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Abstract 

In this PhD dissertation, the direct measurements of precipitation from different sources are 

integrated with the indirect estimates of precipitation at the major glacier zones to appraise 

spatial and altitudinal distribution of precipitation in the high-altitude Indus basin. These 

data are further adjusted for measurement errors and high-quality reference data of spatially 

distributed precipitation is developed to reconcile precipitation distribution. The reference 

data of temperature are developed using elevation and latitude dependent regression 

models. Performance of 27 widely used gridded precipitation products is evaluated at sub-

regional scale. The best performing product is bias-corrected using the reference data of 

precipitation and temperature. Similarly, precipitation estimates of 75 GCM outputs are 

evaluated and two best performing GCMs representing warm-wet and cold-dry extremes 

under three RCPs (2.6, 4.5 & 8.5) are bias-corrected. The historical and future datasets 

developed therein are analysed to detect climate change and variability at sub-regional 

scale. A fully-distributed physically-based energy-balance Variable Infiltration Capacity 

(VIC) hydrological model is forced with these datasets to simulate the hydrologic regime of 

the study area at sub-basin scale. River inflows are analysed for change and variability in 

water availability, shifts in seasonality and annual cycle of river water, and changes in 

future hydrological extremes at Kabul-Nowshera, Indus-Tarbela, Jhelum-Mangla and 

Chenab-Marala rim stations. 

The results indicated an increase of 0.6 oC in the median annual air temperature and 11.9% 

decline in median annual precipitation during the last 40 years. The corresponding changes 

in river inflows remained highly variable but consistently declined. Indus-Tarbela, Jhelum-

Mangla, Chenab-Marala and Kabul-Nowshera rivers inflows experienced 4.9%, 19.6%, 

11.9% and 4.5% decline respectively. Future projections however show gradual increase in 

temperature but highly variable precipitation indicating increasing trends in Karakoram and 

parts of Kharmong and W-Hindukush regions and declining trends in the remaining areas. 

Future river inflows are likely to increase between 17.0-73.6% at Indus-Tarbela river gauge 

under wet-warm scenarios and between 1.2-9.7% under cold-dry scenarios, while river 

inflows at the remaining three rim stations show increases for wet-warm and decreases for 

cold-dry scenarios. Most of the ensembles show increasing high flows and decreasing low 

flows at all gauging stations implying intensification of future hydrological extremes of 

floods and droughts. The contrasting climate change and hydrological signals across the 

river basin require important modifications in the strategies and action plans for river basin 

management.  
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Chapter 1 

Introduction 

1.1 Background and Problem Statement  

Water is essential for life, sustainable ecosystem services and continuous socio-economic 

developments. It forms a relationship based on the complexities of both the hydrologic 

cycle and the interdependencies of life on Earth (Eckstein, 2010). However, freshwater is 

finite and more often a shared resource. It is also unevenly distributed in space and time. 

The Hindukush Karakoram Himalayan (HKH) mountain region and adjoining ranges of 

Pamirs and Tibetan Plateau (TP) hold the world's largest repositories of snow and ice mass 

outside the Polar Regions (Qiu, 2008; UNESCO-SCOPE-UNEP, 2011). Precipitation and 

snow/glacier-melt in these areas are the important sources of freshwater supplies for the 

downstream areas. The IPCC through its third assessment report (Lal et al., 2001) issued 

the wakeup call stating that the average annual runoff in the Indus river would decline by 

27% by the year 2050 due mainly to glacier retreat. Even greater thrill was moulded when 

the IPCC in its fourth assessment report (Cruz et al., 2007) reported lack of data to support 

accurate assessments for the HKH region but declared that “glaciers in Himalayas are 

receding faster than in any other part of the world and, if the present rate continues, the 

likelihood of their disappearing by the year 2035 is very high”. Later, this unrealistic 

statement was traced back to an inaccurate citation of the grey literature and the IPCC 

withdrew its original statement but stayed with the broader conclusion of the report. 

Nevertheless, the controversy that ensued over the statement highlighted how little was 

known about the HKH region (Singh et al., 2011) and paved the way for increased and 

concerted research efforts to study hydrometeorology of this highly underexplored region. 

However, majority of the subsequent research is mainly focused on improved methods 

using more or less the same commonly available datasets that use low-altitude, 

directionally biased and largely unrepresentative observations in their development or 

validation. This PhD research study however recognized the vital nature of the issue and 

put more emphasis on the development of improved precipitation and temperature datasets 

to facilitate accurate analysis of climate change and water balance studies in the high-

altitude Indus basin.   

The Indus river system (IRS) had been the lifeline for the Indus valley civilization since 

time immemorial and currently sustains livelihoods of over 300 million inhabitants. Yet, 

there is limited understanding of quantitative and spatiotemporal distribution of the key 

climatic variables (Immerzeel et al., 2015; Mishra, 2015; Ragettli and Pellicciotti, 2012; 

Hewitt, 2005; Winiger et al., 2005) leading to a large uncertainty in the hydro-climatic 

predictability in the basin (Lutz et al., 2016a). The greatest uncertainties are associated with 

very high variability in seasonality, magnitude, coverage, and altitudinal distribution of 

precipitation in the high-altitude Indus basin. Generally, scarcity and biased distribution of 

observed data at the higher altitudes (Fowler and Archer, 2006) and measurement errors in 

precipitation observations (Kochendorfer et al., 2017a; Wolff et al., 2015; Adam and 

Lettenmaier, 2003) are the primary causes of such uncertainties. Hence, there are 

significant errors in the current estimation of basin and sub-basin scale precipitation as 

most of the meteorological stations are located at elevations lower than 2500 m, whereas 
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about 74% of the study domain lies above this elevation range. Accurate assessment of 

precipitation is essential as relatively small errors in precipitation estimates may translate 

into considerable changes in surface runoff estimates and associated water allocations. 

However, precipitation estimates by earlier studies (e.g. Krakauer et al., 2019; Ullah et al., 

2019; Ahmed et al., 2019; Khan et al., 2018; Iqbal et al., 2018; Anjum et al., 2018; 

Ghulami et al., 2017; Hussain et al., 2017; Immerzeel et al., 2015; CWC and NRSC, 2014; 

Ali et al., 2012; Bocchiala et al., 2011) are highly contrasting but consistent in 

underestimating precipitation in most parts of the high-altitude Indus basin. The 

global/regional scale gridded precipitation products also tend to show highly variable 

estimates for the Indus basin (Baudouin et al., 2020; Palazzi et al., 2013). The gridded 

precipitation products often fail to capture the strong gradients and large and abrupt 

changes in precipitation over short distances due to their coarser resolution and pronounced 

orographic effects in the high mountain areas (Reggiani and Rientjes, 2015; Immerzeel 

et al., 2015) 

Similarly, there are significant paradoxes on the reported behaviour of snow/glacier cover 

in the HKH region. Many of the global/regional studies (e.g. Pritchard, 2019; Kraaijenbrink 

et al., 2017; ICIMOD, 2009; Immerzeel et al., 2009; WNEP & WGMS, 2008; Zemp et al., 

2008; Cruz et al., 2007; WWF, 2005; Lal et al., 2001) indicated glacier retreat in HKH 

region while other (e.g. Farinotti et al., 2020; Tahir et al., 2011; Armstrong, 2010; Fowler 

and Archer, 2006; Hewitt, 2005) reveal expansion or immobility of HKH snow/glacier 

cover. The main reasons behind such contrasting claims and results are: lack of data and 

insufficient in-situ measurements to support accurate assessments, use of non-

representative climate data, projecting the results of a small-scale study over the entire 

basin or one region to another, errors in up-scaling and/or down-scaling of results, and 

neglecting the impacts of debris cover and land use change. However, it is important not to 

generalize climate and glacier changes across the HKH region (ICIMOD, 2011). In fact, 

variable retreat rates (Scherler et al., 2011; Armstrong, 2010; Raina, 2009; Hewitt, 2005; 

Young and Hewitt, 1993), presence of debris cover (Kraaijenbrink et al., 2017; Scherler 

et al., 2011; Young and Hewitt, 1993), paucity of glacial mass-balance data (UNEP & 

WGMS, 2008) and influence of multiple weather systems interacting with high orography 

make it difficult to develop a coherent picture of climate change impacts in the HKH region 

(Scherler et al., 2011). Armstrong (2010) noticed that glaciers at elevations greater than 

4000 m have not responded to the recent climate warming in the same way as the glaciers 

at lower elevations, simply because the glaciers at higher elevations remain below freezing 

during most of the year. This is particularly true for the Indus basin glaciers where over 

80% of the ice cover is concentrated between 4000 and 5500 m elevation (Hewitt, 2011) 

and 50% of the area has elevation greater than 4000 m. 

Assessing climate change and associated hydrological implications require high-quality and 

long-term data of important climatic variables. However, the data quality issues are often 

inadequately addressed that contribute to uncertainty in the results of hydrometeorological 

studies. Therefore, the basin and sub-basin scale changes in the observed and future climate 

estimated by the previous studies (e.g. Hasson et al., 2019 & 2017; Bokhari et al., 2018; 

Bashir et al., 2017; Lutz et al., 2016a; Ali et al., 2015; Khan et al., 2015) are highly variable 

due to  use of inconsistent and uncertain datasets and a large spread in the outcomes of 

global climate models (Lutz et al., 2016b; Palazzi et al., 2014). Similarly, the consequential 

river inflows also show high variability, which may partly be attributed to use of different 

hydrological models. Indus is predominantly a snow/glacier-fed river basin, therefore the 

simple degree-day or temperature-index based hydrological models often inadequately 
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represent the prevailing energy balance, which is the key driving force for melting of 

seasonal snow and perennial glaciers in the snow/glacier-fed systems. Several hydrological 

models are currently under use to assess hydrological implications of climate change. The 

choice of hydrological model is often based on the model structure to represent the complex 

natural system, model performance under site-specific conditions, data availability and 

requirements, and study objectives (Kay et al., 2009). A substantial portion of uncertainty 

often stems from the use of suboptimal input parameters (Ragettli et al., 2013; Kay et al., 

2009). Therefore, this PhD research study has been undertaken to reduce the uncertainties 

associated with climatic variables and hydrological modeling for better assessment of the 

current and future hydrometeorological regime of the high-altitude Indus basin. 

1.2 Climate and Hydrological Regime of the High-Altitude Indus Basin 

The Indus river originates in the high-mountain ranges of Tibetan Plateau (TP) and HKH 

region with a drainage area of about 112 million hectares in four counties (8% in China, 

39% in India, 6% in Afghanistan and 47% in Pakistan). This research study is undertaken 

in the high-altitude watersheds of the Indus river encompassed by its six major tributaries 

(i.e. Indus river at Tarbela dam, Kabul river at Nowshera, Jhelum river at Mangla dam, 

Chenab river at Marala, Ravi river at Thein dam, Beas river at Pong dam, and Sutlej river at 

Bhakra dam), stretched over an area of 40.3 million hectares (Figure 1.1). 

 

Figure 1.1: Geographic location of the Study area showing river networks and watersheds of Indus 

river and it six major tributaries.  

The extensive Eurasian continent and the Indian and Pacific oceans play an important role 

in atmospheric circulation and monsoon formation of the world's largest and most powerful 

monsoon system in South Asia (Saha, 2010). The climate of the high-altitude Indus basin is 

complex and significantly influenced by the intricate interplay between synoptic-scale 

atmospheric circulations and valley-scale topography–atmosphere interaction resulting in 

orographic precipitation and funnelling of air movement (Barros et al., 2004; Hewitt, 2013). 

The synoptic-scale climate and precipitation are largely modulated by the Indian summer 

monsoon and the westerly systems (Pang et al., 2014; Yao et al., 2012; Ding and Chan, 

2005; Wang and Lin, 2002) (Figure 1.2). The Indian summer monsoon advects moisture 

through several trajectories originating from the Bay of Bengal, Indian Ocean and Arabian 
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Sea due to the differential heating between land and sea (Pang et al., 2014; Bolch et al., 

2012; Yao et al., 2012; Bohner, 2006; Hodges, 2006). It causes heavy rainfall in south-

eastern areas during June-September and moves north-westward along the Himalayan Arc 

with decreasing strength. The westerly systems transport large masses of moist air from the 

Caspian, Black & Mediterranean seas and North Atlantic Ocean throughout the year and 

are the dominant source of precipitation in the Hindukush, Karakoram and to a lesser extent 

in the W-Himalayan regions during December-April months (Filippi et al., 2014; Pal et al., 

2014; Mayer et al., 2014; Bohner, 2006; Treydte et al., 2006; Syed et al., 2006). The winter 

westerlies usually bifurcate into the northern, central and southern branches around the 

Karakoram and western TP regions due to topographic blocking (Pang et al., 2014). 

Wintertime precipitation in the HKH region is mainly related to water vapour transport by 

the southern and to a lesser extent by the central branch of westerly systems (Yihui and 

Zunya, 2008; Wei and Gasse, 1999). Seldom, relatively weak storms of East-Asian summer 

monsoon also enter into the Ladakh region from the eastern end (Ding and Chan, 2005; 

Wang and Lin, 2002). Moreover, significant amount of moisture in the air is added to the 

atmosphere by evapotranspiration from the vast irrigated plains and forestlands (de Kok 

et al., 2018; Harding et al., 2013; Wie et al., 2013; Tuinenburg et al., 2012). Heavy 

precipitation events are often encountered whenever these systems coincide and interact 

with each other (Zaidi, 2014; SUPARCO and FAO, 2010; WMO, 2010). 

Figure 1.2: Geographic map of the Study area showing trajectories of major circulation systems. Blue 

arrows indicate the trajectories of winter westerlies, red arrows represent Indian summer monsoon 

trajectories and yellow line arrows show East-Asian monsoon trajectories. Map source: google earth. 

The Indus river system (IRS) is the largest source of freshwater supply (153 BCM year-1) in 

Pakistan and plays a crucial role in water, energy and food security of the region. The 

hydrological regime of the IRS is largely modulated by monsoon precipitation, winter 

snowfall and subsequent melting of snow and glacial ice mass accumulated in the high-

mountains. Generally, a glacial regime at very high altitudes where flow occurs due to 

melting of perennial snow and glaciers during late summer, a nival regime at mid altitudes 

where flow is largely dependent on the melting of seasonal snow accumulated during the 

preceding winter and spring seasons, and a pluvial regime dependent on runoff from 
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concurrent rainfall mainly during the monsoon season are the characteristic river flow 

regimes of the high-altitude Indus basin (Hasson et al., 2019; NESPAK-AHT-DELTARES, 

2015; Archer et al., 2010). About 59 % of the total precipitation in the study domain is 

received during Oct-Apr months, majority of which falls in the form of snow. As a result, 

large repositories of glacial ice mass have been deposited over the centuries in these high-

mountain ranges. Around 50 % of the basin area can be covered with snow during winter 

months. However, most of it melts during the subsequent summer season leaving only 

about 10% of the basin area covered with perennial snow or glaciers by the end of August 

(Tahir, 2011). Conversely, about 84% of the river flows are received during May-Sep 

months mainly due to monsoon precipitation and melting of seasonal snow and perennial 

glaciers. Hence, perennial snow and glaciers are largely acting as repository of the glacial 

ice mass to store or release rainwater depending upon the winter precipitation and summer 

temperatures (Pritchard, 2019; Thayyen and Gergan, 2010, Archer, 2003). This shows the 

importance of seasonal snow cover in the water budget of the basin, which usually receives 

heavy floods whenever high precipitation in winter season is followed by a warm and wet 

monsoon season. Interannual variability of river flows is extremely high and generally 

responsive to annual precipitation and summer temperatures. The observed data show that 

maximum annual flows can be double of minimum flows. Nevertheless, the IRS is 

predominantly a snow- and glacier-fed system (Lutz et al., 2016a & 2014; Yu et al., 2013), 

which makes it more sensitive and vulnerable to climate change and variability. 

1.3 Hydrological Modeling  

A hydrological model is a simplified representation of the complex natural system. 

Hydrological models are mainly used for predicting system behaviour and understanding 

various hydrological processes. The preferable model is the one which is simpler and easier 

to execute and that gives results closer to reality requiring least input. The simple empirical 

models are based on observed relationships rather than on simulated physical processes. 

These models are often lumped, treating a complete watershed as a single homogeneous 

unit. Physically-based models are often distributed, dividing a watershed into uniform sized 

grid cells and calculating flows between them. These models are generally complex with 

large input data requirements. Conceptual models are transition between empirical and 

physically-based models in terms of data requirements and details to represent the physical 

processes. Similarly, semi-distributed models are transition between lumped and distributed 

models, dividing a watershed in different elevation zones, homogeneous sub-basins or 

hydrological response units. Nevertheless, a number of hydrological models ranging from 

lumped to fully-distributed, simple temperature-index to complex energy-balance, and from 

standalone catchment-scale to global-scale land surface schemes are currently under use. 

Each model has got its own unique characteristics, specific applications and drawbacks like 

large data requirements, operational complexities and structural limitations. Generally, 

physically-based distributed models are better suited for the accurate simulation of spatial 

and temporal patterns in surface runoff. Accuracy of model outputs is usually dependent on 

the precisions in the physical processes, mathematical representations and details of the 

input parameters. However, model outputs are more affected by the underlying input 

parameters rather than the model structure (Islam and Déry, 2017; Kay et al., 2009). 

This PhD study used the Variable Infiltration Capacity (VIC) hydrological model, 4.2d 

version (Liang et al., 1994; 1996). The VIC model is an evolving macroscale, fully-

distributed, physically-based hydrologic model that can solve water balance as well as full 

water-and-energy balance to compute surface runoff, baseflow, evapotranspiration and 
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other turbulent fluxes for each individual grid. The VIC model was originally designed to 

provide boundary conditions at the land surface schemes for global and regional climate 

models and is equally applicable for catchment- to global-scale hydrological modeling. The 

model is characterized by heterogeneous topography (elevation and vegetation) and 

multiple soil layers (Figure 1.3a). The land surface is modelled as uniform grids of any size. 

Sub-grid variability of precipitation, temperature and land cover is considered by further 

dividing the surface grids into an arbitrary number of bands/tiles with variable elevation 

and land cover types. Temperature is lapsed from the grid cell average elevation to sub-grid 

band elevation, while altitudinal variability of precipitation within each grid cell is 

specified through fractional areal coverage. Sub-grid variability in infiltration capacity is 

represented by a fast runoff response to precipitation through a variable infiltration curve 

and slow runoff response via a nonlinear relationship between baseflow and deep soil 

moisture. Water can only enter to a grid cell via the atmosphere. The VIC model considers 

snow in several forms: ground snow pack, snow in the vegetation canopy, and snow on top 

of lake ice. Ground snowpack accumulation and ablation is solved by energy balance 

approach while sublimation, drip and release of intercepted snow by the vegetation is 

covered by an explicit canopy snow interception scheme described by Andreadis et al. 

(2009). Additionally, blowing snow sublimation is considered by the Bowling et al. (2004) 

model. Evapotranspiration (ET) from each vegetation type is characterized by the Penman–

Monteith formulation. Total evapotranspiration is the sum of evaporation from the canopy 

layer and transpiration from each vegetation tiles and evaporation from the bare soil. 

An offline Lohmann routing model (Lohmann et al., 1998) processes the surface runoff and 

baseflow fluxes generated for each grid cell and routes the accumulated flows at the 

specified locations in the model domain using elevation-based flow direction (Figure 1.3b). 

The Lohman routing model uses the unit hydrograph principle within the grid cells and 

linearized St. Venant’s equations to simulate river flow through the stream channel. 

Comprehensive technical descriptions and mathematical formulations of the VIC model are 

provided at https://vic.readthedocs.io/en/master/Overview/ModelOverview/ and by Gao 

et al. (2010). 

 
Figure 1.3: Schematic representation of the basic features of VIC hydrological model (a), and routing 

model (b). Source: Gao et al., 2009. 

(a) (b)

https://vic.readthedocs.io/en/master/Overview/ModelOverview/
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The selection of VIC hydrological model in this PhD research study is mainly inspired to 

its proven and successful applications in a variety of topographical and 

hydrometeorological conditions and its ability to model full water-and-energy balance in a 

fully-distributed manner, which is particularly crucial for simulation of snow and glacier 

dominated land surfaces. Generally, relatively simple hydrological models calibrated 

against sparse and short records of mountain climatic variables and runoff have been 

applied in the study domain (e.g. Hasson et al., 2019; Lutz et al., 2016, Tahir et al., 2011; 

Immerzeel et al., 2010). Whereas, the application of VIC hydrological model is very rare 

for hydrological simulations in the study area. Therefore, this study will add to the 

knowledge and practice of the hydrological modeling in the study domain. 

1.4 Research Questions and Study Objectives 

The high-altitude Indus basin is one of the most complex and largely underexplored regions 

in the World. The region is also recognized as the ‘hotspot’ of climate change due to 

significant transformations in its hydrometeorological regime (Krishnan et al., 2019; 

Wijngaard et al., 2018; Lutz et al., 2018; Kraaijenbrink et al., 2017; De Souza et al., 2015). 

However, an authentic assessment of climate change and variability and associated 

hydrological implications in the basin are seriously constrained by paucity of observed data 

and their directional biases. Quality of observed data and delicate investigation of the 

current and future hydrometeorology also add uncertainties and limit our understanding of 

the basin’s hydrometeorological regime. Therefore, the overarching aim of this PhD 

research study is to reduce the underlying uncertainties in precipitation and temperature 

observations to develop high-quality long-term data for historical and future time periods 

and improved simulation of the water balance and hydrological regime at regional and sub-

basin scale under extreme climate scenarios. This research study therefore was designed to 

highlight and address the underlying issues in precipitation observations and existing 

datasets by investigating & answering the following interconnected research questions (Q): 

Q1. How precipitation in the basin area is distributed in space and time? 

Q2. How strong are the vertical gradients of precipitation at sub-basin scale? 

Q3. What uncertainties are present in the existing observations and knowledge in 

precipitation distribution of the study area? 

Q4. To what extent precipitation measurement errors can affect total precipitation?  

Q5. How monthly-scale temperature gradients vary with elevation and latitude? 

Q6. What is the contribution of net glacier mass balance to river inflows? 

Q7. How accurate and representative are the global/regional gridded precipitation 

products for the study area? 

Q8. What uncertainties are present in the precipitation estimates of different gridded 

precipitation products for the study area? 

Q9. How closely the observed precipitation in the study area is simulated by the Global 

Circulation Models (GCMs)? 

Q10.  To what extent climate has changed in the study area over the recent past and what 

are the prospects for climate change under various climate change scenarios by the 

end of 21st century? 
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Q11. What shifts in precipitation and water availability can be expected at monthly, 

seasonal or annual scales? 

Q12. How climate change is likely to affect hydrological regime of the basin? 

Q13. What will be the frequency, intensity and distribution of floods and droughts by 

mid-century and end-century with respect to baseline reference period? 

Q14. What uncertainties are present in the current understanding of the basin’s 

hydrological regime and overall assessment of the hydrological process and how 

these can be minimized? 

Given the importance of precipitation and a large uncertainty over its distribution, a two-

pronged strategy is adopted to investigate and address these research questions. In the 1st 

step the above-outlined research questions are integrated and framed in the four broad-

based research objectives. Secondly, each objective is achieved through a separate 

scientific chapter using the appropriate datasets and specific procedures. The four broad-

based and specific objectives of this research study are:  

1. Appraise the current state of precipitation distribution in the high-altitude Indus 

basin and highlight the underlying issues and uncertainties in precipitation 

observations and quality of gridded precipitation products (Q1, Q2, Q3, addressed 

in Chapter 2) 

2. Adjust measurement errors in precipitation observations and develop high-quality 

reference climatologies of precipitation and temperature (Q1, Q3, Q4, Q5, Q6, 

addressed in Chapter 3) 

3. Evaluate quality of regional/global scale precipitation products for the study area 

with respect to the reference dataset (Q7, Q8 addressed in Chapter 4) 

4. Develop long-term datasets of precipitation and temperature for the historical and 

future time periods and assess past and future climate change and variability and 

associated hydrological implications (Q9, Q10, Q11, Q12, Q13, Q14 addressed in 

Chapter 5). 

1.5 Thesis Outline and Methods 

Investigations to answer the above-outlined research questions and achieve the four broad-

based and specific objectives of the study are pursued in the subsequent four chapters 

(Chapter 2 to 5). Each chapter is the product of a peer-reviewed scientific paper published 

in the journals of international repute. 

Chapter 2 appraises improved precipitation distribution of mean monthly, seasonal and 

annual precipitation in the study domain using observed precipitation data from multiple 

sources combined with the indirect precipitation estimates at the accumulation zones of 

major glaciers. This chapter highlighted the data gaps in the in-situ observations and 

underlined the uncertainties associated with the existing precipitation datasets. Altitudinal 

dependency of precipitation is analyzed at sub-basin scale. The issues related to direct use 

of gridded precipitation products are also underscored. 

In chapter 3, precipitation distribution is reconciled by incorporating additional 

observations and a better approach for cross-validation. The WMO recommended standard 

methods are adopted to adjust systematic errors in precipitation measurements. The net 

snow accumulations were adjusted for the ablation losses using standard ablation gradients, 



9 

 

while the river inflows were adjusted for the contribution of net mass balance using mass 

balance estimates of Kääb et al., 2012 and the glacier areas from the Randolf Glacier 

Inventory (RGI) version 5.0 (Arendt et al., 2015). Reference climatologies of mean 

monthly precipitation are derived from the adjusted observations and are cross-validated 

with the adjusted river inflows at sub-basin scale using Turc-Budyko non-dimensional 

analysis. 

Chapter 4 highlighted and corroborated the underlying issues and uncertainties associated 

with a wide range of gridded precipitation products in the high-mountain Indus basin. 

Performance of 27 widely used gridded precipitation products belonging to three different 

categories (gauge-based, reanalyses and merged) is evaluated with respect to high-quality 

reference climatologies of mean monthly precipitation developed in the previous chapter 

using the widely used statistical measures and quantitative analyses techniques. Cross 

validation is accomplished with the corresponding specific runoffs using Turc-Budyko non-

dimensional analysis. 

In Chapter 5, the best performing gridded precipitation product (ERA5) evaluated in the 

4th chapter is statistically downscaled and bias-corrected with respect to the reference 

dataset developed in the 3rd chapter. The temperature data of the same product are bias 

corrected against the observational-based monthly-scale temperature dataset derived from 

the elevation and latitudue dependent lapse rates. Similarly, representing warm-wet and 

cold-dry climates, the outputs of two best performing GCMs used in CMIP5 for RCP2.6, 

RCP4.5 & RCP8.5 are statistically downscaled and bias-corrected. A fully-distributed 

physically-based energy-balance VIC hydrological model is forced with these novel 

datasets to simulate the water balance at regional and sub-basin scale. Hydrometeorological 

analyses are conducted to determine the changes and variability in climate and overall 

water availability and examine the shifts in the timings and peaks of hydrological extremes 

during the entire 21st century. 

Finally, the main results of the four scientific chapters are synthesized in Chapter 6. This 

chapter also highlights the scientific contribution of this research study, discusses the 

underlying uncertainties, signifies the implications for water management, and presents the 

outlook and direction for further research. 
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Chapter 2 

An Appraisal of Precipitation Distribution 

Abstract  
 

Scarcity of in-situ observations coupled with high orographic influences has prevented a 

comprehensive assessment of precipitation distribution in the high-altitude Indus basin. 

Available data are generally fragmented and scattered with different organizations and 

mostly cover the valleys. Here, we combine most of the available station data with the 

indirect precipitation estimates at the accumulation zones of major glaciers to analyse 

altitudinal dependency of precipitation in the high-altitude Indus basin. The available 

observations signified the importance of orography in each sub-hydrological basin but 

could not infer an accurate distribution of precipitation with altitude. We used Kriging with 

External Drift (KED) interpolation scheme with elevation as a predictor to appraise 

spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the pe-

riod of 1998-2012. The KED-based annual precipitation estimates are verified by the 

corresponding basin-wide observed specific runoffs, which show good agreement. In 

contrast to earlier studies, our estimates reveal substantially higher precipitation in most of 

the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most 

slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner 

of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded 

precipitation products covering this region are prone to significant errors. In terms of 

quantitative estimates, ERA-Interim is relatively better close to the observations followed 

by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation 

estimates in the study area. Basin-wide seasonal and annual correction factors introduced 

for each gridded dataset can be useful for lumped hydrological modelling studies, while the 

estimated precipitation distribution can serve as a basis for bias correction of any gridded 

precipitation products for the study area. 
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appraisal of precipitation distribution in the high-altitude catchments of the Indus basin, 

Science of the Total Environment, 548–549: 289–306, 
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2.1 Introduction 

The Hindukush Karakoram Himalayan (HKH) mountain region and adjoining ranges of 

Pamirs and Tibetan Plateau (TP) hold the world's largest repositories of snow and ice mass 

outside the Polar Regions (Qiu, 2008; UNESCO-SCOPE-UNEP, 2011). The Indus River 

System (IRS), originating from TP and HKH mountain region and crossing through China, 

India, Afghanistan and Pakistan, sustains livelihoods of over 215 million people. Yet, little 

is known about environmental change and mountain hydrology in this highly diversified 

and complex mountain region (Immerzeel et al., 2012; Karki et al., 2011). There is limited 

understanding of quantitative and spatiotemporal distribution of precipitation, which 

provides the basic and critical input for hydrological assessment, mass balance and climate 

change studies. The current knowledge is mainly constrained by limited in-situ hydro-

meteorological and cryospheric mass balance observations in the high-altitude catchments 

of Indus basin (Pellicciotti et al., 2012; Wake, 1987). Political environments, poor 

accessibility and harsh weather conditions pose serious challenges for such observations in 

this region. As a result, there are significant data, information and knowledge gaps in 

hydro-climatic aspects. 

Precipitation in the high-altitude catchments of Indus basin is predominantly controlled by 

large-scale orography and remains highly variable in time, space and altitude. Its variability 

and distribution pattern mainly depend on the interactions and interplay of orographic 

features with large-scale atmospheric circulation systems, regional climatic processes and 

local evapotranspiration rates. Large changes in precipitation over short distances and 

within short periods of time are common and high amplitude events are often localized 

(Nesbitt and Anders, 2009). The zone of maximum precipitation is usually the function of 

enhanced moisture condensation and exponential reduction in the quantity of available 

moisture with increasing barrier height (Alpert, 1986). Hence, rainfall gradients in the 

complex terrains are often not linearly correlated with altitude (Singh and Kumar, 1997; 

Loukas and Quick, 1996). Nevertheless, several other studies indicated that precipitation in 

the HKH region exhibits a considerable vertical gradient (e.g. Pang et al., 2014; Winiger 

et al., 2005; Hewitt, 2011; Weiers, 1995; Wake, 1989; Dhar and Rakhecha, 1981; BIG, 

1979; Decheng, 1978). 

Precipitation is an important component of the hydrological cycle that governs the 

renewable water resources affecting agro-economic development, hydropower generation 

and environmental integrity. Therefore, accurate assessment of precipitation is essential as 

small errors in precipitation estimates may translate into major changes in surface runoff 

estimates and associated water allocations. Accurate assessment of precipitation requires 

good quality observations with adequate spatiotemporal coverage to assess the sub-basin or 

local scale variability. However, the existing rain gauge network in this region is not only 

inadequate but also biased towards valley bottoms (Fowler and Archer, 2006). The solid 

precipitation (snowfall) at higher altitudes is often difficult to accurately measure and 

generally susceptible to undercatch by 20-50% (Rasmussen et al., 2012). Furthermore, the 

Indus is an international river basin and the available observational data are usually 

fragmented and scattered with different organizations in four countries and are not freely 

accessible. Therefore, there is an ever-increasing trend of using the easily available 

global/regional scale gridded datasets for hydro-climatic assessment and mass balance 

studies (e.g. Lutz et al., 2014a; Sakai et al., 2014; Immerzeel et al., 2012, 2010, 2009; Tahir 

et al., 2011; Bookhagen and Burbank, 2006). 
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Indeed, the gridded datasets provide better information in terms of spatial coverage and 

temporal consistency, but with potentially large errors particularly in high-mountains where 

the resolution of the data is often larger than the spatial variability of precipitation and the 

adopted interpolation schemes add further uncertainty. Also, satellite observations 

underestimate precipitation in areas with significant snowfall (Andermann et al., 2011). 

Moreover, the gridded datasets covering the high-altitude areas of Indus basin use station 

data of only a few commonly available old observatories predominantly located at the 

valley floors, which do not reflect the topographical complexity and spatial variability of 

precipitation in these areas (Reggiani and Rientjes, 2015). Hence, the accuracy of gridded 

datasets is particularly questionable in this region requiring their correction and validation 

before use. However, the limitations and internal inconsistencies of the gridded datasets are 

often overlooked in the hydro-climate studies; where underestimated precipitation is often 

compensated by underrated evapotranspiration and/or overestimated snow/glacier melt 

rates (Lutz et al., 2014a; Pellicciotti et al., 2012; Schaefli et al., 2005). Ultimately, the 

inferences regarding precipitation distribution, snow/glacier cover dynamics and associated 

melt water contributions are inaccurately adjudicated. Point observations, on the other 

hand, provide relatively accurate local information, but their wider-scale use in hydro-

climate studies is constrained by their restricted accessibility, limited spatiotemporal 

coverage and uneven distribution in both horizontal and vertical directions. Paucity of 

precipitation measurements in the high-altitude areas, where the bulk of precipitation falls, 

provides an incomplete picture of precipitation distribution. Auspiciously, there are few 

mass balance studies (e.g. Mayer et al., 2014, 2006; Hewitt, 2011; Shroder et al., 2000; 

Bhutiyani, 1999; Wake, 1989; Mayewski et al., 1984, 1983; Kick, 1980; BIG, 1979; 

Decheng, 1978; Qazi, 1973) that indirectly estimated net precipitation (as water equivalent) 

using snow pillows, snow pits, and ice cores from the accumulation zones of few important 

large glaciers in this region. These sparse but relatively accurate and high-altitude point 

observations can be integrated with the low-mid altitude observations to derive high-

altitude precipitation and to verify and correct the gridded datasets developed through 

various means. 

In addition, the specific runoffs (measured flow/drainage area) from all the high altitude 

catchments of Indus basin are significantly higher than the corresponding precipitation 

estimates by earlier studies (Immerzeel et al., 2012, 2015). This indicates that either the 

estimated precipitation is lower than the actual or these basins are receiving bulk of their 

runoff from snow/glacier melt in the absence of an adequate precipitation (snowfall) inputto 

sustain the snow/glacier systems. The latter case certainly recognizes for tangible glacier 

retreat and loss of glacial mass. However, the scientific research on precipitation inputs and 

associated snow/glacier mass balance in the study area is uncertain and largely 

contradicting due mainly to paucity of in-situ precipitation and glacier mass balance data 

(Kääb et al., 2012; Immerzeel et al., 2009). Moreover, mass balance studies in this region 

are always difficult as most of the glaciers based at the high-altitude areas (above 4000 m) 

are often nourished by avalanches and redistribution by wind in addition to seasonal snow 

(Hewitt, 2013, 2011). While Kääb et al. (2012), Wiltshire (2014), Gardner et al. (2013), 

Jacob et al. (2012), Cogley (2011) and Immerzeel et al. (2009) noticed loss of ice mass and 

consistent decrease in glacier extent in the HKH region, several other studies (e.g. Bhambri 

et al., 2013; Minora et al., 2013; Gardelle et al., 2013, 2012; Bolch et al., 2012; Scherler 

et al., 2011; Tahir et al., 2014, 2011; Schmidt and Nusser, 2012; Mayer et al., 2006; Hewitt, 

2005) indicated ‘Karakoram anomaly' advocating stability or even growth of Hindukush-

Karakoram glaciers. The possible reasons for such an anomaly have been linked to the role 
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of debris-covered areas in reducing ice ablation (Scherler et al., 2011) and favourable 

changes in winter precipitation and summer temperatures (Mathison et al., 2013; Hewitt, 

2011, 2005; Fowler and Archer, 2006; Archer and Fowler, 2004). 

Given the importance of precipitation and a large uncertainty over its distribution, the major 

aim of this study is to analyse altitude dependency of precipitation and derive its 

spatiotemporal distribution by using the observed data available from different sources. 

Therefore, we collected precipitation data of 118 meteorological stations; more than half of 

these are located at mid to high-altitudes and have never been used for formation or 

calibration of precipitation datasets. These station observations are further supported by 16 

virtual stations over major glacier accumulation zones, where average net annual 

precipitation is estimated through mass balance studies. We focus separately on each sub 

hydrological basin and explain how precipitation amounts, seasonality and patterns are 

represented. The study provides much improved estimates of precipitation distribution, 

which are comparable with the corresponding observed runoffs at sub-basin scale. 

2.2 Study Area 

The Indus basin originates from the TP and the HKH region and spreads over parts of 

China (8%), India (39%), Afghanistan (6%) and Pakistan (47%). The study area extends 

over the high-mountain sub-basins of Indus basin (Figure 2.1). The total area of these high-

altitude catchments is 259,913 km2 of which 57.5% is laid above 4000 m a.s.l. Although, 

there is no definite boundary among the three mountain ranges but it is generally assumed 

that the river Indus bisects the Himalayan range from the Hindukush, Karakoram and TP. 

The eastern boundary of Shyok basin limits the Karakoram range in the east, while the 

boundary between Gilgit and Hunza basins separates it from the Hindukush range. The 

study area is the largest source of fresh water resources (153 BCM year-1) of Pakistan and 

plays a crucial role in water, energy and food security of the region. 

The extensive Eurasian continent and the Indian and Pacific oceans play an important role 

in atmospheric circulation and monsoon formation of the world's largest and most powerful 

monsoon system in South Asia (Saha, 2010). The climate of Indus basin is characteristic of 

the South Asian atmospheric circulation that is associated with the summer monsoon 

evolution and extra-tropical cyclonic/anticyclonic circulations around troughs of low/high 

pressure areas during winter. Thus, precipitation in the study area is predominantly 

influenced by the two principal weather systems: the Indian summer monsoon (ISM) 

advecting moisture from the Indian Ocean, Arabian Sea and Bay of Bengal due to the 

differential heating between land and sea during summer (e.g., Palazzi et al., 2013; Ahmad 

et al., 2012; Krishnamurti and Kishtawal, 2000; Wu and Zhang, 1998; Li and Yanali, 

1996), and the western disturbances (WDs) bringing moisture from the Mediterranean and 

Caspian sea as an extratropical frontal system during winter and early spring (Filippi et al., 

2014; Pal et al., 2014; Mayer et al., 2014; Treydte et al., 2006; Syed et al., 2006; Archer 

and Fowler, 2004; Archer, 2001; Singh et al., 1995). Seldom, relatively weak storms of 

East Asian summer monsoon (Ding and Chan, 2005; Wang and Lin, 2002) also enter into 

the Ladakh region from the eastern end. 

The summer monsoon in the Indus basin, extending from July- September, is the 

northwestern limit of the ISM. There are three monsoon moisture trajectories: 1st from the 

Indian Ocean across the Arabian Sea, 2nd along the Indian river valley to the western 

Himalayas and TP, and 3rd from the Bay of Bengal moving northward to the eastern 
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Himalayas and TP along the Brahmaputra river valley (Pang et al., 2014; Liu, 1989; Lin 

and Wu, 1990). The WDs enter the north-west Indus basin during late November mostly in 

a diffused state with distorted structure, but regain their frontal structure and strength by 

interacting with the pre-existing orographically- maintained trough of low pressure. They 

usually bifurcate into the northern and southern branches around the Karakoram and 

western TP regions due to topographic blocking (Pang et al., 2014). Wintertime 

precipitation in the HKH region is mainly related to water vapor transport by the southern 

branch of WDs (Yihui and Zunya, 2008; Wei and Gasse, 1999). The interplay between 

these regional- scale atmospheric circulation systems and the local climatic and topographic 

features usually determine the amount and distribution pattern of precipitation in the high-

altitude catchments of Indus basin. 

 

Figure 2.1: a) Location of the study area, and b) location of sub-basins and mountain ranges. The 

mountain ranges are separated by different colour schemes. 

2.3 Data and Methods 

2.3.1 Station based point observations 

Meteorological data of the Indus basin is scattered among different organizations [e.g. 

Pakistan Meteorological Department (PMD), Water and Power Development Authority 

(WAPDA) of Pakistan, Indian Meteorological Department (IMD), University of Boon 

under the Culture Areas Karakoram (CAK) programme in the Bagrot valley and Yasin 

catchment of Gilgit basin during 1990-91, and Ev-K2-CNR (an Italian based organization) 

under the SHARE project]. However, not all these data are freely accessible. PMD operates 

a number of meteorological stations in Pakistan but their network of observatories in the 

high-altitude catchments of Indus basin is sparse and mainly concentrated in the valleys 

with elevations less than 2500 m a.s.l. WAPDA installed a network of meteorological 

observatories in various sub-basins of Indus basin under the Surface Water Hydrology 

Project and more recently (199499) under the Snow and Ice Hydrology Project mainly at 

the higher altitudes. We collected climatic data of 21 stations from PMD and 44 stations 

from WAPDA located in the study area. Monthly summaries of the observed precipitation 

at 41 observatories located in the Indian Territory available from NOAA-NCDC's website 

http://www.ncdc.noaa. gov/cdo-web/datasets (NOAA-NCDC) were downloaded in June, 

2014. Meteorological data of 2 observatories installed by Ev-K2-CNR in Shigar basin were 

downloaded from http://data.eol.ucar.edu/codiac/dss/id?76.200 in June, 2014. The 

meteorological data collected under the CAK project in Gilgit and Hunza basins are not 
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publicly available therefore we derived average precipitation of 10 observatories from 

Winiger et al. (2005), Miehe et al. (2001, 1996) and Eberhardt et al. (2007). Finally, we 

assumed 16 virtual stations located at the accumulation zones of major glaciers where 

average annual net precipitation is estimated from mass balance studies (Table 2.1). The 

observed station data used in this study are detailed in Figure 2.2 and Table S-2.1. 

Table 2.1: Annual precipitation as water equivalent (we) at major glacier accumulation zones. 

Sr. 

# 

Virtual  

Station 

Latitude  

(dd) 

Longitude  

(dd) 

Altitude  

(m) 

we  

(mm) 

Data  

Source 

1 Sentik 33.996667 75.95000 4908 620 Mayewski et al. (1984) 

2 Nun Kun North 34.121927 76.10142 5200 900 Mayewski et al. (1983) and Qazi 

(1973) 3 Batura 36.666667 74.38333 4840 1034 Batura Investigation Group (1979) 

4 Baldor 35.877780 76.55079 5500 1600 Mayer et al. (2006) and Decheng 

(1978) 5 Urdok 35.766876 76.70253 5400 1060 Mayer et al. (2014) 

6 Whaleback 36.057170 75.59149 4900 1790 Hewitt (2011, 2006) and Wake 

(1989) 7 Approach 36.067780 75.63310 5100 1880 Hewitt (2011, 2006) and Wake 

(1989) 8 Hispar East 35.849533 75.50639 4830 1070 Hewitt (2011, 2006) and Wake 

(1989) 9 Hispar Dome 36.010910 75.51872 5450 1620 Hewitt (2011, 2006) and Wake 

(1989) 10 Hispar Pass 36.028070 75.52151 5100 1420 Hewitt (2011, 2006) 

11 Khurdopin 36.133770 75.61969 5520 2240 Hewitt (2011) 

12 Nanga Parbat 35.167250 74.44442 4500 2000 Shroder et al. (2000) and Kick 

(1980) 13 Siachin A 35.470730 77.03757 4800 484 Bhutiyani (1999) 

14 Siachin B 35.523490 76.99150 4950 526 Bhutiyani (1999) 

15 Siachin C 35.518660 76.91160 5050 662 Bhutiyani (1999) 

16 Siachin D 35.624230 76.85924 5350 855 Bhutiyani (1999) 

 
Figure 2.2: Elevation distribution, sub-basins considered for altitudinal variation of precipitation, and 

location of rain gauges and river gauges (the numbers refer to the respective rain gauges mentioned in 

Table S-2.1). 
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2.3.2 Gridded datasets 

Substantial progress has been made during the last three decades in constructing the 

analysed fields of precipitation over global land areas from multiple sources. As such, a 

wide variety of global and/or regional scale gridded precipitation products derived through 

various means is currently available for climate change and hydrological assessment 

studies. The most common and widely used products can broadly be classified into four 

categories; (i) based on climate models' reanalysis, (ii) merged model (reanalysis) and 

station observations, (iii) merged satellite estimates and station observations, and (iv) 

derived solely from station observations. In this study, we selected at least one dataset from 

each basic category to underline the inherent uncertainties in these datasets and highlight 

the importance of their bias correction before use in hydro-climate studies in the study area. 

ERA-Interim: ERA-Interim (Dee et al., 2011) is a third generation global atmospheric 

reanalysis product with an improved atmospheric model and assimilation system, produced 

by the European Centre for Medium- range Weather Forecasts (ECMWF) providing data 

from 1979 to present. Estimates of precipitation associated with the reanalysis are produced 

by the forecast model, based on temperature and humidity information derived from 

assimilated observations. These data are available at sub-daily, daily and monthly intervals 

and at spatial resolution of 0.75° latitude-longitude grid, but we used monthly means of 

daily means re-gridded at 0.125° available at http://apps.ecmwf.int/ datasets/data/interim-

full-moda/, accessed in January, 2015. Berrisford et al. (2011) provides a detailed 

description of the ERA-Interim product. 

WFDEI: The WATCH Forcing Data-ERA Interim (WFDEI) dataset (Weedon et al., 2014) 

is derived from ERA-Interim reanalysis product (Dee et al., 2011) via sequential 

interpolation to a 0.5° resolution, elevation correction and monthly-scale adjustments based 

on CRU TS3.1/TS3.21 (Harris et al., 2013) and GPCCv5/v6 (Schneider et al., 2013) 

monthly precipitation observations for 1979-2012 combined with new corrections for 

varying atmospheric aerosol-loading and separate precipitation gauge corrections for 

rainfall and snowfall under the Water and Global Change (WATCH) programme of the 

European Union. The WFDEI is an open access dataset at 

ftp://rfdata:forceDATA@ftp.iiasa.ac. at/. We accessed the data in December, 2014 and used 

CRU TS3.1/ TS3.21 adjusted WFDEI product.  

TRMM: The Tropical Rainfall Measuring Mission (TRMM), launched in November 1997 

as a joint project by NASA and the Japanese Space Agency (JAXA), is instrumented with 

Precipitation Radar (PR), TRMM Microwave Imager (TMI), and Visible Infrared Scanner 

(VIRS). The PR provides three-dimensional maps of storm structure giving information on 

the intensity, distribution and type of rain, storm depth and the height at which the snow 

melts into rain. The TMI quantifies water vapor and cloud water content as well as the 

rainfall intensity in the atmosphere, while the VIRS provides the cloud context of the 

precipitation and connects microwave precipitation information to infrared- based 

precipitation estimates from geosynchronous satellites. The TRMM Multi-satellite 

Precipitation Analysis (TMPA) combines all the available precipitation datasets from 

different satellite sensors and monthly surface rain gauge data to provide a “best” estimate 

of precipitation at spatial resolution of 0.25° for the 50° N-S areas (Huffman et al., 2007). 

We used TRMM 3B43 version 7 monthly precipitation product released by TMPA in May 

2012. Huffman et al. (2007) provide detailed information on the algorithms and different 

processing steps. The dataset available at http://disc.sci.gsfc.nasa.gov/daac-

bin/DataHoldingsPDISC.pl?LOOKUPID_List=3B43 was accessed in December, 2014. 

http://apps.ecmwf.int/datasets/data/interimulloda/
http://apps.ecmwf.int/datasets/data/interimulloda/
http://apps.ecmwf.int/datasets/data/interimulloda/
mailto:forceDATA@ftp.iiasa.ac.at
mailto:forceDATA@ftp.iiasa.ac.at
http://disc.sci.gsfc.nasa.gov/daacin/DataHoldingsPDISC.pl?LOOKUPID_List=43
http://disc.sci.gsfc.nasa.gov/daacin/DataHoldingsPDISC.pl?LOOKUPID_List=43
http://disc.sci.gsfc.nasa.gov/daacin/DataHoldingsPDISC.pl?LOOKUPID_List=43
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APHRODITE: Asian Precipitation-highly Resolved Observational Data Integration 

Towards Evaluation of Water Resources (APHRODITE) is the state-of-the-art high-

resolution daily precipitation dataset developed by a consortium between the Research 

Institute for Humanity and Nature (RIHN) Japan and the Meteorological Research Institute 

of Japan Meteorological Agency (MRI/JMA) from a dense rain gauge observational 

network in Asia. We used the latest and improved version of daily dataset for Monsoon 

Asia (APHRO_MA_V1101) covering 60.0E-150.0E, 15.0S-55.0N at a high spatial 

resolution of 0.25° for the period extending from 1951-2007 (Yatagai et al., 2012). The 

precipitation data from a dense network of rain gauges is 1st interpolated on to a grid of 

0.05° using the modified version of the distance-weighting interpolation method (Shepard, 

1968), which considers sphericityand orography by the Spheremap (Willmott et al. 1985) 

and the Mountain Mapper (Schaake, 2004) methods respectively. This dataset is then re- 

gridded to 0.25° and 0.5° products using the area-weighted mean. The algorithm is 

improved in that the weighting function considers the local topography between the rain-

gauge and interpolated point (Yatagai etal., 2012). The veryhigh resolution (0.05°) dataset 

is restricted to the partner institutes only and is not publicly available. Therefore, we used 

the latest and improved version (APHRO_MA_V1101) with spatial resolution of 0.25°. 

The dataset, available at http://www. chikyu.ac.jp/precip/, was accessed in July, 2014. 

2.3.3 River Flows 

Historical daily discharge data at the sub-basin level for twelve stations (Figure 2.2; Indus 

at Kharmong, Shyok at Yugo, Shigar at Shigar, Hunza at Dainyor, Gilgit at Gigit, Astore at 

Doyian, Indus at Tarbela, Chitral at Chitral, Swat at Chakdara, Panjkora at Zulam bridge, 

Jhelum at Mangla, and Chenab at Marala) in the study area are available from WAPDA. 

The current study used river discharge data for the 1998-2012 period for consistency with 

the observed and gridded precipitation products. 

2.3.4 Methods 

The pre-processed void free Shuttle Radar Topography Mission (SRTM) digital elevation 

data of 90 m resolution freely available from http://hydrosheds.cr.usgs.gov/ are used to 

delineate the watershed boundaries according to the methodology explained by Khan et al. 

(2014). However, for consistency with the precipitation datasets, the boundaries are also 

delineated from 1 km (30 s) DEM available from the same site. 

We selected all the stations that covered at least three years of data to cover the recent 

installations and keeping in view the paucity of the observed data. Daily precipitation 

observations were converted into monthly totals if no more than three days were missing in 

a month. Similarly, seasonal and annual totals were calculated if no month was missing in a 

season or year. The study used station observations of average monthly, seasonal and 

annual precipitation totals from 134 points located within the study area to analyze 

altitudinal dependency and derive spatiotemporal distribution of precipitation averaged 

over the 1998-2012 period. In order to appraise the influence of elevation on precipitation, 

the average annual precipitation of a group of stations located within or closest to each sub-

basin for the common time period are plotted. 

For estimation of precipitation distribution, we selected the best suited spatial interpolation 

scheme based on literature review and specific geo-hydro-climatological conditions of our 

study area. While going through the literature, we noticed that with wide and increasing 

http://www.chikyu.ac.jp/precip/
http://www.chikyu.ac.jp/precip/
http://hydrosheds.cr.usgs.gov/
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applications of the spatial interpolation methods, there is also a growing concern about their 

accuracy and precision for a given set of conditions (Hartkamp et al., 1999). In general, 

when quality and amount of sampled data is sufficiently high, most of the spatial 

interpolation methods are accurate and produce almost similar estimates (Burrough and 

McDonnell, 1998). Minasny and McBratney (2007) however argued that improvements in 

prediction rely more on representativeness and quality of input data rather than on more 

sophisticated methods. A thorough review of spatial interpolation methods by Li and Heap 

(2014) could not infer any simple answer or consistent findings regarding the choice of best 

method, but it provided guidelines and suggestions by describing and comparing the 

features, strengths and weaknesses of a number of interpolators. Li and Heap (2011) 

analysed the performance of 32 spatial interpolation methods and observed that their 

performance depends not only on the structure of the method itself, but also on the nature 

of interpolating surface as well as quality and amount of the input data. They found kriging 

methods better than nongeostatistical methods and recommended Kriging with External 

Drift (KED) method. Many other studies (e.g. Tobin et al., 2011; Haberlandt, 2007; 

Verfaillie et al., 2006; ICES, 2005; Hengl et al., 2003; Rivoirard and Wieland, 2001; 

Bourennane et al., 2000; Bishop and McBratney, 2001; Goovaerts, 2000) also compared 

different geostatistical and non-geostatistical methods in a variety of situations and noticed 

that Kriging with KED usually provided better estimates than all other methods.  

The KED interpolation method (Schabenberger and Gotway, 2005) allows the processing 

of non-stationary random functions taking into account the spatial dependence of a primary 

variable known only at a small set of points as well as its linear relation to one or more 

additional covariates (secondary variables/predictors) exhaustively known at all points over 

the whole domain. It uses semivariograms or covariances, cross-covariance, 

transformations, trend removal, and allows for error/ uncertainty check. It is most 

appropriate when there is an overriding trend in the sampled data, which can be modelled 

by a deterministic polynomial function. Moreover, Masson and Frei (2014) observed sim-

ple one-predictor KED model markedly better than the multilinear regression model with 

nine predictors and noticed only marginal improvement with inclusion of complex 

physiographic predictors. Therefore, we selected KED interpolation method with elevation 

as a predictor to predict unknown values from these observations, as our study area is 

largely an under-sampled and complex high-mountain terrain exposed to three main 

circulation systems leading to reasonable spatial (directional) and altitudinal biases in 

precipitation distribution. 

The KED model includes a component of spatial autocorrelation and a component for 

multilinear dependence on pre-defined variables (predictors). It considers the observations 

(Y) at sample locations (s) as a random variable of the form (e.g. Diggle and Ribeiro, 

2007): 

𝒀(𝒔) =  𝝁(𝒔) + 𝒁(𝒔)       (2.1) 

𝝁(𝒔) = 𝜷𝟎 + ∑ 𝜷𝒌
𝑲
𝒌=𝟏 . 𝒙𝒌(𝒔)      (2.2) 

Here, 𝝁(𝒔) describes the deterministic component of the model (external drift or trend) and 

is given as a linear combination of K predictor fields 𝒙𝒌(𝒔) (trend variables) plus an 

intercept 𝜷𝟎. The 𝜷𝒌 are denoted as trend coefficients, while 𝒁(𝒔) describes the stochastic 

part of the KED model and represents a random Gaussian field with a zero mean and a 2nd 
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order stationary covariance structure. The latter is conveniently modelled by an eligible 

parametric semi-variogram function describing the dependence of semi-variance as a 

function of lag (possibly with a directional dependence). To derive the climatology of mean 

monthly, seasonal and annual cycle of precipitation from the point observations, we applied 

KED interpolation method with elevation as a predictor separately for monthly, seasonal 

and annual precipitation totals averaged over the period of 1998-2012. The KED-based 

estimated precipitation distribution was further converted into grid format (1 km size) for 

sub-basin scale precipitation computations and comparisons with the gridded datasets. 

Daily river discharge data at the available outlets are used to compute the average monthly, 

seasonal and annual specific runoff (measured flow/drainage area) for each sub-basin. The 

KED-based estimated annual precipitation totals from each sub-basin are validated by the 

corresponding average specific runoff and the pattern of glacier cover using ICIMOD 

glacier inventory (Bajracharya and Shrestha, 2011) and compared with earlier studies. 

The selected gridded precipitation products are re-gridded and processed to compute mean 

monthly, seasonal and annual precipitation totals at sub-basin scale. Afterwards, their 

accuracy relative to the KED-based estimated precipitation is evaluated for each sub-

hydrological basin. For evaluation of precipitation patterns, the Taylor diagram is used for 

the re-gridded precipitation values ofallthe products to acom- mon grid of 0.05°; while for 

quantitative assessment, the seasonal and annual biases relative to the KED-based estimated 

precipitation at the sub-basin scale are analysed.Basin-wide seasonaland annual correction 

factors are introduced to account for the inherent errors in each gridded product.These 

correction factors are determined by dividing the respective grid values of the estimated 

precipitation by the gridded datasets and averaging them at sub-basin level. These factors 

simply need to be multiplied with the respective gridded datasets for the area of interest. 

2.3.5 Uncertainty Analysis 

The major uncertainties involved in this study are associated with the quality and amount of 

the observed data and the interpolation technique used to predict the unknown values from 

these observations. The organizations operating weather stations in the study area generally 

indicate to apply WMO standards for collection of meteorological data. Yet, in many cases, 

the quality of data is affected by instrumental problems, station locality and interruption of 

timeseries (Miehe etal.,1996). PMD, WAPDA and Ev-K2-CNR use the tipping bucket rain 

gauges to record liquid precipitation in the low- to mid-altitude areas. In the case of 

occasional snowfall, the water equivalent calculated manually is usually added to the daily 

precipitation records. The automatic data collection platforms (DCPs) installed by WAPDA 

in the high-altitude areas during 1994-95 use snow pillows to measure both solid and liquid 

precipitation as water equivalent. However, most of the installed snow pillows encountered 

technical issues of interfacing with the transmission system as well as unexpected “jumps” 

due to possible ice bridging and rupture effects (SIHP, 1997). Although, the problem was 

substantially minimized in 1996 by attaching a precision potentiometer to convert the shaft 

encoders from a digital output to an analogue, the snow pillows are still subjected to 

underestimate solid precipitation under strong wind conditions (Hasson et al., 2014). The 

automatic weather stations installed within the framework of the CAK project measure pre-

cipitation using data logger, tipping bucket and snow depth gauge (Miehe et al., 1996). Yet, 

measurement of solid precipitation in strong windy conditions is subject to considerable 

errors due to constant blowing away of snow from the ultrasonic sensors. GHCN-monthly 
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summaries of the observed precipitation for the study area are based on data from IMD, 

which also follows WMO standards, and are subjected to a suite of quality assurance 

reviews. 

Another source of uncertainty is inconsistency in the precipitation observations due to late 

installation of instruments, temporary sensor failures or non-collection of data. The time 

series of the observed data is variable, ranging from more than 30 years for a few stations to 

at least 3 years for the most recently installed stations (Table S-2.1). We used average 

precipitation during the period of 1998-2012, because the majority of data is available for 

this period except the GHCN dataset, which contains precipitation data of some old 

observatories operational between 1901 and 1970. To check for possible temporal change, 

we compared these stations' records with the nearest stations with up to date data. We only 

found an insignificant trend. Similarly, the net precipitation estimated from glacier 

accumulation studies is also inconsistent in temporal terms. 

KED interpolation model produces both prediction as well as error/ uncertainty surfaces, 

giving an indication or measure of how good the predictions are. It estimates an 

interpolated surface from randomly varied small set of measured points and recalculates 

estimated values for these measured points to validate the estimates and determine extent of 

errors. Since, we used all of the available observations; there is no more ground truth 

available to validate the performance of this method. However, we used leave-one-out cross 

validation strategy to assess the performance of the employed interpolation scheme. We 

applied cross validation on the observed and predicted values from all the stations to assess 

the errors/uncertainty associated with the interpolation scheme by using error scores of the 

relative bias (B) and the relative mean root-transformed error (E), which are defined as: 

𝑩 =
∑ 𝑷𝒊

𝒏
𝒊=𝟏

∑ 𝑶𝒊
𝒏
𝒊=𝟏

       (2.3) 

𝑬 =

𝟏

𝒏
∑ (√𝑷𝒊 − √𝑶𝒊)

𝟐
 

𝒏

𝒊=𝟏

𝟏

𝒏
∑ (√�̅� − √𝑶𝒊)

𝒏

𝒊=𝟏

𝟐       (2.4) 

Here Pi and Oi are the predicted and observed precipitation values respectively, while �̅� is 

the spatial average of the observations over all (or a subset of n) stations. The cross-

validation results (Table 2.2) depict relative bias values of slightly higher than for all 

months, indicating only a small overestimation of the predicted values but at annual scale it 

is almost zero. Similarly, E values less than 1 suggest typical errors smaller than the spatial 

variations except for pre-monsoon season. In summary, there are no serious uncertainties or 

constraints but further improvements in the estimated precipitation distribution can be 

achieved by using higher quality observed data with more spatiotemporal coverage, 

particularly at higher-altitudes. 

Table 2.2: Relative bias (B) and relative mean root-transformed error (E) calculated over all 

observation points. PMSN is pre-monsoon (Apr-Jun), MSN is monsoon (Jul-Sep), WIN is winter 

(Oct-Mar) and ANN is annual. 

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PMSN MSN WIN ANN 

B 1.014 1.029 1.040 1.045 1.045 1.015 1.002 1.004 1.002 1.005 1.005 1.036 1.043 1.002 1.003 1.001 

E 0.090 0.786 0.913 1.189 1.858 1.007 0.003 0.009 0.022 0.012 0.055 0.935 1.406 0.006 0.011 0.006 
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2.4 Results 

2.4.1 Altitudinal variation of precipitation 

The analysis of observed precipitation records revealed significant altitude dependency of 

precipitation in all the sub-basins (Figure 2.3), which supports earlier studies (e.g. Pang et 

al., 2014; Hewitt, 2011; Winiger et al., 2005; Weiers, 1995; Wake, 1989; Dhar and 

Rakhecha, 1981; BIG, 1979; Decheng, 1978). However, there is substantial difference in 

the rate and magnitude of variation from one basin to another due to significant directional 

bias (spatial autocorrelation) and influence of highly diversified orography (topography and 

exposure) interacting with multiple weather systems. Therefore, the complex altitudinal 

variation of precipitation in the high-altitude Indus basin cannot be represented by a single 

relation. Such an elusive behaviour of precipitation gradient was also found by Immerzeel 

et al. (2014) in Nepalese Himalayas, where a uniform valley wide precipitation gradient 

could not be established due to influence of several scale-dependent mechanisms. 

Although, we attempted a separate analysis for each sub-hydrological basin, yet the spatial 

variability in each sub hydrological basin is so high that the number of available 

observations is inadequate to infer an accurate distribution of altitudinal precipitation. 

Rather complex and nonlinear trend of precipitation increase with altitude is evident in 

most sub-basins. The south-west TP and eastern Karakoram regions display an elusive 

trend mainly due to higher variability and a small number of observation points. Astore and 

Chitral basins depict mixed trend, while Shigar, Hunza and Gilgit basins infer relatively 

strong positive vertical gradients. The southern basins like Chenab, Jhelum, Swat and 

Lower most reach of Indus main experience the zone of maximum precipitation at an 

altitude of around 2500 m. Pang et al. (2014) and Dhar and Rakhecha (1981) also observed 

that the monsoon precipitation above 2400 m elevation in the central Himalayas decreases 

significantly with rising elevation. The height of maximum precipitation in rest of the sub-

basins is not clear but tends to increase with latitude. Hence, the assumptions of linear 

increase in precipitation with elevation by the earlier studies (e.g. Immerzeel et al., 2012; 

Mayer et al., 2006 and Winiger et al., 2005) could not be confirmed by this study as the 

available observations are highly inadequate to infer an accurate distribution of altitudinal 

precipitation. 

2.4.2 Spatial interpolation of precipitation observations 

The KED-based interpolation of the point observations revealed some important 

characteristics of precipitation distribution in the study area. Monthly distribution of 

precipitation indicates largely bimodal weather system in the study area reflecting the 

wintertime precipitation associated with the westerly systems and the impact of Indian 

summer monsoon. The south-western Himalayan catchments (Chenab, Jhelum & Indus-L) 

are dominated by the summer monsoon but also receive considerable amounts of 

precipitation during winter and pre-monsoon seasons. The Hindukush and Karakoram 

basins receive most of their precipitation during winter (40-60%) and pre-monsoon 

(25-45%) seasons. The winter precipitation usually strengthens in December, peaks in 

March and starts receding during April and is very important for accumulated summer 

flows particularly in the Hindukush and Karakoram regions (Figure 2.4). 
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            Figure 2.3: Altitudinal variation of annual precipitation in each sub-basin. 
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Figure 2.4: Monthly distribution of area-weighted depths of estimated precipitation and specific 

runoffs at sub-basin level. 
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The hydrographs of estimated precipitation and specific runoff (Figure 2.4) indicate 

dominancy of snow/glacier melt contribution during May-September. Since, snowfields 

and glaciers often perform an important function of regulating stream flows, the 

downstream areas usually receive heavy floods whenever higher precipitation in winter 

season is followed by a relatively warm and wet monsoon season. Due to varying inputs of 

precipitation and snowmelt components, there is large variability in the amount (depth) of 

peak flows from different sub-basins but the timing tends to be in late July for most of the 

basins. Generally, the river flows are very low during winter, start rising in May, peak in 

July-August and descend sharply until the start of next winter. The high-altitude western 

and northern basins (Chitral, Gilgit, Hunza Shigar, Shyok, Indus at Kharmong and Astore) 

are more dominated by snow/glacier melt while the low-altitude southern basins (Swat, 

Indus-lower, Jhelum and Chenab) receive substantial flows from direct rainfall. 

 

Figure 2.5: Spatial distribution of KED based estimated precipitation for a) pre-monsoon (Apr-Jun), 

b) monsoon (Jul-Sep), c) winter (Oct-Mar) and d) annual basis. All values are in mm (note different 

scales for each panel). 

The estimated precipitation distribution (Figure 2.4 and 2.5) signifies the key features of 

mean annual cycle and seasonality of precipitation. Moisture-laden westerly winds are 

intercepted by high mountains in the west and north, leading to moisture condensation and 

precipitation at higher altitudes. As such, winter precipitation tends to be stronger in 

Chitral, Swat, Gilgit, Hunza, Astore and Shigar basins, which receive significant 

precipitation in the form of snowfall during winter and spring (pre-monsoon) seasons. The 

Indian summer monsoon mainly dominates at southern parts (i.e. Chenab, Jhelum, Swat 

and Indus-lower basins). Northwardly oriented Astore, Shingo and Zanskar basins are on 

the leeward side of western Himalayan range and thus receive lower precipitation as 

compared to Chenab and Jhelum basins in monsoon season. The Tashain glacier and Nanga 

Parbat massif located in the south-west of Astore basin hinder further north-west movement 

of the monsoon. However, stronger storms often divert northwardly and penetrate in to the 

central Karakoram region. Highly elevated boundary between Chenab and Zanskar basins 

30 60 90 120 150 200 250 300 350 455 50 100 150 200 300 400 600 900 1200 1500

50 100 150 200 300 400 600 900 1200 1500 100 200 300 450 600 900 1200 1500 1800 2230
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hardly allows monsoon rains to penetrate further northward; as such the Zanskar range and 

Ladakh region in the TP are relatively drier. The East Asian summer monsoon seldom 

reaches to the Karakoram from the east. However, whenever it does penetrate significantly, 

it interacts dramatically with the features of the already present Indian summer monsoon 

and westerly systems causing heavy downpours and extensive floods (e.g. Jul-Aug 2010 

floods in Pakistan). The Indus main up to Chilas (climatic station number 5 in Figure 2.2), 

which remains under the rain shadow of the surrounding high mountains on both sides, is 

least affected by both summer monsoon and western disturbances. 

2.4.3 Validation of KED-based estimated precipitation 

The basin-wide KED-based estimated precipitation is validated by the specific runoff 

(measured flow/drainage area) of respective subbasins (Figure 2.6a). The specific runoff in 

snow/glacier fed basins is usually affected by precipitation losses and the dynamics of 

snow/glacier mass balance as the river flows are often regulated by changes in storage of 

snow/glacier mass. In the absence of comprehensive and reliable mass balance estimates, 

the estimated precipitation and the corresponding specific runoffs can be used to infer the 

change in snow/glacial mass balance. Positive changes in storage are expected when the net 

precipitation (excluding losses) is markedly greater than river runoff. Conversely, higher 

runoff compared to the net precipitation may point to loss of storage indicating negative 

mass balance. However, reliable estimates on evapotranspiration, interception, sublimation 

and percolation losses in the study area are lacking, forcing earlier studies (e.g. Immerzeel 

et al., 2009; Tahir et al., 2011) to ignore these losses. The assumption that these 

components in water balance studies may be negligible particularly in the Karakoram 

region are supported by the fact that the majority of the landscape in this region is rocky 

with scarce vegetative cover resulting in minor evapotranspiration, interception and 

percolation. Nevertheless, these losses will result in reduced net precipitation. We used net 

precipitation from the glacier accumulation zones, which already excludes the losses from 

snowfields and glaciated areas. 

 

Figure 2.6: Validation of estimated precipitation with specific runoff (a) and glacier cover (b). 

Moreover, there may be some compensating errors because the solid precipitation in the 

high-altitude and windyareas is generally susceptible to undercatch by 20-50% (Rasmussen 

et al., 2012). Therefore, we assume that the potential losses (evapotranspiration, 

sublimation, interception and deep percolation) and possible gains (undercatch of snowfall) 

cancel each other out and the net difference is insignificant particularly in the Karakoram 

and north-west Hindukush regions. Another approximation to validate the estimated 

Annual Estimated Precipitation (mm)
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Glaciers
(a)  (b)



27 

 

precipitation is superimposition of glacier cover over the estimated precipitation (Figure 

2.6b) since an adequate amount of precipitation is essential to sustain and surge the glaciers 

in this area. The estimated precipitation coherently follows the pattern of glacier cover in 

high-altitude areas except the eastern Shyok basin. Finally, the KED-based estimated 

precipitation is compared with the estimates of earlier studies derived either from station 

observations or gridded datasets. The comparative analysis, summarized in Table 2.3, 

shows that the precipitation estimates by earlier studies are highly contrasting but consistent 

in underestimating precipitation in majority of the areas. These earlier studies have used 

non-representative precipitation data and/or overestimated basin boundaries resulting in 

highly biased precipitation estimates. 

