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Propositions 
 

1) Opportunistic sensing has unprecedented potential for urban 
meteorological observations. 
(this thesis) 

2) Urban wind is as important for human health as urban heat. 
(this thesis) 

3) To encourage interdisciplinary collaboration and 
understanding, scientific articles would benefit from a more 
poetic writing style. 

4) The scientific system rewards ambition and productivity, not 
necessarily progress 

5) Meteorology is the mother of all environmental sciences 
6) Scientific results cannot be objective if the underlying 

statistics are not provided 
7) Involvement with people with mental disabilities is an 

enriching experience, which can bring to light the true 
important things in life 

8) A sense of humour is a helpful quality for any scientist 
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Summary

This thesis explores the urban climate, with a focus on urban wind speed, from two dis-
tinct approaches. The first approach is the use of crowdsourcing, or opportunistic sensing
techniques, to collect and process vast quantities of urban meteorological data. The sec-
ond approach is to use (conceptual) physical modelling to gain a better understanding of
wind differences between city and countryside.

Chapter 2 expands upon a previously developed technique to derive urban air tem-
peratures from smartphone battery temperatures, studying finer spatial and temporal
scales then ever before. Over 10 million smartphone temperature records for the city of
São Paulo, Brazil, are combined to derive daily and even hourly averaged urban air tem-
peratures. Optimal results are achieved for 700 or more retrievals aggregated into daily
or hourly temperature values. Daily temperature estimates are good (coefficient of deter-
mination of 86 %), and temperature differences between Local Climate Zones (LCZs) can
be distinguished at this scale. Hourly estimations of air temperature require a correction
through a diurnally varying parameter in the used heat transfer model. The results show
the value of smartphones as a measuring platform when routine observations are lacking.

Chapter 3 makes use of Personal Weather Station (PWS) data to investigate their use
for urban wind research. While the potential of PWS data for rain and temperature has
been established, PWS wind data remained unused because of its high risk of error. We
use crowdsourced wind speed observations from 60 Netatmo-brand PWSs in Amsterdam,
the Netherlands, to analyse wind speed distributions of different LCZs. In a field test
against a reference station, the Netatmo PWS anemometer appears to systematically un-
derestimate the wind speed, and episodes with rain or a high relative humidity deteriorate
the measurement quality. Therefore, we developed a quality assurance (QA) protocol to
correct PWS measurements for these errors. The applied QA protocol strongly improves
PWS data to a point where they can be used to infer the probability density distribution of
wind speed of a city or a neighbourhood. The PWS performs poorly for periods with very
low wind-speed; however, results for a year-long climatology of wind speed are satisfactory.

In Chapter 4 the aforementioned crowdsourcing techniques are combined, along with
Commercial Microwave Link (CML) data, to study meteorological phenomena. Dur-
ing a 17-day summer period in Amsterdam the passage of a cold front, followed by a
warm episode, is monitored using the opportunistic sensing techniques. Measurements
of temperature (from smartphone and PWSs); wind speed (PWSs); precipitation (PWSs
and CML); air pressure (smartphone and PWS); radiation (smartphones) and humidity
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viii Summary

(PWSs) are compared to an established reference network. While the opportunistic sens-
ing data have large uncertainties, both the cold front and the Urban Heat Island (UHI)
during the hot period are successfully captured by these innovative techniques, showcas-
ing their combined potential for urban (hydro-)meteorological monitoring.

Chapter 5 introduces the Urban Wind Island (UWI): a positive wind difference of
around 0.5 m/s between city and countryside. We research urban–rural wind differences
with mixed-layer model, a bulk representation of the urban and rural boundary layers.
In the model, these two distinctly surfaces are not connected, but experience the same
large-scale atmospheric influences. The UWI appears to be caused by a combination of
differences in boundary-layer dynamics between city and countryside. Oscillation of the
wind around the geostrophic equilibrium can cause these UWI episodes. Sensitivity of the
UWI to urban morphology is researched by implementing the 10 urban LCZs. The ideal
circumstances for UWI formation seem to be moderate wind speeds (around 5 m/s), low
building heights (up to 12 metres) and a deeper initial urban boundary layer.

The UWI exploration is expanded upon in Chapter 6, which uses the mesoscale model
WRF at 500m resolution to investigate the characteristics of the UWI over 2 consecu-
tive summers in Amsterdam, in a more realistic model setting than the previous chapter.
Large scale influences that could influence the wind field, such as frontal passages and
strong precipitation events, are filtered out to focus on surface-induced wind changes. In
this more realistic modelling environment, the data show that the UWI is present roughly
half of the time, with a very similar magnitude as previously found (in the order of 0.5
m/s). The formation of the daytime UWI proceeds very similar to that of the theoretical
concept, but a nocturnal UWI also forms, as a result of a delayed transitions towards a
stable nocturnal urban boundary layer. While the relation between UWI and the initial
conditions of the boundary layer (depth, geostrophic wind speed and temperature) are
less clear, the UWI is consistently present in the data with a similar magnitude and timing
as the conceptual model.

The main findings of this thesis are that opportunistic sensing and crowdsourced data
form a valuable addition to urban meteorological measurements, though care needs to
be taken to account for the large errors present in these data and associated techniques.
Secondly, that average wind in urban areas can be faster than over the countryside under
certain conditions: this UWI can form both during the day, through different boundary-
layer growth dynamics; and during night-time, related to the delayed collapse of the con-
vective boundary layer. Both unconventional observation techniques as well as conceptual
modelling can contribute to understanding the urban atmosphere.

Voorwoord

Een promotie in tijden van corona. Het voelt raar, dit stuk te typen vandaag. Het is 13
Mei: de oorspronkelijke datum van mijn promotie. Maar ik sta niet stijf van de spanning
in de Aula, gekleed in mij oneigen nette kledij. In plaats daarvan zit ik met sloffen aan, in
pyjama achter m’n bureautje deze eerste paar zinnen te typen; mijn promotie uitgesteld
tot een onbepaalde tijd. Waarom? Had ik wat harder door moeten werken? Nee, dit
boek is al lang en breed goedgekeurd, ik heb mezelf het zweet in gewerkt om alles op tijd
af te krijgen. De wereld is in de greep van COVID-19, het coronavirus, dat ons allemaal
binnenhoudt en de wereld gegijzeld heeft. Maar ondertussen gaat de wereld door: de
universiteit is open, al het onderwijs massaal online gegooid. Samen met wat collega’s
assisteer ik om een veldwerk vak volledig online te geven: een enorme inspanning voor
student en docent, maar het gebeurt wel. We leren onszelf in rap tempo nieuwe skills aan:
het maken en bewerken van instructiefilmpjes, omgaan met virtuele leeromgevingen, de
beste houding om in te loungen tijdens eindeloze videovergaderingen...

