reference
planes, as studied above. In Fig. 8B and D, E, one duct is
greatly enlarged, as, for example, present in the angler fish
(B, Lophius) and in birds (8D, and much exaggerated: 8E).
In Fig. 8C, the points of confluence of the duct with the crus
commune have been interchanged. In Fig. 8F, a bird-like
labyrinth is drawn in which the anterior part is lacking.

It is striking that, apart from diagram (8F), the flow in the
ducts is conserved, even in Fig. 8C.

This flow conservation implies that size and shape may
vary to alarge extent but the actual shape of the SCD system is
apparently determined by external factors, such as the shape
of skull and brain.
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Fig. 9 Normalized external impulse I,cx as a function of A for various
two-duct SCD systems of different geometries. For a rather small region
of A, the external impulses are maximal, which is only the case for
labyrinth shapes in which the connection between the ducts a and p
shows a dip. For smooth connections, no optimal value of A exists

(6) Optimal two-duct labyrinth shapes.

Determination of the external impulses (in a normalized
form) for a variety of shapes of a two-duct SCD system (e.g.
two combined polygonal shapes, or the combination of two
circular ducts and a common part) may lead to an optimal
value for A (Fig. 9). This is always achieved for a labyrinth
shape with a dip between the two ducts, as shown in Fig. lAA.
When a dip is lacking (Fig.1), no optimum for \ can be
found. This closely corresponds to the fact that in natural
systems nearly always a dip occurs. In turn, this suggests
that the shape of these natural systems has been more or less
optimized by evolution.

Figure 9 shows the normalized external impulse in duct a
of Fig. 1 as a function of \. A maximal value of this impulse
is obtained for about the same X for various labyrinth shapes.
Because of the length of the derivations (Muller and Verhagen
2002b), which includes a lot of necessary but uninteresting
algebra, the graph is presented without further comment.
(7) Optimal positioning of SCD systems in the head.

The equations (16) allow the evaluation of an optimal posi-
tioning of the vertical semicircular ducts in the animals’ head
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(i.e. the ducts a and p of Fig. 1). To achieve this, the anterior
duct is placed under a variable angle | with the midline. The
angle between the anterior and posterior ducts o may be cho-
sen as a fixed value of 90° (which simplifies the analysis) or
may be chosen freely in more general considerations.

Then

T —

2

n= (22)

for animals that move in the pitch direction. So, the ver-
tical ducts should always be positioned symmetrically and
obliquely with respect to the midline, and, to the author’s
knowledge, this indeed can be observed in all vertebrates.

To conclude, in Sects. 6 and 7 it has turned out to be
possible to derive analytical expressions for a simplified two-
duct SCD system. From these expressions, important insights
could be obtained concerning flow distribution at a variety
of rotations and geometries of the SCD system. Additional
insights have been obtained concerning optimal shapes of the
SCDs and about their optimal positions inside the animal’s
head.

In Sects. 8 and 9, three-dimensional labyrinths are no
longer considered. Instead, we focus on single-duct systems.

8 The SCD system as a transducer

So far, the main characteristics of a coupled SCD system
have been studied. In the present section, some features of the
mechano-electrical transduction system in the ampulla will
be addressed. It is therefore sufficient to consider a single-
duct SCD system. Figure 10 shows a schematic picture of
the ampullar system; after Muller (1994). Roughly, the sen-
sory epithelium is covered by a gelatinous cupula. The hair
bundles are composed of a single kinocilium of about 70 um
length and an array of stereovilli, the largest are about 20 pm
long. The kinocilia penetrate into small tubules of the cupula
over a length of about 10 pm. They are able to slide within
these tubuli. The kinocilia may undulate under the influence
of mechanical stimulation.

Between the sensory epithelium and the cupula, a nar-
row subcupular space exists in which endolymph flow is
possible. At its other side, the cupula is anchored into the
roof of the ampulla. Much debate has occurred about the
function of the cupula. Traditionally, the cupula has been
considered as a swinging or sliding structure that mediates
the endolymph flow in the ducts into a stimulus of the hair
bundles (cf. Muller 1994). In the seventies, Dohlman (e.g.
1980) has argued that the hair bundles were directly stim-
ulated by the endolymph flow that was forced through the
subcupular space. The cupula would then act as a protecting
structure against overload. This theory has been confirmed by
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Fig. 10 Diagrammatic drawing of the morphology of the mechano-
electrical transduction organ inside the ampulla; after Muller (1994).
The cupulais, atits distal end, anchored to the roof of the ampulla. It con-
sists of a mucopolysaccharide body in which longitudinally microtubuli
are running. It is embedded in a mass of less viscous mucopolysaccha-
ride which forms a continuous border for the endolymph with the walls
of utriculus and duct. The crista ampullaris epithelium contains hair
cells. Each cell bears a hair bundle which is enclosed in a veil-like tube
between the crista and the cupula (i.e. the subcupular space). A hair