Table 2.3: Comparison of KED-based estimated precipitation with the estimates of earlier studies 

River Basin 
Precipitation 

(mm) 
Dataset Used Reference Study 

Indus-

Kharmong 

388.0 Terrestrial Precipitation V2.01 Mukhopadhyay, 2012 

277.3 Station data + KED interpolation This Study 

161.0 APHRODITE * 1.17 Lutz et al., 2014a 

Shyok 

341.5 Station data + KED interpolation This Study 

251.2 Terrestrial Precipitation V2.01 Mukhopadhyay, 2012 

175.5 APHRODITE * 1.17 Lutz et al., 2014a 

Shigar 

917.2 Station data + KED interpolation This Study 

882.0 India-WRIS CWC and NRSC, 2014 

550.0 Model Bocchiala et al., 2011 

264.0 APHRODITE * 1.17 Lutz et al., 2014a 

201.7 Terrestrial Precipitation V2.01 Mukhopadhyay, 2012 

Hunza 

828.0 Glaciers as proxy & station data Immerzeel et al., 2012 

732.8 Station data + KED interpolation This Study 

692.0 APHRODITE+Glacier as proxy Lutz et al., 2014b 

582.6 India-WRIS CWC and NRSC, 2014 

229.7 Terrestrial Precipitation V2.01  Mukhopadhyay, 2012 

205.0 APHRODITE * 1.17 Lutz et al., 2014a 

176.0 APHRODITE Tahir et al., 2011 

162.5 Station Observations Akhtar et al., 2008 

Gilgit 

582.6 India-WRIS CWC and NRSC, 2014 

575.4 Station data + KED interpolation This Study 

326.0 APHRODITE * 1.17 Lutz et al., 2014a 

315.0 Terrestrial Precipitation V2.01  Mukhopadhyay, 2012 

162.5 Station Observations Akhtar et al., 2008 

Astore 

904.6 Station data + KED interpolation This Study 

882.0 India-WRIS CWC and NRSC, 2014 

496.0 Station Observations Akhtar et al., 2008 

430.5 APHRODITE * 1.17 Lutz et al., 2014a 

 675.0 ERA-Interim, NCEP/NCAR Reggiani & Rientjes, 2015 

 671.0 APHRODITE+Glacier as proxy Lutz et al., 2014b 

Indus-

Tarbela 

481.6 Station data + KED interpolation This Study 

315.0 Terrestrial Precipitation V2.01 Mukhopadhyay, 2012 

311.0 TRMM 3B43 Immerzeel et al., 2009, 2010 

300.0 TRMM 2B31 Bookhagen & Burbank, 2010 

218.9 APHRODITE * 1.17 Lutz et al., 2014a 

Jhelum 
1175.2 Station data + KED interpolation This Study 

1052.5 India-WRIS CWC and NRSC, 2014 

Chenab 
1333.8 India-WRIS CWC and NRSC, 2014 

1107.5 Station data + KED interpolation This Study 
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2.4.4 Evaluation of the gridded products 

The gridded precipitation products often fail to capture the large and abrupt changes in 

precipitation over short distances due to their coarse resolution and pronounced orographic 

effects in the high mountain areas. In this study, we evaluated accuracy of important 

precipitation products derived through four different means for the high-altitude areas of 

the Indus basin. The spatial distribution of mean seasonal and annual precipitation totals 

from ERA-Interim, WFDEI, TRMM and APHRODITE products show contrasting timings 

and amplitudes (Table 2.4) and patterns (Figure 2.7) relative to the KED-based estimated 

precipitation. In quantitative terms, ERA-Interim largely overestimates precipitation in all 

the sub-basins except Shigar and Hunza, while the other three datasets consistently 

underestimate precipitation in all the areas barring Ladakh region of the TP (Indus at 

Kharmong). However, the inter-comparison of the four gridded products show a reasonable 

consistency between TRMM and APHRODITE, while WFDEI tend to be slightly different 

and ERA-Interim displays large overestimates. Within the ambit of overall dry bias, 

WFDEI gives relatively better quantitative estimates for Hindukush, Karakoram and north-

western Himalayan regions but seems less accurate for the south-western Himalaya, 

whereas TRMM shows opposite estimates for these areas. Similarly, TRMM gives better 

estimates during monsoon but WFDEI is better for the other seasons. The APHRODITE 

product is the least accurate among the four datasets showing strong dry bias for almost all 

seasons and all areas, particularly for winter and in the high-altitude catchments. 

Table 2.4: Basin-wise mean seasonal and annual precipitation totals (mm) from Estimated (EST), 

ERA-Interim (ERAI), WFDEI (WEI), TRMM (TRM), and APHRODITE (APH) precipitation 

products during 1998-2012. 

 

The pattern statistics of the mean annual precipitation in the study area (Figure 2.8) show 

normalized RMSE values ranging from 0.6 for APHRODITE to 0.62 for TRMM, 0.72 for 

WFDEI and 0.8 for ERA-Interim products. The APHRODITE and TRMM products show a 

relatively higher correlation coefficient of around 80% against 73% by ERA-Interim and 

WFDEI products. It is important to note that these statistics only evaluate the pattern of the 

gridded datasets. Overall, there is significant spatiotemporal (basin to basin and season to 

annual) bias in the precipitation totals of gridded datasets (Figure 2.9). ERA-Interim largely 

displays positive bias (overestimation) while the other three datasets show substantial 

negative bias (underestimation) in most parts of the study area. The highest negative bias is 

observed in the central Karakoram region consistently by all the datasets, whereas the 

River

Basin EST ERAI WEI TRM APH EST ERAI WEI TRM APH EST ERAI WEI TRM APH EST ERAI WEI TRM APH

Indus-U 29.2 129.5 79.8 56.6 33.0 69.4 206.2 128.2 124.7 81.9 46.4 112.1 124.6 90.8 41.9 145.0 447.8 332.6 272.1 156.8

Zanskar 92.6 247.7 92.7 84.2 53.3 126.8 191.7 132.8 146.8 80.7 254.8 339.5 147.5 131.3 87.5 474.2 778.9 373.0 362.3 221.5

Shingo 135.1 281.3 110.3 121.1 78.3 98.0 174.1 117.2 119.3 58.1 322.6 516.6 208.3 190.8 115.7 555.7 972.0 435.8 431.2 252.1

Shyok 77.0 148.4 59.4 59.6 40.2 100.1 116.8 27.3 79.1 41.2 164.4 157.3 143.0 69.3 56.8 341.5 422.5 229.7 208.0 138.2

Shigar 224.7 206.8 88.5 67.6 90.8 160.4 120.9 31.7 101.8 46.8 532.2 318.5 202.1 117.2 87.9 917.2 646.2 322.3 286.6 225.5

Hunza 198.6 251.6 92.4 84.9 70.6 188.6 177.3 26.4 115.1 46.1 345.6 308.3 208.2 156.1 59.0 732.8 737.3 327.0 356.1 175.7

Gilgit 156.2 371.7 133.7 97.8 133.2 162.2 234.1 86.3 109.5 61.6 257.0 559.8 286.8 117.1 83.4 575.4 1165.6 506.8 324.4 278.2

Astore 235.5 352.1 124.6 129.7 135.6 153.0 262.1 116.6 138.8 64.3 516.2 590.7 241.1 173.1 134.5 904.6 1204.9 482.3 441.6 334.4

Indus-M 151.9 362.6 127.9 94.4 117.6 101.5 295.2 111.8 119.2 53.9 199.4 557.6 241.9 109.9 89.8 452.9 1215.5 481.6 323.5 261.3

Indus-L 237.6 343.1 22.7 187.2 214.9 355.8 662.4 330.1 347.3 338.2 542.9 620.0 368.9 306.8 364.0 1136.3 1625.6 721.6 841.3 917.1

Indus-Tar 115.7 228.0 102.2 86.0 77.7 133.1 231.6 109.6 134.6 86.9 232.9 317.7 191.8 127.6 94.9 481.6 777.3 403.6 348.2 259.5

Chitral 173.2 344.4 168.2 104.2 141.9 124.8 145.2 104.9 94.6 54.3 404.4 595.1 371.9 218.6 184.2 702.3 1084.7 645.0 417.4 380.4

Swat 218.5 332.1 218.5 172.8 200.3 224.9 620.5 250.1 234.6 222.6 522.7 655.7 393.6 368.7 415.7 966.1 1608.4 862.2 776.1 838.6

Jhelum 278.5 314.8 181.5 211.9 179.5 337.6 496.6 329.2 370.0 252.1 559.0 641.2 295.8 367.4 333.0 1175.2 1452.6 806.5 949.3 764.6

Chenab 242.4 289.9 140.1 162.7 137.5 353.6 401.6 303.3 427.1 272.6 511.6 563.4 198.5 290.8 288.3 1107.5 1254.9 641.9 880.6 698.4

Pre-monsoon Monsoon Winter Annual
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positive bias is mainly concentrated in the Ladakh region. However, the estimated 

precipitation is very close to net precipitation, whereas the gridded precipitation products 

give gross precipitation amounts, which are subjected to some losses from precipitation. 

Hence, some room for overestimation can be permitted. Nevertheless, the extent of absolute 

bias suggests the importance of bias correction of the gridded datasets before their use in 

hydroclimate studies in the study area. To support such a bias correction, we analysed the 

seasonal and annual biases relative to the estimated precipitation at the sub-basin scale and 

introduced appropriate correction factors to account for the inherent errors in each gridded 

dataset. These basin-wide seasonal/annual correction factors (Table 2.5) may be multiplied 

with the respective gridded datasets and sub-basins. This will ensure reasonably good 

estimates of actual precipitation that can be used to avoid or minimize suboptimal 

calibration of model input parameters in the hydrological modelling/water balance studies. 

 

Figure 2.7: Spatial distribution of mean precipitation (mm) by the estimated, ERA-Interim, WFDEI, 

TRMM and APHRODITE datasets for a) pre-monsoon, b) monsoon, c) winter, and d) annual basis. 

All values are in mm (note the different colour scales). 
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Figure 2.8: Pattern statistics of mean annual precipitation in the study area for the four gridded 

products. The RMSE and standard deviations are normalized by those of the estimated precipitation.  

Figure 2.9: Absolute bias (in mm) of ERA-Interim, WFDEI, TRMM and APHRODITE precipitation 

relative to the KED-based estimated precipitation for a) pre-monsoon, b) monsoon, c) winter and d) 

annual basis (note the different colour scales). 
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Table 2.5:  Basin-wide, seasonal and annual correction factors for each gridded precipitation product 

River Pre-monsoon Monsoon Winter Annual 

Basin ERAI WEI TRM APH ERAI WEI TRM APH ERAI WEI TRM APH ERAI WEI TRM APH 

Indus-U 0.21 0.37 0.52 0.86 0.36 0.57 0.63 0.96 0.47 0.35 0.59 1.05 0.32 0.45 0.59 0.95 

Zanskar 0.33 0.89 1.01 1.70 0.61 0.84 0.83 1.80 0.66 1.53 1.72 2.81 0.59 1.23 1.30 2.41 

Shingo 0.46 1.18 1.11 1.84 0.53 0.79 0.80 1.67 0.60 1.53 1.97 3.02 0.56 1.26 1.35 2.41 

Indus-K 0.27 0.60 0.71 1.19 0.44 0.66 0.70 1.25 0.53 0.78 1.04 1.72 0.42 0.74 0.86 1.49 

Shyok 0.49 1.22 1.35 1.73 0.84 8.74 1.45 2.32 1.08 1.03 2.38 2.61 0.82 1.53 1.75 2.41 

Shigar 1.12 2.55 3.29 2.57 1.38 7.67 1.56 3.35 1.81 2.61 4.52 6.30 1.53 2.93 3.17 4.23 

Hunza 0.77 2.06 2.27 2.77 1.07 9.75 1.62 3.87 1.12 1.60 2.33 5.49 1.04 2.29 2.11 4.23 

Gilgit 0.42 1.16 1.58 1.22 0.74 2.11 1.46 2.72 0.48 0.88 2.23 3.23 0.52 1.17 1.79 2.22 

Astore 0.65 1.85 1.82 1.75 0.57 1.26 1.17 2.37 0.84 2.08 3.22 4.11 0.74 1.86 2.07 2.82 

Indus-M 0.45 1.24 1.70 1.33 0.42 1.05 0.92 1.93 0.38 0.85 1.82 2.21 0.40 0.99 1.43 1.73 

Indus-L 0.77 1.09 1.32 1.11 0.51 1.03 1.01 1.11 0.92 1.51 2.01 1.80 0.71 1.27 1.47 1.37 

Indus-Tar 0.47 1.09 1.30 1.50 0.64 3.43 1.07 1.94 0.76 1.08 1.84 2.60 0.63 1.24 1.43 2.09 

Chitral 0.50 1.03 1.73 1.27 0.96 1.42 1.56 2.47 0.72 1.09 4.44 2.98 0.69 1.10 1.88 2.14 

Swat 0.70 1.03 1.28 1.11 0.39 0.88 0.93 1.02 0.86 1.38 1.43 1.36 0.62 1.18 1.27 1.22 

Jhelum 0.91 1.56 1.32 1.54 0.68 0.98 0.96 1.41 0.87 1.90 1.51 1.80 0.82 1.51 1.27 1.63 

Chenab 0.84 1.70 1.47 1.83 0.80 1.05 0.76 1.35 0.87 2.58 1.75 2.11 0.89 1.77 1.28 1.84 

2.5 Discussion 

The altitudinal analysis of precipitation distribution demonstrates the typical orographic 

precipitation trend, which increases up to a certain height of maximum precipitation and 

thereafter decreases, in most of the sub-basins. However, the basin to basin difference in 

the rate and magnitude of change is considerable. These results are in good agreement with 

earlier studies for the Chenab basin (Arora et al., 2006 and Singh et al., 1995). The 

altitudinal dependency of precipitation expressed by the 2nd order polynomial functions 

indicates only the generalized trend of precipitation variation with altitude. The exact 

behaviour of precipitation is too complex to be represented by such functions. Presence of 

spatial autocorrelation and very high uncertainty beyond the altitudinal extent of the point 

observations, particularly higher than 4000 m which is attained by 57% of the study area, 

are the major complexities. Generally, precipitation tends to decrease with increasing 

latitude (from south to north), while longitude has seasonal influence, positive in monsoon 

and negative in winter season. Similarly, the southeast ward and southwestward orientated 

locations mostly receive more precipitation in monsoon and winter seasons respectively. 

However, the areas under the influence of rain shadow are notable exceptions, where 

precipitation tends to be far less throughout the year. 

The core characteristics and spatial pattern of mean seasonal and annual precipitation 

estimates show strong south-north precipitation gradients containing the general rainfall 

maxima along the southern and lower most slopes of Chenab, Jhelum, Indus main and Swat 

basins (Figure 2.5), which was also observed in previous studies (e.g. Palazzi et al., 2013; 

Bookhagen and Burbank, 2006). However, the unique distribution revealed by this study is 

the emergence of an unusually wet zone containing the 2nd precipitation maxima along the 

northern boundary of central Karakoram region, which had never been detected by the 

earlier datasets or studies. Despite the fact that this zone in the central Karakoram region 

accommodates some of the largest glaciers (e.g. Baltoro, Approach, Whaleback, Hispar, 

Biafo and Khurdopin), most of which are believed to be stable or even surging with a net 

positive glacier mass balance, the earlier datasets consistently and significantly 

underestimated precipitation in this region. However, to sustain and surge, the glaciers in 

this area essentially require more precipitation than their ablation/discharges. Our estimates 



 

32 

 

of higher precipitation coherently follow the pattern and extent of the glacier cover in the 

high-altitude areas. Contrary to the inconsistent and contrasting estimates by the earlier 

studies, this study estimated significantly higher precipitation in all the sub-basins, which 

are comparable and consistent with the corresponding specific runoffs (measured flows). 

Similarly, the drier areas under the influence of rain shadow, which are often ignored and 

usually overestimated by the gridded datasets, are also well recognized. 

The basin-wide estimated precipitation and corresponding values of specific runoff shown 

in Table 2.3 do not support the idea of a positive mass balance in the study area. Higher 

values of specific runoff for Gilgit, Astore, Shyok and Shigar basins suggest essentially a 

negative mass balance in these basins. Similarly, Chenab, Hunza and Chitral basins show 

slightly higher precipitation and may have neutral to slightly negative mass balance. Swat, 

Jhelum and Chenab basins indicate precipitation greater than river flows. However, 

evapotranspiration and percolation losses from these basins may be relatively large due to 

higher temperatures (large area below the 0 °C isotherm), greater vegetative cover and 

availability of moisture for evapotranspiration/percolation (more runoff from rainfall and 

seasonal snow). Thus, these basins may also be considered to have neutral to negative mass 

balance. The estimates for Zanskar basin and Ladakh region in the TP are relatively 

uncertain due to very low number of observation points in these areas. The precipitation 

estimates relative to the corresponding river flow for the Indus at Kharmong basin seem to 

be on the higher side. Therefore, a neutral to negative mass balance can be expected for this 

catchment. The Indus at Tarbela combines drainage of the upstream catchments, which are 

either neutral or experience a negative mass balance. However, the net impact is likely to 

be a negative mass balance as precipitation is only marginally higher than the specific 

runoff. Our results are in good agreement to available glacier mass balance studies (e.g. 

Gardelle et al., 2012; Kääb et al., 2012, 2015). 

The selected gridded precipitation products provide only a marginal resemblance of the 

actual precipitation. ERA-Interim largely overestimates precipitation in all the sub-basins 

except Shigar and Hunza, while the other three datasets consistently underestimate 

precipitation in all the areas barring Ladakh region of the TP (Indus-U up to Kharmong). 

The overestimated precipitation in the TP region by the APHRODITE and TRMM 3B43 

products was also observed by Palazzi et al. (2013), Prakash et al. (2013), Andermann et al. 

(2011) and Yin et al. (2008). ERA-Interim is prone to underestimate precipitation by up to 

40% in the areas with low evaporation rates and overestimate by about 150% under 

conditions with high evaporation rates (Bumke, 2015). The overall underestimated 

precipitation by WFDEI and TRMM datasets, also observed by Li et al. (2013), may be 

attributed to the fact that their correction/validation is done mainly by the use of stations 

predominantly located in valley bottoms. This was also reported by Reggiani and Rientjes 

(2015) who observed uncorrected reanalysis data from ERA-Interim and NCEP/NCAR 

products as the better option in terms of quantitative estimates of precipitation in the UIB 

up to Besham Qila. Several studies (e.g. Andermann et al., 2011; Rajeevan and Bhate, 

2009; Krishnamurti et al., 2009; Yatagai and Kawamoto, 2008; Yatagai and Xie, 2006) 

consider APHRODITE as an accurate dataset, but its accuracy greatly depends on the 

density of station data in the area of interest. In the high-altitude Indus basin, the 

APHRODITE product uses non-representative low-altitude stations to derive the spatial 

distribution of high-altitude precipitation. Therefore, it reflects highly underestimated 

precipitation in all of the sub-basins. Moreover, the four gridded products completely fail to 

reproduce the zone of 2nd precipitation maxima in the central Karakoram and could not 
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properly detect the drier areas under the influence of rain shadow. They tend to smooth the 

precipitation due to their lower spatial resolution resulting in significant overestimated 

precipitation in these areas. This study incorporates high-altitude observations, which have 

never been used in the formation or validation of precipitation datasets.  

The KED-based interpolation scheme further amplifies the precipitation at the higher 

altitudes by taking into account the spatial autocorrelation and elevation effects at local 

scale. The pattern statistics indicate that despite better quantitative estimates, ERA-Interim 

and WFDEI products are relatively poor in reproducing the spatial pattern of estimated 

precipitation mainly due to their lower spatial resolution and use of nonrepresentative data 

in their formation and/or validation. The relatively better patterns shown by APHRODITE 

are due to the fact that this dataset is derived from station observations. 

In view of significant biases in the gridded precipitation products covering this region, we 

determined basin-wide seasonal and annual correction factors for each dataset. These 

correction factors can be used for lumped hydrological modeling studies. Like, Lutz et al. 

(2014a) appropriately multiplied APHRODITE precipitation by a constant factor of 1.17 to 

account for the inherent underestimation and avoid undue compensation by suboptimal 

input parameters. However, this factor is still on the lower end as our analysis suggests an 

average correction factor of 2.1 for the UIB up to Tarbela dam, which varies significantly 

for all other sub-basins. Hence, the use of underestimated precipitation by Lutz et al. 

(2014a) might have resulted in an exaggerated snow/glacier melt contribution and a biased 

conclusion of the associated snow/glacier cover extent. Nevertheless, our KED-based 

precipitation estimates and correction factors can efficiently be used for bias correction of 

these gridded precipitation products and improved hydroclimate assessments for the study 

area. 

Although, the methods employed in this study are straightforward and robust, further 

improvements in precipitation estimation can be expected once higher quality observed 

data with more spatiotemporal coverage, particularly above 4000 m a.s.l., become 

available. Moreover, the employed methods are equally applicable for other regions of the 

world, especially with similar geo-hydro-climatological conditions. 

2.6 Conclusions 

Precipitation in the high-altitude areas of the Indus basin governs the renewable water 

resources and associated developments, but a comprehensive assessment of precipitation 

distribution in this region is largely lacking. Here, we attempt to explain how precipitation 

amounts, seasonality and patterns are represented in the study area. The altitudinal analysis 

of precipitation observations in each subbasin demonstrated the important role of 

orographic precipitation. Yet, the topographical variability even at the sub-basin and local 

scale is so high that the available observations are insufficient to infer an accurate 

distribution of altitudinal precipitation. Instead, rather complex and nonlinear trends of 

precipitation increase with altitude are evidently depicted. 

The study provides much improved estimates of precipitation distribution, which are 

comparable and consistent with the corresponding observed runoffs from the 12 sub-basins. 

The geo-statistical analysis of precipitation observations revealed substantially higher 

precipitation in most of the sub-basins compared to earlier studies. The study area largely 

experiences a bimodal weather system reflecting wintertime precipitation associated with 

the westerly systems and the impact of Indian summer monsoon. The analysis 
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demonstrated two distinct rainfall maxima; 1st along southern and lower most slopes of 

Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner of Shyok 

basin in the central Karakoram. Moreover, the estimates better recognize the drier areas 

under the influence ofrain shadow, which are often overlooked by the gridded datasets. 

Our analysis shows that the selected gridded precipitation products derived from four 

different sources are prone to significant errors providing only a marginal resemblance of 

the actual precipitation in the study area. We conclude that the uncorrected gridded 

precipitation products are highly unsuitable to estimate precipitation distribution and to 

derive glacio-hydrological models in water balance studies in the high-altitude areas of 

Indus basin. The suggested basin-wide seasonal and annual correction factors for the four 

gridded precipitation products can be useful for lumped hydrological modelling studies. 

The estimated precipitation distribution can effectively serve as a basis for bias correction 

of any gridded precipitation products for the study area. 
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Chapter 3 

Adjustment of Measurement Errors to Reconcile 

Precipitation Distribution 

ABSTRACT 

Precipitation in the high-altitude Indus basin governs its renewable water resources 

affecting water, energy and food securities. However, reliable estimates of precipitation 

climatology and associated hydrological implications are seriously constrained by the 

quality of observed data. As such, quantitative and spatiotemporal distributions of 

precipitation estimated by previous studies in the study area are highly contrasting and 

uncertain. Generally, scarcity and biased distribution of observed data at the higher 

altitudes and measurement errors in precipitation observations are the primary causes of 

such uncertainties. In this study, we integrated precipitation data of 307 observatories with 

the net snow accumulations estimated through mass balance studies at 21 major glacier 

zones. Precipitation observations are adjusted for measurement errors using the guidelines 

and standard methods developed under the WMO’s international precipitation measurement 

intercomparisons, while net snow accumulations are adjusted for ablation losses using 

standard ablation gradients. The results showed more significant increases in precipitation 

of individual stations located at higher altitudes during winter months, which are consistent 

with previous studies. Spatial interpolation of unadjusted precipitation observations and net 

snow accumulations at monthly scale indicated significant improvements in the quantitative 

and spatio-temporal distribution of precipitation over the unadjusted case and previous 

studies. Adjustment of river flows revealed only a marginal contribution of net glacier mass 

balance to river flows. The adjusted precipitation estimates are more consistent with the 

corresponding adjusted river flows. The study recognized that the higher river flows than 

the corresponding precipitation estimates by the previous studies are mainly due to 

underestimated precipitation. The results can be useful for water balance studies and bias 

correction of gridded precipitation products for the study area. 
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3.1. Introduction 

High mountain ranges around the world are important sources of freshwater storage and 

subsequent supplies to downstream areas. Indus basin contains one of the most diversified 

and complex mountain terrains in the world. Precipitation in its high-altitude areas governs 

the renewable water resources determining water, energy and food securities in the region. 

Runoff regime of the basin is predominantly controlled by winter- and summer-monsoon 

precipitations and summer temperatures (Yu et al., 2013). Yet, there is limited 

understanding and reliable evidence of quantitative and spatiotemporal distribution of the 

key climatic variables, particularly the precipitation (Immerzeel et al., 2015; Mishra, 2015; 

Ragettli and Pellicciotti, 2012; Hewitt, 2005; Winiger et al., 2005) leading to a large 

uncertainty in the hydro-climatic predictability in the basin (Lutz et al., 2016). Overall 

scarcity and biased spatial and altitudinal distribution of the in-situ observations are the 

primary reasons for this uncertainty and knowledge gap. Substantial increase in research on 

glacio-hydro-climatology of the Hindukush Karakoram Himalayan (HKH) region is 

observed since the International Panel on Climate Change (IPCC) released its 4th 

assessment report, which claimed that “glaciers in Himalayas are receding faster than in 

any other part of the world and, if the present rate continues, the likelihood of their 

disappearing by the year 2035 is very high” (Cruz et al., 2007). Later, IPCC withdrew this 

statement due to an inaccurate citation of the grey literature. Yet, most of the subsequent 

research is mainly focused on improved methods using more or less the same commonly 

available datasets that use low-altitude and largely unrepresentative observations in the 

development or validation of these datasets.  

Adequate monitoring of climatic variables to better represent the entire range of a diverse 

climate of this complex mountain terrain is essential for reducing uncertainties and 

inferring informed policy decisions. However, such an observational network in the study 

region is lacking mainly due to resource constraints and logistical limitations. To overcome 

the observational data gaps, the hydro-climatologists generally rely on numerous 

global/regional scale gridded products derived through various means (e.g. climate models 

reanalysis, merged model and station observations, merged satellite estimates and station 

observations, and derived solely from station observations). However, the strong gradients 

and extreme heterogeneity of this complex mountain terrain are inadequately captured by 

the gridded products due to their coarse resolution and use of non-representative climate 

data in their development or validation (Dahri et al., 2016; Reggiani and Rientjes, 2015; 

Immerzeel et al., 2015). As such, the precipitation estimates by a number of earlier studies 

(e.g. Reggiani and Rientjes, 2015; Lutz et al., 2014a; Lutz et al., 2014b; CWC and NRSC, 

2014; Mukhopadhyay, 2012; Immerzeel et al., 2012a, 2010, 2009; Bocchiala et al., 2011; 

Tahir et al., 2011; Bookhagen & Burbank, 2010; Akhtar et al., 2008) that used the gridded 

datasets show highly contrasting but consistently underestimated precipitation in most parts 

of the high-altitude Indus basin.  

Numerous efforts to accurately estimate precipitation in this region only partially succeeded 

due to lack of observed data but significantly underlined the relevance and severity of the 

problem. In many hydrological modelling studies, the underestimated precipitation is often 

compensated for with other parameters like evapotranspiration and/or snow/glacier melt 

factors (Lutz et al., 2014a; Pellicciotti et al., 2012; Schaefli et al., 2005). This results in 

inaccurate and suboptimal inferences regarding precipitation distribution, snow/glacier 
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cover dynamics and associated melt water contributions. Adam et al. (2006) used a water 

balance approach to indirectly correct monthly precipitation in mountain regions from an 

existing global dataset and provided reasonable approximations at basin level. However due 

to inaccuracies in water balance components and use of biased gridded datasets developed 

from limited observations, their results show large differences in precipitation amounts and 

distribution patterns at sub-basin scale in the study area. For example, precipitation in the 

high-mountain Karakorum region is largely underestimated due to lack of stations in this 

area, whereas higher precipitation amounts are shown for the southern parts of western 

Himalayan region that hosts many precipitation gauges. Lutz et al. (2014a) recognized 

underestimation of APHRODITE precipitation and multiplied it with an arbitrary constant 

factor of 1.17 to account for the inherent underestimations. 

Recently, Immerzeel et al. (2015) and Dahri et al. (2016) used other sources of 

data/information to cover the observational gaps and provided relatively better estimates of 

precipitation amounts and distribution in the high-altitude Indus basin. The approach 

adopted by Immerzeel et al. (2015) used the glacier mass balance estimates of Kääb et al. 

(2012) to inversely infer the high-altitude precipitation. Using APHRODITE as the basis, 

they computed vertical precipitation gradients until observed mass balance matched the 

simulated mass balance for the 550 major glacier systems in the Indus basin. However, 

precipitation in the basin does not have constant and linear gradients (Dahri et al., 2016), 

APHRODITE precipitation distribution is highly biased (Dahri et al., 2016; Palazzi et al., 

2013), and their mass balance computations are uncertain due to the use of extremely 

elusive direct evapotranspiration losses and negligence of percolation, interception and 

sublimation losses from the precipitation. Moreover, precipitation estimates of Immerzeel 

et al. (2015) might be affected by the overestimated basin boundaries of Shyok and Indus at 

Tarbela sub-basins. Whereas, Dahri et al. (2016) integrated the available station 

observations with the indirect precipitation estimates at the accumulation zones of major 

glacier systems. They employed Kriging with external drift (KED) interpolation scheme 

with elevation as predictor to derive the spatiotemporal distribution of mean monthly and 

annual precipitation climatologies. They validated their precipitation estimates by the 

individual station observations and the observed specific runoff at sub-basin scale. 

However, if the net mass balance (i.e. slightly negative as estimated by Kääb et al., 2012) 

and precipitation losses (direct evapotranspiration, percolation, interception and 

sublimation) in the basin are taken into account, the Dahri et al. (2016) estimates still seem 

to be on lower side.  

The underestimated precipitation relative to the corresponding specific runoff in most sub-

basins may be attributed to three possible reasons: i) overestimated river flows, ii) 

significant contribution of snow/glacier melt without an adequate amount of precipitation to 

feed/sustain the glacier systems, and iii) underestimated precipitation. Given the 

technological advancements and relative precision of discharge measurement techniques 

and quality control ensured by the data collecting agencies, river flows are generally 

considered to be adequately accurate. However, there is considerable speculation but little 

analysis and evidence regarding the contribution of net glacier mass imbalance to the river 

flows. Although, Immerzeel et al. (2015) attributed the observed gap between precipitation 

and streamflow to the underestimated precipitation rather than the observed glacier mass 

balance, there is an emergent need to quantify the contribution of net glacier mass 

imbalance to the river flows. The underestimated precipitation by Dahri et al. (2016) is 

probably due to the use of net precipitation estimates from the glacier accumulation zones 
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and the raw/uncorrected precipitation gauge observations which are subject to significant 

measurements errors (Wolff et al., 2015; Chen et al., 2015; Goodison et al., 1998; Legates 

and Willmot, 1990; Legates, 1987; Sevruk and Hamon, 1984).  

The IPCC in its 5th assessment report stressed the need for adjustment of precipitation 

measurement errors and declared that observational uncertainties in precipitation may limit 

the confidence in the assessment of climatic change impacts (Bindoff et al., 2013). The 

measurement errors in precipitation observations, particularly the wind-induced under-

catch of solid precipitation in windy conditions can be substantial (Kochendorfer et al., 

2017a&b; Wolff et al., 2015; Adam and Lettenmaier, 2003). This is particularly important 

in the high-altitude Indus basin where moderately strong winds are a common 

phenomenon; temperature mostly remains below the freezing point and the majority of 

precipitation falls in the form of snow. Legates (1987), Legates and Wilmot (1990) and 

Adam and Lattenmaier (2003) adjusted the systematic biases of global precipitation 

products including the Indus basin but these datasets included only a few stations located in 

relatively dry valleys in the study area. The uncertainties in precipitation estimates may 

significantly affect the outcomes of hydrological/land surface models and mass balance 

studies. A systematic error of over 3% in rainfall measurement could lead to substantial 

underestimation of water in the hydrologic system (e.g. Sevruk, 1982; Biemans et al., 

2009). Therefore, the systematic errors in precipitation observations must be corrected if 

the measurements are to be used for climate change, hydrological modelling, and water 

balance studies (Wolff et al., 2015; Voisin et al., 2008; Legates and Willmott, 1990). This 

study attempts to address the above concerns by adjustment of the systematic measurement 

errors in precipitation observations, adjustment of net snow accumulation for the ablation 

losses, and adjustment of river flows for the net mass balance contributions. The ultimate 

goal of this research is to facilitate creation of an accurate and consistent gridded 

precipitation product for the highly under-explored region of Indus basin. The results will 

have considerable implications for water resources planning and management in both 

upstream (high-altitude) and downstream (low-altitude) areas of the Indus basin. 

3.2. Study Area 

The study area covers the high-altitude catchments of the Indus river, which originates from 

the Tibetan Plateau (TP) and the Hindukush Karakoram Himalayan (HKH) mountain 

regions (Figure 3.1).  The total area of the study region is about 4.03x105 km2 of which 

50% is above 4000 m a.s.l. and another 24% between 2500-4000 m a.s.l. Precipitation in 

the study area is influenced by multiple weather systems. The Indian summer monsoon 

brings moisture from the Indian Ocean and Bay of Bengal and is the dominant system in 

the south-eastern areas. The western disturbances originating from the Mediterranean and 

Caspian Sea dominate the south-western and north-western areas bringing winter monsoon 

during December-April months. During spring and early summer, irregular collapses of the 

Tibetan anticyclone sometimes allow monsoonal air masses to penetrate into the 

Karakoram Range (Wake, 1989). Direct transport of moisture from the Arabian Sea and 

local evapotranspiration also have considerable influence as about 5-40% of the 

precipitation falling in the Himalayas originates from the irrigated areas in northern India 

and Pakistan (Tuinenburg et al., 2012; Harding et al., 2013: Wie et al., 2013). However, the 

hydrological cycle in the study region is usually intensified when all or some of these 

systems interact with each other.  



39 

 

 
Figure 3.1 Location of study area (bottom) and description of sub-basins, river network and location 

of precipitation and flow measuring gauges (top). The red triangle and associated numbers refer to 

flow measuring gauges on various tributaries, which are (1) Indus at Kharmong, (2) Shyok at Yogo, 

(3) Shigar at Shigar, (4) Hunza at Dainyor, (5) Gilgit at Gilgit, (6) Astore at Doyian, (7) Indus at 

Tarbela dam, (8) Chitral at Chitral, (9) Panjgora at Zulum Br., (10) upper swat at Chakdara, (11) 

Kabul at Warsak, (12) Kabul at Nowshera, (13) Jhelum at Mangla dam, (14) Chenab at Marala, (15) 

Ravi at Thein dam, (16) Beas at Pong dam and (17) Sutlej at Bhakra dam. The blue circles and 

associated numbers refer to the precipitation gauges, details of which are given at Table S-3.1 

3.3. Data and Methods 

3.3.1 Precipitation observations 

Indus is a transboundary river basin, as such its meteorological data are scattered in four 

countries (i.e. Afghanistan, China, India and Pakistan). The meteorological data of 

Pakistani parts were collected from Pakistan Meteorological Department (PMD) and 

Pakistan Water and Power Development Authority (WAPDA).  Precipitation data of the 

station located in Afghanistan are available with Afghan-Agriculture UCDAVIS 

(http://afghanag.ucdavis.edu/natural-resource-management/weather), NOAA Central Library 

of US (https://docs.lib.noaa.gov/rescue/data_rescue_afghanistan.html) and US Geological 

Survey (http://edcintl.cr.usgs.gov/downloads/sciweb1/shared/afghan/downloads/documents/), while 

precipitation data of Indian and a couple of Chinese stations were downloaded from KNMI 

Climate Explorer (https://climexp.knmi.nl). In addition, we derived monthly precipitation data 

of many stations from Winiger et al. (2005), Miehe et al., (2001, 1996), Eberhardt (2007), 

Arora et al (2006), Singh and Kumar (1997), and Singh et al. (1995). 

Information regarding the gauge type, use of wind shield if any, orifice area and height of 

the gauge orifice were taken from Sevruk and Klemm (1989), BIS (1992a&b) and from 

PMD and WAPDA through personal communications. Until 1969, the most extensively 

used rain-gauge in India was non-recording (Symon’s gauge or MK2 model) with orifice 

area of 127 cm2 and instrument height of 0.3 m (Sevruk and Klemm, 1989). Thereafter, 

Indian standards adopted by the Bureau of Indian Standards (BIS) for design and 

manufacturing of meteorological instruments are strictly followed and Indian rain-gauge 

#

##

##

#

#

#

#
#

#
#

#

#
#

#

#

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!. !.

!.!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.
!.

!.

!. !.!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.!.

!.

!.

!.

!.

!. !.

!.
!.

!.
!.

!.

!.

!.

!.!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

! !. .

!.!.!.

! !. .

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.
!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.!.
!.
!.

!.

!.

!.

!.!.
!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.!.

!.

!.

!.

!.

!.!.

!.

!.!.

!.

!.!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

! !. .

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.!.
!.

!.
!.!.

!.
!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.
!.!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!. !.
!.

!.
!.
!.

!.

!.
!.

!.!!..
!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!. !.

!.

!. !.

!.!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.
!.

!.

!. !.!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.!.

!.

!.

!.

!.

!. !.

!.
!.

!.
!.

!.

!.

!.

!.!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

! !. .

!.!.!.

! !. .

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.
!.

!.

!.!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.!.
!.
!.

!.

!.

!.

!.!.
!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.!.

!.

!.

!.

!.

!.!.

!.

!.!.

!.

!.!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

! !. .

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.!.
!.

!.
!.!.

!.
!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.
!.!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.
!.

!.

!.

!. !.
!.

!.
!.
!.

!.

!.
!.

!.!!..
!.

!.

!.

!.

!.

9

8

7

6

5

4

3
2 1

99

98

97
96

95

94
93

92

91

9089

88
87

86
85

8482

81
80

79 7776
75

74
73

72

71
70

69

67

6564

62

61

60

59 58 56

55
54

51 50

49
48

4645
42

41

40

39
3634 32

31

30

29

28
27

25

24
22

21

20

17

1615 14
12

329
328 327

326
325
324322

321
320

319

318
317

316

312

311

310
308

307

306
304

303

302

301

300
299

298

297

296
294

292
291

290

289
288 287

286

285

284
283

282

281

279

277

276

275
274

273

272

271

270

268
267

266
265

261

260

259

258
257

256255

252
251

250 249

243

241

237
236

235

234

232

230

229

228

227

226

225

223

222

220

219

216

211 212210

196

195
192

191
190

189

186

184183

176

169

165

161

159

151

144

142

139

133

122

107 106
8

7

6
54

3 2

1514

13

68° E 70° E 72° E 74° E 76° E 78° E 80° E 82° E

36° N

34° N

32° N

30° N

Ü
Legend

!. Precip. Gauge
# Flow Gauge

Rivers
Basin Boundary

Elevation (m)
7528
239

Country Boundary
Indus Basin
Study Area

India
Pakistan

ChinaAfghanistan

Nepal

Tajikistan

Indus Basin

65° E 70° E 75° E 80° E

35° N

30° N

25° N
0 150 300 600 900

0 225 450 900 KilometersKilometers

Beas

Panjkora

Gilgit
Swat

Ind-Kharmong

Chitral

Shyok

Shigar
Hunza

Jhelum

Ind-Tarbela
Asotore

Chenab
Ravi

Sutlej

Kabul

http://afghanag.ucdavis.edu/natural-resource-management/weather
https://docs.lib.noaa.gov/rescue/data_rescue_afghanistan.html
http://edcintl.cr.usgs.gov/downloads/sciweb1/shared/afghan/downloads/documents/


40 

 

(20-22-P) reinforced with fibreglass polyester is predominantly used (BIS, 1992a&b). 

Similarly, the most widely used rain-gauge type by PMD has been non-recording MK2 (13-

15-C) model with orifice area of 127 cm2 and instrument height of 0.3 m. In 2010, PMD 

started using its own model, which is Tipping Bucket Rain Gauge (TBRG) type equipped 

with logger and standalone method of monitoring rainfall, with 0.2 mm (moderate rain) 

tipping bucket, orifice area of 400 cm2 and gauge height of 0.6 m. WAPDA uses both 

automatic weighing and standard meteorological service manual rain gauges. The 

automatic gauges have an orifice area of 127 cm2, tipping capacity of 0.254 mm and gauge 

height of 0.3 m (WAPDA, 2003). A manual gauge is read in conjunction with each 

automatic gauge as a check on the total rainfall. In 1994-95, WAPDA installed 20 

automatic data collection platforms (DCPs) in the high-altitude areas that use snow pillows 

to measure both solid and liquid precipitation as water equivalent (SIHP, 1997). The 

observatories installed and maintained by the University of Bonn under the CAK program 

used the automatic weather stations including data logger, tipping bucket and snow depth 

gauge to measure precipitation (Miehe et al., 1996). Afghanistan mainly uses the Tretyakov 

(20-24-G) type of rain-gauge without windshield having orifice area of 200 cm2 and 0.4 m 

height (Sevruk and Klemm, 1989). The metadata of 305 precipitation observatories and 21 

glacier observation points used in this study are outlined and described in the 

supplementary material (Table S-3.1). 

3.3.2 Temperature and wind speed observations 

The adjustments for wind-induced under-catch of precipitation observations require 

corresponding data of temperature and wind speed. However, out of 307 stations, 

temperature data was available for only 114 stations (Table S-3.1). We therefore derived 

monthly lapse rates based on elevation and latitude and estimated the maximum and 

minimum temperatures for the remaining stations. The observed data of wind speed was 

available for only 25 stations. Wind speed for the remaining stations is taken from the 

Japanese 55-year Reanalysis (JRA55) dataset (Kobayashi et al., 2015). JRA55 provides 

wind speed estimates at the standard anemometer height of 10 m, whereas the station-based 

observed wind speed is measured at 2 m height. In order to get an idea of the accuracy of 

the JRA55 wind speed data, we compared it with the observed wind speed for the 25 

stations. For this purpose, we computed wind speed from the U- and V-components at 10 m 

height and down-scaled it to match the 2 m height of stations using the Monin Obukhov 

theory (Obukhov, 1971; Businger and Yaglom, 1971). Although, we could not detect large 

differences and/or any definite and strong trends, a tendency of slightly underestimated 

wind speed in low-altitude areas and vice versa in high-altitude areas is noticed. We also 

observed marginally increased wind speeds during Nov-Feb months and slightly decreased 

wind speeds during Mar-Oct months for the JRA55 data. Due to insufficient observed data 

of wind speed, we have neglected these minor differences and used wind speed data of 

JRA55 as such. Nevertheless, such minor differences of wind speeds in JRA55 data might 

result in slight overestimation of precipitation adjustments in the higher-altitude areas 

during four (Nov-Feb) winter months and slight underestimation of precipitation 

adjustments in the lower-altitude areas during the remaining months. 

3.3.3 River flows 

Daily data of the observed river flows at sub-basin level for 14 hydrological stations 

(Figure 3.1) in the study area were collected from WAPDA. We used flow data of Jhelum 

and Chenab rivers for 1961-1970 period and all the rivers in the western part sub-basins for 
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1999-2011 period to coincide with the precipitation data periods. Ravi, Beas and Sutlej 

basins are located in India and their inflow data are not publicly available. Therefore, we 

extracted mean monthly river flows from Adeloye et al. (2016) for the Beas river at Pong 

dam for 2000-2008 period and from ADB (2010) for the Sutlej river at Bhakra dam for 

1962-1971 period. The river discharge data for the Ravi at Mukesar (near Thein dam) is 

collected from the Global River Discharge Database (RivDIS v1.1) for the period of 1968-

1979. It is worth to note that there are considerable diversions in some sub-basins on the 

upstream side of their rim stations (e.g. at Warsak, Nowshera and Tarbela), which are often 

overlooked by previous studies. We also collected the data of these upstream diversions and 

added them to the flows of the respective sub-basins. River flow data of coinciding time 

periods are used to validate the adjusted precipitation at sub-basin scale.  

3.3.4 Precipitation measurement error adjustment methods 

The amount of actual precipitation reaching the ground is generally higher than what is 

measured in precipitation gauges due to measurement errors, which usually depend on the 

form of precipitation, gauge type, topography, vegetation around the gauge site and the 

exposure of the gauges to prevailing temperatures and winds. Wind-induced under-catch is 

by far the most dominant source of errors in gauge-measured precipitation observations 

(Wolff et al., 2015; Adam and Lattenmaier, 2003; Michelson, 2004; Goodison et al., 1998), 

yet most of the widely used global precipitation datasets are not adjusted for such errors 

(Adam and Lattenmaier, 2003). While recognizing the significance of measurement errors 

in precipitation observations, the WMO initiated a comprehensive program of international 

precipitation measurement intercomparisons during 1960-1993 and established the pit 

gauge (Sevruk and Hamon, 1984) and the Double-Fence International Reference (DFIR; 

Goodison et al., 1998) as the standard reference gauges for liquid (rain) and solid (snow) 

precipitation respectively. Sevruk and Hamon (1984) and Goodison et al. (1998) also 

underlined the need for gauge calibration and adjustment of errors to increase reliability of 

the precipitation data. However, the agencies involved in measurement of precipitation in 

the Indus basin generally indicate to follow the WMO standards for design, construction, 

installation and operation of precipitation gauges but hardly or inadequately adjust the 

systematic measurement errors at the source, which signifies the need for correction of 

measurement errors.  

Sevruk (1982) related and statistically analysed various components of the systematic 

measurement errors to the meteorological and instrumental factors and proposed a general 

equation for adjustment of gauge-measured precipitation errors. Legates (1987) later 

modified it to account for both liquid and solid precipitation components separately. The 

modified equation is expressed as: 

Pa = (1-R) Kr (Pm + ΔPwr + ΔPtr + ΔPer) + RKs (Pm + ΔPws + ΔPts + ΔPes) (3.1) 

Where, Pa is adjusted precipitation (mm), R is proportion of solid precipitation, K is 

correction coefficient that accounts for wind-induced losses, Pm is measured precipitation 

(mm), ΔPw is wetting losses (mm), ΔPe is evaporation losses (mm), ΔPt is trace 

precipitation (mm), and sub-scripts r and s denote rain and snow components respectively. 

Legates (1987) model was developed for a variety of manual rain gauges including Nipher, 

Tretyakov and MK1/MK2 models with and without windshields. However, significant 
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uncertainties remained for wind induced under-catch of solid precipitation particularly by 

automatic precipitation gauges. Nitu and Wong (2010) observed much larger variation 

between gauges and windshield configurations for automatic stations than for manual 

stations. 

Wolff et al. (2015) compared precipitation data from the standard automatic Geonor 

precipitation gauge with data from a reference configuration consisting of an automatic 

precipitation gauge (Geonor T200-BM) and an Alter wind shield with double-fence 

construction. They derived an adjustment model to determine catch efficiency as a 

continuous function of both wind speed and air temperature using Bayesian statistics to 

more objectively choose the model that best describes the data. Wolff’s model allows solid 

precipitation adjustments at wind speeds greater than 7.0 ms-1. However, it is also 

gauge/shield specific and different site specificities and gauge/shield configurations might 

result in different adjustment functions.  

Kochendorfer et al. (2017a) analysed precipitation measurements from eight different 

WMO-SPICE sites for both unshielded and single-Alter-shielded OTT Pluvio2 and Geonor 

T-200B3 types of weighing gauges. They grouped unshielded and single-alter-shielded 

precipitation gauge configurations separately irrespective of gauge types and created a 

single transfer function of air temperature and wind speed using the corresponding 

measurements from the reference gauge. They also derived the coefficient fits for both 

unshielded and single-alter-shielded precipitation gauges at gauge height as well as 10 m 

height. The derived transfer function is expressed as: 

𝑪𝑬 = 𝒆−𝒂(𝑼)(𝟏−𝑻𝑨𝑵−𝟏(𝒃(𝑻𝒂𝒊𝒓))+𝒄)      (3.2) 

Where Tair is mean air temperature (0C); U is wind speed (ms-1); a, b, and c are the 

coefficients fit to the data, and TAN-1 is the inverse of tangent function.  

Our method of adjusting systematic errors in precipitation measurements largely follows 

the approach by Adam and Lattenmaier (2003) using the ‘liquid’ part of the model by 

Legates (1987) and uses the model by Kochendorfer et al. (2017a) for adjustment of the 

solid precipitation component. The detailed methods for computation of the required 

variables in equations (1) are described in the supplementary material. The coefficient 

values in equation (2) (a = 0.0623, b = 0.776, c = 0.431) are taken as determined at 10 m 

height by Kochendorfer et al. (2017a). We used the coefficient values of 10 m height 

because most of our wind speed data belonged to the JRA55 dataset, which provides wind 

speed data at 10 m height. The observed wind speed at 25 stations is converted from 

observation height to 10 m height using the Monin Obukhov theory (Obukhov, 1971; 

Businger and Yaglom, 1971). 

3.3.5 Adjustment of net snow accumulations methods 

The meteorological stations in the study area are unevenly distributed in both horizontal 

and vertical direction. Scarcity of precipitation measurements at higher-altitude areas, 

where the bulk of precipitation falls, seriously limits an accurate assessment of precipitation 

climatology and its hydrological implications. In order to overcome this observational data 

gap, we assumed 21 virtual stations at the major glaciers where the net snow accumulations 

were estimated through mass balance studies using snow pillows, snow pits, and ice cores 

(e.g. Mayer et al., 2014, 2006; Hewitt, 2011; Shroder et al., 2000; Bhutiani, 1999; Wake, 

1989; Mayewski et al., 1984, 1983; Kick, 1980; BIG, 1979; Decheng, 1978; Qazi, 1973). 
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However, most of these mass balance studies were undertaken in the active ablation zones 

of the glaciers, where ablation and accumulation processes are happening simultaneously. 

Generally, glacier ablation is the function of ablation rate, altitude of the Equilibrium Line 

Altitude (ELA) and the elevation difference between mean ELA and the glacier observation 

point. Ablation zones are the areas below the Equilibrium Line Altitude (ELA), which is 

the elevation at which the annual net mass of the glacier remains zero and the area above 

this elevation is known as the accumulation zone (Cuffey and Paterson, 2010). Hence, the 

estimated net glacier mass accumulations are subject to ablation losses until the next 

accumulation period. The ablation gradients can be variable depending on debris cover and 

surface albedo or energy availability to melt the exposed glaciers. Wagnon et al. (2007) 

observed ablation gradients of 0.60-0.81 m w.e. (water equivalent) for each 100 m with a 

mean value of 0.69 m w.e. over a period of four year of mass balance studies at the Chhota 

Shigri Glacier, western Himalaya. Yu et al. (2013), based on glacier studies by Mayer et al. 

(2006) and Wagnon et al. (2007) in the Karakoram and western Himalaya, assumed an 

ablation gradient of 1 m w.e. per 100 m for the upper Indus basin. Hewitt et al. (1989) 

however, estimated an ablation gradient of 0.5 m per 100 m for the middle portion of the 

ablation zone on the Biafo glacier in the central part of the Karakoram. No ablation above 

ELA is assumed. We selected the rather conservative estimates of ablation gradient by 

Hewitt et al. (1989) and adjusted the net accumulations by taking the Equilibrium Line 

Altitude (ELA) as the boundary for the ablation process. However, the location of ELA can 

vary from location to location. In temperate glaciers, usually the Snow Line Elevation 

(SLE) and ELA are often assumed to be the same. The estimates for mean ELA at sub-

basin scale are taken from Khan et al. (2015), who estimated ELA values based on SLE. 

3.3.6 River flow adjustments 

WAPDA uses standard flow measuring devices to ensure high quality river flow data. The 

primary river flow measuring technique uses area velocity measurements to determine the 

stage-discharge relationships and associated rating tables. The results are verified by area-

velocity method, area-slope method, contracted opening measurements, or computation of 

flow over dams or weirs (WAPDA, 2012). The daily mean discharge values are computed 

from the mean gauge heights and corresponding calibrated rating tables. In case of 

extremely high discharges, the rating curves are extrapolated by applying simple linear 

regression between the gauge height and discharge measurements. The actual 

measurements are however taken 4-8 times per month. The intermediate daily values are 

estimated from the rating tables. The accuracy of stream flow measurements depends 

primarily on stability of the stage-discharge relationship, frequency of discharge 

measurements if the relationship is unstable, and accuracy in the observation of the stage 

and measurement of discharges. In general, monthly and annual mean values are more 

accurate than daily values because of compensation of random errors. WAPDA evaluates 

the probable accuracy of discharge measurements as excellent (error < 5%), good (error < 

10%), fair (error < 15%), and poor (error > 15%). In general, a probable accuracy of 0-5% 

is aimed for. Although river flow data may still be subject to some degree of uncertainty 

due to measurement errors, we assumed river flows as adequately accurate considering the 

relative precision of discharge measurement techniques and quality control ensured by the 

data collection agencies. 

To account for the contribution of net glacier mass imbalance in each sub-hydrological 

basin, we adjusted the measured river flows. Kääb et al. (2012) used satellite laser altimetry 

and a global elevation model and observed a slightly negative mass balance of -0.21 ± 
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0.05 m yr-1 w.e. for HKH region during 2003-2008 with maximum rates of -0.66 ± 

0.09 m yr-1 w.e. in the western Himalayan (Jammu-Kashmir) areas. We derived the specific 

net mass balance rates at sub-basin scale from the mass balance estimates of Kääb et al. 

(2012) and took glacier areas from the Randolf Glacier Inventory (RGI) version 5.0 (Arendt 

et al., 2015) to compute the contribution of the changes in the net glacial mass imbalance to 

the observed river flows. The adjusted river flows are used for validation of the adjusted 

precipitation estimates at sub-basin scale. 

3.3.7 Spatial interpolation 

The actual and error-adjusted point measurements of mean monthly precipitation are 

spatially interpolated following Dahri et al. (2016), who used the Kriging with External 

Drift (KED) interpolation scheme (Schabenberger and Gotway, 2005) with elevation as a 

predictor to derive spatiotemporal distribution of precipitation in the high-altitude Indus 

basin. The KED model includes a component of spatial autocorrelation and a component 

for multilinear dependence on pre-defined variables (predictors). It considers the 

observations (Y) at sample locations (s) as a random variable of the form (e.g. Diggle and 

Ribeiro, 2007): 

𝒀(𝒔) =  𝝁(𝒔) + 𝒁(𝒔)       (3.3) 

𝝁(𝒔) = 𝜷𝟎 + ∑ 𝜷𝒌
𝑲
𝒌=𝟏 . 𝒙𝒌(𝒔)      (3.4) 

Where, µ (s) describes the deterministic component of the model (external drift or trend) 

and is given as a linear combination of K predictor fields xk (s) (trend variables) plus an 

intercept (β0). The βk are denoted as trend coefficients, while Z(s) describes the stochastic 

part of the KED model and represents a random Gaussian field with a zero mean and a 2nd 

order stationary covariance structure. The latter is conveniently modelled by an eligible 

parametric semi-variogram function describing the dependence of semi-variance as a 

function of lag (possibly with a directional dependence). Dahri et al. (2016) provided a 

detailed account of the KED interpolation method including model description and 

functionalities, reasons for its selection, and comparative advantages of its use in the high-

altitude Indus basin.  

3.3.8 Cross validation of the adjusted precipitation 

We used exactly the same approach of interpolation and cross validation as adopted by 

Dahri et al. (2016), where the cross validation applied on the observed and predicted values 

from all the stations is used to assess the errors/uncertainty associated with the interpolation 

scheme by using error scores of the relative bias (B) and the relative mean root-transformed 

error (E), which are defined as: 

𝑩 =
∑ 𝑷𝒊

𝒏
𝒊=𝟏

∑ 𝑶𝒊
𝒏
𝒊=𝟏

        (3.5) 

𝑬 =

𝟏

𝒏
∑ (√𝑷𝒊 − √𝑶𝒊)

𝟐
 

𝒏

𝒊=𝟏

𝟏

𝒏
∑ (√𝑶 − √𝑶𝒊)

𝒏

𝒊=𝟏

𝟐        (3.6) 
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Where Pi and Oi are the predicted and observed precipitation values respectively, while O is 

the average of all (or a subset of) the station observations and n refers to the number of 

precipitation values.  

Under ideal conditions, the overall performance of the employed regression models and 

interpolation estimates at basin/sub-basin scale can also be cross validated by applying the 

continuity equation suggested by Budyko (1974), which is given by:  

∆𝐒

∆𝐭
= 𝑷 − 𝑸 − 𝑬𝑻 − 𝑮       (3.7) 

Where P, Q, ET and G are the basin-average precipitation, runoff, evapotranspiration and 

net groundwater discharge respectively, while ΔS is the net change in storage for a given 

time increment (Δt). Equation (7) can be modified by adding interception (I), sublimation 

(S) and net mass balance (ΔMB) contributions for the highly glacierized and snowpack 

dependent river basins as follows: 

∆𝐒

∆𝐭
= 𝑷 − 𝑸 − 𝑬𝑻 − 𝑮 − 𝑰 − 𝑺 + ∆𝑴𝑩     (3.8) 

Unfortunately, there are no independent datasets of actual evapotranspiration, sublimation, 

interception and the net groundwater discharge for the study area. The global scale datasets 

of these variables are generally more uncertain than precipitation itself; therefore, it would 

be unwise to validate the estimated precipitation with these extremely uncertain datasets. 

Nevertheless, surface storage and groundwater recharge are mostly very low in high-

altitude areas, which are mostly rocky bare mountains with steep slopes and no 

groundwater. Precipitation may travel long distances through breaches but ultimately joins 

the river streams as base flow. Although, there might be considerable delay effects, these 

may be considered negligible for long term average conditions. Similarly, the surface 

storage due to topographical undulations may also have a delaying effect. Interception by 

the vegetation cover and sublimation (direct evaporation from the snow glacier fields) are 

included in the total direct evapotranspiration. Direct evapotranspiration is notoriously 

complex to measure as it is among others a function of water availability as well as water 

demand. The available global scale gridded datasets of actual evapotranspiration are highly 

inconsistent in quantitative as well as spatial distribution terms and generally reflect 

overestimated values. We therefore rely mainly on the specific runoff and net mass balance 

data to validate our adjusted precipitation estimates.   

3.4. Results 

3.4.1. Precipitation adjustments 

To facilitate adjustment of measurement errors in precipitation observations, the 

corresponding air temperature is determined from elevation and latitude-based lapse rates. 

The results revealed a strong correlation of temperature with elevation and considerable 

correlation with latitude (Figures S-3.2–S-3.5). Significantly different gradients for each 

month and substantial difference among the gradients for maximum and minimum 

temperatures were observed (Table 3.1). Hence, use of a universally assumed or time 

independent site-specific observed gradient of mean annual temperature to estimate 

maximum and minimum temperatures (e.g. Immerzeel et al., 2012a&b; Lutz et al., 2013) is 

probably not correct in the high-altitude Indus basin. Comparison of Table 3.1 and Figures 

S-3.2 and S-3.3 indicate that incorporation of latitude as an additional predictor improves 

the correlation of the regression models by up to 6.0% for maximum temperature and up to 
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1.5% for minimum temperature during 1999-2011. Almost similar trends are observed for 

1961-1970 period. The contribution of elevation to the correction is positive in the summer 

and negative in the winter months, while the contribution of latitude is positive throughout 

the year. The highest improvement is achieved during the monsoon season (Jul-Sep). 

Table 3.1: Multiple regressions for maximum and minimum temperatures for the two time periods of 

1999-2011 and 1961-1970. Tx1-12 and Tn1-12 refer to the calendar months for maximum and 

minimum temperatures respectively. E denotes elevation (m) and L represents latitude (decimal 

degrees) of the meteorological stations. R2 is the combined correlation of temperature with E and L. 

Regression Equation for Tx R2 (%) Regression Equation for Tn R2 (%) 

1999-2011 

Tx1 = 31.5 - 0.00688 E - 0.318 L 96.7 Tn1 = 17.4 - 0.00534 E - 0.307 L 91.1 

Tx2 = 38.1 - 0.00691 E - 0.455 L 97.5 Tn2 = 19.1 - 0.00559 E - 0.285 L 92.3 

Tx3 = 41.3 - 0.00712 E - 0.383 L 96.6 Tn3 = 23.4 - 0.00567 E - 0.278 L 93.8 

Tx4 = 44.5 - 0.00739 E - 0.303 L 97.5 Tn4 = 33.2 - 0.00567 E - 0.428 L 94.1 

Tx5 = 41.0 - 0.00790 E - 0.025 L 96.9 Tn5 = 37.3 - 0.00599 E - 0.404 L 94.5 

Tx6 = 19.1 - 0.00817 E + 0.719 L 96.2 Tn6 = 34.3 - 0.00591 E - 0.220 L 95.6 

Tx7 = - 9.47 - 0.00713 E + 1.48 L 90.5 Tn7 = 22.2 - 0.00575 E + 0.166 L 95.4 

Tx8 = - 5.13 - 0.00685 E + 1.30 L 90.9 Tn8 = 22.6 - 0.00567 E + 0.136 L 95.5 

Tx9 = 8.60 - 0.00727 E + 0.876 L 96.0 Tn9 = 35.2 - 0.00532 E - 0.341 L 95.1 

Tx10 = 20.4 - 0.00780 E + 0.444 L 97.0 Tn10 = 30.7 - 0.00518 E - 0.380 L 91.8 

Tx11 = 39.0 - 0.00721 E - 0.291 L 97.8 Tn11 = 22.7 - 0.00515 E - 0.300 L 90.3 

Tx12 = 38.8 - 0.00689 E - 0.459 L 96.8 Tn12 = 16.7 - 0.00519 E - 0.246 L 90.3 

1961-1970 

Tx1 = 38.2 - 0.00673 E - 0.529 L 98.0 Tn1 = 15.9 - 0.00536 E - 0.267 L 89.3 

Tx2 = 39.3 - 0.00691 E - 0.495 L 97.9 Tn2 = 15.9 - 0.00572 E - 0.188 L 92.8 

Tx3 = 45.3 - 0.00686 E - 0.524 L 97.3 Tn3 = 21.8 - 0.00582 E - 0.232 L 93.8 

Tx4 = 53.2 - 0.00713 E - 0.589 L 97.7 Tn4 = 30.0 - 0.00592 E - 0.334 L 94.7 

Tx5 = 48.7 - 0.00766 E - 0.281 L 97.8 Tn5 = 35.1 - 0.00612 E - 0.346 L 95.4 

Tx6 = 20.0 - 0.00828 E + 0.703 L 96.6 Tn6 = 31.6 - 0.00608 E - 0.129 L 94.7 

Tx7 = - 9.23 - 0.00727 E + 1.48 L 90.3 Tn7 = 17.1 - 0.00590 E + 0.328 L 95.1 

Tx8 = - 6.80 - 0.00701 E + 1.37 L 88.3 Tn8 = 17.0 - 0.00588 E + 0.316 L 95.2 

Tx9 = 2.74 - 0.00751 E + 1.06 L 95.4 Tn9 = 27.1 - 0.00560 E - 0.088 L 94.4 

Tx10 = 25.2 - 0.00765 E + 0.288 L 98.0 Tn10 = 22.8 - 0.00546 E - 0.136 L 91.7 

Tx11 = 38.0 - 0.00706 E - 0.281 L 98.3 Tn11 = 20.7 - 0.00530 E - 0.228 L 89.4 

Tx12 = 44.0 - 0.00654 E - 0.632 L 96.9 Tn12 = 14.2 - 0.00524 E - 0.174 L 87.8 

To illustrate the precipitation biases over the high-altitude Indus basin, the results for each 

individual station are presented. The applied bias adjustments significantly increased the 

gauge-measured precipitation. The highest increments are computed for wind-induced 

under-catch of solid precipitation followed by liquid precipitation under-catch, wetting 

losses and precipitation losses during trace events (Figure 3.2a–d). The solid precipitation 

under-catch generally dominates the higher-altitude stations, i.e. elevations greater than 

2000 m and during the Dec-Apr months. The range of liquid precipitation under-catch is 

much lower and mainly concentrates in the summer monsoon dominated low-altitude areas. 

The wetting losses and unmeasured trace precipitation depend on the number of 

precipitation events. In many cases, particularly for the low-altitude stations experiencing 
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lower wind speeds, the wetting losses exceeded the wind induced under catch of liquid 

precipitation due to the fact that it covers all the stations and both forms of precipitation 

(liquid and solid). The total bias between the gauge-measured and error-adjusted 

precipitation ranged from 12 to 773 mm yr-1 for various individual stations and up to 

1000 mm yr-1 for the glacier points (Figure 3.2e). The total absolute biases (corrections) for 

all the stations at monthly and annual scale are given at Table S-3.2. The largest increases 

are found for the stations receiving greater precipitation amounts, located at higher-altitudes 

and encountering higher wind speeds. Based on the above-mentioned corrections, we 

introduced monthly scale correction factors (CFs) for each station (Table S-3.3). These 

station-based correction factors vary over space and time, with stronger magnitude in 

higher-altitude areas (Figure 3.2f) and during winter months (Table S-3.3).  

Figure 3.2: Adjusted station observations for (a) wetting loss, (b) trace precipitation loss, (c) liquid 

precipitation under-catch, (d) solid precipitation under-catch, (e) total absolute bias between gauge-

measured and error-adjusted annual precipitation, (f) station-based CFs for under-catch of gauge-

measured precipitation. The different scales are to be noted. 

3.4.2 Snow accumulation adjustments 

The total ablation losses at a given ablation rate from a glacier zone depend on the ablation 

gradient and ΔELA (the difference between the mean elevation of a glacier zone and ELA). 

Assuming that the practical ablation above ELA is insignificant, the potential ablation 

losses from the selected glacier zones vary from 0-1000 mm yr-1 (Table 3.2). These ablation 

losses are added to the original estimates of the net accumulations to account for the 

ablation losses from the actual precipitation.  
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Table 3.2: Adjusted net snow water equivalent at the major glacier accumulation zones. Lon is 

longitude, Lat is latitude, Ele is elevation, ELA is equilibrium line altitude, ΔELA is the net elevation 

contributing to ablation, and ΔA is adjustment in the net accumulation. 

 

3.4.3 Spatial distribution of unadjusted and adjusted precipitation 

Continuous fields of precipitation generated through KED-based interpolation of the 

adjusted station observations and adjusted snow accumulations at monthly scale show how 

precipitation patterns and amounts are spatially distributed in the study area (Figure 3.3a-l). 

Monthly precipitation distributions largely confirm the bimodal weather system reflecting 

the wintertime precipitation associated with the westerlies and the impact of Indian summer 

monsoon in the study area. Overall climatology and distribution patterns of the adjusted 

precipitation (Figure 3.3m) match very well to the unadjusted case (Figure 3.3n) or 

estimates of Dahri et al. (2016). However, the adjustments revealed significant 

improvement in terms of quantitative and spatio-temporal distribution of precipitation in 

the study area (Figure 3.3o). An overall increase of 21.3% in average annual precipitation is 

realized at basin (study area) level, while at sub-basin scale it ranged from 6 to 77% (Table 

3.3). Greatest improvements are achieved in the high-altitude areas of Astore, Shyok, 

Shigar, Hunza, Gilgit, and Chitral sub-basin and during the winter months. 

3.4.4 River runoff adjustments 

The net mass balance estimates of Kääb et al. (2012) for the study area are translated into 

the amount of runoff generated at sub-basin scale. As a result of slightly negative mass 

balance estimates for all sub-basins, their contributions to river runoff are also negative and 

relatively small ranging from 0.4-6.1%. The adjustments in river specific runoff depend on 

the net mass balance as well as glacier area and varied from -51.5 mm in the Chenab sub-

basin to -2.5 mm in the Panjkora sub-basin (Table 3.4).  

 

Glacier 

Name 

Lon 

(dd) 

Lat 

(dd) 

Ele 

(m) 

River 

Basin 

ELA 

(m) 

ΔELA 

(m) 

ΔA 

(mm) 

Net Acc. 

(mm yr-1) 

Adj. Acc. 