Die blijken we de maanden erna ook nodig te hebben: het virus gaat nergens heen,
en we proberen ons dagelijks leven weer op te pakken, terwijl we ook de veiligheid in
acht (trachten te) nemen. Het academisch jaar is inmiddels weer van start gegaan, en we
mogen mondjesmaat weer de campus op: de tijden van elke dag naar de WUR fietsen
lijken eeuwen geleden. We worden het thuiswerken wel zat, de sleur van je eigen huis,
ik begon zelfs de dubieuze koffie op kantoor te missen. Vreemd genoeg blijkt eindeloos
thuiszitten best stressvol te zijn. Maar tegelijkertijd leren we er ook wel wat uit: we zijn
enorm flexibel, maar ook ontzettend kwetsbaar als ons dagelijke ritme zo wild verstoord
wordt. Mocht, over hoe lang dan ook, deze situatie weer voorbij zijn, is het zaak om terug
te kijken naar hoe we als samenleving ons hier doorheen hebben geslagen, en niet deze
periode maar gewoon te vergeten als een nare herinnering.

U, lezer, heeft dit boekje nu in de hand. Mijn nieuwe promotiedatum is inmiddels
al lang bekend en nadert rap. Hopelijk treffen we elkaar in de Aula, en anders via een
scherm. Hopelijk heeft u plezier aan het doornemen van dit werk, gemaakt in een andere
wereld, toen we nog bij elkaar op kantoor mochten zitten en elkaar liedelijk de hand kon-
den schudden.

Stel je eens voor.
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Introduction

Chapter 1



2 Chapter 1

1.1 The roots of meteorology

Humanity has always been fascinated by the weather, and trying to make sense of the
influence the heavens have on our every-day lives has been one of the oldest endeavours
of our kind. Indeed, the number one hobby in the Netherlands still has to be talking (or
complaining) about the weather. Over the centuries, what we now call “meteorology” –
based on the ancient Greek μετέωρος: “high in the sky” – has been practised by countless
people for a myriad of purposes, and their views and visions determined how they went
about interpreting the weather. The current state of meteorology, or atmospheric sciences
to encompass the whole field, is highly advanced, and new research is published on a daily
basis to further develop our understanding of the atmosphere and its interactions with
the solid and liquid Earth.

This thesis is but another addition to the ever growing compendium of human knowl-
edge, building greatly on those who have observed, described and theorised the beauty
and complexity of the Earth. Making use of the work of one’s predecessors is one of
the primary principles of science: it is not for nothing that the phrase “[...] nos esse
quasi nanos gigantium humeris incidentes” (we are like dwarves sitting on the shoulders
of giants) has been attributed to a number of eminent scientists, chief of which Sir Isaac
Newton. In this light it makes sense to dwell upon the historical roots of meteorology,
before I provide you, the reader, with yet another of these scientific works, from my seat
on the giants’ shoulders.

In its most basic form, the relation between weather and human wellbeing is in agri-
culture: knowing about periods of rain or drought or the optimal time for sowing are
crucial for a bountiful harvest. It is within this frame of mind that the first meteorol-
ogy was practised, to predict rain from annual cycles. In the ancient world, there was
therefore no real distinction between astrology and meteorology: the heavens move with
the seasons, and the skies change correspondingly. Babylonian tablets contain thousands
of omens related to the sky and the heavens: there were interpreted by advisers to the
Assyrian kings for matters political and military. During the time of the Greek and Ro-
man civilisations the interpretation shifted: the celestial sphere had a direct influence on
the atmosphere, and the relation between the stars and meteorological phenomena are
detailed in parapegmata: essentially farmers’ almanacs or lunar calendars, linking celestial
movements to meteorological phenomena (Taub, 2003).

One of the earliest examples of this practical information, agricultural and commer-
cial advice based on the seasons, is Hesiod’s Work and Days, which among others also
describes how to identify safe days for sailing, linking the importance of meteorology to
naval travel. This work is not only purely practical: its encompassing theme is how to
improve one’s life in a difficult world, by working to escape the inherent evil in the world,
and studying the heavens in this sense also serves an ethical purpose (Bowker, 2011). So
not only is meteorology practical, it can improve one’s character!

With regards to that lofty goal, it is perhaps not strange to find meteorological advice

1.1 The roots of meteorology 3

not just in the form of purely factual writings, but rather in the form of epic and didactic
poetry. In Homer’s epic poetry, the Iliad and Odyssey, weather plays a prominent role to
thwart and aid its heroes. The meteorological phenomena are then works of the gods: Zeus
is the cloud gatherer, hurling lightning bolts to his enemies; Athena is mentioned to create
fog, and Poseidon shakes the Earth and creates tidal waves. Aeolus, keeper of the winds,
gives Odysseus a bag containing the four major winds to safely guide him home to Ithaca,
but man’s inevitable greed makes his men open the bag in search for riches, generating a
devastating storm blowing his ship to the far reaches of the Mediterranean... (Taub, 2003)

This link between the divine and the natural was at some point severed: the Roman
poet Lucretius used rational explanations of meteorology to prove that the basis of the
universe is natural rather than divine, to banish the fear of the divine in mortals. Simi-
larly, Seneca in his Natural Questions discusses meteorological work by his predecessors,
with the aim to uncover the secrets of the universe and pass on this knowledge. How-
ever, the old epic poets were still regaled as sources of useful information, and poetry
was an important medium to disseminate information to a wider public. For instance the
Phaenomena by Aratus of Soli, a didactic poem that starts with an ode to Zeus for his
creation of the order of the heavens which allow for the reading of signs to be interpreted
into a meteorological phenomenon, was very popular, if not always accurate by contempo-
rary standards. The popularity of this work ensured its survival up through the medieval
period, where it was picked up by the Church and adopted into a Catholic practice of
weather forecasting (Lawrence-Mathers, 2019)

While most treatises do not endeavour to explain the causes of meteorological phe-
nomena, Aristotle’s Meteorologica, where we get the name of our discipline from, provides
a theoretical framework for the natural world. The world consists of four elements in 4
states (dry-moist; hot-cold), and the elements changing states govern the physical pro-
cesses on Earth. An important practice of his is the review of his predecessor’s work,
reviewing their theories and refuting or complementing them with his own to develop
improved theories: demonstrating the value of the scientific community.

Another remark of his, and one that is shared by many classical authors writing on
the subject of the natural world, is the admission that not everything can be sufficiently
explained (Meteorologica 339a: 2-3):

We consider that we have given a sufficiently rational explanation
of things inaccessible to observation by our senses if we have pro-
duced a theory that is possible: and the following seems, on the evi-
dence available, to be the explanation of the phenomena now under
consideration.

