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Abstract

In this PhD dissertation, the direct measurements of precipitation from different sources are
integrated with the indirect estimates of precipitation at the major glacier zones to appraise
spatial and altitudinal distribution of precipitation in the high-altitude Indus basin. These
data are further adjusted for measurement errors and high-quality reference data of spatially
distributed precipitation is developed to reconcile precipitation distribution. The reference
data of temperature are developed using elevation and latitude dependent regression
models. Performance of 27 widely used gridded precipitation products is evaluated at sub-
regional scale. The best performing product is bias-corrected using the reference data of
precipitation and temperature. Similarly, precipitation estimates of 75 GCM outputs are
evaluated and two best performing GCMs representing warm-wet and cold-dry extremes
under three RCPs (2.6, 4.5 & 8.5) are bias-corrected. The historical and future datasets
developed therein are analysed to detect climate change and variability at sub-regional
scale. A fully-distributed physically-based energy-balance Variable Infiltration Capacity
(VIC) hydrological model is forced with these datasets to simulate the hydrologic regime of
the study area at sub-basin scale. River inflows are analysed for change and variability in
water availability, shifts in seasonality and annual cycle of river water, and changes in
future hydrological extremes at Kabul-Nowshera, Indus-Tarbela, Jhelum-Mangla and
Chenab-Marala rim stations.

The results indicated an increase of 0.6 °C in the median annual air temperature and 11.9%
decline in median annual precipitation during the last 40 years. The corresponding changes
in river inflows remained highly variable but consistently declined. Indus-Tarbela, Jhelum-
Mangla, Chenab-Marala and Kabul-Nowshera rivers inflows experienced 4.9%, 19.6%,
11.9% and 4.5% decline respectively. Future projections however show gradual increase in
temperature but highly variable precipitation indicating increasing trends in Karakoram and
parts of Kharmong and W-Hindukush regions and declining trends in the remaining areas.
Future river inflows are likely to increase between 17.0-73.6% at Indus-Tarbela river gauge
under wet-warm scenarios and between 1.2-9.7% under cold-dry scenarios, while river
inflows at the remaining three rim stations show increases for wet-warm and decreases for
cold-dry scenarios. Most of the ensembles show increasing high flows and decreasing low
flows at all gauging stations implying intensification of future hydrological extremes of
floods and droughts. The contrasting climate change and hydrological signals across the
river basin require important modifications in the strategies and action plans for river basin
management.
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Chapter 1

Introduction

1.1 Background and Problem Statement

Water is essential for life, sustainable ecosystem services and continuous socio-economic
developments. It forms a relationship based on the complexities of both the hydrologic
cycle and the interdependencies of life on Earth (Eckstein, 2010). However, freshwater is
finite and more often a shared resource. It is also unevenly distributed in space and time.
The Hindukush Karakoram Himalayan (HKH) mountain region and adjoining ranges of
Pamirs and Tibetan Plateau (TP) hold the world's largest repositories of snow and ice mass
outside the Polar Regions (Qiu, 2008; UNESCO-SCOPE-UNEP, 2011). Precipitation and
snow/glacier-melt in these areas are the important sources of freshwater supplies for the
downstream areas. The IPCC through its third assessment report (Lal et al., 2001) issued
the wakeup call stating that the average annual runoff in the Indus river would decline by
27% by the year 2050 due mainly to glacier retreat. Even greater thrill was moulded when
the IPCC in its fourth assessment report (Cruz et al., 2007) reported lack of data to support
accurate assessments for the HKH region but declared that “glaciers in Himalayas are
receding faster than in any other part of the world and, if the present rate continues, the
likelihood of their disappearing by the year 2035 is very high”. Later, this unrealistic
statement was traced back to an inaccurate citation of the grey literature and the IPCC
withdrew its original statement but stayed with the broader conclusion of the report.
Nevertheless, the controversy that ensued over the statement highlighted how little was
known about the HKH region (Singh etal., 2011) and paved the way for increased and
concerted research efforts to study hydrometeorology of this highly underexplored region.
However, majority of the subsequent research is mainly focused on improved methods
using more or less the same commonly available datasets that use low-altitude,
directionally biased and largely unrepresentative observations in their development or
validation. This PhD research study however recognized the vital nature of the issue and
put more emphasis on the development of improved precipitation and temperature datasets
to facilitate accurate analysis of climate change and water balance studies in the high-
altitude Indus basin.

The Indus river system (IRS) had been the lifeline for the Indus valley civilization since
time immemorial and currently sustains livelihoods of over 300 million inhabitants. Yet,
there is limited understanding of quantitative and spatiotemporal distribution of the key
climatic variables (Immerzeel et al., 2015; Mishra, 2015; Ragettli and Pellicciotti, 2012;
Hewitt, 2005; Winiger et al., 2005) leading to a large uncertainty in the hydro-climatic
predictability in the basin (Lutz et al., 2016a). The greatest uncertainties are associated with
very high variability in seasonality, magnitude, coverage, and altitudinal distribution of
precipitation in the high-altitude Indus basin. Generally, scarcity and biased distribution of
observed data at the higher altitudes (Fowler and Archer, 2006) and measurement errors in
precipitation observations (Kochendorfer etal., 2017a; Wolff etal., 2015; Adam and
Lettenmaier, 2003) are the primary causes of such uncertainties. Hence, there are
significant errors in the current estimation of basin and sub-basin scale precipitation as
most of the meteorological stations are located at elevations lower than 2500 m, whereas



about 74% of the study domain lies above this elevation range. Accurate assessment of
precipitation is essential as relatively small errors in precipitation estimates may translate
into considerable changes in surface runoff estimates and associated water allocations.
However, precipitation estimates by earlier studies (e.g. Krakauer et al., 2019; Ullah et al.,
2019; Ahmed etal., 2019; Khan etal., 2018; Igbal etal., 2018; Anjum etal., 2018;
Ghulami et al., 2017; Hussain et al., 2017; Immerzeel et al., 2015; CWC and NRSC, 2014;
Ali etal., 2012; Bocchiala etal., 2011) are highly contrasting but consistent in
underestimating precipitation in most parts of the high-altitude Indus basin. The
global/regional scale gridded precipitation products also tend to show highly variable
estimates for the Indus basin (Baudouin etal., 2020; Palazzi etal., 2013). The gridded
precipitation products often fail to capture the strong gradients and large and abrupt
changes in precipitation over short distances due to their coarser resolution and pronounced
orographic effects in the high mountain areas (Reggiani and Rientjes, 2015; Immerzeel
et al., 2015)

Similarly, there are significant paradoxes on the reported behaviour of snow/glacier cover
in the HKH region. Many of the global/regional studies (e.g. Pritchard, 2019; Kraaijenbrink
etal., 2017; ICIMOD, 2009; Immerzeel et al., 2009; WNEP & WGMS, 2008; Zemp et al.,
2008; Cruz etal., 2007; WWF, 2005; Lal etal., 2001) indicated glacier retreat in HKH
region while other (e.g. Farinotti et al., 2020; Tahir et al., 2011; Armstrong, 2010; Fowler
and Archer, 2006; Hewitt, 2005) reveal expansion or immobility of HKH snow/glacier
cover. The main reasons behind such contrasting claims and results are: lack of data and
insufficient in-situ measurements to support accurate assessments, use of non-
representative climate data, projecting the results of a small-scale study over the entire
basin or one region to another, errors in up-scaling and/or down-scaling of results, and
neglecting the impacts of debris cover and land use change. However, it is important not to
generalize climate and glacier changes across the HKH region (ICIMOD, 2011). In fact,
variable retreat rates (Scherler et al., 2011; Armstrong, 2010; Raina, 2009; Hewitt, 2005;
Young and Hewitt, 1993), presence of debris cover (Kraaijenbrink et al., 2017; Scherler
etal., 2011; Young and Hewitt, 1993), paucity of glacial mass-balance data (UNEP &
WGMS, 2008) and influence of multiple weather systems interacting with high orography
make it difficult to develop a coherent picture of climate change impacts in the HKH region
(Scherler etal., 2011). Armstrong (2010) noticed that glaciers at elevations greater than
4000 m have not responded to the recent climate warming in the same way as the glaciers
at lower elevations, simply because the glaciers at higher elevations remain below freezing
during most of the year. This is particularly true for the Indus basin glaciers where over
80% of the ice cover is concentrated between 4000 and 5500 m elevation (Hewitt, 2011)
and 50% of the area has elevation greater than 4000 m.

Assessing climate change and associated hydrological implications require high-quality and
long-term data of important climatic variables. However, the data quality issues are often
inadequately addressed that contribute to uncertainty in the results of hydrometeorological
studies. Therefore, the basin and sub-basin scale changes in the observed and future climate
estimated by the previous studies (e.g. Hasson et al., 2019 & 2017; Bokhari et al., 2018;
Bashir et al., 2017; Lutz et al., 2016a; Ali et al., 2015; Khan et al., 2015) are highly variable
due to use of inconsistent and uncertain datasets and a large spread in the outcomes of
global climate models (Lutz et al., 2016b; Palazzi et al., 2014). Similarly, the consequential
river inflows also show high variability, which may partly be attributed to use of different
hydrological models. Indus is predominantly a snow/glacier-fed river basin, therefore the
simple degree-day or temperature-index based hydrological models often inadequately
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represent the prevailing energy balance, which is the key driving force for melting of
seasonal snow and perennial glaciers in the snow/glacier-fed systems. Several hydrological
models are currently under use to assess hydrological implications of climate change. The
choice of hydrological model is often based on the model structure to represent the complex
natural system, model performance under site-specific conditions, data availability and
requirements, and study objectives (Kay et al., 2009). A substantial portion of uncertainty
often stems from the use of suboptimal input parameters (Ragettli et al., 2013; Kay et al.,
2009). Therefore, this PhD research study has been undertaken to reduce the uncertainties
associated with climatic variables and hydrological modeling for better assessment of the
current and future hydrometeorological regime of the high-altitude Indus basin.

1.2 Climate and Hydrological Regime of the High-Altitude Indus Basin

The Indus river originates in the high-mountain ranges of Tibetan Plateau (TP) and HKH
region with a drainage area of about 112 million hectares in four counties (8% in China,
39% in India, 6% in Afghanistan and 47% in Pakistan). This research study is undertaken
in the high-altitude watersheds of the Indus river encompassed by its six major tributaries
(i.e. Indus river at Tarbela dam, Kabul river at Nowshera, Jhelum river at Mangla dam,
Chenab river at Marala, Ravi river at Thein dam, Beas river at Pong dam, and Sutlej river at
Bhakra dam), stretched over an area of 40.3 million hectares (Figure 1.1).
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Figure 1.1: Geographic location of the Study area showing river networks and watersheds of Indus
river and it six major tributaries.

The extensive Eurasian continent and the Indian and Pacific oceans play an important role
in atmospheric circulation and monsoon formation of the world's largest and most powerful
monsoon system in South Asia (Saha, 2010). The climate of the high-altitude Indus basin is
complex and significantly influenced by the intricate interplay between synoptic-scale
atmospheric circulations and valley-scale topography—atmosphere interaction resulting in
orographic precipitation and funnelling of air movement (Barros et al., 2004; Hewitt, 2013).
The synoptic-scale climate and precipitation are largely modulated by the Indian summer
monsoon and the westerly systems (Pang et al., 2014; Yao et al., 2012; Ding and Chan,
2005; Wang and Lin, 2002) (Figure 1.2). The Indian summer monsoon advects moisture
through several trajectories originating from the Bay of Bengal, Indian Ocean and Arabian
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Sea due to the differential heating between land and sea (Pang et al., 2014; Bolch et al.,
2012; Yao etal., 2012; Bohner, 2006; Hodges, 2006). It causes heavy rainfall in south-
eastern areas during June-September and moves north-westward along the Himalayan Arc
with decreasing strength. The westerly systems transport large masses of moist air from the
Caspian, Black & Mediterranean seas and North Atlantic Ocean throughout the year and
are the dominant source of precipitation in the Hindukush, Karakoram and to a lesser extent
in the W-Himalayan regions during December-April months (Filippi et al., 2014; Pal et al.,
2014; Mayer et al., 2014; Bohner, 2006; Treydte et al., 2006; Syed et al., 2006). The winter
westerlies usually bifurcate into the northern, central and southern branches around the
Karakoram and western TP regions due to topographic blocking (Pang etal., 2014).
Wintertime precipitation in the HKH region is mainly related to water vapour transport by
the southern and to a lesser extent by the central branch of westerly systems (Yihui and
Zunya, 2008; Wei and Gasse, 1999). Seldom, relatively weak storms of East-Asian summer
monsoon also enter into the Ladakh region from the eastern end (Ding and Chan, 2005;
Wang and Lin, 2002). Moreover, significant amount of moisture in the air is added to the
atmosphere by evapotranspiration from the vast irrigated plains and forestlands (de Kok
etal., 2018; Harding etal., 2013; Wie etal.,, 2013; Tuinenburg etal., 2012). Heavy
precipitation events are often encountered whenever these systems coincide and interact
with each other (Zaidi, 2014; SUPARCO and FAOQ, 2010; WMO, 2010).

East-Asian Monsoon

Google Earth

1600 kay

Figure 1.2: Geographic map of the Study area showing trajectories of major circulation systems. Blue
arrows indicate the trajectories of winter westerlies, red arrows represent Indian summer monsoon
trajectories and yellow line arrows show East-Asian monsoon trajectories. Map source: google earth.

The Indus river system (IRS) is the largest source of freshwater supply (153 BCM year?) in
Pakistan and plays a crucial role in water, energy and food security of the region. The
hydrological regime of the IRS is largely modulated by monsoon precipitation, winter
snowfall and subsequent melting of snow and glacial ice mass accumulated in the high-
mountains. Generally, a glacial regime at very high altitudes where flow occurs due to
melting of perennial snow and glaciers during late summer, a nival regime at mid altitudes
where flow is largely dependent on the melting of seasonal snow accumulated during the
preceding winter and spring seasons, and a pluvial regime dependent on runoff from
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concurrent rainfall mainly during the monsoon season are the characteristic river flow
regimes of the high-altitude Indus basin (Hasson et al., 2019; NESPAK-AHT-DELTARES,
2015; Archer etal., 2010). About 59 % of the total precipitation in the study domain is
received during Oct-Apr months, majority of which falls in the form of snow. As a result,
large repositories of glacial ice mass have been deposited over the centuries in these high-
mountain ranges. Around 50 % of the basin area can be covered with snow during winter
months. However, most of it melts during the subsequent summer season leaving only
about 10% of the basin area covered with perennial snow or glaciers by the end of August
(Tahir, 2011). Conversely, about 84% of the river flows are received during May-Sep
months mainly due to monsoon precipitation and melting of seasonal snow and perennial
glaciers. Hence, perennial snow and glaciers are largely acting as repository of the glacial
ice mass to store or release rainwater depending upon the winter precipitation and summer
temperatures (Pritchard, 2019; Thayyen and Gergan, 2010, Archer, 2003). This shows the
importance of seasonal snow cover in the water budget of the basin, which usually receives
heavy floods whenever high precipitation in winter season is followed by a warm and wet
monsoon season. Interannual variability of river flows is extremely high and generally
responsive to annual precipitation and summer temperatures. The observed data show that
maximum annual flows can be double of minimum flows. Nevertheless, the IRS is
predominantly a snow- and glacier-fed system (Lutz et al., 2016a & 2014; Yu et al., 2013),
which makes it more sensitive and vulnerable to climate change and variability.

1.3 Hydrological Modeling

A hydrological model is a simplified representation of the complex natural system.
Hydrological models are mainly used for predicting system behaviour and understanding
various hydrological processes. The preferable model is the one which is simpler and easier
to execute and that gives results closer to reality requiring least input. The simple empirical
models are based on observed relationships rather than on simulated physical processes.
These models are often lumped, treating a complete watershed as a single homogeneous
unit. Physically-based models are often distributed, dividing a watershed into uniform sized
grid cells and calculating flows between them. These models are generally complex with
large input data requirements. Conceptual models are transition between empirical and
physically-based models in terms of data requirements and details to represent the physical
processes. Similarly, semi-distributed models are transition between lumped and distributed
models, dividing a watershed in different elevation zones, homogeneous sub-basins or
hydrological response units. Nevertheless, a number of hydrological models ranging from
lumped to fully-distributed, simple temperature-index to complex energy-balance, and from
standalone catchment-scale to global-scale land surface schemes are currently under use.
Each model has got its own unique characteristics, specific applications and drawbacks like
large data requirements, operational complexities and structural limitations. Generally,
physically-based distributed models are better suited for the accurate simulation of spatial
and temporal patterns in surface runoff. Accuracy of model outputs is usually dependent on
the precisions in the physical processes, mathematical representations and details of the
input parameters. However, model outputs are more affected by the underlying input
parameters rather than the model structure (Islam and Déry, 2017; Kay et al., 2009).

This PhD study used the Variable Infiltration Capacity (VIC) hydrological model, 4.2d
version (Liang etal., 1994; 1996). The VIC model is an evolving macroscale, fully-
distributed, physically-based hydrologic model that can solve water balance as well as full
water-and-energy balance to compute surface runoff, baseflow, evapotranspiration and
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other turbulent fluxes for each individual grid. The VIC model was originally designed to
provide boundary conditions at the land surface schemes for global and regional climate
models and is equally applicable for catchment- to global-scale hydrological modeling. The
model is characterized by heterogeneous topography (elevation and vegetation) and
multiple soil layers (Figure 1.3a). The land surface is modelled as uniform grids of any size.
Sub-grid variability of precipitation, temperature and land cover is considered by further
dividing the surface grids into an arbitrary number of bands/tiles with variable elevation
and land cover types. Temperature is lapsed from the grid cell average elevation to sub-grid
band elevation, while altitudinal variability of precipitation within each grid cell is
specified through fractional areal coverage. Sub-grid variability in infiltration capacity is
represented by a fast runoff response to precipitation through a variable infiltration curve
and slow runoff response via a nonlinear relationship between baseflow and deep soil
moisture. Water can only enter to a grid cell via the atmosphere. The VIC model considers
snow in several forms: ground snow pack, snow in the vegetation canopy, and snow on top
of lake ice. Ground snowpack accumulation and ablation is solved by energy balance
approach while sublimation, drip and release of intercepted snow by the vegetation is
covered by an explicit canopy snow interception scheme described by Andreadis et al.
(2009). Additionally, blowing snow sublimation is considered by the Bowling et al. (2004)
model. Evapotranspiration (ET) from each vegetation type is characterized by the Penman—
Monteith formulation. Total evapotranspiration is the sum of evaporation from the canopy
layer and transpiration from each vegetation tiles and evaporation from the bare soil.

An offline Lohmann routing model (Lohmann et al., 1998) processes the surface runoff and
baseflow fluxes generated for each grid cell and routes the accumulated flows at the
specified locations in the model domain using elevation-based flow direction (Figure 1.3b).
The Lohman routing model uses the unit hydrograph principle within the grid cells and
linearized St. Venant’s equations to simulate river flow through the stream channel.
Comprehensive technical descriptions and mathematical formulations of the VIC model are
provided at https://vic.readthedocs.io/en/master/Overview/ModelOverview/ and by Gao
et al. (2010).

: 2 1. Runoff and Baseflow
Celf Energy and Moisture Fluxes H/ Routed to Edge of
_’-\ Runeff Grid Cell
Time —
. Variable Infiltration Curve
e =1 (1- Ay

2
8
5 s
T [/ [« ¥ e e\
b= - ry ] I

Fractional Area . /

W W, ‘\T\‘ \?/
Il. Flow Routed Through
Baseflow Curve Flow Network to oufe'/

e (a) 0Layer2 Soim‘gé:ure, Wf Time —> (b)
Figure 1.3: Schematic representation of the basic features of VVIC hydrological model (a), and routing
model (b). Source: Gao et al., 20009.
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The selection of VIC hydrological model in this PhD research study is mainly inspired to
its proven and successful applications in a variety of topographical and
hydrometeorological conditions and its ability to model full water-and-energy balance in a
fully-distributed manner, which is particularly crucial for simulation of snow and glacier
dominated land surfaces. Generally, relatively simple hydrological models calibrated
against sparse and short records of mountain climatic variables and runoff have been
applied in the study domain (e.g. Hasson et al., 2019; Lutz et al., 2016, Tahir et al., 2011;
Immerzeel et al., 2010). Whereas, the application of VIC hydrological model is very rare
for hydrological simulations in the study area. Therefore, this study will add to the
knowledge and practice of the hydrological modeling in the study domain.

1.4 Research Questions and Study Objectives

The high-altitude Indus basin is one of the most complex and largely underexplored regions
in the World. The region is also recognized as the ‘hotspot’ of climate change due to
significant transformations in its hydrometeorological regime (Krishnan etal., 2019;
Wijngaard et al., 2018; Lutz et al., 2018; Kraaijenbrink et al., 2017; De Souza et al., 2015).
However, an authentic assessment of climate change and variability and associated
hydrological implications in the basin are seriously constrained by paucity of observed data
and their directional biases. Quality of observed data and delicate investigation of the
current and future hydrometeorology also add uncertainties and limit our understanding of
the basin’s hydrometeorological regime. Therefore, the overarching aim of this PhD
research study is to reduce the underlying uncertainties in precipitation and temperature
observations to develop high-quality long-term data for historical and future time periods
and improved simulation of the water balance and hydrological regime at regional and sub-
basin scale under extreme climate scenarios. This research study therefore was designed to
highlight and address the underlying issues in precipitation observations and existing
datasets by investigating & answering the following interconnected research questions (Q):

Q1. How precipitation in the basin area is distributed in space and time?
Q2. How strong are the vertical gradients of precipitation at sub-basin scale?

Q3. What uncertainties are present in the existing observations and knowledge in
precipitation distribution of the study area?

Q4. To what extent precipitation measurement errors can affect total precipitation?
Q5. How monthly-scale temperature gradients vary with elevation and latitude?
Q6. What is the contribution of net glacier mass balance to river inflows?

Q7. How accurate and representative are the global/regional gridded precipitation
products for the study area?

Q8. What uncertainties are present in the precipitation estimates of different gridded
precipitation products for the study area?

Q9. How closely the observed precipitation in the study area is simulated by the Global
Circulation Models (GCMs)?

Q10. To what extent climate has changed in the study area over the recent past and what
are the prospects for climate change under various climate change scenarios by the
end of 21% century?



Q11.What shifts in precipitation and water availability can be expected at monthly,
seasonal or annual scales?