experiments of Suzuki et al. (1984). Unfortunately, the above
discoveries have been largely neglected in current literature.
Since the author’s findings have supported Dohlman’s sub-
cupular space theory as well, it is adopted here.
(1) Optimization of sensitivity.

It is well known that the speed of a water jet flowing from
a tube can be enlarged by narrowing the tube opening. Obvi-
ously, further narrowing of this opening finally stops the flow.
Muller (1994) has shown that a comparable phenomenon
applies to the flow in the subcupular space. This implies that
the length and width of the subcupular space may be attuned
to an optimal value. To investigate this optimality, a model
has been made of a single duct circuit composed of a duct
part d, a utricular part u and a subcupular space part s with
different dimensions. Analogous to Eq. (5), the matrix for
the initial velocities is

md/Ad ms/As _mu/Au X4 (0)
—Ad — Ay 0 Xs (0)
0 As Au Xu (0)
(Idex/ Ag +Isex/As - Iuex/Au)
= 0
0 (23)

bundle consists of a single kinocilium inside containing a 9 + 2 struc-
ture of dynein filaments, and an array of a variable amount of stereovilli
each anchored with the cell body by an actin filament. The kinocilium
of a hair bundle partly penetrates in a microtubulus of the cupula. The
kinocilium may longitudinally slide inside the microtubulus. There is
also enough space for Brownian motion perpendicular to the bundle.
Mechanical stimuli may cause the kinocilium to undulate (Riisch and
Thurm 1990)

To simplify (23), we omit the utricular part. As shown by
Muller (1994), this condition can be relaxed subsequently.
What remains yet is a duct circuit composed of a single semi-
circular duct and a subcupular space (duct) in the ampulla.
Then, the initial velocity in the subcupular space can be
derived (Muller 1994) from (23),

1+§ﬂ
X;(0) = (w x r)TSAS (24a)
I+5 %

To focus on only relevant quantities, Eq. (24a) is normal-
ized to (indicated by a star)
%5 (0)" = %,(0)/ llw x ] (24b)
Similarly, the EoM may be solved to obtain the fast time

constant (77) and the maximal endolymph displacement
Xs.max (see Sect. 5). Yet, these quantities are normalized too.

Ty =(M/F)/(Aap/87n) =8mnT>/ Aq (240)
= IO 75 = 80/ Adllo x ) (240

A graphical representation of Egs. (24c) and (24d) is given
in Fig. 11A and of Eq. (24b) in Fig. 11B.

@ Springer



Biological Cybernetics

1.00

075

*
050 &

PRUN

025

xg (0

' 0-00

3-57
I/lg = 002
268
E 179
%
0-89
|
|
| ) 1 1
0-0 0:16 025 0-50 075 1-00
A Ay

Fig. 11 a Initial endolymph velocity x(0), fast time constant 7 and
(b maximal endolymph excursion Xmax = X(0) - T2. All quantities on
the ordinates are normalized. On the abscissa, the ratio of the cross-
sectional areas ﬁ—; of subcupular space (s) and duct (d) is shown. Each

line represents values for length ratios of (s) and (d) 1% The maxima

in diagram (b) indicate optimal values of %. The broken line indicates
the theoretical optimum that is appropriate to a SCD system. For further
explanation, see the main text; particularly, Eq. (24)

Measurements of Ramprashad et al. (1984) confirm the
optimal values of length- and cross-sectional area ratios
found by our subcupular space model, as indicated by the
broken line in Fig. 11.

The movability of the kinocilia and their distal embedding
in the cupula have led the author to a hypothesis which he has
not published until now. Possibly, the width of the subcupular
space might be controlled by rising and falling movements
of the cupula caused by combined undulating movements
of all kinocilia. This would imply a sensitivity control so
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as to, for example, protect the delicate mechano-electrical
transduction system. Obviously, this is a pure speculation,
which is open to future verification.
(2) Why using Laplace transform and related techniques?