Pliny the Elder, famous for his Natural History which remained relevant for centuries
after his death in 79 BCE, notes the difficulty with observations being made at different
locations, and that these cannot always be translated and generalised to a different area.
He shows a particular interest in winds, distinguishing between steady winds that blow
with a constant speed and direction, and erratic gusts of wind: a first mention of turbu-
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lence! The Greeks already made use of a wind-rose, with 12 cardinal directions, similar
to the current 16 directions. The Greek author Theophrastus wrote a treaty On Winds,
where he regards wind as the movement of air, to restore balance upset by the sun’s heat
(Taub, 2003). The sun and the earth generate winds, and since the moon acts as a weaker
version of the sun, so are winds stronger at night – the first mention of the low-level jet?

The works of Aristotle and Pliny the Elder would remain relevant for centuries, with
their practical information for agriculture and their framework to explain the phenomena
of the atmosphere. As late as the 18th century, Pliny was used as an authority by En-
glish agricultural writers (Lawrence-Mathers, 2019). And even now in our current age,
atmospheric science still shares some of its characteristics already present millennia ago.
After all, Pliny already bemoans the lack of interest in his contemporaries to study the
winds, lamenting that they only study to get rich quick and not for the knowledge itself...
Surprisingly sharp still to this day!

Ultimately, meteorology is built on tradition: first through incorporating practical
traditions on predicting the weather through signs and omens, then through a traditional
framework of the Aristotelean elements explaining the natural world. Now, in the modern
era, the WMO guidelines are our ‘tradition’ for correct measurements, and our numerical
models based on parametrisations, concepts and techniques designed by our predecessors.
But even these traditions need to be challenged in our changing world: observations are
concentrated in rural areas free of human influence, and operational models typically do
not differentiate the urban land-use (at least not on the larger scales). Nowadays the
centre of our activity is the heterogeneous urban area, for which rural measurements are
hardly of any use, and models require special modules to deal with the strong local char-
acter of turbulence and the altered energy balance. The next section will deal with this
“urban problem” that needs to be tackled for meteorology to advance.

1.2 The Urban Problem

Advancing from the Classical world to current day, it is obvious that our living envi-
ronment is vastly different. Human population has exploded in those 2,500 years, with
currently over 7 billion people alive (Max Roser and Ortiz-Ospina, 2020). In this time
humanity has created its own unique living environment: the city. Classical Athens may
have been an impressive metropolis with 300,000 inhabitants; it pales in comparison to
current-day Athens, steadily growing with over 3 million people living in its extensive
urban area. Such overwhelming human activity has distinct effects on its immediate en-
vironment: pollution springs to mind, but also the atmosphere feels the effects of concen-
trated human presence. Modern urban areas struggle with air pollution and heat (Pascal
et al., 2013), all exacerbated by the effects of buildings and anthropogenic influence on the
atmosphere: an urban problem indeed. This urban problem extends to the very nature
of doing measurements: can meteorological observations in cities be representative?

1.2 The Urban Problem 5

Figure 1.1: Sketch of the classical (12-point) wind-rose imposed on the modern 16-point wind-
rise. Sketch from Liber Additamentorum, c. 1250, Matthew Paris, manuscript held by the British
Library, London, UK.
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We have already seen that Pliny the Elder noted that it is difficult to translate obser-
vations made in one place to those at another if their geography is different. To this end,
we now have the guidelines of the WMO (WMO, 2018), with a complete list of what a
proper meteorological observational site must adhere to. In this way, when we compare
data of two sites with each other, we know that the observations are taking place over
relatively smooth rural (grass)land with no obstructions close to the measurement site. It
is based on long-term and field campaign data over these types of land that modern me-
teorological theories are based, e.g. the Monin-Obukhov similarity based on the Kansas
dataset (Businger et al., 1971). There is a lot of study regarding the effect of heterogeneity
in (rural) areas on micrometeorology (e.g. Mahrt, 1996), but these are all as exceptions
to the general case of the homogeneous grassland.

In reality, the world is not as nice and smooth as our theories would have it: het-
erogeneity is the norm. It is in strongly heterogeneous terrain that many conventional
theories do not hold: over mountains, over areas with rapidly varying land-use, and of
course over cities, which can wildly vary in structure and building density over the course
of a single neighbourhood (Barlow et al., 2017). This makes cities a unique landscape,
to the point where the boundary layer over a city is distinctly different from that over
the rural terrain: the Urban Boundary Layer (UBL) is a distinct entity from the Rural
Boundary Layer.

Taking a step back to the world of Classical meteorology as described in the previous
section, it has been a long-known fact that the Sun is a primal influence on the Earth. The
Sun’s energy is the main driver of many Earth-system processes, in particular through the
surface energy balance. The available short-wave radiation reaching the Earth’s surface
can be used to heat up the air and develop the boundary layer: the sensible heat flux.
Energy can also be allotted to the evaporation of water: the latent heat flux. Any energy
that is not used for these purposes is stored in the ground: the ground heat flux. Since
roughly the same solar energy would reach an urban and a rural area, how can their
atmosphere be so different? The key to the differences in boundary-layer development
lies within the distribution of energy (Figure 1.2).

Rural areas are typically highly vegetated, so most of the energy is partitioned to-
wards the latent heat flux, leaving less to heat up the air or store in the ground, since
heat storage of natural areas tends to be low. As a result, the boundary layer heats up
quickly in the morning, but reaches a relatively lower depth. The urban area contains
large amounts of impervious material with high heat storage capacity: roads, buildings,
concrete; there is little vegetated area. As such, the latent heat flux is low, and the ground
heat flux is an important component, storing heat during the day to release it later during
the night. The ground heat flux in cities is such a typical phenomenon for the urban area
that it’s referred to as the storage heat flux in urban meteorology. The UBL development
is typically slower in the morning, as most energy is absorbed into the storage heat flux,
but since there is nearly no vegetation to evapotranspirate water, the UBL grows deeper
due to the large sensible heat flux.

1.2 The Urban Problem 7

Figure 1.2: Schematic overview of surface energy balance for a rural (a) and an urban (b)
surface. QH represents the sensible heat flux; QE the latend heat flux; Q∗ the net radiation;
QG the (rural) ground heat flux; QF the anthropogenic heat flux; ∆QA the heat flux through
advection; ∆QS the (urban) storage heat flux. Source: Figure 6.2 from Oke et al. (2017), Chapter
6.

At night, when there is no solar energy input, the rural boundary layer collapses and
becomes stable, but the UBL still receives energy from below: the stored heat from the
day is released by the building materials to heat up the air. The nocturnal UBL stays
neutral or weakly unstable for several hours during the night (Barlow et al., 2015) and
several degrees warmer than its rural counterpart: this is when the Urban Heat Island, the
temperature contrast between city and countryside, is the strongest. An additional con-
tribution to the energy balance is the Anthropogenic Heat Flux: energy released through
human activity such as car engines, industry or air conditioning. This energy flux is de-
pendent on the population density of a city and highly variable between cities, but can be
a strong contributor to the overall energy budget. Typical values are daily averages of 40
W/m2 but can be as high as 400 W/m2 in dense cities such as Tokyo (Ichinose et al., 1999).