(mm yr-1) 

Approach 75.6331 36.0678 5100 Shigar 5050 0 0 1880 1880 

Baltoro 76.5508 35.8778 5500 Shigar 5050 0 0 1600 1600 

Batura 74.3833 36.6667 4840 Hunza 5000 160 800 1034 1834 

Chogolungma 75.0000 36.0000 4850 Hunza 5000 150 750 1070 1820 
Chong Kumdan 77.5448 35.2532 5330 Shyok 5500 170 850 484 1334 

Hispar Dome 75.5187 36.0109 5450 Shigar 5050 0 0 1620 1620 

Hispar East 75.5064 35.8495 4900 Shigar 5050 150 750 1070 1820 

Hispar West 75.5064 35.8495 5100 Shigar 5050 0 0 1620 1620 

Hispar Pass 75.5215 36.0281 5000 Shigar 5050 50 250 1420 1670 

Khurdopin 75.6197 36.1338 5520 Shigar 5050 0 0 2240 2240 

Nanga Parbat 74.4444 35.1672 4600 Astore 4700 100 500 2000 2500 
Nun Kun North 76.1014 34.1219 5200 Shingo 5250 50 250 900 1150 

Sentik  75.9500 33.9967 5100 Shingo 5250 150 750 620 1370 

Siachin A 77.0376 35.4707 5300 Shyok 5500 200 1000 484 1484 

Siachin B 76.9915 35.5235 5300 Shyok 5500 200 1000 526 1526 

Siachin C 76.9116 35.5187 5320 Shyok 5500 180 900 662 1562 

Siachin D 76.8592 35.6242 5350 Shyok 5500 150 750 855 1605 

South Terong 77.4516 35.1384 5330 Shyok 5500 170 850 484 1334 

Terong 77.3120 35.5177 5350 Shyok 5500 150 750 855 1605 

Urdok 76.7025 35.7669 5400 Shigar 5050 0 0 1060 1060 

Whaleback 75.5915 36.0572 4900 Shigar 5050 150 750 1790 2540 
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Figure 3.3: Estimated precipitation distribution, (a–l) are mean monthly (Jan–Dec) error-adjusted 

precipitation, (m) is error adjusted annual precipitation, (n) is unadjusted annual precipitation, and (o) 

is the absolute difference between adjusted and unadjusted annual precipitation distributions 

3.4.5 Validation of precipitation estimates 

The estimated precipitation distributions can be validated by evaluating the accuracy of the 

employed interpolation scheme and the output interpolated fields. For accuracy assessment 

of the interpolation scheme, the KED interpolation model produces both prediction as well 

as error/uncertainty surfaces, giving an indication or measure of how good the predictions 

are. The cross validation applied on the observed and predicted values from all the stations 

resulted in relative bias (B) error scores of less than 1, suggesting a negligible 

underestimation of the predicted values for all months except August, which shows a slight 

overestimation (Table 3.5). Similarly, the relative mean root-transformed error (E) scores of 

less than 1 for the months Jan-May suggest excellent results. While, the remaining months 

of Jun-Dec experience E values of greater than 1, which depict typical errors slightly 

greater than the spatial variations. Almost similar trends are observed for the unadjusted 

case. In general, the cross-validation results depict excellent/good agreement between the 

observed and predicted values. 

Mean monthly adjusted precipitation (mm)

20 40 60 80 100 150 200 300 400 550 700 907

Absolute difference (mm/year)

(a) (b) (c)

(d)

(g)

(j)

(e) (f)

(h) (i)

(k) (l)

(m) (n) (o)

Mean annual adjusted and unadjusted (obseved) precipitation (mm)
       100         200        300        500        700        900          1200          1500         1800          2400        3033 20 40 60  80  100   150   200  300  400  550  700  1040



50 

 

Table 3.3: Precipitation estimates at sub-basin scale. Pobs is observed precipitation derived through 

actual measurements and net glacier accumulations, Padj is adjusted precipitation derived through 

adjusted precipitation observations and glacier accumulations, and ΔP is the difference between them. 

S. # River Basin Pobs (mm) Padj (mm) ΔP (mm) Increase (%) 

1 Gilgit at Gilgit 566.7 749.3 182.6 32.2 

2 Hunza at Dainyor 634.1 845.5 211.4 33.3 

3 Shigar at Shigar 847.3 986.5 139.2 16.4 

4 Shyok at Yugo 254.2 426.2 172.0 67.7 

5 Indus at Kharmong 177.5 272.0 94.5 53.3 

6 Astore at Doyian 879.5 1214.1 334.6 38.0 

7 Indus at Tarbela Dam 393.8 521.8 128.0 32.5 

8 Chitral at Chitral 642.3 830.1 187.9 29.3 

9 Panjkora at Zulum Br. 757.0 798.4 41.4 5.5 

10 Swat at Chakdara 960.5 1034.7 74.3 7.7 

11 Kabul at Warsak 372.8 448.4 75.5 20.3 

12 Kabul at Nowshera 448.6 515.0 66.4 14.8 

13 Jhelum at Mangla Dam 1119.4 1223.3 103.9 9.3 

14 Chenab at Marala 1101.2 1247.7 146.5 13.3 

15 Ravi at Thein Dam 1334.8 1552.3 217.5 16.3 

16 Beas at Pong Dam 1504.1 1611.0 106.9 7.1 

17 Sutlej at Bhakra Dam 357.1 428.4 71.3 20.0 

 Whole Basin 565.7 668.7 103.0 18.2 

Table 3.4: Contribution of net glacier mass balance (GMB) to river flows & adjusted specific runoff. 

S. 

No. 

River  

Basin 

Name 

Glacier 

Area 

(km2) 

Net 

GMB 

(m yr-1) 

Cont. of Net 

GMB to River 

Flows (mm yr-1) 

Obs. Sp. 

Runoff 

(mm yr-1) 

Adj. Sp. 

Runoff 

(mm yr-1) 

1 Gilgit at Gilgit 1212.5 -0.350 -33.3 (4.4%) 758.0 724.7 

2 Hunza at Dainyor 4268.7 -0.113 -35.4 (5.2%) 680.1 644.7 

3 Shigar at Shigar 2974.1 -0.090 -38.1 (4.1%) 924.9 886.8 

4 Shyok at Yugo 7400.4 -0.060 -13.0 (3.6%) 365.5 352.5 

5 Indus at Kharmong 2164.7 -0.326 -9.9 (4.9%) 201.3 191.4 

6 Astore at Doyian 257.7 -0.540 -35.1 (3.1%) 1136.7 1101.6 

7 Indus at Tarbela 19355.3 -0.150 -16.7 (4.0%) 421.2 404.6 

8 Chitral at Chitral 1736.3 -0.320 -44.8 (6.1%) 737.2 692.4 

9 Panjkora at Zulum Br. 41.0 -0.350 -2.5 (0.4%) 616.5 614.0 

10 Swat at Chakdara 202.6 -0.400 -14.1 (1.2%) 1186.3 1172.2 

11 Kabul at Warsak 1851.5 -0.340 -8.9 (5.7%) 154.8 145.9 

12 Kabul at Nowshera 2095.0 -0.340 -7.9 (2.5%) 305.6 297.7 

13 Jhelum at Mangla 262.7 -0.550 -4.3 (0.5%) 792.8 788.5 

14 Chenab at Marala 2667.4 -0.560 -51.5 (5.0%) 1026.4 975.0 

15 Ravi at Thein dam 166.9 -0.386 -10.5 (0.8%) 1391.0 1380.5 

16 Beas at Pong dam 511.0 -0.213 -8.7 (0.9%) 986.5 977.8 

17 Sutlej at Bhakra dam 1411.9 -0.359 -9.3 (3.5%) 264.2 254.9 

Table 3.5: Relative bias (B) and relative mean root-transformed error (E) for all observation points. 

 JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN 

B 0.85 0.89 0.89 0.88 0.87 1.03 0.94 0.97 0.91 0.78 0.79 0.83 0.94 

E 0.86 0.75 0.74 0.73 0.79 0.68 0.59 0.58 0.6 0.82 0.82 0.85 0.71 
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Figure 3.4: Annual measured and adjusted specific run-off and annual observed and adjusted 

precipitation at sub-basin scale 

3.5. Discussion 

Precipitation is an integral component of the hydrological cycle and usually the most 

important input to water balance assessments and climate change studies. Hence, its 

accuracy is essential as errors in precipitation estimates may translate into major changes in 

the water budget of a particular region. However, in many areas, precipitation 

measurements are still subject to significant errors and a large uncertainty (Kochendorfer 

et al., 2017a & b) often leading to a substantial underestimation of the actual precipitation. 

The situation is particularly serious in the high-altitude Indus basin where biased 

distribution and lack of the observed data further worsen the problem. As such the 

precipitation products derived from or validated by the observed data covering this region 

are prone to significant errors (Dahri et al., 2016; Reggiani and Rientjes, 2015). Scientists 

have used different approaches to overcome the observational data gaps. For example, 

Adam et al. (2006) used a water balance approach to indirectly estimate precipitation. 

However, large uncertainties in the different water balance components limit wider 
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Another means of validation is the comparison of the estimated precipitation with the 

corresponding observed river flows (specific runoffs). Dahri et al. (2016) demonstrated that 

the previous estimates of precipitation distribution in the study area are not only highly 

contrasting but largely underestimating the actual precipitation. Likewise, in the Dahri et al. 

(2016) study, precipitation estimates derived from the unadjusted precipitation observations 

provided relatively better estimates than the previous studies. Yet, slightly lower 

precipitation than the measured specific runoff in 9 out of 17 sub-basins (Figure 3.4) is 

absolutely counterintuitive implying underestimated precipitation or an unaccounted source 

of water (e.g. glacier melt contribution). Long term annual mean precipitation must always 

be greater than the corresponding specific runoff if a positive or neutral mass balance is 

prevalent in any river basin. In case of a negative mass balance, its contribution to river 

flows has to be subtracted from the actually observed river flows and the adjusted flows 

must be lower than the corresponding mean annual precipitation. Cross validation of 

adjusted precipitation estimates with the corresponding adjusted specific runoffs (Figure 

3.4) revealed adjusted specific runoff well below the adjusted precipitation estimates for all 

the sub-basins except Swat, which reflects underestimated precipitation or a bigger 

contribution of a negative mass balance to river flows.  



52 

 

application of this approach. Immerzeel et al. (2015) used mass balance estimates to 

inversely compute precipitation in the major snow/glacier zones and applied a linear lapse 

rate of precipitation increase with elevation up to 5000 m using APHRODITE as the 

reference dataset. Uncertainties in mass balance and water balance components and 

assumption of linear precipitation increase with altitude are the major drawbacks of this 

method. Dahri et al. (2016) integrated station observations with the net snow accumulations 

estimated through mass balance studies and applied KED interpolation scheme to derive 

precipitation in the ungauged areas. Measurement errors in precipitation observations and 

negligence of snow/glacier ablations in the net snow accumulations are the key 

shortcomings of this approach. 

The approach adopted in this study is based on catch adjustments of precipitation 

observations for systematic measurement errors, adjustment of net snow accumulations for 

the ablation losses, and adjustment of river flows for the contribution of net glacier mass 

balance. Mean monthly precipitation climatologies are derived from i) actual precipitation 

observations and actual net snow accumulations, ii) adjusted precipitation observations & 

the adjusted net snow accumulations following Dahri et al. (2016).  

The results presented in this study further support the wind-induced under-catch as the 

largest source of errors in gauge-measured precipitation observations. The catch corrections 

have increased the gauge-measured precipitation values ranging from 12-773 mm yr-1 for 

various stations, while net snow accumulations at the glacier points increased up to 

1000 mm yr-1. A large part of precipitation in the high-altitude Indus basin falls as snow, 

which is more susceptible to under-catch even at moderate wind speeds. The largest 

corrections were found for wind-induced under-catch of solid precipitation, which is in line 

with the results of previous studies (e.g. Kochendorfer et al., 2017a & b; Wolff et al., 2015; 

Chen et al., 2015; Yang et al., 2005; Michelson, 2004; Ye et al., 2004; Adam and 

Lattenmaier, 2003; Goodison et al., 1998; Legates and Willmot, 1990). However, liquid 

precipitation under-catch, wetting loss and trace precipitation loss are also important, 

particularly in low-altitude and relatively dry areas. 

The large differences between the observed precipitation and the corresponding specific 

runoff observations (usually greater specific runoff than precipitation) in previous estimates 

are often attributed to the contribution of snow/glacier melt. Indeed, the high-altitude Indus 

basin receives considerable snow/glacier melt contributions, which largely come from the 

melting of temporary/seasonal snow cover and may vary from year to year depending on 

the quantity and timing of winter snowfall and snowmelt during the subsequent summer. 

However, quantitative estimates of net glacier mass balance contributions to river flows are 

largely lacking. Therefore, the accuracy of the estimated net glacier mass balance 

contributions to the river flows is mainly depending on the uncertainties in glacier area and 

the ablation rates of mass balance. Our methodology of adjusting river flows for the net 

mass balance contributions is straight forward and the adjustments are slightly less than 

what is modelled by Lutz et al. (2016). For example, we estimated net glacier mass balance 

contribution of -17.3 mm yr-1 for the Indus at Besham Qila against -25.0 mm yr-1 modelled 

by Lutz et al. (2016). The difference might be due to the use of different approaches and 

different glacier inventories having different glacier areas. Lutz et al. (2016) pointed out a 

23% difference in the glacier areas from three different inventories implying considerable 

differences in the water balance components.   

The precipitation distribution derived through actual station observations combined with 

the actual net glacier accumulations is almost similar to that derived by Dahri et al. (2016) 
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except for the addition of a few sub-basins and the use of additional and updated observed 

data. The catch corrections and snow accumulation adjustments significantly increased the 

total gauge-measured as well as basin scale precipitation (Figs. 3.2, 3.3-o & 3.4; Table 3.3). 

The overall distribution patterns of precipitation remained largely the same as identified by 

Dahri et al. (2016), but substantial increases in the magnitude of precipitation amounts are 

realized. One of the advantages of the KED interpolation method is that it estimates an 

interpolated surface from a randomly varied small set of measured points and recalculates 

estimated values for these measured points to validate the estimates and determine the 

extent of errors. When compared with the corrected precipitation derived by Immerzeel 

et al. (2015), our estimates show significantly smaller root mean square error and a stronger 

correlation with the error-adjusted station observations (Figure 3.5). The corrected 

precipitation estimates by Immerzeel et al. (2015) show considerable differences with 

significantly lower values at the majority of station locations including the points at the 

major glaciers, where actual measurements of net snow accumulations were taken. At the 

basin scale their estimates are relatively better but seem to be on the higher side in about 

half of the sub-basins. This discrepancy between station-based point observations and basin 

scale precipitation estimates by Immerzeel et al. (2015) may be attributed to the higher and 

linear lapse rates of precipitation increase applied to compute the precipitation fields. Also, 

they did not validate their estimates with the observed precipitation of the individual 

stations. Instead, they used the Turc-Budyko representation to show the physical realism of 

their estimates and attributed some of the estimates that fall on the right side (inside) of the 

theoretical Budyko curve to the possible contribution of the negative mass balance to river 

flows and uncertainties in the potential evapotranspiration (ETp) dataset.  

 

Figure 3.5: Comparison of error adjusted station observations with the corresponding estimated 

values under this study and by Immerzeel et al. (2015) 

In this study, we used accurate runoff observations (specific runoffs), which are further 

improved by adjusting for the net glacier mass balance contributions, and improved ETP 

estimates from JRA55 reanalysis dataset (Figure 3.6) to evaluate the physical realism of our 

estimated precipitation compared to the precipitation estimates from Immerzeel et al. 

(2015). Over one-third of the points representing estimated precipitation by Immerzeel 

et al. (2015) in various sub-basins (e.g. Gilgit, Chitral, Panjkora, Kabul at Warsak and 

Nowshera, and Sutlej) lay inside the theoretical Budyko curve indicating higher values than 

the theoretically expected. Whereas, the estimates of unadjusted precipitation in our study, 

R² = 0.7981 

R² = 0.2937 

0

500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500

This Study Immerzeel et al. (2015)

E
st

im
a
te

d
 P

r
ec

ip
it

a
ti

o
n

 (
m

m
/y

e
a
r
) 

Error-Adjusted Station Observations (mm/year) 



54 

 

Figure 3.6: Turc-Budyko representation of run-off ratio (Q/P) and aridity index (P/ETp). The red 

triangles display estimates of unadjusted case or Dahri et al. (2016), black diamonds show estimates 

of Immerzeel et al. (2015) and blue circles indicate adjusted estimates under this study. The numbers 

refer to the sub-basins as given in Table 4. 

The runoff ratio (Q/P) determines the amount of precipitation converted into overland flow 

or surface runoff. It is mainly controlled by largely stable natural factors including climate, 

soil and topography and to some extent by the human alterations to landscapes. Relatively 

higher runoff ratios are produced for areas with shallow or clay soils, steeper slopes and 

devoid of vegetation cover. Snow covered areas hold winter precipitation as snow/ice and 

produce higher runoff ratios during the subsequent snow melting periods. Over 50% of the 

study area possesses slopes steeper than 40% and about 81% of the surface soil type is 

leptosol (47.4%), cambisol (22.5%), and rock outcrop (11.1%). Dominant land cover types 

are closed to open herbaceous vegetation (34.6%), bare rocky areas (25.3%) and permanent 

snow and glaciers (13.4%) (Figure S-3.6). All these topographical properties infer the high-

altitude Indus basin as a typical case of an area that accelerates rapid runoff generation. 

Therefore, relatively high rates of runoff ratios are to be expected. Table S-3.4 and 

Figure3.6 show the improved runoff ratios (Q/P) and aridity indices (P/ETp) if compared to 

the datasets of Dahri et al. (2016) and Immerzeel et al. (2015). 

Although, the error-adjusted precipitation derived in this study seems to be more consistent, 

yet there are a few uncertainties that need to be understood and taken care of in future 

investigations. The major uncertainties associated with the results of our study may arise 

from four possible sources: i) uncertainties in regression models due to their imprecision 

and uncertainties in the input data, ii) uncertainties arising from the estimated temperature 

and wind speed for many observatories, iii) uncertainty in the gauge type of the basin’s 

gauge network, and iv) uncertainties in spatial interpolation of the point observations to 

derive gridded fields of precipitation. The error estimation of the regression models 

employed in this study are tested at different locations and the relationships with the best fit 
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which are almost similar to the estimates of Dahri et al. (2016), show 10 out of 17 sub-

basins above the line of moisture limit indicating underestimated precipitation in these sub-

basins. The adjusted precipitation derived in our study shows relatively better fits in the 

Turc-Budyko representation except for the Swat sub-basin. The greater specific runoff than 

precipitation in the Swat basin may be attributed to yet an underestimated precipitation 

and/or greater negative mass balance than what is presently assumed. 
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are also applicable for similar situations in other areas. Nevertheless, regression models are 

in essence approximations of reality and some degree of uncertainty will always remain in 

the results. Relatively more accurate adjustments of precipitation under-catch for any 

precipitation event can be made by using the corresponding data of temperature and wind 

speed. However, hourly or daily data of these parameters are not available for many 

observatories in the study area. Also, there are many stations for which such data are not 

available at all. For locations without these data, temperature may be derived from the lapse 

rates of the available observations and wind speed from JRA55 dataset. However as shown, 

the use of these data may add to the uncertainties in the catch corrections. The 

meteorological data collecting agencies in the Indus basin generally indicate to follow the 

WMO standards but we found inconsistencies in the use of precipitation measurement 

instruments and techniques. As the correction coefficients to account for wind-induced 

under-catch of precipitation depend on the type and orifice area of the precipitation gauge, 

incorrect gauge configuration information has consequences for the catch corrections. 

Although we tried our best to obtain the maximum possible information regarding the type 

and specs of precipitation gauges, we cannot exclude the chances of different precipitation 

gauges than the actual ones in some cases. However, we also think that the possibility of 

slight differences in gauge type will only have a small impact on the final results. The 

uncertainties resulting from spatial interpolation techniques described by Dahri et al. (2016) 

are equally applicable for this study. Importantly, the cross-validation results infer high 

accuracy of the corrections and indicate excellent agreement between the adjusted 

precipitation and adjusted specific runoff at sub-basin scale.  

3.6. Conclusions 

Reliable estimates of precipitation climatologies and amounts in the high-altitude Indus 

basin are seriously constrained by the quality and number of observed data (e.g. scarcity of 

in-situ observations, measurement errors, and space-time breaks). This study attempted to 

address these core issues by improved estimates of the precipitation measurement errors 

and integrating precipitation data from multiple sources with the net snow accumulations at 

major glacier zones. The study employed WMO recommended standard methods to adjust 

systematic errors in precipitation measurements. Simple methods to adjust net snow 

accumulation for the ablation losses and adjustment of river flows for the net mass balance 

contributions are introduced. Mean monthly adjusted and unadjusted precipitation 

observations and net snow accumulations are spatially interpolated using the Kriging with 

external drift interpolation scheme. Analysis of temperature variations with elevation and 

latitude revealed significantly different gradients for each month and substantial differences 

among the gradients at different locations for maximum and minimum temperatures. 

Hence, the use of a universal annual gradient or a time independent gradient of mean 

temperature to estimate maximum and minimum temperatures or vice versa is a major 

source of uncertainty for the high-altitude Indus basin. 

The applied error-adjustments significantly increased the gauge-measured precipitation, 

which is in line with previous studies. The total bias between gauge-measured and error-

adjusted precipitation ranged from 12-773 mm yr-1 (2-182%) for various individual 

stations. The highest increments are computed for wind-induced under-catch of solid 

precipitation, particularly in higher-altitude areas and during winter months. The range of 

liquid precipitation under-catch is much smaller concentrating mainly in the low-altitude 

areas during summer monsoon. Similarly, notable increases varying from 0-1000 mm yr-1 

(0-200%) are estimated for net snow accumulations. Precipitation increase at the basin 



56 

 

(study area) scale is 21.3%, while at sub-basin scale it ranged from 6-77% with greater 

increments at higher-altitude areas and during winter months. Contrary to the general 

understanding, the contribution of net glacier mass balance to river flows is only marginal 

ranging from 0.5-6.1% of the observed flows. The highest contributions are revealed for the 

Chenab, Chitral, Shigar, Hunza, Astore and Gilgit basins. 

The cross-validation results (Figure 3.4) and the Turc-Budyko representation of the runoff 

ratios and aridity indices at sub-basin scale (Figure 3.5) show that the adjusted precipitation 

amounts and distribution patterns derived in this study are more accurate than the 

unadjusted data and previous estimates. The catch corrections provided new insights in the 

magnitude and distribution patterns of precipitation implying potential hydrological 

implications for water resources assessment, planning and management. The actual 

precipitation is considerably greater than what has been previously thought. These increases 

are mainly realized in the higher-altitude areas of Chitral, Gilgit, Hunza, Shigar, Shyok and 

Astore basins. The study recognizes that the data-quality driven underestimated 

precipitation may be the major source of uncertainty in the water balance estimates in the 

high-altitude Indus basin. The improved climatologies of mean monthly precipitation 

developed in this study can be used for basin or sub-basin scale water balance studies and 

bias correction of gridded precipitation products, thereby paving the way for the 

development of an accurate, consistent and high-resolution gridded precipitation product 

for this highly under-explored region of the Indus basin.  

Although, our estimates of precipitation distribution can easily be regarded as much better 

than currently available estimates, the uncertainties elaborated at the end of the previous 

section recognize the need for further improvement. Further improvements can be achieved 

by calibration of the already installed precipitation gauges with the WMO recommended 

reference gauges and development of site and gauge specific error adjustment models, use 

of observed data with better spatio-temporal coverage, use of daily or even sub-daily time 

steps, use of corresponding observed wind speed and temperature datasets, selection of any 

better spatial interpolation technique, accuracy assessment and precise determination of 

other components of the water balance to validate precipitation, and a better integration of 

precipitation data with mass balance data. 
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Chapter 4 

Evaluation of Gridded Precipitation Products 

Abstract 

The high-altitude Indus basin is one of the most complex and inadequately explored 

mountain terrains in the World, where reliable observations of precipitation are highly 

lacking. Therefore, spatially distributed precipitation products developed at global/regional 

scale are often used in several scientific disciplines. However, large uncertainties in 

precipitation estimates of such precipitation datasets often lead to suboptimal outcomes. In 

this study, performance of 27 widely used gridded precipitation products belonging to three 

different categories of gauge-based, reanalysis and merged (combined) is evaluated with 

respect to high-quality reference climatologies of mean monthly precipitation. Widely used 

statistical measures and quantitative analyses techniques are used to analyze the spatial 

patterns and quantitative distribution of mean monthly, seasonal and annual precipitation at 

sub-regional scale. Mean annual precipitation estimates of the gridded datasets are cross 

validated with the corresponding adjusted streamflows using Turc-Budyko non-

dimensional analysis. Results reveal poor to moderately good performance of the gridded 

datasets. Marked differences in spatiotemporal and quantitative distribution of precipitation 

are found among the datasets. All datasets are consistent in their patterns showing negative 

or dry bias in wet areas and positive or wet bias in dry areas, although considerable 

differences in the magnitudes of the biases are noticed at sub-regional scale. None of the 

datasets is equally good for all sub-regions due to very high spatiotemporal variability in 

their performance at sub-regional scale. Gauge-based and merged products performed 

better in dry regions and during monsoon season, while reanalysis products provided better 

estimates in wet areas and during winter months. GPCC V8, ERA5 and MSWEP2.2 are 

found better than their counter-grouped datasets. Overall, ERA5 is found most acceptable 

for all sub-regions, particularly at higher-altitudes, in wet areas and during winter months. 
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4.1. Introduction 

Precipitation is the most important climatic variable associated with atmospheric 

circulations and hydrological cycle and unequivocally the principal source of freshwater 

supplies. It plays a crucial role in socioeconomic developments, environmental integrity 

and sustaining life on earth. Naturally, precipitation is discontinuous in space and time, has 

complex characteristics, can occur in several forms, and its causal mechanisms can 

influence precipitation from cloud to cyclone scales. Errors in precipitation data can have 

significant implications for climate and water balance studies. It is therefore essential to 

accurately measure/estimate precipitation at higher spatiotemporal resolutions. This is 

especially the case in topographically complex high-mountain ranges where precipitation 

often changes abruptly over short distances (Anders et al., 2006) and majority of it falls as 

snow. A high-quality, dense and adequately representative network of observations is 

essential to precisely measure occurrence, quantity and type of precipitation.  

The high-altitude Indus basin is one of the most complex and largely underexplored regions 

in the World. Its climate and precipitation are largely modulated by a couple of synoptic-

scale atmospheric circulation systems: the Indian summer monsoon and the winter 

westerlies (Pang et al., 2014; Yao et al., 2012; Ding and Chan, 2005; Wang and Lin, 2002). 

The Indian summer monsoon advects moisture through several trajectories originating from 

the Bay of Bengal, Indian Ocean and Arabian Sea due to the differential heating between 

land and sea (Pang et al., 2014; Bolch et al., 2012; Yao et al., 2012; Bohner, 2006; Hodges, 

2006). It causes heavy rainfall in south-eastern areas during June-September and moves 

north-westward along the Himalayan Arc with decreasing strength. The winter westerlies 

transport large masses of moist air from the Caspian, Black & Mediterranean seas and 

North Atlantic Ocean throughout the year and are the dominant source of precipitation in 

the Hindukush, Karakoram and to a lesser extent in the W-Himalayan regions during 

December-April months (Filippi et al., 2014; Pal et al., 2014; Mayer et al., 2014; Bohner, 

2006; Treydte et al., 2006; Syed et al., 2006). Moreover, significant amount of moisture in 

the air is added to the atmosphere by evapotranspiration from the vast irrigated plains and 

forestlands (de Kok et al., 2018; Harding et al., 2013; Wie et al., 2013; Tuinenburg et al., 

2012). Heavy precipitation events are encountered whenever these systems coincide and 

interact with each other (Zaidi, 2014; SUPARCO and FAO, 2010; WMO, 2010).  

Precipitation distribution in the high-altitude Indus basin is extremely variable due to 

varying influence and interplay of the prevailing synoptic-scale atmospheric circulation 

systems with the local climate and topographic features. Highly sparse and directionally 

biased network of existing in situ observations insufficiently represents the entire range of a 

diverse climate in the study area (Dahri et al., 2018, 2016; Immerzeel et al., 2015; Reggiani 

and Rientjes, 2015; Fowler and Archer, 2006). Hence, our understanding of the prevailing 

hydro-meteorological processes in this region is seriously uncertain (Lutz et al., 2014; 

Andermann et al., 2011). Therefore, reliance on gridded datasets has been increased due to 

inadequate in situ observations and increasing demand for precipitation data in spatially 

distributed format. As such, a wide range of gridded precipitation products have been 

developed over the recent decades. The available datasets can broadly be categorized into 

four groups: gauge-based, reanalysis, satellite-derived and merged products. The most 

important are the gauge-based datasets derived from the on-ground direct measurements, 

which provide relatively precise occurrences, amounts and types of precipitation at the 

measuring points. These point measurements are often used for calibration, validation and 

bias correction of reanalysis and satellite estimates. However, the gauge-based precipitation 
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datasets are also prone to observational uncertainties resulting from measurement errors, 

insufficient spatiotemporal coverage, uneven distribution and directional biases of the 

gauges, difficulties in snowfall measurements in windy conditions, and the applied 

interpolation methods. The magnitude of these uncertainties can be significant in 

orographically influenced complex mountain terrains (Dahri et al., 2018; Prein et al., 2017; 

Boers et al., 2016; Lundquist et al., 2010).  

Alternatively, several precipitation estimates modelled through Retrospective weather 

forecast model analysis (Reanalysis) or derived from satellite data provide gauge-

independent estimates. These datasets offer viable substitutes for homogeneous, consistent, 

near-real-time and fairly reliable estimates of a wide range of climatic variables at global 

scale (Ghodichore et al., 2018). A typical reanalysis system objectively integrates 

observations, a global forecast model, and an assimilation scheme to generate synthesized 

estimates of the past atmospheric states at global scale (Fujiwara et al., 2017). Conversely, 

precipitation products derived from satellite data have gone through gradual improvements 

since their inception and currently incorporate data from several instruments and satellites 

(e.g. Ciabatta et al., 2018; Huffman et al., 2018, 2007; Xie et al., 2017; Ushio et al., 2009; 

Joseph et al., 2009). Yet these products are poor in precisely capturing the solid 

precipitation (Rasmussen et al., 2012; Putkonen, 2004). The satellite-based precipitation 

products vary considerably in terms of their source and processing algorithms as several 

sensors aboard geostationary earth orbiting (GEO) and low-earth orbiting (LEO) satellites 

observe precipitation passively or actively. A few studies observed that satellite-based 

products are better at estimating convective precipitation, whereas frontal system 

precipitation is better characterized by reanalysis (e.g. Vila et al., 2010; Sapiano and Arkin, 

2009; Tian et al., 2009; Ruane and Roads, 2007; Ebert et al., 2007). This indicates that 

reanalysis and satellite-derived datasets are complementary, particularly for the areas where 

validations are inadequate or impossible due to lack or absence of in situ observations.  

(Beck et al., 2017; Pena-Arancibia et al., 2013). 

Owing to the underlying issues in the available datasets to precisely estimate extreme 

heterogeneity of precipitation, several attempts have been made to take full advantage of 

the complementary nature and comparative advantages of the gauge-based observations, 

satellite data and reanalysis. Numerous merged (gauge-based, reanalysis and/or satellite-

derived) precipitation products have been developed over the recent time (e.g. Beck et al., 

2019, Xie et al., 2017; Karger et al., 2017; Ashouri et al., 2015; Funk et al., 2015a; Weedon 

et al., 2014; Huffman et al., 2007; Janowiak and Xie, 1999; Xie and Arkin, 1997). These 

datasets mostly rely on merging algorithms to limit the shortcomings of the source datasets 

and produce higher quality end products.  

Although, gridded datasets provide better information in terms of spatiotemporal 

consistency, their inadequacy to precisely estimate occurrence, quantity and type of 

precipitation is still a major concern. Recent innovations in weather forecasting models, 

satellite sensors and retrieval methods, and multi-source merging techniques coupled with 

high-quality observations have significantly improved the quality of resultant precipitation 

products. Yet, their spatiotemporal accuracy at basin/catchment scales particularly in 

orographically influenced and topographically complex mountain terrains is highly variable 

(Beck et al., 2019, 2017; Sun et al., 2018; Henn et al., 2018; Maggioni et al., 2016;). There 

are also seasonal biases and difficulties in capturing the low intensity and snowfall events. 

Many existing precipitation products exhibit differences that are often larger than can be 

explained by observational or methodological uncertainties (Yin et al., 2015; Aghakouchak 
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et al., 2012). Several evaluation studies have been undertaken at varying spatial scales 

using a variety of approaches, performance metrics and statistical indices (e.g. reviews by 

Sun et al., 2018; Maggioni et al., 2016; and Gebremichael, 2010). However, inconsistency 

in terms of reference dataset against which the accuracy is to be evaluated is an important 

issue. Many studies relied on spatially inconsistent point observations to assess the 

accuracy of gridded datasets; while others re-used many gauge observations already 

incorporated in development or validation of precipitation datasets, thereby precluding 

independent validation (Beck et al., 2019). Even though it is well-recognized that the gauge 

observations are prone to significant measurement errors (Goodison et al., 1998; Legates 

and Willmot, 1990; Sevruk and Hamon, 1984), these point-based gauge observations are 

often used without addressing uncertainties. Such reference point observations generally 

lack the required density to accurately represent the spatial heterogeneity of precipitation. 

Hydrological modeling is also used to evaluate quality of precipitation data by comparing 

observed and simulated flows obtained through varying precipitation inputs. However, the 

uncertainties associated with the modeling structure and other input data are the major 

drawbacks of this approach.  

Performance of gridded precipitation products may often be satisfactory at 

global/continental scale, but they generally lack the accuracy and precision required at sub-

regional and catchment scale studies, especially over regions of high spatio-temporal 

heterogeneity (Ghodichore et al., 2018; Gamp and Ludwig, 2017). The Indus river basin 

traversing through the high mountain ranges of the Tibetan Plateau (TP) and Hindukush-

Karakoram-Himalaya (HKH) regions is experiencing significant transformations in its 

hydrometeorology (Lutz et al., 2016) and is recognized as climate change hotspot 

(Krishnan et al., 2019; Lutz et al., 2018; De Souza et al., 2015). There is lack of 

comprehensive studies that could evaluate performance of gridded datasets in this area. 

Few studies evaluated the performance of some gridded precipitation products against a 

limited number of point observations (e.g. Krakauer et al., 2019; Ullah et al., 2019; Ahmed 

et al., 2019; Khan et al., 2018; Iqbal et al., 2018; Hussain et al., 2017; Ali et al., 2012) or 

using spatially distributed fields of mean annual precipitation derived from a limited 

number of point observations (e.g. Anjum et al., 2018; Ghulami et al., 2017). Dahri et al. 

(2016) integrated precipitation data from different sources to derive better estimates of 

spatially distributed precipitation and corroborated the underlying issues related to the use 

of four important gridded precipitation products in this region. Other studies (e.g. Reggiani 

and Rientjes, 2015; Palazzi et al., 2013) have relied on inter-comparison of a few datasets 

in the absence of reference dataset.  

This study therefore comprehensively and rigorously evaluates the applicability, robustness 

and limitations of 27 widely used precipitation products for the complex and high-mountain 

Indus basin in the HKH region. The study is unique in that it assesses the performance and 

reliability of a wide range of products over a finer spatial scale. Quantitative and spatial 

variability of precipitation products is investigated at monthly, seasonal and annual scales 

against high-quality reference climatologies derived by Dahri et al. (2018). In addition, it 

cross validates the precipitation estimates of all gridded products using adjusted river flows 

through Turc-Budyko non-dimensional analysis. The study will provide useful inputs and 

guidelines for development, bias correction and improvement of gridded datasets. It will 

also serve as the basis for selection and use of appropriate datasets for hydrological and 

water assessment studies in the study area.  
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4.2.1 Reference dataset  

The accuracy of a product is usually assessed against a high-quality reference benchmark. 

Here we used a recently developed high-resolution (1 km) dataset of mean monthly 

precipitation climatologies described in Dahri et al. (2018). This dataset was derived by 

integration of several precipitation data sources with indirect estimates of precipitation 

from snow accumulations measured at the major glacier zones to cover the observational 

gaps. The precipitation observations were adjusted for measurement errors, snow 

accumulations for the ablation losses, and river flows for the contribution net glacier mass 

balance. Precipitation estimates at sub-basin scale were validated by the corresponding 

adjusted specific runoff. Accuracy of the selected gridded precipitation products in this 

study is evaluated for each common grid cell with respect to this novel and high-resolution 

reference dataset of mean monthly precipitation at basin and sub-regional scale. 

4.2.2 Gridded precipitation products 

The selection of gridded datasets for this evaluation study is primarily based on availability 

of long-term (~20 years) records, which must coincide with the period of the reference 

dataset (1999-2011). The three types of data evaluated in this study include the gauge-

based, reanalysis and merged precipitation products. We excluded the satellite-derived 

products due to their short-term records, which do not coincide with the reference period 

and their large uncertainty to estimate solid precipitation (Rasmussen et al., 2012; 

Putkonen, 2004), which is dominant in the study area. An ensemble of 27 gridded 

precipitation products (nine from each of the three groups) available for the historical 

periods is selected to evaluate their accuracy in the study area. The major characteristics of 

the selected datasets are summarized in Table 4.1. For a detailed description of the input 

datasets and techniques used in development of these datasets, the corresponding references 

and/or concerned websites are suggested. 

The datasets available at finer temporal resolutions (daily/sub-daily) were aggregated to 

monthly scale. Mean monthly precipitation climatologies for the reference period of 1999-

2011 for each gridded dataset were regridded to 30 arc-seconds to match the temporal and 

spatial resolution of the reference dataset using the nearest neighbour interpolation 

technique. Extended winter (Oct–May) and monsoon (Jun–Sep) seasons are regarded 

keeping in view the onset and continuity of precipitation during the two major circulation 

systems (winter westerlies and summer monsoon) prevailing in the study area.  

4.2.3 River flows  

Dahri et al. (2018) collected river flow data for all major sub-basins in the study area and 

accounted for the diversions upstream of each rim station (river gauge). These observed 

river flows were adjusted for the contributions of net mass balances using mass balance 

estimates provided by Kääb et al. (2012) and glacier areas estimated by Randolf Glacier 

Inventory (RGI) version 5.0 (Arendt et al., 2015). These adjusted river flows are used in 

this study for analysis and cross validation of the precipitation from the selected products 

through Turc-Budyko non-dimensional analysis. The adjusted river flows for the five sub-

regions are computed from the area-weighted mean adjusted flows of the concerned sus-

basins. 

4.2. Data and Methods 
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4.2.4 Potential evapotranspiration 

There is no observational-based independent dataset of potential evapotranspiration (PET) 

for the study area. Therefore, previous studies have relied on global-scale gridded datasets 

using PET data from a single product (e.g. Dahri et al., 2018) or ensemble mean of several 

datasets (e.g. Immerzeel et al., 2015). Importantly, PET does not have crucial use in this 

study. It is only employed to estimate aridity index (P/PET) in Turc-Budyko non-

dimensional analysis. Recently, a 5th generation reanalysis (ERA5) dataset including a 

number of atmospheric variables at global scale has been released. The evaluation of 

precipitation products undertaken in this study reveals that precipitation estimates of ERA5 

are much better than the rest of reanalysis products for the study area. Therefore, as a 

complementary climate variable, PET from ERA5 reanalysis is selected for this study.  

4.2.5 Evaluation approach 

The study area is stretched over vast mountain and sub-mountain ranges of extremely 

variable topographic features (relief, aspect, soil, land cover, etc.) in the Indus basin. The 

confluence of three mountain ranges (Hindukush, Karakoram and Western-Himalaya) adds 

significant complexities in characterizing the connection between precipitation and 

topographic features (Palazzi et al., 2013). These three mountain ranges are influenced 

differently by the underlying atmospheric circulation systems and possess unique 

hydrometeorological and geomorphological characteristics. Therefore, in order to have a 

better idea of the quality of spatial distribution depicted by various gridded precipitation 

products and based on the availability of observed streamflows for ultimate evaluation and 

cross validation; the study area is divided into five sub-regions (Figure 1), which possess 

considerable differences in their precipitation patterns and magnitudes, and landscape 

morphologies. 

Table 4.1: Summary of the basic characteristics of the selected gridded precipitation products used in 

this study. 
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Figure 4.1: Study area and location of five regions analyzed in this study 

Widely used statistical measures and quantitative analyses techniques are used to evaluate 

performance of the selected gridded precipitation products. All analyses are performed on 

the common grids for the reference period of 1999-2011. Mean annual precipitation for the 

reference period over the study area is plotted for each gridded dataset to visually examine 

their spatial distribution. The biases between mean annual precipitation of each gridded 

dataset and the corresponding grid of the reference dataset are plotted to show the spatial 

distribution of their residuals over the study area. The biases between mean monthly 

precipitation of each gridded dataset and reference dataset at each corresponding grid are 

analyzed through Box-Whisker charts for extended winter (Oct-May) and monsoon 

(Jun-Sep) season, which are further extended at annual scale for the study area as well as its 

five sub-regions to examine their median, distribution and spread at 1st and 3rd quarters and 

extremes. This is followed by computation of mean absolute error (MAE) in mean monthly 

precipitation of all gridded datasets against the reference dataset. The MAE computes the 

magnitude of the mean differences between two datasets without considering the direction 

of the error and is given by Eq. 1. The MAE is generally a preferred metric over widely 

used root mean square error (RMSE) when the errors are unlikely to follow a normal 

distribution (Beck et al., 2017; Willmott et al., 2017; Chai and Draxler, 2014).  

Modified Kling-Gupta Efficiency (KGE) scores are computed using Eq. 2 (Kling et al., 

2012; Gupta et al., 2009) at monthly scale for the study area and monthly precipitation 

extended at annual scale for study area and five sub-regions to examine how closely the 

spatio-temporal precipitation estimates of the gridded datasets are statistically matched with 

those of the reference dataset. Any value of KGE gives the lower limit of its three 

components, meaning that the worst component is ≥ to that value. The KGE has primarily 

been used for evaluating the quality of climate or hydrological models' outputs against the 

observed data. However, it can also be used to evaluate the performance of gridded 

precipitation estimates with respect to the corresponding observed or reference data (e.g. 

Beck et., 2019). The mathematical expressions of the employed performance evaluation 

metrics are given by: 

𝐌𝐀𝐄 =
𝟏

𝒏
+ ∑  |𝑮𝒊 − 𝑹𝒊|

𝒏
𝒊=𝟏            (4.1) 
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𝐊𝐆𝐄 = 𝟏 − √(𝒓 − 𝟏)𝟐 + (𝜷 − 𝟏)𝟐 + (𝜸 − 𝟏)𝟐    (4.2) 

𝐫 =
∑ (𝑮𝒊−𝑮) (𝑹𝒊−𝑹)𝒏

𝒊=𝟏

√∑ (𝑮𝒊−𝑮)
𝟐𝒏

𝒊=𝟏 ∑ (𝑹𝒊−𝑹)
𝟐𝒏

𝒊=𝟏

      (4.3) 

𝜷 =
µ𝒈𝒓𝒅

µ𝒓𝒆𝒇
        (4.4) 

𝜸 =
𝝈𝒈𝒓𝒅/µ𝒈𝒓𝒅

𝝈𝒓𝒆𝒇/µ𝒓𝒆𝒇
           (4.5) 

Where: Gi and Ri represent the gridded and reference datasets at ith grid and n denotes 

number of grid cells, r in Eq. 2 is Pearson’s correlation coefficient to measure the degree of 

linear relation between two datasets, β is bias computed by the ratio of gridded and 

reference means (µ), γ is variability ratio given by the ratio of the gridded and reference 

dataset’s coefficients of variation (σ/µ), σ is standard deviation, and subscripts grd and ref 

indicate gridded and reference datasets respectively. The optimum values of KGE, r, β, and 

γ are at unity. 

For robust quantitative assessment, the study further evaluated the annual cycle of area-

weighted mean monthly precipitation of each gridded dataset for the reference period 

against that of the reference dataset. This comparison evaluates how well the gridded 

datasets follow the mean monthly and seasonal cycle of precipitation during the reference 

period in the study area and in each sub-region. The goodness-of-fit of these monthly 

cycles is ascertained through coefficient of determination (R2) and MAE.  

Isolated measures of performance evaluation are often associated with their specific 

uncertainties and limitations resulting in contrasting inferences. Therefore, instead of 

relying on a single measure, the outcomes of the above-described performance metrics and 

quantitative analyses techniques are integrated through a simple ranking system to evaluate 

the performance of the gridded datasets in a better and more consistent manner. For this 

purpose, the originally estimated values of these performance metrics for each gridded 

dataset are normalized and rescaled between 0 and 1. However, in contrast to KGE and R2, 

lower values of MAE infer better performance. Therefore, the normalized values of MAE 

are subtracted from one to synchronize them with KGE and R2. The integrated skill scores 

are obtained by sum of the normalized values of KGE and R2 and subtracted normalized 

values of MAE for each dataset. The larger values infer higher rankings. This simple 

ranking system greatly reduces the contradictions and complexities in interpretation of the 

evaluation results. Furthermore, the wet and dry areas are defined by combining the sub-

regions where annual mean precipitation is more and less than 600 mm respectively. 

Hence, the wet area adds the skill scores of W-Himalaya, Karakoram and NE-Hindukush, 

while dry area combines Kharmong and SW-Hindukush sub-regions. Similarly, the 

rankings and skill scores are also calculated for Indus basin upstream of Tarbela dam 

(Figure S-4.1 and Table S-4.3). 

Finally, the mean annual precipitation estimates of all datasets are cross-validated by the 

corresponding adjusted streamflows (specific runoff) using Turc-Budyko non-dimensional 

analysis (Andreassian and Perrin, 2012; Valery, Andreassian and Perrin 2010; Budyko, 

1974; Turc, 1954). Adjusted river flows determined in Dahri et at., 2018, potential 

evapotranspiration (PET) from ERA5 reanalysis product and precipitation estimates of 

gridded datasets for the whole study area and five sub-regions are used to compute run-off 

ratio (Q/P) and aridity index (P/PET). The Turc-Budyko non-dimensional analysis 
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approach was originally introduced by Turc (1954) and Budyko (1974) to represent the 

relationships between actual and potential evapotranspiration (AET/PET) and between 

precipitation and potential evapotranspiration (P/PET). However, actual evapotranspiration 

is difficult to measure and spatially distributed data are very rare and often highly biased. 

Therefore, it was later on modified and further elaborated by an equivalent and alternative 

representation between Q/P and P/PET and introducing water and energy limits (e.g. Coron 

et al., 2015; Andreassian and Perrin, 2012; Valery, Andreassian and Perrin, 2010). Since 

then, the approach has been extensively applied in hydrometeorological and water balance 

assessments in several regions. The rankings and integrated skill scores of the datasets for 

each region are recognized only if a particular dataset falls within the theoretically feasible 

domain of Q/P ratio in Turc-Budyko representation. The order of the ranking is updated 

accordingly after exclusion of the underperforming datasets in this criterion. 

4.3. Results 

4.3.1 Spatial distribution of mean annual precipitation and residual errors 

Spatial distribution of mean annual precipitation estimates from various gridded datasets 

presented in Figure 4.2A and area-weighted seasonal and annual precipitation totals 

provided in Table 4.2 reveal significant variability of mean annual precipitation. Compared 

to annual mean precipitation of 697 mm of the reference dataset, the minimum estimates of 

374 mm (-46%) are depicted by CPC Unified and maximum estimates of 976 mm (+40%) 

by ERAI datasets. However, the magnitudes vary considerably at sub-regional and seasonal 

scale. None of the selected gridded precipitation products could accurately distinguish and 

capture the zone of 2nd precipitation maxima present in the central Karakoram. All gridded 

datasets also failed to detect the drier areas under the influence of rain shadows. However, 

significant consistency in terms of spatial patterns showing negative or dry bias in wet areas 

and positive or wet bias in dry areas with considerable difference in the magnitude of biases 

is noticed. Most prominent are the two swaths/paths of negative bias: 1st from upper Chitral 

basin and passing through Gilgit, Hunza, Shigar & Shyok basins; and 2nd along the western 

Himalayan foothills from Beas across Chitral sub-basin. A large spread of residual errors 

(from -2600 to 3000 mm) compared to the reference dataset (Figure 4.2B) is also evident. 

The gauge-based and merged products show strong tendency of underestimation; while 

except ERA20C, reanalysis products tend to overestimate precipitation in most parts of the 

study area, with considerable difference at sub-regional level. This overestimation by the 

reanalysis products is more pronounced in the drier areas (e.g. Kharmong and SW-

Hindukush). With the exception of a few reanalysis products (e.g. ERA5, CFSR, JRA-55, 

MERRA-2 and 20CR), the largest underestimates of gridded datasets are observed in the 

Karakoram region. Interestingly, DOE R2 provides the best quantitative estimate for the 

whole study area but its quantitative estimates, correlations and KGE scores at sub-regional 

scale are below par. The inter-regional variations are offset when aggregated for the whole 

study area. This underlines the importance of consistency in accuracy of precipitation 

estimates at varying spatial scales.  
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Figure 4.2: Spatial distribution of (A) mean annual precipitation illustrated by various gridded 

datasets, and (B) absolute bias between mean annual precipitation of gauge-based (left column), 

reanalysis (middle column), and merged (right column) products compared to the reference dataset. 

Table 4.2: Area-weighted seasonal & annual precipitation of the reference dataset and difference in 

the precipitation estimates of various gridded datasets. 

 

GPCC V8                              ERA5                                  MSWEP V2.2 GPCC V8                              ERA5                                  MSWEP V2.2

GPCC V7                              CFSR                                TMPA 3B42V7 GPCC V7                              CFSR                                TMPA 3B42V7

UDEL V5.01                          JRA-55                               PERS.-CDR UDEL V5.01                          JRA-55                               PERS.-CDR

APH.V1801R1                      ERA20C                            CHELSA V1.2 APH.V1801R1                      ERA20C                            CHELSA V1.2

APH.V1101                           MERRA-2                          CHIRPS V2.0 APH.V1101                           MERRA-2                          CHIRPS V2.0

PREC Land                           ERAI                                   WFDEI CRU PREC Land                           ERAI                                   WFDEI CRU

CRU TS402                            DOE R2                               CMAP CRU TS402                            DOE R2                               CMAP

GPCP V2.3                            NCAR R1                         CMORPH V1.0 GPCP V2.3                            NCAR R1                         CMORPH V1.0

CPC Unified                         20CR V2C                            CAMSOPI CPC Unified                         20CR V2C                            CAMSOPI

Annual Absolute Bias (mm)

30        500      1000      1500       2000      2500       3000      3500 -2600  -2000     -1000             0             1000          2000        3000

Mean Annual Precipitation (mm)

(A) (B)
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4.3.2 Residual errors 

Residual errors in mean monthly precipitation of the gridded datasets summarized in 

Figure 4.3 suggest large deviations from the reference mean. However, the errors vary 

considerably among the datasets at seasonal scale and over the sub-regions. The largest 

spreads of residual errors are found in W-Himalayan region for all products, partly due to 

highest precipitation.  

 

Figure 4.3: Box-Whisker plots of the absolute bias of mean monthly precipitation of each gridded 

dataset against the reference dataset for Oct-May months and monsoon (Jun-Sep) season for the study 

area and extended at annual scale for the study area and its five regions. Red colour indicates datasets 

developed from gauge observations, blue colour represents reanalysis products and orange colour are 

the merged datasets. The zero line represents the mean precipitation of reference dataset, the thick 

lines in the middle of boxes show the median differences, the bottom and top edges of the box 

represent the deviations from the reference mean at 25th and 75th percentiles respectively, while the 

“whiskers” represent the extreme values for each gridded dataset. Outliers are removed. 

The gauge-based and merged products perform relatively better during monsoon season 

and reanalysis products during the winter months. Generally, reanalysis products show 

larger variability and wider spread of residuals than gauge-based and merged products, 
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which is understandable and attributed to their independence from direct measurements of 

precipitation, use of varying type and number of assimilated observations, and use of 

different atmospheric models and assimilation schemes. The gauge-based and merged 

products significantly underestimate precipitation in relatively wet regions of W-Himalaya, 

NE-Hindukush and Karakoram. None of the selected products could be singled out as the 

best product for all regions as their accuracy varies considerably from one region to 

another. However, ERA5, GPCC V8, and MSWEP2.2 provide better estimates among their 

counterpart grouped products.  

Mean absolute error (MAE) magnitudes of the gridded datasets (Figure 4.4) depict almost 

similar patterns of the errors as in Figure 4.3. The largest MAEs are observed in W-

Himalayan region and during monsoon season. Gauge-based products show relatively small 

absolute errors except high-altitude Karakoram region, where reanalysis products perform 

much better. However, reanalysis products show larger errors during monsoon season, 

probably due to the convective nature of monsoon precipitation and high uncertainties in 

deep convection parameterization schemes applied in the reanalysis models, which is in 

line with the findings of Beck et al. (2019). ERA5 is found best during winter and pre-

monsoon (Oct-May) months and in higher-altitude Karakoram region, while GPCC V8 

provides the least MAE values in W-Himalaya and Kharmong, WFDEI-CRU in NE-

Hindukush, and CHIRPS V2.0 in SW-Hindukush regions.  

 
Figure 4.4: Mean absolute errors with the same group colour schemes and spatiotemporal scales as in 

Figure 4.3, but ranked according to error magnitudes. 
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4.3.3 KGE scores 

Very low to moderately high KGE scores ranging from -0.76 to 0.80 for various months 

(Figure 4.5A) and from -2.91 to 0.86 for various regions (Figure 4.5B) indicate very poor to 

moderately good performance of gridded datasets to match the precipitation of reference 

dataset. Negative KGE values reflect negative correlation and/or large deviation of bias and 

variability ratio from their optimum values. Except ERA5, CFSR, JRA-55, MERRA-2 and 

ERAI; all datasets provide lowest KGE scores during winter (Oct-Mar) months. ERA5 

outperforms all datasets during Feb-May and MERRA2 during Oct-Jan. The gauge-based 

and few merged products depict better KGE scores during monsoon season (Jun-Sep).  

In case of extended monthly data at annual scale for the whole study area (Figure 5B), 

GPCC V8 produces the highest KGE score of 0.674 followed by GPCC V7 (0.673), 

MSWEP2.2 (0.634), UDEL5.01 (0.633), TMPA 3B42V7 (0.630), APHRODITE V1801R1 

(0.617), APHRODITE V1101 (0.613), and ERA5 (0.590). However, KGE scores vary 

considerably at sub-regional level. GPCC V8 outperforms all the datasets in W-Himalaya 

and Kharmong, MERRA-2 in Karakoram, MSWEP2.2 in NE-Hindukush, and CHIRPS 

V2.0 in SW-Hindukush regions. Details of monthly scale KGE scores, correlations, biases 

and variability ratios for the study area are provided in Table S-4.1, while Table S-4.2 

presents the same metrics for extended time scale for study area and five sub-regions. The 

low KGE scores in Karakoram region can be attributed to the more complex topography 

and greater spatio-temporal heterogeneity of precipitation in this complex mountain region. 

4.3.4 Annual cycle of monthly means 

The observational-based reference climatologies of area-weighted mean monthly 

precipitation exhibit a strong seasonality with biomodal pattern clearly reflecting the 

influence of winter westerlies and summer monsoon, but many gridded datasets have 

difficulties in efficiently reproducing this seasonality and biomodal pattern as shown in 

Figure 4.6. Few datasets show very weak seasonality, and one merged dataset (CMORPH) 

even displays a ‘negative’ correlation. The strength of gridded products to reproduce the 

annual cycle of area-weighted mean monthly precipitation of the reference dataset is 

ascertained by coefficient of determination (R2) and MAE and presented in Table 4.3. 

Correlation coefficient and coefficient of determination primarily indicate patterns and 

linear trend between two data but lack in quantifying the margin of errors, which is 

determined by MAE. None of the dataset is equally best for all sub-regions due to a large 

variability in R2 and MAE values.  

All gauge-based products underestimate precipitation during Oct-May in all sub-regions 

except relatively dry sub-region of SW-Hindukus. They show mix trends during monsoon 

season with PREC Land, UDEL V5.01 and two versions of GPCC slightly overestimating 

precipitation in W-Himalaya, Kharmong and SW-Hindukush. However, in the higer-

altitude regions of Karakoram and NE-Hindukush, the gauge-based products significantly 

underestimate precipitation throughout the year. An important discrpancy in attainment of 

the lowest and heighest peaks is also evident. Almost all gauge-based datasets show the 

lowest and heighest peaks during May and July respectively against June and August 

dipicted by the reference dataset in most parts except NE-Hindukush and SW-Hindukush, 

where heighest peack is achieved during February and April respectively. The reanalysis 

products better reflect the wintertime precipitation but exhibit relatively large variability 

among them and in different regions. They record higher correlations and lower MAEs than 

the gauge-based and merged products particularly in higher altitdue and wetter regions.  



70 

 

 
Figure 4.5: KGE scores based on mean monthly precipitation totals at monthly scale for the 

study area (A), and extended at annual scale for the study area and five regions (B). The 

red, blue and orange colours represent KGE scores for gauge-based, reanalysis and merged 

datasets respectively.   
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Figure 4.6: Annual cycle of mean monthly precipitation for the study area and five regions. Each row 

represents a particular region. Left column shows gauge-based datasets, middle column indicates 

reanalysis products and right column shows merged products. 

Nevertheless, they consistently overestimate precipitation in drier regions of Kharmong and 

SW-Hindukush throughout the year but more significantly during monsoon season. The 

merged products largely follow the same patterns as gauge-based products, which is 

understandable due to the reason that these products are derived by taking input from the 
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gauge observations. However, the merged products exhbit larger variability as comapred to 

gauge-based products. They also show larger spread of error margins among themselves. 

CMAP and MSWEP2.2 provided higher R2 and lower MAE as compared to their 

counterpart grouped datasets, except in SW-Hindukush where CHIRPS V2.0 proved to be 

the best in terms of both these performance metrics. The lowest MAE values in Karakoram, 

W-Himalaya and NE-Hindukush regions are obtained by ERA5, while CHIRPS V2.0 in 

SW-Hindukush and GPCC V8 in Kharmong outperform all other datasets with the lowest 

MAE and highest R2 values. Interestingly, for the whole basin DOE R2 provides the best 

values of R2 & MAE despite its poor performance at regional scale in terms of KGE scores. 

Table 4.3: Coefficient of determination (R2) and MAE (mm) values based on area-weighted monthly 

means presented in Figure 4.6.  

 

4.3.5 Comparison and cross validation against adjusted streamflows 

Mean annual precipitation of all gridded datasets is cross validated by the Turk-Budyko 

non-dimensional analysis (Figure 4.7), which is based on the factual logic that streamflow 

can never be greater than precipitation provided there is no contribution from the negative 

mass balance (glaciers) and groundwater. This study used the adjusted streamflows for the 

contribution of negative mass balance determined by Dahri et al. (2018), so there is no 

question of galcier mass balance contributions. For longterm analysis, groundwater 

contribution to river flows is negligible in the study area. Therefore, the logic of lower 

streamflow than the precipitation is absolutely valid.   
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Figure 4.7: Turc-Budyko representation of runoff ratio (Q/P) and aridity indices (P/PET) for various 

regions of study area. Red, blue and orange coloured numbers reflect the respective names of gauge-

based, reanalysis and merged datasets summarized in Table 1. The green colored capital R represents 

the reference dataset. 

The Turc-Budyko diagrams presented in indicate that precipitation estimates by most of the 

gridded datasets, particularly gauge-based and merged products in higher altitude regions, 

are less than the corressponding streamflows, which is quite unrealistic and 

counterintuitive. It is also evident that most of the datasets are within the acceptable limits 
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for the drier regions of Kharmong and SW-Hindukush. However, in more complex high-

mountain Karakoram and NE-Hindukush regions, all gauge-based and merged products 

(except CMAP in Karakoram and MSWEP2.2 in NE-Hindukush) fail to fall within the 

feasible domain of the Budyko curve due to their unrealistically lower precipitation than the 

corressponding streamflows. Similarly, for the monsoon dominated and relatively wetter 

region of W-Himalaya, half of the datasts show unaccpetable Q/P ratios. However, such 

inter-regional variations offset each other when aggregated for the whole study area and 

except CPC-Unified, CHIRPS V2.0 & CAMSOPI, all datasets provide acceptable 

representation. Only ERA5, CFSR, JRA-55, MERRA-2 and ERAI proved realitic for all 

regions. The other datasets fail due to underestimated precipitation in one or another region.  

4.3.6 Skill scores and rankings  

Interestingly, a considerable inconsistency in the outcome of the applied performance 

metrics is noticed using the same data at the selected spatiotemporal scales. For example, 

AHPRODITE V1101 is found to be the best dataset in terms of MAE for the whole study 

area at annual scale (Figure 4c), whereas GPCC outperformed all datasets in terms of KGE 

score (Figure 4.5m). Similarly, MAE and R2 obtained for the annual cycle of mean monthly 

precipitation (Table 3) suggest DOE R2 as the best dataset. However, the integrated skill 

scores and rankings derived from the normalized values of the selected statistical indices 

suggest considerably different inferences than presented in the results of the individual 

metrics. For the whole study area, UDEL V5.01 provided the best skill score of 3.629 

followed by GPCC V8 (3.579), GPCC V (3.55) and ERA5 (3.443). However, there is 

considerable variation in the skill scores at sub-regional scale. GPCC V8 outperforms all 

datasets in W-Himalaya and Kharmong, ERA5 in Karakoram, MSWEP2.2 in NE-

Hindukush and CHIRPS V2.0 in SW-Hindukush regions. For the combined wet and dry 

areas, ERA5 and UDEL V5.01 provided the highest skill scores respectively. The 20CR 

V2C and CMORPH V1.0 proved to be the worst performers in almost all regions. Overall, 

reanalysis products perform better in wet areas while gauge-based and merged products 

excelled in dry areas. Similarly, reanalysis products outperformed other datasets in higher-

altitudes and gauge-based datasets provided better estimates in plain areas. 

The ultimate rankings presented in Table 4.4 reveal that none of the gauge-based products 

could fall within the Budyko curve for the Karakoram and NE-Hindukush regions mainly 

due to their lower precipitation estimates than the corresponding streamflows. Out of 

merged products, only MSWEP2.2 in NE-Hindukush and CMAP in Karakoram show 

acceptable Q/P ratios, while majority of reanalysis retain their rankings with ERA5 

performing the best. The drier regions of SW-Himalaya and Kharmong are trivially 

affected as most of the datasets show acceptable Q/P ratios and are laid within the Budyko 

curve. Similarly, about half of the datasets are excluded in the monsoon dominated W-

Himalaya due to higher Q/P ratios, with GPCP V8 retaining the top ranking. However, for 

the whole study area, the shortcomings exhibited at regional scale are offset and only CPC 

Unified, CHIRPS V2.0 and CMORPH V1.0 are excluded. The Turc-Budyko non-

dimensional analysis is found an effective performance indicator to single out the datasets 

that underestimate precipitation due to a definite upper limit of Q/P ratio, while aridity 

index appears to be a softer indicator to highlight the overestimating datasets. 
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Table 4.4: Final rankings (R) and skill scores (SS) of gridded datasets derived through integration of 

performance metrics for study area and its various regions. Red, blue and orange colors represent 

gauge-based, reanalysis and merged products respectively. 

 

4.4 Discussion 

This study provides a comprehensive evaluation and accuracy assessment of 27 global scale 

gridded precipitation products for a transboundary high-mountain Indus basin. Widely used 

performance metrics are applied to evaluate and quantify the accuracy in sub-regional scale 

precipitation estimates of the gridded datasets with respect to a high-quality reference 

dataset at monthly, seasonal and annual timescales. The results revealed significant errors 

and uncertainties in the precipitation estimates of the selected gridded precipitation 

datasets. Most of the gridded datasets provided reasonably good patterns of seasonal 

precipitation distribution but displayed large differences in their precipitation magnitudes at 

monthly, seasonal and annual timescales in the study area. These differences are 

inconsistent and more pronounced at sub-regional scale (Figure 4.3). Overall, a large 

uncertainty in quantitative and spatio-temporal distribution of precipitation is evident in all 

gridded datasets. The results are in line with the findings of Sun et al. (2018), who reviewed 

and intercompared 30 global scale precipitation datasets. The most important attributions 

for the large differences and uncertainties in gridded precipitation products are different 

structural characteristics, diverse input data and observational densities, variable quality 

control and gauge under-catch corrections, spatiotemporal resolution, and use of different 

interpolation schemes. The landscape heterogeneities further add to the uncertainties. 

Generally, precipitation differences among gridded datasets and their biases with respect to 

the reference data can be explained by the uncertainties in the ways and means by which 

these datasets are produced. The similarities in precipitation estimates of two or more 

datasets can often be attributed to the similar input data and methods. However, if the 
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dissimilar datasets depict consistencies then it is very likely that such signal is present in 

the actual situations.  

The study area is highly deficient in precipitation observations and even worse is the fact 

that only one-third of the observed data are actually used by the existing gridded 

precipitation datasets due to strict data sharing policies of the national meteorological 

agencies. The situation is further worsened by the coarser spatial resolution of many 

gridded datasets, which limits the representation of precipitation in the high-mountain areas 

due to smoothing leading to underestimated peaks. Quality of the reference and gridded 

datasets can be improved by measuring and sharing precipitation data of the higher-altitude 

ranges and robust integration of mass balance data at corresponding timescales. Gauge-

based datasets generally underestimate precipitation in the study area except relatively dry 

regions of Kharmong and SW-Hindukush during monsoon season. This is obvious because 

higher altitude regions of Karakoram and NE-Hindukush are highly deficient in ground-

based observations. Therefore, the gauge-based datasets are derived from lower-altitude 

stations located in the dry valleys. The underestimated precipitation in the W-Himalaya 

region during winter months can be explained by lack of stations at the higher altitudes and 

significant under-catch of solid precipitation by the existing gauges (Dahri et al., 2018).  

APHRODITE dataset uses the largest number of station observations in the study area. 

Whereas, the evaluation results reveal that both of its versions significantly underestimate 

precipitation in most parts of the study area. GPCC and UDEL V5.01 use about half of the 

station observations compared to APHRODITE but provide better estimates, probably due 

to their efficient interpolation schemes and 5-10% correction factors applied to account for 

measurement errors in GPCC data (Schneider et al., 2014). However, the study conducted 

by Dahri et al., (2018) revealed that the corrections factors applied in GPCC are still on the 

lower side for the high-mountain Indus basin where under-catch of individual precipitation 

gauges varied between 2-182% with greater under-catches at higher altitude areas and 

during winter months. GPCP V2.3 also applied bulk correction factors for monthly 

climatological conditions but its precipitation estimates are even lower than APHRODITE 

due to very coarse grid size, use of different data and interpolation techniques, and possibly 

lower correction factors. PREC Land, CRU TS4.02 and CPC-Unified use the station data 

shared with WMOs Global Telecommunication System (GTS), which is about half of the 

stations used by GPCC in the study area and employ different interpolation schemes. The 

gauge-based products exhibited almost similar spatial patterns but with significant 

differences in their precipitation magnitudes. Generally, lack of observed data at higher 

elevations, biased distribution of the existing stations, and measurement errors seriously 

limit the accuracy of gauge-based precipitation products. 

Unlike gauge-based precipitation datasets, reanalysis products are significantly different 

from each other, because each reanalysis uses its own atmospheric model, modeling 

technique and data assimilation scheme (Ghodichore et al., 2018; Fujiwara et al., 2017). 

The type and number of assimilated observations also varies from one model to another. 

Reanalysis products mostly suffer from uncertainties in the assimilated observations, 

physical aspects of the reanalysis system and the model parameterizations used for weather 

forecast (Bosilovich et al., 2008). Reanalysis products exhibit larger variability and wider 

spread of residual errors than the gauge-based and merged products because these datasets 

are independence of the direct measurements of precipitation and use different atmospheric 

models and assimilation schemes. Nevertheless, winter months and higher altitude 

Karakoram and NE-Hindukush regions are better covered by the reanalysis products, which 
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is in line with the findings of Beck et al. (2019) and general characteristics of reanalysis 

providing better estimates for the frontal system precipitation during cooler seasons. The 

largest errors are observed during monsoon season, which is probably due to the convective 

nature of monsoon precipitation and high uncertainties in deep convection parameterization 

schemes applied in the reanalysis models. They also better follow the peaks. Annual cycle 

of area-weighted mean monthly precipitation is also better reflected in wet areas. Yet, 

precipitation in dry areas is largely overestimated by reanalysis products.   

The development of merged precipitation products aims to exploit the complementary 

nature and comparative advantages of ground-based observations, reanalysis and/or satellite 

data leading to higher quality end products. However, the merged products inherit the 

limitations of their source data and are also affected by the uncertainties in the merging 

algorithms. Most of the gauge-observations used to calibrate satellite products and develop 

merged products are extracted from GTS network with poor spatial coverage in the HKH 

region (Yatagai et al., 2012). This could explain the underestimated precipitation by the 

resultant products at higher altitudes. Since, the merged products take inputs from the 

ground observations, they are closer to the gauge-based products. Yet, they exhibit a larger 

variability and error spreads among themselves due to differences in other data sources. 

Surprisingly, the performance of merged products in most parts of the study area is worse 

than many gauge-based and reanalysis products. This can partly be attributed to use of 

different and/or less observations. However, the major reason might be the problem in 

merging techniques, which are unable to preserve the comparative advantages of the gauge, 

reanalysis and satellite data. The quality of a merged product should be better than its 

parent input datasets. This might be true in many data rich regions, but is not the case in a 

complex high-mountain Indus basin.  

Generally, errors or uncertainties in terms of over- and/or under-estimation of precipitation 

are ascertained in relative terms against a reference dataset. However, if the reference data 

differ in their precipitation patterns and magnitudes, the performance of the gridded 

datasets may change accordingly. The reference dataset used in this study is unique and has 

never been used before for evaluation purpose. Therefore, the magnitudes and errors in 

precipitation estimates of the gridded datasets deduced in this study cannot be compared to 

earlier studies, which used different benchmarks. It is also pertinent to note that the 

reference dataset used in this study includes monthly means of the error-adjusted 

precipitation observations for the period of 1999-2011, the best evaluation results can be 

achieved at similar temporal resolution scale. The data beyond this temporal scale are 

assumed to follow similar trends in the biases and are liable to some degree of uncertainty. 