In Sects. 5 and 6, integral transform techniques have been
used to solve differential equations that are the equations of
motion. In addition to frequency characteristics and other
electrical engineering wisdom, another important reason to
use Laplace and Fourier transforms exists in that one might
be interested in both the time-dependent and the frequency-
dependent behaviour of the SCD system. These issues will
be addressed in the following subsections.
(3) Contribution of the different parts of the EoM

In early studies, the SCD system has been considered as
an angular acceleration transducer (demonstrated by many
links in Google Scholar). Later (in the 50s), the applica-
tion of control theory has led to the view that it acts as an
angular velocity transducer (Mayne 1950). These theories
considered the SCD system as a rather separate unit, like an
independent module in the plug-in system of an electronic
apparatus. Obviously, the above different theories favour the
importance of the terms in Eq. (6a). The above features have
been discussed in detail by Muller (1990).

Basically, Eq. (6) describes the mechanical behaviour of
a damped mass—spring system. In control theory, it is con-
venient to study its behaviour under sinusoidal stimulation,
i.e. to construct frequency characteristics (gain against fre-
quency). Equation (6) is then written in the following time-
and Laplace-transformed standard forms [cf. Distefano et al.
(1967) and Thomson (1981)]
dy

d?y 2 2
ey + 2gwna +w,y = X, (25a)

and its Laplace transform

2
re) _ @n (25b)

H(s) = =
) X(s) sZ2+2cwns +w?

where ¢ is the damping ratio (a measure for the fading out
of the system) and wj, is the natural frequency of the system
while x is the input signal of the system (i.e. its excitation), y
is the output signal (i.e. its response). H(s)=Y(s)/X(s) is the
transfer function and s is the Laplace variable.

Figure 12 shows frequency characteristics (amplitude vs.
frequency) of these equations for values of £ = 0.2-5.0. This
wide range has been chosen to provide a general view of the
behaviour of a mass—spring system, which is also applica-
ble to a variety of biological mechanoreceptors. In Fig. 12A,
three different views of the same mass—spring system are
given. The left panel of Fig. 12A considers the output dis-
placement when accelerations are applied as input signal.
The middle panel gives an analogous consideration when the
input is a velocity signal. The right panel gives a view of the
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Fig. 12 Frequency characteristics of transfer functions (see Eq. 25b) of
a second-order system. Normalized frequency is on the abscissa, nor-
malized amplitude is on the ordinate. All graphs represent the very same
system. In the different graphs, only the consideration of this system is
different. In A, the system in undamped (¢ < 1). The left diagram rep-
resents an accelerometer. The middle diagram refers to a velocity meter.
This diagram is conveniently used in radio-engineering. The right dia-

system for displacements as input. It is important to notice
that for the three above considerations, the mass—spring sys-
tem is the very same. This means that no three different
sensors exist for acceleration, velocity and displacement.
Figure 12B is an extension of the velocity plot of Fig. 12A
(middle panel) for larger values of ¢. For ¢ = 5 (lowest
graph), separation of corner frequencies (i.e. the inverses of
the time constants), can be observed, forming a plateau-like
curve. The damping ratio of SCD system is about { = 30. So,
here the time constants differ a factor of about 1000, forming
a plateau with a much larger bandwidth. For a human-like
labyrinth, the corner frequencies are in the range of 1=
0.05 Hz and f>= 30 Hz (Muller 1999). The useful frequency
range is 0.5-5.0 Hz [that is, nobody can swing the head at

©p = Wp

o= o, (2 —\/I——ZEE)

gram stems from a seismometer. Here, w denotes an angular frequency,
wy is the natural frequency, and w; is the resonance frequency. Only
for the velocity meter are natural and resonance frequencies equal. In
B damped systems are considered. The SCD system is highly over-
damped (¢ & 30), i.e. much more damped than the lowest curves in A
(¢ = 1.0). For such systems, time constant separation occurs, which is
already visible in the lowest curve of B

the corner frequencies (Muller 1999]: Fig. 12. These values
concur with the time constants mentioned in Sect. 5.

Yang and Hullar (2007) have given a statistical analysis of
vestibular nerve afferents in mice. They reported a bandwidth
of about f1=0.1 Hz and f,= 10 Hz. Hullar and Minor (1999)
reported a bandwidth of 2-20 Hz for the chinchilla.