Q12.How climate change is likely to affect hydrological regime of the basin?

Q13.What will be the frequency, intensity and distribution of floods and droughts by
mid-century and end-century with respect to baseline reference period?

Q14. What uncertainties are present in the current understanding of the basin’s
hydrological regime and overall assessment of the hydrological process and how
these can be minimized?

Given the importance of precipitation and a large uncertainty over its distribution, a two-
pronged strategy is adopted to investigate and address these research questions. In the 1%
step the above-outlined research questions are integrated and framed in the four broad-
based research objectives. Secondly, each objective is achieved through a separate
scientific chapter using the appropriate datasets and specific procedures. The four broad-
based and specific objectives of this research study are:

1. Appraise the current state of precipitation distribution in the high-altitude Indus
basin and highlight the underlying issues and uncertainties in precipitation
observations and quality of gridded precipitation products (Q1, Q2, Q3, addressed
in Chapter 2)

2. Adjust measurement errors in precipitation observations and develop high-quality
reference climatologies of precipitation and temperature (Q1, Q3, Q4, Q5, Q6,
addressed in Chapter 3)

3. Evaluate quality of regional/global scale precipitation products for the study area
with respect to the reference dataset (Q7, Q8 addressed in Chapter 4)

4. Develop long-term datasets of precipitation and temperature for the historical and
future time periods and assess past and future climate change and variability and
associated hydrological implications (Q9, Q10, Q11, Q12, Q13, Q14 addressed in
Chapter 5).

1.5 Thesis Outline and Methods

Investigations to answer the above-outlined research questions and achieve the four broad-
based and specific objectives of the study are pursued in the subsequent four chapters
(Chapter 2 to 5). Each chapter is the product of a peer-reviewed scientific paper published
in the journals of international repute.

Chapter 2 appraises improved precipitation distribution of mean monthly, seasonal and
annual precipitation in the study domain using observed precipitation data from multiple
sources combined with the indirect precipitation estimates at the accumulation zones of
major glaciers. This chapter highlighted the data gaps in the in-situ observations and
underlined the uncertainties associated with the existing precipitation datasets. Altitudinal
dependency of precipitation is analyzed at sub-basin scale. The issues related to direct use
of gridded precipitation products are also underscored.

In chapter 3, precipitation distribution is reconciled by incorporating additional
observations and a better approach for cross-validation. The WMO recommended standard
methods are adopted to adjust systematic errors in precipitation measurements. The net
snow accumulations were adjusted for the ablation losses using standard ablation gradients,



while the river inflows were adjusted for the contribution of net mass balance using mass
balance estimates of Ké&&b etal., 2012 and the glacier areas from the Randolf Glacier
Inventory (RGI) version 5.0 (Arendt etal., 2015). Reference climatologies of mean
monthly precipitation are derived from the adjusted observations and are cross-validated
with the adjusted river inflows at sub-basin scale using Turc-Budyko non-dimensional
analysis.

Chapter 4 highlighted and corroborated the underlying issues and uncertainties associated
with a wide range of gridded precipitation products in the high-mountain Indus basin.
Performance of 27 widely used gridded precipitation products belonging to three different
categories (gauge-based, reanalyses and merged) is evaluated with respect to high-quality
reference climatologies of mean monthly precipitation developed in the previous chapter
using the widely used statistical measures and quantitative analyses techniques. Cross
validation is accomplished with the corresponding specific runoffs using Turc-Budyko non-
dimensional analysis.

In Chapter 5, the best performing gridded precipitation product (ERA5) evaluated in the
4™ chapter is statistically downscaled and bias-corrected with respect to the reference
dataset developed in the 3" chapter. The temperature data of the same product are bias
corrected against the observational-based monthly-scale temperature dataset derived from
the elevation and latitudue dependent lapse rates. Similarly, representing warm-wet and
cold-dry climates, the outputs of two best performing GCMs used in CMIP5 for RCP2.6,
RCP4.5 & RCP8.5 are statistically downscaled and bias-corrected. A fully-distributed
physically-based energy-balance VIC hydrological model is forced with these novel
datasets to simulate the water balance at regional and sub-basin scale. Hydrometeorological
analyses are conducted to determine the changes and variability in climate and overall
water availability and examine the shifts in the timings and peaks of hydrological extremes
during the entire 21% century.

Finally, the main results of the four scientific chapters are synthesized in Chapter 6. This
chapter also highlights the scientific contribution of this research study, discusses the
underlying uncertainties, signifies the implications for water management, and presents the
outlook and direction for further research.
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Chapter 2

An Appraisal of Precipitation Distribution

Abstract

Scarcity of in-situ observations coupled with high orographic influences has prevented a
comprehensive assessment of precipitation distribution in the high-altitude Indus basin.
Available data are generally fragmented and scattered with different organizations and
mostly cover the valleys. Here, we combine most of the available station data with the
indirect precipitation estimates at the accumulation zones of major glaciers to analyse
altitudinal dependency of precipitation in the high-altitude Indus basin. The available
observations signified the importance of orography in each sub-hydrological basin but
could not infer an accurate distribution of precipitation with altitude. We used Kriging with
External Drift (KED) interpolation scheme with elevation as a predictor to appraise
spatiotemporal distribution of mean monthly, seasonal and annual precipitation for the pe-
riod of 1998-2012. The KED-based annual precipitation estimates are verified by the
corresponding basin-wide observed specific runoffs, which show good agreement. In
contrast to earlier studies, our estimates reveal substantially higher precipitation in most of
the sub-basins indicating two distinct rainfall maxima; 1st along southern and lower most
slopes of Chenab, Jhelum, Indus main and Swat basins, and 2nd around north-west corner
of Shyok basin in the central Karakoram. The study demonstrated that the selected gridded
precipitation products covering this region are prone to significant errors. In terms of
quantitative estimates, ERA-Interim is relatively better close to the observations followed
by WFDEI and TRMM, while APHRODITE gives highly underestimated precipitation
estimates in the study area. Basin-wide seasonal and annual correction factors introduced
for each gridded dataset can be useful for lumped hydrological modelling studies, while the
estimated precipitation distribution can serve as a basis for bias correction of any gridded
precipitation products for the study area.

This chapter has been published as:

Dahri, Z. H., Ludwig, F., Moors, E., Ahmad, B., Khan, A., & Kabat, P. (2016). An
appraisal of precipitation distribution in the high-altitude catchments of the Indus basin,
Science of the Total Environment, 548-549: 289-306,
http://dx.doi.org/10.1016/j.scitotenv.2016.01.001.
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2.1 Introduction

The Hindukush Karakoram Himalayan (HKH) mountain region and adjoining ranges of
Pamirs and Tibetan Plateau (TP) hold the world's largest repositories of snow and ice mass
outside the Polar Regions (Qiu, 2008; UNESCO-SCOPE-UNEP, 2011). The Indus River
System (IRS), originating from TP and HKH mountain region and crossing through China,
India, Afghanistan and Pakistan, sustains livelihoods of over 215 million people. Yet, little
is known about environmental change and mountain hydrology in this highly diversified
and complex mountain region (Immerzeel et al., 2012; Karki et al., 2011). There is limited
understanding of quantitative and spatiotemporal distribution of precipitation, which
provides the basic and critical input for hydrological assessment, mass balance and climate
change studies. The current knowledge is mainly constrained by limited in-situ hydro-
meteorological and cryospheric mass balance observations in the high-altitude catchments
of Indus basin (Pellicciotti et al., 2012; Wake, 1987). Political environments, poor
accessibility and harsh weather conditions pose serious challenges for such observations in
this region. As a result, there are significant data, information and knowledge gaps in
hydro-climatic aspects.

Precipitation in the high-altitude catchments of Indus basin is predominantly controlled by
large-scale orography and remains highly variable in time, space and altitude. Its variability
and distribution pattern mainly depend on the interactions and interplay of orographic
features with large-scale atmospheric circulation systems, regional climatic processes and
local evapotranspiration rates. Large changes in precipitation over short distances and
within short periods of time are common and high amplitude events are often localized
(Neshbitt and Anders, 2009). The zone of maximum precipitation is usually the function of
enhanced moisture condensation and exponential reduction in the quantity of available
moisture with increasing barrier height (Alpert, 1986). Hence, rainfall gradients in the
complex terrains are often not linearly correlated with altitude (Singh and Kumar, 1997,
Loukas and Quick, 1996). Nevertheless, several other studies indicated that precipitation in
the HKH region exhibits a considerable vertical gradient (e.g. Pang et al., 2014; Winiger
et al., 2005; Hewitt, 2011; Weiers, 1995; Wake, 1989; Dhar and Rakhecha, 1981; BIG,
1979; Decheng, 1978).

Precipitation is an important component of the hydrological cycle that governs the
renewable water resources affecting agro-economic development, hydropower generation
and environmental integrity. Therefore, accurate assessment of precipitation is essential as
small errors in precipitation estimates may translate into major changes in surface runoff
estimates and associated water allocations. Accurate assessment of precipitation requires
good quality observations with adequate spatiotemporal coverage to assess the sub-basin or
local scale variability. However, the existing rain gauge network in this region is not only
inadequate but also biased towards valley bottoms (Fowler and Archer, 2006). The solid
precipitation (snowfall) at higher altitudes is often difficult to accurately measure and
generally susceptible to undercatch by 20-50% (Rasmussen et al., 2012). Furthermore, the
Indus is an international river basin and the available observational data are usually
fragmented and scattered with different organizations in four countries and are not freely
accessible. Therefore, there is an ever-increasing trend of using the easily available
global/regional scale gridded datasets for hydro-climatic assessment and mass balance
studies (e.g. Lutz et al., 2014a; Sakai et al., 2014; Immerzeel et al., 2012, 2010, 2009; Tahir
et al., 2011; Bookhagen and Burbank, 2006).
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Indeed, the gridded datasets provide better information in terms of spatial coverage and
temporal consistency, but with potentially large errors particularly in high-mountains where
the resolution of the data is often larger than the spatial variability of precipitation and the
adopted interpolation schemes add further uncertainty. Also, satellite observations
underestimate precipitation in areas with significant snowfall (Andermann et al., 2011).
Moreover, the gridded datasets covering the high-altitude areas of Indus basin use station
data of only a few commonly available old observatories predominantly located at the
valley floors, which do not reflect the topographical complexity and spatial variability of
precipitation in these areas (Reggiani and Rientjes, 2015). Hence, the accuracy of gridded
datasets is particularly questionable in this region requiring their correction and validation
before use. However, the limitations and internal inconsistencies of the gridded datasets are
often overlooked in the hydro-climate studies; where underestimated precipitation is often
compensated by underrated evapotranspiration and/or overestimated snow/glacier melt
rates (Lutz et al., 2014a; Pellicciotti et al., 2012; Schaefli et al., 2005). Ultimately, the
inferences regarding precipitation distribution, snow/glacier cover dynamics and associated
melt water contributions are inaccurately adjudicated. Point observations, on the other
hand, provide relatively accurate local information, but their wider-scale use in hydro-
climate studies is constrained by their restricted accessibility, limited spatiotemporal
coverage and uneven distribution in both horizontal and vertical directions. Paucity of
precipitation measurements in the high-altitude areas, where the bulk of precipitation falls,
provides an incomplete picture of precipitation distribution. Auspiciously, there are few
mass balance studies (e.g. Mayer et al., 2014, 2006; Hewitt, 2011; Shroder et al., 2000;
Bhutiyani, 1999; Wake, 1989; Mayewski et al., 1984, 1983; Kick, 1980; BIG, 1979;
Decheng, 1978; Qazi, 1973) that indirectly estimated net precipitation (as water equivalent)
using snow pillows, snow pits, and ice cores from the accumulation zones of few important
large glaciers in this region. These sparse but relatively accurate and high-altitude point
observations can be integrated with the low-mid altitude observations to derive high-
altitude precipitation and to verify and correct the gridded datasets developed through
various means.

In addition, the specific runoffs (measured flow/drainage area) from all the high altitude
catchments of Indus basin are significantly higher than the corresponding precipitation
estimates by earlier studies (Immerzeel et al., 2012, 2015). This indicates that either the
estimated precipitation is lower than the actual or these basins are receiving bulk of their
runoff from snow/glacier melt in the absence of an adequate precipitation (snowfall) inputto
sustain the snow/glacier systems. The latter case certainly recognizes for tangible glacier
retreat and loss of glacial mass. However, the scientific research on precipitation inputs and
associated snow/glacier mass balance in the study area is uncertain and largely
contradicting due mainly to paucity of in-situ precipitation and glacier mass balance data
(Kaéb et al., 2012; Immerzeel et al., 2009). Moreover, mass balance studies in this region
are always difficult as most of the glaciers based at the high-altitude areas (above 4000 m)
are often nourished by avalanches and redistribution by wind in addition to seasonal snow
(Hewitt, 2013, 2011). While K&éab et al. (2012), Wiltshire (2014), Gardner et al. (2013),
Jacob et al. (2012), Cogley (2011) and Immerzeel et al. (2009) noticed loss of ice mass and
consistent decrease in glacier extent in the HKH region, several other studies (e.g. Bhambri
et al., 2013; Minora et al., 2013; Gardelle et al., 2013, 2012; Bolch et al., 2012; Scherler
et al., 2011; Tahir et al., 2014, 2011; Schmidt and Nusser, 2012; Mayer et al., 2006; Hewiitt,
2005) indicated ‘Karakoram anomaly' advocating stability or even growth of Hindukush-
Karakoram glaciers. The possible reasons for such an anomaly have been linked to the role
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of debris-covered areas in reducing ice ablation (Scherler et al., 2011) and favourable
changes in winter precipitation and summer temperatures (Mathison et al., 2013; Hewitt,
2011, 2005; Fowler and Archer, 2006; Archer and Fowler, 2004).

Given the importance of precipitation and a large uncertainty over its distribution, the major
aim of this study is to analyse altitude dependency of precipitation and derive its
spatiotemporal distribution by using the observed data available from different sources.
Therefore, we collected precipitation data of 118 meteorological stations; more than half of
these are located at mid to high-altitudes and have never been used for formation or
calibration of precipitation datasets. These station observations are further supported by 16
virtual stations over major glacier accumulation zones, where average net annual
precipitation is estimated through mass balance studies. We focus separately on each sub
hydrological basin and explain how precipitation amounts, seasonality and patterns are
represented. The study provides much improved estimates of precipitation distribution,
which are comparable with the corresponding observed runoffs at sub-basin scale.

2.2 Study Area

The Indus basin originates from the TP and the HKH region and spreads over parts of
China (8%), India (39%), Afghanistan (6%) and Pakistan (47%). The study area extends
over the high-mountain sub-basins of Indus basin (Figure 2.1). The total area of these high-
altitude catchments is 259,913 km2 of which 57.5% is laid above 4000 m a.s.l. Although,
there is no definite boundary among the three mountain ranges but it is generally assumed
that the river Indus bisects the Himalayan range from the Hindukush, Karakoram and TP.
The eastern boundary of Shyok basin limits the Karakoram range in the east, while the
boundary between Gilgit and Hunza basins separates it from the Hindukush range. The
study area is the largest source of fresh water resources (153 BCM year?) of Pakistan and
plays a crucial role in water, energy and food security of the region.

The extensive Eurasian continent and the Indian and Pacific oceans play an important role
in atmospheric circulation and monsoon formation of the world's largest and most powerful
monsoon system in South Asia (Saha, 2010). The climate of Indus basin is characteristic of
the South Asian atmospheric circulation that is associated with the summer monsoon
evolution and extra-tropical cyclonic/anticyclonic circulations around troughs of low/high
pressure areas during winter. Thus, precipitation in the study area is predominantly
influenced by the two principal weather systems: the Indian summer monsoon (ISM)
advecting moisture from the Indian Ocean, Arabian Sea and Bay of Bengal due to the
differential heating between land and sea during summer (e.g., Palazzi et al., 2013; Ahmad
et al., 2012; Krishnamurti and Kishtawal, 2000; Wu and Zhang, 1998; Li and Yanali,
1996), and the western disturbances (WDs) bringing moisture from the Mediterranean and
Caspian sea as an extratropical frontal system during winter and early spring (Filippi et al.,
2014; Pal et al., 2014; Mayer et al., 2014; Treydte et al., 2006; Syed et al., 2006; Archer
and Fowler, 2004; Archer, 2001; Singh et al., 1995). Seldom, relatively weak storms of
East Asian summer monsoon (Ding and Chan, 2005; Wang and Lin, 2002) also enter into
the Ladakh region from the eastern end.

The summer monsoon in the Indus basin, extending from July- September, is the
northwestern limit of the ISM. There are three monsoon moisture trajectories: 1% from the
Indian Ocean across the Arabian Sea, 2" along the Indian river valley to the western
Himalayas and TP, and 3 from the Bay of Bengal moving northward to the eastern
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Himalayas and TP along the Brahmaputra river valley (Pang et al., 2014; Liu, 1989; Lin
and Wu, 1990). The WDs enter the north-west Indus basin during late November mostly in
a diffused state with distorted structure, but regain their frontal structure and strength by
interacting with the pre-existing orographically- maintained trough of low pressure. They
usually bifurcate into the northern and southern branches around the Karakoram and
western TP regions due to topographic blocking (Pang et al., 2014). Wintertime
precipitation in the HKH region is mainly related to water vapor transport by the southern
branch of WDs (Yihui and Zunya, 2008; Wei and Gasse, 1999). The interplay between
these regional- scale atmospheric circulation systems and the local climatic and topographic
features usually determine the amount and distribution pattern of precipitation in the high-
altitude catchments of Indus basin.
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Figure 2.1: a) Location of the study area, and b) location of sub-basins and mountain ranges. The
mountain ranges are separated by different colour schemes.

2.3 Data and Methods
2.3.1 Station based point observations

Meteorological data of the Indus basin is scattered among different organizations [e.g.
Pakistan Meteorological Department (PMD), Water and Power Development Authority
(WAPDA) of Pakistan, Indian Meteorological Department (IMD), University of Boon
under the Culture Areas Karakoram (CAK) programme in the Bagrot valley and Yasin
catchment of Gilgit basin during 1990-91, and Ev-K2-CNR (an Italian based organization)
under the SHARE project]. However, not all these data are freely accessible. PMD operates
a number of meteorological stations in Pakistan but their network of observatories in the
high-altitude catchments of Indus basin is sparse and mainly concentrated in the valleys
with elevations less than 2500 m a.s.l. WAPDA installed a network of meteorological
observatories in various sub-basins of Indus basin under the Surface Water Hydrology
Project and more recently (199499) under the Snow and Ice Hydrology Project mainly at
the higher altitudes. We collected climatic data of 21 stations from PMD and 44 stations
from WAPDA located in the study area. Monthly summaries of the observed precipitation
at 41 observatories located in the Indian Territory available from NOAA-NCDC's website
http://www.ncdc.noaa. gov/cdo-web/datasets (NOAA-NCDC) were downloaded in June,
2014. Meteorological data of 2 observatories installed by Ev-K2-CNR in Shigar basin were
downloaded from http://data.eol.ucar.edu/codiac/dss/id?76.200 in June, 2014. The
meteorological data collected under the CAK project in Gilgit and Hunza basins are not
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publicly available therefore we derived average precipitation of 10 observatories from
Winiger et al. (2005), Miehe et al. (2001, 1996) and Eberhardt et al. (2007). Finally, we
assumed 16 virtual stations located at the accumulation zones of major glaciers where
average annual net precipitation is estimated from mass balance studies (Table 2.1). The
observed station data used in this study are detailed in Figure 2.2 and Table S-2.1.

Table 2.1: Annual precipitation as water equivalent (we) at major glacier accumulation zones.

Sr. Virtual Latitude Longitude Altitude we Data

#  Station (dd) (dd) (m) (mm) Source

1  Sentik 33.996667 75.95000 4908 620  Mayewski et al. (1984)

2 Nun Kun North 34.121927 76.10142 5200 900  Mayewski et al. (1983) and Qazi
3 Batura 36.666667 74.38333 4840 1034 Batura Investigation Group (1979)
4 Baldor 35.877780 76.55079 5500 1600 Mayer et al. (2006) and Decheng
5  Urdok 35.766876 76.70253 5400 1060 Mayer et al. (2014)

6  Whaleback 36.057170 75.59149 4900 1790 Hewitt (2011, 2006) and Wake
7  Approach 36.067780 75.63310 5100 1880 Hewitt (2011, 2006) and Wake
8  Hispar East 35.849533 75.50639 4830 1070 Hewitt (2011, 2006) and Wake
9  Hispar Dome  36.010910 75.51872 5450 1620 Hewitt (2011, 2006) and Wake
10 Hispar Pass 36.028070 75.52151 5100 1420 Hewitt (2011, 2006)

11 Khurdopin 36.133770 75.61969 5520 2240 Hewitt (2011)

12 Nanga Parbat  35.167250 74.44442 4500 2000 Shroder et al. (2000) and Kick
13 Siachin A 35.470730 77.03757 4800 484  Bhutiyani (1999)

14  Siachin B 35.523490 76.99150 4950 526  Bhutiyani (1999)

15 SiachinC 35.518660 76.91160 5050 662  Bhutiyani (1999)

16 Siachin D 35.624230 76.85924 5350 855  Bhutiyani (1999)
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Figure 2.2: Elevation distribution, sub-basins considered for altitudinal variation of precipitation, and
location of rain gauges and river gauges (the numbers refer to the respective rain gauges mentioned in
Table S-2.1).
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2.3.2 Gridded datasets

Substantial progress has been made during the last three decades in constructing the
analysed fields of precipitation over global land areas from multiple sources. As such, a
wide variety of global and/or regional scale gridded precipitation products derived through
various means is currently available for climate change and hydrological assessment
studies. The most common and widely used products can broadly be classified into four
categories; (i) based on climate models' reanalysis, (ii) merged model (reanalysis) and
station observations, (iii) merged satellite estimates and station observations, and (iv)
derived solely from station observations. In this study, we selected at least one dataset from
each basic category to underline the inherent uncertainties in these datasets and highlight
the importance of their bias correction before use in hydro-climate studies in the study area.