The structure of the UBL is also different from the rural boundary layer (see Figure
1.3). The roughness elements of the city (the buildings, trees and other obstacles) cre-
ate a roughness sub-layer above the building height (typically 2–5 times building height,
Barlow (2014)); the air within the street canyons and between the buildings is the Urban
Canopy Layer, which is directly influenced by the transfer of energy between the ground,
road, roof and wall surfaces. Turbulent flows dominate the UBL up to the roughness
sublayer, above which the UBL behaves more like the classical (rural) mixed layer. The
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Figure 1.3: Schematic overview of the urban boundary layer during daytime. Source: Figure
2.13a from Oke et al. (2017), Chapter 2.

dominance of turbulence within the lower layers of the UBL makes doing representative
measurements notoriously difficult: anything measured in one street canyon is not repre-
sentative for the street adjacent to it, so to speak. In addition, it is expensive to maintain
an urban measurement site, and regulations can make it difficult to do certain obnoxious
forms of measurements such as SODAR, not to mention the increased risk of vandalism
or construction works blocking or removing equipment altogether. Modelling urban me-
teorological processes is equally laborious: conventional similarity theory does not work
in the lower layers of the UBL, so measurements of wind, temperature and moisture can
not be extrapolated towards vertical profiles above rooftop height (Kent et al., 2018).

There have been some solutions to tackle this urban problem. In terms of measure-
ments, while long-term measurements are often not feasible, there have been many mea-
surement campaigns with either fixed (Rotach et al., 2005; Barlow et al., 2011; Bohnen-
stengel et al., 2015) or mobile (Heusinkveld et al., 2014; Shi et al., 2018) intensive mea-
surements for shorter periods of time. Fixed measurements can gain insight into physical
processes at the cost of representativeness; mobile measurements are limited in what they
can sample (e.g. no high-resolution fluxes) but can cover the wide range of urban land-
scapes, from the packed city centre to the more spacious outskirts.

When modelling the urban environment, or incorporating it into a larger-scale model
for weather forecasting, the scale of the model decides how the urban area is implemented.
A common implementation in NWP models is the Urban Canopy Model (UCM, Kusaka

1.3 Innovative solutions 9

et al., 2001), which is a schematic representation of the urban canopy, modelled as an
infinite street with buildings on either side. Building height, road width and street ori-
entation can be altered, as well as the amount of vegetated area based on the building
density. The scheme translates modelled values of heat, wind etc. down from the first
model level into an urban canyon value when coupled to the actual atmospheric model
(Tsiringakis et al., 2019). Since the UCM is only one layer, it circumvents the erratic
vertical behaviour of turbulent quantities in the urban canyon. Other more sophisticated
schemes are multi-layered (Salamanca et al., 2010), or take building energy interactions
with the UBL into account (Martilli et al., 2002). If the model scale is finer, e.g. for
Large-Eddy Simulation (LES) models, many of the parameterised processes can be solved
explicitly, such as flow around walls and obstacles (Maronga et al., 2019). This comes at
the cost of requiring high computational power, and therefore LES models tend to take
limited model domains into account, or just the flow around single buildings (Toparlar
et al., 2017).

In summary, the strong heterogeneity of cities is the core issue which scientists must
take into account when modelling or measuring the urban atmosphere. Making simplifi-
cations or capture the larger effect of the city as a whole or limiting oneself to a single
measuring location or modelled street are ways to deal with this urban problem.

1.3 Innovative solutions

At the start of this Introduction, we have noted that meteorology is an old science, and
was already rooted in tradition in Antiquity, taking care to incorporate practical experi-
ence and frameworks from predecessors into new, refined theories and practice. Current
practice focuses on increasing computational power to construct finer model grids, to ex-
plicitly resolve processes that are difficult to parameterise, such as convection or cumulus
cloud formation (Gentine et al., 2018). On the observational side, new instruments are ca-
pable of measuring fluxes at high-frequencies, and development focuses on high-precision
observations, or difficult-to-measure quantities such as isotopes (Werner et al., 2012). But
is this focus on higher quality observations and models the only way forward? After all,
the Greeks already knew that some meteorological phenomena are hard to study simply
because the quantity of observations is too low, which is exactly the issue urban meteorol-
ogy suffers from. As explained before, there have been some thorough urban field studies
and some ongoing networks, but none of these are permanent, and when looking for data
on a specific city there often is none. Similarly, model studies with either Numerical
Weather Prediction (NWP) models or LES models are not always the most suitable for
getting a grasp on the underlying mechanics and physics of the studied process, regardless
of how accurate they are. Sensitivity studies are time consuming with these sophisticated
models, so a more simplified model based on the core physics of the atmosphere can pro-
vide valuable insight can could be overlooked by the myriad of interacting processes in a
high-resolution model.

In this thesis I make use of some more unconventional techniques to study the urban
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atmosphere, both with observations and with models, focusing on wind. On the observa-
tional side that is crowdsourcing, or opportunistic sensing: making use of a large amount
of low-quality data, often generated by devices not intended for (scientific) measuring
purposes. On the modelling side, a conceptual slab-model of the boundary layer is used
to gain insight in core physical differences between a rural and an urban area.

1.3.1 Crowdsourcing and Opportunistic Sensing

The word crowdsourcing, a portmanteau of ‘crowd’ and ‘outsourcing’, is relatively young:
it was first coined as a phrase in 2006, as a way to describe how companies outsource their
work to the Internet. In broader terms, it can be defined as “the practice to obtain informa-
tion from a large group of people, typically over the Internet” (Oxford English Dictionary).
The practice itself goes much further back: a nice meteorological example would be the
United States’ National Weather Service, which started from an 1849 project to make
weather maps based on volunteers’ data sent in by telegraph (NWS, 2013). And Aristotle
himself already noted that a crowd, even made up of "lesser men", knows more than
its individuals. Nowadays, crowdsourcing in meteorology can be used to obtain weather
data from weather stations owned by citizens: so-called Private Weather Stations (PWSs).

Several brands offer affordable weather stations that can be placed in a garden, or
on a balcony or roof. Most of these stations have the capability to connect to an online
platform to upload their data to form a live weather map. Examples of these platforms
are the Weather Underground (https://www.wunderground.com/wundermap), which al-
lows data from any brand PWS; or the Netatmo Weather map (https://weathermap.
netatmo.com) which shows data from their own Netatmo brand PWS. There is a wide
variation in measurement capability, going from simple thermometers to rain intensity
measurements, as well as in quality, with the cheaper stations typically having lower mea-
surement accuracy or resolution (Bell et al., 2013, 2015). While individual stations can
be used to e.g. research many different areas at once (e.g. Steeneveld et al., 2011), the
power of crowdsourcing lies in their number. Since individual quality tends to be poor,
depending on the type of station, many observations pooled together can provide a good
estimate of the actual signal. Examples are Fenner et al. (2017); De Vos et al. (2017) and
Chapters 3 and 4 of this thesis. However, Quality Control is also necessary to filter out
erroneous stations or measurements, since the PWSs are usually installed by hobbyists
without knowledge of correct sensor setup.