The above results show that the SCD system cannot be
separated into different modules. Instead, it is a single sen-
sor that simultaneously measures displacement, velocity and
acceleration. It does not matter at which neuronal level
integrations should occur. Contrary to the widely accepted
classical view that the SCD system acts as a velocity trans-
ducer that senses sinusoidal head rotations (e.g. Hullar and
Minor 1999; Mallery et al. 2010), strong arguments exist
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that its major function is not to measure sinusoidal move-
ments. Instead, measurements of step-like movements are
made [discussed in more detail by Muller (1990)], as can be
underpinned by observation of head movements of a great
many different vertebrate species, including man. In this
sense, the SCD system fulfils two functions. As already noted
previously, at a timescale of 75, itis a “measuring device”. At
a timescale of T'q, it is a “mechanical memory”. The widely
used term velocity storage is more applicable to the neuronal
processing of the mechanical output signal of the SCD sys-
tem. This is outside the scope of the present paper.

To conclude, the analysis in Sect. 8.1 strongly supports
the subcupular space theory. In short, the endolymph flow
presses directly to the cilia of the hair cells in the subcupu-
lar space. In turn, the cupula is moved by the cilia. This is
contrary to the classical and still widely adopted view that
the flow moves the cupula and the cilia of the hair cells are
moved by the cupula.

In Sects. 8.2 and 8.3, it has been argued that the SCD
system does not act as a transducer sensing the velocities of
sinusoidal movements. Instead, evidence has been presented
that it can be considered as a transducer that senses, in a
rather complex way, simultaneously accelerations, velocities
and displacements resulting from sudden, step-like, head
movements. The above conclusion is applicable only to
the hydrodynamic behaviour of the system of semicircular
ducts. Neuronal processing leading to body movements is
not considered as it is beyond the scope of this paper.

9 Brownian motion and hair cell design
and sensitivity

Brownian motion is the phenomenon of irregular movements
of tiny particles in water (or another fluid) due to bombard-
ments of water-molecule clusters. Robert Brown discovered
itin 1827 while studying cell organelles in plants and observ-
ing the movements of these organelles under a microscope.
Finally, Einstein (1907) physically explained Brownian
motion: see below. In the next section, Brownian motion of
hair bundles of mechanoreceptor cells will be discussed.

The physical properties of the hair cells of the SCD sys-
tem are remarkably different from those of the hair cells of
other octavo-lateralis hair cell receptors. Generally, the hair
bundles of the cristae are about 70 wm long. This is about
10 times the length of bundles of other hair cell receptors.
The peak excursions of the hair bundles of SCD cells are in
an order of magnitude of several micrometres (Rabbitt et al.
1995). These excursions are about 500 times larger than the
nanometre excursions of other bundles.

The frequencies relevant to SCD receptors range from ca.
0.05 Hz to several tens of Hz, although there is little evi-
dence that the very low frequencies (below a frequency of
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ca. 0.2 Hz; cf. Figure 12) are biologically relevant. To com-
pare, in whales the frequency domain of auditory and lateral
line receptors ranges from ca. 10 Hz to 150 kHz. Thus, two
rather distinct groups of hair cells exist: slow and insensitive
ones and fast and sensitive ones. Muller et al. (2016) have
shown that this serves to avoid Brownian motion overload in
the low-frequency regime. Here, Riisch and Thurm (1990)
have reported a r.m.s. Brownian motion noise amplitude of
70 nm. This is an unusually large value. Such a noise would
mask the adequate signals of fast hair cell receptors, if they
would operate in this regime. The maximal tip excursions of
ampullar hair bundles are about a factor 100 larger than the
ones of Brownian motion, so that here the contribution of
noise is unimportant.

To achieve and underpin the above results, an ampullar
hair bundle has been modelled as a stiff rod that is, at its
base, elastically connected to the cell body. For the analysis
of Brownian motion, it is convenient to start with a power
equation, as derived by Muller et al. (2016) from Reif (1965):

Th+A=4Dt [m?] (26a)
where
kgT T.
a=x2 D=8 Y _ ¢ (26b, ¢, d)
y 2k 2

The quantity x [m] is the tip excursion of the hair bundle.
The quantity A [m?] is not literally the power but is a measure
for it. D [m?/s] is the diffusion constant, kg is Boltzmann’s
constant [J/°K], T is the absolute temperature [°K], y [kg/s]
is the coefficient of friction for a prolate rod and « [N/m] is
the spring constant of the elastic part at the base of the rod.
T. and t [s] are time constants.