ERA-Interim: ERA-Interim (Dee et al., 2011) is a third generation global atmospheric
reanalysis product with an improved atmospheric model and assimilation system, produced
by the European Centre for Medium- range Weather Forecasts (ECMWF) providing data
from 1979 to present. Estimates of precipitation associated with the reanalysis are produced
by the forecast model, based on temperature and humidity information derived from
assimilated observations. These data are available at sub-daily, daily and monthly intervals
and at spatial resolution of 0.75° latitude-longitude grid, but we used monthly means of
daily means re-gridded at 0.125° available at http://apps.ecmwf.int/ datasets/data/interim-
full-moda/, accessed in January, 2015. Berrisford et al. (2011) provides a detailed
description of the ERA-Interim product.

WFDEI: The WATCH Forcing Data-ERA Interim (WFDEI) dataset (Weedon et al., 2014)
is derived from ERA-Interim reanalysis product (Dee et al.,, 2011) via sequential
interpolation to a 0.5° resolution, elevation correction and monthly-scale adjustments based
on CRU TS3.1/TS3.21 (Harris et al., 2013) and GPCCv5/v6 (Schneider et al., 2013)
monthly precipitation observations for 1979-2012 combined with new corrections for
varying atmospheric aerosol-loading and separate precipitation gauge corrections for
rainfall and snowfall under the Water and Global Change (WATCH) programme of the
European Union. The  WFDEI is an open access dataset  at
ftp://rfdata:forceDATA@ftp.iiasa.ac. at/. We accessed the data in December, 2014 and used
CRU TS3.1/ TS3.21 adjusted WFDEI product.

TRMM: The Tropical Rainfall Measuring Mission (TRMM), launched in November 1997
as a joint project by NASA and the Japanese Space Agency (JAXA), is instrumented with
Precipitation Radar (PR), TRMM Microwave Imager (TMI), and Visible Infrared Scanner
(VIRS). The PR provides three-dimensional maps of storm structure giving information on
the intensity, distribution and type of rain, storm depth and the height at which the snow
melts into rain. The TMI quantifies water vapor and cloud water content as well as the
rainfall intensity in the atmosphere, while the VIRS provides the cloud context of the
precipitation and connects microwave precipitation information to infrared- based
precipitation estimates from geosynchronous satellites. The TRMM Multi-satellite
Precipitation Analysis (TMPA) combines all the available precipitation datasets from
different satellite sensors and monthly surface rain gauge data to provide a “best” estimate
of precipitation at spatial resolution of 0.25° for the 50° N-S areas (Huffman et al., 2007).
We used TRMM 3B43 version 7 monthly precipitation product released by TMPA in May
2012. Huffman et al. (2007) provide detailed information on the algorithms and different
processing steps. The dataset available at http://disc.sci.gsfc.nasa.gov/daac-
bin/DataHoldingsPDISC.pl?LOOKUPID_List=3B43 was accessed in December, 2014.
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APHRODITE: Asian Precipitation-highly Resolved Observational Data Integration
Towards Evaluation of Water Resources (APHRODITE) is the state-of-the-art high-
resolution daily precipitation dataset developed by a consortium between the Research
Institute for Humanity and Nature (RIHN) Japan and the Meteorological Research Institute
of Japan Meteorological Agency (MRI/JJMA) from a dense rain gauge observational
network in Asia. We used the latest and improved version of daily dataset for Monsoon
Asia (APHRO_MA_V1101) covering 60.0E-150.0E, 15.0S-55.0N at a high spatial
resolution of 0.25° for the period extending from 1951-2007 (Yatagai et al., 2012). The
precipitation data from a dense network of rain gauges is 1% interpolated on to a grid of
0.05° using the modified version of the distance-weighting interpolation method (Shepard,
1968), which considers sphericityand orography by the Spheremap (Willmott et al. 1985)
and the Mountain Mapper (Schaake, 2004) methods respectively. This dataset is then re-
gridded to 0.25° and 0.5° products using the area-weighted mean. The algorithm is
improved in that the weighting function considers the local topography between the rain-
gauge and interpolated point (Yatagai etal., 2012). The veryhigh resolution (0.05°) dataset
is restricted to the partner institutes only and is not publicly available. Therefore, we used
the latest and improved version (APHRO_MA_V1101) with spatial resolution of 0.25°.
The dataset, available at http://www. chikyu.ac.jp/precip/, was accessed in July, 2014.

2.3.3 River Flows

Historical daily discharge data at the sub-basin level for twelve stations (Figure 2.2; Indus
at Kharmong, Shyok at Yugo, Shigar at Shigar, Hunza at Dainyor, Gilgit at Gigit, Astore at
Doyian, Indus at Tarbela, Chitral at Chitral, Swat at Chakdara, Panjkora at Zulam bridge,
Jhelum at Mangla, and Chenab at Marala) in the study area are available from WAPDA.
The current study used river discharge data for the 1998-2012 period for consistency with
the observed and gridded precipitation products.

2.3.4 Methods

The pre-processed void free Shuttle Radar Topography Mission (SRTM) digital elevation
data of 90 m resolution freely available from http://hydrosheds.cr.usgs.gov/ are used to
delineate the watershed boundaries according to the methodology explained by Khan et al.
(2014). However, for consistency with the precipitation datasets, the boundaries are also
delineated from 1 km (30 s) DEM available from the same site.

We selected all the stations that covered at least three years of data to cover the recent
installations and keeping in view the paucity of the observed data. Daily precipitation
observations were converted into monthly totals if no more than three days were missing in
a month. Similarly, seasonal and annual totals were calculated if no month was missing in a
season or year. The study used station observations of average monthly, seasonal and
annual precipitation totals from 134 points located within the study area to analyze
altitudinal dependency and derive spatiotemporal distribution of precipitation averaged
over the 1998-2012 period. In order to appraise the influence of elevation on precipitation,
the average annual precipitation of a group of stations located within or closest to each sub-
basin for the common time period are plotted.

For estimation of precipitation distribution, we selected the best suited spatial interpolation
scheme based on literature review and specific geo-hydro-climatological conditions of our
study area. While going through the literature, we noticed that with wide and increasing
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applications of the spatial interpolation methods, there is also a growing concern about their
accuracy and precision for a given set of conditions (Hartkamp et al., 1999). In general,
when quality and amount of sampled data is sufficiently high, most of the spatial
interpolation methods are accurate and produce almost similar estimates (Burrough and
McDonnell, 1998). Minasny and McBratney (2007) however argued that improvements in
prediction rely more on representativeness and quality of input data rather than on more
sophisticated methods. A thorough review of spatial interpolation methods by Li and Heap
(2014) could not infer any simple answer or consistent findings regarding the choice of best
method, but it provided guidelines and suggestions by describing and comparing the
features, strengths and weaknesses of a number of interpolators. Li and Heap (2011)
analysed the performance of 32 spatial interpolation methods and observed that their
performance depends not only on the structure of the method itself, but also on the nature
of interpolating surface as well as quality and amount of the input data. They found kriging
methods better than nongeostatistical methods and recommended Kriging with External
Drift (KED) method. Many other studies (e.g. Tobin et al., 2011; Haberlandt, 2007;
Verfaillie et al., 2006; ICES, 2005; Hengl et al., 2003; Rivoirard and Wieland, 2001;
Bourennane et al., 2000; Bishop and McBratney, 2001; Goovaerts, 2000) also compared
different geostatistical and non-geostatistical methods in a variety of situations and noticed
that Kriging with KED usually provided better estimates than all other methods.

The KED interpolation method (Schabenberger and Gotway, 2005) allows the processing
of non-stationary random functions taking into account the spatial dependence of a primary
variable known only at a small set of points as well as its linear relation to one or more
additional covariates (secondary variables/predictors) exhaustively known at all points over
the whole domain. It uses semivariograms or covariances, Ccross-covariance,
transformations, trend removal, and allows for error/ uncertainty check. It is most
appropriate when there is an overriding trend in the sampled data, which can be modelled
by a deterministic polynomial function. Moreover, Masson and Frei (2014) observed sim-
ple one-predictor KED model markedly better than the multilinear regression model with
nine predictors and noticed only marginal improvement with inclusion of complex
physiographic predictors. Therefore, we selected KED interpolation method with elevation
as a predictor to predict unknown values from these observations, as our study area is
largely an under-sampled and complex high-mountain terrain exposed to three main
circulation systems leading to reasonable spatial (directional) and altitudinal biases in
precipitation distribution.

The KED model includes a component of spatial autocorrelation and a component for
multilinear dependence on pre-defined variables (predictors). It considers the observations
(Y) at sample locations (s) as a random variable of the form (e.g. Diggle and Ribeiro,
2007):

Y(s) = pu(s) +Z(s) 21)
1(s) = Bo + Xi=1 B - % (s) 22)
Here, u(s) describes the deterministic component of the model (external drift or trend) and
is given as a linear combination of K predictor fields x,(s) (trend variables) plus an

intercept By. The By, are denoted as trend coefficients, while Z(s) describes the stochastic
part of the KED model and represents a random Gaussian field with a zero mean and a 2™
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order stationary covariance structure. The latter is conveniently modelled by an eligible
parametric semi-variogram function describing the dependence of semi-variance as a
function of lag (possibly with a directional dependence). To derive the climatology of mean
monthly, seasonal and annual cycle of precipitation from the point observations, we applied
KED interpolation method with elevation as a predictor separately for monthly, seasonal
and annual precipitation totals averaged over the period of 1998-2012. The KED-based
estimated precipitation distribution was further converted into grid format (1 km size) for
sub-basin scale precipitation computations and comparisons with the gridded datasets.

Daily river discharge data at the available outlets are used to compute the average monthly,
seasonal and annual specific runoff (measured flow/drainage area) for each sub-basin. The
KED-based estimated annual precipitation totals from each sub-basin are validated by the
corresponding average specific runoff and the pattern of glacier cover using ICIMOD
glacier inventory (Bajracharya and Shrestha, 2011) and compared with earlier studies.

The selected gridded precipitation products are re-gridded and processed to compute mean
monthly, seasonal and annual precipitation totals at sub-basin scale. Afterwards, their
accuracy relative to the KED-based estimated precipitation is evaluated for each sub-
hydrological basin. For evaluation of precipitation patterns, the Taylor diagram is used for
the re-gridded precipitation values ofallthe products to acom- mon grid of 0.05°; while for
quantitative assessment, the seasonal and annual biases relative to the KED-based estimated
precipitation at the sub-basin scale are analysed.Basin-wide seasonaland annual correction
factors are introduced to account for the inherent errors in each gridded product.These
correction factors are determined by dividing the respective grid values of the estimated
precipitation by the gridded datasets and averaging them at sub-basin level. These factors
simply need to be multiplied with the respective gridded datasets for the area of interest.

2.3.5 Uncertainty Analysis

The major uncertainties involved in this study are associated with the quality and amount of
the observed data and the interpolation technique used to predict the unknown values from
these observations. The organizations operating weather stations in the study area generally
indicate to apply WMO standards for collection of meteorological data. Yet, in many cases,
the quality of data is affected by instrumental problems, station locality and interruption of
timeseries (Miehe etal.,1996). PMD, WAPDA and Ev-K2-CNR use the tipping bucket rain
gauges to record liquid precipitation in the low- to mid-altitude areas. In the case of
occasional snowfall, the water equivalent calculated manually is usually added to the daily
precipitation records. The automatic data collection platforms (DCPs) installed by WAPDA
in the high-altitude areas during 1994-95 use snow pillows to measure both solid and liquid
precipitation as water equivalent. However, most of the installed snow pillows encountered
technical issues of interfacing with the transmission system as well as unexpected “jumps”
due to possible ice bridging and rupture effects (SIHP, 1997). Although, the problem was
substantially minimized in 1996 by attaching a precision potentiometer to convert the shaft
encoders from a digital output to an analogue, the snow pillows are still subjected to
underestimate solid precipitation under strong wind conditions (Hasson et al., 2014). The
automatic weather stations installed within the framework of the CAK project measure pre-
cipitation using data logger, tipping bucket and snow depth gauge (Miehe et al., 1996). Yet,
measurement of solid precipitation in strong windy conditions is subject to considerable
errors due to constant blowing away of snow from the ultrasonic sensors. GHCN-monthly

20



summaries of the observed precipitation for the study area are based on data from IMD,
which also follows WMO standards, and are subjected to a suite of quality assurance
reviews.

Another source of uncertainty is inconsistency in the precipitation observations due to late
installation of instruments, temporary sensor failures or non-collection of data. The time
series of the observed data is variable, ranging from more than 30 years for a few stations to
at least 3 years for the most recently installed stations (Table S-2.1). We used average
precipitation during the period of 1998-2012, because the majority of data is available for
this period except the GHCN dataset, which contains precipitation data of some old
observatories operational between 1901 and 1970. To check for possible temporal change,
we compared these stations' records with the nearest stations with up to date data. We only
found an insignificant trend. Similarly, the net precipitation estimated from glacier
accumulation studies is also inconsistent in temporal terms.

KED interpolation model produces both prediction as well as error/ uncertainty surfaces,
giving an indication or measure of how good the predictions are. It estimates an
interpolated surface from randomly varied small set of measured points and recalculates
estimated values for these measured points to validate the estimates and determine extent of
errors. Since, we used all of the available observations; there is no more ground truth
available to validate the performance of this method. However, we used leave-one-out cross
validation strategy to assess the performance of the employed interpolation scheme. We
applied cross validation on the observed and predicted values from all the stations to assess
the errors/uncertainty associated with the interpolation scheme by using error scores of the
relative bias (B) and the relative mean root-transformed error (E), which are defined as:

_ TP
B = S (2.3)

I (Pi-vey’
n 2
w._(Jo-vo)

Here P; and O; are the predicted and observed precipitation values respectively, while 0 is
the spatial average of the observations over all (or a subset of n) stations. The cross-
validation results (Table 2.2) depict relative bias values of slightly higher than for all
months, indicating only a small overestimation of the predicted values but at annual scale it
is almost zero. Similarly, E values less than 1 suggest typical errors smaller than the spatial
variations except for pre-monsoon season. In summary, there are no serious uncertainties or
constraints but further improvements in the estimated precipitation distribution can be
achieved by using higher quality observed data with more spatiotemporal coverage,
particularly at higher-altitudes.

E = (2.4)

Table 2.2: Relative bias (B) and relative mean root-transformed error (E) calculated over all
observation points. PMSN is pre-monsoon (Apr-Jun), MSN is monsoon (Jul-Sep), WIN is winter
(Oct-Mar) and ANN is annual.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC PMSN MSN WIN ANN

B 1.014 1.029 1.040 1.045 1.045 1.015 1.002 1.004 1.002 1.005 1.005 1.036 1.043 1.002 1.003 1.001
E 0.090 0.786 0.913 1.189 1.858 1.007 0.003 0.009 0.022 0.012 0.055 0.935 1.406 0.006 0.011 0.006
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2.4 Results
2.4.1 Altitudinal variation of precipitation

The analysis of observed precipitation records revealed significant altitude dependency of
precipitation in all the sub-basins (Figure 2.3), which supports earlier studies (e.g. Pang et
al., 2014; Hewitt, 2011; Winiger et al., 2005; Weiers, 1995; Wake, 1989; Dhar and
Rakhecha, 1981; BIG, 1979; Decheng, 1978). However, there is substantial difference in
the rate and magnitude of variation from one basin to another due to significant directional
bias (spatial autocorrelation) and influence of highly diversified orography (topography and
exposure) interacting with multiple weather systems. Therefore, the complex altitudinal
variation of precipitation in the high-altitude Indus basin cannot be represented by a single
relation. Such an elusive behaviour of precipitation gradient was also found by Immerzeel
et al. (2014) in Nepalese Himalayas, where a uniform valley wide precipitation gradient
could not be established due to influence of several scale-dependent mechanisms.
Although, we attempted a separate analysis for each sub-hydrological basin, yet the spatial
variability in each sub hydrological basin is so high that the number of available
observations is inadequate to infer an accurate distribution of altitudinal precipitation.
Rather complex and nonlinear trend of precipitation increase with altitude is evident in
most sub-basins. The south-west TP and eastern Karakoram regions display an elusive
trend mainly due to higher variability and a small number of observation points. Astore and
Chitral basins depict mixed trend, while Shigar, Hunza and Gilgit basins infer relatively
strong positive vertical gradients. The southern basins like Chenab, Jhelum, Swat and
Lower most reach of Indus main experience the zone of maximum precipitation at an
altitude of around 2500 m. Pang et al. (2014) and Dhar and Rakhecha (1981) also observed
that the monsoon precipitation above 2400 m elevation in the central Himalayas decreases
significantly with rising elevation. The height of maximum precipitation in rest of the sub-
basins is not clear but tends to increase with latitude. Hence, the assumptions of linear
increase in precipitation with elevation by the earlier studies (e.g. Immerzeel et al., 2012;
Mayer et al., 2006 and Winiger et al., 2005) could not be confirmed by this study as the
available observations are highly inadequate to infer an accurate distribution of altitudinal
precipitation.

2.4.2 Spatial interpolation of precipitation observations

The KED-based interpolation of the point observations revealed some important
characteristics of precipitation distribution in the study area. Monthly distribution of
precipitation indicates largely bimodal weather system in the study area reflecting the
wintertime precipitation associated with the westerly systems and the impact of Indian
summer monsoon. The south-western Himalayan catchments (Chenab, Jhelum & Indus-L)
are dominated by the summer monsoon but also receive considerable amounts of
precipitation during winter and pre-monsoon seasons. The Hindukush and Karakoram
basins receive most of their precipitation during winter (40-60%) and pre-monsoon
(25-45%) seasons. The winter precipitation usually strengthens in December, peaks in
March and starts receding during April and is very important for accumulated summer
flows particularly in the Hindukush and Karakoram regions (Figure 2.4).
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Figure 2.3: Altitudinal variation of annual precipitation in each sub-basin.
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Figure 2.4: Monthly distribution of area-weighted depths of estimated precipitation and specific
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The hydrographs of estimated precipitation and specific runoff (Figure 2.4) indicate
dominancy of snow/glacier melt contribution during May-September. Since, snowfields
and glaciers often perform an important function of regulating stream flows, the
downstream areas usually receive heavy floods whenever higher precipitation in winter
season is followed by a relatively warm and wet monsoon season. Due to varying inputs of
precipitation and snowmelt components, there is large variability in the amount (depth) of
peak flows from different sub-basins but the timing tends to be in late July for most of the
basins. Generally, the river flows are very low during winter, start rising in May, peak in
July-August and descend sharply until the start of next winter. The high-altitude western
and northern basins (Chitral, Gilgit, Hunza Shigar, Shyok, Indus at Kharmong and Astore)
are more dominated by snow/glacier melt while the low-altitude southern basins (Swat,
Indus-lower, Jhelum and Chenab) receive substantial flows from direct rainfall.

50 100 150 200 300 400 600 900 1200 1500 100 200 300 450 600 900 1200 1500 1800 2230

Figure 2.5: Spatial distribution of KED based estimated precipitation for a) pre-monsoon (Apr-Jun),
b) monsoon (Jul-Sep), c) winter (Oct-Mar) and d) annual basis. All values are in mm (note different
scales for each panel).

The estimated precipitation distribution (Figure 2.4 and 2.5) signifies the key features of
mean annual cycle and seasonality of precipitation. Moisture-laden westerly winds are
intercepted by high mountains in the west and north, leading to moisture condensation and
precipitation at higher altitudes. As such, winter precipitation tends to be stronger in
Chitral, Swat, Gilgit, Hunza, Astore and Shigar basins, which receive significant
precipitation in the form of snowfall during winter and spring (pre-monsoon) seasons. The
Indian summer monsoon mainly dominates at southern parts (i.e. Chenab, Jhelum, Swat
and Indus-lower basins). Northwardly oriented Astore, Shingo and Zanskar basins are on
the leeward side of western Himalayan range and thus receive lower precipitation as
compared to Chenab and Jhelum basins in monsoon season. The Tashain glacier and Nanga
Parbat massif located in the south-west of Astore basin hinder further north-west movement
of the monsoon. However, stronger storms often divert northwardly and penetrate in to the
central Karakoram region. Highly elevated boundary between Chenab and Zanskar basins
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hardly allows monsoon rains to penetrate further northward; as such the Zanskar range and
Ladakh region in the TP are relatively drier. The East Asian summer monsoon seldom
reaches to the Karakoram from the east. However, whenever it does penetrate significantly,
it interacts dramatically with the features of the already present Indian summer monsoon
and westerly systems causing heavy downpours and extensive floods (e.g. Jul-Aug 2010
floods in Pakistan). The Indus main up to Chilas (climatic station number 5 in Figure 2.2),
which remains under the rain shadow of the surrounding high mountains on both sides, is
least affected by both summer monsoon and western disturbances.

2.4.3 Validation of KED-based estimated precipitation

The basin-wide KED-based estimated precipitation is validated by the specific runoff
(measured flow/drainage area) of respective subbasins (Figure 2.6a). The specific runoff in
snow/glacier fed basins is usually affected by precipitation losses and the dynamics of
snow/glacier mass balance as the river flows are often regulated by changes in storage of
snow/glacier mass. In the absence of comprehensive and reliable mass balance estimates,
the estimated precipitation and the corresponding specific runoffs can be used to infer the
change in snow/glacial mass balance. Positive changes in storage are expected when the net
precipitation (excluding losses) is markedly greater than river runoff. Conversely, higher
runoff compared to the net precipitation may point to loss of storage indicating negative
mass balance. However, reliable estimates on evapotranspiration, interception, sublimation
and percolation losses in the study area are lacking, forcing earlier studies (e.g. Immerzeel
et al., 2009; Tahir et al., 2011) to ignore these losses. The assumption that these
components in water balance studies may be negligible particularly in the Karakoram
region are supported by the fact that the majority of the landscape in this region is rocky
with scarce vegetative cover resulting in minor evapotranspiration, interception and
percolation. Nevertheless, these losses will result in reduced net precipitation. We used net
precipitation from the glacier accumulation zones, which already excludes the losses from
snowfields and glaciated areas.
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Figure 2.6: Validation of estimated precipitation with specific runoff (a) and glacier cover (b).

Moreover, there may be some compensating errors because the solid precipitation in the
high-altitude and windyareas is generally susceptible to undercatch by 20-50% (Rasmussen
et al., 2012). Therefore, we assume that the potential losses (evapotranspiration,
sublimation, interception and deep percolation) and possible gains (undercatch of snowfall)
cancel each other out and the net difference is insignificant particularly in the Karakoram
and north-west Hindukush regions. Another approximation to validate the estimated
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precipitation is superimposition of glacier cover over the estimated precipitation (Figure
2.6b) since an adequate amount of precipitation is essential to sustain and surge the glaciers
in this area. The estimated precipitation coherently follows the pattern of glacier cover in
high-altitude areas except the eastern Shyok basin. Finally, the KED-based estimated
precipitation is compared with the estimates of earlier studies derived either from station
observations or gridded datasets. The comparative analysis, summarized in Table 2.3,
shows that the precipitation estimates by earlier studies are highly contrasting but consistent
in underestimating precipitation in majority of the areas. These earlier studies have used
non-representative precipitation data and/or overestimated basin boundaries resulting in
highly biased precipitation estimates.