In some cases, data such as described in the above section is obtained not from a large
number of volunteers, but from a third party or a small group, yet still used in the same
manner. In that sense, the broader term “opportunistic sensing” is also used to describe
data originating from devices that were not meant to measure a (meteorological) variable
but can be used for this purpose. Examples include the use of Commercial Microwave
Links to estimate rainfall (Overeem et al., 2013a; Uijlenhoet et al., 2018; de Vos et al.,
2018) or smartphone observations of air pressure (Mass and Madaus, 2014; Madaus and
Mass, 2017; Hintz et al., 2019) and temperature (Overeem et al. (2013b); Chau (2019)
and Chapter 2 of this thesis). These data tend to require more preprocessing and quality
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control, and the resulting product is of lesser quality than a PWS observation would be,
but their spatial coverage can be much wider, especially in the case of smartphone-derived
observations. With the ubiquity of smartphones and other smart devices, which obviously
have the highest density in cities, their usage for urban meteorology is a logical step, and
could be used for local forecasts or heat stress maps, for instance.

1.3.2 Conceptual Modelling

A conceptual model only takes the core elements of a physical problem into account:
enough to describe its basic state. Unlike crowdsourcing or opportunistic sensing, the use
of conceptual models in meteorology is nothing new. Conceptual meteorological models
include those to study cloud formation in satellite data (EUMETSAT, 2009), and the
global circulation of wind that forms the basis of many synoptic meteorological theories
is in itself a conceptual model.

The conceptual mixed-layer bulk model of the boundary layer, describing it as a sin-
gle slab governed by exchange with the surface below and the free troposphere above,
has seen much usage in the past (e.g. Driedonks and Tennekes, 1984; Byun and Arya,
1986) as well as in current PBL research (e.g. Schröter et al., 2013; Wouters et al., 2019).
This model relies on a set of equations describing the rate of change of state variables of
the boundary layer (wind, temperature, humidity) depending on surface and entrainment
fluxes (these equations are given in Chapter 5). Its main usage in the past has been
for the rural boundary layer, researching cloud formation, vegetation interaction or wind
shear but fewer applications for the UBL (Byun and Arya (1990); Theeuwes et al. (2015),
and Chapter 5 of this thesis). Most urban model studies are specifically interested in the
Urban Canopy Layer and its vertical interactions with the air aloft and the surface (e.g.
Tsiringakis et al., 2019), rather than the UBL as a whole. The bulk model is however
very suitable to research how the different urban surface influences the entire boundary
layer on a larger scale: the effect of the entire city, as it were. Microscale effects are then
ignored in favour of the broader influence the city itself has, such as the Urban Heat Island
through the high heat capacity, or the effect of the increased roughness and turbulence of
the surface.

Findings made in such conceptual models can afterwards be translated to a more “real-
world” setting by incorporating it into a NWP or LES model, connecting the conceptual
realm to the reality of forecasters and operational meteorologists.

1.4 Scope of this thesis

This Introduction connected the early history of meteorology to current practice, where
we noticed that the split between modelling or theory, and practice or observations is
nothing new. With a discipline as old and steeped in tradition as meteorology, innovative
new approaches to tackle old problems can be met with resistance. The overarching theme
of this broad thesis is to introduce the usage of opportunistic sensing and conceptual mod-
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elling to investigate the urban atmosphere, and to show that these new techniques can be
complementary to the established approach, to improve our knowledge.

This thesis is roughly divided in two themes: the first 3 chapters centre around crowd-
sourcing and opportunistic sensing, whereas the subsequent 2 chapters deal with concep-
tual and 3D modelling. The two themes are connected through the focus on wind: a
highly turbulent variable that’s difficult to capture in both modelling and observations,
and therefore fairly under-studied in the urban domain, where urban heat tends to be the
main focus point.

Urban heat is the focus point of chapter 2: the usage of crowdsourced smartphone
battery temperatures to derive urban air temperature. The area of interest for this chap-
ter is the Brazilian mega-city São Paulo. The city has two official measurements sites, in
the form of an Urban Fluxnet tower https://ibis.geog.ubc.ca/urbanflux/ and the
WMO airport station surrounded by urban area thanks to the enormous urbanisation. In
contrast, nearly 10 million smartphone observations are available for the study period of 2
years, spanning the entire city. This shows the strength of crowdsourced data especially in
developing countries or megacities. These data are used to answer the following question:
to what extent are crowdsourced temperature data from smartphones useful
to study urban air temperature at the hourly scale? (RQ 1)

With chapter 3 starts this thesis’ focus on wind: researching the quality of PWS wind
speed observations. The area of focus is Amsterdam, the Netherlands, which has a ded-
icated meteorological observation network run by Wageningen University, and has been
the focus of several urban meteorological campaigns. While rain and temperature have
been successfully researched using PWS data, wind has remained unstudied. This chap-
ter uses the combined presence of PWS and established network data to asses whether
PWS wind data can be applied for urban wind research, and how it can be
quality controlled to improve the data (RQ 2).

Chapter 4 synthesises the preceding two chapters, applying the developed techniques
to study two meteorological events in June 2017, again in Amsterdam. PWS, smart-
phone and Commercial Microwave Link data are combined to study the passage of a cold
front, followed by an extended hot period with a high UHI. The combination of several
opportunistic sensing techniques uses their respective strengths while compensating for
weaknesses. The question is whether a combination of opportunistic sensing
techniques can be used to study meteorological phenomena in sufficient de-
tail. (RQ 3)

Chapter 5 moves from opportunistic sensing to the realm of conceptual modelling,
using the slab mixed-layer model to research differences in wind behaviour between the
urban and rural boundary layer. The same large-scale forcings are imposed on different
surfaces, for a range of initial conditions, to understand how wind behaviour in
urban and rural areas responds to similar large-scale influences (RQ4). Under
certain circumstances, this gives rise to periods in time where the urban wind is faster

1.4 Scope of this thesis 13

than the rural wind: the Urban Wind Island effect (UWI).