It would be advisable to extend the evaluation using long term daily and monthly timeseries 

once the high-quality reference dataset at such temporal scales is made available. The 

evaluation at daily timestep would be useful to select the better datasets for assessing 

precipitation extremes and subsequent droughts or floods. Moreover, the Turc-Budyko non-

dimensional analysis largely depends on the Q/P ratio, which is subject to uncertainties in 

the quality of river flows data. Study conducted by   

The global/continental scale datasets seem to compromise over the techniques used to 

derive/infer precipitation from various sources as the efficiency of the techniques varies 

with site-specific conditions. While the underlying efforts to develop merged datasets have 

been focusing on merging/combining data from various sources, another alternative may be 

to develop national/basin scale datasets using optimum data and techniques first and then 

merge these products to form a high-quality product at regional/global scale.  



78 

 

 

4.5 Conclusions  

This study highlighted and corroborated the underlying issues and uncertainties associated 

with a wide range of gridded precipitation products in the high-mountain Indus basin. The 

results clearly indicate that all gridded datasets evaluated in this study contain significant 

errors in their precipitation estimates and cannot be used directly without careful bias 

correction. The following major conclusions are drawn.  

1. All gridded datasets tend to underestimate precipitation in wet areas and 

overestimate precipitation in dry areas, implying considerable implications for 

hydrological extremes of floods and droughts. GPCC V8, ERA5 and MSWEP2.2 

provided better estimates than their counter-groups of gauge-based, reanalysis and 

merged datasets. ERA5 and UDEL V5.01 provided the highest skill scores for wet 

and dry areas respectively.  

2. None of the dataset is equally best for all sub-regions of the study area. A particular 

dataset performing very well in one sub-region is found worse in the other sub-

region. Nevertheless, ERA5 is found most acceptable for all sub-regions. This study 

therefore would provide useful guidance for selection and use of the best dataset for 

a particular sub-region or sub-basin for hydrometeorological assessments.  

3. Due to large uncertainties in the gauge-based precipitation products in the complex 

Karakoram and NE-Hindukush regions, a general perception is that precipitation 

from uncalibrated reanalysis products might be closer to the actual precipitation. 

This study however revealed that reanalysis datasets provide relatively better 

estimates for the higher-altitude areas where observations are generally scarce. 

However, not all reanalysis products can serve the purpose due to large differences 

in their precipitation patterns and magnitudes. Therefore, a careful selection is 

deemed essential.     

4. Relatively poor performance of the merged datasets in the study region highlights 

their weaknesses and inability to accurately estimate precipitation and underlines the 

need to develop more advanced and accurate merging techniques, which can 

preserve the comparative advantages of input datasets and which are equally 

accurate at smaller (basin/catchment) scales. 
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Chapter 5 

Climate Change and Hydrological Regime of the High-

Altitude Indus Basin under Extreme Climate Scenarios 

Abstract 

Climate change is recognized as one of the greatest challenges of 21st century and its impacts 

are particularly important for water systems. This study investigated climate and hydrological 

regimes of the high-altitude Indus basin for the historical period and extreme scenarios of 

future climate until the end of 21st century. Improved datasets of precipitation and 

temperature for historical and future periods were developed and forced to a fully-distributed 

physically-based energy-balance hydrological model to simulate the water balance at 

regional scale. Relative to historical baseline, results revealed highly contrasting signals of 

climate and hydrological regime changes. Against an increase of 0.6 oC during the last 40 

years, the median annual air temperature is projected to increase further between 0.8-5.7 oC 

by the end of century. Similarly, a decline of 11.9% in annual precipitation is recorded, but 

future projections are highly conflicting and spatially variable. The Karakoram region is 

anticipated to receive more precipitation, while SW-Hindukush and parts of W-Himalayan 

region may experience decline in precipitation. The MIROC5 model generally shows 

increases, while MPI-ESM-LR ensembles indicate decreases in precipitation and river 

inflows. Indus-Tarbela inflows are more likely to increase compared to Kabul, Jhelum and 

Chenab river inflows. Substantial increase in the magnitudes of peak flows and one-month 

earlier attainment is projected for all river gauges. High flows are anticipated to increase 

further under most scenarios, while low flows may further decrease for MPI-ESM-LR in 

Jhelum, Chenab and Kabul river basins. Hence, hydrological extremes are likely to be 

intensified. Critical modifications in strategies and action plans for hydropower generation, 

construction and operation of storage reservoirs, irrigation withdrawals, flood control and 

drought management will be required to optimally manage water resources in the basin.  
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5.1 Introduction 

The Indus river system (IRS) had been the lifeline for the Indus valley civilization since time 

immemorial. Wiping out of this ancient civilization is attributed to drying up of the rivers 

due to prolonged drought for about 900 years during 2330-1430 BC (Dutt et al., 2018). Even 

in the modern era of technological innovations, climate change is considered to be one of the 

major drivers of demographic changes and expansion or weakening of national economies 

across the globe (WEF, 2016). Climate change is also alleged to impede nations’ abilities to 

achieve sustainable development goals (IPCC, 2007). Evidence of the impacts and risks 

associated with climate change is strongest for natural systems (IPCC, 2014). Yet, there are 

considerable uncertainties in the observed and modelled climate particularly for precipitation, 

which preclude reliable modeling of the changes and variability in the current and future 

water cycles at global and regional scales (IPCC, 2013). Hindukush-Karakoram-Himalayan 

(HKH) region and concomitant high-altitude Indus basin is recognized as a ‘hotspot’ of 

climate change due to significant transformations in its hydrometeorological regime 

(Krishnan et al., 2019; Wijngaard et al., 2018; Lutz et al., 2018; Kraaijenbrink et al., 2017; 

De Souza et al., 2015). However, an authentic assessment of climate change and variability 

and its underlying impacts on the hydrological regime of the basin are seriously constrained 

by paucity of observed data and delicate hydrometeorological investigations.  

Climate change research in the Indus basin is a recent campaign and still at its infancy. As 

such, there are significant data, information and knowledge gaps. Thus, our understanding of 

the basin’s hydrometeorological regimes particularly at sub-basin scale is limited. Numerous 

studies have attempted to analyze recent climate change (e.g. Bashir et al., 2017; Hasson 

et al., 2017; Fowler and Archer 2006; Archer and Fowler, 2004), project future changes (e.g. 

Lutz et al., 2018; Hasson et al., 2013;) and model the underlying impacts on hydrological 

regime and/or water availability (e.g. Hasson et al., 2019 & 2016; Lutz et al., 2016a & 2014; 

Ali et al., 2015; Khan et al., 2015; Immerzeel et al., 2013, 2010 & 2009; Akhtar et al., 2008) 

in the Indus basin. Few studies (e.g. Hasson et al., 2017; Khattak et al., 2011; Sheikh et al., 

2009; Fowler and Archer, 2006) noted cooling of monsoon season and slight warming during 

winter and spring months, while Archer and Fowler (2004) detected a considerable increase 

in precipitation throughout the year. In contrast to a worldwide decline of mountain glaciers, 

Hewitt (2005) observed widespread evidence of glacier expansion in the central Karakoram 

mountain range. This anomalous behaviour of the glacier surge in the Karakoram mountain 

range is supported by Bashir et al. (2017) who detected regional-scale increases in humidity, 

cloud cover and precipitation along with decreased net radiation, near-surface wind speed, 

potential evapotranspiration and river flows and termed the high-mountain watersheds of the 

Indus basin as moisture surplus and energy deficient. Generally, summer runoff in the higher-

mountain catchments of the Indus basin is strongly correlated with the preceding winter 

snowpack (Archer, 2003; De Scally, 1994) and prevailing summer temperatures (Archer, 

2004). Nevertheless, significant uncertainties still exist in precise representation of the 

basin’s hydrometeorological regime due to lack of observed meteorological data and 

extremely complex orography interacting with synoptic-scale atmospheric circulations (Lutz 

et al., 2014; Andermann et al., 2011). The greatest uncertainties are associated with the 

spatiotemporal distribution of precipitation and dynamics of glacial ice mass in the higher-

altitude areas, which are the dominant source of streamflows in the IRS. 

Accuracy of future hydrometeorological projections on the other hand is constrained by a 

high variability and large spread of the available general circulation model (GCM) outcomes 

(Kraaijenbrink et al., 2017; Lutz et al., 2016b), structural limitations of the climate and 
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hydrological modeling frameworks, and lack of reliable and representative observations for 

bias corrections and validations. Despite improvements in climate models to better represent 

the climate processes, significant uncertainties in precisely reproducing the current and 

projected climates still remain the subject of ample concern (Knutti and Sedláček, 2012). All 

GCMs project consistent but slightly varying increases in temperature, whereas their 

precipitation projections are highly variable ranging from considerably drier to moderately 

wetter precipitation regimes (Lutz et al., 2016b). Most GCMs have difficulties in simulating 

the South-Asian monsoon and its variability on a range of timescales (Turner and Annamalai, 

2012). Even greater changes and uncertainties are estimated with regard to snow/glacier 

dynamics under different climate change scenarios (Kraaijenbrink et al., 2017). The “Paris 

Agreement” signed in 2015 urged the 195 signatory nations to limit the global temperature 

increase well below 2 °C relative to pre-industrial (1861-1890) level and stabilize it at 1.5 °C 

by 2100. However, the road to realize such an ambitious goal would require unprecedented 

efforts to increase the current levels of nationally determined contributions (NDCs) by 3 and 

5 times respectively (Kabat et al., 2019). Lutz et al., (2018) argued that regional changes in 

temperature and other climate change indicators are stronger, more realistic and plausible 

under Representative Concentration Pathways (RCPs) 4.5 & 8.5 scenarios than for the 1.5 

and 2°C global warmings and showed that in a 1.5 and 2 °C warmer world, the temperature 

in the HKH region may rise to 2.1 and 2.7 °C respectively. Relatively accelerated rise in 

temperature of high-altitude regions is attributed to elevation-dependent warming explained 

by Pepin et al., (2015). The anticipated impacts of 1.5 and 2 °C global warmings on basin-

scale water balance project 34 and 43% increase in river runoff from upper Indus basin 

(upstream of Besham Qila), Jhelum and Kabul (Hasson et al., 2019). Similarly, the projected 

loss of present-day glacial ice mass in high-mountain Asia by 2100 is 26±7% under 1.5 °C 

global warming, which may increase to 49±7, 51±6 and 64±5% under RCP 4.5, 6.0 and 8.5 

scenarios respectively (Kraaijenbrink et al., 2017). Hence, significant and somewhat 

accelerated transformations in the basin’s hydrometeorological regime can be anticipated 

under various climate change scenarios. Under such circumstances, precision of the baseline 

meteorological forcing and energy input data and application of appropriate hydrological 

models play a vital role in the assessment of catchment scale water budgets. 

It is now well-recognized that actual precipitation in the high-altitude Indus basin is much 

higher than what had been previously thought and used in the earlier studies (Dahri et al., 

2016 & 2018; Immerzeel et al., 2015). In hydrological modeling frameworks, the 

underestimated precipitation is often compensated through sub-optimal alteration of other 

parameters (e.g. evapotranspiration, soil properties, snow/glacier melt factors, etc.) during 

model calibration and validation (Lutz et al., 2014; Pellicciotti et al., 2012; Schaefli et al., 

2005). Therefore, the inferences regarding the dynamics and underlying impacts of these sub-

optimally altered parameters may be uncertain and inaccurately adjudicated. Moreover, since 

the Indus is predominantly a snow/glacier-fed basin, the degree-day or temperature-index 

based hydrological models often inadequately represent the prevailing energy balance, which 

is the key driving force for melting of glacial ice mass in the snow/glacier-fed systems.  

Therefore, in this study a much-improved and high-resolution meteorological forcing 

datasets of precipitation and temperature have been developed for the historical period and 

various future climate change scenarios to better analyse recent and future climate changes 

in the high-altitude Indus basin. This new dataset is used to force a fully-distributed 

physically-based energy-balance hydrological model to simulate the water balance at sub-

basin scale. Climate change analyses and hydrological model executions are attained for a 

baseline historical period and a set of six scenarios of future climate. The study further 
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determines the changes and variability in overall water availability and examines the shifts 

in the timings and peaks of hydrological extremes. The results of this study will curtail the 

uncertainties to understand the current and future hydrometeorological regime of the high-

mountain Indus basin and help take informed policy decisions for hydropower development, 

climate change adaptation and optimal management of the Indus river water resources. 

5.2 The Indus River Basin  

The IRS, primarily nourished by precipitation and snow/glacier melt in the high-mountain 

ranges of Tibet-China, northwest India, northeast Afghanistan and north Pakistan, is one of 

the largest irrigation systems in the world with drainage area of about 112 million hectares 

and irrigated command area of over 26 million hectares. The water flowing through the IRS 

is a vital source of existing hydropower projects with massive untapped potential across its 

headwater tributaries and for agricultural production in valleys and downstream arable lands. 

The river water plays a crucial role in prosperity and growth of national economies and 

livelihoods of over 300 million inhabitants in Afghanistan, India and Pakistan. However, 

water, food and energy securities in this region are inextricably linked with sustainable water 

supplies in the IRS, which are prone to alteration by the future climate change and/or 

variability (Lutz et al., 2016a; Hasson, 2016; Bocchiola and Diolaiuti, 2013) and stressed by 

increasing demands for rapidly growing population, socioeconomic development and 

ecosystem services (Wijngaard et al., 2018).  

This study is conducted in the high-mountain watersheds of the Indus river, which is gauged 

at many locations along its main course and at the confluence of major tributaries (Figure 

5.1). Except the Kabul river, the other watersheds receive largely uninterrupted naturalized 

flows at the selected discharge outlets. The canal diversions from the Kabul river upstream 

of Nowshera are also included in the Kabul river observed flows at Nowshera. Similarly, the 

diversions from the Beas river to the Sutlej river through the Beas-Sutlej link canal are also 

accounted for to determine the actual river flows from these two tributaries.  

5.3. Data and Methods 

5.3.1 Historical climate data 

The study area is highly deficient in observed data of important climatic variables. This is 

especially the case for precipitation which is the most important variable for climate change 

and water balance studies. The quality of spatially distributed precipitation dataset for the 

high-mountain Indus basin is generally poor due to scarcity and very high directional bias 

(predominantly low-altitude valley-based station observations) of observed data (Dahri et al., 

2018 & 2016; Reggiani and Rientjes, 2015; Immerzeel et al., 2015). Hence, the strong 

gradients and extreme heterogeneity of precipitation in this complex and orographically 

influenced high-mountain terrain are inadequately captured by the existing global and 

regional scale gridded datasets leading to insufficient representation of the actual 

precipitation regime. Dahri et al. (2020, under review) evaluated precipitation estimates of 

27 widely used gridded precipitation products with respect to the reference climatologies of 

mean monthly precipitation developed by Dahri et al. (2018) for the 1999-2011 period and 

cross validated these estimates by the corresponding river flows at sub-basin scale in the 

high-altitude Indus basin. Precipitation estimates of ERA5 (Hersbach et al., 2018) gridded 

dataset were found relatively better than the other products and equally acceptable for all 

regions of the study area. ERA5 also offers spatially distributed and long-term data of a range 

of climate variables required for hydrological modeling and climate change studies. 
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Therefore, precipitation data of this 5th generation reanalysis product is statistically 

downscaled and bias-corrected with respect to the reference climatologies of mean monthly 

precipitation developed by Dahri et al. (2018) using the simple delta change method, which 

uses linear scaling to perfectly match the monthly means of corrected values with those of 

observed ones (Lenderink et al., 2007). The precipitation estimates beyond the reference 

period are cross validated by the corresponding observed river inflows at annual scale. For 

bias correction of temperature dataset, the same method in additive/subtractive form is 

applied. The reference climatologies of mean monthly maximum and minimum temperature 

are derived by following the approach of Dahri et al. (2018), who used multiple regressions 

to derive elevation and latitude dependent monthly lapse rates for the study area. The area 

however is divided into three parts of southern, northern and western zones (Figure S-5.1) to 

achieve better accuracy. The resultant lapse rates to derive mean monthly climatologies of 

maximum and minimum temperature for the reference period are given in Table S-5.1.  

 

Figure 5.1: Indus basin and its high-mountain watersheds. The black lines show basin boundaries and 

blue lines represent river network. The pink coloured numbers indicate the discharge measuring river 

gauges installed at: 1) Indus-Kharmong, 2) Shyk-Yogo, 3) Shigar-Shigar, 4) Hunza-Dainyor, 5) Gilgit-

Gilgit, 6) Astore-Doyian, 7) Indus-Besham, 8) Indus-Tarbela, 9) Chitral-Chitral, 10) Panjkora-Zulam 

Bridge, 11) Swat-Chakdara, 12) Kabul-Warsak, 13) Kabul-Nowshera, 14) Jhelum-Mangla, 15) 

Chenab-Marala, 16) Ravi-Thein dam, 17) Beas-Pong dam, 18) Sutlej-Bhakra dam. Watersheds 

numbered 1-6 and 8-11 are tributaries of Indus at Tarbela and Kabul at Nowshera respectively.   
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5.3.2 Future climate projections 

Projected changes in global climate are highly uncertain and depend on future socioeconomic 

development and technological innovations to mitigate greenhouse gas emissions in the 

atmosphere. The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by 

the World Climate Research Programme in support of the 5th assessment report (AR5) of the 

IPCC, used a set of four RCPs, which provided wider range of future climate change 

scenarios including a mitigation scenario (RCP2.6), two medium stabilization scenarios 

(RCP4.5 & RCP6.0) and an extreme emission scenario (RCP8.5). After the Paris Agreement 

in 2015, global community committed an ambitious target of climate change mitigation to 

stabilize global warming at 1.5 °C by the end of 21st century. Therefore, we selected an 

optimistic scenario of RCP2.6, which is very close to 1.5-2 °C global warming; a medium 

emission scenario of RCP4.5, under which global warming may continue business as usual; 

and an extreme scenario of RCP8.5, which predicts accelerated and continued global 

warming throughout 21st century. The intermediate scenario of RCP6.0 is excluded.   

Projections of future climate are generally provided by global climate models commonly 

known as GCMs. However, with a large number of GCM outputs for single or multiple 

ensembles under various experiments or RCPs available within CMIP5, the spread and 

variability in their outcomes is also large (Lutz et al., 2016b), particularly at regional and 

catchment scale (Cai et al., 2009). Therefore, GCM selection is tricky and can be based on 

multiple criteria using several variables. Generally, the simultaneous use of all GCMs is 

discouraged and commonly replaced by an ensemble mean. However, this may lump the 

outcome of worse performing models with that of better performing models resulting in 

overall poor-quality outcomes. Ensemble mean also significantly increases the frequency of 

precipitation events at the cost of its intensity, which may result in unusual and unrealistic 

hydrological responses particularly related to extremes. Mostly, the best representative 

climate model or a small ensemble of relatively better performing GCMs for the region of 

interest is selected (Lutz et al., 2016a). Temperature projections by GCMs are often regarded 

as much more reliable as compared to their precipitation outputs (Houghton et al., 1990), 

which was also observed during initial screening in this study. Therefore, we only used 

historical estimates of GCM precipitation for their evaluation and ultimate selection. The 

monthly scale GCM precipitation was downloaded from the Royal Netherlands 

Meteorological Institute (KNMI) Climate Explorer (https://climexp.knmi.nl) in May 2019.  

The initial selection of GCMs is based on the availability of precipitation as well as 

temperature (maximum & minimum) data at daily time scale for the three ensembles or 

experiments of climate change scenarios (RCP 2.6, RCP4.5 & RCP8.5). Only 75 GCM 

ensemble runs (Table 5.1) fulfilled these criteria of initial selection.  

The 2nd step evaluated the past performance of these 75 GCM runs to precisely reproduce the 

quantitative and spatiotemporal distribution of mean monthly precipitation over the study 

domain. The evaluation approach adopted by Dahri et al. (2020, under review) for accuracy 

assessment of gridded precipitation products is largely adopted to cross-validate GCM 

precipitation against the bias corrected ERA5 precipitation data for the period of 1981-2005. 

Monthly precipitation climatologies of the selected GCMs are regridded to match the spatial 

resolution of bias-corrected ERA5 dataset, but their original estimates are preserved. Annual 

cycle of the area-weighted monthly precipitation of each GCM is analysed against that of the 

reference dataset using coefficient of determination (R2). Modified Kling-Gupta Efficiency 

(KGE, Kling et al., 2012) is computed to assess its spatial patterns, correlation and spread of 

biases and deviations between the reference and GCM precipitation. The R2 and KGE values 

https://climexp.knmi.nl/
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are normalized and rescaled between 0 and 1, which are then added to yield the final skill 

score (rank) of each GCM (Table 5.1).  

Table 5.1: Performance of GCM precipitation against the reference precipitation data (bias corrected 

ERA5) shown in blue colour (mm). The monthly and yearly values in graduated coloured cells highlight 

the biases (%) of GCM precipitation. R2 is coefficient of determination and KGE is Kling-Gupta 

Efficiency between precipitation of reference dataset and each GCM run; N denotes normalized values 

and skill is the final score for each GCM run.  

 

Rank GCM Dataset J F M A M J J A S O N D Y R
2

NR
2 KGE NKGE Skill

REF ERA5 (BC) 71.7 81.2 108.3 77.8 66.9 49.7 79.2 68.7 34.2 38.3 29.8 54.8 760.6 -- -- -- -- --
1 MIROC5_r1i1p1 10.6 24.4 32.4 54.0 3.3 -30.4 -15.9 24.9 31.6 -22.7 21.1 10.2 14.5 0.82 1.00 0.35 0.90 1.90

2 MIROC5_r3i1p1 4.5 34.2 23.4 50.5 5.1 -9.1 -12.1 -8.7 8.2 -10.7 19.5 34.1 13.4 0.82 1.00 0.34 0.89 1.89

3 MIROC5_r2i1p1 31.8 23.3 23.0 65.6 -7.8 -41.9 -11.6 10.5 26.3 -19.3 7.7 8.4 12.9 0.79 0.95 0.37 0.93 1.89

4 MPI-ESM-MR_r1i1p1 29.6 48.9 16.3 75.3 5.4 -4.4 6.2 33.8 52.3 34.7 61.1 20.4 29.9 0.75 0.91 0.07 0.50 1.42

5 MPI-ESM-LR_r2i1p1 15.1 22.9 17.1 51.9 -7.9 9.5 7.1 23.9 102.0 3.7 59.4 28.3 23.6 0.76 0.93 0.05 0.48 1.40

6 MPI-ESM-LR_r1i1p1 7.5 9.5 10.4 40.1 -15.4 -1.6 26.1 19.2 74.9 32.4 74.5 35.9 20.8 0.77 0.93 0.04 0.46 1.39

7 HadGEM2-ES_r4i1p1 -7.4 -13.2 14.5 86.0 88.9 74.2 50.1 34.2 22.2 33.7 73.2 -11.9 34.4 0.51 0.62 0.20 0.69 1.32

8 CMCC-CM_r1i1p1 19.9 23.6 33.6 68.0 16.9 -1.6 -17.9 -6.3 54.7 88.0 189.6 66.6 34.2 0.43 0.53 0.27 0.79 1.31

9 EC-EARTH_r12i1p1 -37.1 -22.2 -5.0 3.2 -12.6 109.1 62.0 54.9 124.9 14.9 -0.3 -34.7 15.0 0.25 0.30 0.42 1.00 1.29

10 EC-EARTH_r9i1p1 -43.4 -24.6 -11.2 2.2 -8.8 85.3 68.2 53.6 107.3 9.1 55.7 -35.2 13.6 0.22 0.26 0.41 0.98 1.24

11 CESM1-CAM5_r1i1p1 -34.4 -26.1 -11.7 8.7 21.2 34.0 67.6 102.0 94.7 36.3 62.1 -5.7 21.6 0.24 0.29 0.38 0.94 1.23

12 HadGEM2-ES_r1i1p1 -45.5 -21.9 21.2 71.3 93.1 58.6 61.6 47.3 41.5 38.1 70.5 -0.2 32.9 0.44 0.53 0.20 0.69 1.22

13 EC-EARTH_r8i1p1 -44.9 -25.4 -14.9 14.1 -0.4 111.3 63.9 65.5 120.2 27.2 9.7 -37.0 16.7 0.18 0.22 0.42 1.00 1.22

14 CESM1-CAM5_r3i1p1 -46.9 -34.0 -4.2 33.8 16.0 55.7 75.0 82.5 87.4 38.6 78.5 10.4 24.8 0.25 0.30 0.36 0.91 1.21

15 EC-EARTH_r2i1p1 -44.9 -25.4 -14.9 14.1 -0.4 111.3 63.9 65.5 120.2 27.2 9.7 -37.0 16.7 0.18 0.22 0.40 0.97 1.18

16 CESM1-CAM5_r2i1p1 -58.7 -37.6 -13.4 15.9 6.1 55.1 70.5 89.4 79.2 19.3 57.4 -17.5 15.3 0.20 0.24 0.38 0.94 1.18

17 HadGEM2-ES_r3i1p1 -32.8 -24.8 9.7 77.2 104.9 83.9 45.7 41.9 26.3 31.1 65.8 16.8 33.3 0.39 0.47 0.19 0.67 1.14

18 HadGEM2-ES_r2i1p1 -30.3 -23.5 6.5 73.4 96.1 71.8 58.5 37.6 47.1 42.3 72.8 -12.0 31.9 0.38 0.46 0.19 0.68 1.13

19 GISS-E2-H_r1i1p3 -7.8 -7.4 7.3 24.8 54.7 23.1 -33.1 -31.4 9.9 50.7 127.5 31.0 12.3 0.38 0.47 0.18 0.66 1.13

20 HadGEM2-CC_r1i1p1 -28.5 -15.5 15.0 70.7 106.4 97.8 78.7 39.7 54.7 56.9 62.4 -3.5 40.1 0.39 0.48 0.16 0.63 1.11

21 MPI-ESM-LR_r3i1p1 31.5 2.2 -12.2 42.3 -17.9 -15.3 19.4 23.9 82.7 18.3 25.2 71.7 18.2 0.55 0.66 0.02 0.44 1.10

22 HadGEM2-AO_r1i1p1 -36.3 -16.4 -3.2 78.3 87.0 79.5 73.6 52.5 50.3 31.9 84.9 -26.3 32.9 0.32 0.39 0.22 0.71 1.10

23 CNRM-CM5_r1i1p1 18.7 24.5 50.2 89.1 47.5 38.8 9.2 22.1 135.4 97.9 163.8 40.1 50.6 0.57 0.69 -0.01 0.40 1.09

24 GISS-E2-R_r1i1p1 21.5 11.0 31.9 47.0 67.7 48.9 -41.2 -38.7 41.8 49.9 157.7 87.4 30.8 0.31 0.38 0.20 0.69 1.07

25 ACCESS1-0_r1i1p1 -24.0 -14.3 5.2 62.2 95.1 98.8 47.9 39.0 34.2 78.1 120.1 -1.6 36.7 0.33 0.39 0.19 0.67 1.06

26 CMCC-CMS_r1i1p1 37.9 45.4 41.4 75.1 24.4 -25.8 -35.4 -4.1 35.1 57.2 148.0 62.4 33.2 0.52 0.63 0.01 0.43 1.05

27 GISS-E2-H_r1i1p1 4.2 2.5 7.2 55.0 59.2 56.7 -19.3 -19.8 13.7 59.3 161.4 47.4 25.8 0.36 0.43 0.14 0.60 1.03

28 GISS-E2-H_r1i1p2 11.4 11.3 13.3 46.0 82.1 41.6 -39.8 -26.5 20.5 62.9 168.5 62.8 27.5 0.27 0.33 0.14 0.60 0.93

29 GISS-E2-R_r1i1p3 11.0 -2.2 -5.7 54.0 62.9 25.2 -43.4 -44.3 -1.5 48.8 175.8 34.5 15.9 0.19 0.23 0.20 0.69 0.92

30 CESM1-BGC_r1i1p1 -31.4 -17.6 -15.2 25.4 9.1 33.2 108.2 116.2 145.9 80.9 127.5 21.7 37.5 0.10 0.12 0.24 0.74 0.86

31 GISS-E2-R_r1i1p2 -5.0 2.2 12.1 76.0 47.8 39.6 -40.7 -35.8 22.8 89.0 225.2 44.9 26.2 0.15 0.18 0.16 0.64 0.82

32 CCSM4_r4i1p1 -37.4 -19.0 5.9 42.2 17.2 48.9 90.9 127.5 205.3 86.9 163.1 25.5 47.1 0.10 0.12 0.18 0.66 0.78

33 GFDL-CM3_r1i1p1 -21.6 7.1 18.2 28.3 24.4 -8.7 -33.8 -13.7 133.6 83.8 179.9 23.9 20.0 0.19 0.23 0.10 0.54 0.78

34 NorESM1-M_r1i1p1 1.4 2.1 -13.4 33.3 2.2 -22.5 17.2 95.1 148.2 42.0 152.0 12.8 26.6 0.20 0.24 0.08 0.52 0.76

35 ACCESS1-3_r1i1p1 -44.8 -28.4 10.5 83.7 142.0 184.3 91.0 76.9 62.6 -5.5 96.3 -5.3 49.7 0.20 0.25 0.06 0.50 0.75

36 GFDL-ESM2M_r1i1p1 -43.9 -41.5 -46.6 -18.6 -4.0 -19.7 -21.3 12.2 190.9 106.0 104.7 -19.9 -3.3 0.12 0.14 0.14 0.60 0.74

37 CCSM4_r2i1p1 -26.5 -25.9 4.3 16.5 1.9 27.4 110.1 139.7 240.0 89.6 102.3 0.9 44.0 0.07 0.08 0.18 0.66 0.74

38 CCSM4_r3i1p1 -7.4 -19.3 -5.1 44.1 -1.2 48.3 87.2 134.5 227.2 79.1 139.9 30.7 47.2 0.08 0.09 0.17 0.65 0.74

39 NorESM1-ME_r1i1p1 13.9 -10.8 1.2 23.7 3.0 -32.2 52.1 92.3 234.2 76.0 107.0 21.2 34.7 0.17 0.20 0.09 0.53 0.73

40 CCSM4_r5i1p1 -19.9 -23.9 -4.4 25.3 5.7 60.0 102.4 148.0 204.4 99.2 152.7 30.7 48.4 0.05 0.06 0.17 0.64 0.70

41 CCSM4_r1i1p1 -42.7 -27.6 5.4 28.7 26.0 55.7 96.2 138.0 230.0 89.3 131.9 30.7 48.6 0.05 0.06 0.17 0.64 0.70

42 IPSL-CM5A-LR_r1i1p1 10.2 6.4 -21.1 -9.4 2.1 -16.5 -88.1 -74.7 -14.9 20.1 83.6 69.7 -10.5 0.11 0.13 0.11 0.57 0.70

43 IPSL-CM5A-LR_r3i1p1 23.7 -2.5 -24.9 -4.5 -15.8 -41.6 -84.1 -75.4 -7.9 -13.6 65.8 87.2 -13.9 0.12 0.15 0.10 0.55 0.70

44 CCSM4_r6i1p1 -3.1 -26.7 -13.0 50.4 28.3 34.0 90.5 145.1 242.0 69.7 168.1 28.1 51.9 0.03 0.03 0.14 0.60 0.63

45 IPSL-CM5A-MR_r1i1p1 2.4 -30.5 -38.6 -33.3 -48.1 -25.8 -79.7 -73.1 28.1 -33.2 23.8 13.7 -31.2 0.12 0.14 0.06 0.49 0.63

46 IPSL-CM5A-LR_r2i1p1 19.0 -1.6 -12.7 17.7 -16.9 -30.0 -89.3 -78.6 78.1 -5.7 124.8 85.6 -3.9 0.05 0.06 0.09 0.53 0.60

47 inmcm4_r1i1p1 -11.9 -9.4 -16.6 4.2 18.4 11.7 -40.2 -27.1 10.5 94.5 125.2 28.3 3.9 0.20 0.25 -0.05 0.33 0.58

48 IPSL-CM5A-LR_r4i1p1 1.0 -16.4 -6.5 27.2 17.0 -40.6 -85.6 -76.6 29.5 30.5 196.3 46.0 -2.9 0.05 0.06 0.08 0.52 0.58

49 BNU-ESM_r1i1p1 60.3 -1.7 -20.9 -2.6 -28.6 -55.3 -42.0 -35.4 -14.9 -14.9 184.9 74.8 -0.2 0.14 0.17 -0.02 0.38 0.54

50 GFDL-ESM2G_r1i1p1 -49.7 -26.8 -21.8 4.2 -25.0 -46.5 -20.8 -2.0 161.7 100.5 113.4 -10.2 -1.8 0.01 0.01 0.08 0.52 0.52

51 FGOALS-g2_r1i1p1 -25.1 -15.6 -10.8 21.9 20.3 18.9 -63.4 -64.2 4.4 38.6 151.0 -10.0 -5.4 0.13 0.15 -0.09 0.29 0.44

52 IPSL-CM5B-LR_r1i1p1 49.2 19.3 17.2 77.6 54.4 89.9 -75.6 -82.2 -36.8 115.1 250.0 135.4 39.3 0.02 0.02 -0.01 0.40 0.42

53 FIO-ESM_r2i1p1 62.3 52.0 15.4 33.2 27.2 -20.3 -64.0 -25.5 96.5 62.9 217.8 134.5 34.8 0.11 0.13 -0.11 0.26 0.39

54 FIO-ESM_r3i1p1 74.5 55.9 12.9 28.7 31.7 2.8 -53.2 -33.0 94.2 66.1 223.8 114.4 36.8 0.12 0.15 -0.13 0.23 0.38

55 CSIRO-Mk3-6-0_r4i1p1 -72.5 -66.7 -55.2 -35.7 -23.3 -47.5 -85.1 -83.0 -48.2 -52.7 -14.8 -70.1 -57.4 0.20 0.24 -0.21 0.11 0.35

56 CSIRO-Mk3-6-0_r10i1p1 -69.0 -70.9 -52.9 -12.9 -40.8 -64.4 -88.9 -81.8 -52.3 -52.7 6.4 -57.7 -56.3 0.17 0.20 -0.20 0.13 0.33

57 CSIRO-Mk3-6-0_r1i1p1 -70.9 -67.7 -51.3 -28.5 -39.6 -63.2 -85.7 -80.6 -64.3 -41.3 15.1 -61.7 -56.8 0.20 0.24 -0.23 0.09 0.33

58 CSIRO-Mk3-6-0_r2i1p1 -69.5 -60.8 -57.2 -23.5 -23.3 -49.7 -85.2 -79.8 -46.5 -23.8 -21.1 -51.3 -52.8 0.16 0.19 -0.20 0.13 0.32

59 CSIRO-Mk3-6-0_r6i1p1 -67.2 -57.8 -50.8 -19.4 -38.3 -57.1 -83.8 -85.2 -37.4 -36.8 14.8 -54.4 -52.1 0.17 0.20 -0.21 0.12 0.32

60 CanESM2_r5i1p1 -60.1 -68.3 -44.5 -31.0 -54.3 -57.1 -68.8 -72.2 13.7 3.4 4.0 -56.8 -47.8 0.12 0.14 -0.18 0.16 0.30

61 FIO-ESM_r1i1p1 80.1 52.5 3.9 17.4 32.6 2.0 -68.3 -30.3 124.0 30.0 235.2 116.2 33.3 0.06 0.07 -0.13 0.23 0.29

62 CSIRO-Mk3-6-0_r9i1p1 -67.4 -68.3 -54.8 -13.6 -31.4 -56.1 -85.0 -79.2 -66.4 -30.3 12.1 -51.1 -53.0 0.14 0.17 -0.21 0.12 0.29

63 MRI-CGCM3_r1i1p1 -20.1 -43.8 -13.8 30.5 61.9 49.9 -32.3 -22.9 35.7 142.6 183.2 24.5 15.6 0.00 0.00 -0.09 0.28 0.29

64 bcc-csm1-1_r1i1p1 -9.9 -22.9 -36.6 -23.9 -23.2 -54.7 -77.5 -76.9 -59.4 21.9 146.3 35.6 -24.9 0.04 0.04 -0.12 0.24 0.28

65 CSIRO-Mk3-6-0_r8i1p1 -71.1 -66.1 -57.8 -24.2 -34.8 -64.8 -83.6 -83.8 -57.3 -37.6 13.8 -60.9 -56.4 0.14 0.16 -0.23 0.09 0.26

66 CSIRO-Mk3-6-0_r5i1p1 -66.8 -61.9 -58.4 -34.8 -23.6 -56.7 -83.2 -86.6 -41.5 -36.8 -2.7 -56.4 -54.9 0.14 0.16 -0.23 0.09 0.26

67 CSIRO-Mk3-6-0_r7i1p1 -59.1 -69.1 -58.4 -17.5 -29.6 -56.3 -86.0 -83.7 -64.6 -31.3 11.4 -40.7 -52.8 0.11 0.13 -0.21 0.11 0.24

68 CSIRO-Mk3-6-0_r3i1p1 -67.9 -69.0 -60.0 -32.3 -32.3 -56.3 -86.6 -81.1 -48.8 -24.0 -15.1 -67.7 -57.3 0.13 0.15 -0.23 0.08 0.24

69 CanESM2_r2i1p1 -71.7 -52.0 -50.0 -31.4 -58.4 -35.6 -64.4 -45.9 13.7 28.2 2.3 -42.5 -41.9 0.07 0.08 -0.22 0.10 0.18

70 CanESM2_r3i1p1 -72.9 -60.5 -57.3 -21.1 -53.1 -29.2 -66.3 -44.1 6.1 -9.7 15.1 -47.8 -44.2 0.06 0.07 -0.22 0.10 0.17

71 MIROC-ESM-CHEM_r1i1p1 -10.0 2.0 -12.0 73.1 82.8 201.4 119.3 88.4 200.6 148.8 128.2 20.6 68.9 0.04 0.05 -0.21 0.12 0.17

72 CanESM2_r4i1p1 -68.1 -58.3 -54.6 -26.2 -51.7 -33.6 -63.6 -56.6 49.4 -8.9 0.7 -55.1 -43.7 0.04 0.04 -0.22 0.10 0.14

73 bcc-csm1-1-m_r1i1p1 -10.9 -4.7 -37.2 -12.1 -24.7 49.5 39.1 57.9 221.3 60.1 126.5 55.1 24.2 0.00 0.00 -0.21 0.11 0.11

74 CanESM2_r1i1p1 -67.4 -62.8 -52.4 -45.0 -56.1 -43.9 -70.5 -58.1 30.7 -0.3 4.7 -47.6 -47.4 0.03 0.03 -0.25 0.06 0.09

75 MIROC-ESM_r1i1p1 -6.3 -4.6 -10.4 75.1 75.8 228.0 109.2 97.8 232.5 169.7 166.8 49.5 77.3 0.00 0.00 -0.29 0.00 0.00
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In the 3rd step, top 24 GCMs ranked in the previous step are evaluated based on the changes 

in climatic means between 1971–2000 and 2071–2100 for RCP4.5. Following Lutz et al. 

(2016b), four corners of warm-dry, warm-wet, cold-dry and cold-wet spectrum are 

determined from the range of projected changes in mean annual air temperature (ΔT) and 

annual precipitation (ΔPr) using the 10th and 90th percentile values (Figure 5.2). However, 

unlike Lutz et al. (2016a & b), who selected different GCMs for RCP4.5 and RCP8.5, we 

evaluated the projected changes only for a more realistic scenario of RCP4.5 to select the 

best GCM for each corner. The selected GCMs were sustained for other RCPs to ensure 

consistency in their projections. If a GCM run projects more extreme conditions but does not 

perform well to reproduce the past climate of the study area is eliminated. The analysis in 

this study is limited to two GCMs representing extreme precipitation and temperature for the 

warm-wet and cold-dry corners represented by MIROC5_r1i1p1 and MPI-ESM-LR_r1i1p1 

respectively under RCP2.6, RCP4.5 and RCP8.5. Coincidently, both these GCMs are also 

the best performers based on the past performance summarized in Table 5.1. Lutz et al. 

(2016a) also selected these two GCMs for RCP 8.5. We also ascertained the end of century 

global warmings projected by both these GCMs under three RCPs over the pre-industrial 

period. The projected increases in global mean air temperature are 1.51, 2.13 & 3.61°C by 

MIROC5_r1i1p1 and 1.69, 2.49 & 4.26°C by MPI-ESM-LR_r1i1p1 under RCP2.6, RCP4.5 

& RCP8.5 respectively. However, MIROC5 is found about 1oC warmer than MPI-ESM-LR 

for the study area. 

 

Figure 5.2: Projected changes in mean annual air temperature (ΔT) and annual precipitation (ΔPr) 

between 1971–2000 and 2071–2100 by top 24 ranked GCMs in the study area, numbers reflect the 

respective GCMs in the adjoined table. Blue plus signs represent the 10th and 90th percentile values of 

ΔT and ΔPr by the 24 GCMs. The diamonds show the GCMs representing four extreme corners. Two 

red coloured filled diamonds are the GCMs selected for this study. 

Finally, the precipitation and temperature data of the two selected GCMs under three RCPs 

at daily timescale are statistically downscaled and bias-corrected against the bias-corrected 

ERA5 dataset for the period of 1981-2005 using the same approach as illustrated in the 

preceding section. The data of other parameters (e.g. wind speed, incoming longwave and 

shortwave radiations, specific humidity and pressure are directly used for hydrological 

modeling.   

 

S. # GCM ΔP (%) ΔT (°C)

1 MPI-ESM-LR_r2i1p1 -14.636 3.017
2 MPI-ESM-LR_r1i1p1 -10.143 2.925

3 CESM1-CAM5_r3i1p1 -4.175 3.450
4 MPI-ESM-LR_r3i1p1 -3.981 3.050
5 CESM1-CAM5_r1i1p1 -3.656 3.408
6 CESM1-CAM5_r2i1p1 -1.295 3.392
7 CMCC-CM_r1i1p1 -0.534 3.558
8 HadGEM2-ES_r1i1p1 0.633 3.733
9 EC-EARTH_r2i1p1 1.699 2.658
10 CNRM-CM5_r1i1p1 1.739 2.483
11 HadGEM2-ES_r3i1p1 1.879 3.350
12 GISS-E2-R_r1i1p1 2.399 2.600
13 HadGEM2-ES_r4i1p1 2.620 3.433
14 HadGEM2-ES_r2i1p1 3.328 3.600
15 MPI-ESM-MR_r1i1p1 3.951 3.017
16 HadGEM2-AO_r1i1p1 4.591 3.875
17 EC-EARTH_r8i1p1 4.771 2.583
18 HadGEM2-CC_r1i1p1 5.277 3.267
19 EC-EARTH_r9i1p1 7.299 2.508
20 EC-EARTH_r12i1p1 7.919 2.367
21 GISS-E2-H_p3_r1i1p1 8.171 3.333
22 MIROC5_r1i1p1 14.171 3.917
23 MIROC5_r2i1p1 16.348 3.992
24 MIROC5_r3i1p1 18.839 3.717
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5.3.3 Description, setup and calibration of VIC hydrological model 

The Variable Infiltration Capacity (VIC) model (Liang et al., 1994; 1996) is an evolving 

macroscale, fully-distributed, physically-based hydrologic model that can solve water 

balance as well as full water-and-energy balance to compute surface runoff, baseflow, 

evapotranspiration and other turbulent fluxes for each individual grid. The land surface is 

modelled as uniform grids of any size. Sub-grid variability of precipitation, temperature and 

land cover is considered by further dividing the surface grids into an arbitrary number of 

bands/tiles with variable elevation and land cover types. Temperature is lapsed from the grid 

cell average elevation to sub-grid band elevation, while altitudinal variability of precipitation 

within each grid cell is specified through fractional areal coverage. Sub-grid variability in 

infiltration capacity is represented by a fast runoff response to precipitation through a variable 

infiltration curve and slow runoff response via a nonlinear relationship between baseflow and 

deep soil moisture. Water can only enter to a grid cell via the atmosphere. An offline 

Lohmann routing model (Lohmann et al., 1998) processes the runoff and baseflow fluxes 

generated for each grid cell and routes the accumulated flows at the specified locations in the 

model domain using elevation-based flow direction. Comprehensive technical descriptions 

and mathematical formulations of the VIC model are provided at 

https://vic.readthedocs.io/en/master/Overview/ModelOverview/ and by Gao et al. (2010). 

The VIC model (VIC4.2d) used in this study requires input of a wide range of climatic, soil, 

vegetation and snow parameters in spatially distributed form for each grid cell. Most of these 

model input parameters are physically-based either directly measured or calculated from the 

observed data and the standard lookup tables. However, sensitivity of the model outcome is 

largely limited to only a few important parameters, which are usually adjusted during model 

calibration and validation. Apart from the meteorological forcing data described in preceding 

sections, soil physical and hydraulic properties were derived from the harmonized world soil 

database (HWSD, FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and HiHydroSoil-V1.2 database 

obtained from FutureWater (https://www.futurewater.eu/2015/07/soil-hydraulic-properties). 

The soil column was represented by three soil layers extending downward from the land 

surface to capture baseflow and the vertical distribution of soil moisture. Vegetation 

characteristics are extracted from the 500 m MODIS Terra+Aqua Land Cover Product 

(MCD12Q1.006/), while leaf area index (LAI) data are extracted from MODIS Terra+Aqua 

LAI product (MCD15A2H.006) available at 8-day timestep and 500 m grid size for the same 

year (https://e4ftl01.cr.usgs.gov/MOTA/). Monthly scale standard values of vegetation 

height, albedo, canopy resistance, stomatal resistance and the relative fraction of roots are 

specified based on vegetation types following Mao and Cherkauer (2009).  

After derivation and preparation of required model input data, the VIC hydrological model 

was setup to full water-and-energy balance mode and executed at daily timestep over the 

study domain at a grid cell resolution of 0.08333333° (≈ 10 km at the equator) with 25 

elevation bands. Hence, the model is practically run at a high resolution of less than 2 km 

grid size. The VIC model is forced with the statistically downscaled and bias-corrected ERA5 

precipitation and temperature data, while wind speed, incoming shortwave and longwave 

radiations, specific humidity and atmospheric pressure were directly used as other input 

climatic variables for the period of 1979-2018 to accomplish model calibration and 

validation. For the Indus at Tarbela dam and the Kabul at Nowshera, the model is calibrated 

in a cascaded and sequential manner against the daily observed river flows at 8 and 4 

upstream locations respectively, while Jhelum and Chenab watersheds are calibrated against 

daily river inflows observed at Mangla dam and Marala headworks respectively (Figure 5.1). 

https://vic.readthedocs.io/en/master/Overview/ModelOverview/
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Ravi, Beas and Sutlej river basins are excluded from hydrological analysis due to non-

availability of their river flow data. The river flow data were acquired from Pakistan’s Water 

and Power Development Authority. Depending upon the availability of observed river flow 

timeseries at various locations, the model was calibrated for an intermediate period and 

validated for both the preceding and succeeding time slices of the observed river flows for 

each flow gauge.   

Calibration of the VIC model was accomplished through an iterative process by sequentially 

changing each of the selected parameters to obtain best possible match between the observed 

and simulated values of daily river inflows. Six important soil parameters were adjusted 

during model calibration and validation process. These parameters included: i) variable 

infiltration parameter, which separates the rainfall into direct runoff and infiltration; ii-iii) 

thicknesses of two bottom soil layers, which control the availability of water for transpiration 

and baseflow; iv) maximum velocity of baseflow from the bottom soil layer; v) fraction of 

maximum baseflow velocity where the rapidly increasing nonlinear baseflow starts; and vi) 

fraction of the maximum soil moisture where non-linear baseflow occurs. The snow 

component was calibrated for maximum air temperature at which snowfall can occur, 

minimum air temperature at which rainfall can occur, and surface roughness of the snowpack, 

which is very important in snow/glacier-fed river basins.  

The quality of model calibration and validation is evaluated by employing the standard and 

most widely used statistical indices using the observed and simulated river flows at daily and 

monthly time scales. These performance indicators included modified Kling-Gupta 

Efficiency (KGE; Kling et al. 2012; Gupta et al. 2009) and percent bias (PBIAS), which are 

expressed as under:  

𝐊𝐆𝐄 = 𝟏 − √(𝒓 − 𝟏)𝟐 + (𝜷 − 𝟏)𝟐 + (𝜸 − 𝟏)𝟐    (5.1) 

𝐫 =
∑ (𝑸𝒔−𝑸𝒔) (𝑸𝒐−𝑸𝒐)𝒏

𝒊=𝟏

√∑ (𝑸𝒔−𝑸𝒔)
𝟐𝒏

𝒊=𝟏 ∑ (𝑸𝒐−𝑸𝒐)
𝟐𝒏

𝒊=𝟏

      (5.2) 

𝜷 =
µ𝒔

µ𝒐
        (5.3) 

𝜸 =
𝝈𝒔/µ𝒔

𝝈𝒐/µ𝒐
           (5.4) 

𝐏𝐁𝐈𝐀𝐒 =
𝑸𝒔−𝑸𝒐

𝑸𝒐
𝟏𝟎𝟎       (5.5) 

Here: Q is river discharge while subscripts o and s represent observed and simulated 

discharges respectively. r in eq. 1 is Pearson’s correlation coefficient to measure the degree 

of linear relation between observed and simulated values, β is bias computed by the ratio of 

the simulated to the observed means (µ), γ is variability ratio given by the ratio of the 

simulated and observed dataset’s coefficients of variation (σ/µ), σ is standard deviation, and 

n is number of observations. The optimum values of KGE, r, β, and γ are at unity, while 

PBIAS values are desired to be closer to zero. 
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5.3.4 Methods for analysing climate and hydrological changes  

Apart from the methods employed for the development of high-resolution historical and 

future climatic datasets described in the sections 5.3.1 and 5.3.2, several techniques have 

been applied to analyse climate and hydrological changes and variability in the study domain. 

Monthly and annual medians of temperature, precipitation and river inflows are calculated 

for both the historical and different scenarios of future climate. The data availability of 120 

years is analysed for three equal time-slices representing historical baseline (1981-2020) mid-

century (2021-2060) and end-century (2061-2100) periods. At the time of analysis, the 

baseline data (bias-corrected ERA5) was available until 2018, therefore the data for 2019 and 

2020 are derived by computing mean from two GCMs under RCP2.6 and RCP4.5, while 

RCP8.5 is excluded due to unrealistically extreme projections for these initial years.  

The climate change and variability analysis for precipitation is conducted for five regions 

considered by Dahri et al. (2020, under review), while for temperature the whole study area 

is considered as a single unit because of its much lower spatial variability. Monthly and 

annual scale temperature and precipitation statistics are analysed for their variability, trends 

and overall shift in magnitudes during the future time periods relative to historical baseline 

data. The change and variability in the overall water availability, shifts in seasonality and 

annual cycle of hydrographs and changes in future hydrological extremes are examined for 

the four major sub-river basins (i.e. Kabul at Nowshera, Indus at Tarbela, Jhelum at Mangla 

and Chenab at Marala). The analysis particularly focuses on the trends in historical and future 

climate and river flows, changes in median flows, shifts in the timings and magnitudes of the 

future hydrographs, changes in the flow duration curves for each considered future climate 

change scenario, and changes in high flow (Q5 & Q10) and low flow (Q90 & Q95) 

conditions. 

5.4. Results  

5.4.1 Climate change and variability 

In the presence of significant interannual variability, median annual air temperature during 

the last 40 years has increased almost linearly with an overall increase of 0.6 oC (Figure 5.3 

and Table 5.2), and is likely to increase further throughout the 1st half of the projection period 

(2021-2060). However, after 2060, it shows slight reduction under RCP2.6 and tends to 

stabilize under RCP4.5. The extreme scenario of RCP8.5 projects an alarming and gradual 

increase in temperature throughout the 21st century under both the extreme conditions 

represented by two GCM outputs.  

 
Figure 5.3: Median annual maximum & minimum temperature anomalies averaged over study area. 

Baseline (ERA5-BC) MIROC5_r1i1p1_RCP2.6 MIROC5_r1i1p1_RCP4.5 MIROC5_r1i1p1_RCP8.5

MPI-ESM-LR_r1i1p1_RCP2.6 MPI-ESM-LR_r1i1p1_RCP4.5 MPI-ESM-LR_r1i1p1_RCP8.5
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Table 5.2: Change in projected maximum and minimum temperatures (°C) in the study area during 

2021-2060 and 2061-2100 relative to the baseline period of 1981-2020. The graduated colour scheme 

highlights the changes as per grid cell values.  

 

The deviations of maximum and minimum temperatures in the study area projected by 

various GCM runs for mid-century (2021-2060) and end-century (2061-2100) relative to the 

baseline historical period (1981-2020) presented in Figure 5.4 and Table 5.2 indicate 

MIROC5 output as considerably warmer than MPI-ESM-LR output almost throughout the 

year and during the entire 21st century for all RCPs. The comparative increase in the warming 

of MIROC5 is the largest for RCP2.6 (about 2.3 times higher at annual scale) followed by 

RCP4.5 until the end-century. Increase in mean annual air temperature in the study domain 

may range between 1.3-2.6 oC during mid-century and between 0.8-5.7 oC by the end-

century. The highest increases are projected by MIROC5_RCP8.5 and vice versa by MPI-

ESM-LR_RCP2.6. Monthly-scale variability of temperature increase is also highly variable. 

MIROC5 projects higher increases during Apr-Jul and Dec-Jan months throughout the 

projection period, while MPI-ESM-LR projects relatively higher increases during Dec-Feb 

months until mid-century, which are lowered down thereafter. Moreover, slightly higher 

increases are projected in minimum temperature as compared to maximum temperature 

resulting in trivial narrowing-down of diurnal temperature range in future, which might be 

due to increased cloud cover and reduced pan evaporation (Hasson et al., 2019). 

Compared to temperature, precipitation in the study area has remained highly variable and 

extremely uncertain during the last 40 years. Median annual precipitation experienced 

considerable decline during the famous and prolonged drought of recent time (1999-2003). 

It tried to recover thereafter but still lagged behind by 11.9% of the median annual 

precipitation for the 1st half of the baseline period. Definite and strong increasing trend in the 

projections of median annual precipitation is only evident for MIROC5-RCP8.5, while MPI-

ESM-LR shows declining trends for RCP4.5 & RCP8.5 (Figure 5.4). The remainder of GCM 

runs show mixed trends. Compared to the baseline historical period, the interannual 

variability of the projected precipitation by all GCM runs is considerably higher particularly 

during monsoon season. Marked variability in quantitative and spatio-temporal distribution 

of precipitation is clearly depicted by all GCM runs at regional as well as basin scale for both 

the future time-slices (Figure 5.5 & Table 5.3). MIROC5 generally projects positive changes 

in precipitation at annual scale and during most of the months under all RCPs, while MPI-

ESM-LR mostly indicates reduced precipitation in all regions except Karakoram. Median 

annual precipitation in the study domain may change between -12.9 and 21.8 % during 2021-

2060 and between -19.6 and 43.4% during 2061-2100 relative to baseline level. Substantial 

J F M A M J J A S O N D Y GCM / RCP J F M A M J J A S O N D Y

1.7 1.3 1.5 1.8 1.6 1.9 1.6 1.1 1.3 1.8 0.8 1.6 1.5  MIROC5_RCP2.6 2.3 1.5 1.2 2.0 2.0 2.3 2.2 1.7 2.2 1.9 1.8 2.1 1.9

1.3 1.9 1.1 1.3 0.7 1.5 1.5 1.2 1.2 1.1 1.1 1.4 1.3  MPI-ESM-LR_RCP2.6 1.1 1.6 0.9 0.5 0.1 0.3 0.9 1.0 1.0 0.5 0.9 1.0 0.8

1.9 1.5 2.2 2.4 2.7 2.7 2.2 1.7 1.7 2.1 1.7 1.8 2.0  MIROC5_RCP4.5 3.8 3.4 3.4 3.6 4.1 4.7 3.9 2.9 3.1 3.1 3.1 4.2 3.6

2.3 1.7 1.4 1.5 1.0 1.7 2.0 1.6 1.5 1.2 1.4 1.7 1.6  MPI-ESM-LR_RCP4.5 3.0 2.6 3.0 2.7 2.2 2.7 2.5 2.3 2.4 2.1 2.3 2.8 2.6

2.2 1.9 1.8 2.3 2.6 2.7 2.4 1.9 2.1 2.3 2.0 2.4 2.2  MIROC5_RCP8.5 5.8 5.1 4.9 5.1 6.7 7.2 5.2 3.9 4.4 5.0 4.1 5.5 5.2

2.4 2.2 1.7 1.9 1.2 1.9 2.2 2.2 2.0 1.5 1.9 2.1 1.9  MPI-ESM-LR_RCP8.5 5.4 4.7 4.7 4.3 4.3 5.3 5.4 4.9 5.0 4.5 5.1 5.4 4.9

1.8 1.4 1.6 1.9 1.8 2.3 2.4 1.6 1.7 2.1 1.2 1.6 1.8  MIROC5_RCP2.6 2.9 1.6 1.3 2.2 2.0 2.7 2.8 1.9 2.2 2.3 2.0 2.2 2.2

1.2 1.4 1.1 1.6 1.0 1.7 1.2 1.1 1.3 1.3 1.5 1.4 1.3  MPI-ESM-LR_RCP2.6 1.1 1.0 1.3 1.3 0.7 0.3 0.4 0.7 1.1 0.5 0.8 1.1 0.9

2.0 1.5 2.0 2.1 2.7 3.0 2.7 1.9 1.8 2.1 1.8 2.1 2.2  MIROC5_RCP4.5 3.9 3.5 3.5 3.4 4.0 4.7 4.3 3.0 2.9 3.0 3.2 4.0 3.6

2.0 1.7 1.3 1.6 1.4 2.1 1.6 1.4 1.6 1.5 1.2 1.6 1.6  MPI-ESM-LR_RCP4.5 2.4 2.1 3.2 3.1 2.6 3.0 2.4 2.1 2.6 2.4 2.3 3.1 2.6

2.6 2.0 2.1 2.6 3.0 3.2 3.1 2.4 2.3 2.7 2.4 2.6 2.6  MIROC5_RCP8.5 6.1 5.3 5.1 5.1 7.1 7.8 6.6 4.9 4.9 5.3 4.7 5.4 5.7

1.9 1.8 2.0 2.4 1.6 1.8 1.8 2.0 2.1 1.9 1.8 2.8 2.0  MPI-ESM-LR_RCP8.5 5.6 4.8 5.0 4.8 5.3 5.9 5.1 4.8 5.3 5.4 5.9 6.0 5.3

ΔTmin (°C)2021-2060 2061-2100

ΔTmax (°C)2021-2060 2061-2100
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increases in monthly precipitation at basin scale are expected during Jul-Oct and Dec-Jan 

months and vice versa during the remaining months, whereas regional scale variability in 

precipitation distribution will remain significantly high. 

 

Figure 5.4: Median annual precipitation anomalies against the median annual precipitation during the 

baseline reference period averaged over five regions and study area. 

 

Figure 5.5: Projected changes (%) in mean annual precipitation relative to baseline (1981-2020) data 

by two GCMs for three RCPs for mid-century (2021-60) and end-century (2061-2100) time-slices. 

Baseline (ERA5-BC) MIROC5_r1i1p1_RCP2.6 MIROC5_r1i1p1_RCP4.5 MIROC5_r1i1p1_RCP8.5

MPI-ESM-LR_r1i1p1_RCP2.6 MPI-ESM-LR_r1i1p1_RCP4.5 MPI-ESM-LR_r1i1p1_RCP8.5

MIROC5                          2021-2060                   MPI-ESM-LR MIROC5                          2061-2100                   MPI-ESM-LR

-47              0                50   100     150       200       220

ΔPr (%)

RCP2.6

RCP8.5

RCP4.5
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Table 5.3: Projected changes (%) in median monthly and annual precipitation by 2 GCMs under 3 RCPs 

in the study area and its five regions for 2021-2060 and 2061-2100 time-slices relative to baseline 

period of 1981-2020. The blue and red colour stretches highlight the positive and negative changes 

respectively. 

 

The Karakoram region witnessed about 9.3% decrease in winter precipitation and 3.6% 

increase in monsoon precipitation during the 2nd half of the baseline period (2001-2020) 

relative to its 1st half (1981-2000). However, median annual precipitation in this region is 

projected to increase under all GCM runs throughout the remainder of 21st century, except a 

trivial decrease during mid-century by MPI-ESM-LR-RCP2.6. Maximum increases of 29.8% 

and 56.7% are projected by MIROC5-RCP8.5 during 2021-2060 and 2061-2100 times-slice 

respectively. At monthly scale, increase in precipitation is projected for all months except 

Feb, Apr and Sep. Seasonal precipitation however largely follows the pattern of increase 

observed by Bashir et al. (2017) with about 13.3-34.2% increases in winter (Oct-Jan) and 

7.0-38.0% increase in summer (May-Aug) precipitation, while spring (Feb-Apr) season may 

experience slightly declined precipitation. Onset of monsoon is also shifted towards May, 

which might be due to the interplay between westerlies and East-Asian monsoon systems. 

Similarly, positive changes in precipitation are projected in Indus-Kharmong region during 

Jul-Oct and Dec-Jan months by majority of GCM runs. MIROC5 projects an overall increase 

of 12.4-27.0% in median annual precipitation of the Kharmong region, while MPI-ESM-LR 

predicts a decline of up to 10.2% by mid-century.  

 

J F M A M J J A S O N D Y GCM / RCP J F M A M J J A S O N D Y

Karakoram

10.2 -19.9 16.6 -7.3 35.9 29.4 57.2 4.3 15.4 51.9 41.0 21.9 21.9 MIROC5_RCP2.6 42.1 -16.6 19.3 0.0 29.0 63.7 68.0 -32.9 -26.9 34.3 -24.6 25.8 15.2

30.7 -13.2 -0.5 1.7 38.8 -8.7 2.3 3.6 0.2 16.5 -2.9 8.7 -1.3 MPI-ESM-LR_RCP2.6 11.7 -13.1 4.7 25.3 66.4 7.0 -6.8 2.7 15.0 51.4 16.8 18.8 7.6

36.5 -8.7 4.3 -18.4 22.4 34.1 82.1 10.5 -23.6 35.9 -2.8 41.6 21.9 MIROC5_RCP4.5 9.9 -1.0 18.2 -12.6 13.6 -0.6 36.9 8.9 -31.8 26.9 4.9 25.1 12.4

0.5 9.1 -10.2 5.9 47.7 1.3 -0.7 -20.2 0.0 46.4 -2.1 8.7 1.3 MPI-ESM-LR_RCP4.5 10.1 -5.6 -0.5 6.5 40.5 6.9 11.7 -4.5 11.3 27.7 9.0 29.8 5.6

51.0 -12.7 20.3 1.6 15.5 39.9 71.1 25.7 -14.5 67.6 0.1 18.1 29.8 MIROC5_RCP8.5 49.8 10.8 21.7 3.6 28.3 89.8 117.4 45.5 32.5 130.4 24.5 4.7 56.7

12.5 -3.4 10.9 8.6 49.5 -14.8 -1.5 -2.3 -5.0 34.2 -6.4 40.0 3.5 MPI-ESM-LR_RCP8.5 24.4 11.2 -4.3 2.0 61.7 -6.7 -19.5 -9.8 -13.0 31.5 5.1 -1.1 7.0

Indus-Kharmong

9.7 -3.4 28.2 -11.4 14.2 -3.2 58.8 37.2 39.8 104.4 36.0 11.7 21.9 MIROC5_RCP2.6 29.8 -2.6 22.4 -2.8 -5.7 37.7 103.8 25.1 8.8 75.6 -59.7 38.9 21.0

2.3 -36.3 3.7 -31.8 -3.6 -13.5 -4.8 -0.3 8.8 33.3 -4.7 5.2 -5.4 MPI-ESM-LR_RCP2.6 15.7 -27.5 2.4 16.9 24.9 -2.6 -18.6 1.2 -3.2 92.9 10.5 15.5 3.8

10.6 -9.6 0.5 -28.5 11.9 25.3 103.1 39.5 12.0 100.4 -27.9 14.9 12.4 MIROC5_RCP4.5 -8.2 7.2 15.4 -22.2 -3.4 -3.7 97.6 48.4 25.5 154.2 -39.5 -12.8 10.3

-1.1 -20.0 -2.4 -21.4 -25.5 -7.9 -10.2 4.6 6.0 88.7 -20.5 3.7 -10.2 MPI-ESM-LR_RCP4.5 -19.5 -41.9 -10.9 -35.0 -31.6 6.9 10.2 -6.3 -6.5 96.4 4.3 34.3 -9.3

29.0 3.8 35.0 -14.3 21.9 32.5 87.6 55.6 10.6 117.4 -17.8 16.3 27.0 MIROC5_RCP8.5 3.1 10.3 19.2 -18.6 26.3 76.5 150.0 105.1 66.2 176.0 -21.3 -8.9 51.7

0.0 -19.5 16.9 -10.1 -6.9 -17.4 -13.8 11.0 0.0 83.3 -3.9 48.1 0.4 MPI-ESM-LR_RCP8.5 -16.6 -28.9 -26.4 -48.4 -16.8 -16.4 -9.3 4.0 4.2 118.5 -21.3 -17.4 -17.9

NE-Hindukush

0.5 -3.6 19.6 -0.6 13.8 -10.9 7.0 -31.3 16.3 45.1 33.5 38.6 17.0 MIROC5_RCP2.6 31.2 2.1 9.0 -4.7 11.9 28.5 -16.2 -67.1 -8.9 38.5 -41.5 21.9 17.3

1.6 -30.2 -22.4 -20.9 -39.1 -16.4 -39.1 -16.7 -18.2 -33.5 6.3 -28.3 -7.7 MPI-ESM-LR_RCP2.6 4.3 -28.9 -9.8 -0.2 -7.9 -13.3 -48.6 -17.8 -4.4 14.0 18.6 5.8 2.5

11.9 2.0 7.4 -26.8 4.8 -13.3 -10.1 -32.2 -6.7 35.0 -18.2 40.3 7.9 MIROC5_RCP4.5 -13.8 12.5 19.2 -27.6 -22.8 -22.5 -53.2 -32.4 -0.4 37.1 -34.7 9.2 3.2

-13.4 -15.1 -35.1 -30.0 -37.0 -11.0 12.3 -44.6 3.5 -54.0 -13.5 -16.3 -12.1 MPI-ESM-LR_RCP4.5 -20.5 -20.6 -28.8 -32.8 -40.6 -23.5 -9.4 -15.4 -5.4 -42.8 -20.3 -9.3 -3.2

14.7 -3.4 25.2 0.9 7.3 31.4 -19.1 -38.4 -3.6 94.0 -20.5 12.9 23.4 MIROC5_RCP8.5 24.5 7.5 6.3 -16.0 15.9 15.0 12.4 69.3 73.4 173.0 9.5 18.0 36.4

17.5 -20.6 -18.0 -18.3 -37.3 -30.8 -35.0 -40.4 -18.7 -45.5 -22.7 52.6 -2.0 MPI-ESM-LR_RCP8.5 -12.8 -35.3 -37.1 -58.5 -52.0 -26.5 -15.1 -12.0 15.6 -53.2 -29.3 -47.9 -14.7

SW-Hindukush

-11.6 -5.0 33.0 2.3 -2.6 -21.7 -73.6 -55.5 23.7 89.6 1.9 21.1 11.1 MIROC5_RCP2.6 15.8 6.0 17.7 9.6 -3.5 -10.6 -43.3 -70.0 81.7 53.0 -48.6 -7.4 11.2

-27.6 -52.3 -14.9 -25.0 -58.8 -75.0 -88.0 -28.7 25.3 -48.5 -37.4 -48.0 -22.8 MPI-ESM-LR_RCP2.6 -14.1 -54.8 -14.0 10.1 -47.8 -59.4 -84.0 -43.2 -7.4 5.0 -34.3 -43.2 -4.4

-5.4 10.9 14.5 -28.1 -10.1 -37.8 -49.2 -64.2 43.6 53.5 -42.4 18.2 9.0 MIROC5_RCP4.5 -21.1 7.6 25.6 -15.9 -34.2 -54.4 -44.3 -18.5 61.1 62.4 -38.0 -27.9 5.5

-33.7 -45.9 -38.9 -46.0 -65.3 -33.9 6.5 -32.8 8.9 -62.9 -53.6 -46.9 -21.1 MPI-ESM-LR_RCP4.5 -18.7 -50.5 -39.2 -62.0 -80.4 -67.2 -39.3 -25.2 56.0 -39.1 -50.8 -51.8 -20.1

15.0 -3.4 35.3 3.2 19.8 -35.6 -57.5 -72.0 82.5 132.7 -24.9 1.6 18.3 MIROC5_RCP8.5 5.9 7.8 28.9 -14.5 -17.1 -47.8 -20.5 25.2 115.6 161.9 -26.2 -32.2 24.0

-16.4 -22.5 -21.0 -26.4 -74.5 -77.2 -49.9 -29.0 37.0 -55.0 -58.9 5.9 -13.7 MPI-ESM-LR_RCP8.5 -48.5 -64.7 -55.2 -79.1 -82.0 -80.6 -37.2 25.7 90.8 -36.6 -68.5 -70.7 -22.0

W-Himalaya

-16.3 -21.7 9.7 5.5 -6.8 -17.9 53.8 -8.0 56.6 116.2 2.5 24.6 16.5 MIROC5_RCP2.6 16.5 -15.9 11.2 1.3 0.3 19.2 61.4 -7.8 9.0 120.4 -84.7 5.4 24.9

-21.8 -60.0 -26.6 -57.3 -66.0 -44.5 -11.9 -1.5 -6.6 -31.4 -17.8 -17.6 -15.3 MPI-ESM-LR_RCP2.6 12.7 -43.9 -37.0 0.9 -33.2 -55.9 -28.3 -11.1 -19.0 -1.0 -2.5 -18.3 -6.0

-20.9 -14.1 -16.5 -32.2 -3.9 21.9 38.2 12.5 23.4 69.0 -48.7 37.1 6.6 MIROC5_RCP4.5 -31.0 -4.9 3.3 -25.6 -3.7 8.3 55.6 20.5 30.0 86.7 -62.0 -36.1 17.1

-17.6 -38.2 -57.2 -52.1 -84.8 -24.3 -14.4 -15.0 -8.8 -40.3 -55.1 -42.2 -12.7 MPI-ESM-LR_RCP4.5 -5.6 -54.9 -48.5 -68.7 -73.2 -29.4 0.6 -16.0 -9.7 -25.2 -30.3 -8.2 -17.0

9.4 -1.4 11.7 -5.7 33.5 -9.4 47.5 12.9 -2.2 148.7 -52.8 9.9 26.3 MIROC5_RCP8.5 -19.2 1.5 -0.8 -23.7 27.4 55.5 67.4 46.4 103.0 164.4 -26.2 -40.4 48.1

-19.1 -38.1 -21.4 -40.7 -68.7 -59.0 -23.0 6.9 -3.5 -30.1 -45.9 18.9 -7.0 MPI-ESM-LR_RCP8.5 -42.5 -58.9 -62.9 -74.6 -68.7 -63.8 -26.2 -9.9 13.6 -22.0 -52.3 -45.9 -29.6

Whole Study Area

-10.7 -15.4 13.8 -0.1 2.2 2.2 53.0 6.6 29.1 102.8 24.3 25.0 16.1 MIROC5_RCP2.6 33.5 -4.5 8.0 4.3 13.8 27.4 47.1 -28.1 3.0 58.5 -49.6 15.0 17.7

-3.4 -47.9 -19.2 -25.9 -29.3 -23.4 -13.7 5.2 -5.0 -0.4 -7.7 -15.8 -10.1 MPI-ESM-LR_RCP2.6 13.3 -45.5 -18.6 6.9 18.0 -26.9 -28.5 -14.1 -15.1 41.8 14.2 -11.5 -1.1

3.0 -6.5 -2.3 -27.7 -2.7 17.1 44.5 14.4 3.7 59.7 -19.8 24.5 9.5 MIROC5_RCP4.5 -14.4 -5.2 6.1 -21.0 -7.3 14.1 48.8 4.1 26.7 58.5 -33.4 -16.0 8.7

-18.3 -35.6 -37.8 -30.2 -39.9 -13.8 5.9 -18.2 9.4 -11.2 -29.8 -21.2 -12.9 MPI-ESM-LR_RCP4.5 -8.0 -40.5 -32.2 -42.8 -40.1 -31.8 -15.9 -10.5 -12.3 5.9 -12.3 -2.3 -13.2

25.1 -6.3 17.3 1.4 33.6 8.8 42.4 2.4 1.1 118.1 -32.0 9.5 21.8 MIROC5_RCP8.5 9.1 7.0 9.3 -9.9 16.0 51.9 90.8 45.1 104.6 157.4 -17.8 -24.4 43.4

-5.0 -21.8 -15.1 -10.1 -19.4 -42.0 -14.4 3.9 4.6 2.6 -29.8 27.0 -7.9 MPI-ESM-LR_RCP8.5 -20.3 -45.2 -50.4 -53.3 -31.6 -39.1 -12.3 -2.3 19.7 4.5 -30.0 -31.9 -19.6

2021-2060 2061-2100

2021-2060 2061-2100

2021-2060 2061-2100

2021-2060 2061-2100

2021-2060 2061-2100

2021-2060 2061-2100
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Highest variability in median monthly and annual precipitation is projected for the SW-

Hindukush region in the Kabul river basin. It may experience the largest reductions in 

precipitation during Jun-Aug and Nov-Dec months under all considered scenarios. Median 

monthly precipitation in the NW-Hindukush region also follows the similar pattern but at a 

sluggish rate with slight increases in winter precipitation in the Chitral sub-basin. However, 

at annual scale overall positive change by MIROC5 and negative change by MPI-ESM-LR 

in both the regions of Hindukush are quite evident. MIROC5 projects an increase of 11.2, 5.5 

& 24.0%, while MPI-ESM-LR forecasts a decrease of 4.4, 20.1 and 22.0% in median annual 

precipitation of the SW-Hindukush region under RCP2.6, 4.5, 8.5 respectively during the 

end-century time slice. Similarly, precipitation change in the NW-Hindukush region may 

vary from 17.3, 3.2 & 36.4% and 2.5, -3.2 & -14.7% under the same scenarios.  