The asymptotic solution to Eq. (26) is shown in Eq. (27).
This equation represents the Brownian motion’s amplitude
spectrum X*(f),

1 kgT
X*(JC):ﬂi\f2 BT
1A v +B S S [m]
TR+ 1 VAT + 1

27

where A, B, a and b are constants, chosen in the calculation
to approximate a square-root expression by the sum of two
exponentials, (A + B = 1). The details of the above calcula-
tions can be found in Muller et al. (2016).

Equation (27) looks graphically like a somewhat deformed
low-pass filter function: see Fig. 13. It reveals that for f = 0
the low-frequency plateau of (27) is at

SN

X*(0) = —
O =5\~

(28)
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Fig. 13 Three-dimensional frequency characteristic of Brownian
motion noise of a SCD hair bundle. All axes are logarithmic. The lines
at the bottom of the cube are projections of the three-dimensional plot.
The r.m.s. values of BM noise (in [nm]) are given in the panels. For
further explanation, see the main text; particularly, Eq. (27)

A chosen value of the low-frequency plateau (e.g. the
70 nm reported by Riisch and Thurm (1990)) enables the
calculation of the elasticity constant « of a hair bundle.

The famous equation of Einstein (1907) for the mean dif-
fusion of a particle

X =+/4Dt [m] (29)

provides a clue to the value of the low-frequency plateau in
Eq. (28). In the frequency domain, formula (29) becomes
[derivation analogous to Eq. (27)]

1 D
X*(f)=fX(f)=§‘/ﬁ [m] (30)

For low frequencies (applicable to an ampullary hair bun-
dle), this formula yields a r.m.s. particle displacement of
about 70 nm. This surprisingly well agrees with the choice
of 70 nm in Eq. (28) mentioned above.

To conclude, starting from thermal agitation of water
molecules (endolymph), via hair bundle size, sensitivity and
frequency response, an explanation is given for the exis-
tence of the macroscopic guiding structures for endolymph
flow that originates from the semicircular ducts. It has been
revealed too that two types of hair cells exist, viz. slow and
insensitive ones vs. fast and sensitive ones

10 Size limitations

We will now explore to what extent the physical properties
of the SCD system are limiting its size. For this purpose,
the simplest approach is to consider a single duct system. It

will turn out that considering a system of more ducts is not
necessary.

The largest labyrinth is found in the whale shark (Rhin-
codon). This is a very large shark, which can reach a length
of about 18 m. The size of its SCD system, containing a large
mass of endolymph, makes its response speed very low (73 is
about 150 [ms], cf. Figure 14A). This would not impose a big
problem in whales and giant sharks as their turning speeds
are also very low (compare them with a supertanker). SCD
size is probably limited too by secondary flow in the plane
of the cross-sectional area of the ducts, i.e. perpendicularly
to the main flow (Muller 1999).

The labyrinths of whales are generally considered to be
very small but this applies to their relative size (because
whales are very large). Their absolute size is comparable
to labyrinths of other mammals, including humans (e.g.
Kandel and Hullar 2010; Spoor et al. 2002; Muller 1999).
Figure 14 presents an overview of measurements of SCD
parameters of a variety of vertebrates in which the above
values can be verified.

The smallest labyrinth can be found in larvae of fish and
some amphibians. These SCD systems contain an extremely
small quantity of endolymph fluid (nanolitres). Hence, their
sensitivity will also be extremely small (Fig. 14B). Brownian
motion noise (Sect. 9) is probably another limiting factor
(Muller 1999).

(1) The basis of limitations

The main functional quantities of a rotation receptor
formed by a circular single-duct circuit are response speed,
sensitivity and undisturbed Poiseuille flow. Two morpholog-
ical parameters are characteristic for such a circuit, viz. the
circuit radius R and the radius of the canal cross section r.

The fast time constant (7'2) can be considered as a measure
of the response speed, whereas the maximum endolymph dis-
placement (xpax) is @ measure of the sensitivity, see Sect. 5.
The (angular) Reynolds number (Re) indicates the extent
of laminar Poiseuille flow: for details regarding the angu-
lar Reynolds number one may consult, for instance Childs
(2011). For Re large enough, the rotational flow becomes
turbulent (Childs 2011; Muller 1999). This leads to the fol-
lowing equations (Fig. 14).