Table 2.3: Comparison of KED-based estimated precipitation with the estimates of earlier studies

Precipitation

River Basin (mm) Dataset Used Reference Study

Indus- 388.0 Terr_estrial Precipitat_ion V2.01_ Mu_khopadhyay, 2012

Kharmong 277.3 Station data + KED interpolation ~ This Study
161.0 APHRODITE * 1.17 Lutz et al., 2014a
3415 Station data + KED interpolation ~ This Study

Shyok 251.2 Terrestrial Precipitation VV2.01 Mukhopadhyay, 2012
175.5 APHRODITE * 1.17 Lutz et al., 2014a
917.2 Station data + KED interpolation ~ This Study
882.0 India-WRIS CWC and NRSC, 2014

Shigar 550.0 Model Bocchiala et al., 2011
264.0 APHRODITE * 1.17 Lutz et al., 2014a
201.7 Terrestrial Precipitation VV2.01 Mukhopadhyay, 2012
828.0 Glaciers as proxy & station data Immerzeel et al., 2012
732.8 Station data + KED interpolation ~ This Study
692.0 APHRODITE+Glacier as proxy Lutz et al., 2014b

Hunza 582.6 India-WRIS CWC and NRSC, 2014
229.7 Terrestrial Precipitation \VV2.01 Mukhopadhyay, 2012
205.0 APHRODITE * 1.17 Lutz et al., 2014a
176.0 APHRODITE Tahir etal., 2011
162.5 Station Observations Akhtar et al., 2008
582.6 India-WRIS CWC and NRSC, 2014
575.4 Station data + KED interpolation ~ This Study

Gilgit 326.0 APHRODITE * 1.17 Lutz et al., 2014a
315.0 Terrestrial Precipitation VV2.01 Mukhopadhyay, 2012
162.5 Station Observations Akhtar et al., 2008
904.6 Station data + KED interpolation ~ This Study

Astore 882.0 Indifa-WRIS ) CWC and NRSC, 2014
496.0 Station Observations Akhtar et al., 2008
430.5 APHRODITE * 1.17 Lutz et al., 2014a
675.0 ERA-Interim, NCEP/NCAR Reggiani & Rientjes, 2015
671.0 APHRODITE+Glacier as proxy Lutz et al., 2014b
481.6 Station data + KED interpolation ~ This Study

Indus- 315.0 Terrestrial Precipitation VV2.01 Mukhopadhyay, 2012

Tarbela 311.0 TRMM 3B43 Immerzeel et al., 2009, 2010
300.0 TRMM 2B31 Bookhagen & Burbank, 2010
2189 APHRODITE * 1.17 Lutz et al., 2014a

Ihelum 1175.2 Station data + KED interpolation ~ This Study
1052.5 India-WRIS CWC and NRSC, 2014

Chenab 1333.8 Indi_a—WRIS _ _ CWC and NRSC, 2014
1107.5 Station data + KED interpolation  This Study
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2.4.4 Evaluation of the gridded products

The gridded precipitation products often fail to capture the large and abrupt changes in
precipitation over short distances due to their coarse resolution and pronounced orographic
effects in the high mountain areas. In this study, we evaluated accuracy of important
precipitation products derived through four different means for the high-altitude areas of
the Indus basin. The spatial distribution of mean seasonal and annual precipitation totals
from ERA-Interim, WFDEI, TRMM and APHRODITE products show contrasting timings
and amplitudes (Table 2.4) and patterns (Figure 2.7) relative to the KED-based estimated
precipitation. In quantitative terms, ERA-Interim largely overestimates precipitation in all
the sub-basins except Shigar and Hunza, while the other three datasets consistently
underestimate precipitation in all the areas barring Ladakh region of the TP (Indus at
Kharmong). However, the inter-comparison of the four gridded products show a reasonable
consistency between TRMM and APHRODITE, while WFDEI tend to be slightly different
and ERA-Interim displays large overestimates. Within the ambit of overall dry bias,
WEFDEI gives relatively better quantitative estimates for Hindukush, Karakoram and north-
western Himalayan regions but seems less accurate for the south-western Himalaya,
whereas TRMM shows opposite estimates for these areas. Similarly, TRMM gives better
estimates during monsoon but WFDEI is better for the other seasons. The APHRODITE
product is the least accurate among the four datasets showing strong dry bias for almost all
seasons and all areas, particularly for winter and in the high-altitude catchments.

Table 2.4: Basin-wise mean seasonal and annual precipitation totals (mm) from Estimated (EST),
ERA-Interim (ERAI), WFDEI (WEI), TRMM (TRM), and APHRODITE (APH) precipitation
products during 1998-2012.

River Pre-monsoon Monsoon Winter Annual

Basin | EST ERAI WEI TRM APH | EST ERAI WEI TRM APH | EST ERAI WEI TRM APH| EST ERAI WEI TRM APH
Indus-U | 292 1295 798 566 330 694 2062 1282 1247 819| 464 1121 1246 908 419| 1450 4478 3326 2721 1568
Zanskar | 926 2477 927 842 533| 1268 1917 1328 1468 80.7| 2548 3395 1475 1313 875 4742 7789 3730 3623 2215
Shingo | 1351 2813 1103 1211 783 980 1741 1172 1193 581 3226 5166 2083 1908 1157 5557 9720 4358 4312 2521
Shyok 770 1484 504 596 402/ 1001 1168 27.3 791 412| 1644 157.3 1430 693 568 3415 4225 2297 2080 1382
Shigar 2247 2068 885 676 908 1604 1209 317 1018 46.8| 5322 3185 2021 1172 879 917.2 6462 3223 2866 2255
Hunza 1986 2516 924 849 706 1886 177.3 264 1151 461 3456 3083 2082 1561 590 7328 737.3 3270 3561 1757
Gilgit 1562 3717 1337 97.8 1332 1622 2341 863 1095 616 2570 559.8 2868 117.1 834| 5754 11656 5068 324.4 2782
Astore 2355 3521 1246 1297 1356 1530 2621 1166 1388 643 5162 5907 2411 1731 1345 9046 12049 482.3 4416 3344
Indus-M | 151.9 3626 1279 944 117.6) 1015 2952 1118 1192 539| 1994 557.6 2419 1099 89.8) 4529 12155 4816 3235 2613
Indus-L | 237.6 3431 227 187.2 2149 3558 6624 3301 347.3 3382 5429 6200 3689 3068 364.0| 1136.3 16256 7216 8413 917.1
Indus-Tar| 1157 2280 1022 860 77.7) 1331 2316 109.6 1346 869 2329 317.7 1918 1276 949 4816 777.3 4036 3482 2595
Chitral 1732 3444 1682 1042 1419| 1248 1452 1049 946 54.3| 4044 5951 3719 2186 1842 7023 10847 6450 417.4 380.4
Swat 2185 3321 2185 1728 200.3| 2249 6205 250.1 2346 2226 522.7 6557 3936 368.7 4157 966.1 16084 862.2 7761 838.6
Jhelum | 2785 3148 1815 2119 1795 337.6 4966 3202 3700 2521 5500 6412 2958 367.4 333.0| 11752 14526 8065 9493 764.6
Chenab | 2424 2899 1401 1627 137.5/ 3536 4016 3033 427.1 2726| 5116 5634 1985 290.8 288.3 1107.5 12549 6419 8806 698.4

The pattern statistics of the mean annual precipitation in the study area (Figure 2.8) show
normalized RMSE values ranging from 0.6 for APHRODITE to 0.62 for TRMM, 0.72 for
WFDEI and 0.8 for ERA-Interim products. The APHRODITE and TRMM products show a
relatively higher correlation coefficient of around 80% against 73% by ERA-Interim and
WFDEI products. It is important to note that these statistics only evaluate the pattern of the
gridded datasets. Overall, there is significant spatiotemporal (basin to basin and season to
annual) bias in the precipitation totals of gridded datasets (Figure 2.9). ERA-Interim largely
displays positive bias (overestimation) while the other three datasets show substantial
negative bias (underestimation) in most parts of the study area. The highest negative bias is
observed in the central Karakoram region consistently by all the datasets, whereas the
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positive bias is mainly concentrated in the Ladakh region. However, the estimated
precipitation is very close to net precipitation, whereas the gridded precipitation products
give gross precipitation amounts, which are subjected to some losses from precipitation.
Hence, some room for overestimation can be permitted. Nevertheless, the extent of absolute
bias suggests the importance of bias correction of the gridded datasets before their use in
hydroclimate studies in the study area. To support such a bias correction, we analysed the
seasonal and annual biases relative to the estimated precipitation at the sub-basin scale and
introduced appropriate correction factors to account for the inherent errors in each gridded
dataset. These basin-wide seasonal/annual correction factors (Table 2.5) may be multiplied
with the respective gridded datasets and sub-basins. This will ensure reasonably good
estimates of actual precipitation that can be used to avoid or minimize suboptimal
calibration of model input parameters in the hydrological modelling/water balance studies.

Estimated ERA-Interim WFDEI TRMM APHRODITE
a)gz& %§§ gf& gg& gg&
[ S| I I I I —
50 100 150 200 250 300 350 400 450 500
b) g 5 %@ g @
I I I I L T —
150 200 250 300 500 700 900 1200
I I I I L T —
150 200 300 400 550 700 900 1200

100 200 300 450 600 900 1200 1500 1800 2230

Figure 2.7: Spatial distribution of mean precipitation (mm) by the estimated, ERA-Interim, WFDEI,
TRMM and APHRODITE datasets for a) pre-monsoon, b) monsoon, c) winter, and d) annual basis.
All values are in mm (note the different colour scales).
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Figure 2.8: Pattern statistics of mean annual precipitation in the study area for the four gridded
products. The RMSE and standard deviations are normalized by those of the estimated precipitation.
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Figure 2.9: Absolute bias (in mm) of ERA-Interim, WFDEI, TRMM and APHRODITE precipitation
relative to the KED-based estimated precipitation for a) pre-monsoon, b) monsoon, ¢) winter and d)
annual basis (note the different colour scales).
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Table 2.5: Basin-wide, seasonal and annual correction factors for each gridded precipitation product

River Pre-monsoon Monsoon Winter Annual
Basin |[ERAI WEI TRM APH [ERAI WEI TRM APH |ERAI WEI TRM APH |ERAI WEI TRM APH

Indus-U 021 037 052 0.86 036 057 0.63 096 0.47 0.35 059 1.05 032 045 059 0.95
Zanskar 033 0.89 1.01 170 061 084 083 1.80 0.66 1.53 172 281 059 123 130 241
Shingo 046 1.18 111 184 053 079 080 1.67 0.60 1.53 197  3.02 0.56 1.26 135 241
Indus-K 027 060 071 119 044 066 070 1.25 053 0.78 1.04 172 042 074 086 149
Shyok 049 122 135 173 084 874 145 232 1.08 1.03 238 261 082 153 175 241
Shigar 112 255 329 257 138 7.67 156 3.35 181 261 452 6.30 153 293 317 423
Hunza 077 206 227 277 1.07 975 162 387 112 160 2.33 549 1.04 229 211 423
Gilgit 042 116 158 1.22 074 211 146 272 0.48 0.88 223 323 052 117 179 222
Astore 065 1.85 182 175 057 1.26 117 237 0.84 2.08 322 411 0.74 186 207 282
Indus-M 045 1.24 170 133 042 105 092 193 038 0.85 182 221 0.40 0.99 143 173
Indus-L 0.77  1.09 132 111 051 1.03 1.01 111 092 151 2.01 180 071 127 147 137
Indus-Tar| 0.47  1.09 130 1.50 0.64 3.43 1.07 194 0.76  1.08 184 2.60 063 124 143 209
Chitral 050 1.03 173 127 096 1.42 156 247 072 1.09 444 298 069 110 188 214
Swat 0.70 1.03 128 111 039 088 093 1.02 086 1.38 143 136 062 118 127 122

Jhelum 091 156 132 154 | 068 098 09 141 | 087 19 151 180 | 082 151 127 163
Chenab 084 170 147 183 | 080 105 076 135]| 087 258 175 211 | 089 177 128 184

2.5 Discussion

The altitudinal analysis of precipitation distribution demonstrates the typical orographic
precipitation trend, which increases up to a certain height of maximum precipitation and
thereafter decreases, in most of the sub-basins. However, the basin to basin difference in
the rate and magnitude of change is considerable. These results are in good agreement with
earlier studies for the Chenab basin (Arora et al., 2006 and Singh et al., 1995). The
altitudinal dependency of precipitation expressed by the 2" order polynomial functions
indicates only the generalized trend of precipitation variation with altitude. The exact
behaviour of precipitation is too complex to be represented by such functions. Presence of
spatial autocorrelation and very high uncertainty beyond the altitudinal extent of the point
observations, particularly higher than 4000 m which is attained by 57% of the study area,
are the major complexities. Generally, precipitation tends to decrease with increasing
latitude (from south to north), while longitude has seasonal influence, positive in monsoon
and negative in winter season. Similarly, the southeast ward and southwestward orientated
locations mostly receive more precipitation in monsoon and winter seasons respectively.
However, the areas under the influence of rain shadow are notable exceptions, where
precipitation tends to be far less throughout the year.

The core characteristics and spatial pattern of mean seasonal and annual precipitation
estimates show strong south-north precipitation gradients containing the general rainfall
maxima along the southern and lower most slopes of Chenab, Jhelum, Indus main and Swat
basins (Figure 2.5), which was also observed in previous studies (e.g. Palazzi et al., 2013;
Bookhagen and Burbank, 2006). However, the unique distribution revealed by this study is
the emergence of an unusually wet zone containing the 2™ precipitation maxima along the
northern boundary of central Karakoram region, which had never been detected by the
earlier datasets or studies. Despite the fact that this zone in the central Karakoram region
accommodates some of the largest glaciers (e.g. Baltoro, Approach, Whaleback, Hispar,
Biafo and Khurdopin), most of which are believed to be stable or even surging with a net
positive glacier mass balance, the earlier datasets consistently and significantly
underestimated precipitation in this region. However, to sustain and surge, the glaciers in
this area essentially require more precipitation than their ablation/discharges. Our estimates
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of higher precipitation coherently follow the pattern and extent of the glacier cover in the
high-altitude areas. Contrary to the inconsistent and contrasting estimates by the earlier
studies, this study estimated significantly higher precipitation in all the sub-basins, which
are comparable and consistent with the corresponding specific runoffs (measured flows).
Similarly, the drier areas under the influence of rain shadow, which are often ignored and
usually overestimated by the gridded datasets, are also well recognized.

The basin-wide estimated precipitation and corresponding values of specific runoff shown
in Table 2.3 do not support the idea of a positive mass balance in the study area. Higher
values of specific runoff for Gilgit, Astore, Shyok and Shigar basins suggest essentially a
negative mass balance in these basins. Similarly, Chenab, Hunza and Chitral basins show
slightly higher precipitation and may have neutral to slightly negative mass balance. Swat,
Jhelum and Chenab basins indicate precipitation greater than river flows. However,
evapotranspiration and percolation losses from these basins may be relatively large due to
higher temperatures (large area below the 0 °C isotherm), greater vegetative cover and
availability of moisture for evapotranspiration/percolation (more runoff from rainfall and
seasonal snow). Thus, these basins may also be considered to have neutral to negative mass
balance. The estimates for Zanskar basin and Ladakh region in the TP are relatively
uncertain due to very low number of observation points in these areas. The precipitation
estimates relative to the corresponding river flow for the Indus at Kharmong basin seem to
be on the higher side. Therefore, a neutral to negative mass balance can be expected for this
catchment. The Indus at Tarbela combines drainage of the upstream catchments, which are
either neutral or experience a negative mass balance. However, the net impact is likely to
be a negative mass balance as precipitation is only marginally higher than the specific
runoff. Our results are in good agreement to available glacier mass balance studies (e.g.
Gardelle et al., 2012; K&éab et al., 2012, 2015).

The selected gridded precipitation products provide only a marginal resemblance of the
actual precipitation. ERA-Interim largely overestimates precipitation in all the sub-basins
except Shigar and Hunza, while the other three datasets consistently underestimate
precipitation in all the areas barring Ladakh region of the TP (Indus-U up to Kharmong).
The overestimated precipitation in the TP region by the APHRODITE and TRMM 3B43
products was also observed by Palazzi et al. (2013), Prakash et al. (2013), Andermann et al.
(2011) and Yin et al. (2008). ERA-Interim is prone to underestimate precipitation by up to
40% in the areas with low evaporation rates and overestimate by about 150% under
conditions with high evaporation rates (Bumke, 2015). The overall underestimated
precipitation by WFDEI and TRMM datasets, also observed by Li et al. (2013), may be
attributed to the fact that their correction/validation is done mainly by the use of stations
predominantly located in valley bottoms. This was also reported by Reggiani and Rientjes
(2015) who observed uncorrected reanalysis data from ERA-Interim and NCEP/NCAR
products as the better option in terms of quantitative estimates of precipitation in the UIB
up to Besham Qila. Several studies (e.g. Andermann et al., 2011; Rajeevan and Bhate,
2009; Krishnamurti et al., 2009; Yatagai and Kawamoto, 2008; Yatagai and Xie, 2006)
consider APHRODITE as an accurate dataset, but its accuracy greatly depends on the
density of station data in the area of interest. In the high-altitude Indus basin, the
APHRODITE product uses non-representative low-altitude stations to derive the spatial
distribution of high-altitude precipitation. Therefore, it reflects highly underestimated
precipitation in all of the sub-basins. Moreover, the four gridded products completely fail to
reproduce the zone of 2" precipitation maxima in the central Karakoram and could not
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properly detect the drier areas under the influence of rain shadow. They tend to smooth the
precipitation due to their lower spatial resolution resulting in significant overestimated
precipitation in these areas. This study incorporates high-altitude observations, which have
never been used in the formation or validation of precipitation datasets.

The KED-based interpolation scheme further amplifies the precipitation at the higher
altitudes by taking into account the spatial autocorrelation and elevation effects at local
scale. The pattern statistics indicate that despite better quantitative estimates, ERA-Interim
and WFDEI products are relatively poor in reproducing the spatial pattern of estimated
precipitation mainly due to their lower spatial resolution and use of nonrepresentative data
in their formation and/or validation. The relatively better patterns shown by APHRODITE
are due to the fact that this dataset is derived from station observations.

In view of significant biases in the gridded precipitation products covering this region, we
determined basin-wide seasonal and annual correction factors for each dataset. These
correction factors can be used for lumped hydrological modeling studies. Like, Lutz et al.
(20144a) appropriately multiplied APHRODITE precipitation by a constant factor of 1.17 to
account for the inherent underestimation and avoid undue compensation by suboptimal
input parameters. However, this factor is still on the lower end as our analysis suggests an
average correction factor of 2.1 for the UIB up to Tarbela dam, which varies significantly
for all other sub-basins. Hence, the use of underestimated precipitation by Lutz et al.
(2014a) might have resulted in an exaggerated snow/glacier melt contribution and a biased
conclusion of the associated snow/glacier cover extent. Nevertheless, our KED-based
precipitation estimates and correction factors can efficiently be used for bias correction of
these gridded precipitation products and improved hydroclimate assessments for the study
area.

Although, the methods employed in this study are straightforward and robust, further
improvements in precipitation estimation can be expected once higher quality observed
data with more spatiotemporal coverage, particularly above 4000 m a.s.l., become
available. Moreover, the employed methods are equally applicable for other regions of the
world, especially with similar geo-hydro-climatological conditions.

2.6 Conclusions

Precipitation in the high-altitude areas of the Indus basin governs the renewable water
resources and associated developments, but a comprehensive assessment of precipitation
distribution in this region is largely lacking. Here, we attempt to explain how precipitation
amounts, seasonality and patterns are represented in the study area. The altitudinal analysis
of precipitation observations in each subbasin demonstrated the important role of
orographic precipitation. Yet, the topographical variability even at the sub-basin and local
scale is so high that the available observations are insufficient to infer an accurate
distribution of altitudinal precipitation. Instead, rather complex and nonlinear trends of
precipitation increase with altitude are evidently depicted.

The study provides much improved estimates of precipitation distribution, which are
comparable and consistent with the corresponding observed runoffs from the 12 sub-basins.
The geo-statistical analysis of precipitation observations revealed substantially higher
precipitation in most of the sub-basins compared to earlier studies. The study area largely
experiences a bimodal weather system reflecting wintertime precipitation associated with
the westerly systems and the impact of Indian summer monsoon. The analysis
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demonstrated two distinct rainfall maxima; 1% along southern and lower most slopes of
Chenab, Jhelum, Indus main and Swat basins, and 2" around north-west corner of Shyok
basin in the central Karakoram. Moreover, the estimates better recognize the drier areas
under the influence ofrain shadow, which are often overlooked by the gridded datasets.

Our analysis shows that the selected gridded precipitation products derived from four
different sources are prone to significant errors providing only a marginal resemblance of
the actual precipitation in the study area. We conclude that the uncorrected gridded
precipitation products are highly unsuitable to estimate precipitation distribution and to
derive glacio-hydrological models in water balance studies in the high-altitude areas of
Indus basin. The suggested basin-wide seasonal and annual correction factors for the four
gridded precipitation products can be useful for lumped hydrological modelling studies.
The estimated precipitation distribution can effectively serve as a basis for bias correction
of any gridded precipitation products for the study area.
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Chapter 3

Adjustment of Measurement Errors to Reconcile
Precipitation Distribution

ABSTRACT

Precipitation in the high-altitude Indus basin governs its renewable water resources
affecting water, energy and food securities. However, reliable estimates of precipitation
climatology and associated hydrological implications are seriously constrained by the
quality of observed data. As such, quantitative and spatiotemporal distributions of
precipitation estimated by previous studies in the study area are highly contrasting and
uncertain. Generally, scarcity and biased distribution of observed data at the higher
altitudes and measurement errors in precipitation observations are the primary causes of
such uncertainties. In this study, we integrated precipitation data of 307 observatories with
the net snow accumulations estimated through mass balance studies at 21 major glacier
zones. Precipitation observations are adjusted for measurement errors using the guidelines
and standard methods developed under the WMO's international precipitation measurement
intercomparisons, while net snow accumulations are adjusted for ablation losses using
standard ablation gradients. The results showed more significant increases in precipitation
of individual stations located at higher altitudes during winter months, which are consistent
with previous studies. Spatial interpolation of unadjusted precipitation observations and net
snow accumulations at monthly scale indicated significant improvements in the quantitative
and spatio-temporal distribution of precipitation over the unadjusted case and previous
studies. Adjustment of river flows revealed only a marginal contribution of net glacier mass
balance to river flows. The adjusted precipitation estimates are more consistent with the
corresponding adjusted river flows. The study recognized that the higher river flows than
the corresponding precipitation estimates by the previous studies are mainly due to
underestimated precipitation. The results can be useful for water balance studies and bias
correction of gridded precipitation products for the study area.