Chapter 6 takes this concept of the UWI and researches it in a more realistic model
setup, using the 3D NWP model WRF (Weather Research and Forecasting). Two sum-
mers of model data from the Summers in the City project are studied to investigate
whether the UWI mechanisms found in the conceptual setting are still the main drivers in
the 3D model, and whether there are different drivers when transitioning into the stable
boundary layer at night. Are the drivers behind the UWI in a three-dimensional
model setting similar to the conceptual setup previously used? (RQ 5)

Chapter 7 closes with a synthesis and discussion of the thesis, highlighting some of
the main issues encountered with the used methods, and what the future holds for the
studied phenomena and the used techniques.
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Crowdsourcing urban air temperatures
through smartphone battery

temperatures in São Paulo, Brazil

Chapter 2

Crowdsourcing as a method to obtain and apply vast datasets is rapidly becoming prominent in 
meteorology, especially for urban areas where traditional measurements are scarce. Earlier studies 
showed that smartphone battery temperature readings allow for estimating the daily and city-
wide air temperature via a straightforward heat transfer model. This study advances these model 
estimations by studying spatially and temporally smaller scales. The accuracy of temperature 
retrievals as a function of the number of battery readings is also studied. An extensive dataset of 
over 10 million battery temperature readings is available for São Paulo (Brazil), for estimating 
hourly and daily air temperatures. The air temperature estimates are validated with air temperature 
measurements from a WMO station, an Urban Fluxnet site, and crowdsourced data from 7 hobby 
meteorologists’ private weather stations. On a daily basis temperature estimates are good, and we 
show they improve by optimising model parameters for neighbourhood scales as categorised in 
Local Climate Zones (LCZ). Temperature differences between LCZs can be distinguished from 
smartphone battery temperatures. When validating the model for hourly temperature estimates, 
initial results are poor, but are vastly improved by using a diurnally varying parameter function 
in the heat transfer model rather than one fixed value for the entire day. The obtained results 
show the potential of large crowdsourced datasets in meteorological studies, and the value of 
smartphones as a measuring platform when routine observations are lacking.
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2.1 Introduction

The need for high-resolution meteorological measurements is ever increasing. Numerical weather
prediction models are improving continuously, which requires more precise measurements in both
time and space for data assimilation (Ronda et al., 2017). Ongoing and projected global urbani-
sation (United Nations, 2012) make a thorough understanding of the urban atmosphere vital for
urban planning, as well as for reliable forecasts of air quality, energy demand and heat stress. The
Urban Heat Island (UHI) is widely studied, i.e. the difference in air temperature (Tair) between
the rural background and the urban core (e.g. Oke, 1982; Arnfield, 2003; Steeneveld et al., 2011;
Heusinkveld et al., 2014). Cities experience enhanced radiation uptake during the day as a result
of their lower albedo and high heat storage capacity. Because of the slow nocturnal heat release
from the urban fabric to the atmo- sphere, cities cool down more slowly than their surroundings,
which creates the UHI. This may amount to 8K on hot and calm summer days (Oke, 1982).
The UHI effect can exacerbate the degree of heat stress experienced by citizens ((Reid et al.,
2009), which is projected to increase in the future by the combination of climate change and
global urbanisation (United Nations, 2012; Miralles et al., 2014). Moreover, Hajat and Kosatky
(2010) show that mortality increases with 2% per 1 ◦ C increase in high temperature. Oleson
et al. (2015); Molenaar et al. (2016) project a drastic increase of future heat stress days caused
by climate change for the USA and Canada, and the Netherlands, respectively. Both studies
show that future heat stress is amplified in urban areas, underlining the need for knowledge of
the temperature within the urban fabric. To understand these developments, we require urban
temperature observations.

Traditional measurements in urban areas are scarce, and usually organised as intensive mea-
surement campaigns (Heusinkveld et al., 2014) or cover just a small area (Kotthaus et al., 2012).
This data scarcity can be harmful for e.g. megacities in developing countries, where knowledge
on the mitigation of urban heat can be vital for citizen’s health. Part of this data scarcity can be
overcome by crowdsourcing: utilising data that is routinely collected by citizens or public sensors,
and transferred over the Internet (the "Internet of Things" Muller et al., 2015; Warren et al.,
2016), most notably by smartphones. Examples in the atmospheric sciences include the mPING
app where users can share information about precipitation (Elmore et al., 2014); the iSPEX phone
add-on which allows a user to measure optical thickness with a smartphone (Snik et al., 2014);
estimating rain employing microwave links from cellular telecommunication networks (Overeem
et al., 2013a); mapping forest fires by using voluntary observations sent by smartphones (Dalyot
and Sosko, 2015); or making use of the built-in pressure sensor in many smartphone models
to improve surface pressure forecasts (Mass and Madaus, 2014). Also, crowdsourced data from
citizen weather stations uploaded to, for example, Weather Underground (Wunderground) and
the Weather Observation Website (WOW) project (MetOffice, 2011), has proven to be valuable
in urban research (e.g. Steeneveld et al., 2011; Bell et al., 2013; Warren et al., 2016; Meier et al.,
2017). Using these stations asks for strict control of the quality of station and data, in terms of
site-setup, measurement accuracy and data gaps. A thorough overview of crowdsourcing projects
in the atmospheric sciences is given by Muller et al. (2015).

An innovative way of estimating urban air temperatures from smartphones was presented
by Overeem et al. (2013b), henceforth O13. Using the OpenSignal application, O13 employ 6-
month datasets of smartphone battery temperature readings from 8 cities (including São Paulo,
Brazil), with on average 844 selected battery temperature readings per city per day (1383 per
day for São Paulo alone). They use a straightforward heat transfer model between phone, human
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body and Tair (Figure 2.1, left) to translate the temperatures of smartphone batteries into daily
average, city-averaged Tair. These daily temperature estimates (Test) are shown to correspond
well with measurements taken in the respective cities.

This paper builds upon the study of O13. Here, we employ a much longer (2 years) and denser
(12 x 103 readings per day) dataset for São Paulo, Brazil. This study explores the potential of the
O13 heat transfer model at refined spatial and temporal scales. This study explores the potential
of the O13 heat transfer model at refined spatial and temporal scales. The current extended
availability of temperature readings per day facilitates hourly air temperature estimates that
have not been possible in previous research. We also investigate whether the model performance
for daily averaged temperatures improves when applied only to selected neighbourhoods with
their characteristic morphology, that is, the so-called Local Climate Zones (LCZs) (Stewart and
Oke, 2012). By using an extensive set of validation data obtained from both certified sources
(WMO, Urban Fluxnet) and crowdsourced weather stations (Wunderground and Netatmo), we
provide a more robust representation of the actual city temperature dynamics on both daily and
hourly time scales. Section 2.3 deals with the background of the heat transfer model and the
Urban Heat Island; data and methodology are discussed in Section 2.2; results in Section 2.4;
the discussion follows in Section 2.5 and we end with conclusions and perspectives in Section 2.6.