Median annual precipitation in the W-Himalayan region declined by 12.1% during the 2nd 

half of the baseline period relative to its 1st half. Future precipitation projected by various 

GCM runs in this region however may be extremely variable. MPI-ESM-LR projects 

significant reductions (-6.0, -17.0 & -29.6%), while MIROC5 suggests substantial increases 

(24.9, 17.1 & 48.1%) in median annual precipitation under RCP2.6, 4.5 & 8.5 respectively 

by the end of century. The largest increases in median monthly precipitation are predicted 

during Jul-Oct months (monsoon season), whereas Jan-Jun (winter and spring) months will 

experience scarce and scanty precipitation under all future scenarios.   

5.4.2 Performance of the VIC hydrological model 

The calibrated and validated model setup for the study domain was executed for the entire 

timeseries of the baseline historical data at daily timestep under full water-and-energy 

balance mode. The resultant hydrographs of the observed and simulated river flows at daily 

timescale are plotted for each of the 14 sub-hydrological basins (Figure 5.6), which show 

excellent matching of the simulated river flows with the observed river flows throughout the 

year and simulation period at all river gauges. The VIC model efficiently reproduces the 

lowest baseflows during winter season and extremely high flows during monsoon season. 

The results of the VIC model performance ascertained through the selected statistical indices 

for calibration and validation periods at daily and monthly timescale are presented in Tables 

5.4 & 5.5 respectively. 

The performance indicators (statistical indices) for the calibration and validation periods 

show that the VIC model performed quite well in all sub-basins. The performance indicators 

are significantly better at monthly scale than at daily timestep, which is understandable due 

to smoothing of monthly values. The model performs much better in snow/glacier dominant 

river basins as compared to the Indian summer monsoon dominated western Himalayan 

catchments. Model performance is also adversely affected in relatively dry areas of 

Kharmong and south-west Kabul basin. However, it is important to note that relatively poor 

performance of the VIC model in a few river basins can mainly be attributed to a combination 

of uncertainties in input climatic variables, observed river inflows and calibrated parameters 

in these areas rather than the model structure. Based on these validation results, we conclude 

that the calibrated model setup sufficiently simulates the hydrology of the study domain and 

can be executed to model hydrological changes under different scenarios. 
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Figure 5.6: Performance of VIC hydrological model against the daily-scale observed river flows at 14 

locations. 

Observed     Simulated
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Table 5.4: Model performance at daily timescale for calibration and validation periods. 

 

Table 5.5: Model performance at monthly timescale for calibration & validation periods. 

 

5.4.3 Changes and variability in water availability 

In order to emphasize and maintain the focus of hydrological assessment at regional scale, 

we limit our analysis to four downstream river gauging stations (Jhelum-Mangla, Chenab-

Marala, Kabul-Nowshera & Indus-Tarbela). Historical median annual river inflows at these 

four locations in the study domain remained highly variable and experienced significant 

decline during the 2nd half of baseline period as compared to its 1st half (Figure 5.7). This 

interannual variability and decline in median annual river inflows during the 2nd half of 

baseline period is largely responsive to the similar trends in annual precipitation. The 

maximum inflows in the W-Himalayan basins (Jhelum and Chenab) were about three-times 

higher than the minimum inflows. A reduction of 19.6% and 11.9% is observed for Jhelum 

and Chenab rivers respectively during the 2nd half of the baseline period as compared to its 

1st half. The Kabul river in the Hindukush region also exhibited similar interannual variability 

of median annual river inflows and difference between the maximum and minimum inflows. 

r β γ KGE PBIAS r β γ KGEPBIAS r β γ KGE PBIAS

Chitral 0.91 1.22 0.92 0.75 21.92 0.91 1.09 0.96 0.87 8.91 0.89 1.10 0.99 0.85 9.79

Swat 0.75 1.05 0.86 0.71 4.76 0.72 1.13 0.87 0.67 -15.23 0.64 0.81 0.97 0.59 -19.54

Kabul-W 0.76 1.10 0.87 0.71 10.27 0.76 1.17 0.94 0.70 16.93 0.72 1.06 0.82 0.66 5.51

Kabul-N 0.81 1.29 0.97 0.65 29.03 0.83 1.17 0.82 0.70 17.14 0.79 1.17 0.80 0.66 16.59

Astore 0.87 1.39 0.89 0.57 39.30 0.86 1.18 0.93 0.76 17.72 0.79 1.10 0.90 0.75 9.86

Gilgit 0.83 0.98 0.97 0.83 -2.04 0.88 0.95 0.92 0.85 -5.42 0.85 0.78 0.94 0.73 -22.04

Hunza 0.84 1.11 0.88 0.77 11.44 0.83 1.21 0.89 0.70 21.39 0.81 1.14 0.99 0.77 13.62

Shigar 0.81 1.37 0.99 0.58 37.23 0.84 1.08 0.89 0.79 8.35 0.84 0.95 0.82 0.75 -5.23

Shyok 0.81 1.30 1.01 0.65 30.23 0.82 1.23 0.94 0.71 22.93 0.80 1.19 0.95 0.72 18.86

Indus-K 0.83 0.70 0.89 0.64 -29.65 0.84 1.01 1.23 0.72 0.69 0.87 1.08 1.06 0.83 8.19

Indus-B 0.85 0.93 0.93 0.82 -7.08 0.89 1.03 0.93 0.86 2.58 0.87 0.93 0.95 0.85 -7.15

Indus-T 0.88 1.06 0.92 0.84 5.61 0.86 1.11 0.89 0.79 10.97 0.92 1.15 0.86 0.78 14.60

Jhelum 0.80 1.01 1.08 0.79 1.19 0.77 1.00 1.01 0.77 -0.30 0.79 0.99 0.97 0.79 -1.19

Chenab 0.74 0.91 1.00 0.72 -9.49 0.77 0.96 0.96 0.77 -4.25 0.72 0.88 0.89 0.68 -11.87

Validation (Backward) Calibration Validation (Forward)
Sub-basin

r β γ KGE PBIAS r β γ KGEPBIAS r β γ KGE PBIAS

Chitral 0.95 1.23 0.93 0.76 22.57 0.95 1.09 0.97 0.89 8.88 0.93 1.10 1.02 0.88 9.78

Swat 0.86 1.05 0.89 0.82 4.89 0.91 0.85 0.89 0.79 -15.14 0.89 0.81 1.02 0.78 -19.49

Kabul-W 0.84 1.10 0.88 0.77 10.38 0.84 1.16 0.95 0.76 16.41 0.86 1.07 0.86 0.79 6.60

Kabul-N 0.88 1.28 0.98 0.69 28.37 0.91 1.17 0.86 0.76 17.21 0.89 1.17 0.87 0.76 16.74

Astore 0.93 1.38 0.90 0.60 38.01 0.91 1.18 0.92 0.79 17.68 0.86 1.11 0.90 0.79 10.69

Gilgit 0.90 0.98 0.97 0.89 -2.12 0.95 0.94 0.91 0.88 -5.50 0.92 0.78 0.94 0.76 -22.05

Hunza 0.93 1.11 0.88 0.82 11.45 0.92 1.21 0.85 0.73 21.49 0.88 1.14 0.96 0.82 13.64

Shigar 0.86 1.37 1.02 0.60 37.11 0.91 1.08 0.94 0.86 8.25 0.95 0.95 0.84 0.82 -5.08

Shyok 0.91 1.31 0.99 0.67 31.35 0.93 1.23 0.93 0.75 23.00 0.94 1.17 0.93 0.80 17.01

Indus-K 0.87 0.97 1.16 0.79 -2.54 0.89 1.01 1.24 0.73 0.50 0.91 1.08 1.09 0.85 8.11

Indus-B 0.91 0.95 0.97 0.89 -5.16 0.95 1.00 0.95 0.93 0.19 0.95 0.96 0.95 0.92 -4.16

Indus-T 0.92 1.12 0.91 0.83 12.04 0.95 1.10 0.93 0.86 10.29 0.95 1.12 0.91 0.84 11.77

Jhelum 0.94 1.09 0.98 0.89 8.95 0.93 1.10 1.02 0.88 10.40 0.91 0.99 1.05 0.89 -0.94

Chenab 0.92 0.90 0.94 0.86 -10.26 0.94 0.86 1.02 0.85 -13.77 0.92 0.91 0.99 0.88 -8.70

Sub-basin
Validation (Backward) Calibration Validation (Forward)
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However, the 2nd half median river inflows fell short by only 4.5% as compared to the 1st 

half. The Indus-Tarbela rim station receiving bulk of its inflows from the Karakoram region 

experienced relatively stable river inflows as maximum annual inflows were 1.7-times higher 

than the minimum inflows. Tarbela inflows also declined by 4.9% during the 2nd half of the 

last 40 years, but a modest increasing trend is observed during this period.  

 

 Figure 5.7: Projected median annual river discharge anomalies relative to baseline at four outlets 

Stronger interannual variability of the projected river inflows during 21st century is 

anticipated under all future scenarios as compared to the baseline historical period at all the 

four locations. MIROC5 projects pronounced increases in median annual river flows under 

all RCPs, while MPI-ESM-LR suggests substantial reductions under RCP4.5&8.5. Like 

median annual precipitation, a definite and strong increasing trend of median annual river 

inflows is only evident for MIROC5 under RCP8.5 at all locations, while MPI-ESM-LR 

shows declining trends for RCP4.5 & RCP8.5 at Jhelum, Chenab and Kabul river gauges. 

The remaining GCM runs show slightly increasing trends. Tarbela inflows show the strongest 

increasing trends under all scenarios except MPI-ESM-LR_RCP4.5&8.5, which suggest 

almost no trend. 

Median annual river inflows of the Jhelum river at Mangla rim station are anticipated to 

increase by 29.2, 14.0 & 55.7% during mid-century and by 26.2, 12.4 & 71.7% during end-

century time-slices under MIROC5 ensembles (RCP2.6, 4.5 & 8.5) respectively (Table 5.6), 

while MPI-ESM-LR projects reductions of -22.1, -16.5, -15.1 and -1.2, -17.7, -47.4% under 

the same scenarios. Almost similar trends but slightly different magnitudes in the changes in 

median annual river inflows of Chenab river at Marala rim station can be expected. Under 

extreme dry (wet) conditions, the largest reductions (gains) of -51.3% (73.6%) in median 

annual river inflows can be expected at Chenab-Marala (Indus-Tarbela) rim station during 

end-century time-slice. Indus-Tarbela inflows are anticipated to increase at varying levels 

under all scenarios, while Kabul-Nowshera inflows may increase under MIROC5 ensembles 

and decrease under MPI-ESM-LR ensembles except under RCP2.6 by the end of century.  

Monthly scale river inflows are more variable and uncertain particularly in the monsoon 

dominated W-Himalayan river basins. The Jhelum-Mangla river inflows show large 

reductions under all ensembles of MPI-ESM-LR throughout the year during the entire 21st 

century except slight increases in Apr-Jun inflows for RCP2.6 during end-century time-slice. 

Baseline (ERA5-BC) MIROC5_r1i1p1_RCP2.6 MIROC5_r1i1p1_RCP4.5 MIROC5_r1i1p1_RCP8.5

MPI-ESM-LR_r1i1p1_RCP2.6 MPI-ESM-LR_r1i1p1_RCP4.5 MPI-ESM-LR_r1i1p1_RCP8.5
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Similarly, Chenab-Marala inflows also depict large reductions throughout the year but 

considerable increases are prominent during Apr-June months for both the time-slices. Under 

extreme wet-warm scenario, the MIROC5 ensembles project moderate to high increases in 

most of the monthly river inflows except Feb-Mar months under RCP4.5 and Jul-Aug months 

under RCP4.5&8.5 during the entire 21st century.  

Table 5.6. Projected changes (%) in median monthly and annual river flows at 4 locations by 2 GCMs 

under 3 RCPs during 2021-2060 & 2061-2100 time-slices relative to baseline period (1981-2020). The 

red & blue colour stretches highlight the magnitudes of negative & positive changes respectively.  

 

Indus-Tarbela on the other side show considerable gains in future river inflows for most of 

the moths under all scenarios, particularly for Apr-Jul months during both the time-slices and 

except Jul-Aug flows under RCP4.5 during end-century time-slice. Median monthly river 

inflows of the Kabul river at Nowshera gauging station may experience significant reductions 

under MPI-ESM-LR ensembles except Jun-Jul months during mid-century time-slice and Jul 

month under RCP4.5 during end-century time-slice, while RCP2.6 may result in increased 

river inflows throughout the year except Feb-Mar months during the end-century time-slice. 

MIROC5 ensembles on the other hand predict modest increases in median monthly river 

inflows throughout the year except Aug-Sep during mid-century time-slice. However, for 

end-century time-slice, slightly reduced inflows can be expected during Aug-Sep under 

RCP2.6 and Jun-Oct under RCP4.5.  

5.4.4 Shifts in seasonality and annual cycle of water availability 

As a result of future climate change, large changes and shifts in the seasonality and annual 

cycle of hydrological peaks are expected for all the four rim stations under different scenarios 

(Figure 5.8). The peaks are mainly affected by intensity and duration of precipitation, 

snow/glacial ice reserves and the amount of energy available for melting of seasonal snow 

and perennial glaciers. The hydrographs of median monthly river discharges projected by 

two GCMs under three RCPs indicate that the study area has distinct climate and associated 

hydrological regime at regional or sub-basin scale. The highest peaks are generally achieved 

during summer months when monsoon precipitation is coincided with snowmelt runoff and 

the lowest flows are attained during winter season when most of the precipitation falls in 

solid form and baseflows are mainly augmented by groundwater. 

J F M A M J J A S O N D Y GCM/RCP J F M A M J J A S O N D Y

Jhelum-Magla

45.5 8.5 22.0 20.9 22.7 -2.2 -5.1 10.2 14.9 56.3 39.8 37.8 29.2 MIROC5_RCP2.6 28.7 0.5 7.9 17.6 38.8 9.5 17.5 3.3 2.8 41.2 17.6 22.1 26.2

-25.2 -48.5 -34.7 -16.3 -7.4 -35.5 -47.1 -39.9 -26.1 -37.4 -35.9 -33.4 -22.1 MPI-ESM-LR_RCP2.6 -22.7 -23.8 -14.7 5.5 25.2 11.7 -21.0 -28.1 -17.5 -25.1 -12.2 -22.0 -1.2

1.2 -4.6 7.6 -8.0 5.3 4.4 -22.0 -14.7 8.9 22.1 12.7 10.4 14.0 MIROC5_RCP4.5 12.6 -13.8 -5.3 14.3 -6.3 -22.9 -29.7 -16.8 -9.3 53.7 46.3 17.6 12.4

-39.5 -50.7 -39.5 -21.6 -16.8 -28.9 -38.4 -28.5 -27.9 -37.5 -34.0 -44.3 -16.5 MPI-ESM-LR_RCP4.5 -29.3 -48.4 -31.9 -12.1 -23.1 -49.8 -48.1 -39.2 -34.2 -31.3 -30.0 -35.5 -17.7

35.9 39.1 35.4 37.9 25.1 14.8 -12.0 -1.7 -1.0 68.8 66.9 67.0 55.7 MIROC5_RCP8.5 132.9 66.9 59.5 55.8 2.4 -16.9 -15.1 34.8 54.0 190.6 200.1 167.4 71.7

-22.3 -50.5 -27.8 -1.9 3.7 -33.0 -45.1 -43.1 -34.2 -42.6 -37.8 -38.2 -15.1 MPI-ESM-LR_RCP8.5 -44.6 -55.4 -34.5 -31.7 -64.1 -75.8 -71.8 -61.6 -56.7 -59.1 -46.1 -53.7 -47.4

Chenab-Marala

35.5 3.1 14.3 44.9 52.7 25.8 1.6 13.6 11.8 26.8 35.9 36.5 25.9 MIROC5_RCP2.6 21.7 11.0 16.6 54.5 67.9 41.7 33.1 1.0 -10.3 17.9 14.1 32.3 30.2

-35.8 -44.8 -45.4 5.6 22.7 11.2 -43.1 -58.2 -57.4 -42.0 -37.5 -36.8 -23.9 MPI-ESM-LR_RCP2.6 -36.1 -47.1 -32.5 10.0 46.5 37.0 -26.6 -53.2 -53.2 -47.0 -40.3 -36.6 -13.2

12.5 -7.5 -1.9 26.0 38.4 38.0 -5.9 -1.7 2.0 14.4 12.1 23.2 11.4 MIROC5_RCP4.5 12.0 -2.0 6.7 49.0 44.6 44.5 -9.7 -6.4 -0.8 39.9 33.6 28.6 14.3

-26.0 -39.7 -44.8 6.3 34.8 5.5 -46.0 -61.8 -56.1 -44.3 -35.1 -35.8 -20.7 MPI-ESM-LR_RCP4.5 -39.2 -56.2 -54.6 19.7 7.6 -38.7 -56.4 -66.1 -58.1 -46.1 -44.0 -42.6 -37.1

36.3 29.3 44.3 72.0 59.4 59.3 11.1 -2.7 9.3 43.3 40.7 53.4 48.6 MIROC5_RCP8.5 86.0 32.3 45.5 83.6 92.5 66.5 -7.8 -1.1 34.8 165.5 140.6 105.1 62.9

-41.9 -58.6 -44.6 12.9 43.9 -9.3 -57.3 -64.8 -54.0 -48.8 -43.9 -44.9 -27.3 MPI-ESM-LR_RCP8.5 -52.1 -59.2 -40.2 23.8 -23.4 -56.6 -74.9 -77.4 -70.4 -59.1 -55.5 -57.5 -51.3

Kabul-Nowshera

35.6 29.2 29.5 50.8 45.1 32.2 7.5 -5.0 -1.1 11.5 23.7 29.7 23.1 MIROC5_RCP2.6 31.7 21.7 30.5 67.3 58.5 38.8 30.1 -26.6 -12.2 2.7 27.1 20.8 28.4

-4.0 -28.5 -29.2 -15.7 -8.6 1.5 8.1 -1.2 -4.3 -8.2 -8.6 -4.1 -10.1 MPI-ESM-LR_RCP2.6 17.6 -2.7 -9.8 25.1 26.7 21.8 34.1 23.0 18.4 17.2 15.6 18.6 19.2

-5.0 22.7 47.4 37.5 21.6 22.7 12.2 -12.8 -2.5 1.2 -5.6 -5.7 22.7 MIROC5_RCP4.5 12.4 3.1 23.7 37.6 9.6 -4.9 -19.0 -15.3 -18.9 -2.9 4.4 3.9 20.3

-12.0 -28.9 -44.7 -33.2 -20.2 7.6 8.6 -1.3 -2.6 -2.5 -11.1 -9.5 -6.1 MPI-ESM-LR_RCP4.5 -5.1 -33.2 -46.1 -27.0 -32.8 -8.5 6.5 -11.2 -16.4 -1.4 -13.9 -4.6 -11.4

31.2 41.7 77.0 63.7 40.8 40.2 14.4 -11.3 -4.6 33.1 24.5 35.7 40.2 MIROC5_RCP8.5 73.1 67.7 87.7 68.1 27.0 5.4 11.0 2.6 42.3 178.7 98.6 82.1 50.3

19.3 -17.3 -29.1 -4.8 -15.3 -1.8 24.1 -11.8 -1.2 -8.4 -17.0 -6.1 2.2 MPI-ESM-LR_RCP8.5 -10.1 -35.8 -59.0 -54.0 -48.5 -29.2 -14.9 -22.5 -18.4 -10.0 -14.0 -8.9 -24.4

Indus-Tarbela

20.5 9.4 14.4 24.2 46.0 36.1 29.5 14.6 -4.4 5.9 18.7 11.8 26.5 MIROC5_RCP2.6 21.2 22.1 14.5 30.7 48.3 50.7 38.0 6.5 -15.6 -5.2 10.5 4.2 17.0

-5.6 -17.0 -18.8 3.7 29.7 22.1 -4.3 -20.8 -6.4 1.5 -5.5 -6.4 -2.3 MPI-ESM-LR_RCP2.6 1.0 7.4 4.8 22.7 49.3 36.6 8.1 -2.9 5.1 10.2 7.2 3.8 9.7

-2.1 2.5 5.1 3.6 36.6 63.6 24.7 -0.9 6.5 -1.6 -7.8 -6.6 18.0 MIROC5_RCP4.5 11.0 5.0 -0.6 19.4 52.8 54.0 24.8 -17.0 -15.5 10.7 8.7 6.7 19.7

-8.7 -13.3 -19.3 -2.9 36.9 32.5 -2.2 -14.0 -16.5 -16.3 -16.2 -12.8 -2.4 MPI-ESM-LR_RCP4.5 1.0 -5.2 -13.8 13.9 47.1 30.8 0.2 -20.8 -18.1 -12.8 -9.9 -4.9 1.2

24.0 17.9 22.5 32.9 66.6 68.2 37.4 10.3 -0.4 32.3 20.4 19.2 30.6 MIROC5_RCP8.5 77.6 44.9 35.6 69.2 135.6 122.9 52.0 21.9 30.1 126.2 109.9 73.8 73.6

3.3 -4.6 -4.0 20.3 53.8 42.9 3.0 -14.3 -4.2 -11.2 -16.0 -10.1 4.2 MPI-ESM-LR_RCP8.5 2.7 -11.9 -9.0 23.6 63.2 40.3 -2.7 -25.3 -12.3 -5.3 -3.7 -6.3 4.8

2021-2060 2061-2100

2021-2060 2061-2100

2021-2060 2061-2100

2021-2060 2061-2100
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Figure 5.8: Shifts in seasonality and annual cycle of hydrological peaks. 

For the Jhelum-Mangla river gauge during mid-century time-slice, the highest peak flow 

tends to shift from Jun to May under all ensemble scenarios except MIROC5-RCP4.5, which 

maintains the peak in Jun as per historical period. There are large differences in the 

magnitudes of peaks, with ample underestimates by the MPI-ESM-LR ensembles and vice 

versa by the MIROC5 ensembles. The wintertime lowest discharges representing baseflow 

however, are affected differently, with increasing levels by MIROC5 ensembles and further 

lowering by MPI-ESM-LR ensembles. The situation becomes highly uncertain during the 

end-century time-slice, when MPI-ESM-LR-4.5 & 8.5 depict extreme reduction of river 

flows throughout the year and flattening of the peaks. MIROC5-RCP8.5 shows shifting of 

peak from Jun to Apr and substantial dipping of Jun-Jul flows, while MIROC5-RCP2.6 and 

MPI-ESM-LR-RCP2.6 project about 38.8 and 25.2% increases in peak flows in May thereby 

alerting for increased floods during this month. Almost similar trends in attainment of peak 

flows can be noticed for Chenab-Marala rim station. Significant increases in Apr-Jun flows 

are projected by MIROC5 ensembles with shifting of peaks from Jul to Jun, whereas MPI-

ESM-LR ensembles show massive reductions in monsoon (Jul-Sep) flows for both the time-

slices. Peak flows of Kabul-Nowshera river gauge are anticipated to slightly shift from late 

May to early May under MIROC5 ensembles with substantial and certain increases in spring 

and pre-monsoon (Feb-Jun) river inflows during both the time-slices. Indus-Tarbela inflows 

generally attain peak during mid Aug, which is very likely to be shifted to mid Jul under all 

Baseline (ERA5-BC) MIROC5_r1i1p1_RCP2.6 MIROC5_r1i1p1_RCP4.5 MIROC5_r1i1p1_RCP8.5

MPI-ESM-LR_r1i1p1_RCP2.6 MPI-ESM-LR_r1i1p1_RCP4.5 MPI-ESM-LR_r1i1p1_RCP8.5
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ensemble scenarios. Significant increases in monthly peaks during Apr-Jul are also evident 

under all scenarios. The baseflow during winter is slightly increased under MIROC5 

ensembles and vice versa under MPI-ESM-LR ensembles. An increase of 28.3, 16.0 & 41.3% 

over the baseline peak flow level can be anticipated under RCP2.6, 4.5 & 8.5 of MIROC5 by 

the end-century time-slice. 

5.4.5 Changes in future hydrological extremes 

The changes in future hydrological extremes are assessed by analysing changes in the flow 

duration curves (FDCs) and extreme discharge levels of high flows (Q5 & Q10) and low 

flows (Q90 & Q95) at the four river discharge gauges. The FDCs presented in Figure 5.9 

represent the percentage of time for baseline historical and two future time-slices of GCM 

outputs during which the river flows are equal to or greater than the corresponding rates. 

Flow duration curves have many hydrological and water management applications and are 

particularly helpful for design of hydropower projects. The high flow and low flow durations 

provide essential data and information for optimal selection and design of minimum and 

maximum hydropower units. Persistence and intensity of high and low flow periods (floods 

and droughts) can also be determined through the flow duration curves.  

 
Figure 5.9: Flow duration curves for the four sub-basins during historical and future time-slice. 

Figure 5.9 indicates considerable variability and shift in the FDC of each considered 

watershed under different scenarios of future climate. The FDCs are further analysed and 

quantified in terms of relative changes in the extreme discharge levels of high flows and low 

flows with respect to the baseline scenario at four river gauges (Table 5.7). Positive signs 

indicate increases, while negative signs infer reductions in the projected high or low flows. 

Most of the ensembles show increasing high flows and decreasing low flows implying 

intensification of future hydrological extremes. High flows are projected to increase at all 

gauging stations under all scenarios. The exceptions are MPI-ESM-LR–RCP4.5 for Indus-

Tarbela and MPI-ESM-LR–RCP8.5 for Jhelum-Mangla, Chenab-Marla and Indus-Tarbela 

gauging stations. MIROC5-RCP8.5 infers the most significant and consistent increase in high 

Baseline (1981-2020) MIROC5_r1i1p1_RCP2.6 MIROC5_r1i1p1_RCP4.5 MIROC5_r1i1p1_RCP8.5

MPI-ESM-LR_r1i1p1_RCP2.6 MPI-ESM-LR_r1i1p1_RCP4.5 MPI-ESM-LR_r1i1p1_RCP8.5
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flows, while MIROC5-RCP2.6 also shows similar pattern and consistency of increase in high 

flows but at much lower magnitudes. The low flows on the other hand are very likely to 

decrease further under MPI-ESM-LR ensembles except RCP2.6 & RCP8.5 in the Indus-

Tarbela watershed. Whereas, MIROC5 ensembles depict increasing lows flows except 

RCP4.5 in Jhelum-Marala, Kabul-Nowshera and Indus-Tarbela watersheds. Hence, more 

intensive floods are more likely and certain than droughts. 

Table 5.7: Projected changes (%) in high flow (Q5 and Q10) and low flow (Q90 and Q95) durations 

under various climate change scenarios for 2021–2060 and 2061-2100 relative to 1981–2020.  

GCM / RCP 
2021-2060 2061-2100 2021-2060 2061-2100 

Q5 Q10 Q5 Q10 Q90 Q95 Q90 Q95 

  Jhelum-Mangla         

MIROC5_RCP2.6 36.8 27.2 44.3 32.2 17.7 5.7 6.6 3.9 

MPI-ESM-LR_RCP2.6 -3.3 -17.1 40.1 22.6 -39.1 -39.3 -32.1 -32.5 
MIROC5_RCP4.5 42.2 19.1 21.8 2.6 -20.1 -24.8 -5.1 -10.4 

MPI-ESM-LR_RCP4.5 15.9 -8.2 3.3 -14.9 -54.6 -60.7 -51.3 -53.3 

MIROC5_RCP8.5 68.3 45.0 80.6 50.0 17.8 5.0 98.3 92.4 
MPI-ESM-LR_RCP8.5 17.6 -4.9 -8.9 -35.2 -52.0 -58.9 -71.6 -76.0 

  Chenab-Marala         

MIROC5_RCP2.6 34.3 22.7 35.5 28.6 24.4 21.5 11.6 9.9 

MPI-ESM-LR_RCP2.6 -3.5 -13.8 26.2 7.6 -49.3 -52.5 -48.7 -51.9 
MIROC5_RCP4.5 30.3 21.7 25.7 20.0 7.6 6.2 16.2 13.9 

MPI-ESM-LR_RCP4.5 12.8 -3.9 -7.4 -21.6 -55.6 -62.1 -56.3 -63.5 

MIROC5_RCP8.5 44.0 37.8 75.7 55.7 28.7 25.3 71.0 61.6 
MPI-ESM-LR_RCP8.5 3.9 -12.7 -21.1 -35.5 -58.0 -63.0 -67.7 -71.1 

  Kabul-Nowshera         

MIROC5_RCP2.6 50.3 43.4 61.5 58.1 4.2 -5.5 0.2 -5.3 
MPI-ESM-LR_RCP2.6 19.9 15.3 72.6 59.7 -20.8 -23.7 -8.3 -9.7 

MIROC5_RCP4.5 53.2 41.3 17.0 9.9 -6.2 -5.8 -24.7 -31.9 

MPI-ESM-LR_RCP4.5 23.2 6.7 10.6 -1.3 -15.1 -12.9 -14.4 -14.4 

MIROC5_RCP8.5 67.5 59.4 63.5 42.6 8.3 2.3 10.8 -3.4 

MPI-ESM-LR_RCP8.5 33.6 15.3 10.6 -7.5 -12.1 -14.9 -24.1 -23.9 

  Indus-Tarbela         

MIROC5_RCP2.6 24.0 25.7 28.7 29.6 9.5 9.2 11.5 12.1 
MPI-ESM-LR_RCP2.6 -7.9 -6.7 2.6 6.1 4.3 7.2 18.0 21.7 

MIROC5_RCP4.5 25.1 25.1 18.1 13.9 -5.5 -7.4 3.2 -0.9 

MPI-ESM-LR_RCP4.5 -6.6 -2.5 -3.8 -2.2 -12.3 -9.8 -4.0 -3.6 
MIROC5_RCP8.5 34.8 36.8 64.3 61.2 8.9 0.5 53.4 50.8 

MPI-ESM-LR_RCP8.5 -1.5 0.4 -1.4 -4.1 6.8 7.5 0.3 1.0 

5.5 Discussion 

Hydrometeorological assessments by the previous studies for the high-altitude Indus basin 

mostly relied on highly uncertain climate data and use of lumped and/or temperature-index 

based hydrological models. This study, however, has developed high-quality precipitation 

and temperature datasets for the historical (Section 5.3.1) and future (Section 5.3.2) periods. 

A fully-distributed, physically-based, energy-balance hydrological model is forced with 

these improved datasets to simulate the changes and variability in the sub-basin scale 

hydrometeorological regimes of the study area for the baseline historical period and plausible 

conditions of extreme climate (cold-dry & warm-wet) covering a wider range of future 

climate scenarios represented by RCPs 2.6, 4.5 & 8.5.   

5.5.1 Climate change 

Accurate assessments of climate change in the high-altitude Indus basin have remained 

daunting task due to highly scarce in situ observations and strong influence of the innately 
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complex climate systems interacting with very high orographic features. For instance, the 

coupled influence of very high orography, winter westerlies, Indian summer monsoon, East-

Asian summer monsoon, and significant moisture released by the vast irrigated plains and 

forest lands in the Himalayan foothills may be inadequately captured by the global climate 

models. As such, there is large variability in quantitative and spatio-temporal distribution of 

the projected precipitation by various GCM outputs (Lutz et al., 2016b; Cai et al., 2009). This 

is confirmed by evaluating the precipitation estimates of 75 GCM runs in this study. None of 

the GCM run was able to precisely capture the influence of predominant weather systems 

resulting in large variability and biases in their monthly, seasonal and annual precipitation 

estimates (Table 5.1). Precipitation distribution estimates of only a few runs were close and 

comparable to the reference data. Hence, the results of previous studies that have used 

different GCM outputs and compared with uncertain reference data may be completely 

different. The existing gridded precipitation products also suffer from observational and other 

inadequacies and errors (Dahri et al. 2020; Baudouin et al. 2020) leading to large 

uncertainties and poor understanding of the prevailing hydrometeorological regimes in the 

study domain (Lutz et al., 2016a).  

Lutz et al. (2018) and Kraaijenbrink et al. (2017) showed that the climate in this region is 

changing at a rate greater than the global average. Whereas, a multi-model study conducted 

by Su et al. (2016) revealed increasing annual and summer temperatures, increasing monsoon 

precipitation, and decreasing winter and spring precipitation. Our analysis depicts significant 

interannual variability and increase (decrease) of median annual air temperature 

(precipitation) by 0.6 oC (11.9%) in the study area during the last 20 years (2001-2020) 

relative to the preceding 20 years (1981-2000). Future climate may be more variable in space 

and time under each scenario. MIROC5 output is considerably warmer than MPI-ESM-LR 

output almost throughout the year and about 1.2, 1.0 & 0.35 oC warmer by the end of century 

under RCPs2.6, 4.5 & 8.5 respectively. Precipitation changes in most parts of the basin at 

annual scale and during most of the months are generally positive for MIROC5 and negative 

for MPI-ESM-LR except Karakoram and western part of Kharmong regions, where both 

GCMs show positive changes. Monsoon precipitation may get stronger in the Indus-

Kharmong region, which might be due to stronger influence of Tibetan Anticyclone and East-

Asian monsoon in the future (Zhu et al., 2013; Wang et al., 2008). Farinotti et al. (2020) 

concluded that in the past two decades, the Karakoram region has shown balanced to slightly 

positive glacier budgets, an increase in glacier ice flow speeds, stable to partially advancing 

glacier termini and widespread glacier surge activity. The authors however were unclear and 

uncertain about the future of this Karakoram Anomaly, and termed its long-term 

sustainability unlikely in light of the anticipated warming of future climate. Our study can 

explain the future of peculiarly anomalous behavior of glacier activity in the Karakoram 

region. It shows strong signals of considerable precipitation gains even under extreme dry 

and warm conditions of future climate. Of particular importance is substantial increases in 

future precipitation during winter and summer seasons, and probably the accompanying 

cloud cover and reduced sublimation. The projected increases in temperature may only result 

in slightly upward shift of the snowline. The melting of this transition zone and gains in the 

accumulation zones will actually determine the net loss of glacial ice mass.  

Precipitation projections for the Kabul river basin (SW-Hindukush and NE-Hindukush) are 

extremely variable at both monthly and annual scales and show largest reductions during Jun-

Aug and Nov-Dec months. Similar to the findings of Hasson et al. (2019), an overall increase 

in median annual precipitation is projected by MIROC5 ensembles, while MPI-ESM-LR 

ensembles show declining trend which supports the findings of Lutz et al. (2016a). This is in 
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contrast to the findings of Bokhari et al. (2018), who examined the future climatic changes 

in the Kabul River basin using multi-model ensemble mean derived from NASA Earth 

Exchange Global Daily Downscaled Projections (NEX-GDDP) taking Global 

Meteorological Forcing Dataset (GMFD) as a reference and noticed an overall decrease in 

mean annual precipitation over the entire Kabul river basin under RCP4.5 & RCP8.5. The 

influence of Indian summer monsoon seems to be weakened in future and may seldom reach 

to extreme SW-Hindukush region. W-Himalayan precipitation may also experience similar 

variability and uncertainty as MPI-ESM-LR projects significant reductions, while MIROC5 

suggests substantial increases. Hasson et al. (2019) also project slight increase particularly 

along the northern high mountain ranges. Lutz et al. (2016a) however predicted slight 

(considerable) reductions (gains) in median annual precipitation for RCP4.5 (RCP8.5), which 

is amplified by the use of different models for the two RCPs. The contrasting precipitation 

estimates of the previous studies relative to this study can be attributed to use of different 

datasets for projection as well as baseline reference. Moreover, our projections primarily 

represent extreme scenarios conditions rather than median conditions. 

5.5.2 Hydrological regime 

Numerous studies have attempted to assess and model the hydrological regime of high-

altitude Indus basin (e.g. Hasson et al., 2019 & 2016; Lutz et al., 2016a; Archer, 2003). Yet, 

there are significant uncertainties and our understanding of the basin’s hydrological regime 

remains poor. The greatest uncertainties are associated with the use of non-representative 

(mostly underestimated) precipitation in the higher altitude areas, which receive bulk of 

precipitation and have major contributions in streamflows. The basin is predominantly a 

snow and glacier fed system. Therefore, the temperature-index or degree-day based 

hydrological models may not accurately simulate the prevailing energy balance, which is the 

main driving force for streamflow generation from the snow and glacier systems. Whereas, 

assessment of the future hydrological regime is primarily constrained by very high 

uncertainties in the GCM outputs for the study domain.  

This study used improved climate datasets and employed a fully-distributed physically-based 

energy-balance hydrological model to investigate hydrological regime of the high-altitude 

Indus basin at four strategic river gauging stations under extreme climate change scenarios. 

The existing hydrological regime of the high-altitude Indus basin is largely modulated by 

timing, intensity, duration, and form of precipitation; snow and glacial ice reserves; and 

amount of energy available for melting of seasonal and perennial snow and glacial ice 

(Archer, 2003). Hence, the seasonal pattern of river inflows is significantly modified by the 

melting of snow and glaciers. However, climate change is expected to weaken the modulating 

effect of snow and glacier fields with potentially strong effects on hydropower generation, 

floods and droughts, irrigation water supplies and associated food production (Biemans et al., 

2019). Future projections by two GCMs under three RCPs indicate that the study area has 

distinct climate and associated hydrological regime at regional or sub-basin scale. 

Unprecedented and highly contrasting hydrological signals across the river basin at the four 

gauging station are anticipated under these scenarios. 

The Jhelum-Mangla river inflows show shifting of peak from Jun to May and large reductions 

under all ensembles of MPI-ESM-LR throughout the year except slight increases in Apr-Jun 

inflows for RCP2.6, while MIROC5 ensembles project substantial increases in most of the 

monthly river inflows except Feb-Mar under RCP4.5 and Jul-Aug under RCP4.5&8.5. Large 

reductions in low-flows are also prominent in MPI-ESM-LR ensembles and MIROC5-

RCP4.5. Such changes in Jhelum-Mangla river inflows are in sheer contrast with the findings 
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of Hasson et al. (2019), who anticipated no shifting of peak flows and around 10% decrease 

(increase) in Mar-Jun (Jul-Sep) inflows with overall decrease of 3% under 1.5 oC and no 

change under 2.0 oC global warmings. Strong decreases in Jun-Jul inflows are projected by 

Lutz et al. (2016a). Similarly, Chenab-Marala inflows also depict large reductions (increases) 

under MPI-ESM-LR (MIROC5) ensembles throughout the year but considerable increases 

are anticipated during Apr-June months under all scenarios. Shifting of peak from Jul to Jun 

can be expected and drastic reductions in low-flows are prominent under MPI-ESM-LR 

ensembles. Lutz et al., (2016a), however projected considerable reductions under RCP4.5 

and vice versa under RCP8.5 with no shift in peak. Indus-Tarbela inflows are projected to 

significantly increase during Apr-Jul months with overall annual increase of 17.0-73.6% 

under MIROC5 ensembles and 1.2-9.7% under MPI-ESM-LR ensembles. Lutz et al. (2016a) 

on the other hand show slight increases for the upstream Karakoram river inflows but no 

change at the downstream Tarbela gauging station against 38% and 52% increase anticipated 

by Hasson et al. (2019). They also expected no shift in peak, which is likely to be shifted 

from Aug to Jul in this study. The lower altitude Kabul river basin is expected to experience 

an intermediate pattern of seasonal shifts, with slight reductions in river inflows under MPI-

ESM-LR ensembles and modest increases (20.3-50.3%) depicted by MIROC5 ensembles. 

Aug-Sep river flows may get slight decline and there is also a slight shift in Peak from end 

of May to start of May. Substantial increases in spring and pre-monsoon (Feb-Jun) river 

inflows however are certain. These findings are contrasted by Hasson et al., (2019) with 

projected increase of about 60% in annual flows and unchanged peaks. Lutz et al., (2016a) 

on the other hand expected strong decreases in Jun-Jul flows and slight decreases spring 

months, with overall slight decrease in annual flows and no change in attainment of peak. 

Most of the ensembles show increasing high flows and decreasing low flows at all gauging 

stations implying intensification of future hydrological extremes.  

5.5.3 Uncertainties and limitations 

Observational uncertainties: This study developed and used much improved precipitation 

and temperature datasets and employed state-of-the-art interpolation technique to minimize 

observational uncertainties that are commonly present in the previous datasets. Yet, the 

observational uncertainties in the hydrometeorological assessment undertaken in this study 

may still hold a sizable share in the total uncertainties due to imprecision in the observed data 

and techniques used to adjust measurement errors and spatial interpolation of the point 

observations. These observational uncertainties can be addressed by incorporating additional 

observed data with better spatio-temporal coverage particularly in higher-altitude areas, 

calibration of the precipitation gauges with the WMO recommended references and 

development of site and gauge-specific error adjustment models, use of daily or even sub-

daily time steps, use of corresponding observed wind speed and temperature data, selection 

of better spatial interpolation technique, precise computation of other components of the 

water balance to validate precipitation, and a better integration of the observed precipitation 

data with mass balance and remote sensing data. 

GCM structure and parameterization: GCM related uncertainties arise mainly from 

formulation and discretization of the governing mathematical models, from parameterization 

of unresolved processes, and from imperfect understanding of the climate system (Palmer 

et al., 2005). Since each GCM is developed based on its own specific assumptions and unique 

mathematical models to represent the physical processes of climate systems, their outcomes 

are innately different (Hawkins and Sutton, 2011). Hence, with availability of a large number 

of GCM outputs, the spread and variability in their outcomes is also large (Lutz et al., 2016b), 
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particularly at regional and catchment scale (Cai et al., 2009). GCM related uncertainty is 

often a dominating source (Kay et al., 2009) constating about 50-85% of the total uncertainty 

(Prein et al., 2011), and is generally more pronounced at longer timescales (Hawkins and 

Sutton, 2011). Parameterization related uncertainty is much smaller than GCM related 

uncertainty (Her et al., (2019). Performance evaluation of 75 GCM runs undertaken in this 

study revealed a large variability in precipitation estimates of the GCM projections. Hence, 

future water availability resulting from GCM precipitation in the high-altitude Indus basin 

will be even more uncertain. 

Statistical downscaling and bias-correction: Statistical downscaling establishes empirical 

relationships between coarser-scale historical outputs of gridded datasets or GCMs and local 

climatic observations. These relationships are then applied to the GCM projections to correct 

their systematic biases. A wide variety of bias-correction methods are currently under use, 

but all methods are based on the fundamental assumption that the empirical relationship 

derived from the present climate conditions is also valid for the future scenarios (Dobler 

et al., 2012; Wilby et al., 2004; Zorita and von Storch, 1999). This assumption of stationarity 

is the fundamental limitation of this approach but often neglected in hydrological studies. 

This study used the delta change approach for bias correction of gridded dataset and 

precipitation and temperature outputs of two GCMs under three RCPs. The delta change 

approach uses linear scaling to perfectly match the monthly means of estimated climate 

variables with those of the observed values (Lenderink et al., 2007). This approach is widely 

used to assess climate change and future water availability, while more advanced methods 

are preferred for analysis of climate and hydrological extremes (e.g. Lutz et al., 2016a). 

However, Dobler et al. (2012) and Key et al. (2009) noticed comparatively small uncertainty 

related to the choice of the bias-correction method.  

Hydrological modeling structure and parameterization: Ragettli et al., (2013) showed 

that the effects of uncertainty sources are variable in space and time and hydrological model 

input parametric uncertainty in heavily glacierized subregions exceeds the effect of climate 

model uncertainty and natural internal climate variability, but often decreases with time. The 

accuracy of the model outcome is largely dependent on the quality of input variables and 

modeling structure to represent the natural processes. The VIC hydrological model used in 

this study is validated and extensively used in a variety of conditions and there is no serious 

drawback in its modeling structure. Its characteristics of physically-based, fully-distributed, 

energy-balance, and representation of a wide range of physical processes are particularly 

important. However, the model also suffers from a couple of limitations to precisely model 

the glacierized catchments. Firstly, it does not take into account the already stored volume of 

snow and glacial ice mass, and then it simulates snow and glaciers using the same 

mathematical model. While, glaciers possess considerably different hydraulic properties.  

Uncertainties in river flow measurements: River flows usually have indirect use in 

hydrometeorological studies. Primary use of river flow data is for calibration and validation 

of the hydrological models at the strategic river gauges. In contrast to most climatic variables, 

river flow data are generally assumed to be adequately accurate considering the relative 

precision of discharge measurement techniques and quality control ensured by the data 

collection agencies. Yet, river flow data may still be subject to some degree of uncertainty 

due to measurement errors. NESPAK-AHT-DELTARES (2015) assessed river/canal 

discharge measurement protocols adopted in the IRS and observed overall uncertainties in 

the rage of 3-8% at five canal headworks. The river flow uncertainties may slightly vary at 

each gauge but will remain constant with time.  
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5.5.4 Implications for water management 

The complex hydrology and transboundary nature of the high-altitude Indus basin coupled 

with significant impacts of climate change highlight serious threats to the basin’s integrity 

and sustainability of the future hydrological regime. The analysis undertaken in this study 

focuses two best performing GCMs projecting extreme conditions of warm-wet and cold-dry 

climates under three RCPs. As such, there are significant differences in the magnitudes and 

trends of future river inflows mainly due to differences in the GCM outputs. The projected 

changes in monthly, interannual and overall water availability at the four rim stations under 

different climate change scenarios would have serious implications for future water resources 

planning, development and management. Strategies and action plans for hydropower 

generation, construction and operation of storage reservoirs, irrigation withdrawals, flood 

control and drought management will require significant modifications.  

In the presence of significant monthly and interannual variability, overall water availability 

is projected to improve in future, particularly at Indus-Tarbela rim station which constitutes 

about 47.2% of the combined river inflows at the four locations. This will result in increased 

agricultural productivity and improved livelihoods of the downstream rural communities. In 

case of cold-dry scenarios, W-Himalayan region is most likely to be affected by extreme 

water shortages. Further reductions in the low-flow magnitudes for expanded durations will 

amplify the negative effects on an already water stressed environment adversely affecting 

agricultural production and ecology of riverine ecosystems and exerting increased pressure 

on the already stressed groundwater resources. The projected increase in low-flows during 

winter months will improve water availability during Rabi season and lessen the dependency 

on storage reservoirs to release stored water. Peak flows at all gauging stations are very likely 

to increase in magnitudes and shift to earlier month due to early melting of seasonal 

snowpack in a drier and warmer spring and pre-monsoon season. This will expose the riverine 

areas to encounter more intensive and one-month earlier floods, which will pose higher risk 

of reduced productivity and failure of standing crops during Apr-June months. However, 

higher river inflows during these months will positively impact over all water availability 

during early Kharif (summer) season. This will particularly benefit the extreme lower riparian 

Sindh province, which usually faces shortages of irrigation water during this period due to 

one-month earlier start of Kharif crop season than upstream provinces.  

5.6 Conclusions 

This study demonstrated and confirmed large uncertainties associated with CMIP5 GCM 

outputs for the complex high-mountain Indus basin. Novel and high-quality datasets of 

precipitation and temperature are developed and forced to a widely used hydrological model 

for simulation of future hydrological regimes under extreme scenarios of climate change. 

Accordingly, the study provides unique estimates of historical and future climate change and 

associated hydrological implications.  

The region has already witnessed modest increase in median annual air temperature and a 

considerable drop in precipitation with corresponding decline in river inflows during the last 

40 years. Future projections are highly variable and uncertain. Almost a linier increase in air 

temperature with varying magnitudes is projected throughout the 21st century. Precipitation 

and river inflow projections are relatively more uncertain but overall increasing trends are 

evident for warm-wet scenarios and vice versa for cold-dry scenarios. The Karakoram and 

parts of the Indus-Kharmong regions are anticipated to receive significant gains in future 

precipitation. Monsoon precipitation in the Indus-Kharmong may increase due to a stronger 
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influence of the Tibetan Anticyclone and East-Asian monsoon in the future. The influence of 

the Indian summer monsoon is expected to strengthen slightly in the W-Himalayan region 

but might be weakened as it travels westward and may seldom reach to the extreme SW-

Hindukush region. Under extreme cold-dry conditions, the W-Himalayan region may be 

worst-affected by extreme water shortages and low flows are very likely to reduce further. 

This will amplify the negative effects on an already water stressed environment adversely 

affecting agricultural production and ecology of riverine ecosystems and exerting increased 

pressure on the already stressed groundwater resources. The Indus-Tarbela inflows are 

projected to significantly increase during Apr-Jul months with overall annual increase of 

17.0-73.6% under warm-wet scenarios and 1.2-9.7% under cold-dry scenarios. The lower 

altitude Kabul river basin is expected to experience an intermediate pattern of seasonal shifts, 

with slight reductions in river inflows under cold-dry scenarios and modest increases under 

warm-wet scenarios. Substantial increases in spring and pre-monsoon (Feb-Jun) river inflows 

however are certain. In some cases, low-flows during winter months will improve water 

availability during the Rabi season and lessen the dependency on storage reservoirs to release 

stored water. The projected increases in early Kharif season (Apr-Jun) river inflows will 

particularly benefit the extreme lower riparian Balochistan and Sindh provinces, which 

usually face shortages of irrigation water during this period due to one-month earlier start of 

the Kharif crop season. The projected increases in the magnitudes of peak inflows and their 

one-month earlier attainments for all river gauging stations cautions for increased risks of 

floods. 

Summarizing, unprecedented and highly contrasting climate change and hydrological signals 

across the river basin are anticipated for the extreme climate change scenarios considered in 

this study. The findings suggest significant modifications in the strategies and action for 

reservoir operations, optimization of hydropower generation and irrigation abstractions, 

flood control and drought management.  

Acknowledgements 

This research work is supported by the Dutch Ministry of Foreign Affairs through the 

Netherlands Fellowship Program and partially carried out under the Himalayan Adaptation, 

Water and Resilience (HI-AWARE) consortium supported by the Collaborative Adaptation 

Research Initiative in Africa and Asia (CARIAA). The views expressed in this work do not 

necessarily represent those of the supporting organizations. Deepest gratitude is expressed to 

the institutions and the teams responsible for the development and distribution of climate 

data and river inflow data and the hydrological model used in this study. The authors declare 

that there is no conflict of interest. 

  



107 

 

Chapter 6 

Synthesis 

6.1 Introduction 

Climate change is recognized as an emerging threat and the greatest challenge faced by the 

global community during 21st Century. Precipitation is the most important climatic variable 

that governs renewable water resources affecting water-energy-food securities and related 

socioeconomic developments across the globe. The high-altitude Indus basin is one of the 

most complex mountain regions in the world, where a comprehensive and reliable assessment 

of precipitation distribution and associated hydrological implications are largely lacking due 

to scarcity and directional biases of the observed data. While, the majority of the recent 

hydrometeorological research has been focused on developing and/or using the improved 

data analysis techniques and hydrological modeling frameworks, less attention was given to 

precise estimation of the important climatic variables. Consequently, there is a large 

uncertainty and variability in the quantitative and spatiotemporal distributions of 

precipitation estimated by previous studies for this region. This PhD research recognized that 

improvements in meteorological forcing datasets hold the key for accurate analysis of climate 

change and associated hydrological implications in the high-altitude Indus basin. Therefore, 

high-quality meteorological forcing datasets of precipitation and temperature have been 

developed for the historical period (1979-2018) and various projections of extreme climate 

change in future to better analyse the recent and projected climate change and variability. A 

fully-distributed physically-based energy-balance hydrological model is forced with these 

datasets to simulate the water balance and examine the changes in hydrological regimes at 

sub-basin scale.  

Chapter 1 sets the scene by presenting an overview of the underlying issues related to data 

gaps in ground-based precipitation and temperature observations and hydrometeorological 

assessments for the study domain. The hydrological modeling framework used in this 

dissertation is also described. This is followed by elaborations on the prevailing climate and 

hydrological regime of the study area and raising a number of interconnected research 

questions that need to be addressed. The research questions are integrated and framed in the 

four broad-based research objectives, which are achieved in the subsequent chapters (Chapter 

2-5). Chapter 2 presented an appraisal of precipitation distribution in the high-altitude upper 

Indus basin by integrating a large number of precipitation observations, majority of which 

have never been used for formation or calibration of precipitation datasets. The uncertainties 

associated with the existing precipitation datasets were underlined and altitudinal 

dependency of precipitation was analysed. Chapter 3 further improved the quality of 

precipitation distribution by extending the area, incorporating additional data and adoption 

of an improved approach for cross-validation. Precipitation observations were adjusted for 

measurement errors, net snow accumulations for ablation losses and river inflows for the 

contribution of the net mass balance. The precipitation distribution was cross-validated by 

corresponding adjusted river inflows at sub-basin scale using Turc-Budyko’s non-

dimensional analysis. Chapter 4 evaluated the performance of a wide range of commonly 

used precipitation products and corroborated the underlying uncertainties in their 

precipitation estimates for the high-altitude Indus basin. In Chapter 5 high-quality 
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precipitation and temperature datasets are developed for the historical period and two 

extreme projections of future climate through bias correction of the best performing gridded 

dataset and GCM outcomes for warm-wet and cold-dry scenarios under three RCPs. Climate 

change and variability is analysed at the regional scale. The VIC hydrological model is forced 

with these novel datasets to simulate and analyse the hydrological regimes at sub-basin scale. 

The summary of main results for each research objective is presented in Table 6.1. The 

research questions are addressed at sufficient details, the results of which are discussed in 

more detail in the following section.  

Table 6.1: Summary of main results and conclusions for each research objective. 

Research Objective Main Results and Conclusions 

1. Appraise the current 

state of precipitation 

distribution in the 

high-altitude Indus 

basin and highlight 

the underlying issues 

in precipitation 

observations and 

quality gridded 

precipitation 

products (Q1, Q2, & 

Q3 addressed in 

Chapter 2) 

▪ The estimated quantitative and spatiotemporal distributions of 

precipitation are much better than the previous data and are comparable 

and consistent with the corresponding specific runoffs at sub-basin 

level. The study area experiences a bimodal weather system with two 

distinct rainfall maxima; 1st along southern and lower most slopes of 

Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-

west corner of Shyok basin in the central Karakoram are clearly 

evident.  

▪ Considerable dependency of precipitation on elevation is observed. 

However, even at sub-basin level the gradients are insufficient to depict 

accurate regression models or power functions. 

▪ The selected four gridded precipitation products derived from different 

sources are prone to significant errors providing only a marginal 

resemblance of the actual precipitation in the study area. Except 

reanalysis product, the other products largely underestimate 

precipitation in most of the areas.  

2. Adjust measurement 

errors in precipitation 

observations and 

develop high-quality 

reference 

climatologies of 

precipitation and 

temperature (Q1, Q3, 

Q4, Q5, & Q6 

addressed in 

Chapter 3) 

▪ Analysis of temperature variations with elevation and latitude revealed 

significantly different gradients for each month and substantial 

differences among the gradients at different locations for maximum 

and minimum temperatures. Hence, the use of a universal annual 

gradient or a time independent gradient of mean temperature to 

estimate maximum and minimum temperatures or vice versa is a major 

source of uncertainty in temperature datasets of the high-altitude Indus 

basin. 

▪ The applied error-adjustments significantly increased the gauge-

measured precipitation ranging from 2-182% for various individual 

stations. The highest increments were computed for wind-induced 

under-catch of solid precipitation, particularly in higher-altitude areas 

and during winter months. Similarly, increases of 0-200% are 

estimated for the net snow accumulations.  

▪ Contrary to the general understanding and speculations, the 

contribution of net glacier mass balance to river inflows is only 

marginal ranging from 0.5 – 6.1% of the observed river inflows. 

▪ The catch corrections of precipitation gauges provided new insights in 

the magnitude and distribution patterns of precipitation. The adjusted 

precipitation is considerably greater than what has been previously 

thought. These increases are mainly realized in the higher-altitude 

areas of Chitral, Gilgit, Hunza, Shigar, Shyok and Astore basins. The 

study recognized that the higher river flows than the corresponding 
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precipitation estimates by the previous studies are mainly due to 

underestimated precipitation. 

▪ Although, cross-validation results indicate high-quality of estimated 

precipitation, yet there are observational uncertainties and eradication 

or reduction of these would result in improved estimates. The study 

recognizes that the data-quality driven underestimated precipitation may be 

the major source of uncertainty in the water balance estimates in the high-

altitude Indus basin. 

3. Evaluate quality of 

regional/global scale 

precipitation 

products for the 

study area with 

respect to the 

reference dataset (Q7 

& Q8 addressed in 

Chapter-4) 

▪ This chapter highlighted and corroborated the underlying issues and 

uncertainties associated with a wide range of gridded precipitation 

products in the high-mountain Indus basin. The results clearly indicate 

that all gridded datasets evaluated in this study contain significant 

errors in their precipitation estimates and cannot be used directly 

without careful bias correction. 

▪ Majority of the datasets tend to underestimate precipitation in wet areas 

and overestimate precipitation in dry areas, implying considerable 

implications for hydrological extremes of floods and droughts. None 

of the dataset is equally best for all sub-regions of the study area. A 

particular dataset performing very well in one sub-region is found 

worse in the other sub-region. Nevertheless, ERA5 is found most 

acceptable for all sub-regions.  

▪ It is revealed that reanalysis products provide relatively better 

estimates for the higher-altitude areas where observations are generally 

scarce. However, not all reanalyses products can serve the purpose due 

to large differences in their precipitation patterns and magnitudes. 

Therefore, a careful selection is deemed essential. 

▪ Relatively poor performance of the merged datasets in the study region 

highlights their weaknesses and inability to accurately estimate 

precipitation and underlines the need to develop more advanced and 

accurate merging techniques, which can preserve the comparative 

advantages of input datasets and which are equally accurate at sub-

catchment scales. 

4. Develop long-term 

datasets of 

precipitation & 

temperature for the 

historical and future 

time periods and 

assess past and future 

climate change & 

variability and 

associated 

hydrological 

implications (Q9, 

Q10, Q11, Q12, Q13 

& Q14 addressed in 

Chapter 5) 

▪ The region has already witnessed a modest increase in median annual 

temperature (0.6 oC) and a considerable drop (11.9%) in precipitation 

during the last 40 years. The changes in corresponding river inflows 

remained highly variable but consistently declined. Indus-Tarbela, 

Jhelum-Mangla, Chenab-Marala and Kabul-Nowshera rivers inflows 

experienced 4.9%, 19.6%, 11.9% and 4.5% decline respectively. 

▪ This study demonstrated and confirmed large uncertainties associated 

with CMIP5 GCM outputs for the complex high-mountain Indus basin. 

As such, the future projections of climate change and hydrological 

regime are extremely uncertain.  

▪ Almost a linier increase in air temperature with varying magnitudes is 

projected throughout the 21st century. Precipitation and river inflow 

projections are relatively more uncertain but overall increasing trends 

are evident for warm-wet scenarios and vice versa for cold-dry 

scenarios. The Karakoram and parts of the Indus-Kharmong regions 

are may receive significant gains, while other areas may experience 

reduced precipitation during 21st century. 

▪ Indus-Tarbela inflows are likely to increase between 17.0-73.6% under 

wet-warm scenarios and between 1.2-9.7% under cold-dry scenarios, 
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while river inflows at the remaining three rim stations show increases 

for wet-warm and decreases for cold-dry scenarios  

▪ Unprecedented and highly contrasting climate change and 

hydrological signals across the river basin are projected for warm-wet 

and cold-dry scenarios under RCP2.6, 4.5 & 8.5. Hence, important 

modifications in the strategies and action plans for reservoir 

operations, optimized hydropower generation and irrigation 

diversions, flood control, and drought management would be required. 

 

6.2 Discussion of the Main Results  

6.2.1 An appraisal of precipitation distribution (Objective 1, Chapter 2) 

Previous studies (e.g. Pang et al., 2014; Hewitt, 2011; Winiger et al., 2005; Glazirin, 1997; 

Weiers, 1995; Hormann, 1994; Wake, 1989; Dhar and Rakhecha, 1981; BIG, 1979; Decheng, 

1978) noticed strong relationship of precipitation with elevation using only limited or 

selective ground-based observations and suggested regression models or power functions to 

estimate precipitation from elevation at any point in the upper Indus basin. This study, 

however, incorporated a large number of ground-based observations and detected 

considerable altitude dependency of precipitation but demonstrated substantial differences in 

the rate and magnitude of altitudinal variation of precipitation from one sub-basin to another. 

Hence, the complex altitudinal variation of precipitation in the high-altitude Indus basin 

cannot be represented by a single relation. Even at sub-basin scale, the spatial and altitudinal 

variability of precipitation is so complicated that the computed precipitation gradients are 

insufficient to depict accurate regression models or power functions. The elevation zone of 

maximum precipitation is also highly variable. The Western-Himalayan region experiences 

the zone of maximum precipitation at an altitude of around 2500 m, which supports the 

findings of Pang et al. (2014) and Dhar and Rakhecha (1981), who observed significant 

decrease in monsoon precipitation above 2400 m elevation in the central Himalayas. The 

height of maximum precipitation in the rest of the sub-basins is unclear but tends to increase 

with latitude and in winter westerly dominated areas. Hence, the assumptions of linear 

increase in precipitation with elevation by the earlier studies (e.g. Immerzeel et al., 2012; 

Mayer et al., 2006 and Winiger et al., 2005) could not be confirmed by this study. 

The estimated distribution of mean monthly precipitation indicates a bimodal weather system 

(Figure 2.4), particularly in the Western-Himalayan catchments reflecting the wintertime 

precipitation associated with the westerly systems and the impact of Indian summer 

monsoon. Generally, precipitation tends to decrease with increasing latitude (from south to 

north), while longitude has seasonal influence, positive in monsoon and negative in winter 

season. Similarly, the southeast-ward and southwest-ward orientated locations mostly re-

ceive more precipitation in monsoon and winter seasons respectively. The study provided 

much better estimates of precipitation distribution, which are comparable and consistent with 

the specific runoff at sub-basin scale (Figure 2.6). Highly contrasting but consistently 

underestimated precipitation estimates of previous studies (Table 2.3) are revealed due to use 

of precipitation data of the climatic stations predominantly located in low-altitude dry valleys 

and/or overestimated basin boundaries.  
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Evaluation of four important gridded precipitation products (ERA-Interim, WFDEI, TRMM 

& APHRODITE) derived from different sources (reanalysis, merged reanalysis and gauge, 

merged remote sensing and gauge, and gauge) revealed significant differences in their mean 

monthly precipitation estimates for each sub-hydrological basin. All the four datasets fail to 

detect maximum precipitation zones along the western Himalayan foothills and the north-

east junction of Shigar and Shyok basins in the central Karakoram (Figure 2.9). They also 

inadequately captured the dry areas under the influence rain shadow with large overestimates. 

In quantitative terms, ERA-Interim largely overestimates precipitation in all the sub-basins 

except Shigar and Hunza, while the other three datasets consistently underestimate 

precipitation in all the areas barring Ladakh region of the TP (Indus at Kharmong). Basin-

wide seasonal and annual correction factors are derived for each dataset and for each sub-

basin (Table 2.5) to facilitate hydrological assessments. 

6.2.2 Adjustment of measurement errors to reconcile precipitation 

distribution (Objective 2, Chapter 3) 

About 73% of the climatic stations used in this study did not possess temperature data. 

Therefore, to facilitate adjustment of measurement errors in precipitation observations of 

such stations, the corresponding air temperature was derived from elevation and latitude of 

other stations using multiple regression at monthly and sub-regional scale. Strong correlation 

of temperature with elevation and considerable correlation with latitude is observed. 

Significantly different gradients for each month and substantial difference among the 

gradients for maximum and minimum temperatures prohibit the use of a universally assumed 

or time independent site-specific observed gradient of mean annual temperature to estimate 

maximum and minimum temperatures (e.g. Immerzeel et al., 2012a & b; Lutz et al., 2013). 

The wind-induced under-catch was by far the largest source of errors in gauge-measured 

precipitation, particularly during winter months in the high-altitude areas where majority of 

precipitation falls in the form of snow. The catch corrections have increased the gauge-

measured precipitation values ranging from 2-182% for various individual stations, while net 

snow accumulations at the glacier points increased up to 200%. The adjustments revealed 

significant improvement in the quantitative and spatio-temporal distribution of precipitation 

in the study area (Figure 3.3m-o). An overall increase of 21.3% in average annual 

precipitation is realized at basin (study area) level, while at sub-basin scale it ranged from 6 

to 77% (Table 3.3). 

The contributions of the net glacial mass imbalance to the observed river flows at sub-basin 

scale were computed from the specific net mass balance rates derived from the mass balance 

estimates of Kääb et al. (2012) and glacier areas from the Randolf Glacier Inventory (RGI) 

version 5.0 (Arendt et al., 2015). Contrary to the general understanding and speculations, the 

contribution of net glacier mass balance to the observed river inflows is only marginal 

ranging from 0.4 – 6.1% of the observed flows (Table 3.4). The study recognized that the 

higher river inflows than the corresponding precipitation estimates by the previous studies 

are mainly due to use of underestimated precipitation. 

The catch corrections and adjustment of net snow accumulations provided new insights to 

the quantitative and spatiotemporal distribution of precipitation in the study area. The 

adjusted precipitation is considerably greater than what has been previously thought. These 

increases are mainly realized in the higher-altitude areas of the Karakoram (Hunza, Shigar, 

Shyok), Southwest-Hindukush (Chitral & Gilgit) and along the high-mountain ridge of 

Northwestern-Himalayan region (Figure 3.3o). Although, the cross-validation results 
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confirm the superior quality of estimated precipitation distributions, yet there are few 

uncertainties that need to be understood and taken care of in the future investigations. The 

major uncertainties associated with the results of this study may arise from four possible 

sources: i) uncertainties in regression models due to their imprecision and uncertainties in the 

input data, ii) uncertainties arising from the estimated temperature and wind speed for many 

observatories, iii) uncertainty in the gauge type of the basin’s gauge network, and iv) 

uncertainties in spatial interpolation of the point observations to derive gridded fields of 

precipitation. Further improvements can be achieved by calibration of the already installed 

precipitation gauges with the WMO recommended reference gauges and development of site 

and gauge specific error adjustment models, use of observed data with better spatio-temporal 

coverage, use of daily or even sub-daily time steps, use of corresponding observed wind 

speed and temperature datasets, selection of any better spatial interpolation technique, precise 

determination of other components of the water balance to validate precipitation, and a better 

integration of precipitation data with mass balance data and other non-conventional data 

sources. 