This chapter has been published as:

Dabhri, Z. H., Moors, E., Ludwig, F., Ahmad, S., Khan, A., Ali, I, & Kabat, P. (2018). Adjustment of
measurement errors to reconcile precipitation distribution in the high-altitude Indus basin,
International Journal of Climatology, 2018;1-19. DOI: 10.1002/joc.5539
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3.1. Introduction

High mountain ranges around the world are important sources of freshwater storage and
subsequent supplies to downstream areas. Indus basin contains one of the most diversified
and complex mountain terrains in the world. Precipitation in its high-altitude areas governs
the renewable water resources determining water, energy and food securities in the region.
Runoff regime of the basin is predominantly controlled by winter- and summer-monsoon
precipitations and summer temperatures (Yu etal., 2013). Yet, there is limited
understanding and reliable evidence of quantitative and spatiotemporal distribution of the
key climatic variables, particularly the precipitation (Immerzeel et al., 2015; Mishra, 2015;
Ragettli and Pellicciotti, 2012; Hewitt, 2005; Winiger et al., 2005) leading to a large
uncertainty in the hydro-climatic predictability in the basin (Lutz etal., 2016). Overall
scarcity and biased spatial and altitudinal distribution of the in-situ observations are the
primary reasons for this uncertainty and knowledge gap. Substantial increase in research on
glacio-hydro-climatology of the Hindukush Karakoram Himalayan (HKH) region is
observed since the International Panel on Climate Change (IPCC) released its 4th
assessment report, which claimed that “glaciers in Himalayas are receding faster than in
any other part of the world and, if the present rate continues, the likelihood of their
disappearing by the year 2035 is very high” (Cruz et al., 2007). Later, IPCC withdrew this
statement due to an inaccurate citation of the grey literature. Yet, most of the subsequent
research is mainly focused on improved methods using more or less the same commonly
available datasets that use low-altitude and largely unrepresentative observations in the
development or validation of these datasets.

Adequate monitoring of climatic variables to better represent the entire range of a diverse
climate of this complex mountain terrain is essential for reducing uncertainties and
inferring informed policy decisions. However, such an observational network in the study
region is lacking mainly due to resource constraints and logistical limitations. To overcome
the observational data gaps, the hydro-climatologists generally rely on numerous
global/regional scale gridded products derived through various means (e.g. climate models
reanalysis, merged model and station observations, merged satellite estimates and station
observations, and derived solely from station observations). However, the strong gradients
and extreme heterogeneity of this complex mountain terrain are inadequately captured by
the gridded products due to their coarse resolution and use of non-representative climate
data in their development or validation (Dahri et al., 2016; Reggiani and Rientjes, 2015;
Immerzeel et al., 2015). As such, the precipitation estimates by a number of earlier studies
(e.g. Reggiani and Rientjes, 2015; Lutz et al., 20144; Lutz et al., 2014b; CWC and NRSC,
2014; Mukhopadhyay, 2012; Immerzeel et al., 2012a, 2010, 2009; Bocchiala et al., 2011;
Tahir et al., 2011; Bookhagen & Burbank, 2010; Akhtar et al., 2008) that used the gridded
datasets show highly contrasting but consistently underestimated precipitation in most parts
of the high-altitude Indus basin.

Numerous efforts to accurately estimate precipitation in this region only partially succeeded
due to lack of observed data but significantly underlined the relevance and severity of the
problem. In many hydrological modelling studies, the underestimated precipitation is often
compensated for with other parameters like evapotranspiration and/or snow/glacier melt
factors (Lutz et al., 2014a; Pellicciotti et al., 2012; Schaefli et al., 2005). This results in
inaccurate and suboptimal inferences regarding precipitation distribution, snow/glacier
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cover dynamics and associated melt water contributions. Adam et al. (2006) used a water
balance approach to indirectly correct monthly precipitation in mountain regions from an
existing global dataset and provided reasonable approximations at basin level. However due
to inaccuracies in water balance components and use of biased gridded datasets developed
from limited observations, their results show large differences in precipitation amounts and
distribution patterns at sub-basin scale in the study area. For example, precipitation in the
high-mountain Karakorum region is largely underestimated due to lack of stations in this
area, whereas higher precipitation amounts are shown for the southern parts of western
Himalayan region that hosts many precipitation gauges. Lutz et al. (2014a) recognized
underestimation of APHRODITE precipitation and multiplied it with an arbitrary constant
factor of 1.17 to account for the inherent underestimations.

Recently, Immerzeel etal. (2015) and Dahri etal. (2016) used other sources of
data/information to cover the observational gaps and provided relatively better estimates of
precipitation amounts and distribution in the high-altitude Indus basin. The approach
adopted by Immerzeel et al. (2015) used the glacier mass balance estimates of Ké&ab et al.
(2012) to inversely infer the high-altitude precipitation. Using APHRODITE as the basis,
they computed vertical precipitation gradients until observed mass balance matched the
simulated mass balance for the 550 major glacier systems in the Indus basin. However,
precipitation in the basin does not have constant and linear gradients (Dahri et al., 2016),
APHRODITE precipitation distribution is highly biased (Dahri et al., 2016; Palazzi et al.,
2013), and their mass balance computations are uncertain due to the use of extremely
elusive direct evapotranspiration losses and negligence of percolation, interception and
sublimation losses from the precipitation. Moreover, precipitation estimates of Immerzeel
et al. (2015) might be affected by the overestimated basin boundaries of Shyok and Indus at
Tarbela sub-basins. Whereas, Dahri etal. (2016) integrated the available station
observations with the indirect precipitation estimates at the accumulation zones of major
glacier systems. They employed Kriging with external drift (KED) interpolation scheme
with elevation as predictor to derive the spatiotemporal distribution of mean monthly and
annual precipitation climatologies. They validated their precipitation estimates by the
individual station observations and the observed specific runoff at sub-basin scale.
However, if the net mass balance (i.e. slightly negative as estimated by Kaéb et al., 2012)
and precipitation losses (direct evapotranspiration, percolation, interception and
sublimation) in the basin are taken into account, the Dahri et al. (2016) estimates still seem
to be on lower side.

The underestimated precipitation relative to the corresponding specific runoff in most sub-
basins may be attributed to three possible reasons: i) overestimated river flows, ii)
significant contribution of snow/glacier melt without an adequate amount of precipitation to
feed/sustain the glacier systems, and iii) underestimated precipitation. Given the
technological advancements and relative precision of discharge measurement techniques
and quality control ensured by the data collecting agencies, river flows are generally
considered to be adequately accurate. However, there is considerable speculation but little
analysis and evidence regarding the contribution of net glacier mass imbalance to the river
flows. Although, Immerzeel et al. (2015) attributed the observed gap between precipitation
and streamflow to the underestimated precipitation rather than the observed glacier mass
balance, there is an emergent need to quantify the contribution of net glacier mass
imbalance to the river flows. The underestimated precipitation by Dahri et al. (2016) is
probably due to the use of net precipitation estimates from the glacier accumulation zones
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and the raw/uncorrected precipitation gauge observations which are subject to significant
measurements errors (Wolff et al., 2015; Chen et al., 2015; Goodison et al., 1998; Legates
and Willmot, 1990; Legates, 1987; Sevruk and Hamon, 1984).

The IPCC in its 5 assessment report stressed the need for adjustment of precipitation
measurement errors and declared that observational uncertainties in precipitation may limit
the confidence in the assessment of climatic change impacts (Bindoff et al., 2013). The
measurement errors in precipitation observations, particularly the wind-induced under-
catch of solid precipitation in windy conditions can be substantial (Kochendorfer et al.,
2017a&b; Wolff et al., 2015; Adam and Lettenmaier, 2003). This is particularly important
in the high-altitude Indus basin where moderately strong winds are a common
phenomenon; temperature mostly remains below the freezing point and the majority of
precipitation falls in the form of snow. Legates (1987), Legates and Wilmot (1990) and
Adam and Lattenmaier (2003) adjusted the systematic biases of global precipitation
products including the Indus basin but these datasets included only a few stations located in
relatively dry valleys in the study area. The uncertainties in precipitation estimates may
significantly affect the outcomes of hydrological/land surface models and mass balance
studies. A systematic error of over 3% in rainfall measurement could lead to substantial
underestimation of water in the hydrologic system (e.g. Sevruk, 1982; Biemans et al.,
2009). Therefore, the systematic errors in precipitation observations must be corrected if
the measurements are to be used for climate change, hydrological modelling, and water
balance studies (Wolff et al., 2015; Voisin et al., 2008; Legates and Willmott, 1990). This
study attempts to address the above concerns by adjustment of the systematic measurement
errors in precipitation observations, adjustment of net snow accumulation for the ablation
losses, and adjustment of river flows for the net mass balance contributions. The ultimate
goal of this research is to facilitate creation of an accurate and consistent gridded
precipitation product for the highly under-explored region of Indus basin. The results will
have considerable implications for water resources planning and management in both
upstream (high-altitude) and downstream (low-altitude) areas of the Indus basin.

3.2. Study Area

The study area covers the high-altitude catchments of the Indus river, which originates from
the Tibetan Plateau (TP) and the Hindukush Karakoram Himalayan (HKH) mountain
regions (Figure 3.1). The total area of the study region is about 4.03x105 km2 of which
50% is above 4000 m a.s.l. and another 24% between 2500-4000 m a.s.l. Precipitation in
the study area is influenced by multiple weather systems. The Indian summer monsoon
brings moisture from the Indian Ocean and Bay of Bengal and is the dominant system in
the south-eastern areas. The western disturbances originating from the Mediterranean and
Caspian Sea dominate the south-western and north-western areas bringing winter monsoon
during December-April months. During spring and early summer, irregular collapses of the
Tibetan anticyclone sometimes allow monsoonal air masses to penetrate into the
Karakoram Range (Wake, 1989). Direct transport of moisture from the Arabian Sea and
local evapotranspiration also have considerable influence as about 5-40% of the
precipitation falling in the Himalayas originates from the irrigated areas in northern India
and Pakistan (Tuinenburg et al., 2012; Harding et al., 2013: Wie et al., 2013). However, the
hydrological cycle in the study region is usually intensified when all or some of these
systems interact with each other.
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Figure 3.1 Location of study area (bottom) and description of sub-basins, river network and location
of precipitation and flow measuring gauges (top). The red triangle and associated numbers refer to
flow measuring gauges on various tributaries, which are (1) Indus at Kharmong, (2) Shyok at Yogo,
(3) Shigar at Shigar, (4) Hunza at Dainyor, (5) Gilgit at Gilgit, (6) Astore at Doyian, (7) Indus at
Tarbela dam, (8) Chitral at Chitral, (9) Panjgora at Zulum Br., (10) upper swat at Chakdara, (11)
Kabul at Warsak, (12) Kabul at Nowshera, (13) Jhelum at Mangla dam, (14) Chenab at Marala, (15)
Ravi at Thein dam, (16) Beas at Pong dam and (17) Sutlej at Bhakra dam. The blue circles and
associated numbers refer to the precipitation gauges, details of which are given at Table S-3.1

3.3. Data and Methods

3.3.1 Precipitation observations

Indus is a transboundary river basin, as such its meteorological data are scattered in four
countries (i.e. Afghanistan, China, India and Pakistan). The meteorological data of
Pakistani parts were collected from Pakistan Meteorological Department (PMD) and
Pakistan Water and Power Development Authority (WAPDA). Precipitation data of the
station located in Afghanistan are available with Afghan-Agriculture UCDAVIS
(http://afghanag.ucdavis.edu/natural-resource-management/weather), NOAA Central Library
of US (https://docs.lib.noaa.gov/rescue/data_rescue_afghanistan.html) and US Geological
Survey (http://edcintl.cr.usgs.gov/downloads/sciwebl/shared/afghan/downloads/documents/), while
precipitation data of Indian and a couple of Chinese stations were downloaded from KNMI
Climate Explorer (https://climexp.knmi.nl). In addition, we derived monthly precipitation data
of many stations from Winiger et al. (2005), Miehe et al., (2001, 1996), Eberhardt (2007),
Avrora et al (2006), Singh and Kumar (1997), and Singh et al. (1995).

Information regarding the gauge type, use of wind shield if any, orifice area and height of
the gauge orifice were taken from Sevruk and Klemm (1989), BIS (1992a&b) and from
PMD and WAPDA through personal communications. Until 1969, the most extensively
used rain-gauge in India was non-recording (Symon’s gauge or MK2 model) with orifice
area of 127 cm? and instrument height of 0.3 m (Sevruk and Klemm, 1989). Thereafter,
Indian standards adopted by the Bureau of Indian Standards (BIS) for design and
manufacturing of meteorological instruments are strictly followed and Indian rain-gauge
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(20-22-P) reinforced with fibreglass polyester is predominantly used (BIS, 1992a&b).
Similarly, the most widely used rain-gauge type by PMD has been non-recording MK2 (13-
15-C) model with orifice area of 127 cm? and instrument height of 0.3 m. In 2010, PMD
started using its own model, which is Tipping Bucket Rain Gauge (TBRG) type equipped
with logger and standalone method of monitoring rainfall, with 0.2 mm (moderate rain)
tipping bucket, orifice area of 400 cm? and gauge height of 0.6 m. WAPDA uses both
automatic weighing and standard meteorological service manual rain gauges. The
automatic gauges have an orifice area of 127 cm?, tipping capacity of 0.254 mm and gauge
height of 0.3 m (WAPDA, 2003). A manual gauge is read in conjunction with each
automatic gauge as a check on the total rainfall. In 1994-95, WAPDA installed 20
automatic data collection platforms (DCPs) in the high-altitude areas that use snow pillows
to measure both solid and liquid precipitation as water equivalent (SIHP, 1997). The
observatories installed and maintained by the University of Bonn under the CAK program
used the automatic weather stations including data logger, tipping bucket and snow depth
gauge to measure precipitation (Miehe et al., 1996). Afghanistan mainly uses the Tretyakov
(20-24-G) type of rain-gauge without windshield having orifice area of 200 cm? and 0.4 m
height (Sevruk and Klemm, 1989). The metadata of 305 precipitation observatories and 21
glacier observation points used in this study are outlined and described in the
supplementary material (Table S-3.1).

3.3.2 Temperature and wind speed observations

The adjustments for wind-induced under-catch of precipitation observations require
corresponding data of temperature and wind speed. However, out of 307 stations,
temperature data was available for only 114 stations (Table S-3.1). We therefore derived
monthly lapse rates based on elevation and latitude and estimated the maximum and
minimum temperatures for the remaining stations. The observed data of wind speed was
available for only 25 stations. Wind speed for the remaining stations is taken from the
Japanese 55-year Reanalysis (JRAS55) dataset (Kobayashi et al., 2015). JRAS5 provides
wind speed estimates at the standard anemometer height of 10 m, whereas the station-based
observed wind speed is measured at 2 m height. In order to get an idea of the accuracy of
the JRAS5 wind speed data, we compared it with the observed wind speed for the 25
stations. For this purpose, we computed wind speed from the U- and V-components at 10 m
height and down-scaled it to match the 2 m height of stations using the Monin Obukhov

theory (Obukhov, 1971; Businger and Yaglom, 1971). Although, we could not detect large
differences and/or any definite and strong trends, a tendency of slightly underestimated
wind speed in low-altitude areas and vice versa in high-altitude areas is noticed. We also
observed marginally increased wind speeds during Nov-Feb months and slightly decreased
wind speeds during Mar-Oct months for the JRAS55 data. Due to insufficient observed data
of wind speed, we have neglected these minor differences and used wind speed data of
JRADB5 as such. Nevertheless, such minor differences of wind speeds in JRA55 data might
result in slight overestimation of precipitation adjustments in the higher-altitude areas
during four (Nov-Feb) winter months and slight underestimation of precipitation
adjustments in the lower-altitude areas during the remaining months.

3.3.3 River flows

Daily data of the observed river flows at sub-basin level for 14 hydrological stations
(Figure 3.1) in the study area were collected from WAPDA. We used flow data of Jhelum
and Chenab rivers for 1961-1970 period and all the rivers in the western part sub-basins for
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1999-2011 period to coincide with the precipitation data periods. Ravi, Beas and Sutlej
basins are located in India and their inflow data are not publicly available. Therefore, we
extracted mean monthly river flows from Adeloye et al. (2016) for the Beas river at Pong
dam for 2000-2008 period and from ADB (2010) for the Sutlej river at Bhakra dam for
1962-1971 period. The river discharge data for the Ravi at Mukesar (near Thein dam) is
collected from the Global River Discharge Database (RivDIS v1.1) for the period of 1968-
1979. It is worth to note that there are considerable diversions in some sub-basins on the
upstream side of their rim stations (e.g. at Warsak, Nowshera and Tarbela), which are often
overlooked by previous studies. We also collected the data of these upstream diversions and
added them to the flows of the respective sub-basins. River flow data of coinciding time
periods are used to validate the adjusted precipitation at sub-basin scale.

3.3.4 Precipitation measurement error adjustment methods

The amount of actual precipitation reaching the ground is generally higher than what is
measured in precipitation gauges due to measurement errors, which usually depend on the
form of precipitation, gauge type, topography, vegetation around the gauge site and the
exposure of the gauges to prevailing temperatures and winds. Wind-induced under-catch is
by far the most dominant source of errors in gauge-measured precipitation observations
(Wolff et al., 2015; Adam and Lattenmaier, 2003; Michelson, 2004; Goodison et al., 1998),
yet most of the widely used global precipitation datasets are not adjusted for such errors
(Adam and Lattenmaier, 2003). While recognizing the significance of measurement errors
in precipitation observations, the WMO initiated a comprehensive program of international
precipitation measurement intercomparisons during 1960-1993 and established the pit
gauge (Sevruk and Hamon, 1984) and the Double-Fence International Reference (DFIR;
Goodison et al., 1998) as the standard reference gauges for liquid (rain) and solid (snow)
precipitation respectively. Sevruk and Hamon (1984) and Goodison etal. (1998) also
underlined the need for gauge calibration and adjustment of errors to increase reliability of
the precipitation data. However, the agencies involved in measurement of precipitation in
the Indus basin generally indicate to follow the WMO standards for design, construction,
installation and operation of precipitation gauges but hardly or inadequately adjust the
systematic measurement errors at the source, which signifies the need for correction of
measurement errors.

Sevruk (1982) related and statistically analysed various components of the systematic
measurement errors to the meteorological and instrumental factors and proposed a general
equation for adjustment of gauge-measured precipitation errors. Legates (1987) later
modified it to account for both liquid and solid precipitation components separately. The
modified equation is expressed as:

Pa = (1-R) Kr (Pm + APwr + APtr + APer) + RKs (Pm + APWS + APts + APes) (31)

Where, Pa is adjusted precipitation (mm), R is proportion of solid precipitation, K is
correction coefficient that accounts for wind-induced losses, Pm is measured precipitation
(mm), APw is wetting losses (mm), APe is evaporation losses (mm), AP: is trace
precipitation (mm), and sub-scripts r and s denote rain and snow components respectively.
Legates (1987) model was developed for a variety of manual rain gauges including Nipher,
Tretyakov and MK1/MK2 models with and without windshields. However, significant
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uncertainties remained for wind induced under-catch of solid precipitation particularly by
automatic precipitation gauges. Nitu and Wong (2010) observed much larger variation
between gauges and windshield configurations for automatic stations than for manual
stations.

Wolff etal. (2015) compared precipitation data from the standard automatic Geonor

precipitation gauge with data from a reference configuration consisting of an automatic
precipitation gauge (Geonor T200-BM) and an Alter wind shield with double-fence
construction. They derived an adjustment model to determine catch efficiency as a
continuous function of both wind speed and air temperature using Bayesian statistics to
more objectively choose the model that best describes the data. Wolff’s model allows solid
precipitation adjustments at wind speeds greater than 7.0 ms®. However, it is also
gauge/shield specific and different site specificities and gauge/shield configurations might
result in different adjustment functions.

Kochendorfer etal. (2017a) analysed precipitation measurements from eight different
WMO-SPICE sites for both unshielded and single-Alter-shielded OTT Pluvio? and Geonor
T-200B3 types of weighing gauges. They grouped unshielded and single-alter-shielded
precipitation gauge configurations separately irrespective of gauge types and created a
single transfer function of air temperature and wind speed using the corresponding
measurements from the reference gauge. They also derived the coefficient fits for both
unshielded and single-alter-shielded precipitation gauges at gauge height as well as 10 m
height. The derived transfer function is expressed as:

CE = e~ W (A-TAN" (b(Tair))+c) (3.2)

Where Tar is mean air temperature (°C); U is wind speed (ms?); a, b, and c are the
coefficients fit to the data, and TAN™ is the inverse of tangent function.

Our method of adjusting systematic errors in precipitation measurements largely follows
the approach by Adam and Lattenmaier (2003) using the ‘liquid’ part of the model by
Legates (1987) and uses the model by Kochendorfer et al. (2017a) for adjustment of the
solid precipitation component. The detailed methods for computation of the required
variables in equations (1) are described in the supplementary material. The coefficient
values in equation (2) (a = 0.0623, b = 0.776, ¢ = 0.431) are taken as determined at 10 m
height by Kochendorfer etal. (2017a). We used the coefficient values of 10 m height
because most of our wind speed data belonged to the JRAS55 dataset, which provides wind
speed data at 10 m height. The observed wind speed at 25 stations is converted from
observation height to 10 m height using the Monin Obukhov theory (Obukhov, 1971;
Businger and Yaglom, 1971).