2.2 Background

Figure 2.1: (left) Conceptual diagram of the heat transfer model (from Overeem et al. (2013b)).
The Te,p,b is the temperature of the environment (e), phone (p), and body (b); Pp represents the
thermal energy produced by the phone (or power); ke,b represents heat transfer rate between
phone and environment (e) and body and phone (b). (right) Readings of smartphone battery
temperature (in 2013, after selections) taken in São Paulo. Symbols show locations of the hobby
meteorology stations (red circles), the FluxNet station (green circle), and WMO station Con-
gonhas (white circle). For the exact coordinates of the stations consult Table 2.1.
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2.2.1 Heat transfer model
O13 showed that smartphone battery temperatures can be used to obtain a daily average urban
Tair, using a linear heat transfer model (Figure 2.1, left). In their model, the phone battery
temperature Tp [◦ C] is regulated by the environmental air temperature Te [◦ C], the body
temperature Tb [◦ C] and the thermal energy generated by the phone Pp [W] (Equation S-2 in
O13 ),

Te = (1 +
kb
ke

)Tp − (
kb
ke

Tb +
Pp

ke
), (2.1)

where the coefficients kb and ke [W ◦ C-1] are determined by the thermal insulation between
body and phone, and between phone and environment, respectively (Equation S-2 in O13 ). As-
suming independence among values of Tp , ke , kb , Pp , and Tb over the set of measurements, and
equilibrium between Pp and the heat flow to the body and the environment, leads to (Equation
S-8 in O13 )

Te = mj(Tp − T0) + T0 + ε, (2.2)

Here mj is the average of (1 + kb / ke ) for a set of observations for a city j, ε is a random error,
and T0 is interpreted as the human body temperature (Tb in Equation 2.1), plus a constant, under
the assumption that the heat transfer from phone to the environment is approximately zero. O13
found T0 = 39 ◦ C for their 8 cities, and calibrates mj separately per city. Both constants are
calibrated over the entire dataset (i.e., a constant value for both mj and T0). Note that the heat
transfer model initially uses daily (and hourly later in this paper) and spatially averaged battery
temperatures, rather than instantaneous battery readings. For the full derivation, we refer to
the supporting information of O13.

2.2.2 Urban Heat Island and Local Climate Zones
This study defines the UHI as the difference in canopy air temperatures between urban and
rural sites. Urban areas differ from their rural surroundings by the high prevalence of impervi-
ous surface and buildings, and little vegetation. Building materials have a high heat capacity,
storing radiative energy during the day for subsequent slow nocturnal release. Additionally, the
low sky-view factor induces efficient heat trapping inside the urban canopy (Oke, 1982). These
combined effects cause the city to cool more slowly at night than the countryside, where energy
is released much faster by virtue of the high sky-view factor and low heat capacity of vegetation.
This creates the UHI, which peaks a few hours after sunset, when rural air temperatures have
dropped and urban air temperatures can still be high.

Defining the UHI can be highly subjective: a clear definition of ‘urban’ and ‘rural’ is lacking
(Stewart and Oke, 2012). Many UHI studies lack proper metadata, making comparisons between
cases difficult (Stewart, 2011; Stewart and Oke, 2012). Defining the UHI as a temperature
difference between LCZs can increase objectivity. The LCZ framework classifies land-use into
10 urban and 7 rural zones, each with its distinct surface (e.g. impervious fraction, vegetation
cover) and building properties (e.g. building height, aspect ratio). The UHI can thereby also be
defined as the difference in temperature between a rural and an urban LCZ, or even between two
urban LCZs. In this study we define the UHI as a difference in canopy air temperature between
two urban LCZs (section 2.4.2).
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2.3.1 Smartphone battery temperature data
The study region is São Paulo (Brazil), which is located just south of the Tropic of Capricorn,
at roughly 23.55 ◦ S and 46.63 ◦ W, at ∼ 760m MSL. The city is characterised by a subtropical
maritime climate with mild dry winters and humid summers. The study area is confined to a
rectangle around the city centre, between 23.47 and 23.80 ◦ S, and 46.43 and 46.85 ◦ W (Figure
2.1, right).

The battery temperatures are obtained from the OpenSignal app, a smartphone application
which measures network signal strength from available providers. This app also logs Tp from the
temperature sensor present in smartphone batteries. A Tp reading is taken when 1): the phone
is being plugged in or out of the power source, and 2): when the phone is turned on or off. The
selection procedure in this study follows that of O13. Only those readings made when 1): the
phone is just being plugged into the power source, or 2): when the phone is turned on or off and
the battery is discharging, are considered. To avoid spurious data in the analyses, an additional
selection removes those battery temperatures outside the range between 10 and 47 ◦ C, since
these readings are likely to be erroneous (because of, e.g., battery charging or intensive processor
use). Battery temperature values are typically around 30 ◦ C (O13 ), so a large deviation to
the positive or negative side would likely be a faulty reading, or severely influenced by battery
charging. The battery temperature dataset covers January 1st 2013 up to December 31st 2014.
During this period an average of 16 x 103 battery readings per day are left after filtering, though
this number is significantly lower (∼ 103 per day) at the start of 2013, and rises to as much as
40 x 103 per day for several months in 2014.

2.3.2 Weather station air temperature data
Three main sources of weather station Tair data are employed for calibration and validation, i.e.
WMO station Congonhas (WMO no. 837800), the 17-m.-tall Urban Fluxnet tower of the Mi-
crometeorology group of the University of São Paulo (IAG-USP), and a set of 7 citizen weather
stations. Congonhas is located at an airport, south of the city centre, in the middle of built-up
environment (see Table 2.1 for station metadata, including classification into LCZs). The WMO
data fully cover 2013 and 2014, with very few hours missing (less than 3 hours per month) and
with 1.5-m Tair (◦ C) measured at the full hour, available as rounded integers. The Fluxnet Tair

measurements are taken every 5 minutes and subsequently averaged into hourly values around
the hour, at 0.1 ◦ C accuracy.

The data from the citizen stations are freely available for download from the Netatmo and
Wunderground platforms (http://www.netatmo.com and http://www.wunderground.com, re-
spectively), where weather enthusiasts can share their station data. At the start of this study,
around 20 stations were active in the São Paulo area. First we selected only stations with fewer
than 100 missing days per year. A day is considered as missing if it contains fewer than 21
hours of data. Very few stations meet these criteria in 2013, but 7 stations remain in 2014, one
of which also has a sufficient record length in 2013 (see Table 2.1). Measurement accuracy is
variable between brands of weather stations, since the more expensive stations tend to measure
at a higher degree of accuracy, as a result of better radiation shielding and sensor quality (Bell
et al., 2015). Typically, the better citizen stations have temperature measurement errors during
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2.2.1 Heat transfer model
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than 100 missing days per year. A day is considered as missing if it contains fewer than 21
hours of data. Very few stations meet these criteria in 2013, but 7 stations remain in 2014, one
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variable between brands of weather stations, since the more expensive stations tend to measure
at a higher degree of accuracy, as a result of better radiation shielding and sensor quality (Bell
et al., 2015). Typically, the better citizen stations have temperature measurement errors during
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daytime of around 0.5 ◦ C (Steeneveld et al., 2011; Bell et al., 2015).