6.2.3 Evaluation of gridded precipitation products (Objective 3, Chapter 4) 

In chapter 4, the accuracy of 27 widely used gridded precipitation products belonging to three 

groups (gauge-based, reanalysis and merged) was assessed against the high-quality reference 

dataset developed for the study area (chapter 3) at monthly and annual timescales. Widely 

used statistical measures and performance metrics are applied to evaluate and quantify the 

accuracy of these datasets at sub-regional scale.  

Generally, a large uncertainty in quantitative and spatio-temporal distribution of precipitation 

is evident in all gridded datasets, which is in line with the findings of Sun et al. (2018), who 

reviewed and intercompared 30 precipitation datasets at global and regional scale. The most 

important attributions for the large differences and uncertainties in gridded precipitation 

products are related to their different structural characteristics, diverse input data and 

observational densities, variable quality control and gauge under-catch corrections, 

spatiotemporal resolution, and use of different interpolation schemes. The landscape 

heterogeneities further add to the uncertainties. 

Spatial distribution of mean annual precipitation estimates from various gridded datasets 

(Figure 4.2) and area-weighted seasonal and annual precipitation totals (Table 4.2) reveal 

significant variability and differences in precipitation estimates of the gridded datasets in the 

study area. Compared to annual mean precipitation of 697 mm of the reference dataset, the 

minimum estimates of 374 mm (-46%) are depicted by CPC Unified and maximum estimates 

of 976 mm (+40%) by ERAI datasets. All gridded products are consistent in their patterns 

showing underestimated precipitation in wet areas and overestimated precipitation in dry 

areas, implying considerable implications for hydrological extremes of floods and droughts. 

The gauge-based and merged products show strong tendency of underestimation; while 

except ERA20C, reanalysis products tend to overestimate precipitation in most parts of the 

study area, with considerable difference at sub-regional level. The gauge-based and merged 

products perform relatively better during monsoon season and reanalysis products during the 

winter months and at the higher-altitude areas where observations are generally scarce. 

However, the reanalysis products also show larger variability and wider spread of residuals 

than gauge-based and merged products (Figure 4.3), which is understandable and attributed 

to their independence from direct measurements of precipitation, use of varying type and 

number of assimilated observations, and use of different atmospheric models and 

assimilation schemes. The gauge-based and merged products significantly underestimate 
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precipitation in relatively wet regions of W-Himalaya, NE-Hindukush and Karakoram. The 

observational-based reference dataset exhibits a strong seasonality with biomodal pattern, 

but many gridded datasets have difficulties in efficiently reproducing this seasonality and 

pattern (Figure 4.6). The merged products aim to exploit the complementary nature and 

comparative advantages of the input source datasets, however relatively poor performance of 

these products for the study region underlines the dire need for developing more advanced 

and accurate merging techniques, which can preserve the comparative advantages of input 

datasets and are equally accurate at smaller (basin/catchment) scales. None of the selected 

products could be singled out as the best product for all regions as their accuracy varies 

considerably from one region to another. However, ERA5 is found most acceptable for all 

sub-regions, particularly at higher-altitudes, in wet areas and during winter months (Figure 

4.7). While the underlying efforts to develop global/regional scale datasets have been 

focusing on combining data from various sources and merging algorithms, another 

alternative may be to develop national/basin/catchment scale datasets using optimum data 

and techniques first and then merge these products to form a high-quality product at 

regional/global scale. 

6.2.4 Climate change and hydrological regime (Objective 4, Chapter 5) 

Accurate assessments of climate change in the high-altitude Indus basin have remained 

daunting task due to highly scarce in situ observations and strong influence of the innately 

complex climate systems interacting with very high orographic features. As such, there is 

large variability in quantitative and spatio-temporal distribution of the historical precipitation 

described in Chapters 2 & 4, and future projections by various GCM outputs (Lutz et al., 

2016b; Cai et al., 2009), and associated hydrological implications detailed in Chapter 5. This 

is confirmed by precipitation estimates of 75 GCM runs evaluated in this chapter (Table 5.1). 

None of the GCM run was able to precisely capture the influence of predominant weather 

systems resulting in large variability and biases in their monthly and annual precipitation 

estimates.  

In the presence of significant interannual variability, almost linear increase in temperature is 

observed during the last 40 years, with an overall increase of 0.6 oC. The future projections 

are more variable and uncertain but an overall increasing trend is prominent until 2060. 

Thereafter, strong increasing trend continues for RCP8.5, tends to stabilize under RCP4.5 

and show slight reduction under RCP2.6. Compared to temperature, median annual 

precipitation showed extreme uncertainty during the last 40 years ranging from -30.5 to 

17.9%, with an overall decrease of 11.9% during 2001-2020 over 1981-2000. Definite and 

strong increasing trends in the projections of median annual precipitation are only evident 

for MIROC5-RCP8.5, while MPI-ESM-LR shows declining trends for RCP4.5 & RCP8.5. 

The remainder of GCM runs show mixed trends. Similarly, median annual river inflows at 

the four river gauges (Kabul-Nowshera, Indus-Tarbela, Jhelum-Mangla, & Chenab-Marala) 

also remained highly variable and experienced significant decline during the same period.  

Future climate is likely to be more variable in space and time under each scenario. 

Precipitation changes in most parts of the basin at annual scale and during most of the months 

are generally positive for MIROC5 and negative for MPI-ESM-LR except Karakoram and 

western part of Kharmong regions, where both GCMs show positive changes. Farinotti et al. 

(2020) noticed balanced to slightly positive glacier budgets, increasing glacier ice flow 

speeds, stable to partially advancing glacier termini and widespread glacier surge activity. 

The authors however were uncertain about the future of this Karakoram Anomaly, and 

termed its long-term sustainability unlikely in light of the anticipated warming of future 
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climate. This study can explain the future of peculiarly anomalous behavior of glacier activity 

in the Karakoram region. It shows strong signals of considerable precipitation gains even 

under extreme cold-dry condition of future climate. Of particular importance is substantial 

increases in future precipitation during winter and summer seasons in the Karakoram region. 

The existing hydrological regime of the study area is largely modulated by timing, intensity, 

duration, and form of precipitation; snow and glacial ice reserves; and amount of energy 

available for melting of seasonal and perennial snow and glacial ice (Archer, 2003). Climate 

change is expected to weaken the modulating effect of snow and glacier fields with 

potentially strong hydrological implications (Biemans et al., 2019). Peak flows at the four 

rim stations are likely to be increased and shifted one month earlier, with substantial increases 

in pre-monsoon river inflows and decreases in post monsoon river inflows mainly due to 

early melting of seasonal snow. Indus-Tarbela inflows are likely to increase between 17.0-

73.6% under wet-warm scenarios and between 1.2-9.7% under cold-dry scenarios. Lutz et al. 

(2016a) on the other hand show slight increases for the upstream Karakoram river inflows 

but no change at the downstream Tarbela gauging station against 38% to 52% increase 

anticipated by Hasson et al. (2019). They also expected no shift in peak, which is likely to be 

shifted from Aug to Jul in this study. In contrast, river inflows at the remaining three rim 

stations show increases for wet-warm and decreases for cold-dry scenarios. Most of the 

ensembles show increasing high flows and decreasing low flows at all gauging stations 

implying intensification of future hydrological extremes. The conflicting signals of changes 

in the hydrological regimes may primarily be attributed to large differences in the baseline 

reference climate data, significant uncertainties in GCM outputs, use of different scenarios 

of future climate change and different hydrological modeling frameworks. 

6.3 Scientific Contribution 

Climate change is likely to significantly alter the hydrological regimes of many river basins. 

The most important scientific contribution of this research is an improved and more reliable 

assessment of climate change and hydrological implications in the study area. An improved 

methodological approach was adopted to adjust precipitation observations for measurement 

errors, while novel techniques were introduced to adjust net snow accumulations for ablation 

losses and river inflows for the contribution of net mass balance. This study is the first 

initiative to undertake such adjustments in the Indus basin. Similarly, an improved method 

for cross-validation of the precipitation estimated with respect to the adjusted specific runoff 

was adopted. An innovative approach for derivation of temperature climatologies using 

elevation and latitude dependent lapse rates at monthly scale was introduced. Development 

of high-quality reference datasets of precipitation and temperature is the other significant 

scientific contribution of this study. Performance of 27 widely used gridded precipitation 

products was evaluated and the best performing product was bias-corrected against the 

reference datasets to develop long-term datasets of precipitation and temperature for the 

historical period. Similarly, precipitation estimates of 75 GCM ensembles were evaluated. 

The best performing GCMs under RCP2.6, 4.5 and 8.5 for warm-wet and cold-dry scenarios 

are also bias-corrected. Hence, long-term novel datasets of precipitation and temperature for 

historical period and various scenarios of future climate is another significant milestone of 

this study. The VIC hydrological model at high resolution in the Indus basin is also applied 

for the first time. The climate change associated hydrological implications deduced in this 

study will add to our knowledge and understanding of the basin’s hydrometeorological 

regimes. Finally, the study also provides useful guidelines for developing optimal strategies 

and action plans for efficient river basin management.  
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6.4 Uncertainties and Limitations 

6.4.1 Observational uncertainties 

The major observational uncertainties can be associated with the density, direction and 

quality of the observed climate data and imprecision in the interpolation of point observations 

to derive spatially distributed fields. The dynamics of snow and glacial ice mass at the higher-

altitudes may also add to the observational uncertainties (Kraaijenbrink et al., 2017). Climate 

observations form the essential inputs to the climate and hydrological models to facilitate the 

intended future projections and impact assessments. This study developed and used much 

improved precipitation and temperature datasets and employed state-of-the-art interpolation 

technique to minimize observational uncertainties that are commonly present in the previous 

datasets. Yet, the observational uncertainties in the hydrometeorological assessment 

undertaken in this study may still hold a sizable share in the total uncertainties due to 

imprecision in the observed data and techniques used to adjust measurement errors and 

spatial interpolation of the point observations. These observational uncertainties can be 

addressed by incorporating additional observed data with better spatio-temporal coverage 

particularly in higher-altitude areas, calibration of the precipitation gauges with the WMO 

recommended references and development of site and gauge-specific error adjustment 

models, use of daily or even sub-daily time steps, use of corresponding observed wind speed 

and temperature data, selection of better spatial interpolation technique, precise computation 

of other components of the water balance to validate precipitation, and a better integration of 

the observed precipitation data with mass balance and remote sensing data. 

6.4.2 GCM structure and parameterization 

Climate change impact studies generally depend on the projections of future climate 

commonly provided by the GCMs. Presently, a multitude of GCM outputs under CMIP5 are 

available for climate research. GCM related uncertainties arise mainly from formulation and 

discretization of the governing mathematical models, from parameterization of unresolved 

processes, and from imperfect understanding of the climate system (Palmer et al., 2005). 

Since each GCM is developed based on its own specific assumptions and unique 

mathematical models to represent the physical processes of climate systems, their outcomes 

are innately different (Hawkins and Sutton, 2011). Hence, with availability of a large number 

of GCM outputs, the spread and variability in their outcomes is also large (Lutz et al., 2016a;), 

particularly at regional and catchment scale (Cai et al., 2009). GCM related uncertainty is 

often a dominating source (Kay et al., 2009) constating about 50-85% of the total uncertainty 

(Prein et al., 2011), and is generally more pronounced at longer timescales (Hawkins and 

Sutton, 2011). Parameterization is used to deal with the processes that occur on scales smaller 

than the GCM grid resolution and the parameterization related uncertainty is much smaller 

than GCM related uncertainty (Her et al., (2019). Performance evaluation of 75 GCM runs 

undertaken in this study revealed a large variability in precipitation estimates of the GCM 

projections. Hence, future water availability resulting from GCM precipitation in the high-

altitude Indus basin will be even more uncertain. 

6.4.3 Downscaling and bias-correction 

Due to coarse spatial resolution and greater uncertainty at finer temporal resolutions, GCMs 

are generally inappropriate for finer scale impact modeling (Kay et al., 2009). Therefore, 

GCM projections are often downscaled for regional impact assessments using dynamic or 

statistical downscaling. Dynamic downscaling nests a finer-scale regional climate 
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model (RCM) within a GCM. However, most RCMs do not accurately simulate extreme 

precipitation – a systematic bias that can worsen as the resolution is increased (Trzaska, and 

Schnarr, 2014). Therefore, in many cases the direct outcome of the best performing GCM is 

usually preferred over RCM outcomes or RCM outputs are further downscaled using 

statistical approach. Statistical downscaling on the other hand establishes empirical 

relationships between coarser-scale historical outputs of GCMs and local climatic 

observations. These relationships are then applied to the GCM outputs for future to correct 

their systematic biases. A wide variety of bias-correction methods are currently under use. 

Some methods address only a mean difference error, while others cover both average and 

variance. Few others focus on correction of mean and standard deviation together with wet-

day frequencies and intensity errors. However, all bias-correction methods are based on the 

fundamental assumption that the empirical relationship derived from the present climate 

conditions is also valid for the future scenarios (Dobler et al., 2012; Wilby et al., 2004; Zorita 

and von Storch, 1999). This study used the delta change approach for bias correction of 

gridded dataset and precipitation and temperature outputs of two GCMs under three RCPs. 

The delta change approach uses linear scaling to perfectly match the monthly means of 

estimated climate variables with those of the observed values (Lenderink et al., 2007). This 

approach is widely used to assess climate change and future water availability, while more 

advanced methods are preferred for analysis of climate and hydrological extremes (e.g. Lutz 

et al., 2016a). However, Dobler et al. (2012) and Key et al. (2009) noticed comparatively 

small uncertainty related to the choice of the bias-correction method. 

6.4.4 Hydrological modeling structure and parameterization 

Several hydrological models ranging from lumped to fully-distributed, simple temperature-

index to complex energy-balance, and from standalone catchment-scale to global-scale land 

surface schemes can be used to assess hydrological implications of climate change. However, 

no model is absolutely perfect in its representation of reality, and the choice of model is often 

based on the objectives, model performance under specific conditions, data availability and 

requirements, etc. (Kay et al., 2009). Moreover, a substantial portion of uncertainty may also 

stem from the use of suboptimal hydrological model parameters (Ragettli et al., 2013; Kay 

et al., 2009). Ragettli et al., (2013) showed that the effects of uncertainty sources are variable 

in space and time and hydrological model input parametric uncertainty in heavily glacierized 

subregions exceeds the effect of climate model uncertainty and natural internal climate 

variability, but often decreases with time. The accuracy of the model outcome is largely 

dependent on the quality of input variables and modeling structure to represent the natural 

processes. The VIC hydrological model used in this study is validated and extensively used 

in a variety of conditions and there is no serious drawback in its modeling structure. Its 

characteristics of physically-based, fully-distributed, energy-balance, and representation of a 

wide range of physical processes are particularly important. However, the model also suffers 

from a couple of limitations to precisely model the glacierized catchments. Firstly, it does 

not take into account the already stored volume of snow and glacial ice mass, and then it 

simulates snow and glaciers using the same mathematical model, whereas glaciers possess 

considerably different hydraulic properties.  

6.4.5 Uncertainties in river flow measurements 

River flows usually have indirect use in hydrometeorological studies. Primary use of river 

flow data is for calibration and validation of the hydrological models at the strategic river 

gauges. In contrast to most climatic variables, river flow data are generally assumed to be 
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adequately accurate considering the relative precision of discharge measurement techniques 

and quality control ensured by the data collection agencies. Yet, river flow data may still be 

subject to some degree of uncertainty due to measurement errors. NESPAK-AHT-

DELTARES (2015) reviewed river/canal discharge measurement protocols adopted in the 

IRS and observed overall uncertainties in the rage of 3-8% at five canal headworks. The river 

flow uncertainties may slightly vary at each gauge but will remain constant with time.  

6.5 Implications for Water Management 

Pakistan is highly vulnerable to climate change due to its hot and arid geographical location, 

dependence on climate sensitive sectors like agriculture, knowledge and technological gaps, 

and low adaptation capacity (PC, 2010). Its reliance on a single river system, that is also 

transboundary and one of the hotspots of future climate change, puts it at a higher risk of 

water insecurity. The water resources of the Indus river system are seriously threatened by a 

variety of stressors including increasing scarcity and variability due to climate change, 

deteriorating quality, expanding population, rapid urbanization, growing industrialization, 

and above all, the recurring inability to develop an adequate platform of modern 

infrastructure and institutions to ensure efficient water governance (FoDP, 2012). These 

stressors will further escalate the gap between water supply and demand during the 21st 

century. The country was already categorized as a water deficit country more than a decade 

ago (PC, 2008) therefore any change and variability in its water budget can have significant 

implications for hydropower generation, agricultural productivity, economic growth, 

peoples’ livelihood and interprovincial harmony and sovereignty. 

This PhD research study investigated hydrological implications of climate change at the four 

river gauging stations i.e. Kabul river at Nowshera, Indus river at Tarbela, Jhelum river at 

Mangla, and Chenab river at Marala. The hydrological modeling focused on the outputs of 

the two best performing GCMs projecting extreme conditions of warm-wet and cold-dry 

climates under three RCPs. As such, there are significant differences in the magnitudes and 

trends of future river inflows mainly due to differences in the GCM outputs. In the presence 

of significant monthly and interannual variability, overall water availability is projected to 

improve in future, particularly at the Indus-Tarbela rim station, which constitutes about 

47.2% of the combined river inflows at the four locations. This will result in increased 

agricultural productivity and improved livelihoods of the downstream rural communities. In 

case of cold-dry scenarios, the W-Himalayan region (Jhelum and Chenab rivers) is most 

likely to be adversely affected by extreme water shortages. Further reductions in the low-

flow magnitudes for expanded durations will amplify the negative effects on an already water 

stressed environment adversely affecting agricultural production and ecology of riverine 

ecosystems and exerting increased pressure on the already stressed groundwater resources. 

The projected increase in low-flows during winter months will improve water availability 

during the Rabi season and lessen the dependency on storage reservoirs to release the stored 

water. Peak flows at all gauging stations are very likely to increase in magnitudes and shift 

to earlier months due to early melting of seasonal snowpack in a drier and warmer spring and 

pre-monsoon season. This will expose the riverine areas to encounter more intensive and one-

month earlier floods, which will pose higher risk of reduced productivity and failure of 

standing crops during Apr-June months. However, higher river inflows during these months 

will positively impact overall water availability during the early Kharif (summer) season. 

This will particularly benefit the extreme lower riparian Sindh and Balochistan provinces, 

which usually face shortages of irrigation water during this period due to a one-month earlier 

start of the Kharif crop season than upstream provinces. Hence, the projected changes in 
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monthly, interannual and overall water availability at the four river gauging stations under 

different climate change scenarios depict serious implications for future water resources 

planning, development and management. Strategies and action plans for hydropower 

generation, construction and operation of storage reservoirs, irrigation withdrawals, flood 

control and drought management will require significant modifications. 

6.6 Outlook and Direction for Further Research 

Although, precipitation and temperature datasets developed in this study are demonstrated as 

much better than the previously available estimates, further improvement can be achieved by 

addressing the remaining uncertainties. For this, there is an urgent need to undertake a 

comprehensive and site-specific investigation to unravel, evaluate, quantify and eradicate the 

uncertainties outlined in section 6.4.  

The greatest accuracy is required in the baseline datasets of important climatic variables, 

which are used to bias-correct the future projections and force the hydrological models to 

simulate water balance. One of the potential alternatives to significantly improve quality of 

precipitation distribution in the study area is to incorporate more observations, particularly 

at the higher-altitudes with sufficient coverage, standardize and improve quality of the 

observed data, and ensure efficient integration of the ground-based observations with non-

conventional data sources (e.g. the indirect precipitation estimates from mass balance 

observations, inversely inferred precipitation from the glacier mass balances [Immerzeel et 

al., 2015] duly verified by the ground-based mass balances, radar remote sensing, and smart 

monitoring by drones). Radar remote sensing and use of drones may be the potential solutions 

for environmental monitoring and mass balance investigations in this extremely inaccessible 

region. 

Improvements are also needed in hydrological modeling frameworks keeping in view the 

peculiarly specific condition of this region. The ideal hydrological model for simulating the 

water balance of this snow/glacier-fed river basin would be a fully-distributed, physically-

based, energy-balance model that also takes input of already stored snow/glacier volume and 

simulates precipitation, snow and glaciers separately as per their specific hydraulic 

properties. One way to increase our understanding on the impact of the hydrological 

modeling structures is to study the hydrologic response of the study area using different 

hydrological modeling frameworks with the same meteorological forcing, soil and vegetation 

parameters.  
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Supplementary Material - Chapter 2 

Table S-2.1: Details of meteorological stations used in this study. The stations mentioned at S. No. 

1-21 are operated by PMD, 22-65 by WAPDA, 66-67 by Ev-K2-CNR, 68-108 by IMD (taken from 

GHCN), 109-118 by University of Boon’s CAK project (synthesized from Winiger et al., 2005; 

Miehe et al., 1996, 2001; and Eberhardt, 2007), and 119-134 are virtual stations detailed at Table 1. 

 

Sr. Station Lat Long Elevation Data Sr. Station Lat Long Elevation Data

No. Name (dd) (dd) (m) Period No. Name (dd) (dd) (m) Period

1 Astore 35.3667 74.9000 2394 1954-2012 68 Bhadarwah 32.9667 75.7167 1690 1911-1968

2 Babusar 35.1458 74.0444 4160 2005-2012 69 Banihal 33.5000 75.1700 1630 1961-1970

3 Balakot 34.5500 72.3500 995 1957-2012 70 Baramula 34.2000 74.3700 1572 1902-1970

4 Bunji 35.6667 74.6333 1372 1953-2012 71 Charisharif 33.8700 74.7700 1616 1960-1970

5 Chilas 35.4167 74.1000 1251 1953-2013 72 Digar 34.2500 77.7500 5182 1956-1964

6 Chitral 35.8500 71.8333 1498 1964-2012 73 Dras 34.4333 75.7667 3066 1901-1968

7 Dir 35.2000 71.8500 1425 1967-2010 74 Durroo 33.5700 75.2300 1790 1924-1964

8 Drosh 35.5667 71.7833 1464 1951-2012 75 Gondla 32.5200 77.0300 3144 1951-1970

9 GD Poto 34.2167 73.6167 814 1955-2012 76 Gulmarg 34.0500 74.4000 2655 1951-1971

10 Gilgit 35.9167 74.3333 1460 1951-2012 77 Gund 34.2500 75.0800 2052 1956-1970

11 Gupis 36.1667 73.4000 2156 1955-2012 78 Gurez 34.6300 74.8500 2417 1933-1958

12 Hunza 36.3220 74.6460 2374 2007-2012 79 Handwara 34.4000 74.2800 1585 1958-1970

13 Kakul 34.1833 73.2500 1308 1952-2012 80 Inshan 33.7500 75.5000 2440 1971-1980

14 Kotli 33.5167 73.9000 614 1953-2012 81 Kargil 34.5700 76.1300 2679 1908-1966

15 Malakand 34.5500 71.9167 800 2003-2008 82 Khaltse 34.2500 76.8333 3205 1956-1970

16 Malamjaba 34.7500 72.9000 2591 2003-2008 83 Khangral 34.3333 76.5000 3887 1956-1971

17 Murree 33.9000 73.4000 2168 1980-2012 84 Kishtwar 33.3000 75.7500 1215 1901-1970

18 Muzaffarabad 34.3667 73.4833 702 1955-2012 85 Kokernagh 33.9200 75.2800 1676 1960-1970

19 Pattan 35.1000 73.0000 752 2004-2012 86 Koksar 32.4160 77.2190 3507 1951-1970

20 Saidusharif 34.7333 72.3500 961 1974-2010 87 Kukernag 33.6000 75.3000 1865 1961-1970

21 Skardu 35.3000 75.6833 2210 1952-2012 88 Kulgam 33.6300 75.0200 1615 1902-1970

22 Besham 34.9333 72.8833 480 1971-2003 89 Kyelong 32.5833 77.0667 3500 1903-1970

23 Burzil 34.9056 75.0917 4030 1999-2012 90 Langet 34.3700 74.3000 1588 1916-1970

24 Dagar 34.5100 72.4864 732 1984-2001 91 Leh 34.1500 77.5667 3514 1876-1969

25 Deosai 35.1000 75.6000 3910 1995-2011 92 Matsal 33.9833 76.6167 4325 1971-1981

26 Dhudnial 34.7000 74.1170 534 1984-1997 93 Mulbek 34.3333 76.3333 3926 1956-1969

27 Domel 34.3678 73.4689 686 1984-2001 94 Nowshera 33.1500 74.2300 599 1913-1969

28 Doyian 35.5450 74.7042 2454 1979-2003 95 Panamik 34.7500 77.5000 4056 1956-1970

29 Gujar Khan 33.2500 73.3000 457 1984-2001 96 Pendras 34.4167 75.5833 4880 1956-1971

30 Hushy 35.3667 76.4000 3010 1994-2010 97 Phalgam 34.0300 75.3300 1707 1960-1972

31 Jabbar 34.6717 73.2278 2134 1984-2001 98 Prang 34.2800 74.8700 1588 1960-1973

32 Kalam 35.4700 72.6010 2744 1984-2010 99 Qazi Gund 33.5800 75.0800 1690 1962-1974

33 Kallar 33.4167 73.3667 518 1984-2001 100 Ramban 33.2500 75.2500 945 1901-1969

34 Kelash 35.6955 71.6547 2810 2000-2013 101 Riasi 33.0800 74.8300 585 1901-1970

35 Khandar 33.5000 74.0500 1067 1984-2001 102 Shiquanhe 32.5000 80.0830 4280 1962-2012

36 Khot 36.5167 72.5833 3505 1994-2012 103 Shopian 33.7200 74.8300 1615 1960-1970

37 Khunjrab 36.8500 75.4000 4730 1995-2012 104 Sonemarg 34.3167 75.3167 2515 1902-1969

38 Kotli 33.4847 73.8811 610 1984-2001 105 Sopore 34.3000 74.4700 1574 1930-1970

39 Lora 33.8833 73.2833 1482 1989-1992 106 Srinagar 34.0833 74.8333 1587 1993-2013

40 Mangla 33.1333 73.6333 305 1984-2001 107 Uttamchipura 34.5000 74.6700 3145 1901-1956

41 Naltar 36.2167 74.2667 2810 1995-2012 108 Verinagh 33.5300 75.2500 1646 1965-1970

42 Naran 34.9000 73.6500 2363 1984-2001 109 Alambar 36.7000 73.4833 4400 1991-1999

43 Oghi 34.5000 73.0167 1128 1984-2001 110 Bagrot 36.0167 74.5500 2310 1993-2009

44 Palandri 33.7167 73.7000 1402 1984-2001 111 Bulibalsirbar 36.3667 73.2500 4050 1991-1999

45 Phulra 34.3333 73.0833 915 1984-2001 112 Garmashbar 36.5167 73.5333 3600 1991-1999

46 Pir Chenasi 34.3850 73.5450 2650 2004-2013 113 Khaimetbar 36.5000 73.0500 3600 1991-1999

47 Puran 34.7500 72.7000 1067 1984-2001 114 Khunjrab 36.8800 74.4167 4700 1993-2012

48 Rama 35.3583 74.8056 3140 1999-2012 115 Dadormal 36.0167 74.4167 3780 1991-1999

49 Ratu 35.1528 74.8056 2920 1999-2013 116 Dame 36.0500 74.6667 3560 1991-1999

50 Rawlakot 33.8667 74.2667 1677 1984-2001 117 Diran 36.0500 74.6000 3650 1991-1999

51 Saifulmulk 34.8438 73.6875 3200 2000-2013 118 Baldihel 36.3500 74.8000 3900 1994-1996

52 Sehrkakota 33.7333 73.9667 915 1984-2001 119 Sentik 33.9967 75.9500 4908 1963-1980

53 Shahpur 34.9167 72.6667 2012 1984-2001 120 Nun Kun N 34.1219 76.1014 5200 1973-1980

54 Shangla 34.8808 72.5908 2160 2000-2007 121 Batura 36.6667 74.3833 4840 1973-1974

55 Shendure 36.0861 72.5250 3719 1994-2012 122 Baltoro 35.8778 76.5508 5500 1973-1980

56 Shigar 35.5300 75.5917 2470 1996-2012 123 Urdok 35.7669 76.7025 5400 2004-2006

57 Shinkiari 34.4667 73.2667 991 1984-2001 124 Whaleback 36.0572 75.5915 4900 1985-1986

58 Shogran 34.6200 73.4856 3205 2000-2013 125 Approach 36.0678 75.6331 5100 1985-1987

59 Tandar 33.2039 73.9764 671 1984-2001 126 Hispar East 35.8495 75.5064 4830 1985-1988

60 Tarbela 34.0667 72.7700 610 1984-2001 127 Hispar Pass 36.0281 75.5215 5100 1984-1986

61 Ushkore 36.0175 73.3583 3353 1999-2012 128 Hispar Dome 36.0109 75.5187 5450 1982-1986

62 Yasin 36.6333 73.3000 3353 1999-2013 129 Khurdopin 36.1338 75.6197 5520 1984-1986

63 Yugo 35.1833 76.1000 2469 1984-2001 130 Nanga Parbat 35.1672 74.4444 4500 1984-1997

64 Zani 36.2833 72.1500 3000 1994-2012 131 Siachin A 35.4707 77.0376 4800 1986-1991

65 Ziarat 36.8333 74.2778 3669 1995-2012 132 Siachin B 35.5235 76.9915 4950 1986-1992

66 Askole 35.6806 75.8153 3015 2005-2008 133 Siachin C 35.5187 76.9116 5050 1986-1993

67 Urdukas 35.7281 76.2861 3926 2004-2008 134 Siachin D 35.6242 76.8592 5350 1986-1994
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Supplementary Material - Chapter 3 

This supplementary material contains additional information to further illustrate the data 

and methods. The observed data of daily and monthly precipitation, temperature and wind 

speed was collected from different sources. Keeping in view scarcity of the observed data 

in the study area, we selected all the stations that covered at least three years of data to 

cover the recent installations. Daily precipitation observations were converted into monthly 

totals if no more than three consecutive days or five intermittent days were missing in a 

month. Similarly, seasonal and annual totals were calculated if no month was missing in a 

season or year.  

Information regarding precipitation gauge type, use of wind shield if any, orifice area and 

height of the gauge orifice were taken from Sevruk and Klemm (1989), BIS (1992a&b) and 

from PMD and WAPDA through personal communications. The precipitation data 

available for 326 observatories (including 21 virtual stations located at the accumulation 

zones of major glaciers where average annual net precipitation is estimated from mass 

balance studies) are inconsistent in terms of time period. The stations located in Pakistani 

parts of the basin (western parts) possess relatively long-term and updated data. The data of 

stations located in upper Kabul basin in Afghanistan are also updated. The precipitation 

data of the stations located in Indian side are publicly available only from 1901-1971. 

Therefore, the study area is divided into two parts (i.e. eastern and western part) depending 

on maximum availability of precipitation data (Figure S-3.1). The eastern part covering 

Shyok, Indus up to Kharmong, Jhelum, Chenab, Ravi, Beas and Sutlej basins use the data 

period of 1961-1970, while the western part spread over the remaining sub-basins uses the 

time period of 1999-2011. The metadata of 305 precipitation observatories and 21 glacier 

points used in this study are outlined and described in the supplementary material 

(Table S-3.1). 

 

 Figure S-3.1: Partition of study area in two zones as per availability of precipitation data 

Out of 328 stations, temperature data was available for only 115 stations (Table S-3.1). We 

therefore derived monthly scale maximum and minimum temperature lapse rates based on 

elevation and latitude and estimated these parameters for the remaining stations. Air 
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temperature varies with elevation due to change in air pressure and the rate of its change is 

known as the adiabatic lapse rate, which on average is about 6.5 0C km-1 globally. 

Temperature at a particular point also changes with its latitude, its rate of change however 

varies considerably between tropics, temperate and Polar Regions due to curvature of 

earth’s surface which affects the amount of sunlight received by a particular zone. Yet, 

latitude is often overlooked in lapse rate-based temperature estimates. Our study area lays 

in between 30.3 and 37.1 degree latitude, which is in the North Temperate Zone, where the 

temperature difference between the tropic of cancer (23.5 degree) and 40-degree N can be 

about 10 °C (~ 0.606 °C/latitude degree). Keli et al. (2011) however noted latitudinal effect 

of -0.36°C/latitude degree in the Qinghai-Tibet Plateau. As the observed maximum and 

minimum temperatures showed significant correlation with both elevation and latitude (Fig. 

S2-S5), multiple regressions at monthly scale were used to derive the combined lapse rates 

for the stations that do not have temperature data. Separate lapse rates for mean monthly 

maximum and minimum temperatures are derived. 

Wind-induced under-catch of liquid precipitation is adjusted by following Adam and 

Lattenmaier (2003), who mainly used Legates (1987) model in which the wind-induced 

under-catch of liquid precipitation (rain) has been expressed in terms of the correction 

factor (Kr) defined as the ratio of ground truth precipitation to gauge-measured 

precipitation. If the ground truth or reference gauge precipitation measurements are not 

available, the value of Kr can be approximated by:   

𝑲𝒓 = 𝟏 + 𝟎. 𝟎𝟎𝟖 𝝁𝟐 𝑽𝒉𝒑
𝟐        (S3.1) 

for gauge orifice area of 127 cm2 

𝑲𝒓 = 𝟏 + 𝟎. 𝟎𝟏𝟏 𝝁𝟐 𝑽𝒉𝒑
𝟐        (S3.2) 

for gauge orifice area of 200 cm2 

Where Vhp is wind speed at gauge orifice, and μ is a transfer coefficient which is given by: 

𝝁 =
𝒑

𝟏𝟎𝟎
∙

𝟐𝟕𝟑

𝑻+ 𝟐𝟕𝟑
∙

𝒑

𝒑+ 𝟎.𝟑𝟕𝟖 𝒆𝐚
      (S3.3) 

Where T is mean air temperature (0C), p is sea-level pressure (kPa) and ea is vapour 

pressure (kPa) expressed by: 

𝒆𝒂 = 𝟎. 𝟐 𝒆𝒙𝒑 [𝟏𝟗. 𝟎𝟔𝟐𝟗 + 𝟎. 𝟏𝟑𝟖𝟗𝟓𝟐 𝒍𝒏(𝑷𝐦) −
𝟒𝟕𝟗𝟖.𝟎𝟓

𝑻+ 𝟐𝟕𝟑
]  (S3.4) 

It is well recognized that for a given wind speed; gauge under-catch for snow is much 

higher than that for rain because snow has larger surface area per unit mass. The proportion 

of solid precipitation (R) is determined by the model also suggested by Legates (1987), 

which is given by: 

𝑹 =
𝟏

𝟏+𝟏.𝟔𝟏(𝟏.𝟑𝟓)𝑻         (S3.5) 

The mathematical models to adjust the wind-induced under-catch of precipitation are 

relatively more sensitive to wind speed. However, the wind observations needed for 

adjustment of gauge under-catches are rarely coincident in time and space with 

precipitation observations. The mean monthly values of wind speed may not match with the 

wind speed during the precipitation events. Sevruk (1982) referred a mathematical model 
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developed by Bogdanova (1969) that relates mean monthly wind speed to wind speed 

during precipitation event as:  

Vp = Lr . V        (S3.6) 

Where Vp is wind speed during precipitation event, V is mean monthly wind speed (m/sec) 

and Lr is an empirical coefficient which depends on the form of precipitation and number of 

precipitation days and is expressed as: 

Lr = 1.12 + 0.295 (0.826)M        (S3.7)  

for liquid precipitation 

Lr = 1.37 - 0.0599 (1.065)M       (S3.8)  

for solid precipitation 

Where M is number of precipitation days per month, which is determined by counting the 

number of days during each month in which precipitation exceeded the threshold level of 

0.1 mm.  

The model for adjustment of liquid precipitation requires wind speed at gauge height, 

which is approximated from the wind speed at the reference height of anemometer (10 m) 

using the extensively used (e.g. Mekonnen et al., 2015; Ackere et al., 2015; Stepek and 

Wijnant 2011; Yang et al., 1998) Monin Obukhov theory (Obukhov, 1971; Businger and 

Yaglom, 1971), which is given by: 

𝑽𝒊 ≈  𝑽𝒓𝒆𝒇  ∙  
𝒍𝒏(

𝒁𝒊
𝒁𝟎

)

𝒍𝒏(
𝒁𝒓𝒆𝒇

𝒁𝟎
)
                 (S3.9) 

Where Vi is wind speed (m s-1) to be calculated at Zi height (m), Vref is known velocity (m 

s-1) at the reference height Zref (m), and Z0 is roughness length (m) depending upon type of 

landscape. WMO (2014) recommended Z0 value of 0.01 m for winter and 0.03 m for 

summer months, which were used by Adam and Lattenmaier (2003). We used Z0 values of 

0.01 m for Dec-Mar, 0.02 m for Apr-May & Oct-Nov, and 0.03 for Jun-Sep months, which 

are appropriate for winter snow surfaces and open agricultural or short grassed rangeland 

areas without fences and hedgerows. 

We also considered trace events of precipitation. A precipitation event of less than 0.1 mm 

is usually unmeasurable by most gauges and is generally recorded as trace precipitation. 

Goodison et al. (1998) indicated trace precipitation ranging between 0.0 and 0.2 mm per 

event. WMO 2014 recommended value 0.1 mm for rainfall and 0.2 mm for snowfall.  Ye et 

al. (2004) recommended a value of 0.1 mm for each precipitation day, regardless of the 

number of trace events per day.  

Wetting loss depends on geometry and material of collector gauge, form and incidence of 

precipitation, and frequency of precipitation measurements (Legates (1987). Yang (1988) 

and Yang et al. (1991) reported a wetting loss of 0.23 mm for rainfall, 0.30 mm for snow 

and 0.29 mm for mixed precipitation based on precipitation measurements at the Tianshan 

site. Ren and Li (2007) reported a mean wetting loss of about 0.19 mm for the total 

precipitation over eastern China. Legates (1987) compiled and reported mean wetting loss 

ranging from 0.02-0.30 mm per precipitation event for various gauge types, with 0.2 mm 

for MK2 model and 0.3 mm for Tretyakov model of rain gauge, which are used for this 
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study. However, for automated precipitation gauges, the values are cut by half to account 

for relatively lower wetting losses in these gauges. 

The number of trace and precipitation events is calculated from the available daily records 

of the stations; while for the stations having only monthly data, we approximated these data 

from the daily data of the nearby stations. As majority of the precipitation gauges in our 

study area are manual giving only the daily precipitation amounts. Hence, if a trace or 

precipitation event had happened multiple times in a day, it is recorded only once. 

Therefore, there are chances that the actual number of trance and precipitation events may 

be more than what we have assumed. 

The evaporation loss from the precipitation gauge during an event until the measurement of 

precipitation generally depends on the type of gauge and prevailing climate. Aaltonen et al. 

(1993) and Zhang et al. (2004) observed only a nominal evaporation rate of 0.10–0.20 mm 

d-1 during winter in Finland and Mongolia. The temperature in most parts of the high-

altitude Indus basin remains below freezing point throughout the year and there is 

insufficient information regarding basin level evaporation rates from the national gauges. 

Therefore, the evaporation loss from the gauges during the precipitation events is 

considered insignificant and is neglected.   

WAPDA is the custodian of all river flow data in Pakistan. The up-stream diversions of 

river flows (e.g. Warsak left and right bank canals taking off from upstream of Kabul at 

Warsak; Kabul river canal, upper Swat canal, lower Swat canal and Doaba canal taking off 

from upstream of Kabul at Nowshera; Pehur high level canal commissioned in 2005, Ichhar 

canal, upper Siran and lower Siran canals taking off from upstream of Indus at Tarbela; and 

the Beas-Sutlej Link canal taking off from upstream of Beas at Pong dam), which are often 

overlooked by the previous studies, are added to the flows of the respective sub-basins. The 

Beas-Sutlej Link (BSL) project was commissioned in 1977 and the mean annual inflow 

from the BSL in the period April 1978 to March 2009 was 4.345x109 m3 (ADB, 2010). 

This flow is diverted into Sutlej river before the river gauge at Bhakra dam, which need to 

be subtracted if the data used belongs to the period after 1977. River flow data do not have 

direct use in this study; rather we use it only for validation of our precipitation estimates. 

Therefore, we have used the flow data only for the corresponding precipitation data periods 

in each sub-hydrological basin. 

 
Table S-3.1:  List of climatic stations used in this study. The stations from S. No. 1-41 are maintained 

by PMD, from 42-97 by WAPDA, 98-107 by CAK, 108-285 by IMD, 286-307 by Afghanistan, and 

308-328 are virtual stations at the major glaciers. OA is orifice area and GH is gauge height. P, T and 

W denote precipitation, temperature and wind speed respectively. TBRG is for tipping bucket rain-

gauge, WG is weighing type rain gauge, SP is snow pillow, SD is snow depth gauge, Sn is Symon’s 

gauge, and VS is for virtual stations. All the precipitation gauges are without windshields. 

S.  

# 

Station  

Name 

Lon 

(dd) 

Lat  

(dd) 

Elev 

(m) 

Data  

Period 

Para- 

meters 

Data 

Int. 

Gauge  

Type 

OA 

(cm2) 

GH 

(cm) 

1 Astore 74.90000 35.36667 2394 1999-2011 P T W Daily TBRG 400 60 

2 Babusar 74.04444 35.16000 4160 2005-2013 P T  Daily MK2 127 30 

3 Balakot 72.35000 34.55000 995 1999-2011 P T W Daily TBRG 400 60 

4 Bhimber 74.10000 33.00000 365 1941-1947 P  Monthly MK2 127 30 

5 Bunji 74.63333 35.66667 1372 1999-2011 P T W Daily MK2 127 30 

6 Chakdara 72.00000 34.60000 670 1970-1975 P  Monthly MK2 127 30 
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7 Chakwal 72.73000 32.93300 521 1999-2011 P T W Daily MK2 127 30 

8 Cherat 71.89050 33.82250 1372 1999-2011 P T W Daily MK2 127 30 

9 Chilas 74.10000 35.41667 1251 1999-2011 P T W Daily MK2 127 30 

10 Chitral 71.83333 35.85000 1498 1999-2011 P T W Daily MK2 127 30 

11 Dir 71.85000 35.20000 1425 1999-2011 P T W Daily MK2 127 30 

12 Drosh 71.78333 35.56667 1464 1999-2011 P T W Daily MK2 127 30 

13 GD Poto 73.61667 34.21667 814 1961-1970 P T W Daily TBRG 400 60 

14 Gilgit 74.33333 35.91667 1460 1999-2011 P T W Daily TBRG 400 60 

15 Gupis 73.40000 36.16667 2156 1999-2011 P T W Daily MK2 127 30 

16 Hunza 74.64600 36.32200 2374 2007-2015 P T Daily MK2 127 30 

17 Islamabad AP 73.10000 33.61700 508 1999-2011 P T W Daily TBRG 400 60 

18 Jhelum 73.71700 32.93300 234 1961-1970 P T W Daily MK2 127 30 

19 Kakul 73.25000 34.18333 1308 1999-2011 P T W Daily MK2 127 30 

20 KalamP 72.98330 35.83330 2103 2004-2015 P T W Daily MK2 127 30 

21 Kamra 72.40000 33.86700 325 2008-2012 P  Monthly MK2 127 30 

22 Kohat 71.43330 33.58330 513 1954-2015 P T W Daily MK2 127 30 

23 Kotli-P 73.90000 33.51667 614 1961-1970 P T W Daily MK2 127 30 

24 Landikotal 71.20000 34.10000 1068 1951-1970 P Monthly MK2 127 30 

25 Lower Dir 71.81670 34.83330 786 2008-2015 P T W Daily MK2 127 30 

26 Malamjaba 72.90000 34.75000 2591 2003-2015 P T W Daily MK2 127 30 

27 Mangla-P 73.63000 33.06000 283 1999-2011 P T W Daily MK2 127 30 

28 Miranshah 70.12000 32.98000 912 1999-2011 P  Monthly MK2 127 30 

29 Mirkhani 71.70000 35.50000 1250 2008-2015 P T  Daily MK2 127 30 

30 Mirpur 73.80000 33.20000 361 1940-1947 P T W Daily MK2 127 30 

31 Misgar 74.76720 36.78837 3080 1951-1978 P Monthly MK2 127 30 

32 Murree 73.40000 33.90000 2168 1961-1970 P T W Daily MK2 127 30 

33 Muzaffarabad 73.48333 34.36667 702 1999-2011 P T W Daily TBRG 400 60 

34 Parachinar 70.08333 33.86667 1725 1999-2011 P T W Daily MK2 127 30 

35 Pattan 73.00000 35.10000 752 2004-2015 P T W Daily MK2 127 30 

36 Peshawar AP 71.58300 34.01700 360 1999-2011 P T W Daily TBRG 400 60 

37 Rawlakot-P 73.80000 33.85000 1680 2003-2015 P T W Daily MK2 127 30 

38 Risalpur 71.98300 34.06700 317 1999-2011 P T W Daily MK2 127 30 

39 Saidusharif 72.35000 34.73333 961 1999-2011 P T W Daily MK2 127 30 

40 Sialkot 74.53333 32.51667 255 1961-1970 P T W Daily MK2 127 30 

41 Skardu 75.68333 35.30000 2210 1999-2011 P T W Daily MK2 127 30 

42 Abazai 71.55000 34.43333 320 1985-1997 P Daily MK2+WG 127 30 

43 Amandara 71.98200 34.62542 666 1985-1996 P Daily MK2+WG 127 30 

44 Bagh 73.80000 33.98333 1159 1963-1975 P Monthly MK2+WG 127 30 

45 Besham 72.88333 34.93333 480 1995-2006 P T Daily MK2+WG 127 30 

46 Burzil 75.07910 34.89940 4030 1999-2011 P T Daily SP 400 60 

47 Charbagh 72.44300 34.83420 1024 1991-1997 P Monthly MK2+WG 127 30 

48 Charsadda 71.71667 34.11667 276 1999-2011 P Daily MK2+WG 127 30 

49 Dagar 72.48639 34.51000 732 1999-2011 P T Daily MK2+WG 127 30 

50 Deosai 75.60000 35.10000 3910 1999-2011 P T Daily SP 400 60 

51 Dhudnial 74.11700 34.70000 534 1983-1990 P T Daily MK2+WG 127 30 

52 Domel 73.46889 34.36778 686 1984-1990 P T Daily MK2+WG 127 30 

53 Doyian 74.70417 35.54500 2454 1999-2011 P T Daily MK2+WG 127 30 

54 Fort Lokhart 70.91864 33.55590 1996 1963-2009 P T Daily MK2+WG 127 30 
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55 Gujar Khan 73.30000 33.25000 457 1984-1990 P T Daily MK2+WG 127 30 

56 Hushy 76.40000 35.36667 3010 1999-2011 P T Daily SP 400 60 

57 Jabbar 73.22778 34.67167 2134 1991-2001 P T Daily MK2+WG 127 30 

58 Kachura 75.42000 35.35000 2341 1991-2006 P T Daily MK2+WG 127 30 

59 KalamW 72.60100 35.47000 2744 1999-2011 P T Daily MK2+WG 127 30 

60 Kallar 73.36667 33.41667 518 1984-1990 P T Daily MK2+WG 127 30 

61 Kelash 71.65472 35.69550 2810 1999-2011 P T Daily SP 400 60 

62 Khandar 74.05000 33.50000 1067 1984-1990 P T Daily MK2+WG 127 30 

63 Khot 72.58333 36.51667 3505 1999-2011 P T Daily SP 400 60 

64 Khunjrab-W 75.33200 36.81200 4700 1999-2011 P T Daily SP 400 60 

65 Kotli-W 73.88111 33.48472 610 1984-1990 P T Daily MK2+WG 127 30 

66 Lora 73.28333 33.88333 1482 1989-1992 P T Daily MK2+WG 127 30 

67 Malakand 71.90400 34.50230 603 1988-1997 P Daily MK2+WG 127 30 

68 Mangla-W 73.63333 33.13333 305 1971-1978 P T Daily MK2+WG 127 30 

69 Mardan 71.96667 34.30000 283 1997-2006 P T Daily MK2+WG 127 30 

70 Munda dam 71.52450 34.35100 380 2000-2006 P T Daily MK2+WG 127 30 

71 Naltar 74.26667 36.21667 2810 1999-2011 P T Daily SP 400 60 

72 Naran 73.60700 34.96000 2363 1971-1978 P T Daily MK2+WG 127 30 

73 Oghi 73.01667 34.50000 1128 1995-2006 P T Daily MK2+WG 127 30 

74 Palandri 73.70000 33.71667 1402 1971-1978 P T Daily MK2+WG 127 30 

75 Phulra 73.08333 34.33333 915 1995-2006 P T Daily MK2+WG 127 30 

76 Pir Chenasi 73.54500 34.38500 2650 1999-2011 P T Daily SP 400 60 

77 Puran 72.70000 34.75000 1067 1995-2006 P T Daily MK2+WG 127 30 

78 Qalangi 71.80000 34.63000 688 1999-2011 P Monthly MK2+WG 127 30 

79 Rama 74.80556 35.35833 3140 1999-2011 P T Daily SP 400 60 

80 Ratu 74.80556 35.15278 2920 1999-2011 P T Daily SP 400 60 

81 Rawlakot-W 73.76667 33.86667 1676 1971-1978 P T Daily MK2+WG 127 30 

82 Saifulmulk 73.68750 34.84375 3200 2000-2011 P T Daily SP 400 60 

83 Sehrkakota 73.96667 33.73333 915 1984-1990 P T Daily MK2+WG 127 30 

84 Shahpur 72.66667 34.91667 2012 1995-2006 P T Daily MK2+WG 127 30 

85 Shangla 72.59083 34.88083 2160 1999-2011 P T Daily SP 400 60 

86 Shendure 72.52500 36.08611 3719 1999-2011 P T Daily SP 400 60 

87 Shigar 75.59167 35.53000 2470 1999-2011 P T Daily SP 400 60 

88 Shinkiari 73.26667 34.46667 991 1995-2006 P T Daily MK2+WG 127 30 

89 Shogran 73.48556 34.62000 3205 2000-2008 P T Daily SP 400 60 

90 Tandar 73.97639 33.20389 671 1984-1990 P T Daily MK2+WG 127 30 

91 Tarbela 72.77000 34.06667 610 1999-2011 P T Daily MK2+WG 127 30 

92 Ushkore 73.35833 36.01750 3353 1999-2011 P T Daily SP 400 60 

93 Yasin 73.30000 36.63333 3353 1999-2011 P T Daily SP 400 60 

94 Yugo 76.08000 35.02000 2469 1999-2011 P T Daily MK2+WG 127 30 

95 Zani 72.15000 36.28333 3000 1999-2011 P T Daily SP 400 60 

96 Ziarat 74.27778 36.83333 3669 1999-2011 P T Daily SP 400 60 

97 Zulam Br. 71.79388 34.76500 680 2000-2006 P Daily MK2+WG 127 30 

98 Alambar 73.48333 36.70000 4400 1991-1999 P Monthly TBRG+SD 127 30 

99 Bagrot 74.55000 36.01667 2310 1999-2009 P Daily TBRG+SD 127 30 

100 Baldihel 74.80000 36.35000 3900 1991-1999 P Monthly TBRG+SD 127 30 

101 Bulibalsirbar 73.25000 36.36667 4050 1991-1999 P Monthly TBRG+SD 127 30 

102 Dadormal 74.58333 36.01667 3560 1991-1999 P Monthly TBRG+SD 127 30 
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103 Dame 74.72608 36.00293 3780 1991-1999 P Monthly TBRG+SD 127 30 

104 Diran 74.60000 36.05000 3650 1991-1999 P Monthly TBRG+SD 127 30 

105 Garmashbar 73.53333 36.51667 3600 1991-1999 P Monthly TBRG+SD 127 30 

106 Khaimetbar 73.05000 36.50000 3600 1991-1999 P Monthly TBRG+SD 127 30 

107 Khunjrab-C 75.21543 36.92630 4730 1999-2011 P T Daily TBRG+SD 127 30 

108 Akhnoor 74.73333 32.88333 331 1960-1970 P Monthly MK2/Sn 127 30 

109 Anantnag 75.15000 33.72000 1588 1958-1970 P Monthly MK2/Sn 127 30 

110 Arizal 74.60000 33.92000 1615 1961-1970 P Monthly MK2/Sn 127 30 

111 Arki 76.95000 31.15000 1130 1959-1969 P Monthly MK2/Sn 127 30 

112 Babapura 75.02000 33.78000 1589 1961-1970 P Monthly MK2/Sn 127 30 

113 Badarwah 75.71667 32.96667 1690 1944-1968 P Monthly MK2/Sn 127 30 

114 Badgam 74.58000 33.83000 1587 1961-1970 P Monthly MK2/Sn 127 30 

115 Bandipura 74.63000 34.42000 1638 1961-1970 P Monthly MK2/Sn 127 30 

116 Banihal 75.17000 33.50000 1630 1961-1970 P Monthly MK2/Sn 127 30 

117 Banjar Saraj 77.33333 31.63333 1520 1959-1969 P Monthly MK2/Sn 127 30 

118 Baramula 74.37000 34.20000 1572 1961-1970 P Monthly MK2/Sn 127 30 

119 Bashila 77.67000 31.17000 2250 1958-1969 P Monthly MK2/Sn 127 30 

120 Batote 75.32000 33.12000 1751 1961-1970 P Monthly MK2/Sn 127 30 

121 Bhagtan 79.00000 31.00000 1036 1958-1965 P Monthly MK2/Sn 127 30 

122 Bhangrotu 76.93000 31.62000 762 1959-1969 P Monthly MK2/Sn 127 30 

123 Bhuntar 77.16667 31.83333 1067 1975-1984 P Monthly MK2/Sn 127 30 

124 Bilaspur 76.75000 31.33333 587 1959-1969 P Monthly MK2/Sn 127 30 

125 Chachiot 77.02000 31.55000 1504 1958-1964 P Monthly MK2/Sn 127 30 

126 Chandigarh 76.88300 30.73300 347 1961-1970 P T Monthly MK2/Sn 127 30 

127 Charisharif 74.77000 33.87000 1616 1961-1970 P Monthly MK2/Sn 127 30 

128 Chenani 75.28000 33.03000 1122 1960-1969 P Monthly MK2/Sn 127 30 

129 Chini Kalpa 78.25000 31.53333 2781 1958-1969 P Monthly MK2/Sn 127 30 

130 Chowari 76.01667 32.45000 716 1960-1969 P Monthly MK2/Sn 127 30 

131 Dalhousie 75.96667 32.53333 1959 1958-1965 P Monthly MK2/Sn 127 30 

132 Dasuya 75.63000 31.80000 228 1961-1970 P Monthly MK2/Sn 127 30 

133 Dehra Gopipur 76.21667 31.88333 436 1958-1969 P Monthly MK2/Sn 127 30 

134 Dharampur 77.01667 30.90000 1986 1961-1970 P Monthly MK2/Sn 127 30 

135 Dharamshala 76.38300 32.26700 1211 1961-1970 P Monthly MK2/Sn 127 30 

136 Dharamshala-L 76.31667 32.21667 1745 1901-1969 P Monthly MK2/Sn 127 30 

137 Dharamshala-U 76.08000 31.82000 899 1951-1965 P Monthly MK2/Sn 127 30 

138 Digar 77.75000 34.25000 5182 1956-1964 P Monthly MK2/Sn 127 30 

139 Dras 75.76667 34.43333 3066 1956-1970 P Monthly MK2/Sn 127 30 

140 Durroo 75.23000 33.57000 1790 1956-1964 P Monthly MK2/Sn 127 30 

141 Garhshankar 76.12000 31.22000 273 1961-1970 P Monthly MK2/Sn 127 30 

142 Gondhla 77.03000 32.52000 3144 1961-1970 P Monthly MK2/Sn 127 30 

143 GS Nagar 82.20000 29.60000 2133 1971-1990 P Monthly MK2/Sn 127 30 

144 Gulabgarh 74.93000 33.43000 2137 1941-1947 P Monthly MK2/Sn 127 30 

145 Gulmarg 74.36600 34.03200 2705 1961-1970 P Monthly MK2/Sn 127 30 

146 Gund 75.08000 34.25000 2052 1961-1970 P Monthly MK2/Sn 127 30 

147 Gurez 74.85000 34.63000 2417 1953-1958 P Monthly MK2/Sn 127 30 

148 Hamirpur 76.53333 31.70000 786 1958-1969 P Monthly MK2/Sn 127 30 

149 Handwara 74.28000 34.40000 1585 1961-1970 P Monthly MK2/Sn 127 30 

150 Hoshiyarpur 75.92000 31.53000 294 1961-1970 P Monthly MK2/Sn 127 30 



127 

 

151 Jammu 74.80000 32.70000 277 1961-1970 P Monthly MK2/Sn 127 30 

152 Janjehli 77.21667 31.51667 2286 1958-1969 P Monthly MK2/Sn 127 30 

153 Jhungi 77.06667 31.41667 1785 1958-1969 P Monthly MK2/Sn 127 30 

154 Jogindarnagar 76.75000 31.91667 1221 1959-1969 P Monthly MK2/Sn 127 30 

155 Jubal 77.66667 31.10000 2000 1959-1969 P Monthly MK2/Sn 127 30 

156 Junga 77.20000 31.03000 1227 1959-1969 P Monthly MK2/Sn 127 30 

157 Kalka 76.93000 30.83000 686 1958-1969 P Monthly MK2/Sn 127 30 

158 Kandaghat 77.12000 30.97000 1339 1958-1969 P Monthly MK2/Sn 127 30 

159 Kangra 76.25000 32.10000 701 1952-1969 P Monthly MK2/Sn 127 30 

160 Kargil 76.13000 34.57000 2679 1935-1944 P Monthly MK2/Sn 127 30 

161 Karsog 77.20000 31.38000 1420 1958-1969 P Monthly MK2/Sn 127 30 

162 Kasauli1 76.96667 30.88333 1783 1945-1950 P Monthly MK2/Sn 127 30 

163 Kasauli2 77.00000 30.90000 1559 1958-1969 P Monthly MK2/Sn 127 30 

164 Kasumpti 77.17000 31.00000 1700 1958-1969 P Monthly MK2/Sn 127 30 

165 Kataula 77.06667 31.80000 1762 1959-1969 P Monthly MK2/Sn 127 30 

166 Khadrala 77.58000 31.27000 2957 1958-1969 P Monthly MK2/Sn 127 30 

167 Khalatse 76.83333 34.25000 3205 1961-1970 P Monthly MK2/Sn 127 30 

168 Khangral 76.50000 34.33333 3887 1961-1970 P Monthly MK2/Sn 127 30 

169 Kharar 76.65000 30.75000 280 1958-1970 P Monthly MK2/Sn 127 30 

170 Kilba 78.13000 31.50000 2592 1958-1969 P Monthly MK2/Sn 127 30 

171 Kishtwar 75.75000 33.30000 1215 1961-1970 P Monthly MK2/Sn 127 30 

172 Kokernagh 75.28000 33.92000 1676 1961-1970 P Monthly MK2/Sn 127 30 

173 Koksar 77.23000 32.42000 3204 1956-1970 P Monthly MK2/Sn 127 30 

174 Kotarh 77.48000 31.30000 2000 1953-1965 P Monthly MK2/Sn 127 30 

175 Kothi 77.20000 32.32000 2438 1961-1970 P Monthly MK2/Sn 127 30 

176 Kotkhai 77.53333 31.11667 1560 1958-1969 P Monthly MK2/Sn 127 30 

177 Kukernag 75.30000 33.60000 1865 1961-1970 P Monthly MK2/Sn 127 30 

178 Kulgam 75.02000 33.63000 1615 1961-1970 P Monthly MK2/Sn 127 30 

179 Kulu 77.11667 31.95000 1370 1959-1969 P Monthly MK2/Sn 127 30 

180 Kumarsain 77.45000 31.31667 1700 1959-1969 P Monthly MK2/Sn 127 30 

181 Kyelong 76.94500 32.60500 3166 1961-1970 P Monthly MK2/Sn 127 30 

182 Langet 74.30000 34.37000 1588 1961-1970 P Monthly MK2/Sn 127 30 

183 Leh 77.56667 34.15000 3514 1955-1969 P T Monthly MK2/Sn 127 30 

184 Malashahibag 74.78000 34.22000 1583 1961-1970 P Monthly MK2/Sn 127 30 

185 Malikpur 75.67000 32.22000 302 1961-1970 P Monthly MK2/Sn 127 30 

186 Mandi1 76.96667 31.71667 761 1961-1970 P Monthly MK2/Sn 127 30 

187 Mandi2 76.93000 31.72000 762 1958-1969 P Monthly MK2/Sn 127 30 

188 Mulbek 76.33333 34.33333 3926 1956-1969 P Monthly MK2/Sn 127 30 

189 Nalagarh 76.71667 31.05000 616 1958-1969 P Monthly MK2/Sn 127 30 

190 Nawanshahr 76.12000 31.12000 255 1961-1970 P Monthly MK2/Sn 127 30 

191 Nichar 77.96667 31.55000 1970 1959-1969 P Monthly MK2/Sn 127 30 

192 Nowshera 74.23000 33.15000 599 1951-1969 P Monthly MK2/Sn 127 30 

193 Nurpur 75.91667 32.30000 616 1952-1969 P Monthly MK2/Sn 127 30 

194 Palampur 76.53333 32.13333 1217 1958-1969 P Monthly MK2/Sn 127 30 

195 Panamik 77.61200 34.57200 3114 1956-1970 P Monthly MK2/Sn 127 30 

196 Panjain 77.18000 31.70000 1828 1959-1969 P Monthly MK2/Sn 127 30 

197 Pathankot 75.65000 32.28000 312 1958-1970 P Monthly MK2/Sn 127 30 

198 Pendras 75.58333 34.41667 4880 1956-1970 P Monthly MK2/Sn 127 30 
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199 Phalgam 75.33000 34.03000 1707 1961-1970 P Monthly MK2/Sn 127 30 

200 Poonch 74.12000 33.78000 1067 1945-1962 P Monthly MK2/Sn 127 30 

201 Prang 74.87000 34.28000 1588 1961-1970 P Monthly MK2/Sn 127 30 

202 Purbani 78.33000 31.62000 2591 1958-1969 P Monthly MK2/Sn 127 30 

203 Qazi Gund 75.08000 33.58000 1690 1961-1970 P Monthly MK2/Sn 127 30 

204 Rajdhani 74.30000 33.38000 924 1941-1947 P Monthly MK2/Sn 127 30 

205 Ramban 75.25000 33.25000 945 1956-1969 P Monthly MK2/Sn 127 30 

206 Ramnagar 75.31667 32.80000 792 1956-1969 P Monthly MK2/Sn 127 30 

207 Rampur 77.63333 31.43333 1067 1959-1969 P Monthly MK2/Sn 127 30 

208 Riasi 74.83000 33.08000 585 1958-1969 P Monthly MK2/Sn 127 30 

209 Rohru 77.75000 31.22000 1773 1959-1969 P Monthly MK2/Sn 127 30 

210 Rupanagar 76.52000 30.97000 274 1958-1969 P Monthly MK2/Sn 127 30 

211 Sangla 78.26667 31.41667 1981 1958-1969 P Monthly MK2/Sn 127 30 

212 Sarkahat 76.73333 31.70000 914 1959-1969 P Monthly MK2/Sn 127 30 

213 Shillaru 77.45000 31.20000 2450 1958-1969 P Monthly MK2/Sn 127 30 

214 Shimla 77.16667 31.10000 2202 1961-1970 P T Monthly MK2/Sn 127 30 

215 Shiquanhe 80.08300 32.50000 4280 1961-1970 P T Monthly MK2/Sn 127 30 

216 Shopian 74.83000 33.72000 1615 1961-1970 P Monthly MK2/Sn 127 30 

217 Sogam 74.40000 34.50000 1760 1961-1970 P Monthly MK2/Sn 127 30 

218 Solan 77.11667 30.90000 1459 1959-1969 P Monthly MK2/Sn 127 30 

219 Sonemarg 75.31667 34.31667 2515 1951-1969 P Monthly MK2/Sn 127 30 

220 Sopore 74.47000 34.30000 1574 1961-1970 P Monthly MK2/Sn 127 30 

221 SR Sing 74.70000 32.60000 273 1958-1969 P Monthly MK2/Sn 127 30 

222 Srinagar 74.83333 34.08333 1587 1961-1970 P T Monthly MK2/Sn 127 30 

223 Sundarnagar 76.88333 31.53333 1193 1959-1969 P Monthly MK2/Sn 127 30 

224 Suni Seoni 77.11667 31.25000 668 1958-1969 P Monthly MK2/Sn 127 30 

225 Tanda 76.70000 31.60000 769 1958-1965 P Monthly MK2/Sn 127 30 

226 Tangmarg 74.42469 34.06090 2171 1961-1970 P Monthly MK2/Sn 127 30 

227 Tapoban 79.60000 30.50000 2671 1951-1958 P Monthly MK2/Sn 127 30 

228 Theog 77.36667 31.13333 1893 1958-1969 P Monthly MK2/Sn 127 30 

229 Tibri 75.58000 32.10000 270 1961-1970 P Monthly MK2/Sn 127 30 

230 Tral 75.12000 33.93000 1615 1961-1970 P Monthly MK2/Sn 127 30 

231 T-K-I-H-Kung 81.43300 30.55000 4736 1988-1998 P T Monthly MK2/Sn 127 30 

232 Udhampur 75.10000 32.90000 236 1958-1969 P Monthly MK2/Sn 127 30 

233 Una 76.28333 31.46667 346 1958-1969 P Monthly MK2/Sn 127 30 

234 Uri 74.03000 34.05000 1628 1941-1947 P Monthly MK2/Sn 127 30 

235 Uttamchipura 74.67000 34.50000 3145 1951-1956 P Monthly MK2/Sn 127 30 

236 Vantipura 74.90000 33.88000 1600 1961-1970 P Monthly MK2/Sn 127 30 

237 Verinagh 75.25000 33.53000 1646 1965-1970 P Monthly MK2/Sn 127 30 

238 Arthal 76.18095 33.24808 2225 1974-1990 P Monthly MK2/Sn 127 30 

239 Bhakra 76.78750 31.41472 518 1983-1993 P Monthly MK2/Sn 127 30 

240 Bunencha 75.91829 32.98423 2600 1974-1990 P Monthly MK2/Sn 127 30 

241 Chingaon 75.57881 33.50729 1840 1974-1990 P Monthly MK2/Sn 127 30 

242 Chitkul 78.43600 31.35250 3841 1983-1993 P Monthly MK2/Sn 127 30 

243 Damini 74.80286 33.34395 885 1974-1990 P Monthly MK2/Sn 127 30 

244 Darabshala 75.87560 33.13058 1095 1974-1990 P Monthly MK2/Sn 127 30 

245 Devigol 76.05492 33.10777 2450 1974-1990 P Monthly MK2/Sn 127 30 

246 Dhamkund 75.14167 33.24670 640 1974-1990 P Monthly MK2/Sn 127 30 
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247 Doda 75.54745 33.14540 1140 1974-1990 P Monthly MK2/Sn 127 30 

248 Dusadudha 75.98979 33.04808 2440 1974-1990 P Monthly MK2/Sn 127 30 

249 Gainta 74.98332 33.06661 1000 1974-1990 P Monthly MK2/Sn 127 30 

250 Ghamroor 75.95649 31.95345 436 1983-1993 P Monthly MK2/Sn 127 30 

251 Harsur 76.04476 32.10751 667 1983-1993 P Monthly MK2/Sn 127 30 

252 Hawal 76.09438 33.53781 2745 1974-1990 P Monthly MK2/Sn 127 30 

253 Inshan 75.56600 33.75000 2440 1974-1990 P Monthly MK2/Sn 127 30 

254 Kahu 76.78750 31.20361 649 1983-1993 P Monthly MK2/Sn 127 30 

255 Kasol 76.87833 31.35694 662 1983-1993 P Monthly MK2/Sn 127 30 

256 Kati 75.18426 33.09472 1570 1974-1990 P Monthly MK2/Sn 127 30 

257 Kaza 78.07222 32.22500 3639 1983-1993 P Monthly MK2/Sn 127 30 

258 Kupwara 74.25000 34.51000 1609 1958-1969 P Monthly MK2/Sn 127 30 

259 Larji 77.21894 31.72514 995 1983-1993 P Monthly MK2/Sn 127 30 

260 Lossar 77.75000 32.43800 4079 1983-1993 P Monthly MK2/Sn 127 30 

261 Matsal 76.44896 33.51256 4325 1974-1990 P Monthly MK2/Sn 127 30 

262 Mau 76.32062 33.40928 2900 1974-1990 P Monthly MK2/Sn 127 30 

263 Mohu 75.10488 33.44952 2440 1974-1990 P Monthly MK2/Sn 127 30 

264 Moorang 78.44800 31.59060 2744 1983-1993 P Monthly MK2/Sn 127 30 

265 Namgia 78.65630 31.80306 3083 1983-1993 P Monthly MK2/Sn 127 30 

266 Nandan 74.38528 33.43564 1910 1974-1990 P Monthly MK2/Sn 127 30 

267 Ohli 75.93484 33.33845 1585 1974-1990 P Monthly MK2/Sn 127 30 

268 Palmar 75.67044 33.43411 1585 1974-1990 P Monthly MK2/Sn 127 30 

269 Pooh 78.58890 31.76310 2896 1983-1993 P Monthly MK2/Sn 127 30 

270 Pouni 74.69560 33.09154 600 1974-1990 P Monthly MK2/Sn 127 30 

271 Rakchham 78.35556 31.39167 3282 1983-1993 P Monthly MK2/Sn 127 30 

272 Rekenwas 75.57231 33.96589 3660 1974-1990 P Monthly MK2/Sn 127 30 

273 Rot 75.46397 33.05582 1375 1974-1990 P Monthly MK2/Sn 127 30 

274 Sain 74.82142 33.42813 2240 1974-1990 P Monthly MK2/Sn 127 30 

275 Sainj 77.30556 31.77011 1348 1983-1993 P Monthly MK2/Sn 127 30 

276 Salal 74.80628 33.11661 610 1974-1990 P Monthly MK2/Sn 127 30 

277 Sarkund 75.55288 33.84823 2350 1974-1990 P Monthly MK2/Sn 127 30 

278 Shahpur-I 76.17020 32.22650 755 1983-1993 P Monthly MK2/Sn 127 30 

279 Sirshi 75.89336 33.50897 1675 1974-1990 P Monthly MK2/Sn 127 30 

280 Sohal 76.22161 33.21381 2000 1974-1990 P Monthly MK2/Sn 127 30 

281 Tandi 76.97637 32.55639 3100 1974-1990 P Monthly MK2/Sn 127 30 

282 Thana 75.67658 33.23242 2440 1974-1990 P Monthly MK2/Sn 127 30 

283 Tillar 75.71831 33.61311 2130 1974-1990 P Monthly MK2/Sn 127 30 

284 Udaipur 76.66494 32.72437 2600 1974-1990 P Monthly MK2/Sn 127 30 

285 Yurod 75.71760 33.66478 2165 1974-1990 P Monthly MK2/Sn 127 30 

286 Asmar 71.43333 35.01667 880 1975-2012 P T  Monthly Tretyakov 200 40 

287 Bamiyan 67.81667 34.81667 2550 1975-2012 P T  Monthly Tretyakov 200 40 

288 Darullaman 69.10000 34.45000 1825 1974-1984 P T  Monthly Tretyakov 200 40 

289 Gerdiz 69.23333 33.61667 2350 1975-2012 P T  Monthly Tretyakov 200 40 

290 Ghaziabad 70.76667 34.31667 510 1975-2012 P T  Monthly Tretyakov 200 40 

291 Ghazni 68.41667 33.53333 2183 1975-2012 P T  Monthly Tretyakov 200 40 

292 Jabul Saraj 69.25000 35.13333 1630 1975-2012 P T W Monthly Tretyakov 200 40 

293 Jalalabad 70.46667 34.43333 580 1975-1984 P T  Monthly Tretyakov 200 40 

294 Kabul AP 69.21667 34.55000 1791 1975-2012 P T W Monthly Tretyakov 200 40 



130 

 

295 Karizmir 69.05000 34.63333 1905 1975-2012 P T  Monthly Tretyakov 200 40 

296 Khost 69.95000 33.35000 1146 1975-2012 P T  Monthly Tretyakov 200 40 

297 Laghman 70.21667 34.65000 770 1975-1984 P T  Monthly Tretyakov 200 40 

298 Logar 69.05000 34.10000 1935 1975-1984 P T  Monthly Tretyakov 200 40 

299 Mirbachakot 69.13333 34.76667 1660 1975-1980 P T  Monthly Tretyakov 200 40 

300 Mokur 67.78333 32.83333 2000 1975-1984 P T  Monthly Tretyakov 200 40 

301 North Salang 69.01667 35.31667 3366 1975-1984 P T  Monthly Tretyakov 200 40 

302 Okak 67.95000 33.88333 3130 1975-1979 P T  Monthly Tretyakov 200 40 

303 Paghman 68.95000 34.91667 2114 1975-2012 P T  Monthly Tretyakov 200 40 

304 Pan Jao 67.03333 34.36667 2710 1975-1979 P T  Monthly Tretyakov 200 40 

305 Sarobi 69.75000 34.58333 1020 1975-2012 P T  Monthly Tretyakov 200 40 

306 South Salang  69.06667 35.30000 3172 1975-1984 P T W Monthly Tretyakov 200 40 

307 Zebak 71.25000 36.50000 2600 1978-1984 P T  Monthly Tretyakov 200 40 

308 Approach 75.63310 36.06778 5100 1985-1987 P Monthly V S - - 

309 Baltoro 76.55079 35.87778 5500 1973-1980 P Monthly V S - - 

310 Batura 74.38333 36.66667 4840 1973-1974 P Monthly V S - - 

311 Chong Kumdan 77.54475 35.25317 5330 1986-1991 P Monthly V S - - 

312 Chogolungma 75.00000 36.00000 4900 1985-1988 P Monthly V S - - 

313 Hispar Dome 75.51872 36.01091 5450 1982-1986 P Monthly V S - - 

314 Hispar East 75.50639 35.84953 4830 1985-1988 P Monthly V S - - 

315 Hispar West 75.31635 36.20336 5450 1985-1988 P Monthly V S - - 

316 Hispar Pass 75.52151 36.02807 5100 1984-1986 P Monthly V S - - 

317 Khurdopin 75.61969 36.13377 5520 1984-1986 P Monthly V S - - 

318 Nanga Parbat 74.60000 35.22500 5440 1984-1997 P Monthly V S - - 

319 Nun Kun North 76.10142 34.12193 5200 1973-1980 P Monthly V S - - 

320 Sentik  75.95000 33.99670 4908 1963-1980 P Monthly V S - - 

321 Siachin A 77.03757 35.47073 4800 1986-1991 P Monthly V S - - 

322 Siachin B 76.99150 35.52349 4950 1986-1991 P Monthly V S - - 

323 Siachin C 76.91160 35.51866 5050 1986-1991 P Monthly V S - - 

324 Siachin D 76.85924 35.62423 5350 1986-1991 P Monthly V S - - 

325 South Terong 77.48080 35.09276 5330 1986-1991 P Monthly V S - - 

326 Terong 77.31197 35.51773 5350 1986-1991 P Monthly V S - - 

327 Urdok 76.70253 35.76688 5400 2004-2006 P Monthly V S - - 

328 Whaleback 75.59149 36.05717 4900 1985-1986 P Monthly V S - - 
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 Figure S-3.2: Elevation based lapse rates of mean monthly maximum temperature for 1999-2011 time 

period. The letters a – l indicates months from January-December. 