3.3.5 Adjustment of net snow accumulations methods

The meteorological stations in the study area are unevenly distributed in both horizontal
and vertical direction. Scarcity of precipitation measurements at higher-altitude areas,
where the bulk of precipitation falls, seriously limits an accurate assessment of precipitation
climatology and its hydrological implications. In order to overcome this observational data
gap, we assumed 21 virtual stations at the major glaciers where the net snow accumulations
were estimated through mass balance studies using snow pillows, snow pits, and ice cores
(e.g. Mayer et al., 2014, 2006; Hewitt, 2011; Shroder et al., 2000; Bhutiani, 1999; Wake,
1989; Mayewski et al., 1984, 1983; Kick, 1980; BIG, 1979; Decheng, 1978; Qazi, 1973).
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However, most of these mass balance studies were undertaken in the active ablation zones
of the glaciers, where ablation and accumulation processes are happening simultaneously.
Generally, glacier ablation is the function of ablation rate, altitude of the Equilibrium Line
Altitude (ELA) and the elevation difference between mean ELA and the glacier observation
point. Ablation zones are the areas below the Equilibrium Line Altitude (ELA), which is
the elevation at which the annual net mass of the glacier remains zero and the area above
this elevation is known as the accumulation zone (Cuffey and Paterson, 2010). Hence, the
estimated net glacier mass accumulations are subject to ablation losses until the next
accumulation period. The ablation gradients can be variable depending on debris cover and
surface albedo or energy availability to melt the exposed glaciers. Wagnon et al. (2007)
observed ablation gradients of 0.60-0.81 m w.e. (water equivalent) for each 100 m with a
mean value of 0.69 m w.e. over a period of four year of mass balance studies at the Chhota
Shigri Glacier, western Himalaya. Yu et al. (2013), based on glacier studies by Mayer et al.
(2006) and Wagnon et al. (2007) in the Karakoram and western Himalaya, assumed an
ablation gradient of 1 m w.e. per 100 m for the upper Indus basin. Hewitt et al. (1989)
however, estimated an ablation gradient of 0.5 m per 100 m for the middle portion of the
ablation zone on the Biafo glacier in the central part of the Karakoram. No ablation above
ELA is assumed. We selected the rather conservative estimates of ablation gradient by
Hewitt et al. (1989) and adjusted the net accumulations by taking the Equilibrium Line
Altitude (ELA) as the boundary for the ablation process. However, the location of ELA can
vary from location to location. In temperate glaciers, usually the Snow Line Elevation
(SLE) and ELA are often assumed to be the same. The estimates for mean ELA at sub-
basin scale are taken from Khan et al. (2015), who estimated ELA values based on SLE.

3.3.6 River flow adjustments

WAPDA uses standard flow measuring devices to ensure high quality river flow data. The
primary river flow measuring technique uses area velocity measurements to determine the
stage-discharge relationships and associated rating tables. The results are verified by area-
velocity method, area-slope method, contracted opening measurements, or computation of
flow over dams or weirs (WAPDA, 2012). The daily mean discharge values are computed
from the mean gauge heights and corresponding calibrated rating tables. In case of
extremely high discharges, the rating curves are extrapolated by applying simple linear
regression between the gauge height and discharge measurements. The actual
measurements are however taken 4-8 times per month. The intermediate daily values are
estimated from the rating tables. The accuracy of stream flow measurements depends
primarily on stability of the stage-discharge relationship, frequency of discharge
measurements if the relationship is unstable, and accuracy in the observation of the stage
and measurement of discharges. In general, monthly and annual mean values are more
accurate than daily values because of compensation of random errors. WAPDA evaluates
the probable accuracy of discharge measurements as excellent (error < 5%), good (error <
10%), fair (error < 15%), and poor (error > 15%). In general, a probable accuracy of 0-5%
is aimed for. Although river flow data may still be subject to some degree of uncertainty
due to measurement errors, we assumed river flows as adequately accurate considering the
relative precision of discharge measurement techniques and quality control ensured by the
data collection agencies.

To account for the contribution of net glacier mass imbalance in each sub-hydrological
basin, we adjusted the measured river flows. K&ab et al. (2012) used satellite laser altimetry
and a global elevation model and observed a slightly negative mass balance of -0.21 +
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0.05 myr! w.e. for HKH region during 2003-2008 with maximum rates of -0.66 *
0.09 myr! w.e. in the western Himalayan (Jammu-Kashmir) areas. We derived the specific
net mass balance rates at sub-basin scale from the mass balance estimates of Ké&ab et al.
(2012) and took glacier areas from the Randolf Glacier Inventory (RGI) version 5.0 (Arendt
et al., 2015) to compute the contribution of the changes in the net glacial mass imbalance to
the observed river flows. The adjusted river flows are used for validation of the adjusted
precipitation estimates at sub-basin scale.

3.3.7 Spatial interpolation

The actual and error-adjusted point measurements of mean monthly precipitation are
spatially interpolated following Dahri et al. (2016), who used the Kriging with External
Drift (KED) interpolation scheme (Schabenberger and Gotway, 2005) with elevation as a
predictor to derive spatiotemporal distribution of precipitation in the high-altitude Indus
basin. The KED model includes a component of spatial autocorrelation and a component
for multilinear dependence on pre-defined variables (predictors). It considers the
observations (Y) at sample locations (s) as a random variable of the form (e.g. Diggle and
Ribeiro, 2007):

Y(s) = u(s) +Z(s) 3.3)
1(s) = Bo + i1 Bi - xi(s) (3.4)

Where, U (s) describes the deterministic component of the model (external drift or trend)
and is given as a linear combination of K predictor fields x« (S) (trend variables) plus an
intercept (fo). The Bk are denoted as trend coefficients, while Z(s) describes the stochastic
part of the KED model and represents a random Gaussian field with a zero mean and a 2™
order stationary covariance structure. The latter is conveniently modelled by an eligible
parametric semi-variogram function describing the dependence of semi-variance as a
function of lag (possibly with a directional dependence). Dahri etal. (2016) provided a
detailed account of the KED interpolation method including model description and
functionalities, reasons for its selection, and comparative advantages of its use in the high-
altitude Indus basin.

3.3.8 Cross validation of the adjusted precipitation

We used exactly the same approach of interpolation and cross validation as adopted by
Dahri et al. (2016), where the cross validation applied on the observed and predicted values
from all the stations is used to assess the errors/uncertainty associated with the interpolation
scheme by using error scores of the relative bias (B) and the relative mean root-transformed
error (E), which are defined as:
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Where Pi and Oi are the predicted and observed precipitation values respectively, while O is
the average of all (or a subset of) the station observations and n refers to the number of
precipitation values.

Under ideal conditions, the overall performance of the employed regression models and
interpolation estimates at basin/sub-basin scale can also be cross validated by applying the
continuity equation suggested by Budyko (1974), which is given by:

AS

=P-Q-ET-G (3.7)
Where P, Q, ET and G are the basin-average precipitation, runoff, evapotranspiration and
net groundwater discharge respectively, while AS is the net change in storage for a given
time increment (At). Equation (7) can be modified by adding interception (I), sublimation
(S) and net mass balance (AMB) contributions for the highly glacierized and snowpack
dependent river basins as follows:

AS

&=
Unfortunately, there are no independent datasets of actual evapotranspiration, sublimation,
interception and the net groundwater discharge for the study area. The global scale datasets
of these variables are generally more uncertain than precipitation itself; therefore, it would
be unwise to validate the estimated precipitation with these extremely uncertain datasets.
Nevertheless, surface storage and groundwater recharge are mostly very low in high-
altitude areas, which are mostly rocky bare mountains with steep slopes and no
groundwater. Precipitation may travel long distances through breaches but ultimately joins
the river streams as base flow. Although, there might be considerable delay effects, these
may be considered negligible for long term average conditions. Similarly, the surface
storage due to topographical undulations may also have a delaying effect. Interception by
the vegetation cover and sublimation (direct evaporation from the snow glacier fields) are
included in the total direct evapotranspiration. Direct evapotranspiration is notoriously
complex to measure as it is among others a function of water availability as well as water
demand. The available global scale gridded datasets of actual evapotranspiration are highly
inconsistent in quantitative as well as spatial distribution terms and generally reflect
overestimated values. We therefore rely mainly on the specific runoff and net mass balance
data to validate our adjusted precipitation estimates.

3.4. Results
3.4.1. Precipitation adjustments

P-Q-ET-G-1-S+AMB (3.8)

To facilitate adjustment of measurement errors in precipitation observations, the
corresponding air temperature is determined from elevation and latitude-based lapse rates.
The results revealed a strong correlation of temperature with elevation and considerable
correlation with latitude (Figures S-3.2-S-3.5). Significantly different gradients for each
month and substantial difference among the gradients for maximum and minimum
temperatures were observed (Table 3.1). Hence, use of a universally assumed or time
independent site-specific observed gradient of mean annual temperature to estimate
maximum and minimum temperatures (e.g. Immerzeel et al., 2012a&b; Lutz et al., 2013) is
probably not correct in the high-altitude Indus basin. Comparison of Table 3.1 and Figures
S-3.2 and S-3.3 indicate that incorporation of latitude as an additional predictor improves
the correlation of the regression models by up to 6.0% for maximum temperature and up to
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1.5% for minimum temperature during 1999-2011. Almost similar trends are observed for
1961-1970 period. The contribution of elevation to the correction is positive in the summer
and negative in the winter months, while the contribution of latitude is positive throughout
the year. The highest improvement is achieved during the monsoon season (Jul-Sep).

Table 3.1: Multiple regressions for maximum and minimum temperatures for the two time periods of
1999-2011 and 1961-1970. Tx1-12 and Tal-12 refer to the calendar months for maximum and
minimum temperatures respectively. E denotes elevation (m) and L represents latitude (decimal
degrees) of the meteorological stations. R? is the combined correlation of temperature with E and L.

Regression Equation for Tx R? (%)  Regression Equation for Tn R? (%)
1999-2011
Tx1=31.5-0.00688E - 0.318 L 96.7 Tnl=17.4-0.00534 E - 0.307 L 91.1
Tx2 =38.1-0.00691 E - 0.455 L 97.5 Tn2 =19.1-0.00559 E - 0.285 L 92.3
Tx3=41.3-0.00712E-0.383 L 96.6 Tn3 =23.4-0.00567 E - 0.278 L 93.8
Tx4 =44.5-0.00739 E - 0.303 L 97.5 Tnd =33.2-0.00567 E - 0.428 L 94.1
Tx5=41.0-0.00790 E - 0.025 L 96.9 Tn5 =37.3-0.00599 E - 0.404 L 94.5
Tx6=19.1-0.00817 E+0.719 L 96.2 Tn6 =34.3-0.00591 E - 0.220 L 95.6
Tx7=-9.47-0.00713E+1.48L 90.5 Tn7=22.2-0.00575E +0.166 L 95.4
Tx8=-5.13-0.00685 E +1.30 L 90.9 Tn8 =22.6 - 0.00567 E + 0.136 L 95.5
Tx9 = 8.60 - 0.00727 E + 0.876 L 96.0 Tn9 =35.2-0.00532 E-0.341 L 95.1
Tx10=20.4-0.00780 E + 0.444 L 97.0 Tnl0 =30.7 - 0.00518 E - 0.380 L 91.8
Tx11=39.0-0.00721 E-0.291 L 97.8 Tnll =227 -0.00515 E - 0.300 L 90.3
Tx12 =38.8 - 0.00689 E - 0.459 L 96.8 Tnl2 =16.7 - 0.00519 E - 0.246 L 90.3
1961-1970
Tx1=38.2-0.00673 E-0.529 L 98.0 Tnl =15.9-0.00536 E - 0.267 L 89.3
Tx2 =39.3-0.00691 E - 0.495 L 97.9 Tn2 =15.9-0.00572 E - 0.188 L 92.8
Tx3=45.3-0.00686 E - 0.524 L 97.3 Tn3=21.8-0.00582E -0.232 L 93.8
Tx4 =53.2-0.00713E-0.589 L 97.7 Tn4 =30.0-0.00592 E -0.334 L 94.7
Tx5=48.7-0.00766 E- 0.281 L 97.8 Tn5=35.1-0.00612 E - 0.346 L 954
Tx6 =20.0 - 0.00828 E + 0.703 L 96.6 Tn6 =31.6 - 0.00608 E - 0.129 L 94.7
Tx7=-9.23-0.00727 E+1.48 L 90.3 Tn7 =17.1-0.00590 E + 0.328 L 95.1
Tx8=-6.80-0.007/01LE+1.37L 88.3 Tn8=17.0-0.00588 E +0.316 L 95.2
Tx9=2.74-0.00751E +1.06 L 95.4 Tn9 =27.1-0.00560 E - 0.088 L 94.4
Tx10=25.2-0.00765 E + 0.288 L 98.0 Tnl0=22.8-0.00546 E - 0.136 L 91.7
Tx11=38.0 - 0.00706 E - 0.281 L 98.3 Tnll =20.7 - 0.00530 E - 0.228 L 89.4
Tx12 =44.0 - 0.00654 E - 0.632 L 96.9 Tnl2 =14.2-0.00524 E- 0.174 L 87.8

To illustrate the precipitation biases over the high-altitude Indus basin, the results for each
individual station are presented. The applied bias adjustments significantly increased the
gauge-measured precipitation. The highest increments are computed for wind-induced
under-catch of solid precipitation followed by liquid precipitation under-catch, wetting
losses and precipitation losses during trace events (Figure 3.2a—d). The solid precipitation
under-catch generally dominates the higher-altitude stations, i.e. elevations greater than
2000 m and during the Dec-Apr months. The range of liquid precipitation under-catch is
much lower and mainly concentrates in the summer monsoon dominated low-altitude areas.
The wetting losses and unmeasured trace precipitation depend on the number of
precipitation events. In many cases, particularly for the low-altitude stations experiencing
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lower wind speeds, the wetting losses exceeded the wind induced under catch of liquid
precipitation due to the fact that it covers all the stations and both forms of precipitation
(liquid and solid). The total bias between the gauge-measured and error-adjusted
precipitation ranged from 12 to 773 mm yr?® for various individual stations and up to
1000 mm yr* for the glacier points (Figure 3.2e). The total absolute biases (corrections) for
all the stations at monthly and annual scale are given at Table S-3.2. The largest increases
are found for the stations receiving greater precipitation amounts, located at higher-altitudes
and encountering higher wind speeds. Based on the above-mentioned corrections, we
introduced monthly scale correction factors (CFs) for each station (Table S-3.3). These
station-based correction factors vary over space and time, with stronger magnitude in
higher-altitude areas (Figure 3.2f) and during winter months (Table S-3.3).

‘Wetting Loss (mm/yr) | Trace Precipitation Losses (mm/ye)

25 50 7.5 100 150 20.0 25.0 o | 15 20 25 30 35 40 50

Total Absolute Bias (mm/yr) B ° [ Station-based Correction Factors
o . | = o e e
.

e e e e e e e e o
25 50 100 150 200 300 400 500 600 700 850 1000 ° 105 LILIS 12 13 14 L5 18 20 23 2.6 3.0

Figure 3.2: Adjusted station observations for (a) wetting loss, (b) trace precipitation loss, (c) liquid
precipitation under-catch, (d) solid precipitation under-catch, (e) total absolute bias between gauge-
measured and error-adjusted annual precipitation, (f) station-based CFs for under-catch of gauge-
measured precipitation. The different scales are to be noted.

3.4.2 Snow accumulation adjustments

The total ablation losses at a given ablation rate from a glacier zone depend on the ablation
gradient and AELA (the difference between the mean elevation of a glacier zone and ELA).
Assuming that the practical ablation above ELA is insignificant, the potential ablation
losses from the selected glacier zones vary from 0-1000 mm yr (Table 3.2). These ablation
losses are added to the original estimates of the net accumulations to account for the
ablation losses from the actual precipitation.
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Table 3.2: Adjusted net snow water equivalent at the major glacier accumulation zones. Lon is
longitude, Lat is latitude, Ele is elevation, ELA is equilibrium line altitude, AELA is the net elevation
contributing to ablation, and AA is adjustment in the net accumulation.

Glacier Lon Lat Ele River ELA AELA AA Net Acc. Adj. Acc.

Name (dd) (dd) (m) Basin (m) (m)  (mm) (mmyr?Y) (mm yr?)

Approach 75.6331 36.0678 5100 Shigar 5050 0 0 1880 1880
Baltoro 76.5508 35.8778 5500 Shigar 5050 0 0 1600 1600
Batura 74.3833 36.6667 4840 Hunza 5000 160 800 1034 1834
Chogolungma  75.0000 36.0000 4850 Hunza 5000 150 750 1070 1820
Chong Kumdan  77.5448 35.2532 5330 Shyok 5500 170 850 484 1334
Hispar Dome  75.5187 36.0109 5450 Shigar 5050 0 0 1620 1620
Hispar East 75.5064 35.8495 4900 Shigar 5050 150 750 1070 1820
Hispar West ~ 75.5064 35.8495 5100 Shigar 5050 0 0 1620 1620
Hispar Pass 75.5215 36.0281 5000 Shigar 5050 50 250 1420 1670
Khurdopin 75.6197 36.1338 5520 Shigar 5050 0 0 2240 2240
Nanga Parbat  74.4444 351672 4600 Astore 4700 100 500 2000 2500
Nun Kun North  76.1014 34.1219 5200 Shingo 5250 50 250 900 1150
Sentik 75.9500 33.9967 5100 Shingo 5250 150 750 620 1370
Siachin A 77.0376 354707 5300 Shyok 5500 200 1000 484 1484
Siachin B 76.9915 35.5235 5300 Shyok 5500 200 1000 526 1526
Siachin C 76.9116 35.5187 5320 Shyok 5500 180 900 662 1562
Siachin D 76.8592 35.6242 5350 Shyok 5500 150 750 855 1605
South Terong  77.4516 35.1384 5330 Shyok 5500 170 850 484 1334
Terong 77.3120 35.5177 5350 Shyok 5500 150 750 855 1605
Urdok 76.7025 35.7669 5400 Shigar 5050 0 0 1060 1060
Whaleback 75.5915 36.0572 4900 Shigar 5050 150 750 1790 2540

3.4.3 Spatial distribution of unadjusted and adjusted precipitation

Continuous fields of precipitation generated through KED-based interpolation of the
adjusted station observations and adjusted snow accumulations at monthly scale show how
precipitation patterns and amounts are spatially distributed in the study area (Figure 3.3a-1).
Monthly precipitation distributions largely confirm the bimodal weather system reflecting
the wintertime precipitation associated with the westerlies and the impact of Indian summer
monsoon in the study area. Overall climatology and distribution patterns of the adjusted
precipitation (Figure 3.3m) match very well to the unadjusted case (Figure 3.3n) or
estimates of Dahri etal. (2016). However, the adjustments revealed significant
improvement in terms of quantitative and spatio-temporal distribution of precipitation in
the study area (Figure 3.30). An overall increase of 21.3% in average annual precipitation is
realized at basin (study area) level, while at sub-basin scale it ranged from 6 to 77% (Table
3.3). Greatest improvements are achieved in the high-altitude areas of Astore, Shyok,
Shigar, Hunza, Gilgit, and Chitral sub-basin and during the winter months.

3.4.4 River runoff adjustments

The net mass balance estimates of K&ab et al. (2012) for the study area are translated into
the amount of runoff generated at sub-basin scale. As a result of slightly negative mass
balance estimates for all sub-basins, their contributions to river runoff are also negative and
relatively small ranging from 0.4-6.1%. The adjustments in river specific runoff depend on
the net mass balance as well as glacier area and varied from -51.5 mm in the Chenab sub-
basin to -2.5 mm in the Panjkora sub-basin (Table 3.4).
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Figure 3.3: Estimated precipitation distribution, (a—l) are mean monthly (Jan—Dec) error-adjusted
precipitation, (m) is error adjusted annual precipitation, (n) is unadjusted annual precipitation, and (0)
is the absolute difference between adjusted and unadjusted annual precipitation distributions

3.4.5 Validation of precipitation estimates

The estimated precipitation distributions can be validated by evaluating the accuracy of the
employed interpolation scheme and the output interpolated fields. For accuracy assessment
of the interpolation scheme, the KED interpolation model produces both prediction as well
as error/uncertainty surfaces, giving an indication or measure of how good the predictions
are. The cross validation applied on the observed and predicted values from all the stations
resulted in relative bias (B) error scores of less than 1, suggesting a negligible
underestimation of the predicted values for all months except August, which shows a slight
overestimation (Table 3.5). Similarly, the relative mean root-transformed error (E) scores of
less than 1 for the months Jan-May suggest excellent results. While, the remaining months
of Jun-Dec experience E values of greater than 1, which depict typical errors slightly
greater than the spatial variations. Almost similar trends are observed for the unadjusted
case. In general, the cross-validation results depict excellent/good agreement between the
observed and predicted values.
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Table 3.3: Precipitation estimates at sub-basin scale. Pobs is observed precipitation derived through
actual measurements and net glacier accumulations, Pagj is adjusted precipitation derived through
adjusted precipitation observations and glacier accumulations, and AP is the difference between them.