2
T, = —, seeEq. (7) (3la)
8v
. }”2
Ymax = [X(0)[| T2 = |lo x R]| roting R
8V Xmax
= 2 see Eq. (8) (31b)
IXO)Ir  llo x R|r v Re
Re = = = R=——, (3lc)
v v w r

from the definition of Re; see above.
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Fig. 14 Response speed (A), sensitivity (B) and conditions for undis- circuit radius (R) and the radius of the duct cross section (). Note log-
turbed endolymph flow (C) impose demands and limitations for SCD arithmic axes. In the plots, measurements of (R) and () are given. The
construction. Characteristics for these quantities are the fast time con- experimentally measured radii are plotted for the mean of the three semi-

stant T, the maximal endolymph displacement xp,.x and the angular circular ducts. For further explanation, see the main text; particularly
Reynolds number Re. These quantities are plotted as functions of the Eq. 31)

Figure 14 shows these relationships as functions of r and ~ demonstrating the approximate size range existing in verte-

R with isolines for xpax and Re. In these graphs, size mea- brates (Muller 1999).
surements of a variety of SCD systems have been plotted Generally, fishes, and particularly sharks, have very large
labyrinths. These observations correspond closely to the the-
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Fig. 15 Plot of the circuit radius R as a function of the animal’s mass
m, showing allometry. The three bold regions denote values for pike
(Esox), a small mammal (Phascologale) and man (Homo). For further
explanation, see the main text; particularly, Eq. (32)

oretical limits imposed by Eq. (31) as has been explained in
the above introductory paragraphs of Sect. 10. An extensive
discussion can be found in Muller (1999).

(2) Allometric relationships

Why do fishes have considerably larger labyrinths than
other vertebrates? To find an answer for this question,
the study of allometric relationships may be helpful. Mea-
surements of SCD sizes and measurements of masses of
the corresponding animals lead to the following empirical
expressions (Muller 1999):

For mammals : R = 1.7644 m%1157 (32a)

Forfishes : R = 4.5487 m"#% (32b)

Figure 15 shows these relationships (32) graphically. The
bold lines indicate the mass ranges during lifetime of some
animals. A pike (Esox) grows from an about free swimming
larva with a mass of 13 [mg] to an adult weighing 35 [kg]
(a popular but perhaps rather exaggerated angler dream), so
that it increases by about 7 decades in mass. For mammals,
mass increase during active life is about 1 decade. This is a
dramatic difference. That is to say, when man would follow
the allometric line of a pike, it would have a much larger
labyrinth than the pike.

A freely swimming pike larva is a predator. To sense
rotations during swimming, it should possess a functional
labyrinth. Its circuit radius (R) is then about 0.2 [mm]. Mass
increase along its allometric line implies that the circuit

radius of the adult is about 15 [mm] which is a very large
value compared to mammals.

Why are these allometric lines so different? Muller (1999)
argued that this is a consequence of brain size and available
room inside the skull. Shortly, fishes have small brains. In
their neurocranium, there is plenty of room for a labyrinth.
One can imagine that in these animals there has been a
tendency to evolve large, maximally sensitive labyrinths.
Mammals and birds possess large brains, almost completely
filling their braincase and therefore leaving limited room for
other organs. So, this should impose an evolutionary con-
straint.

In the above section, it has been shown that response
speed, sensitivity and undisturbed flow are important func-
tional demands to an SCD system. These quantities could be
evaluated by plotting data of circuit and duct radius against
each other giving clues to size limitations, i.e. limitations
of the smallest and the largest possible SCD systems. An
evolutionary interpretation of the very large difference in
allometric relationships between fishes and tetrapods has
been proposed.

11 Evolution

We have now already gradually arrived at evolutionary
aspects. In this final section, we will focus a bit more on
biology and a short overview of SCD evolution will be given,
starting from simple hair cells to different designs of SCD
systems.