 

Figure S-3.3: Elevation based lapse rates of mean monthly minimum temperature for 1999-2011 time 

period. The letters a – l indicate months from January-December. 
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 Figure S-3.4: Latitude based lapse rates of mean monthly maximum temperature for 1999-2011 time 

period. The letters a – l indicate months from January-December. 

 

Figure S-3.5: Latitude based lapse rates of mean monthly minimum temperature for 1999-2011 time 

period. The letters a – l indicate months from January-December. 
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Supplementary Results 

Table S-3.2: Absolute bias (corrected - observed) of the precipitation observations (mm). 

S. # Station Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ANN 

1 Astore 20.7 14.8 4.6 4.4 3.6 2.6 2.6 2.4 2.1 1.2 1.2 3.4 63.6 

2 Babusar 45.8 80.9 28.0 17.0 3.9 3.2 4.5 4.1 2.6 1.6 8.9 40.8 241.2 

3 Balakot 2.0 4.1 4.6 3.5 3.5 4.9 7.0 5.0 2.6 1.8 1.0 1.3 41.5 

4 Bhimber 1.2 1.5 1.5 1.0 1.3 1.6 3.3 2.9 1.4 0.5 0.3 0.4 16.9 

5 Bunji 0.9 0.8 1.0 1.7 1.6 1.3 1.2 1.7 1.1 0.3 0.4 0.3 12.3 

6 Chakdara 2.5 4.4 4.1 2.9 2.4 2.9 4.2 3.5 2.2 1.8 1.1 2.1 34.0 

7 Chakwal 1.4 1.9 1.5 1.1 1.1 2.0 3.5 3.0 1.6 1.3 1.1 0.5 19.9 

8 Cherat 5.7 8.1 4.5 3.9 2.3 2.1 4.7 3.7 2.0 1.0 1.3 2.0 41.2 

9 Chilas 0.9 0.8 1.2 1.7 1.5 1.3 1.1 1.5 1.1 0.3 0.4 0.3 12.2 

10 Chitral 4.5 5.1 3.6 3.4 2.2 1.2 1.3 1.2 1.9 1.6 1.5 1.9 29.5 

11 Dir 2.8 4.3 3.7 2.6 2.6 2.3 3.4 3.2 2.6 1.4 1.2 1.5 31.6 

12 Drosh 3.4 4.4 4.2 3.2 2.5 1.7 2.3 1.9 2.0 1.6 1.3 1.6 30.2 

13 GD Poto 1.5 2.0 2.1 1.8 1.8 2.1 3.2 2.6 1.4 1.0 0.6 0.8 20.9 

14 Gilgit 1.0 1.4 1.5 2.2 2.2 1.9 2.0 2.4 2.2 0.6 0.4 0.5 18.1 

15 Gupis 2.4 2.8 2.4 2.2 1.6 0.8 0.4 0.6 0.8 0.9 1.0 1.2 17.2 

16 Hunza 6.6 2.8 2.5 3.6 2.4 1.9 2.6 2.5 2.9 0.6 0.6 2.1 31.3 

17 Islamabad AP 4.2 10.6 8.9 4.6 4.1 8.0 15.0 10.7 4.7 1.5 0.8 1.8 74.9 

18 Jhelum 1.2 1.7 1.7 1.2 1.4 1.9 3.9 3.2 1.5 0.5 0.3 0.4 18.9 

19 Kakul 2.0 2.7 3.0 2.3 2.0 2.9 4.5 4.2 2.3 1.1 0.9 1.0 28.8 

20 KalamP 39.3 59.6 5.2 3.5 3.8 2.9 4.2 4.0 2.3 1.3 1.5 7.0 134.7 

21 Kamra 0.4 1.1 1.6 1.9 2.2 2.6 4.2 4.5 2.6 1.1 0.4 0.3 22.9 

22 Kohat 1.6 2.0 2.3 1.5 1.3 0.8 1.6 1.5 0.9 0.6 0.8 0.9 15.8 

23 Kotli-P 2.0 2.3 2.8 2.6 2.1 3.3 4.6 4.3 2.5 1.0 0.9 1.0 29.3 

24 landikotal 2.8 4.7 5.2 4.1 2.8 2.8 3.7 3.2 2.1 1.8 1.5 3.8 38.5 

25 Lower Dir 4.0 9.3 7.7 6.0 3.1 2.3 3.0 3.1 2.5 1.6 2.1 3.2 48.0 

26 Malamjaba 55.0 36.6 11.2 6.1 3.2 3.2 4.0 3.9 2.2 1.9 2.4 11.0 140.7 

27 Mangla-P 1.3 1.5 1.4 0.9 1.0 1.8 3.5 3.0 1.5 1.3 1.1 0.5 18.8 

28 Miranshah 2.1 2.9 3.2 2.3 2.8 2.3 3.1 3.5 2.3 1.1 1.1 1.6 28.3 

29 Mirkhani 2.2 3.7 3.3 3.5 3.4 1.7 1.2 1.5 1.5 1.3 1.2 1.5 25.8 

30 Mirpur 1.7 1.8 1.5 0.9 1.0 1.8 3.4 2.9 1.6 1.3 1.1 0.5 19.5 

31 Murree 14.1 13.4 18.0 3.5 1.4 1.1 1.3 1.6 1.1 0.5 2.4 7.6 76.7 

32 Muzaffarabad 3.7 5.4 3.6 3.4 2.5 3.6 5.2 4.5 2.7 1.1 1.0 1.5 38.2 

33 Parachinar 1.3 2.1 2.4 2.0 1.9 2.1 3.0 2.8 1.5 1.1 0.6 0.7 21.4 

34 Pattan 6.7 6.2 4.1 2.9 3.4 3.0 3.9 4.5 3.0 1.6 1.4 2.2 42.9 

35 Peshawar AP 5.8 7.8 10.0 6.9 4.4 3.5 4.5 3.8 2.2 2.1 2.2 6.1 59.3 

36 Rawlakot-P 1.1 2.6 2.9 3.3 2.2 2.1 4.2 4.1 1.7 0.5 0.5 0.6 25.8 

37 Risalpur 7.6 12.7 4.5 3.0 2.3 3.3 4.5 4.2 2.5 1.0 1.2 4.0 50.7 

38 Saidusharif 1.8 3.2 3.3 2.4 1.8 2.5 12.4 9.7 2.3 0.7 0.9 1.0 41.9 

39 Sialkot 4.6 6.3 6.0 4.2 2.6 3.1 4.1 3.5 2.2 1.8 1.4 2.9 42.7 

40 Skardu 1.3 2.0 1.8 1.1 1.4 2.6 4.4 3.2 1.8 0.6 0.3 0.9 21.5 

41 Abazai 20.4 5.9 2.1 2.6 1.4 1.1 1.3 1.6 1.2 0.4 0.5 3.3 41.7 

42 Amandara 1.8 2.2 3.6 1.7 1.2 0.8 2.6 2.0 1.2 0.9 1.3 2.7 21.9 

43 Bagh 2.4 4.1 4.7 2.7 2.5 2.1 3.1 3.1 2.4 1.2 1.2 1.8 31.4 

44 Besham 4.2 4.5 3.7 2.7 2.3 3.3 4.5 4.2 2.4 1.0 1.1 2.8 36.5 

45 Burzil 5.2 5.9 9.9 6.1 3.8 3.6 4.2 4.1 2.3 1.3 2.1 3.6 52.0 

46 Charbagh 83.8 117.0 93.0 79.4 16.6 2.4 2.5 2.6 2.9 10.8 37.7 57.6 506.1 

47 Charsadda 6.9 6.3 11.5 7.5 4.0 3.2 3.8 3.4 2.2 2.1 2.1 7.7 60.8 

48 Dagar 1.9 3.5 2.6 1.6 1.3 0.8 1.8 1.5 0.9 0.5 0.9 1.1 18.5 

49 Deosai 3.6 5.6 5.4 3.5 2.4 3.1 4.1 3.7 2.2 1.8 1.3 2.4 39.1 

50 Dhudnial 42.4 50.5 39.4 34.9 8.7 2.1 2.1 2.0 1.9 3.4 16.6 35.6 239.7 

51 Domel 5.8 5.2 4.0 2.7 2.8 3.1 4.4 3.8 2.2 1.7 1.3 5.8 42.9 
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52 Doyian 5.0 6.3 7.2 4.3 3.8 4.0 5.0 4.8 2.5 1.8 2.1 11.3 58.0 

53 Fort Lockhart 2.0 1.8 2.0 2.4 2.0 1.2 1.1 1.5 1.1 0.3 0.7 1.2 17.4 

54 Gujar Khan 6.6 8.3 7.4 3.3 3.0 3.0 3.6 3.9 2.9 1.4 1.6 2.9 48.1 

55 Hushy 1.2 1.5 1.4 0.9 1.0 1.8 3.5 2.9 1.6 1.3 1.1 0.5 18.6 

56 Jabbar 20.1 19.3 5.4 3.1 2.3 2.1 2.1 2.0 1.5 0.9 1.4 17.2 77.5 

57 Kachura 27.5 16.4 14.6 6.6 3.4 3.2 4.4 4.6 2.4 1.2 2.0 4.6 90.8 

58 KalamW 18.1 7.3 2.5 2.2 1.7 1.2 1.0 1.5 1.1 0.3 0.7 3.0 40.7 

59 Kallar 30.8 24.5 6.7 5.0 3.6 3.0 4.2 4.0 2.3 1.2 1.6 5.1 92.1 

60 Kelash 1.2 1.5 1.4 0.9 1.0 1.9 3.5 2.9 1.6 1.3 1.1 0.6 18.7 

61 Khairabad 24.4 40.3 6.7 4.8 3.9 1.9 2.1 2.2 1.5 1.5 2.4 20.0 111.6 

62 Khandar 1.3 1.5 1.4 1.0 1.1 1.8 3.4 2.9 1.5 1.3 1.1 0.8 19.1 

63 Khot 56.7 114.7 86.6 8.9 2.6 1.6 1.7 1.8 1.8 3.0 33.0 57.5 369.9 

64 Khunjrab-W 40.7 49.6 51.7 54.7 19.7 4.1 2.8 2.9 5.2 20.0 31.9 66.3 349.5 

65 Kotli-W 1.4 2.0 1.7 1.0 1.1 1.8 3.5 2.9 1.6 1.3 1.1 1.1 20.4 

66 Lora 3.9 4.4 4.3 3.6 2.2 3.3 4.6 4.3 2.5 0.9 0.9 2.3 37.2 

67 Malakand 2.5 4.3 4.9 2.8 2.5 2.1 3.3 3.3 2.4 1.2 1.3 2.1 32.9 

68 Mangla-W 1.3 1.5 1.4 0.9 1.0 1.8 3.5 3.0 1.5 1.3 1.1 0.5 18.7 

69 Mardan 2.3 2.9 3.0 1.7 1.3 0.9 2.3 2.1 1.0 0.6 1.0 1.6 20.6 

70 Munda dam 2.4 2.9 3.0 1.7 1.2 0.9 2.5 2.5 1.3 0.6 1.0 1.2 21.2 

71 Naltar 22.0 40.9 6.9 4.1 2.0 2.0 2.2 2.1 1.8 1.1 2.3 20.7 108.1 

72 Naran 192.9 172.6 144.2 11.5 6.0 4.1 4.5 4.0 2.3 1.2 3.7 34.3 581.2 

73 Oghi 5.7 5.4 7.7 4.9 2.6 3.1 4.4 4.5 2.3 1.2 1.5 3.5 46.7 

74 Palandri 7.0 5.5 2.5 1.4 1.2 1.9 3.4 3.0 1.6 1.3 1.3 2.0 32.1 

75 Phulra 4.2 4.6 6.0 4.5 2.5 3.0 4.3 4.6 2.3 1.1 1.4 2.7 41.3 

76 Pir Chenasi 168.5 111.1 7.8 6.0 4.9 4.7 5.0 4.6 2.5 1.8 3.5 19.9 340.2 

77 Puran 4.9 5.9 7.3 4.0 2.7 3.2 4.2 3.6 2.2 1.9 1.5 2.8 44.3 

78 Qalangi 2.5 4.3 4.4 2.6 2.5 2.0 3.2 3.0 2.4 1.2 1.3 1.9 31.4 

79 Rama 88.2 161.3 80.9 11.5 2.9 2.0 2.2 2.1 1.6 1.3 19.1 105.6 478.8 

80 Ratu 55.2 79.9 20.3 7.1 3.2 2.0 2.1 2.0 1.6 1.1 7.4 96.5 278.5 

81 Rawlakot-W 8.3 6.3 4.2 2.7 2.8 3.2 4.5 3.8 2.2 1.7 1.2 2.8 43.6 

82 Saifulmulk 241.4 212.2 103.8 12.5 5.0 4.3 4.5 4.1 2.3 1.8 18.2 162.5 772.5 

83 Sehrkakota 4.1 5.4 4.8 2.6 2.7 3.1 4.5 3.8 2.2 1.7 1.2 5.2 41.4 

84 Shahpur 42.5 25.0 19.9 11.7 5.5 3.9 3.9 3.5 2.2 2.6 4.1 14.1 139.1 

85 Shangla 14.3 13.7 8.5 7.0 4.4 3.6 3.9 3.6 2.2 2.1 3.4 10.5 77.2 

86 Shendure 12.5 22.2 13.4 4.5 2.0 1.2 0.7 0.7 0.8 1.3 7.4 13.4 80.0 

87 Shigar 27.4 8.7 3.6 3.2 2.7 2.0 2.1 2.0 1.6 0.9 1.5 6.4 62.2 

88 Shinkiari 4.5 4.8 6.7 4.5 2.7 3.2 4.5 4.7 2.4 1.2 1.6 3.0 43.9 

89 Shogran 144.0 131.7 16.7 5.8 4.2 3.7 4.4 4.6 2.5 1.7 6.1 135.4 460.9 

90 Tandar 1.3 1.7 1.6 1.0 1.2 1.8 3.7 3.0 1.6 1.3 1.1 1.1 20.3 

91 Tarbela 0.5 1.2 1.8 2.0 2.2 2.6 4.3 4.5 2.6 1.1 0.4 0.4 23.6 

92 Ushkore 10.1 24.4 10.1 3.2 2.1 1.1 0.6 0.6 0.8 1.1 2.1 10.9 67.2 

93 Yasin 20.3 38.6 18.3 3.8 1.7 1.2 0.8 0.8 1.0 1.1 6.9 23.3 117.9 

94 Yugo 6.4 4.8 1.6 1.9 1.6 1.2 1.0 1.4 1.1 0.3 0.5 2.3 24.1 

95 Zani 33.6 61.8 48.4 23.1 4.4 2.3 2.2 2.3 1.9 4.6 27.0 34.8 246.4 

96 Ziarat 29.8 47.4 33.7 5.8 1.8 0.9 0.6 0.8 1.3 2.0 16.5 48.8 189.3 

97 Zulam Br. 2.8 4.4 4.7 2.8 2.6 2.1 3.2 3.1 2.4 1.2 1.2 1.7 32.2 

98 Alambar 92.5 211.1 113.5 53.0 7.3 2.5 1.2 1.3 4.8 15.8 39.8 91.1 633.8 

99 Bagrot 11.5 3.2 2.2 3.0 2.4 1.9 2.2 2.5 2.4 0.7 0.6 1.6 34.2 

100 Baldihel 24.2 31.3 26.6 37.8 4.4 2.2 2.4 2.4 2.4 3.0 17.9 25.2 179.8 

101 Bulibalsirbar 24.1 66.0 34.4 19.6 4.4 2.1 1.5 1.2 2.2 5.3 12.7 32.6 206.3 

102 Dadormal 82.4 35.7 32.3 11.7 3.3 2.2 2.4 2.2 2.0 1.7 9.7 22.1 207.8 

103 Dame 139.8 59.5 57.4 34.4 5.4 2.4 2.7 2.4 2.7 3.4 17.7 37.1 365.0 

104 Diran 108.2 46.3 43.4 18.1 4.1 2.3 2.6 2.3 2.3 2.2 13.3 28.8 273.9 

105 Garmashbar 69.0 155.7 76.3 8.3 2.6 1.7 1.3 1.4 2.1 2.3 26.1 67.3 414.2 

106 Khaimetbar 23.5 63.7 31.2 5.9 3.1 1.8 1.5 1.2 1.7 2.1 11.2 31.4 178.4 

107 Khunjrab-C 44.4 54.2 57.0 61.4 41.3 17.7 4.8 4.9 22.6 22.4 35.2 72.9 438.8 

108 Akhnoor 1.6 2.3 2.4 2.0 1.9 2.3 3.6 3.4 2.0 1.1 0.8 1.0 24.4 
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109 Anantnag 2.8 2.2 3.2 2.8 2.3 1.4 1.9 1.7 0.9 0.7 0.7 1.9 22.5 

110 Arizal 2.3 2.1 2.6 2.3 2.2 1.4 1.9 1.7 0.9 0.7 0.7 1.7 20.5 

111 Arki 1.6 2.1 2.3 1.9 2.0 2.4 3.6 3.4 2.1 1.1 0.8 0.9 24.2 

112 Babapura 2.3 2.3 2.6 2.4 2.1 1.4 1.9 1.7 0.9 0.7 0.7 1.6 20.6 

113 Badarwah 4.1 3.0 2.2 1.4 1.3 1.6 3.2 2.8 1.4 0.5 0.4 1.7 23.7 

114 Badgam 2.3 2.4 2.7 2.4 2.1 1.4 2.0 1.7 0.9 0.7 0.7 1.6 20.7 

115 Bandipura 5.2 3.8 3.1 2.6 2.2 1.4 1.9 1.7 0.9 0.8 1.0 2.6 27.1 

116 Banihal 5.4 4.1 3.0 2.7 2.2 1.4 2.0 1.7 0.9 0.7 0.8 3.3 28.1 

117 Banjar Saraj 2.4 2.5 2.5 2.1 2.0 2.5 3.7 3.3 2.0 1.1 0.8 1.2 26.2 

118 Baramula 2.5 3.0 2.7 2.5 2.2 1.4 1.9 1.7 0.8 0.7 0.7 1.7 21.9 

119 Bashila 10.8 5.6 2.9 2.1 2.1 2.4 3.5 3.2 2.0 1.1 1.0 5.9 42.5 

120 Batote 1.6 1.9 1.6 1.3 1.4 1.7 3.2 2.8 1.4 0.5 0.4 0.6 18.3 

121 Bhagtan 3.4 2.8 3.3 4.7 3.1 3.0 3.6 3.5 2.2 1.3 1.5 2.8 35.1 

122 Bhangrotu 1.8 2.3 2.6 2.0 2.0 2.9 4.2 3.6 2.1 1.1 0.8 1.2 26.5 

123 Bhuntar 2.3 2.3 2.7 2.1 2.0 2.4 3.5 3.3 2.0 1.1 0.8 1.2 25.7 

124 Bilaspur 1.7 2.2 2.3 1.9 1.9 2.3 3.4 3.2 2.0 1.1 0.8 1.1 24.0 

125 Chachiot 2.6 2.5 2.5 2.0 2.0 2.7 4.3 3.5 2.1 1.1 0.9 1.3 27.5 

126 Chandigarh 1.6 2.2 2.3 1.9 1.9 2.3 3.5 3.2 2.0 1.1 0.8 1.0 23.8 

127 Charisharif 2.7 2.4 2.7 2.4 2.2 1.4 2.0 1.7 0.9 0.7 0.7 1.8 21.7 

128 Chenani 1.8 2.4 2.5 2.1 2.0 2.3 3.7 3.3 2.0 1.1 0.8 1.2 25.2 

129 Chini Kalpa 22.7 43.6 6.1 2.4 2.5 2.6 3.8 3.4 2.2 1.1 1.0 7.5 98.8 

130 Chowari 1.7 2.3 2.6 2.0 2.0 2.3 3.7 3.5 2.0 1.1 0.8 1.1 25.2 

131 Dalhousie 5.3 4.4 2.9 2.2 2.1 2.3 3.4 3.2 2.0 1.1 0.9 2.9 32.8 

132 Dasuya 1.7 2.1 2.3 1.9 1.9 2.4 3.7 3.3 1.9 1.1 0.8 1.1 24.2 

133 Dehra Gopipur 1.6 2.1 2.3 1.9 1.9 2.3 3.5 3.2 2.0 1.1 0.8 1.2 24.0 

134 Dharampur 2.1 2.5 2.3 1.9 2.0 2.4 3.7 3.4 2.1 1.1 0.8 1.0 25.3 

135 Dharamshala 8.6 6.7 7.3 3.0 2.1 2.7 3.6 3.5 2.4 1.5 1.4 6.7 49.3 

136 Dharamshala-L 12.8 9.6 7.7 3.7 2.2 2.7 3.7 3.6 2.5 1.4 1.7 10.8 62.4 

137 Dharamshala-U 2.1 2.2 2.3 1.9 1.9 2.3 3.8 3.4 2.0 1.1 0.9 1.4 25.5 

138 Digar 11.6 3.9 4.0 5.0 3.8 4.6 5.2 5.0 8.3 3.4 4.0 6.3 65.0 

139 Dras 27.9 20.4 16.9 3.6 2.8 2.3 3.4 3.2 2.0 1.4 2.2 14.2 100.4 

140 Durroo 5.2 2.6 2.9 2.6 2.1 1.4 2.0 1.7 0.9 0.7 0.9 2.4 25.4 

141 Garhshankar 1.7 2.2 2.4 1.9 1.9 2.3 3.5 3.2 2.0 1.1 0.8 1.1 24.0 

142 Gondhla 145.5 81.4 34.3 9.7 2.5 2.6 3.4 3.2 2.2 0.9 4.3 42.6 332.6 

143 GS Nagar 3.4 2.7 2.4 2.0 2.4 3.3 4.2 5.7 3.5 1.3 1.1 1.2 33.4 

144 Gulabgarh 20.3 5.5 2.6 2.0 2.0 2.3 3.7 3.4 2.0 1.1 0.9 4.1 49.8 

145 Gulmarg 37.9 38.8 5.9 2.6 2.5 1.5 2.0 1.7 0.9 0.8 1.5 16.7 112.7 

146 Gund 6.5 3.6 2.9 2.6 2.2 1.4 2.0 1.8 0.9 0.7 0.8 2.9 28.4 

147 Gurez 103.4 38.4 5.8 2.8 2.6 1.4 1.9 1.7 0.9 0.8 1.4 16.1 177.3 

148 Hamirpur 1.5 2.1 2.3 1.9 1.9 2.4 3.8 3.6 2.1 1.1 0.8 0.9 24.5 

149 Handwara 5.1 4.1 3.2 2.6 2.2 1.4 1.9 1.7 0.9 0.8 1.1 3.5 28.4 

150 Hoshiyarpur 1.6 2.1 2.3 1.9 1.9 2.3 3.4 3.2 2.0 1.1 0.8 1.0 23.7 

151 Jammu 1.6 2.2 2.4 2.0 2.0 2.3 3.6 3.3 2.0 1.1 0.8 1.0 24.2 

152 Janjehli 5.2 4.1 2.9 2.1 2.0 2.8 4.0 3.5 2.1 1.1 0.9 2.6 33.4 

153 Jhungi 1.8 2.4 2.3 2.0 2.0 2.5 3.6 3.4 2.1 1.1 0.8 1.0 24.9 

154 Jogindarnagar 1.6 2.2 2.3 1.9 2.0 2.5 4.1 4.0 2.2 1.1 0.8 0.9 25.6 

155 Jubal 4.5 3.5 2.6 2.0 2.1 2.5 3.4 3.2 2.0 1.1 0.9 1.9 29.7 

156 Junga 1.6 2.1 2.3 1.9 2.0 2.4 3.6 3.3 2.1 1.1 0.8 0.9 24.3 

157 Kalka 1.6 2.1 2.3 1.9 2.0 2.3 3.5 3.3 2.0 1.1 0.8 0.9 23.8 

158 Kandaghat 1.6 2.1 2.3 1.9 2.0 2.4 3.6 3.3 2.1 1.1 0.8 0.9 24.2 

159 Kangra 7.4 4.9 7.2 2.4 2.0 2.5 3.5 3.4 2.3 1.5 1.0 5.7 43.8 

160 Kargil 44.2 36.7 7.2 3.0 1.8 1.2 1.0 1.4 1.1 0.3 0.5 14.6 113.1 

161 Karsog 1.6 2.2 2.3 1.9 2.0 2.4 3.5 3.3 2.0 1.1 0.8 0.9 24.1 

162 Kasauli1 2.0 2.4 2.3 1.9 1.9 2.3 3.8 3.3 2.0 1.1 0.8 1.0 24.8 

163 Kasauli2 1.6 2.2 2.3 1.9 2.0 2.4 3.8 3.5 2.1 1.1 0.8 1.0 24.6 

164 Kasumpti 1.7 2.3 2.3 1.9 2.0 2.4 3.6 3.4 2.1 1.1 0.8 1.0 24.6 

165 Kataula 2.2 2.6 2.4 2.0 2.0 2.6 4.2 3.6 2.0 1.1 0.8 1.4 27.0 
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166 Khadrala 62.0 66.7 5.3 2.2 2.1 2.5 3.5 3.3 2.0 1.2 1.4 84.1 236.0 

167 Khalatse 9.2 9.3 2.8 1.8 1.4 1.3 1.3 1.6 1.1 0.3 1.5 7.6 39.2 

168 Khangral 8.3 11.7 14.2 4.7 1.5 1.2 1.1 1.4 1.3 0.6 1.6 4.8 52.3 

169 Kharar 1.7 2.1 2.3 1.9 1.9 2.3 3.6 3.2 2.0 1.1 0.8 1.0 24.0 

170 Kilba 23.0 20.5 4.7 2.3 2.4 2.6 3.9 3.5 2.2 1.1 1.1 3.2 70.5 

171 Kishtwar 2.2 3.0 3.3 3.2 2.6 2.4 3.3 3.1 2.0 1.2 1.0 1.6 28.8 

172 Kokernagh 3.6 3.4 3.1 3.0 2.6 2.3 3.4 3.1 2.0 1.2 1.0 1.8 30.5 

173 Koksar 253.8 125.6 43.1 8.6 2.6 2.8 3.6 3.2 2.2 2.4 6.0 100.0 553.7 

174 Kotarh 4.6 3.4 2.8 2.0 2.0 2.5 3.5 3.2 2.0 1.1 0.9 2.1 30.1 

175 Kothi 121.1 37.5 11.3 6.3 2.6 3.3 3.7 3.5 2.4 1.1 1.3 12.8 206.9 

176 Kotkhai 2.7 2.6 2.6 2.0 2.0 2.4 3.4 3.2 2.0 1.1 0.9 1.7 26.7 

177 Kukernag 5.0 4.0 2.9 2.8 2.2 1.4 2.0 1.7 0.9 0.7 0.8 2.7 27.0 

178 Kulgam 2.2 2.3 2.7 2.5 2.1 1.4 2.0 1.7 0.9 0.7 0.7 1.5 20.6 

179 Kulu 2.5 2.6 2.6 2.1 2.0 2.4 3.5 3.2 2.0 1.1 0.8 1.3 26.2 

180 Kumarsain 3.1 2.7 2.7 2.0 2.0 2.4 3.4 3.2 2.0 1.1 0.9 1.4 27.0 

181 Kyelong 93.6 119.3 33.7 5.0 2.7 2.4 3.4 3.2 2.3 1.1 8.0 46.9 321.5 

182 Langet 4.8 4.2 3.2 2.6 2.2 1.4 1.9 1.7 0.9 0.7 1.1 3.2 27.9 

183 Leh 11.5 8.0 2.2 1.5 1.3 1.2 1.1 1.5 1.1 0.3 0.9 5.2 35.8 

184 Malashahibag 2.9 2.4 2.7 2.4 2.1 1.4 2.0 1.7 0.9 0.7 0.8 1.9 21.8 

185 Malikpur 1.7 2.2 2.5 2.0 1.9 2.3 3.6 3.4 2.0 1.1 0.8 1.1 24.7 

186 Mandi1 1.9 2.2 2.5 2.0 2.0 2.7 4.1 3.6 2.1 1.1 0.8 1.1 26.1 

187 Mandi2 1.8 2.2 2.4 2.0 2.0 2.6 4.1 3.7 2.1 1.1 0.8 1.2 25.9 

188 Mulbek 33.0 21.4 23.6 9.6 2.1 2.3 3.4 3.1 2.0 1.7 6.6 19.7 128.7 

189 Nalagarh 1.7 2.1 2.3 1.9 1.9 2.3 3.4 3.2 2.0 1.1 0.8 1.1 24.0 

190 Nawanshahr 1.7 2.2 2.4 1.9 1.9 2.3 3.5 3.2 2.0 1.1 0.8 1.1 24.1 

191 Nichar 5.4 6.6 3.1 2.3 2.6 2.8 4.5 4.0 2.3 1.1 0.9 1.4 36.9 

192 Nowshera 1.8 2.3 2.4 2.0 2.0 2.3 3.5 3.2 2.0 1.1 0.8 1.0 24.4 

193 Nurpur 1.7 2.2 2.5 1.9 1.9 2.3 3.6 3.5 2.0 1.1 0.8 1.1 24.6 

194 Palampur 7.5 5.4 7.4 2.9 2.0 2.5 3.6 3.4 2.4 1.8 1.9 7.6 48.3 

195 Panamik 4.5 5.7 1.9 1.6 1.4 1.4 1.2 1.5 1.1 0.2 0.4 9.7 30.6 

196 Panjain 2.6 2.9 2.5 2.1 2.0 2.5 3.9 3.5 2.1 1.1 0.9 1.7 27.6 

197 Pathankot 1.6 2.1 2.3 1.9 1.9 2.3 3.6 3.4 2.0 1.1 0.8 1.0 24.1 

198 Pendras 98.4 88.4 109.6 89.9 46.9 4.4 3.6 3.7 4.8 9.1 16.8 58.2 533.8 

199 Phalgam 3.2 2.7 3.1 3.1 2.5 1.4 2.0 1.7 0.9 0.8 0.8 2.0 24.1 

200 Poonch 2.8 2.2 2.8 2.3 2.2 1.5 2.1 1.8 0.9 0.7 0.7 1.7 21.8 

201 Prang 7.2 3.9 3.2 2.5 2.2 1.4 1.9 1.7 0.9 0.8 0.9 3.6 30.3 

202 Purbani 33.9 15.3 3.9 2.3 2.4 2.5 3.6 3.3 2.1 1.1 1.0 3.1 74.3 

203 Qazi Gund 4.5 3.6 2.8 2.4 2.1 1.4 2.0 1.7 0.9 0.7 0.7 2.5 25.3 

204 Rajdhani 2.3 2.3 2.5 2.1 2.1 2.3 3.5 3.3 2.0 1.1 0.8 1.2 25.5 

205 Ramban 2.6 2.7 2.6 2.2 2.1 2.3 3.5 3.2 2.0 1.1 0.9 2.1 27.1 

206 Ramnagar 1.7 2.3 2.5 2.0 2.0 2.4 4.1 3.7 2.1 1.1 0.8 1.1 25.6 

207 Rampur 2.1 2.4 2.6 2.0 2.0 2.4 3.4 3.2 2.0 1.1 0.9 1.3 25.3 

208 Riasi 1.7 2.4 2.4 2.0 2.0 2.3 3.7 3.5 2.0 1.1 0.8 1.0 24.9 

209 Rohru 3.9 3.3 2.7 2.0 2.0 2.5 3.4 3.2 2.0 1.1 0.9 1.7 28.7 

210 Rupanagar 1.8 2.2 2.3 1.9 1.9 2.3 3.4 3.2 2.0 1.1 0.8 1.0 23.9 

211 Sangla 17.3 5.3 5.0 3.3 2.6 2.4 3.4 3.2 2.1 1.3 1.5 4.1 51.4 

212 Sarkahat 1.5 2.1 2.3 1.9 1.9 2.5 4.0 3.8 2.2 1.1 0.8 0.9 25.2 

213 Shillaru 11.2 4.9 3.1 2.0 2.1 2.5 3.5 3.2 2.0 1.1 1.0 2.0 38.7 

214 Shimla 2.3 2.6 2.4 1.9 2.0 2.5 3.7 3.4 2.1 1.1 0.8 1.0 25.8 

215 Shiquanhe1 4.6 4.5 4.0 2.3 1.5 1.3 1.3 1.6 1.1 1.1 2.5 3.8 29.6 

216 Shopian 2.7 2.4 2.7 2.5 2.2 1.4 2.0 1.7 0.9 0.7 0.7 1.9 21.9 

217 Sogam 7.7 5.0 3.2 2.6 2.2 1.4 1.9 1.7 0.9 0.8 1.0 4.9 33.3 

218 Solan 1.6 2.2 2.3 1.9 2.0 2.4 3.6 3.4 2.1 1.1 0.8 1.0 24.4 

219 Sonemarg 136.6 69.5 12.7 6.2 6.0 2.0 2.0 2.0 1.3 2.2 2.2 25.4 268.0 

220 Sopore 2.7 3.9 3.0 2.5 2.1 1.4 1.9 1.7 0.9 0.7 1.0 2.0 23.8 

221 SR Sing 1.6 2.2 2.4 1.9 2.0 2.3 3.6 3.2 2.0 1.1 0.8 1.0 24.1 

222 Srinagar 3.1 2.4 2.7 2.4 2.1 1.4 1.9 1.7 0.9 0.7 0.7 2.6 22.7 
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223 Sundarnagar 2.1 2.3 2.5 2.0 2.0 2.7 4.0 3.6 2.1 1.1 0.8 1.1 26.2 

224 Suni Seoni 1.5 2.1 2.3 1.9 2.0 2.4 3.6 3.3 2.0 1.1 0.8 0.9 24.0 

225 Tanda 1.5 2.1 2.3 1.9 1.9 2.3 3.6 3.3 2.1 1.1 0.8 0.9 23.9 

226 Tangmarg 6.1 3.8 2.9 2.4 2.3 1.4 1.9 1.7 0.9 0.7 0.8 2.7 27.7 

227 Tapoban 19.9 6.6 4.4 2.5 2.1 2.7 4.0 3.6 2.2 1.3 0.9 2.2 52.5 

228 Theog 3.8 3.3 2.6 2.0 2.1 2.5 3.5 3.2 2.0 1.1 0.9 1.9 28.9 

229 Tibri 1.6 2.1 2.3 1.9 1.9 2.3 3.4 3.2 2.0 1.1 0.8 1.0 23.8 

230 Tral 3.0 2.4 3.0 2.8 2.3 1.4 1.9 1.7 0.9 0.7 0.7 1.8 22.5 

231 TKIH Kung 6.7 13.7 14.2 6.0 7.3 2.6 14.7 6.9 12.1 6.6 2.8 3.4 97.1 

232 Udhampur 1.7 2.3 2.4 2.0 1.9 2.3 3.9 3.7 2.1 1.1 0.8 1.0 25.2 

233 Una 1.5 2.1 2.3 1.9 1.9 2.3 3.7 3.5 2.1 1.1 0.8 0.9 24.2 

234 Uri 4.9 3.1 2.8 2.3 2.4 1.4 2.0 1.7 0.9 0.7 0.8 2.3 25.2 

235 Uttamchipura 93.8 57.8 42.3 4.4 2.5 1.5 1.9 1.7 0.9 1.1 3.3 80.6 292.0 

236 Vantipura 2.5 2.3 2.6 2.4 2.1 1.4 1.9 1.7 0.9 0.7 0.7 1.6 20.8 

237 Verinagh 2.8 3.2 2.9 2.6 2.3 1.4 2.0 1.7 0.9 0.7 0.7 2.3 23.5 

238 Arthal 16.6 7.5 3.8 2.8 2.4 2.4 3.3 3.1 1.9 1.2 1.0 4.8 50.7 

239 Bhakra 1.5 2.1 2.3 2.0 2.0 2.3 3.7 3.4 2.1 1.1 0.8 0.9 24.3 

240 Bunencha 44.9 27.1 5.8 2.4 2.1 2.3 3.5 3.2 2.0 1.1 1.2 8.2 103.7 

241 Chingaon 9.4 5.5 3.0 2.4 2.2 2.3 3.5 3.2 2.0 1.1 0.9 2.6 38.1 

242 Chitkul 92.2 64.2 82.7 9.7 3.3 2.5 3.5 3.4 2.7 2.4 15.0 63.6 345.2 

243 Damini 2.7 2.9 2.8 2.2 2.1 2.3 3.6 3.3 2.0 1.1 0.9 1.4 27.3 

244 Darabshala 2.6 2.6 3.0 2.2 2.0 2.3 3.4 3.1 2.0 1.1 0.9 1.4 26.6 

245 Devigol 27.3 12.1 4.1 2.3 2.0 2.3 3.5 3.2 2.0 1.1 1.0 3.5 64.3 

246 Dhamkund 2.7 2.9 2.9 2.2 2.1 2.3 3.5 3.2 2.0 1.1 0.9 1.6 27.3 

247 Doda 2.8 2.6 2.7 2.1 2.0 2.3 3.4 3.1 1.9 1.1 0.9 1.4 26.5 

248 Dusadudha 23.6 10.4 3.9 2.3 2.0 2.3 3.5 3.2 2.0 1.1 1.0 3.9 59.1 

249 Gainta 1.9 2.5 2.8 2.1 2.1 2.3 3.6 3.3 2.0 1.1 0.8 1.0 25.5 

250 Ghamroor 1.7 2.1 2.3 1.9 1.9 2.3 3.5 3.2 2.0 1.1 0.9 1.1 24.2 

251 Harsur 1.6 2.2 2.5 2.0 2.0 2.3 3.6 3.3 2.0 1.1 0.8 1.0 24.4 

252 Hawal 32.9 28.4 5.7 3.1 2.5 2.4 3.4 3.1 2.0 1.2 1.5 18.8 105.1 

253 Inshan 25.2 10.9 3.8 2.6 2.4 2.3 3.4 3.1 2.0 1.1 1.1 5.3 63.2 

254 Kahu 1.5 2.1 2.3 2.0 2.0 2.3 3.6 3.4 2.1 1.1 0.8 0.9 24.2 

255 Kasol 1.5 2.1 2.3 2.0 2.0 2.3 3.6 3.4 2.1 1.1 0.8 0.9 24.3 

256 Kati 2.9 3.0 2.6 2.3 2.2 2.4 4.0 3.6 2.1 1.1 0.8 1.6 28.7 

257 Kaza 51.1 100.1 67.7 5.1 2.3 1.4 2.0 2.1 2.4 1.3 9.0 25.3 269.7 

258 Kupwara 7.2 2.1 3.5 2.5 2.3 1.5 1.9 1.7 0.9 0.7 1.2 4.7 30.2 

259 Larji 2.0 2.3 2.6 2.1 2.0 2.4 3.7 3.3 2.0 1.1 0.8 1.3 25.6 

260 Lossar 40.2 65.4 65.2 18.9 3.2 2.2 2.0 2.1 2.7 3.0 6.4 15.0 226.2 

261 Matsal 153.2 203.1 204.0 69.9 8.7 3.5 3.9 3.6 2.8 15.1 25.1 44.4 737.4 

262 Mau 100.2 132.3 18.0 4.9 2.6 2.5 3.6 3.3 2.1 1.4 3.2 59.4 333.4 

263 Mohu 48.2 21.3 4.6 2.3 2.2 2.3 3.5 3.2 2.0 1.2 1.3 13.9 105.8 

264 Moorang 17.4 16.4 3.7 2.1 2.2 2.4 3.6 3.3 2.1 1.1 0.9 4.2 59.5 

265 Namgia 25.3 38.1 5.7 1.9 1.3 1.2 1.7 1.9 1.4 0.5 0.9 10.7 90.7 

266 Nandan 8.0 5.4 2.9 2.4 2.4 2.3 3.8 3.4 2.0 1.1 0.9 2.6 37.3 

267 Ohli 5.8 4.2 3.7 2.8 2.4 2.4 3.4 3.1 2.0 1.2 1.0 1.9 33.6 

268 Palmar 4.5 3.7 3.3 2.8 2.4 2.4 3.4 3.1 2.0 1.2 1.0 2.5 32.1 

269 Pooh 27.5 38.2 4.5 1.8 1.3 1.3 1.8 1.9 1.4 0.5 0.8 9.8 90.8 

270 Pouni 1.7 2.4 2.6 2.1 2.1 2.3 3.9 3.5 2.0 1.1 0.8 1.0 25.5 

271 Rakchham 87.7 59.7 24.7 4.5 2.5 2.4 3.4 3.2 2.1 1.1 4.2 56.7 252.1 

272 Rekenwas 28.9 28.2 27.9 5.5 2.6 2.3 3.3 3.1 2.0 1.7 5.8 22.7 134.0 

273 Rot 2.3 2.6 2.5 2.1 2.1 2.4 3.5 3.2 2.0 1.1 0.8 1.2 25.9 

274 Sain 31.9 13.6 3.8 2.5 2.4 2.3 3.8 3.4 2.0 1.2 1.1 8.2 76.4 

275 Sainj 2.6 2.5 2.7 2.1 2.0 2.5 3.7 3.3 2.0 1.1 0.8 1.4 26.6 

276 Salal 1.7 2.5 2.8 2.1 2.1 2.3 3.6 3.3 2.0 1.1 0.8 1.0 25.3 

277 Sarkund 15.4 6.9 3.2 2.6 2.3 2.3 3.4 3.1 1.9 1.1 1.0 4.1 47.4 

278 Shahpur-I 1.6 2.2 2.5 2.0 2.0 2.3 3.6 3.3 2.0 1.1 0.8 1.0 24.5 

279 Sirshi 5.7 4.1 3.4 2.9 2.5 2.4 3.4 3.1 2.0 1.2 1.0 2.0 33.6 
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280 Sohal 15.7 11.7 7.0 3.2 2.3 2.4 3.5 3.2 2.0 1.5 1.7 4.5 58.6 

281 Tandi 121.8 77.5 26.6 4.8 2.2 2.9 3.4 3.2 2.0 1.1 3.0 41.2 289.6 

282 Thana 61.6 24.1 6.8 2.6 2.3 2.4 3.3 3.1 1.9 1.1 1.2 5.4 115.9 

283 Tillar 12.7 6.4 3.6 3.0 2.5 2.4 3.4 3.1 2.0 1.2 1.1 4.1 45.4 

284 Udaipur 87.6 44.7 10.8 3.8 2.2 2.4 3.4 3.1 2.0 1.3 1.9 14.4 177.6 

285 Yurod 9.7 4.8 3.1 2.5 2.2 2.3 3.3 3.1 1.9 1.1 1.0 2.6 37.8 

286 Asmar 6.1 4.7 5.7 6.2 4.0 2.3 2.9 2.8 2.5 1.5 1.7 2.6 43.0 

287 Bamiyan 6.6 18.6 7.5 2.8 2.4 1.3 0.5 0.2 0.3 0.4 2.5 5.7 48.7 

288 Darullaman 11.7 22.7 4.2 2.9 3.7 0.6 1.7 0.8 0.5 0.7 1.1 3.4 53.9 

289 Gerdiz 11.5 30.2 7.0 2.9 1.8 0.7 1.4 0.7 0.0 0.5 1.2 6.5 64.4 

290 Ghaziabad 1.3 1.8 2.3 2.3 1.1 0.2 0.3 0.7 0.5 0.2 0.5 0.9 12.1 

291 Ghazni 11.3 23.0 4.7 2.5 1.4 0.1 1.1 0.1 0.0 0.7 1.4 5.8 52.3 

292 Jabul Saraj 10.2 10.0 7.9 8.9 5.0 1.0 1.6 0.8 1.1 1.9 2.0 3.2 53.5 

293 Jalalabad 1.1 1.5 2.1 2.3 1.4 0.3 0.3 0.5 0.3 0.3 0.6 0.8 11.5 

294 Kabul AP 9.6 12.8 5.2 4.2 3.1 0.4 1.1 0.3 0.3 0.6 1.5 2.7 41.7 

295 Karizmir 17.9 24.0 4.5 3.4 4.2 1.0 2.2 0.5 0.7 0.7 1.1 3.0 63.1 

296 Khost 2.2 2.9 3.1 3.3 2.9 1.4 2.8 2.1 1.5 0.7 0.6 1.7 25.1 

297 Laghman 1.2 1.6 2.2 2.4 1.6 0.3 0.3 0.5 0.3 0.3 0.6 0.8 12.0 

298 Logar 8.6 16.1 4.4 2.8 2.6 0.4 1.0 0.4 0.3 0.5 1.1 4.6 42.7 

299 Mirbachakot 12.0 15.1 3.7 2.9 3.6 0.5 2.7 1.6 0.4 0.7 1.0 2.6 46.8 

300 Mokur 15.3 25.7 4.6 2.5 1.3 0.0 0.5 0.4 0.0 0.8 1.3 4.6 56.9 

301 North Salang 181.0 148.2 153.1 76.1 5.9 1.5 1.1 0.9 0.6 3.5 40.0 79.7 691.4 

302 Okak 26.4 23.5 27.2 5.7 1.6 0.4 1.3 0.4 0.0 0.5 9.2 10.1 106.4 

303 Paghman 23.8 38.7 4.6 3.4 4.6 1.0 3.4 1.0 1.5 0.9 1.3 4.7 88.7 

304 Pan Jao 20.4 98.1 46.2 6.3 1.9 0.7 0.4 0.2 0.4 0.8 10.1 21.0 206.5 

305 Sarobi 2.6 2.8 3.3 3.3 3.1 0.4 0.6 0.4 0.7 0.6 1.0 1.9 20.7 

306 South Salang  71.6 85.0 56.8 9.3 8.7 2.0 2.1 1.6 0.8 2.8 16.3 38.5 295.4 

307 Zebak 4.4 10.7 2.9 2.8 2.2 0.9 0.9 0.3 0.1 0.6 1.8 4.6 32.0 

308 Approach 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

309 Baltoro 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

310 Batura 68.0 84.0 112.0 76.0 64.0 60.0 72.0 80.0 56.0 36.0 32.0 60.0 800.0 

311 Chong Kumdan 86.7 86.7 91.8 85.0 63.8 63.8 38.3 57.4 31.9 81.6 76.5 86.7 850.0 

312 Chogolungma 76.5 76.5 81.0 75.0 56.3 56.3 33.8 50.6 28.1 72.0 67.5 76.5 750.0 

313 Hispar Dome 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

314 Hispar East 76.5 76.5 81.0 75.0 56.3 56.3 33.8 50.6 28.1 72.0 67.5 76.5 750.0 

315 Hispar West 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

316 Hispar Pass 25.5 25.5 27.0 25.0 18.8 18.8 11.3 16.9 9.4 24.0 22.5 25.5 250.0 

317 Khurdopin 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

318 Nanga Parbat 51.0 51.0 54.0 50.0 37.5 37.5 22.5 33.8 18.8 48.0 45.0 51.0 500.0 

319 Nun Kun North 25.5 25.5 27.0 25.0 18.8 18.8 11.3 16.9 9.4 24.0 22.5 25.5 250.0 

320 Sentik  76.5 76.5 81.0 75.0 56.3 56.3 33.8 50.6 28.1 72.0 67.5 76.5 750.0 

321 Siachin A 102.0 102.0 108.0 100.0 75.0 75.0 45.0 67.5 37.5 96.0 90.0 102.0 1000. 

322 Siachin B 102.0 102.0 108.0 100.0 75.0 75.0 45.0 67.5 37.5 96.0 90.0 102.0 1000. 

323 Siachin C 91.8 91.8 97.2 90.0 67.5 67.5 40.5 60.8 33.8 86.4 81.0 91.8 900.0 

324 Siachin D 76.5 76.5 81.0 75.0 56.3 56.3 33.8 50.6 28.1 72.0 67.5 76.5 750.0 

325 South Terong 86.7 86.7 91.8 85.0 63.8 63.8 38.3 57.4 31.9 81.6 76.5 86.7 850.0 

326 Terong 76.5 76.5 81.0 75.0 56.3 56.3 33.8 50.6 28.1 72.0 67.5 76.5 750.0 

327 Urdok 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

328 Whaleback 76.5 76.5 81.0 75.0 56.3 56.3 33.8 50.6 28.1 72.0 67.5 76.5 750.0 
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Table S-3.3: Station-based correction factors for adjusting measurement errors in 

precipitation observations. 

S. # Station Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ANN 

1 Astore 1.399 1.261 1.094 1.048 1.075 1.093 1.097 1.110 1.091 1.093 1.071 1.106 1.139 

2 Babusar 1.970 2.096 1.785 1.612 1.124 1.143 1.119 1.063 1.080 1.424 1.666 1.931 1.556 

3 Balakot 1.021 1.026 1.039 1.040 1.055 1.039 1.021 1.020 1.020 1.052 1.025 1.024 1.028 

4 Bhimber 1.018 1.045 1.031 1.026 1.087 1.039 1.016 1.012 1.011 1.045 1.085 1.019 1.020 

5 Bunji 1.093 1.044 1.100 1.062 1.065 1.097 1.076 1.060 1.075 1.089 1.148 1.069 1.071 

6 Chakdara 1.048 1.045 1.052 1.046 1.044 1.112 1.030 1.030 1.036 1.186 1.083 1.051 1.045 

7 Chakwal 1.041 1.032 1.037 1.036 1.038 1.023 1.027 1.020 1.022 1.082 1.117 1.039 1.030 

8 Cherat 1.097 1.096 1.072 1.080 1.108 1.051 1.045 1.040 1.056 1.082 1.098 1.103 1.069 

9 Chilas 1.076 1.037 1.062 1.047 1.061 1.108 1.088 1.095 1.131 1.126 1.052 1.030 1.066 

10 Chitral 1.086 1.060 1.041 1.042 1.073 1.118 1.169 1.300 1.137 1.059 1.038 1.066 1.063 

11 Dir 1.026 1.022 1.022 1.019 1.043 1.037 1.022 1.025 1.036 1.021 1.018 1.024 1.025 

12 Drosh 1.063 1.052 1.045 1.033 1.061 1.087 1.107 1.103 1.100 1.048 1.034 1.059 1.055 

13 GD Poto 1.014 1.011 1.011 1.009 1.014 1.025 1.011 1.009 1.010 1.011 1.012 1.009 1.011 

14 Gilgit 1.178 1.111 1.176 1.073 1.085 1.124 1.138 1.139 1.208 1.144 1.132 1.065 1.118 

15 Gupis 1.161 1.093 1.137 1.027 1.061 1.034 1.019 1.020 1.041 1.068 1.696 1.135 1.059 

16 Hunza 1.851 1.377 1.105 1.053 1.060 1.040 1.026 1.055 1.045 1.082 1.153 1.293 1.074 

17 Islamabad AP 1.070 1.124 1.135 1.122 1.126 1.078 1.051 1.036 1.039 1.053 1.058 1.062 1.064 

18 Jhelum 1.038 1.031 1.044 1.028 1.042 1.042 1.020 1.018 1.018 1.038 1.025 1.015 1.025 

19 Kakul 1.027 1.023 1.032 1.027 1.038 1.027 1.018 1.021 1.026 1.030 1.026 1.024 1.024 

20 KalamP 1.274 1.266 1.037 1.026 1.038 1.113 1.078 1.094 1.053 1.019 1.026 1.090 1.121 

21 Kamra 1.016 1.017 1.070 1.100 1.262 1.036 1.023 1.022 1.043 1.051 1.100 1.038 1.033 

22 Kohat 1.027 1.026 1.045 1.034 1.028 1.019 1.016 1.013 1.014 1.020 1.161 1.041 1.024 

23 Kotli-P 1.027 1.023 1.033 1.027 1.033 1.051 1.018 1.017 1.022 1.022 1.032 1.018 1.024 

24 landikotal 1.107 1.088 1.040 1.034 1.045 1.643 1.136 1.264 1.178 1.184 1.057 1.063 1.070 

25 Lower Dir 1.108 1.055 1.081 1.062 1.095 1.065 1.050 1.026 1.047 1.029 1.070 1.164 1.060 

26 Malamjaba 1.438 1.173 1.073 1.039 1.040 1.029 1.018 1.019 1.021 1.022 1.040 1.139 1.089 

27 Mangla-P 1.023 1.020 1.017 1.017 1.030 1.023 1.013 1.014 1.018 1.034 1.078 1.028 1.018 

28 Miranshah 1.060 1.067 1.042 1.046 1.118 1.162 1.043 1.069 1.399 1.117 1.095 1.054 1.067 

29 Mirkhani 1.093 1.042 1.047 1.062 1.100 1.161 1.159 1.066 1.091 1.095 1.054 1.115 1.068 

30 Mirpur 1.025 1.036 1.033 1.043 1.061 1.037 1.015 1.014 1.018 1.087 1.333 1.032 1.024 

31 Murree 1.965 2.068 1.716 1.165 1.078 1.327 1.130 1.226 1.188 1.132 1.690 1.991 1.499 

32 Muzaffarabad 1.046 1.045 1.025 1.021 1.029 1.033 1.016 1.014 1.017 1.017 1.033 1.024 1.023 

33 Parachinar 1.016 1.015 1.018 1.015 1.024 1.034 1.010 1.010 1.012 1.014 1.016 1.011 1.014 

34 Pattan 1.094 1.052 1.038 1.032 1.049 1.042 1.033 1.029 1.031 1.040 1.038 1.067 1.042 

35 Peshawar AP 1.058 1.033 1.063 1.050 1.056 1.075 1.051 1.067 1.043 1.028 1.044 1.076 1.051 

36 Rawlakot-P 1.019 1.032 1.048 1.050 1.099 1.068 1.055 1.051 1.044 1.030 1.031 1.034 1.046 

37 Risalpur 1.084 1.050 1.023 1.019 1.025 1.021 1.017 1.024 1.016 1.014 1.030 1.056 1.029 

38 Saidusharif 1.032 1.037 1.063 1.054 1.105 1.087 1.070 1.057 1.052 1.040 1.068 1.043 1.058 

39 Sialkot 1.051 1.047 1.059 1.041 1.059 1.042 1.022 1.030 1.029 1.051 1.042 1.071 1.041 

40 Skardu 1.028 1.048 1.042 1.036 1.059 1.057 1.018 1.017 1.015 1.047 1.036 1.030 1.025 

41 Abazai 1.672 1.161 1.071 1.051 1.049 1.115 1.109 1.112 1.108 1.110 1.115 1.181 1.168 

42 Amandara 1.112 1.124 1.040 1.050 1.132 1.081 1.023 1.023 1.030 1.014 1.029 1.044 1.037 

43 Bagh 1.051 1.051 1.051 1.047 1.121 1.141 1.044 1.028 1.077 1.043 1.078 1.065 1.053 

44 Besham 1.067 1.045 1.034 1.036 1.027 1.030 1.015 1.020 1.034 1.031 1.041 1.054 1.030 

45 Burzil 1.061 1.039 1.063 1.054 1.054 1.042 1.037 1.029 1.041 1.033 1.045 1.092 1.047 

46 Charbagh 2.240 2.357 2.019 1.882 1.210 1.050 1.036 1.034 1.051 1.275 1.881 2.247 1.640 

47 Charsadda 1.095 1.066 1.082 1.069 1.074 1.062 1.025 1.027 1.036 1.047 1.080 1.124 1.061 

48 Dagar 1.026 1.027 1.043 1.038 1.034 1.015 1.017 1.013 1.021 1.056 1.150 1.056 1.027 

49 Deosai 1.047 1.048 1.065 1.051 1.091 1.046 1.022 1.022 1.027 1.047 1.059 1.075 1.040 

50 Dhudnial 2.072 2.230 2.004 1.977 1.259 1.097 1.076 1.050 1.075 1.261 1.806 2.098 1.646 

51 Domel 1.121 1.051 1.015 1.015 1.020 1.045 1.054 1.055 1.065 1.020 1.029 1.069 1.036 

52 Doyian 1.098 1.051 1.043 1.047 1.054 1.035 1.017 1.023 1.024 1.028 1.055 1.083 1.040 
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53 Fort Lockhart 1.169 1.081 1.065 1.065 1.051 1.064 1.047 1.060 1.051 1.052 1.075 1.112 1.067 

54 Gujar Khan 1.099 1.097 1.056 1.031 1.037 1.037 1.021 1.021 1.030 1.034 1.069 1.086 1.043 

55 Hushy 1.075 1.037 1.019 1.047 1.028 1.044 1.014 1.012 1.024 1.062 1.175 1.010 1.022 

56 Jabbar 1.816 1.762 1.140 1.101 1.042 1.051 1.054 1.047 1.054 1.036 1.116 1.770 1.201 

57 Kachura 1.306 1.112 1.051 1.038 1.032 1.030 1.020 1.029 1.024 1.022 1.042 1.179 1.060 

58 KalamW 1.994 1.469 1.069 1.080 1.076 1.140 1.098 1.100 1.083 1.075 1.088 1.301 1.214 

59 Kallar 1.330 1.152 1.039 1.034 1.059 1.109 1.126 1.107 1.063 1.029 1.022 1.071 1.096 

60 Kelash 1.061 1.023 1.014 1.030 1.040 1.025 1.014 1.015 1.018 1.045 1.122 1.008 1.020 

61 Khairabad 1.341 1.396 1.064 1.050 1.079 1.103 1.060 1.036 1.053 1.038 1.045 1.339 1.156 

62 Khandar 1.040 1.019 1.011 1.019 1.016 1.021 1.013 1.017 1.026 1.029 1.034 1.007 1.017 

63 Khot 1.894 2.051 1.830 1.114 1.053 1.055 1.059 1.060 1.060 1.090 1.696 1.914 1.554 

64 Khunjrab-W 5.781 5.908 5.503 4.194 2.174 1.170 1.106 1.088 1.331 3.062 4.869 5.446 2.821 

65 Kotli-W 1.053 1.026 1.015 1.020 1.029 1.024 1.010 1.011 1.017 1.036 1.043 1.010 1.016 

66 Lora 1.040 1.034 1.023 1.026 1.052 1.067 1.021 1.020 1.014 1.042 1.093 1.028 1.027 

67 Malakand 1.043 1.045 1.048 1.041 1.115 1.082 1.031 1.018 1.056 1.057 1.048 1.051 1.041 

68 Mangla-W 1.022 1.027 1.023 1.041 1.031 1.024 1.013 1.012 1.020 1.086 1.253 1.025 1.020 

69 Mardan 1.037 1.053 1.077 1.067 1.076 1.042 1.016 1.011 1.022 1.036 1.059 1.059 1.032 

70 Munda dam 1.043 1.053 1.060 1.051 1.096 1.047 1.025 1.016 1.024 1.032 1.085 1.120 1.037 

71 Naltar 1.400 1.553 1.123 1.040 1.032 1.038 1.033 1.028 1.035 1.032 1.083 1.387 1.152 

72 Naran 2.242 1.979 1.938 1.087 1.037 1.066 1.070 1.084 1.061 1.023 1.058 1.336 1.481 

73 Oghi 1.058 1.047 1.054 1.047 1.053 1.037 1.023 1.032 1.036 1.026 1.044 1.078 1.042 

74 Palandri 1.059 1.045 1.027 1.016 1.025 1.015 1.011 1.009 1.015 1.045 1.050 1.057 1.022 

75 Phulra 1.059 1.054 1.065 1.051 1.060 1.046 1.026 1.026 1.034 1.030 1.049 1.090 1.043 

76 Pir Chenasi 1.975 1.583 1.066 1.034 1.040 1.023 1.018 1.027 1.021 1.039 1.066 1.295 1.199 

77 Puran 1.045 1.046 1.052 1.043 1.046 1.036 1.020 1.022 1.027 1.033 1.037 1.064 1.036 

78 Qalangi 1.041 1.045 1.057 1.050 1.114 1.624 1.043 1.039 1.139 1.161 1.061 1.058 1.058 

79 Rama 2.187 2.257 1.662 1.091 1.049 1.051 1.049 1.043 1.044 1.042 1.348 2.146 1.559 

80 Ratu 2.152 2.129 1.197 1.055 1.037 1.057 1.068 1.075 1.058 1.030 1.082 2.019 1.359 

81 Rawlakot-W 1.074 1.056 1.032 1.026 1.033 1.019 1.020 1.018 1.024 1.042 1.038 1.072 1.032 

82 Saifulmulk 2.268 1.935 1.564 1.095 1.065 1.059 1.053 1.058 1.042 1.029 1.241 2.163 1.564 

83 Sehrkakota 1.068 1.045 1.025 1.035 1.037 1.042 1.012 1.020 1.026 1.029 1.035 1.042 1.028 

84 Shahpur 1.293 1.110 1.079 1.060 1.057 1.032 1.019 1.021 1.026 1.025 1.058 1.203 1.080 

85 Shangla 1.230 1.130 1.103 1.071 1.067 1.039 1.022 1.018 1.031 1.046 1.062 1.189 1.070 

86 Shendure 1.444 1.813 1.542 1.100 1.079 1.052 1.040 1.045 1.058 1.106 1.398 1.537 1.290 

87 Shigar 1.757 1.280 1.100 1.112 1.066 1.073 1.077 1.067 1.046 1.053 1.068 1.222 1.172 

88 Shinkiari 1.058 1.050 1.059 1.050 1.051 1.029 1.016 1.022 1.022 1.026 1.043 1.085 1.035 

89 Shogran 2.261 1.767 1.136 1.057 1.038 1.031 1.028 1.039 1.023 1.019 1.089 1.828 1.318 

90 Tandar 1.068 1.024 1.015 1.030 1.025 1.028 1.009 1.009 1.017 1.044 1.052 1.010 1.015 

91 Tarbela 1.008 1.015 1.029 1.040 1.075 1.037 1.018 1.022 1.027 1.064 1.020 1.017 1.025 

92 Ushkore 1.403 1.652 1.338 1.048 1.073 1.046 1.020 1.018 1.031 1.049 1.201 1.526 1.189 

93 Yasin 1.878 2.131 1.599 1.076 1.059 1.036 1.024 1.022 1.027 1.079 1.538 1.870 1.329 

94 Yugo 1.902 1.515 1.099 1.081 1.062 1.130 1.073 1.138 1.108 1.049 1.194 1.476 1.173 

95 Zani 1.595 1.856 1.478 1.172 1.054 1.046 1.061 1.060 1.038 1.073 1.420 1.630 1.307 

96 Ziarat 2.707 3.282 2.512 1.187 1.080 1.049 1.022 1.030 1.054 1.130 2.311 2.515 1.714 

97 Zulam Br. 1.034 1.045 1.052 1.041 1.071 1.079 1.038 1.027 1.056 1.114 1.070 1.080 1.046 

98 Alambar 1.980 2.359 2.042 1.573 1.135 1.039 1.009 1.010 1.034 1.321 1.866 1.960 1.543 

99 Bagrot 1.372 1.272 1.132 1.071 1.059 1.052 1.063 1.076 1.119 1.054 1.118 1.180 1.116 

100 Baldihel 1.963 2.250 2.004 1.396 1.061 1.031 1.042 1.028 1.049 1.124 1.799 1.997 1.314 

101 Bulibalsirbar 1.373 1.620 1.460 1.311 1.121 1.048 1.017 1.013 1.023 1.159 1.403 1.503 1.258 

102 Dadormal 1.862 2.207 1.868 1.126 1.043 1.027 1.038 1.039 1.044 1.070 1.729 1.988 1.326 

103 Dame 1.855 2.170 1.897 1.218 1.041 1.017 1.025 1.025 1.035 1.080 1.771 1.964 1.334 

104 Diran 1.857 2.184 1.880 1.149 1.040 1.021 1.030 1.031 1.038 1.069 1.749 1.972 1.325 

105 Garmashbar 1.969 2.326 1.929 1.118 1.062 1.035 1.013 1.013 1.019 1.062 1.753 1.939 1.470 

106 Khaimetbar 1.370 1.610 1.425 1.095 1.086 1.043 1.017 1.013 1.017 1.064 1.363 1.494 1.227 

107 Khunjrab-C 5.719 5.861 5.490 4.261 2.658 1.441 1.111 1.098 1.809 3.099 4.875 5.436 2.625 

108 Akhnoor 1.028 1.027 1.037 1.054 1.140 1.046 1.010 1.007 1.010 1.054 1.193 1.021 1.017 

109 Anantnag 1.082 1.079 1.027 1.034 1.038 1.037 1.058 1.069 1.020 1.029 1.075 1.063 1.043 
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110 Arizal 1.088 1.060 1.036 1.029 1.025 1.044 1.052 1.066 1.029 1.015 1.041 1.057 1.040 