S. # River Basin Poos (MmM)  Padgj (mm) AP (mm) Increase (%)
1 Gilgit at Gilgit 566.7 749.3 182.6 322
2 Hunza at Dainyor 634.1 845.5 2114 333
3 Shigar at Shigar 847.3 986.5 139.2 16.4
4 Shyok at Yugo 254.2 426.2 172.0 67.7
5 Indus at Kharmong 1775 272.0 945 53.3
6 Astore at Doyian 879.5 1214.1 334.6 38.0
7 Indus at Tarbela Dam 393.8 521.8 128.0 325
8 Chitral at Chitral 642.3 830.1 187.9 29.3
9 Panjkora at Zulum Br. 757.0 798.4 414 55
10 Swat at Chakdara 960.5 1034.7 74.3 7.7
11 Kabul at Warsak 372.8 448.4 75.5 20.3
12 Kabul at Nowshera 448.6 515.0 66.4 14.8
13 Jhelum at Mangla Dam 1119.4 1223.3 103.9 9.3
14 Chenab at Marala 1101.2 1247.7 146.5 13.3
15 Ravi at Thein Dam 1334.8 1552.3 2175 16.3
16 Beas at Pong Dam 1504.1 1611.0 106.9 7.1
17 Sutlej at Bhakra Dam 357.1 428.4 71.3 20.0

Whole Basin 565.7 668.7 103.0 18.2

Table 3.4: Contribution of net glacier mass balance (GMB) to river flows & adjusted specific runoff.

s River Glacier Net Cont. of Net Obs. Sp. Adj. Sp.
N.o Basin Area GMB GMB to River Runoff Runoff

" Name (km?) (myr1) Flows(mmyrd)  (mmyrd) (mmyr?
1 Gilgit at Gilgit 12125  -0.350 -33.3 (4.4%) 758.0 724.7
2 Hunza at Dainyor 4268.7 -0.113 -35.4 (5.2%) 680.1 644.7
3 Shigar at Shigar 2974.1 -0.090 -38.1 (4.1%) 924.9 886.8
4 Shyok at Yugo 7400.4 -0.060 -13.0 (3.6%) 365.5 352.5
5 Indus at Kharmong 2164.7 -0.326 -9.9 (4.9%) 201.3 191.4
6 Astore at Doyian 257.7 -0.540 -35.1 (3.1%) 1136.7 1101.6
7 Indus at Tarbela 19355.3 -0.150 -16.7 (4.0%) 421.2 404.6
8 Chitral at Chitral 1736.3 -0.320 -44.8 (6.1%) 737.2 692.4
9 Panjkora at Zulum Br. 41.0 -0.350 -2.5 (0.4%) 616.5 614.0
10 Swat at Chakdara 202.6 -0.400 -14.1 (1.2%) 1186.3 1172.2
11 Kabul at Warsak 18515 -0.340 -8.9 (5.7%) 154.8 145.9
12 Kabul at Nowshera 2095.0 -0.340 -7.9 (2.5%) 305.6 297.7
13 Jhelum at Mangla 262.7 -0.550 -4.3 (0.5%) 792.8 788.5
14 Chenab at Marala 2667.4 -0.560 -51.5 (5.0%) 1026.4 975.0
15  Raviat Thein dam 166.9 -0.386 -10.5 (0.8%) 1391.0 1380.5
16 Beas at Pong dam 511.0 -0.213 -8.7 (0.9%) 986.5 977.8
17 Sutlej at Bhakra dam 1411.9 -0.359 -9.3 (3.5%) 264.2 254.9

Table 3.5: Relative bias (B) and relative mean root-transformed error (E) for all observation points.

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANN

B 08 089 08 08 087 103 094 097 091 078 079 083 094
E 08 075 074 073 079 068 059 058 06 082 082 08 0.71
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Another means of validation is the comparison of the estimated precipitation with the
corresponding observed river flows (specific runoffs). Dahri et al. (2016) demonstrated that
the previous estimates of precipitation distribution in the study area are not only highly
contrasting but largely underestimating the actual precipitation. Likewise, in the Dahri et al.
(2016) study, precipitation estimates derived from the unadjusted precipitation observations
provided relatively better estimates than the previous studies. Yet, slightly lower
precipitation than the measured specific runoff in 9 out of 17 sub-basins (Figure 3.4) is
absolutely counterintuitive implying underestimated precipitation or an unaccounted source
of water (e.g. glacier melt contribution). Long term annual mean precipitation must always
be greater than the corresponding specific runoff if a positive or neutral mass balance is
prevalent in any river basin. In case of a negative mass balance, its contribution to river
flows has to be subtracted from the actually observed river flows and the adjusted flows
must be lower than the corresponding mean annual precipitation. Cross validation of
adjusted precipitation estimates with the corresponding adjusted specific runoffs (Figure
3.4) revealed adjusted specific runoff well below the adjusted precipitation estimates for all
the sub-basins except Swat, which reflects underestimated precipitation or a bigger
contribution of a negative mass balance to river flows.
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Figure 3.4: Annual measured and adjusted specific run-off and annual observed and adjusted
precipitation at sub-basin scale

3.5. Discussion

Precipitation is an integral component of the hydrological cycle and usually the most
important input to water balance assessments and climate change studies. Hence, its
accuracy is essential as errors in precipitation estimates may translate into major changes in
the water budget of a particular region. However, in many areas, precipitation
measurements are still subject to significant errors and a large uncertainty (Kochendorfer
et al., 2017a & b) often leading to a substantial underestimation of the actual precipitation.
The situation is particularly serious in the high-altitude Indus basin where biased
distribution and lack of the observed data further worsen the problem. As such the
precipitation products derived from or validated by the observed data covering this region
are prone to significant errors (Dahri et al., 2016; Reggiani and Rientjes, 2015). Scientists
have used different approaches to overcome the observational data gaps. For example,
Adam etal. (2006) used a water balance approach to indirectly estimate precipitation.
However, large uncertainties in the different water balance components limit wider
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application of this approach. Immerzeel etal. (2015) used mass balance estimates to
inversely compute precipitation in the major snow/glacier zones and applied a linear lapse
rate of precipitation increase with elevation up to 5000 m using APHRODITE as the
reference dataset. Uncertainties in mass balance and water balance components and
assumption of linear precipitation increase with altitude are the major drawbacks of this
method. Dahri et al. (2016) integrated station observations with the net snow accumulations
estimated through mass balance studies and applied KED interpolation scheme to derive
precipitation in the ungauged areas. Measurement errors in precipitation observations and
negligence of snow/glacier ablations in the net snow accumulations are the key
shortcomings of this approach.

The approach adopted in this study is based on catch adjustments of precipitation
observations for systematic measurement errors, adjustment of net snow accumulations for
the ablation losses, and adjustment of river flows for the contribution of net glacier mass
balance. Mean monthly precipitation climatologies are derived from i) actual precipitation
observations and actual net snow accumulations, ii) adjusted precipitation observations &
the adjusted net snow accumulations following Dahri et al. (2016).

The results presented in this study further support the wind-induced under-catch as the
largest source of errors in gauge-measured precipitation observations. The catch corrections
have increased the gauge-measured precipitation values ranging from 12-773 mm yr* for
various stations, while net snow accumulations at the glacier points increased up to
1000 mm yrt. A large part of precipitation in the high-altitude Indus basin falls as snow,
which is more susceptible to under-catch even at moderate wind speeds. The largest
corrections were found for wind-induced under-catch of solid precipitation, which is in line
with the results of previous studies (e.g. Kochendorfer et al., 2017a & b; Wolff et al., 2015;
Chen etal., 2015; Yang etal.,, 2005; Michelson, 2004; Ye etal., 2004; Adam and
Lattenmaier, 2003; Goodison et al., 1998; Legates and Willmot, 1990). However, liquid
precipitation under-catch, wetting loss and trace precipitation loss are also important,
particularly in low-altitude and relatively dry areas.

The large differences between the observed precipitation and the corresponding specific
runoff observations (usually greater specific runoff than precipitation) in previous estimates
are often attributed to the contribution of snow/glacier melt. Indeed, the high-altitude Indus
basin receives considerable snow/glacier melt contributions, which largely come from the
melting of temporary/seasonal snow cover and may vary from year to year depending on
the quantity and timing of winter snowfall and snowmelt during the subsequent summer.
However, quantitative estimates of net glacier mass balance contributions to river flows are
largely lacking. Therefore, the accuracy of the estimated net glacier mass balance
contributions to the river flows is mainly depending on the uncertainties in glacier area and
the ablation rates of mass balance. Our methodology of adjusting river flows for the net
mass balance contributions is straight forward and the adjustments are slightly less than
what is modelled by Lutz et al. (2016). For example, we estimated net glacier mass balance
contribution of -17.3 mm yr? for the Indus at Besham Qila against -25.0 mm yr* modelled
by Lutz et al. (2016). The difference might be due to the use of different approaches and
different glacier inventories having different glacier areas. Lutz et al. (2016) pointed out a
23% difference in the glacier areas from three different inventories implying considerable
differences in the water balance components.

The precipitation distribution derived through actual station observations combined with
the actual net glacier accumulations is almost similar to that derived by Dabhri et al. (2016)
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except for the addition of a few sub-basins and the use of additional and updated observed
data. The catch corrections and snow accumulation adjustments significantly increased the
total gauge-measured as well as basin scale precipitation (Figs. 3.2, 3.3-0 & 3.4; Table 3.3).
The overall distribution patterns of precipitation remained largely the same as identified by
Dahri et al. (2016), but substantial increases in the magnitude of precipitation amounts are
realized. One of the advantages of the KED interpolation method is that it estimates an
interpolated surface from a randomly varied small set of measured points and recalculates
estimated values for these measured points to validate the estimates and determine the
extent of errors. When compared with the corrected precipitation derived by Immerzeel
et al. (2015), our estimates show significantly smaller root mean square error and a stronger
correlation with the error-adjusted station observations (Figure 3.5). The corrected
precipitation estimates by Immerzeel etal. (2015) show considerable differences with
significantly lower values at the majority of station locations including the points at the
major glaciers, where actual measurements of net snow accumulations were taken. At the
basin scale their estimates are relatively better but seem to be on the higher side in about
half of the sub-basins. This discrepancy between station-based point observations and basin
scale precipitation estimates by Immerzeel et al. (2015) may be attributed to the higher and
linear lapse rates of precipitation increase applied to compute the precipitation fields. Also,
they did not validate their estimates with the observed precipitation of the individual
stations. Instead, they used the Turc-Budyko representation to show the physical realism of
their estimates and attributed some of the estimates that fall on the right side (inside) of the
theoretical Budyko curve to the possible contribution of the negative mass balance to river
flows and uncertainties in the potential evapotranspiration (ET,) dataset.
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Figure 3.5: Comparison of error adjusted station observations with the corresponding estimated
values under this study and by Immerzeel et al. (2015)

In this study, we used accurate runoff observations (specific runoffs), which are further
improved by adjusting for the net glacier mass balance contributions, and improved ETp
estimates from JRAS5 reanalysis dataset (Figure 3.6) to evaluate the physical realism of our
estimated precipitation compared to the precipitation estimates from Immerzeel et al.
(2015). Over one-third of the points representing estimated precipitation by Immerzeel
etal. (2015) in various sub-basins (e.g. Gilgit, Chitral, Panjkora, Kabul at Warsak and
Nowshera, and Sutlej) lay inside the theoretical Budyko curve indicating higher values than
the theoretically expected. Whereas, the estimates of unadjusted precipitation in our study,
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which are almost similar to the estimates of Dahri et al. (2016), show 10 out of 17 sub-
basins above the line of moisture limit indicating underestimated precipitation in these sub-
basins. The adjusted precipitation derived in our study shows relatively better fits in the
Turc-Budyko representation except for the Swat sub-basin. The greater specific runoff than
precipitation in the Swat basin may be attributed to yet an underestimated precipitation
and/or greater negative mass balance than what is presently assumed.
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Figure 3.6: Turc-Budyko representation of run-off ratio (Q/P) and aridity index (P/ETp). The red
triangles display estimates of unadjusted case or Dahri et al. (2016), black diamonds show estimates
of Immerzeel et al. (2015) and blue circles indicate adjusted estimates under this study. The numbers
refer to the sub-basins as given in Table 4.

The runoff ratio (Q/P) determines the amount of precipitation converted into overland flow
or surface runoff. It is mainly controlled by largely stable natural factors including climate,
soil and topography and to some extent by the human alterations to landscapes. Relatively
higher runoff ratios are produced for areas with shallow or clay soils, steeper slopes and
devoid of vegetation cover. Snow covered areas hold winter precipitation as snow/ice and
produce higher runoff ratios during the subsequent snow melting periods. Over 50% of the
study area possesses slopes steeper than 40% and about 81% of the surface soil type is
leptosol (47.4%), cambisol (22.5%), and rock outcrop (11.1%). Dominant land cover types
are closed to open herbaceous vegetation (34.6%), bare rocky areas (25.3%) and permanent
snow and glaciers (13.4%) (Figure S-3.6). All these topographical properties infer the high-
altitude Indus basin as a typical case of an area that accelerates rapid runoff generation.
Therefore, relatively high rates of runoff ratios are to be expected. Table S-3.4 and
Figure3.6 show the improved runoff ratios (Q/P) and aridity indices (P/ET,) if compared to
the datasets of Dahri et al. (2016) and Immerzeel et al. (2015).

Although, the error-adjusted precipitation derived in this study seems to be more consistent,
yet there are a few uncertainties that need to be understood and taken care of in future
investigations. The major uncertainties associated with the results of our study may arise
from four possible sources: i) uncertainties in regression models due to their imprecision
and uncertainties in the input data, ii) uncertainties arising from the estimated temperature
and wind speed for many observatories, iii) uncertainty in the gauge type of the basin’s
gauge network, and iv) uncertainties in spatial interpolation of the point observations to
derive gridded fields of precipitation. The error estimation of the regression models
employed in this study are tested at different locations and the relationships with the best fit
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are also applicable for similar situations in other areas. Nevertheless, regression models are
in essence approximations of reality and some degree of uncertainty will always remain in
the results. Relatively more accurate adjustments of precipitation under-catch for any
precipitation event can be made by using the corresponding data of temperature and wind
speed. However, hourly or daily data of these parameters are not available for many
observatories in the study area. Also, there are many stations for which such data are not
available at all. For locations without these data, temperature may be derived from the lapse
rates of the available observations and wind speed from JRA55 dataset. However as shown,
the use of these data may add to the uncertainties in the catch corrections. The
meteorological data collecting agencies in the Indus basin generally indicate to follow the
WMO standards but we found inconsistencies in the use of precipitation measurement
instruments and techniques. As the correction coefficients to account for wind-induced
under-catch of precipitation depend on the type and orifice area of the precipitation gauge,
incorrect gauge configuration information has consequences for the catch corrections.
Although we tried our best to obtain the maximum possible information regarding the type
and specs of precipitation gauges, we cannot exclude the chances of different precipitation
gauges than the actual ones in some cases. However, we also think that the possibility of
slight differences in gauge type will only have a small impact on the final results. The
uncertainties resulting from spatial interpolation techniques described by Dahri et al. (2016)
are equally applicable for this study. Importantly, the cross-validation results infer high
accuracy of the corrections and indicate excellent agreement between the adjusted
precipitation and adjusted specific runoff at sub-basin scale.

3.6. Conclusions

Reliable estimates of precipitation climatologies and amounts in the high-altitude Indus
basin are seriously constrained by the quality and number of observed data (e.g. scarcity of
in-situ observations, measurement errors, and space-time breaks). This study attempted to
address these core issues by improved estimates of the precipitation measurement errors
and integrating precipitation data from multiple sources with the net snow accumulations at
major glacier zones. The study employed WMO recommended standard methods to adjust
systematic errors in precipitation measurements. Simple methods to adjust net snow
accumulation for the ablation losses and adjustment of river flows for the net mass balance
contributions are introduced. Mean monthly adjusted and unadjusted precipitation
observations and net snow accumulations are spatially interpolated using the Kriging with
external drift interpolation scheme. Analysis of temperature variations with elevation and
latitude revealed significantly different gradients for each month and substantial differences
among the gradients at different locations for maximum and minimum temperatures.
Hence, the use of a universal annual gradient or a time independent gradient of mean
temperature to estimate maximum and minimum temperatures or vice versa is a major
source of uncertainty for the high-altitude Indus basin.

The applied error-adjustments significantly increased the gauge-measured precipitation,
which is in line with previous studies. The total bias between gauge-measured and error-
adjusted precipitation ranged from 12-773 mm yr! (2-182%) for various individual
stations. The highest increments are computed for wind-induced under-catch of solid
precipitation, particularly in higher-altitude areas and during winter months. The range of
liquid precipitation under-catch is much smaller concentrating mainly in the low-altitude
areas during summer monsoon. Similarly, notable increases varying from 0-1000 mm yr?
(0-200%) are estimated for net snow accumulations. Precipitation increase at the basin
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(study area) scale is 21.3%, while at sub-basin scale it ranged from 6-77% with greater
increments at higher-altitude areas and during winter months. Contrary to the general
understanding, the contribution of net glacier mass balance to river flows is only marginal
ranging from 0.5-6.1% of the observed flows. The highest contributions are revealed for the
Chenab, Chitral, Shigar, Hunza, Astore and Gilgit basins.

The cross-validation results (Figure 3.4) and the Turc-Budyko representation of the runoff
ratios and aridity indices at sub-basin scale (Figure 3.5) show that the adjusted precipitation
amounts and distribution patterns derived in this study are more accurate than the
unadjusted data and previous estimates. The catch corrections provided new insights in the
magnitude and distribution patterns of precipitation implying potential hydrological
implications for water resources assessment, planning and management. The actual
precipitation is considerably greater than what has been previously thought. These increases
are mainly realized in the higher-altitude areas of Chitral, Gilgit, Hunza, Shigar, Shyok and
Astore basins. The study recognizes that the data-quality driven underestimated
precipitation may be the major source of uncertainty in the water balance estimates in the
high-altitude Indus basin. The improved climatologies of mean monthly precipitation
developed in this study can be used for basin or sub-basin scale water balance studies and
bias correction of gridded precipitation products, thereby paving the way for the
development of an accurate, consistent and high-resolution gridded precipitation product
for this highly under-explored region of the Indus basin.

Although, our estimates of precipitation distribution can easily be regarded as much better
than currently available estimates, the uncertainties elaborated at the end of the previous
section recognize the need for further improvement. Further improvements can be achieved
by calibration of the already installed precipitation gauges with the WMO recommended
reference gauges and development of site and gauge specific error adjustment models, use
of observed data with better spatio-temporal coverage, use of daily or even sub-daily time
steps, use of corresponding observed wind speed and temperature datasets, selection of any
better spatial interpolation technique, accuracy assessment and precise determination of
other components of the water balance to validate precipitation, and a better integration of
precipitation data with mass balance data.
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Chapter 4

Evaluation of Gridded Precipitation Products

Abstract

The high-altitude Indus basin is one of the most complex and inadequately explored
mountain terrains in the World, where reliable observations of precipitation are highly
lacking. Therefore, spatially distributed precipitation products developed at global/regional
scale are often used in several scientific disciplines. However, large uncertainties in
precipitation estimates of such precipitation datasets often lead to suboptimal outcomes. In
this study, performance of 27 widely used gridded precipitation products belonging to three
different categories of gauge-based, reanalysis and merged (combined) is evaluated with
respect to high-quality reference climatologies of mean monthly precipitation. Widely used
statistical measures and quantitative analyses techniques are used to analyze the spatial
patterns and quantitative distribution of mean monthly, seasonal and annual precipitation at
sub-regional scale. Mean annual precipitation estimates of the gridded datasets are cross
validated with the corresponding adjusted streamflows using Turc-Budyko non-
dimensional analysis. Results reveal poor to moderately good performance of the gridded
datasets. Marked differences in spatiotemporal and quantitative distribution of precipitation
are found among the datasets. All datasets are consistent in their patterns showing negative
or dry bias in wet areas and positive or wet bias in dry areas, although considerable
differences in the magnitudes of the biases are noticed at sub-regional scale. None of the
datasets is equally good for all sub-regions due to very high spatiotemporal variability in
their performance at sub-regional scale. Gauge-based and merged products performed
better in dry regions and during monsoon season, while reanalysis products provided better
estimates in wet areas and during winter months. GPCC V8, ERA5 and MSWEP2.2 are
found better than their counter-grouped datasets. Overall, ERAS5 is found most acceptable
for all sub-regions, particularly at higher-altitudes, in wet areas and during winter months.
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2020; JOC-19-0591.
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4.1. Introduction

Precipitation is the most important climatic variable associated with atmospheric
circulations and hydrological cycle and unequivocally the principal source of freshwater
supplies. It plays a crucial role in socioeconomic developments, environmental integrity
and sustaining life on earth. Naturally, precipitation is discontinuous in space and time, has
complex characteristics, can occur in several forms, and its causal mechanisms can
influence precipitation from cloud to cyclone scales. Errors in precipitation data can have
significant implications for climate and water balance studies. It is therefore essential to
accurately measure/estimate precipitation at higher spatiotemporal resolutions. This is
especially the case in topographically complex high-mountain ranges where precipitation
often changes abruptly over short distances (Anders et al., 2006) and majority of it falls as
snow. A high-quality, dense and adequately representative network of observations is
essential to precisely measure occurrence, quantity and type of precipitation.

The high-altitude Indus basin is one of the most complex and largely underexplored regions
in the World. Its climate and precipitation are largely modulated by a couple of synoptic-
scale atmospheric circulation systems: the Indian summer monsoon and the winter
westerlies (Pang et al., 2014; Yao et al., 2012; Ding and Chan, 2005; Wang and Lin, 2002).
The Indian summer monsoon advects moisture through several trajectories originating from
the Bay of Bengal, Indian Ocean and Arabian Sea due to the differential heating between
land and sea (Pang et al., 2014; Bolch et al., 2012; Yao et al., 2012; Bohner, 2006; Hodges,
2006). It causes heavy rainfall in south-eastern areas during June-September and moves
north-westward along the Himalayan Arc with decreasing strength. The winter westerlies
transport large masses of moist air from the Caspian, Black & Mediterranean seas and
North Atlantic Ocean throughout the year and are the dominant source of precipitation in
the Hindukush, Karakoram and to a lesser extent in the W-Himalayan regions during
December-April months (Filippi et al., 2014; Pal et al., 2014; Mayer et al., 2014; Bohner,
2006; Treydte et al., 2006; Syed et al., 2006). Moreover, significant amount of moisture in
the air is added to the atmosphere by evapotranspiration from the vast irrigated plains and
forestlands (de Kok et al., 2018; Harding et al., 2013; Wie et al., 2013; Tuinenburg et al.,
2012). Heavy precipitation events are encountered whenever these systems coincide and
interact with each other (Zaidi, 2014; SUPARCO and FAO, 2010; WMO, 2010).

Precipitation distribution in the high-altitude Indus basin is extremely variable due to
varying influence and interplay of the prevailing synoptic-scale atmospheric circulation
systems with the local climate and topographic features. Highly sparse and directionally
biased network of existing in situ observations insufficiently represents the entire range of a
diverse climate in the study area (Dahri et al., 2018, 2016; Immerzeel et al., 2015; Reggiani
and Rientjes, 2015; Fowler and Archer, 2006). Hence, our understanding of the prevailing
hydro-meteorological processes in this region is seriously uncertain (Lutz et al., 2014;
Andermann et al., 2011). Therefore, reliance on gridded datasets has been increased due to
inadequate in situ observations and increasing demand for precipitation data in spatially
distributed format. As such, a wide range of gridded precipitation products have been
developed over the recent decades. The available datasets can broadly be categorized into
four groups: gauge-based, reanalysis, satellite-derived and merged products. The most
important are the gauge-based datasets derived from the on-ground direct measurements,
which provide relatively precise occurrences, amounts and types of precipitation at the
measuring points. These point measurements are often used for calibration, validation and
bias correction of reanalysis and satellite estimates. However, the gauge-based precipitation
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datasets are also prone to observational uncertainties resulting from measurement errors,
insufficient spatiotemporal coverage, uneven distribution and directional biases of the
gauges, difficulties in snowfall measurements in windy conditions, and the applied
interpolation methods. The magnitude of these uncertainties can be significant in
orographically influenced complex mountain terrains (Dahri et al., 2018; Prein et al., 2017;
Boers et al., 2016; Lundquist et al., 2010).