In ascidians (Urochordata), at the entrance of the oral
siphon, so-called coronary organs have been found (Caicci
et al. 2007). They contain hair cells that show a remark-
able similarity to octavo-lateralis hair cells of vertebrates.
They function in sensing water and particle flow. The above
authors argued that these cells are the best candidates for
the fast and sensitive type hair cells mentioned in Sect. 9.
The slow and insensitive cells should then have been evolved
from these fast and sensitive ones. The non-vertebrate chor-
dates do not possess labyrinth organs. They possess various
types of hair cell mechanoreceptors at different places on
their body but the coronary organs resemble neuromasts and
lateral line cells of vertebrates most closely. Labyrinth organs
are vertebrate structures. In ontogeny, the labyrinth develops
from an otic placode which invaginates into a vesicle. So,
it is from epidermal origin, which demonstrates its relation-
ship with hair cell mechanoreceptors (e.g. neuromasts) of the
skin. The above evolutionary information is extremely rel-
evant and supportive of the discussion of Brownian motion
addressed in Sect. 9.

In Agnatha, the hagfish (Myxine) possesses a labyrinth of
a highly aberrant form (Jgrgensen et al. 1998) which is not
further discussed here. It has been thought a long time that
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Fig. 16 Possible scenarios for
labyrinth evolution. Evidence
has been found that the original
design of the SCD system was
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and Muller (2000)
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(limitation of input-rotation)
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other Agnatha possess two semicircular ducts. Muller (2000)
argued that this cannot be the case because Lowenstein and
Thornhill (1970) recorded nerve signals as a response to hor-
izontal rotation. Muller (2000) proposed a horizontal flow
circuit in the labyrinth of Agnatha and argued that a three-
duct SCD system is the basic design, and not a two-duct one.
This probably has been present already in the earliest known
vertebrates (e.g. Ostracodermi). In 2014, a horizontal duct
was discovered in a lamprey (Petromyzon) which has been
overlooked for more than a century (Maklad et al. 2014).

In sharks and rays (Elasmobranchii), the posterior duct
has become rather separate, although a connection of vari-
able size with the rest of the SCD system exists. In some of

@ Springer

these animals, a sensor with a separate nerve has been found.
The function of this organ is still unknown. The anterior and
posterior ducts are hydrodynamically coupled, as described
in Sect. 4. The rabbit fish (Chimaera) is the only elasmo-
branch that possesses a SCD system of conventional design
(Fig. 1) possibly reflecting the primitive situation.

The SCD system in other vertebrates is composed of three
hydrodynamically coupled ducts, as described in Sect. 3,
although in some species (i.e. dolphins and whales) the ducts
are much reduced in size and some ducts are even closed.
Spoor et al. (2002) obtained evidence that this provides pro-
tection against overstimulation of the SCD system in these
acrobatic and three-dimensionally moving animals.
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Figure 16 presents an overview of possible semicircular
ductevolution. In the authors view, the basic design is an SCD
system composed of three ducts. Other shapes of the SCDs
found in different vertebrates are possibly derived from this
three-duct system.

12 General conclusions

The present review demonstrates that it is highly fruitful to
combine biological features with physical laws and mathe-
matical analysis. Let us focus on a summary of what we have
seen.

The analysis of a three-dimensional SCD system with
mutually connected ducts was new at the time of its pub-
lication (1988). The analytical approach of a two-duct SCD
system allowed quantitative determinations of flow distribu-
tions at different rotations and about the influence of duct
positions and sizes on it. In the evolution section, it was
argued that a three-duct SCD system is the basic design and
that other constructions in evolution are derived from this
design.

In Sect. 7.6, it was found that an optimal SCD system
always shows a dip between the vertical ducts.

In Sect. 7.7, optimal SCD constructions and the position-
ing of the SCDs in the animal’s head have been evaluated.

The results obtained in Sect. 8.1 strongly support the sub-
cupular space theory in which endolymph flow directly moves
the cilia of the hair cells, and in turn the cilia move the
cupula.

Viewing the analysis of the SCD system as a transducer
led us to new insight into its function so that we could reject
the concept that it acts as a pure velocity transducer.

The study of Brownian motion reveals that two types of
hair cells exist, viz. slow and insensitive ones and fast and
sensitive ones. The first type is found in the ampullae of the
SCDs and, to a lesser extent, in the otolith organs, whereas
the second type is found in the auditory organ and the lateral
line. In the evolution section, it has been argued that the
insensitive type has evolved from the sensitive one.

Finally, allometric relationships and size limitations have
been considered based on measurements of the SCDs
together with their underlying physical requirements. The
conspicuous size difference between fish and tetrapod SCD
systems as has been hypothesized, i.e. this possibly was deter-
mined in evolution by brain size in relation to the available
room in the skull.
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