111 Arki 1.034 1.036 1.034 1.068 1.042 1.018 1.010 1.013 1.016 1.090 1.075 1.036 1.021 

112 Babapura 1.081 1.040 1.034 1.025 1.027 1.044 1.052 1.052 1.023 1.023 1.063 1.071 1.038 

113 Badarwah 1.041 1.027 1.018 1.019 1.032 1.035 1.030 1.026 1.025 1.026 1.015 1.032 1.027 

114 Badgam 1.085 1.036 1.030 1.025 1.031 1.048 1.042 1.043 1.023 1.018 1.036 1.069 1.036 

115 Bandipura 1.104 1.051 1.035 1.020 1.038 1.051 1.057 1.050 1.023 1.017 1.039 1.103 1.043 

116 Banihal 1.037 1.019 1.014 1.017 1.023 1.027 1.024 1.029 1.012 1.016 1.015 1.027 1.021 

117 Banjar Saraj 1.040 1.030 1.025 1.028 1.024 1.025 1.016 1.020 1.018 1.065 1.048 1.056 1.024 

118 Baramula 1.062 1.023 1.020 1.013 1.028 1.043 1.046 1.080 1.027 1.013 1.023 1.050 1.027 

119 Bashila 1.119 1.045 1.034 1.033 1.033 1.032 1.011 1.013 1.011 1.041 1.035 1.055 1.030 

120 Batote 1.043 1.030 1.015 1.009 1.015 1.039 1.072 1.090 1.037 1.012 1.015 1.018 1.026 

121 Bhagtan 1.055 1.045 1.050 1.020 1.018 1.017 1.026 1.017 1.019 1.022 1.027 1.046 1.025 

122 Bhangrotu 1.038 1.028 1.022 1.056 1.051 1.011 1.008 1.009 1.009 1.049 1.049 1.041 1.015 

123 Bhuntar 1.021 1.023 1.018 1.027 1.029 1.046 1.027 1.027 1.039 1.051 1.029 1.035 1.027 

124 Bilaspur 1.047 1.038 1.035 1.110 1.069 1.030 1.011 1.012 1.013 1.052 1.057 1.042 1.022 

125 Chachiot 1.033 1.029 1.032 1.040 1.033 1.016 1.007 1.011 1.010 1.027 1.024 1.039 1.016 

126 Chandigarh 1.043 1.040 1.055 1.159 1.125 1.029 1.013 1.012 1.011 1.061 1.103 1.038 1.023 

127 Charisharif 1.063 1.038 1.022 1.021 1.024 1.031 1.036 1.040 1.021 1.017 1.028 1.050 1.030 

128 Chenani 1.023 1.012 1.013 1.021 1.047 1.053 1.014 1.024 1.018 1.029 1.083 1.011 1.019 

129 Chini Kalpa 1.489 1.348 1.046 1.027 1.038 1.121 1.071 1.074 1.034 1.075 1.073 1.199 1.138 

130 Chowari 1.019 1.021 1.021 1.032 1.030 1.016 1.006 1.006 1.008 1.053 1.031 1.018 1.012 

131 Dalhousie 1.029 1.024 1.015 1.010 1.012 1.013 1.024 1.015 1.017 1.006 1.005 1.015 1.015 

132 Dasuya 1.058 1.080 1.054 1.154 1.111 1.025 1.015 1.014 1.015 1.081 1.109 1.064 1.028 

133 Dehra Gopipur 1.052 1.063 1.044 1.103 1.100 1.031 1.010 1.009 1.012 1.091 1.105 1.032 1.020 

134 Dharampur 1.027 1.033 1.039 1.110 1.045 1.017 1.009 1.012 1.011 1.047 1.088 1.031 1.019 

135 Dharamshala 1.097 1.066 1.075 1.057 1.032 1.012 1.004 1.004 1.007 1.038 1.071 1.112 1.017 

136 Dharamshala-L 1.143 1.085 1.072 1.043 1.000 1.000 1.000 1.000 1.000 1.000 1.100 1.100 1.000 

137 Dharamshala-U 1.014 1.025 1.021 1.035 1.040 1.021 1.004 1.004 1.009 1.023 1.041 1.019 1.009 

138 Digar 2.035 1.984 1.825 1.610 1.287 1.777 1.167 1.164 1.318 1.374 1.802 2.181 1.422 

139 Dras 2.338 2.395 1.292 1.113 1.052 1.104 1.103 1.123 1.114 1.111 1.286 2.285 1.325 

140 Durroo 1.053 1.045 1.016 1.017 1.030 1.018 1.019 1.044 1.011 1.019 1.012 1.044 1.025 

141 Garhshankar 1.059 1.088 1.057 1.292 1.159 1.032 1.014 1.016 1.017 1.147 1.143 1.059 1.031 

142 Gondhla 2.290 1.724 1.223 1.058 1.023 1.095 1.076 1.062 1.028 1.057 1.128 2.190 1.353 

143 GS Nagar 1.130 1.103 1.072 1.045 1.062 1.067 1.062 1.028 1.016 1.010 1.028 1.202 1.038 

144 Gulabgarh 1.096 1.048 1.027 1.030 1.047 1.045 1.009 1.008 1.016 1.048 1.036 1.039 1.030 

145 Gulmarg 1.292 1.194 1.025 1.017 1.017 1.014 1.017 1.017 1.014 1.009 1.020 1.238 1.076 

146 Gund 1.120 1.049 1.025 1.014 1.019 1.027 1.028 1.018 1.014 1.015 1.023 1.060 1.029 

147 Gurez 1.630 1.196 1.033 1.016 1.018 1.032 1.021 1.019 1.008 1.011 1.045 1.251 1.130 

148 Hamirpur 1.028 1.042 1.045 1.084 1.064 1.033 1.009 1.010 1.011 1.047 1.067 1.023 1.018 

149 Handwara 1.084 1.033 1.019 1.012 1.025 1.044 1.039 1.058 1.029 1.010 1.023 1.077 1.029 

150 Hoshiyarpur 1.062 1.080 1.068 1.314 1.124 1.031 1.013 1.015 1.018 1.061 1.146 1.060 1.029 

151 Jammu 1.052 1.036 1.041 1.063 1.104 1.048 1.011 1.010 1.015 1.090 1.081 1.020 1.022 

152 Janjehli 1.135 1.052 1.024 1.022 1.022 1.013 1.009 1.013 1.011 1.043 1.044 1.060 1.020 

153 Jhungi 1.036 1.029 1.023 1.031 1.024 1.015 1.009 1.013 1.015 1.037 1.046 1.029 1.017 

154 Jogindarnagar 1.026 1.021 1.024 1.045 1.031 1.014 1.006 1.006 1.007 1.027 1.036 1.022 1.011 

155 Jubal 1.072 1.039 1.034 1.043 1.034 1.028 1.015 1.017 1.020 1.052 1.047 1.062 1.029 

156 Junga 1.024 1.027 1.035 1.066 1.041 1.018 1.010 1.013 1.012 1.036 1.059 1.039 1.019 

157 Kalka 1.024 1.058 1.103 1.441 1.056 1.041 1.013 1.009 1.011 1.048 1.209 1.070 1.023 

158 Kandaghat 1.028 1.030 1.034 1.068 1.057 1.032 1.010 1.014 1.016 1.046 1.135 1.037 1.022 

159 Kangra 1.085 1.080 1.075 1.098 1.113 1.024 1.006 1.005 1.009 1.036 1.201 1.117 1.021 

160 Kargil 2.132 1.893 1.118 1.073 1.069 1.221 1.132 1.166 1.243 1.047 1.163 1.778 1.431 

161 Karsog 1.026 1.030 1.032 1.067 1.048 1.026 1.015 1.016 1.018 1.065 1.077 1.034 1.024 

162 Kasauli1 1.042 1.046 1.086 1.155 1.166 1.028 1.006 1.009 1.010 1.072 1.077 1.048 1.017 

163 Kasauli2 1.038 1.039 1.038 1.179 1.057 1.029 1.007 1.008 1.010 1.025 1.132 1.033 1.016 

164 Kasumpti 1.034 1.036 1.034 1.059 1.039 1.020 1.010 1.011 1.011 1.039 1.059 1.041 1.019 

165 Kataula 1.076 1.037 1.042 1.095 1.047 1.020 1.008 1.009 1.016 1.054 1.051 1.047 1.018 

166 Khadrala 1.385 1.226 1.050 1.035 1.027 1.026 1.010 1.011 1.010 1.042 1.060 1.350 1.120 
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167 Khalatse 1.977 2.053 1.441 1.179 1.096 1.124 1.052 1.077 1.136 1.107 1.280 1.972 1.304 

168 Khangral 2.056 1.901 1.826 1.430 1.149 1.460 1.058 1.258 1.060 1.153 2.005 2.117 1.446 

169 Kharar 1.044 1.086 1.093 1.625 1.123 1.044 1.013 1.013 1.012 1.082 1.182 1.077 1.028 

170 Kilba 1.413 1.197 1.039 1.030 1.039 1.121 1.055 1.057 1.032 1.056 1.045 1.123 1.099 

171 Kishtwar 1.059 1.024 1.022 1.021 1.019 1.034 1.037 1.050 1.021 1.021 1.031 1.031 1.027 

172 Kokernagh 1.075 1.044 1.024 1.022 1.022 1.031 1.035 1.048 1.026 1.027 1.031 1.053 1.033 

173 Koksar 2.291 1.728 1.269 1.064 1.022 1.071 1.025 1.032 1.020 1.025 1.148 2.200 1.397 

174 Kotarh 1.074 1.042 1.027 1.041 1.043 1.025 1.011 1.014 1.011 1.028 1.063 1.058 1.024 

175 Kothi 1.766 1.173 1.066 1.044 1.022 1.037 1.015 1.010 1.015 1.020 1.048 1.224 1.116 

176 Kotkhai 1.049 1.035 1.033 1.046 1.037 1.033 1.015 1.020 1.013 1.049 1.046 1.043 1.027 

177 Kukernag 1.066 1.030 1.018 1.014 1.023 1.037 1.029 1.023 1.022 1.008 1.020 1.044 1.025 

178 Kulgam 1.085 1.042 1.024 1.013 1.019 1.034 1.035 1.033 1.010 1.016 1.028 1.080 1.025 

179 Kulu 1.028 1.018 1.021 1.022 1.041 1.061 1.028 1.029 1.027 1.119 1.043 1.037 1.029 

180 Kumarsain 1.052 1.039 1.031 1.049 1.037 1.029 1.015 1.020 1.022 1.095 1.060 1.070 1.029 

181 Kyelong 2.397 2.479 1.275 1.061 1.031 1.102 1.063 1.085 1.038 1.065 1.195 2.228 1.453 

182 Langet 1.087 1.032 1.019 1.013 1.027 1.046 1.045 1.073 1.029 1.011 1.023 1.082 1.030 

183 Leh 1.983 1.810 1.187 1.191 1.141 1.471 1.078 1.079 1.064 1.031 1.266 2.083 1.297 

184 Malashahibag 1.058 1.036 1.030 1.021 1.030 1.036 1.038 1.034 1.026 1.019 1.022 1.044 1.032 

185 Malikpur 1.015 1.031 1.028 1.044 1.089 1.024 1.009 1.007 1.008 1.059 1.048 1.019 1.015 

186 Mandi1 1.030 1.034 1.036 1.048 1.035 1.016 1.008 1.009 1.014 1.046 1.045 1.048 1.017 

187 Mandi2 1.038 1.033 1.038 1.055 1.042 1.020 1.008 1.009 1.013 1.047 1.061 1.045 1.017 

188 Mulbek 1.978 1.915 1.836 1.419 1.388 1.332 1.192 1.396 1.311 1.200 1.862 2.078 1.687 

189 Nalagarh 1.040 1.060 1.058 1.350 1.087 1.050 1.009 1.009 1.010 1.063 1.094 1.049 1.020 

190 Nawanshahr 1.060 1.086 1.053 1.401 1.157 1.031 1.014 1.013 1.017 1.122 1.130 1.052 1.029 

191 Nichar 1.084 1.047 1.033 1.034 1.033 1.064 1.031 1.026 1.026 1.042 1.053 1.062 1.039 

192 Nowshera 1.031 1.035 1.040 1.090 1.073 1.050 1.014 1.013 1.020 1.029 1.073 1.053 1.026 

193 Nurpur 1.015 1.049 1.029 1.062 1.132 1.038 1.008 1.006 1.010 1.022 1.119 1.020 1.015 

194 Palampur 1.101 1.075 1.074 1.063 1.050 1.020 1.005 1.005 1.007 1.024 1.051 1.110 1.020 

195 Panamik 2.010 1.868 1.276 1.163 1.118 1.138 1.059 1.070 1.122 1.069 1.306 1.860 1.264 

196 Panjain 1.064 1.033 1.027 1.032 1.023 1.024 1.011 1.013 1.013 1.042 1.021 1.041 1.020 

197 Pathankot 1.029 1.051 1.084 1.134 1.191 1.062 1.008 1.006 1.009 1.030 1.120 1.043 1.017 

198 Pendras 2.138 1.947 1.905 1.965 1.884 1.307 1.225 1.168 1.288 1.479 1.872 2.088 1.878 

199 Phalgam 1.093 1.052 1.031 1.025 1.028 1.022 1.025 1.022 1.020 1.015 1.027 1.070 1.031 

200 Poonch 1.020 1.017 1.017 1.027 1.035 1.015 1.006 1.008 1.008 1.052 1.022 1.026 1.015 

201 Prang 1.083 1.046 1.033 1.023 1.033 1.046 1.038 1.036 1.019 1.018 1.042 1.076 1.041 

202 Purbani 1.404 1.211 1.049 1.034 1.041 1.154 1.123 1.133 1.050 1.134 1.067 1.129 1.143 

203 Qazi Gund 1.039 1.023 1.014 1.017 1.019 1.021 1.025 1.034 1.010 1.013 1.017 1.027 1.021 

204 Rajdhani 1.017 1.033 1.028 1.034 1.038 1.032 1.012 1.009 1.012 1.041 1.038 1.022 1.018 

205 Ramban 1.022 1.019 1.022 1.025 1.031 1.058 1.022 1.026 1.018 1.037 1.048 1.018 1.024 

206 Ramnagar 1.017 1.021 1.017 1.032 1.052 1.020 1.008 1.008 1.011 1.013 1.066 1.018 1.013 

207 Rampur 1.043 1.034 1.034 1.038 1.046 1.043 1.018 1.018 1.019 1.045 1.069 1.057 1.029 

208 Riasi 1.019 1.019 1.033 1.048 1.053 1.031 1.007 1.006 1.008 1.034 1.047 1.014 1.013 

209 Rohru 1.050 1.028 1.027 1.052 1.041 1.025 1.017 1.016 1.013 1.041 1.054 1.053 1.026 

210 Rupanagar 1.034 1.055 1.074 1.181 1.207 1.053 1.011 1.013 1.013 1.087 1.106 1.067 1.026 

211 Sangla 1.157 1.075 1.051 1.046 1.040 1.101 1.048 1.049 1.033 1.084 1.075 1.147 1.073 

212 Sarkahat 1.030 1.027 1.032 1.073 1.042 1.013 1.007 1.007 1.009 1.035 1.064 1.034 1.013 

213 Shillaru 1.253 1.093 1.040 1.045 1.030 1.020 1.009 1.013 1.012 1.047 1.050 1.137 1.030 

214 Shimla 1.042 1.049 1.038 1.059 1.037 1.015 1.009 1.012 1.010 1.034 1.076 1.056 1.018 

215 Shiquanhe1 2.264 2.678 2.241 1.723 1.520 1.203 1.063 1.062 1.183 1.310 2.121 2.022 1.347 

216 Shopian 1.063 1.037 1.022 1.017 1.020 1.029 1.032 1.026 1.014 1.022 1.026 1.048 1.026 

217 Sogam 1.102 1.038 1.020 1.013 1.023 1.038 1.028 1.023 1.022 1.009 1.026 1.079 1.031 

218 Solan 1.027 1.031 1.027 1.081 1.045 1.019 1.010 1.012 1.013 1.041 1.052 1.029 1.019 

219 Sonemarg 1.881 1.416 1.067 1.037 1.038 1.020 1.023 1.015 1.011 1.015 1.071 1.363 1.176 

220 Sopore 1.144 1.033 1.023 1.016 1.031 1.062 1.065 1.063 1.021 1.012 1.032 1.137 1.033 

221 SR Sing 1.033 1.034 1.055 1.102 1.085 1.039 1.011 1.014 1.014 1.098 1.809 1.022 1.023 

222 Srinagar 1.075 1.035 1.027 1.022 1.031 1.036 1.045 1.038 1.026 1.018 1.029 1.048 1.034 

223 Sundarnagar 1.031 1.029 1.033 1.067 1.036 1.017 1.009 1.011 1.012 1.063 1.046 1.046 1.018 
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224 Suni Seoni 1.029 1.035 1.035 1.055 1.049 1.024 1.011 1.019 1.018 1.057 1.070 1.032 1.024 

225 Tanda 1.070 1.135 1.090 1.237 1.112 1.100 1.014 1.018 1.014 1.068 1.061 1.061 1.032 

226 Tangmarg 1.163 1.062 1.028 1.016 1.024 1.034 1.044 1.024 1.022 1.016 1.033 1.076 1.037 

227 Tapoban 1.512 1.198 1.069 1.058 1.063 1.047 1.018 1.021 1.026 1.013 1.128 1.296 1.061 

228 Theog 1.063 1.036 1.032 1.040 1.033 1.022 1.012 1.018 1.015 1.087 1.061 1.054 1.026 

229 Tibri 1.036 1.072 1.044 1.083 1.130 1.058 1.017 1.013 1.032 1.105 1.085 1.040 1.031 

230 Tral 1.082 1.063 1.036 1.034 1.039 1.049 1.049 1.038 1.022 1.048 1.057 1.078 1.045 

231 T-K-I-H-Kung 1.794 1.937 1.622 1.522 1.769 1.707 1.288 1.322 1.661 1.645 1.610 1.591 1.533 

232 Udhampur 1.017 1.021 1.022 1.058 1.178 1.048 1.010 1.008 1.008 1.048 1.031 1.021 1.016 

233 Una 1.038 1.060 1.052 1.112 1.115 1.052 1.010 1.010 1.015 1.052 1.094 1.047 1.022 

234 Uri 1.035 1.023 1.018 1.024 1.020 1.022 1.021 1.017 1.010 1.019 1.018 1.033 1.022 

235 Uttamchipura 1.824 1.542 1.136 1.025 1.018 1.028 1.017 1.017 1.017 1.015 1.139 1.852 1.215 

236 Vantipura 1.072 1.043 1.031 1.026 1.031 1.036 1.047 1.041 1.022 1.020 1.033 1.068 1.036 

237 Verinagh 1.065 1.025 1.017 1.017 1.014 1.026 1.022 1.025 1.011 1.011 1.029 1.038 1.021 

238 Arthal 1.183 1.065 1.029 1.028 1.027 1.030 1.054 1.065 1.072 1.026 1.035 1.064 1.057 

239 Bhakra 1.037 1.044 1.039 1.035 1.040 1.052 1.008 1.010 1.011 1.031 1.026 1.021 1.017 

240 Bunencha 1.324 1.172 1.029 1.023 1.022 1.028 1.020 1.023 1.025 1.031 1.037 1.180 1.081 

241 Chingaon 1.049 1.025 1.011 1.016 1.016 1.019 1.022 1.026 1.028 1.020 1.019 1.037 1.024 

242 Chitkul 2.317 1.705 1.777 1.132 1.053 1.106 1.051 1.051 1.042 1.173 1.855 2.514 1.493 

243 Damini 1.015 1.014 1.011 1.017 1.019 1.023 1.012 1.014 1.015 1.018 1.016 1.018 1.015 

244 Darabshala 1.029 1.025 1.023 1.036 1.036 1.046 1.033 1.040 1.043 1.037 1.034 1.037 1.033 

245 Devigol 1.285 1.110 1.030 1.029 1.029 1.036 1.023 1.027 1.029 1.053 1.053 1.133 1.067 

246 Dhamkund 1.017 1.016 1.013 1.026 1.027 1.033 1.021 1.025 1.027 1.021 1.019 1.024 1.020 

247 Doda 1.026 1.021 1.017 1.031 1.033 1.041 1.042 1.050 1.054 1.029 1.027 1.029 1.030 

248 Dusadudha 1.281 1.108 1.032 1.030 1.030 1.038 1.022 1.026 1.028 1.043 1.044 1.121 1.063 

249 Gainta 1.012 1.014 1.013 1.024 1.026 1.033 1.011 1.012 1.013 1.019 1.016 1.014 1.015 

250 Ghamroor 1.038 1.042 1.037 1.042 1.047 1.061 1.008 1.009 1.010 1.042 1.038 1.035 1.018 

251 Harsur 1.032 1.039 1.035 1.039 1.043 1.055 1.008 1.010 1.010 1.046 1.039 1.033 1.018 

252 Hawal 1.416 1.283 1.049 1.027 1.024 1.025 1.025 1.030 1.033 1.022 1.043 1.291 1.099 

253 Inshan 1.386 1.146 1.041 1.031 1.031 1.034 1.039 1.047 1.051 1.038 1.044 1.142 1.085 

254 Kahu 1.034 1.041 1.036 1.027 1.030 1.039 1.010 1.012 1.013 1.031 1.026 1.021 1.019 

255 Kasol 1.034 1.041 1.036 1.025 1.029 1.037 1.009 1.011 1.012 1.031 1.026 1.021 1.018 

256 Kati 1.018 1.015 1.011 1.010 1.011 1.014 1.008 1.009 1.010 1.010 1.011 1.013 1.011 

257 Kaza 1.910 2.370 1.792 1.086 1.046 1.077 1.036 1.039 1.047 1.114 1.644 1.749 1.480 

258 Kupwara 1.072 1.138 1.015 1.015 1.019 1.021 1.019 1.024 1.017 1.013 1.020 1.067 1.027 

259 Larji 1.026 1.026 1.023 1.030 1.032 1.042 1.017 1.020 1.021 1.033 1.029 1.031 1.025 

260 Lossar 1.464 1.581 1.495 1.207 1.042 1.076 1.023 1.026 1.034 1.171 1.293 1.289 1.261 

261 Matsal 2.140 2.322 2.063 1.713 1.099 1.044 1.068 1.080 1.110 1.430 1.816 2.008 1.751 

262 Mau 2.037 2.076 1.128 1.045 1.027 1.029 1.036 1.043 1.048 1.028 1.095 1.752 1.322 

263 Mohu 1.266 1.092 1.017 1.019 1.020 1.023 1.022 1.026 1.028 1.013 1.022 1.094 1.064 

264 Moorang 1.496 1.360 1.070 1.057 1.069 1.211 1.103 1.100 1.065 1.159 1.108 1.202 1.170 

265 Namgia 1.804 1.931 1.119 1.056 1.046 1.119 1.054 1.062 1.048 1.084 1.118 1.567 1.288 

266 Nandan 1.046 1.027 1.012 1.014 1.016 1.017 1.006 1.007 1.007 1.014 1.012 1.026 1.013 

267 Ohli 1.040 1.025 1.018 1.027 1.026 1.029 1.034 1.040 1.044 1.028 1.027 1.037 1.029 

268 Palmar 1.045 1.029 1.022 1.028 1.027 1.029 1.030 1.036 1.039 1.023 1.029 1.030 1.030 

269 Pooh 1.760 1.812 1.081 1.048 1.041 1.106 1.049 1.055 1.043 1.071 1.086 1.452 1.251 

270 Pouni 1.016 1.019 1.017 1.024 1.026 1.032 1.005 1.006 1.006 1.024 1.020 1.017 1.011 

271 Rakchham 2.265 1.663 1.234 1.062 1.041 1.104 1.049 1.048 1.034 1.078 1.243 2.363 1.364 

272 Rekenwas 1.528 1.405 1.350 1.101 1.053 1.053 1.084 1.101 1.112 1.057 1.302 1.507 1.252 

273 Rot 1.016 1.016 1.012 1.017 1.018 1.023 1.025 1.029 1.031 1.022 1.019 1.018 1.019 

274 Sain 1.138 1.046 1.011 1.008 1.009 1.009 1.007 1.008 1.008 1.009 1.012 1.043 1.023 

275 Sainj 1.026 1.021 1.018 1.023 1.025 1.033 1.017 1.020 1.021 1.033 1.029 1.032 1.022 

276 Salal 1.012 1.015 1.013 1.022 1.024 1.030 1.010 1.012 1.012 1.020 1.017 1.015 1.014 

277 Sarkund 1.351 1.123 1.050 1.032 1.033 1.036 1.056 1.067 1.073 1.035 1.048 1.115 1.079 

278 Shahpur-I 1.029 1.035 1.032 1.031 1.035 1.045 1.008 1.010 1.011 1.039 1.034 1.029 1.017 

279 Sirshi 1.048 1.030 1.020 1.025 1.023 1.025 1.027 1.032 1.035 1.029 1.028 1.040 1.029 

280 Sohal 1.192 1.125 1.060 1.052 1.042 1.048 1.064 1.076 1.085 1.043 1.055 1.102 1.085 
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281 Tandi 2.285 1.715 1.197 1.076 1.040 1.056 1.053 1.062 1.070 1.038 1.120 2.165 1.390 

282 Thana 1.312 1.107 1.024 1.031 1.031 1.035 1.069 1.082 1.090 1.030 1.035 1.113 1.100 

283 Tillar 1.143 1.057 1.028 1.023 1.022 1.023 1.029 1.034 1.038 1.019 1.026 1.057 1.041 

284 Udaipur 2.011 1.452 1.087 1.049 1.033 1.039 1.052 1.062 1.069 1.044 1.075 1.391 1.236 

285 Yurod 1.175 1.076 1.040 1.037 1.038 1.044 1.043 1.052 1.057 1.042 1.042 1.077 1.060 

286 Asmar 1.075 1.067 1.063 1.057 1.064 1.142 1.098 1.106 1.102 1.040 1.071 1.166 1.074 

287 Bamiyan 1.959 2.112 1.297 1.080 1.062 1.149 1.466 1.172 1.063 1.093 1.139 1.852 1.295 

288 Darullaman 1.292 1.426 1.050 1.069 1.159 1.427 1.366 1.339 1.272 1.132 1.078 1.175 1.186 

289 Gerdiz 1.284 1.426 1.106 1.039 1.100 1.167 1.093 1.099 1.026 1.144 1.104 1.202 1.187 

290 Ghaziabad 1.097 1.071 1.062 1.042 1.087 1.495 1.164 1.076 1.053 1.247 1.159 1.189 1.070 

291 Ghazni 1.246 1.410 1.086 1.041 1.080 1.063 1.071 1.056 1.024 1.562 1.089 1.187 1.172 

292 Jabul Saraj 1.156 1.113 1.080 1.063 1.143 1.569 1.534 1.833 1.352 1.165 1.089 1.088 1.106 

293 Jalalabad 1.058 1.060 1.041 1.052 1.130 1.146 1.039 1.022 1.016 1.089 1.039 1.151 1.051 

294 Kabul AP 1.289 1.219 1.081 1.050 1.127 1.345 1.208 1.282 1.154 1.246 1.079 1.115 1.131 

295 Karizmir 1.248 1.349 1.049 1.028 1.137 1.302 1.320 1.516 1.200 1.142 1.056 1.147 1.142 

296 Khost 1.086 1.061 1.063 1.049 1.070 1.080 1.035 1.041 1.044 1.107 1.092 1.080 1.056 

297 Laghman 1.047 1.049 1.038 1.051 1.100 1.239 1.033 1.021 1.025 1.044 1.031 1.088 1.047 

298 Logar 1.248 1.461 1.100 1.055 1.098 1.244 1.204 1.352 1.292 1.144 1.121 1.228 1.185 

299 Mirbachakot 1.210 1.243 1.046 1.067 1.165 1.540 1.299 1.271 1.387 1.134 1.070 1.125 1.144 

300 Mokur 1.271 1.385 1.053 1.074 1.118 1.017 1.028 1.020 1.007 1.079 1.145 1.177 1.170 

301 North Salang 2.467 2.443 1.893 1.504 1.063 1.160 1.176 1.141 1.333 1.133 1.547 1.980 1.818 

302 Okak 1.587 1.886 1.833 1.194 1.096 1.081 1.116 1.102 1.035 1.875 1.631 1.750 1.531 

303 Paghman 1.383 1.565 1.056 1.041 1.167 1.407 1.406 1.494 1.232 1.174 1.048 1.126 1.216 

304 Pan Jao 2.018 2.258 2.100 1.070 1.074 1.150 1.436 1.151 1.039 1.037 1.530 2.000 1.616 

305 Sarobi 1.059 1.051 1.071 1.059 1.213 1.432 1.649 1.174 1.081 1.170 1.161 1.095 1.080 

306 South Salang  1.377 1.593 1.259 1.079 1.143 1.466 1.527 1.484 1.633 1.155 1.206 1.504 1.322 

307 Zebak 2.754 2.395 1.508 1.059 1.058 1.090 1.181 1.151 1.053 1.100 1.320 2.213 1.239 

308 Approach 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

309 Baltoro 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

310 Batura 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 1.774 

311 Chong Kumdan 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 

312 Chogolungma 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 

313 Hispar Dome 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

314 Hispar East 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 1.701 

315 Hispar West 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

316 Hispar Pass 1.176 1.176 1.176 1.176 1.176 1.176 1.176 1.176 1.176 1.176 1.176 1.176 1.176 

317 Khurdopin 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

318 Nanga Parbat 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 1.250 

319 Nun Kun North 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 1.278 

320 Sentik  2.210 2.210 2.210 2.210 2.210 2.210 2.210 2.210 2.210 2.210 2.210 2.210 2.210 

321 Siachin A 3.066 3.066 3.066 3.066 3.066 3.066 3.066 3.066 3.066 3.066 3.066 3.066 3.066 

322 Siachin B 2.901 2.901 2.901 2.901 2.901 2.901 2.901 2.901 2.901 2.901 2.901 2.901 2.901 

323 Siachin C 2.360 2.360 2.360 2.360 2.360 2.360 2.360 2.360 2.360 2.360 2.360 2.360 2.360 

324 Siachin D 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 

325 South Terong 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 2.756 

326 Terong 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 1.877 

327 Urdok 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

328 Whaleback 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419 1.419 
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Table S-3.4: Runoff ratio (Q/P) and aridity index (P/ ETp) for different sub-basins. Qadj is the adjusted 

specific runoff, Puadj is uncorrected precipitation under this study or observational-based estimated 

precipitation derived by Dahri et al. (2016), Padj denotes adjusted precipitation under this study and 

PcorI are the corrected precipitation estimates by Immerzeel et al. (2015). 

S. 

No 

River  

Basin 

Puadj / 

ETp 

Padj / 

ETp 

PcorI / 

ETp 

Qadj / 

Puadj 

Qadj / 

Padj 

Qadj / 

PcorI 

1 Gilgit at Gilgit 1.371 1.853 3.189 1.245 0.921 0.535 

2 Hunza at Dainyor 1.695 2.481 2.646 1.072 0.733 0.687 

3 Shigar at Shigar 2.487 3.015 2.779 1.069 0.882 0.956 

4 Shyok at Yugo 1.222 2.166 2.372 1.412 0.797 0.728 

5 Indus at Kharmong 0.476 0.746 1.384 1.049 0.670 0.361 

6 Astore at Doyian 1.646 2.277 1.962 1.200 0.868 1.007 

7 Indus at Tarbela Dam 1.008 1.381 1.930 1.026 0.748 0.535 

8 Chitral at Chitral 1.793 2.565 3.116 1.071 0.749 0.616 

9 Panjkora at Zulum Br. 1.067 1.152 1.908 0.832 0.770 0.465 

10 Swat at Chakdara 1.416 1.565 2.665 1.234 1.116 0.655 

11 Kabul at Warsak 0.831 1.036 1.866 0.372 0.299 0.166 

12 Kabul at Nowshera 0.910 0.960 1.798 0.623 0.591 0.315 

13 Jhelum at Mangla Dam 1.401 1.577 1.553 0.698 0.620 0.630 

14 Chenab at Marala 1.700 1.931 1.658 0.881 0.776 0.904 

15 Ravi at Thein Dam 2.036 2.240 2.143 0.838 0.762 0.796 

16 Beas at Pong Dam 2.096 2.216 1.734 0.632 0.598 0.764 

17 Sutlej at Bhakra Dam 0.727 0.902 2.048 0.711 0.573 0.253 

 
 

Table S-3.5: Land cover classes shown in Figure S-3.6c.  

Land Cover Class No. Land Cover Type 

0 Water Bodies 

1 Evergreen Needleleaf Forest 

2 Evergreen Broadleaf Forest 

3 Deciduous Needleleaf Forest 

4 Deciduous Broadleaf Forest 

5 Mixed Forest 

6 Closed Shrublands 

7 Open Shrublands 

8 Woody Savannas 

9 Savannas 

10 Grasslands 

11 Permanent Wetlands 

12 Croplands 

13 Urban and Built-Up 

14 Cropland/Natural Vegetation Mosaic 

15 Snow and Ice 

16 Barren or Sparsely Vegetated 
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Figure S-3.6: Slope (a), major soil groups (b) and land cover (c) in the study area. The class numbers 

in bottom figure (c) refer to the major land cover types given in Table S-3.5. Soil types are derived 

from Fischer et al. (2008) dataset, while land cover types are derived from MODIS Land Cover type 

product (MCD12Q1; Friedl et al., 2010). 
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Regosol (0.90%)
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Water Bodies (0.16%)

Land Cover
0 (0.45%)
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5 (5.22%)
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16 (31.39%)
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Supplementary Material - Chapter 4 

Table S-4.1: KGE, correlation, bias & variability ratios at monthly scale in the study area 

 

  

S. Precipitation

# Product Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 GPCC V8 0.47 0.46 0.46 0.63 0.48 0.57 0.77 0.80 0.71 0.11 0.15 0.09 0.52 0.51 0.56 0.71 0.52 0.62 0.83 0.81 0.72 0.19 0.25 0.27

2 GPCC V7 0.46 0.43 0.45 0.61 0.44 0.55 0.75 0.80 0.70 0.10 0.14 0.07 0.51 0.50 0.55 0.70 0.47 0.61 0.81 0.80 0.71 0.19 0.25 0.27

3 UDEL V5.01 0.43 0.42 0.50 0.50 0.43 0.48 0.72 0.71 0.61 0.18 0.09 0.17 0.47 0.51 0.53 0.54 0.43 0.54 0.77 0.76 0.65 0.20 0.24 0.27

4 APH.V1801R1 0.32 0.36 0.39 0.63 0.55 0.53 0.62 0.60 0.53 0.15 0.12 0.02 0.48 0.46 0.51 0.73 0.70 0.66 0.81 0.80 0.70 0.33 0.24 0.21

5 APH.V1101 0.27 0.34 0.34 0.61 0.54 0.64 0.75 0.73 0.68 0.21 0.13 0.01 0.44 0.46 0.51 0.72 0.73 0.67 0.87 0.84 0.82 0.39 0.27 0.24

6 PREC Land 0.11 0.28 0.33 0.47 0.43 0.30 0.62 0.58 0.48 0.11 0.01 -0.16 0.18 0.34 0.42 0.56 0.44 0.47 0.74 0.72 0.63 0.23 0.18 0.01

7 CRU TS402 0.32 0.36 0.39 0.63 0.55 0.53 0.62 0.60 0.53 0.15 0.12 0.02 0.48 0.46 0.51 0.73 0.70 0.66 0.81 0.80 0.70 0.33 0.24 0.21

8 GPCP V2.3 0.32 0.36 0.39 0.63 0.55 0.53 0.62 0.60 0.53 0.15 0.12 0.02 0.48 0.46 0.51 0.73 0.70 0.66 0.81 0.80 0.70 0.33 0.24 0.21

9 CPC Unified 0.32 0.36 0.39 0.63 0.55 0.53 0.62 0.60 0.53 0.15 0.12 0.02 0.48 0.46 0.51 0.73 0.70 0.66 0.81 0.80 0.70 0.33 0.24 0.21

1 ERA5 0.60 0.61 0.68 0.71 0.61 0.14 0.39 0.34 0.37 0.35 0.41 0.48 0.70 0.71 0.72 0.76 0.63 0.54 0.73 0.69 0.56 0.37 0.50 0.59

2 CFSR 0.45 0.48 0.46 0.31 0.22 0.11 0.55 0.53 0.36 0.34 0.44 0.44 0.58 0.61 0.52 0.42 0.38 0.14 0.62 0.56 0.39 0.36 0.50 0.58

3 JRA-55 0.56 0.51 0.52 0.54 0.39 -0.11 0.42 0.33 0.10 0.24 0.41 0.50 0.67 0.66 0.61 0.67 0.58 0.40 0.68 0.58 0.30 0.29 0.52 0.60

4 ERA 20C 0.24 0.27 0.13 0.27 0.21 0.16 0.44 0.25 0.24 -0.07 0.26 0.15 0.46 0.50 0.34 0.40 0.28 0.22 0.55 0.49 0.27 0.07 0.36 0.38

5 MERRA-2 0.69 0.61 0.64 0.55 0.31 -0.22 -0.01 -0.07 0.23 0.40 0.55 0.53 0.71 0.68 0.65 0.63 0.53 0.26 0.42 0.40 0.36 0.48 0.56 0.58

6 ERAI 0.51 0.52 0.53 0.45 0.12 -0.55 0.08 0.02 0.22 0.20 0.28 0.36 0.61 0.65 0.60 0.65 0.44 0.42 0.62 0.50 0.45 0.24 0.36 0.46

7 DOE R2 -0.01 0.04 -0.08 -0.12 -0.09 0.07 0.34 0.29 0.13 -0.02 0.12 0.04 0.25 0.34 0.17 0.12 0.05 0.19 0.50 0.42 0.26 0.26 0.35 0.35

8 NCAR R1 0.09 0.14 0.21 0.23 0.10 -0.52 0.20 0.27 0.17 0.01 -0.02 0.05 0.20 0.30 0.28 0.35 0.18 -0.35 0.39 0.48 0.48 0.17 0.17 0.16

9 20CR V2C -0.26 -0.17 -0.16 -0.04 -0.20 -0.54 -0.10 -0.4 -0.42 -0.38 -0.55 -0.09 -0.03 0.07 -0.11 -0.03 -0.15 -0.26 0.00 0.01 -0.09 -0.16 0.11 0.13

1 MSWEP V2.2 0.47 0.47 0.38 0.53 0.50 0.28 0.46 0.52 0.69 0.30 0.20 0.16 0.50 0.47 0.42 0.56 0.51 0.62 0.74 0.71 0.71 0.33 0.24 0.24

2 TMPA 3B42 V7 0.24 0.33 0.39 0.58 0.51 0.51 0.73 0.73 0.65 0.14 0.08 0.00 0.50 0.55 0.65 0.78 0.66 0.67 0.91 0.87 0.79 0.33 0.28 0.31

3 PERS-CDR V1R10.21 0.25 0.23 0.47 0.41 0.55 0.52 0.45 0.58 0.19 0.20 0.00 0.61 0.58 0.67 0.77 0.67 0.67 0.81 0.72 0.81 0.47 0.42 0.38

4 CHELSA V1.2 0.33 0.40 0.38 0.59 0.55 0.50 0.63 0.58 0.48 0.20 0.21 0.07 0.52 0.54 0.57 0.64 0.59 0.53 0.77 0.74 0.65 0.40 0.33 0.31

5 CHIRPS V2.0 0.09 0.23 0.26 0.38 0.41 0.43 0.70 0.67 0.65 0.14 0.10 -0.01 0.29 0.43 0.46 0.55 0.61 0.43 0.86 0.83 0.66 0.26 0.27 0.23

6 WFDEI-CRU 0.11 0.18 0.07 0.37 0.03 0.28 0.48 0.40 0.48 0.03 0.24 -0.07 0.27 0.29 0.20 0.45 0.36 0.47 0.75 0.66 0.62 0.16 0.37 0.16

7 CMAP 0.16 0.14 0.14 0.29 -0.02 0.10 0.20 0.19 0.18 0.08 0.23 0.26 0.17 0.19 0.18 0.41 0.25 0.21 0.42 0.35 0.32 0.26 0.34 0.30

8 CMORPH V1.0 -0.63 -0.76 -0.37 -0.09 0.11 0.17 0.65 0.69 0.67 0.29 0.06 -0.21 0.25 0.23 0.34 0.37 0.41 0.54 0.80 0.82 0.69 0.31 0.08 0.14

9 CAMSOPI 0.04 0.16 0.14 0.25 -0.10 -0.10 0.01 0.05 0.11 -0.11 0.08 0.07 0.44 0.47 0.44 0.58 0.20 0.13 0.28 0.22 0.22 0.18 0.32 0.42

S. Precipitation

# Product Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 GPCC V8 0.82 0.89 0.69 0.82 0.81 1.21 1.15 1.06 1.06 0.66 0.67 0.52 0.89 0.80 1.08 0.85 0.96 1.03 1.00 1.04 1.00 0.84 0.77 0.74

2 GPCC V7 0.81 0.89 0.69 0.81 0.83 1.21 1.16 1.05 1.07 0.65 0.66 0.51 0.86 0.77 1.04 0.83 0.92 0.99 0.96 1.00 0.96 0.80 0.75 0.72

3 UDEL V5.01 0.83 0.82 0.84 0.80 0.91 1.21 1.09 1.06 1.03 0.85 0.68 0.68 0.87 0.75 0.93 0.99 0.97 0.87 1.11 1.14 1.17 1.06 0.63 0.78

4 APH.V1801R1 0.64 0.77 0.73 0.84 0.87 1.25 1.04 1.05 1.12 0.67 0.73 0.54 0.76 0.73 0.77 0.82 0.70 0.78 0.67 0.66 0.66 0.60 0.64 0.64

5 APH.V1101 0.57 0.68 0.56 0.76 0.76 1.10 0.88 0.94 0.86 0.59 0.63 0.43 0.81 0.81 0.93 0.86 0.72 0.91 0.81 0.79 0.78 0.72 0.71 0.75

6 PREC Land 0.66 0.74 0.69 0.71 0.91 1.45 1.26 1.29 1.37 0.58 0.49 0.43 1.08 0.87 0.88 0.94 0.90 1.01 0.92 0.87 1.06 0.87 0.78 0.76

7 CRU TS402 0.64 0.77 0.73 0.84 0.87 1.25 1.04 1.05 1.12 0.67 0.73 0.54 0.76 0.73 0.77 0.82 0.70 0.78 0.67 0.66 0.66 0.60 0.64 0.64

8 GPCP V2.3 0.64 0.77 0.73 0.84 0.87 1.25 1.04 1.05 1.12 0.67 0.73 0.54 0.76 0.73 0.77 0.82 0.70 0.78 0.67 0.66 0.66 0.60 0.64 0.64

9 CPC Unified 0.64 0.77 0.73 0.84 0.87 1.25 1.04 1.05 1.12 0.67 0.73 0.54 0.76 0.73 0.77 0.82 0.70 0.78 0.67 0.66 0.66 0.60 0.64 0.64

1 ERA5 0.99 1.16 1.00 1.15 1.07 1.73 1.42 1.39 1.27 1.03 1.22 0.97 0.74 0.80 0.85 0.95 1.09 0.88 0.64 0.56 0.64 0.84 0.77 0.68

2 CFSR 1.08 1.25 1.16 1.37 1.45 1.23 0.86 1.00 0.86 0.87 1.15 1.03 0.65 0.75 0.80 1.01 1.17 0.92 0.82 0.84 0.86 0.94 0.78 0.63

3 JRA-55 1.10 1.28 1.09 1.25 1.36 1.76 1.10 1.16 0.99 1.00 1.30 1.11 0.72 0.77 0.74 0.80 0.74 0.46 0.52 0.51 0.44 0.72 0.82 0.72

4 ERA 20C 0.65 0.72 0.58 0.72 0.86 1.03 1.04 1.33 0.99 0.58 0.77 0.66 0.59 0.55 0.61 0.69 0.69 0.68 0.67 0.56 0.78 0.70 0.70 0.53

5 MERRA-2 0.97 1.21 1.07 1.25 1.51 1.96 1.78 1.83 1.32 0.79 1.05 0.95 0.89 0.93 0.97 1.02 0.98 0.88 0.71 0.69 0.72 0.80 0.91 0.79

6 ERAI 0.98 1.23 1.17 1.38 1.60 2.36 1.75 1.73 1.38 1.22 1.31 0.93 0.71 0.76 0.83 0.83 0.68 0.53 0.61 0.59 0.61 0.83 0.91 0.66

7 DOE R2 0.97 1.11 0.96 1.09 1.14 1.00 0.77 1.06 1.09 0.95 1.02 0.83 0.33 0.30 0.30 0.31 0.47 0.55 0.64 0.59 0.56 0.30 0.40 0.31

8 NCAR R1 1.41 1.48 1.20 1.21 1.15 1.38 1.06 1.31 1.59 1.53 1.53 1.41 0.88 0.84 0.74 0.65 0.67 0.42 0.48 0.58 0.73 0.91 0.73 0.82

9 20CR V2C 0.91 0.85 0.89 1.11 1.30 1.87 1.45 1.99 1.90 1.73 2.09 1.09 0.28 0.30 0.66 0.97 1.12 0.88 0.96 0.98 1.07 0.80 0.36 0.35

1 MSWEP V2.2 0.84 1.04 0.85 1.10 1.09 1.61 1.46 1.38 1.10 0.80 0.83 0.67 0.95 1.00 1.17 1.11 0.97 1.04 0.90 0.90 0.96 0.97 1.21 0.91

2 TMPA 3B42 V7 0.49 0.59 0.51 0.67 0.74 1.31 1.11 0.99 1.07 0.59 0.47 0.36 0.74 0.73 0.86 0.84 0.76 0.80 0.77 0.76 0.73 0.65 0.79 0.68

3 PERS-CDR V1R10.61 0.74 0.49 0.64 0.71 1.27 1.17 1.09 1.03 0.62 0.53 0.38 0.43 0.43 0.53 0.69 0.60 0.85 0.59 0.54 0.63 0.52 0.72 0.51

4 CHELSA V1.2 0.61 0.71 0.56 0.85 0.87 1.02 0.82 0.91 0.73 0.61 0.81 0.48 0.73 0.74 0.89 0.87 0.88 0.82 0.77 0.68 0.72 0.64 0.64 0.66

5 CHIRPS V2.0 0.46 0.52 0.54 0.61 0.59 0.97 0.77 0.75 0.93 0.59 0.47 0.43 0.82 0.81 0.79 1.15 1.17 1.09 0.86 0.88 0.94 0.86 0.91 0.68

6 WFDEI-CRU 0.71 0.76 0.69 0.75 0.83 1.32 0.92 1.01 1.07 0.70 0.75 0.47 0.58 0.67 0.63 0.81 0.28 0.62 0.55 0.51 0.65 0.61 0.67 0.62

7 CMAP 1.12 1.07 0.88 0.75 0.65 1.32 1.29 1.16 1.17 0.68 0.86 1.20 0.93 0.72 0.75 0.69 0.41 0.71 0.54 0.55 0.58 0.55 0.62 0.90

8 CMORPH V1.0 0.14 0.12 0.25 0.63 1.37 1.69 0.78 0.83 0.99 1.17 0.86 0.33 2.16 2.31 1.94 1.81 1.55 1.06 0.82 0.81 0.90 1.07 1.06 1.52

9 CAMSOPI 0.39 0.50 0.44 0.42 0.53 1.56 1.53 1.36 1.30 0.52 0.42 0.37 0.53 0.58 0.66 0.77 0.41 0.63 0.58 0.61 0.68 0.43 0.78 0.62

Kling-Gupta Efficiciency (KGE) Correlation (r)

Bias (β) Variability Ratio (γ)
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Table S-4.2: KGE, correlation, bias and variability ratios for various sub-regions 

 

 

 

 
Figure S-4.1: Turc-Budyko representation of gridded precipitation datasets for three regions. Indus at 

Tarbela includes Khamong, Shigar, Shyok, Hunza, Gilgit & Astore sub-basins and the catchment area 

of Indus main upstream of Tarbela dam. Wet area includes W-Himalaya, NE-Hindukush and 

Karakoram regions, and Dry area consists of SW-Hindukush and Kharmong regions. The colors and 

numbers in the diagram are same as in Figure 7.  

 

S. Precipitation

# Product KGE r β γ KGE r β γ KGE r β γ KGE r β γ KGE r β γ KGE r β γ

1 GPCC V8 0.67 0.72 0.88 1.12 0.69 0.83 0.85 1.22 -0.01 0.33 0.26 0.91 0.71 0.72 1.05 1.00 0.41 0.61 0.67 1.30 0.58 0.76 1.24 0.74

2 GPCC V7 0.67 0.71 0.88 1.09 0.70 0.80 0.84 1.17 -0.01 0.32 0.26 0.90 0.67 0.69 1.11 0.94 0.41 0.60 0.66 1.28 0.58 0.76 1.23 0.74

3 UDEL V5.01 0.63 0.67 0.90 1.13 0.66 0.75 0.90 1.22 -0.01 0.32 0.26 0.83 0.45 0.65 1.39 0.84 0.30 0.58 0.58 1.37 0.76 0.81 1.07 0.87

4 APH.V1801R1 0.62 0.70 0.85 0.81 0.62 0.74 0.74 0.89 -0.18 -0.01 0.57 0.57 0.29 0.65 1.53 0.68 0.42 0.59 0.64 1.21 0.51 0.74 1.25 0.67

5 APH.V1101 0.61 0.73 0.73 0.93 0.59 0.78 0.66 1.04 -0.05 0.25 0.38 0.58 0.47 0.60 0.94 0.65 0.40 0.59 0.63 1.24 0.57 0.75 1.20 0.70

6 PREC Land 0.56 0.60 0.90 1.15 0.59 0.69 0.85 1.23 -0.07 0.31 0.21 0.81 0.33 0.36 1.18 0.99 0.28 0.52 0.63 1.39 0.68 0.73 1.06 0.85

7 CRU TS402 0.47 0.61 0.76 0.74 0.43 0.64 0.56 0.93 0.05 0.33 0.37 0.77 0.09 0.28 1.20 0.47 0.52 0.62 0.74 0.85 0.43 0.78 1.38 0.64

8 GPCP V2.3 0.43 0.51 0.81 0.78 0.41 0.55 0.62 0.94 0.02 0.14 0.56 0.81 -0.13 0.18 1.72 0.71 0.46 0.61 0.63 0.94 0.53 0.65 1.03 0.68

9 CPC Unified 0.41 0.65 0.54 1.09 0.37 0.65 0.51 1.17 -0.04 0.35 0.27 0.63 0.41 0.57 0.64 0.83 0.28 0.59 0.43 1.14 0.45 0.65 0.90 0.59

1 ERA5 0.59 0.71 1.19 0.79 0.61 0.64 1.04 0.85 0.40 0.47 0.99 0.72 0.22 0.65 1.63 0.70 0.47 0.53 1.18 0.85 0.33 0.59 1.53 0.92

2 CFSR 0.52 0.57 1.11 0.83 0.45 0.49 0.81 1.10 0.44 0.54 1.25 0.79 -0.21 0.59 2.07 0.63 0.50 0.51 1.01 1.10 0.51 0.58 1.12 1.23

3 JRA-55 0.47 0.64 1.19 0.66 0.57 0.64 0.83 0.83 0.39 0.54 1.34 0.78 -0.20 0.63 2.09 0.65 0.42 0.47 1.07 0.78 0.38 0.64 1.47 0.81

4 ERA 20C 0.44 0.49 0.84 0.82 0.43 0.61 0.58 1.00 0.10 0.23 0.66 0.70 -0.24 0.43 2.01 0.56 0.37 0.50 0.63 0.93 0.61 0.72 0.73 1.00

5 MERRA-2 0.42 0.53 1.33 0.94 0.47 0.48 1.07 1.05 0.56 0.59 1.15 0.92 -0.02 0.53 1.88 0.82 0.38 0.43 1.25 1.00 0.34 0.47 1.39 1.06

6 ERAI 0.38 0.59 1.40 0.77 0.61 0.67 1.02 0.79 0.24 0.32 0.87 0.69 -0.20 0.65 2.10 0.65 0.17 0.42 1.59 0.92 -0.05 0.54 1.94 1.09

7 DOE R2 0.31 0.46 1.00 0.57 0.41 0.64 0.61 0.73 0.18 0.22 0.82 0.81 -0.88 0.31 2.66 0.45 0.42 0.54 0.71 0.80 0.43 0.66 1.23 0.62

8 NCAR R1 0.26 0.40 1.33 0.70 0.40 0.47 0.95 0.71 0.04 0.20 0.49 1.14 -1.17 0.31 3.01 0.58 0.27 0.31 1.18 1.17 -0.11 0.44 1.93 0.77

9 20CR V2C 0.10 0.04 1.33 1.04 0.26 0.45 0.52 1.11 -0.35 -0.09 1.69 0.61 -2.91 -0.06 4.76 0.76 0.23 0.32 0.65 1.09 0.51 0.56 0.86 1.16

1 MSWEP V2.2 0.63 0.65 1.08 1.10 0.61 0.67 1.00 1.21 0.13 0.38 0.39 1.03 0.57 0.63 0.94 0.79 0.57 0.58 1.06 0.94 0.05 0.46 1.77 1.11

2 TMPA 3B42 V7 0.63 0.74 0.74 0.99 0.63 0.78 0.71 1.08 0.05 0.36 0.39 0.66 0.33 0.44 1.03 0.63 0.39 0.56 0.61 1.15 0.69 0.77 0.92 0.81

3 PERS-CDR V1R10.56 0.66 0.78 0.82 0.53 0.67 0.66 1.00 0.15 0.37 0.49 0.73 0.15 0.29 1.33 0.68 0.47 0.56 0.70 0.94 0.63 0.75 1.05 0.72

4 CHELSA V1.2 0.56 0.68 0.74 0.83 0.52 0.70 0.66 0.84 -0.05 0.18 0.36 0.82 0.57 0.72 1.14 0.70 0.41 0.54 0.63 1.03 0.68 0.72 1.01 0.84

5 CHIRPS V2.0 0.51 0.67 0.63 1.00 0.42 0.71 0.53 1.19 0.06 0.33 0.35 1.14 0.28 0.34 0.82 0.77 0.36 0.48 0.69 1.21 0.86 0.86 0.96 0.97

6 WFDEI-CRU 0.44 0.57 0.82 0.69 0.42 0.65 0.55 0.91 0.09 0.33 0.42 0.80 0.14 0.38 1.23 0.44 0.53 0.62 0.81 0.81 0.02 0.69 1.81 0.54

7 CMAP 0.36 0.40 1.03 0.78 0.39 0.51 0.64 0.93 0.14 0.19 1.26 0.89 -0.79 0.52 2.69 0.67 0.50 0.57 0.76 0.93 0.48 0.59 1.04 0.68

8 CMORPH V1.0 0.30 0.44 0.64 1.24 0.33 0.42 0.69 1.10 -0.46 -0.01 0.18 1.67 -0.35 -0.24 0.51 0.77 -0.14 0.04 0.70 1.53 0.25 0.28 1.03 1.23

9 CAMSOPI 0.25 0.29 0.78 1.07 0.30 0.51 0.51 1.10 -0.14 -0.07 0.62 1.13 -0.22 0.10 1.82 0.91 0.37 0.62 0.53 0.82 0.40 0.52 0.85 0.68

NE-Hindukush SW-HindukushStudy Area W-Himalaya Karakoram Kharmong
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Table S-4.3: Skill scores and final rankings of gridded precipitation datasets for three regions 

described in Figure S-1. The colours, numbers and rankings are the same as in Table 4.  

R Indus at Tarbela Wet Areas Dry Areas 

# Dataset SS Dataset SS Dataset SS 

1 ERA5 9.99 ERA5 10.6 UDEL V5.01 7.58 

2 CFSR 9.19 JRA-55 9.58 CHELSA V1.2 7.13 

3 MSWEP V2.2 9.08 CFSR 8.89 CHIRPS V2.0 6.91 

4 DOE R2 9.00 MSWEP V2.2 8.75 GPCC V8 6.84 

5 JRA-55 9.00 MERRA-2 8.51 GPCC V7 6.79 

6 CMAP 8.81 CMAP 8.03 PREC Land 6.38 

7 MERRA-2 8.44 ERAI 7.07 APH.V1101 6.36 

8 PERS-CDR V1R1 8.07 NCAR R1 5.89 APH.V1801R1 6.08 

9 ERA 20C 7.97     TMPA 3B42 V7 6.00 

10 APH.V1801R1 7.75     CFSR 5.80 

11 GPCP V2.3 7.49     PERS-CDR V1R1 5.71 

12 NCAR R1 6.29     DOE R2 5.62 

13 ERAI 6.01     ERA 20C 5.61 

14 CAMSOPI 5.87     CPC Unified 5.59 

15         CRU TS402 5.47 

16         CMAP 5.45 

17         GPCP V2.3 5.35 

18         ERA5 5.08 

19         MERRA-2 4.87 

20         JRA-55 4.80 

21         MSWEP V2.2 4.71 

22         CAMSOPI 4.49 

23         WFDEI-CRU 4.29 

24         CMORPH V1.0 4.17 

25         NCAR R1 3.17 

26         ERAI 3.02 

27         20CR V2C 2.93 
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Supplementary Material - Chapter 5 

Table S-5.1: Multiple regressions for maximum and minimum temperatures for the three zones. 

Tx 1-12 and Tn 1-12 refer to the calendar months for maximum and minimum temperatures 

respectively. E denotes elevation (m) and L represents latitude (decimal degrees) of the 

meteorological stations. R2 is the combined correlation of temperature with E and L. 

 

Regression Equation for Tx R
2
 (%) Regression Equation for Tn R

2
 (%)

Tx1 = 19.4 - 0.00763 E + 0.059 L 98.9 Tn1 = 21.5 - 0.00632 E - 0.344 L 95.2

Tx2 = 12.7 - 0.00791 E + 0.325 L 98.9 Tn2 = 21.1 - 0.00673 E - 0.241 L 96.6

Tx3 = 6.3 - 0.00853 E + 0.705 L 98.5 Tn3 = 14.0 - 0.00737 E + 0.125 L 97.0

Tx4 = 24.2 - 0.00867 E + 0.358 L 98.7 Tn4 = 33.3 - 0.00719 E - 0.303 L 97.5

Tx5 = 39.7 - 0.00902 E + 0.103 L 98.7 Tn5 = 31.8 - 0.00735 E - 0.125 L 97.1

Tx6 = 48.9 - 0.00914 E - 0.031 L 98.7 Tn6 = 30.9 - 0.00730 E - 0.003 L 95.4

Tx7 = 43.6 - 0.00875 E + 0.152 L 98.6 Tn7 = 50.4 - 0.00676 E - 0.519 L 94.9

Tx8 = 42.6 - 0.00849 E + 0.148 L 99.0 Tn8 = 53.2 - 0.00656 E - 0.622 L 95.3

Tx9 = 59.5 - 0.00835 E - 0.443 L 98.3 Tn9 = 49.6 - 0.00636 E - 0.650 L 93.9

Tx10 = 61.0 - 0.00843 E - 0.635 L 98.9 Tn10 = 36.6 - 0.00638 E - 0.439 L 94.1

Tx11 = 49.4 - 0.00785 E - 0.536 L 98.4 Tn11 = 31.8 - 0.00607 E - 0.471 L 93.1

Tx12 = 31.0 - 0.00757 E - 0.204 L 98.5 Tn12 = 29.8 - 0.00605 E - 0.542 L 93.5

Tx1 = 33.4 - 0.00696 E - 0.361 L 97.1 Tn1 = 27.5 - 0.00508 E - 0.614 L 87.2

Tx2 = 52.0 - 0.00700 E - 0.856 L 98.5 Tn2 = 35.9 - 0.00549 E - 0.781 L 91.9

Tx3 = 58.3 - 0.00707 E - 0.887 L 97.3 Tn3 = 49.6 - 0.00548 E - 1.05 L 93.0

Tx4 = 65.7 - 0.00748 E - 0.927 L 97.7 Tn4 = 60.9 - 0.00558 E - 1.25 L 93.6

Tx5 = 63.7 - 0.00796 E - 0.691 L 97.9 Tn5 = 59.3 - 0.00591 E - 1.06 L 93.8

Tx6 = 24.8 - 0.00854 E + 0.552 L 98.2 Tn6 = 56.0 - 0.00604 E - 0.854 L 95.6

Tx7 = 3.3 - 0.00739 E + 1.08 L 96.4 Tn7 = 36.8 - 0.00583 E - 0.273 L 97.4

Tx8 = 8.7 - 0.00699 E + 0.869 L 96.4 Tn8 = 38.3 - 0.00578 E - 0.333 L 98.0

Tx9 = 17.7 - 0.00749 E + 0.595 L 98.2 Tn9 = 60.2 - 0.00533 E - 1.08 L 96.8

Tx10 = 32.4 - 0.00778 E + 0.080 L 98.6 Tn10 = 60.8 - 0.00513 E - 1.26 L 91.8

Tx11 = 49.7 - 0.00719 E - 0.606 L 97.7 Tn11 = 45.1 - 0.00519 E - 0.941 L 89.4

Tx12 = 44.0 - 0.00693 E - 0.600 L 97.0 Tn12 = 24.4 - 0.00523 E - 0.460 L 90.1

Tx1 = 17.6 - 0.00805 E + 0.109 L 95.2 Tn1 = - 14.2 - 0.00686 E + 0.652 L 94.4

Tx2 = 24.3 - 0.00799 E - 0.056 L 95.9 Tn2 = - 7.5 - 0.00708 E + 0.511 L 96.6

Tx3 = 7.3 - 0.00873 E + 0.618 L 94.7 Tn3 = 6.3 - 0.00737 E + 0.258 L 93.5

Tx4 = 17.7 - 0.00904 E + 0.505 L 96.3 Tn4 = 27.2 - 0.00700 E - 0.206 L 93.7

Tx5 = 31.1 - 0.00942 E + 0.309 L 94.6 Tn5 = 33.6 - 0.00732 E - 0.247 L 91.6

Tx6 = 17.0 - 0.00922 E + 0.831 L 95.0 Tn6 = 48.6 - 0.00722 E - 0.574 L 92.3

Tx7 = - 14.8 - 0.00850 E + 1.73 L 90.8 Tn7 = 31.4 - 0.00703 E - 0.022 L 93.6

Tx8 = - 17.0 - 0.00813 E + 1.73 L 85.0 Tn8 = 24.5 - 0.00680 E + 0.137 L 90.2

Tx9 = - 5.1 - 0.00895 E + 1.36 L 95.1 Tn9 = 19.6 - 0.00667 E + 0.160 L 90.5

Tx10 = 4.1 - 0.00900 E + 0.967 L 96.1 Tn10 = 17.0 - 0.00643 E + 0.055 L 90.6

Tx11 = 20.0 - 0.00792 E + 0.269 L 96.0 Tn11 = 5.3 - 0.00604 E + 0.215 L 85.7

Tx12 = 26.3 - 0.00779 E - 0.076 L 94.7 Tn12 = - 16.5 - 0.00642 E + 0.742 L 86.7

Northern Zone

Southern Zone

Western Zone
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Figure S-5.1: Three zones assumed for calculation of temperature lapse rates 
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Summary 

The high-altitude Indus basin is one of the most complex and underexplored mountain 

regions in the World. Scarcity and directional biases of the observed precipitation coupled 

with measurement errors, high orographic influences and effects of multiple weather 

systems have prevented a comprehensive and reliable assessment of precipitation 

distribution in this region. Quantitative and spatiotemporal distributions of precipitation 

estimated by the previous studies and global/regional scale gridded datasets for this region 

are highly contrasting and extremely uncertain. Consequently, the studies using these 

estimates often lead to suboptimal and misleading outcomes regarding hydrometeorological 

assessments.  

This PhD research study integrated precipitation observations from multiple sources with 

the indirect estimates at the accumulation zones of major glaciers, adjusted these 

observations for measurement errors and derived spatially distributed fields of mean 

monthly precipitation using the standard and well-recognized techniques. The resultant 

reference estimates of precipitation distribution are cross-validated by the corresponding 

observed river inflows, which were adjusted for contribution of net mass balance. The 

reference climatologies of mean monthly maximum and minimum temperature are derived 

through elevation and latitude dependent lapse rates at sub-regional scale. Performance of 

27 widely used gridded precipitation products is evaluated against the observational based 

reference dataset at sub-regional scale. The best performing gridded dataset is statistically 

downscaled and bias-corrected with respect to the reference datasets to develop long-term 

historical dataset of precipitation and temperature. Similarly, precipitation estimates of 75 

CMIP5 GCM outputs for the historical period are evaluated against the bias-corrected 

historical dataset. Top 24 ranked GCM outputs are further analysed based on the changes in 

their climatic means between 1971–2000 and 2071–2100. Four corners of warm-dry, 

warm-wet, cold-dry and cold-wet spectrum are determined from the range of projected 

changes in mean annual air temperature and annual precipitation using the 10 th and 90th 

percentile values. Precipitation and temperature data of two GCMs representing warm-wet 

and cold-dry extremes under three RCPs (2.6, 4.5 & 8.5) are statistically downscaled and 

bias-corrected against the historical datasets. A fully-distributed physically-based energy-

balance hydrological model is forced with these datasets at daily timestep to model the sub-

basin scale hydrologic regime for the historical as well as six scenarios of future climates.  

The altitudinal analysis of precipitation distribution in the study domain demonstrated 

strong orographic influence. However, the available observations are insufficient to infer an 

accurate relationship of precipitation with altitude. Rather nonlinear trends of precipitation 

increase with altitude are evident. Generally, precipitation tends to decrease with increasing 

latitude (from south to north), while longitude has seasonal influence, positive in monsoon 

and negative in winter season. Monthly distribution of precipitation largely indicates a bi-

modal weather system, reflecting influence of winter westerlies and summer monsoon. In 

contrast to previous studies, the results of this study reveal substantially higher precipitation 

in most of the sub-basins indicating two distinct rainfall maxima; 1st in the western 

Himalaya along southern and lower most slopes of Chenab, Jhelum, Indus main and Swat 

basins, and 2nd around north-west corner of Shyok basin in the central Karakoram. 

Adjustments of measurement errors in precipitation observation and net snow 

accumulations indicated significant improvements in the quantitative and spatio-temporal 

distribution of precipitation over the unadjusted case, while adjustment of river flows 
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revealed only a marginal contribution of net glacier mass balance to river flows. The study 

recognized that the higher river flows than the corresponding precipitation estimates by the 

previous studies are mainly due to underestimated precipitation. The study demonstrated 

that the gridded precipitation products are prone to significant errors and their direct 

(uncorrected) use in climate change and hydrological studies will imply erroneous 

inferences. Gauge-based and merged products performed relatively better in dry regions 

and during monsoon season, while reanalyses products provided better estimates in wet 

areas, at higher-altitudes and during winter months. Overall, ERA5 precipitation product 

provided relatively better and equally acceptable estimates for all sub-regions. Precipitation 

projections by the GCMs are more uncertain and generally fail to efficiently reflect the 

bimodal weather system prevailing in the study area. Nevertheless, MIROC5 and MPI-

ESM-LR provided better skill scores to reproduce the past climate of the study area.  

In the presence of significant interannual variability, the mean annual air temperature has 

increased by 0.6 oC during the last 40 years and is projected to increase further by 1.3-

2.6 oC during mid-century and between 0.8-5.7 oC by the end-century. Compared to 

temperature, precipitation remains much more variable and uncertain in both space and 

time. Mean annual precipitation experienced considerable decline during the famous and 

prolonged drought of recent time (1999-2003). It tried to recover thereafter but still fell 

short by 11.9% of the mean annual precipitation for the 1st half of the baseline period 

(1981-2020). Compared to the baseline historical period, the interannual variability of the 

projected precipitation by all GCM runs is even more pronounced throughout the 21st 

century. Definite and strong increasing trend in mean annual precipitation is only evident 

for MIROC5_RCP8.5, while MPI-ESM-LR shows declining trends for RCP4.5 & RCP8.5. 

The remainder of GCM runs show mixed trends. River flows are largely modulated by 

timing, intensity, duration, and form of precipitation; snow and glacial ice reserves; and 

amount of energy available for melting of seasonal and perennial snow and glacial ice. The 

basin-scale projections of water availability show an overall increase of river inflows but 

exhibit significant spatiotemporal variability. MIROC5 outputs generally depict positive 

changes, while MPI-ESM-LR outputs result in negative changes. Late spring and pre-

monsoon (Apr-Jun) river inflows will be significantly increased, while considerable 

reduction in late summer flows is very likely due to early melting of seasonal snow cover. 

Similarly, slight increments are also projected for wintertime baseflows due to increasing 

temperature. Hydrologic extremes of floods and drought are projected to be more intensive 

and frequent under all scenarios.  

Although, there are still significant uncertainties, this PhD research attempted to minimize 

the underlying uncertainties and added to the current knowledge and understanding of 

hydrometeorology of the high-altitude Indus basin. The results will serve as the basis for 

design and operation of hydropower plants and hydraulic structures and provide guidelines 

for planning and management of water resources. 
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