Alternatively, several precipitation estimates modelled through Retrospective weather
forecast model analysis (Reanalysis) or derived from satellite data provide gauge-
independent estimates. These datasets offer viable substitutes for homogeneous, consistent,
near-real-time and fairly reliable estimates of a wide range of climatic variables at global
scale (Ghodichore etal., 2018). A typical reanalysis system objectively integrates
observations, a global forecast model, and an assimilation scheme to generate synthesized
estimates of the past atmospheric states at global scale (Fujiwara et al., 2017). Conversely,
precipitation products derived from satellite data have gone through gradual improvements
since their inception and currently incorporate data from several instruments and satellites
(e.g. Ciabatta et al., 2018; Huffman et al., 2018, 2007; Xie et al., 2017; Ushio et al., 2009;
Joseph etal., 2009). Yet these products are poor in precisely capturing the solid
precipitation (Rasmussen et al., 2012; Putkonen, 2004). The satellite-based precipitation
products vary considerably in terms of their source and processing algorithms as several
sensors aboard geostationary earth orbiting (GEO) and low-earth orbiting (LEO) satellites
observe precipitation passively or actively. A few studies observed that satellite-based
products are better at estimating convective precipitation, whereas frontal system
precipitation is better characterized by reanalysis (e.g. Vila et al., 2010; Sapiano and Arkin,
2009; Tian et al., 2009; Ruane and Roads, 2007; Ebert et al., 2007). This indicates that
reanalysis and satellite-derived datasets are complementary, particularly for the areas where
validations are inadequate or impossible due to lack or absence of in situ observations.
(Beck et al., 2017; Pena-Arancibia et al., 2013).

Owing to the underlying issues in the available datasets to precisely estimate extreme
heterogeneity of precipitation, several attempts have been made to take full advantage of
the complementary nature and comparative advantages of the gauge-based observations,
satellite data and reanalysis. Numerous merged (gauge-based, reanalysis and/or satellite-
derived) precipitation products have been developed over the recent time (e.g. Beck et al.,
2019, Xie et al., 2017; Karger et al., 2017; Ashouri et al., 2015; Funk et al., 2015a; Weedon
etal., 2014; Huffman et al., 2007; Janowiak and Xie, 1999; Xie and Arkin, 1997). These
datasets mostly rely on merging algorithms to limit the shortcomings of the source datasets
and produce higher quality end products.

Although, gridded datasets provide better information in terms of spatiotemporal
consistency, their inadequacy to precisely estimate occurrence, quantity and type of
precipitation is still a major concern. Recent innovations in weather forecasting models,
satellite sensors and retrieval methods, and multi-source merging techniques coupled with
high-quality observations have significantly improved the quality of resultant precipitation
products. Yet, their spatiotemporal accuracy at basin/catchment scales particularly in
orographically influenced and topographically complex mountain terrains is highly variable
(Beck et al., 2019, 2017; Sun et al., 2018; Henn et al., 2018; Maggioni et al., 2016;). There
are also seasonal biases and difficulties in capturing the low intensity and snowfall events.
Many existing precipitation products exhibit differences that are often larger than can be
explained by observational or methodological uncertainties (Yin et al., 2015; Aghakouchak

59



etal.,, 2012). Several evaluation studies have been undertaken at varying spatial scales
using a variety of approaches, performance metrics and statistical indices (e.g. reviews by
Sun et al., 2018; Maggioni et al., 2016; and Gebremichael, 2010). However, inconsistency
in terms of reference dataset against which the accuracy is to be evaluated is an important
issue. Many studies relied on spatially inconsistent point observations to assess the
accuracy of gridded datasets; while others re-used many gauge observations already
incorporated in development or validation of precipitation datasets, thereby precluding
independent validation (Beck et al., 2019). Even though it is well-recognized that the gauge
observations are prone to significant measurement errors (Goodison et al., 1998; Legates
and Willmot, 1990; Sevruk and Hamon, 1984), these point-based gauge observations are
often used without addressing uncertainties. Such reference point observations generally
lack the required density to accurately represent the spatial heterogeneity of precipitation.
Hydrological modeling is also used to evaluate quality of precipitation data by comparing
observed and simulated flows obtained through varying precipitation inputs. However, the
uncertainties associated with the modeling structure and other input data are the major
drawbacks of this approach.

Performance of gridded precipitation products may often be satisfactory at
global/continental scale, but they generally lack the accuracy and precision required at sub-
regional and catchment scale studies, especially over regions of high spatio-temporal
heterogeneity (Ghodichore et al., 2018; Gamp and Ludwig, 2017). The Indus river basin
traversing through the high mountain ranges of the Tibetan Plateau (TP) and Hindukush-
Karakoram-Himalaya (HKH) regions is experiencing significant transformations in its
hydrometeorology (Lutz etal., 2016) and is recognized as climate change hotspot
(Krishnan et al., 2019; Lutz et al., 2018; De Souza et al., 2015). There is lack of
comprehensive studies that could evaluate performance of gridded datasets in this area.
Few studies evaluated the performance of some gridded precipitation products against a
limited number of point observations (e.g. Krakauer et al., 2019; Ullah et al., 2019; Ahmed
et al.,, 2019; Khan et al., 2018; Igbal et al., 2018; Hussain et al., 2017; Ali et al., 2012) or
using spatially distributed fields of mean annual precipitation derived from a limited
number of point observations (e.g. Anjum et al., 2018; Ghulami et al., 2017). Dabhri et al.
(2016) integrated precipitation data from different sources to derive better estimates of
spatially distributed precipitation and corroborated the underlying issues related to the use
of four important gridded precipitation products in this region. Other studies (e.g. Reggiani
and Rientjes, 2015; Palazzi et al., 2013) have relied on inter-comparison of a few datasets
in the absence of reference dataset.

This study therefore comprehensively and rigorously evaluates the applicability, robustness
and limitations of 27 widely used precipitation products for the complex and high-mountain
Indus basin in the HKH region. The study is unique in that it assesses the performance and
reliability of a wide range of products over a finer spatial scale. Quantitative and spatial
variability of precipitation products is investigated at monthly, seasonal and annual scales
against high-quality reference climatologies derived by Dahri et al. (2018). In addition, it
cross validates the precipitation estimates of all gridded products using adjusted river flows
through Turc-Budyko non-dimensional analysis. The study will provide useful inputs and
guidelines for development, bias correction and improvement of gridded datasets. It will
also serve as the basis for selection and use of appropriate datasets for hydrological and
water assessment studies in the study area.
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4.2. Data and Methods

4.2.1 Reference dataset

The accuracy of a product is usually assessed against a high-quality reference benchmark.
Here we used a recently developed high-resolution (1 km) dataset of mean monthly
precipitation climatologies described in Dahri et al. (2018). This dataset was derived by
integration of several precipitation data sources with indirect estimates of precipitation
from snow accumulations measured at the major glacier zones to cover the observational
gaps. The precipitation observations were adjusted for measurement errors, snow
accumulations for the ablation losses, and river flows for the contribution net glacier mass
balance. Precipitation estimates at sub-basin scale were validated by the corresponding
adjusted specific runoff. Accuracy of the selected gridded precipitation products in this
study is evaluated for each common grid cell with respect to this novel and high-resolution
reference dataset of mean monthly precipitation at basin and sub-regional scale.

4.2.2 Gridded precipitation products

The selection of gridded datasets for this evaluation study is primarily based on availability
of long-term (~20 years) records, which must coincide with the period of the reference
dataset (1999-2011). The three types of data evaluated in this study include the gauge-
based, reanalysis and merged precipitation products. We excluded the satellite-derived
products due to their short-term records, which do not coincide with the reference period
and their large uncertainty to estimate solid precipitation (Rasmussen et al., 2012;
Putkonen, 2004), which is dominant in the study area. An ensemble of 27 gridded
precipitation products (nine from each of the three groups) available for the historical
periods is selected to evaluate their accuracy in the study area. The major characteristics of
the selected datasets are summarized in Table 4.1. For a detailed description of the input
datasets and techniques used in development of these datasets, the corresponding references
and/or concerned websites are suggested.

The datasets available at finer temporal resolutions (daily/sub-daily) were aggregated to
monthly scale. Mean monthly precipitation climatologies for the reference period of 1999-
2011 for each gridded dataset were regridded to 30 arc-seconds to match the temporal and
spatial resolution of the reference dataset using the nearest neighbour interpolation
technique. Extended winter (Oct-May) and monsoon (Jun—-Sep) seasons are regarded
keeping in view the onset and continuity of precipitation during the two major circulation
systems (winter westerlies and summer monsoon) prevailing in the study area.

4.2.3 River flows

Dahri et al. (2018) collected river flow data for all major sub-basins in the study area and
accounted for the diversions upstream of each rim station (river gauge). These observed
river flows were adjusted for the contributions of net mass balances using mass balance
estimates provided by Kaab et al. (2012) and glacier areas estimated by Randolf Glacier
Inventory (RGI) version 5.0 (Arendt et al., 2015). These adjusted river flows are used in
this study for analysis and cross validation of the precipitation from the selected products
through Turc-Budyko non-dimensional analysis. The adjusted river flows for the five sub-
regions are computed from the area-weighted mean adjusted flows of the concerned sus-
basins.
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Table 4.1: Summary of the basic characteristics of the selected gridded precipitation products used in
this study.

S. Product Name and Details Data Grid Temporal Reference
# Sourc Size CoOverage
Gauge-based Products

1 GPCC V8, Global Precipifation Climatology Centre (GPCC) Full Data Monthly Product Version 8 [ 0.25° 18912016 Schneider etal. (2018)

2 GPCC V7,Global Precipitation Climatology Centre (GPCC) Full Data Monthly Product Version 7 [ 0.5° 1901-2013 Schucider et al. (2014)

3 UDEL V5.01, University of Dilawere, Terestrial Precipitation: Gridded Monthly Time Series (V 5.01) ¢ 0.5°  1900-2017 Mats. & Willm. (2018)

4 APHRODITE V1801R1, Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation V1801R1 G 0.25° 19982015 Yatagai et al. (2018)

5 APHRODITE V1101, Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation V1101 [ 0.25° 19512015 Yatagai etal. (2012)

6 PREC-Land, NOAA's PRECipitation REConstruction over Land (PREC/L) [ 0.5° 19482012 Chen etal.(2002)

7 CRUTS4.02, Climate Research Unit TS4.02 [ 0.5° 1901-2017 Harris etal. (2014)

8 GPCP V2.3, Global Precipitation Climatology Project (GPCP) Version 2.3 Monthly Analysis [ 25 1979-NRT Adler etal. (2018)

S CPC Unified, Climate Prediction Center Unified gauge based analysis V1.0 [ 0.5 1979-NRT Chen etal. (2008)
Reanalyses Products

1 ERAS,ECMWF's 5th generation Atmospheric ReAnalysis R ~0.281° 1979-NRT Hersbach etal. (2018)

2 CEFSR, National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis R ~0.31°  1979-2010 Saha etal. (2010)

3 JRA-SS, Japanese 55-vear ReAnalysis R 0.5625° 1958-NRT Kobayashi et al. (2015)

4 ERA 20C, ECMWF Atmospheric Reanalysis of the 20th Century R ~1.406° 19002010 Stickler et al. (2014)

5 MERRA-2, Modern-Era Retrospective analysis for Research and Applications, Version 2 R 0.5° 1980-NRT Gelaro etal. (2017)

& ERAL European Centre for Medium-range Weather Forecasts ReAnalysis Interim R ~0.75% 1979-NRT Decetal. (2011)

7 DOE-R2, NCEP-Department of Energy (DOE) Reanalysis 2 R ~1.875° 1979-NRT Kanamitsu etal. (2002)

& NCAR-R1, NCEP-National Center for Atmospheric Research (NCAR) Reanalysis 1 R ~1.875° 1948-NRT Kalnay et al. (1996)

S 20CR V2C, NOAA-CIRES Twentieth Century Reanalysis Version 2C R ~1.875° 18512011 Compo etal.(2011)
MSWEP V2.2, Maulti-Source Weighted-Ensemble Precipitation Version 2.2 ¢, S,RA  01° 1979-NRT Becketal (2017,2019)
TMPA 3B42 V7, TRMM Multi-satellite Precipitation Analvsis (TMPA) 3B42 V7 G,s 0.25° 1998-NRT Huffman et al. (2007)
PERSLANN-CDR VIR, Precipitation Estimation from Remotely Sensed Information using Artificial Newral Networks- G, S 0.25° 1983-2016 Ashouri et al. (2015)
Climate Data Record VIR1
CHELSA V1.2, Climatologies at High resolution for the Earth Land Surface Areas, Version 1.2 GRA  0.0083° 19792013 Kargeretal (2017)
CHIRPS V2.0, Climate Hazards group Infrared Precipitation with Stations Version 2.0 G,S,R,A  0.05° 1981-NRT Funk etal (2015)
WEDELCRU, WATCH Forcing Data ERA-Interim corrected by CRU C¢.R 0.5° 19792015 Weedon et al. (2014)
CMAP, CPC Merged Analysis of Precipitation G,S.R 2.5° 1979-NRT Xieand Arkin (1997)
CMORPH V1.0, CPC MORPHing technique (CMORPH) V1.0 [:X] 0.5° 1993-NRT Xicetal (2017)
CAMSOPI, Climate Anomaly Monitoring System ("CAMS") and OLR Precipitation Index ("OPI") G,s 2.5 1979.NRT Janowiak & Xie (1999)

4.2.4 Potential evapotranspiration

There is no observational-based independent dataset of potential evapotranspiration (PET)
for the study area. Therefore, previous studies have relied on global-scale gridded datasets
using PET data from a single product (e.g. Dahri et al., 2018) or ensemble mean of several
datasets (e.g. Immerzeel et al., 2015). Importantly, PET does not have crucial use in this
study. It is only employed to estimate aridity index (P/PET) in Turc-Budyko non-
dimensional analysis. Recently, a 5" generation reanalysis (ERA5) dataset including a
number of atmospheric variables at global scale has been released. The evaluation of
precipitation products undertaken in this study reveals that precipitation estimates of ERA5
are much better than the rest of reanalysis products for the study area. Therefore, as a
complementary climate variable, PET from ERADb reanalysis is selected for this study.

4.2.5 Evaluation approach

The study area is stretched over vast mountain and sub-mountain ranges of extremely
variable topographic features (relief, aspect, soil, land cover, etc.) in the Indus basin. The
confluence of three mountain ranges (Hindukush, Karakoram and Western-Himalaya) adds
significant complexities in characterizing the connection between precipitation and
topographic features (Palazzi et al., 2013). These three mountain ranges are influenced
differently by the underlying atmospheric circulation systems and possess unique
hydrometeorological and geomorphological characteristics. Therefore, in order to have a
better idea of the quality of spatial distribution depicted by various gridded precipitation
products and based on the availability of observed streamflows for ultimate evaluation and
cross validation; the study area is divided into five sub-regions (Figure 1), which possess
considerable differences in their precipitation patterns and magnitudes, and landscape
morphologies.
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Figure 4.1: Study area and location of five regions analyzed in this study

Widely used statistical measures and quantitative analyses techniques are used to evaluate
performance of the selected gridded precipitation products. All analyses are performed on
the common grids for the reference period of 1999-2011. Mean annual precipitation for the
reference period over the study area is plotted for each gridded dataset to visually examine
their spatial distribution. The biases between mean annual precipitation of each gridded
dataset and the corresponding grid of the reference dataset are plotted to show the spatial
distribution of their residuals over the study area. The biases between mean monthly
precipitation of each gridded dataset and reference dataset at each corresponding grid are
analyzed through Box-Whisker charts for extended winter (Oct-May) and monsoon
(Jun-Sep) season, which are further extended at annual scale for the study area as well as its
five sub-regions to examine their median, distribution and spread at 1% and 3" quarters and
extremes. This is followed by computation of mean absolute error (MAE) in mean monthly
precipitation of all gridded datasets against the reference dataset. The MAE computes the
magnitude of the mean differences between two datasets without considering the direction
of the error and is given by Eq. 1. The MAE is generally a preferred metric over widely
used root mean square error (RMSE) when the errors are unlikely to follow a normal
distribution (Beck et al., 2017; Willmott et al., 2017; Chai and Draxler, 2014).

Modified Kling-Gupta Efficiency (KGE) scores are computed using Eq. 2 (Kling et al.,
2012; Gupta et al., 2009) at monthly scale for the study area and monthly precipitation
extended at annual scale for study area and five sub-regions to examine how closely the
spatio-temporal precipitation estimates of the gridded datasets are statistically matched with
those of the reference dataset. Any value of KGE gives the lower limit of its three
components, meaning that the worst component is > to that value. The KGE has primarily
been used for evaluating the quality of climate or hydrological models' outputs against the
observed data. However, it can also be used to evaluate the performance of gridded
precipitation estimates with respect to the corresponding observed or reference data (e.g.
Beck et., 2019). The mathematical expressions of the employed performance evaluation
metrics are given by:

1
MAE =;+Z?:1 |G; — R;| 4.2)
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Where: Gi and Ri represent the gridded and reference datasets at i grid and n denotes
number of grid cells, r in Eq. 2 is Pearson’s correlation coefficient to measure the degree of
linear relation between two datasets, p is bias computed by the ratio of gridded and
reference means (W), y is variability ratio given by the ratio of the gridded and reference
dataset’s coefficients of variation (6/l), ¢ is standard deviation, and subscripts gra and ret
indicate gridded and reference datasets respectively. The optimum values of KGE, r, 3, and
vy are at unity.

For robust quantitative assessment, the study further evaluated the annual cycle of area-
weighted mean monthly precipitation of each gridded dataset for the reference period
against that of the reference dataset. This comparison evaluates how well the gridded
datasets follow the mean monthly and seasonal cycle of precipitation during the reference
period in the study area and in each sub-region. The goodness-of-fit of these monthly
cycles is ascertained through coefficient of determination (R2) and MAE.

Isolated measures of performance evaluation are often associated with their specific
uncertainties and limitations resulting in contrasting inferences. Therefore, instead of
relying on a single measure, the outcomes of the above-described performance metrics and
quantitative analyses techniques are integrated through a simple ranking system to evaluate
the performance of the gridded datasets in a better and more consistent manner. For this
purpose, the originally estimated values of these performance metrics for each gridded
dataset are normalized and rescaled between 0 and 1. However, in contrast to KGE and R?,
lower values of MAE infer better performance. Therefore, the normalized values of MAE
are subtracted from one to synchronize them with KGE and R2. The integrated skill scores
are obtained by sum of the normalized values of KGE and R? and subtracted normalized
values of MAE for each dataset. The larger values infer higher rankings. This simple
ranking system greatly reduces the contradictions and complexities in interpretation of the
evaluation results. Furthermore, the wet and dry areas are defined by combining the sub-
regions where annual mean precipitation is more and less than 600 mm respectively.
Hence, the wet area adds the skill scores of W-Himalaya, Karakoram and NE-Hindukush,
while dry area combines Kharmong and SW-Hindukush sub-regions. Similarly, the
rankings and skill scores are also calculated for Indus basin upstream of Tarbela dam
(Figure S-4.1 and Table S-4.3).

Finally, the mean annual precipitation estimates of all datasets are cross-validated by the
corresponding adjusted streamflows (specific runoff) using Turc-Budyko non-dimensional
analysis (Andreassian and Perrin, 2012; Valery, Andreassian and Perrin 2010; Budyko,
1974; Turc, 1954). Adjusted river flows determined in Dahri et at., 2018, potential
evapotranspiration (PET) from ERAS5 reanalysis product and precipitation estimates of
gridded datasets for the whole study area and five sub-regions are used to compute run-off
ratio (Q/P) and aridity index (P/PET). The Turc-Budyko non-dimensional analysis
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approach was originally introduced by Turc (1954) and Budyko (1974) to represent the
relationships between actual and potential evapotranspiration (AET/PET) and between
precipitation and potential evapotranspiration (P/PET). However, actual evapotranspiration
is difficult to measure and spatially distributed data are very rare and often highly biased.
Therefore, it was later on modified and further elaborated by an equivalent and alternative
representation between Q/P and P/PET and introducing water and energy limits (e.g. Coron
et al., 2015; Andreassian and Perrin, 2012; Valery, Andreassian and Perrin, 2010). Since
then, the approach has been extensively applied in hydrometeorological and water balance
assessments in several regions. The rankings and integrated skill scores of the datasets for
each region are recognized only if a particular dataset falls within the theoretically feasible
domain of Q/P ratio in Turc-Budyko representation. The order of the ranking is updated
accordingly after exclusion of the underperforming datasets in this criterion.

4.3. Results

4.3.1 Spatial distribution of mean annual precipitation and residual errors

Spatial distribution of mean annual precipitation estimates from various gridded datasets
presented in Figure 4.2A and area-weighted seasonal and annual precipitation totals
provided in Table 4.2 reveal significant variability of mean annual precipitation. Compared
to annual mean precipitation of 697 mm of the reference dataset, the minimum estimates of
374 mm (-46%) are depicted by CPC Unified and maximum estimates of 976 mm (+40%)
by ERAI datasets. However, the magnitudes vary considerably at sub-regional and seasonal
scale. None of the selected gridded precipitation products could accurately distinguish and
capture the zone of 2™ precipitation maxima present in the central Karakoram. All gridded
datasets also failed to detect the drier areas under the influence of rain shadows. However,
significant consistency in terms of spatial patterns showing negative or dry bias in wet areas
and positive or wet bias in dry areas with considerable difference in the magnitude of biases
is noticed. Most prominent are the two swaths/paths of negative bias: 1% from upper Chitral
basin and passing through Gilgit, Hunza, Shigar & Shyok basins; and 2" along the western
Himalayan foothills from Beas across Chitral sub-basin. A large spread of residual errors
(from -2600 to 3000 mm) compared to the refe