Since the instrument placement and setup of these hobby stations are not bound to strict
rules, we have applied a series of filters, to ensure quality, accounting for the recommendations
made by Stewart (2011). Data entries with sudden large temperature jumps (>2◦ C increments
between 2 consecutive measurements) that are not confirmed in either the WMO or Fluxnet
are removed. The temporal resolution of the measurements varies between the stations, but
lies mainly between 5- and 10-minute intervals. For comparison to the other stations we have
averaged the measurements to an hourly mean temperature. Past studies (e.g. Steeneveld et al.,
2011; Bell et al., 2013, 2015; Meier et al., 2017) have demonstrated the value of these citizen
data to good effect.

2.3.3 Calibration and validation
To create independent calibration and validation sets, data from 2013 are designated to the cal-
ibration set, and data from 2014 to the validation set. Both the WMO station and the Urban
Fluxnet station are fully active throughout these years and are used for both calibration and
validation (Table 2.1). However, the majority of the citizen stations only has a sufficient number
of measurement days in 2014, and will therefore be used for validation purposes only. Hence, the
model is calibrated and validated against the best possible representation of the average urban
Tair, rather than just one fixed station, in order to ensure the most robust results. The original
validation method in O13 may suffer from autocorrelation between calibration and validation
datasets, since the authors alternately assign days to the calibration and validation sets. The
longer set of battery temperature readings in this study allows for a statistically independent
calibration and validation set, to ensure that positive model outcomes are not due to autocorre-
lation effects.
The number of selected battery readings for 2013 averages at ∼ 8 x 103 per day, though this
number is significantly lower in the first few months (below ∼ 1 x 103 per day up to May),
totalling nearly 3 million readings in 2013. The battery dataset for 2014 is much larger, on
average around 24 x 103 selected readings per day for 8.8 million readings in total. Battery
readings are averaged into hourly and daily values. Days with fewer than at least 200 readings
per day are excluded from the analysis. This results in the loss of 6 days in 2013, and none
in 2014. For the hourly analysis, July 2013 and July 2014 are set as calibration and validation
datasets, respectively. All days in July 2013 and 2014 have more than 200 measurements per day.

The T0 parameter has been determined by O13 for 8 cities across the world, rather than
separately for each city under consideration. In this work the T0 parameter is optimised for São
Paulo using a least-squares approach, based on the one-year calibration (2013) dataset of battery
readings (section 2.4.1). The value of mj (Equation 2.2) is likewise determined, separately for the
daily and the hourly calibration datasets. Parameter T0 can be interpreted as the approximate
human body temperature, which is not expected to fluctuate, whereas mj represents a ratio of
insulation coefficients. The factors influencing these coefficients (such as clothing) will be more
variable over time. Therefore, mj is calibrated separately for the analysis of hourly temperatures,
since diurnal variation in heat isolation is expected to differ from the seasonal variation in the
daily averaged temperature. This results in two calibration datasets: one for the daily dataset
and one for the hourly dataset, which are used to train the model. Validation is done using the
2014 battery readings in the subsequent analyses.
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Since the dataset used for analysis is extensive, we can determine the minimum number of
battery readings N̄ needed for a stable model result. Employing random sampling, N̄ measure-
ments are picked for every day and averaged into one daily value. This procedure is repeated 100
times per chosen value of N̄ to capture the mean battery temperature as accurately as possible,
so every day has 100 mean battery temperatures. Each of these temperatures are validated
against the city average air temperature (section 2.4.1.

2.3.4 Data air temperature modelling for a single neighbourhood

Figure 2.2: LCZ in the research area (São Paulo) at a resolution of 120m2. The city is mainly
made up of: LCZ3, compact low-rise buildings (22%); LCZ6, open low-rise buildings (15%);
and LCZ8, large low-rise buildings (14%). [Image and legend are obtained from Geopedia, the
World Urban Database and Access Portal Tools (WUDAPT) for visualizing LCZ data (http:
//geopedia.world/)

A point of interest is the role of the environment on the Tp reading. An analysis of model
performance as function of the distance between battery reading and validation station yielded
no significant relation (not shown). Instead, we study the influence of the urban fabric on the
battery temperature estimates. Muller et al. (2015) write that “the utility of smart phones for
higher resolution UHI analysis [. . . ] is still to be explored ”. To this end we utilise the LCZ
classification for São Paulo, which was constructed using a GIS algorithm (Mills et al., 2015) and
is available on the WUDAPT portal (www.wudapt.org). The location of each battery reading
is coupled to the corresponding location on the LCZ map (Figure 2.2); the battery readings are
subsequently grouped by LCZ and are used to validate the heat transfer model per LCZ. São
Paulo mainly consists of low-rise buildings: LCZ3 in the centre (compact low-rise); a wide spread



2

20 Chapter 2
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Fluxnet station are fully active throughout these years and are used for both calibration and
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separately for each city under consideration. In this work the T0 parameter is optimised for São
Paulo using a least-squares approach, based on the one-year calibration (2013) dataset of battery
readings (section 2.4.1). The value of mj (Equation 2.2) is likewise determined, separately for the
daily and the hourly calibration datasets. Parameter T0 can be interpreted as the approximate
human body temperature, which is not expected to fluctuate, whereas mj represents a ratio of
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performance as function of the distance between battery reading and validation station yielded
no significant relation (not shown). Instead, we study the influence of the urban fabric on the
battery temperature estimates. Muller et al. (2015) write that “the utility of smart phones for
higher resolution UHI analysis [. . . ] is still to be explored ”. To this end we utilise the LCZ
classification for São Paulo, which was constructed using a GIS algorithm (Mills et al., 2015) and
is available on the WUDAPT portal (www.wudapt.org). The location of each battery reading
is coupled to the corresponding location on the LCZ map (Figure 2.2); the battery readings are
subsequently grouped by LCZ and are used to validate the heat transfer model per LCZ. São
Paulo mainly consists of low-rise buildings: LCZ3 in the centre (compact low-rise); a wide spread
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Figure 2.3: Number of available battery readings after selection in July 2013 (circles) and
July 2014 (squares) per hour as function of time of day. São Paulo is in timezone UTC - 3 h
(summertime)

of LCZ6 (open low-rise) closer to the city border and several clusters of LCZ8 (large low-rise)
(Figure 2.2).

2.3.5 Hourly air temperature estimation

For determining hourly Test, we use July 2013 as calibration data and July 2014 as validation
data. Model parameter mj is calibrated to the diurnal course of temperature in July. Parameter
T0 is set at the optimal value for the entire year, determined using the methods described in
section 2.3.3. For this analysis, July is the preferred month due to high data availability, and
because July is one of the driest and cooler months, reducing possible effects of data distortion
as a result of weather conditions (e.g., more people staying inside during heat waves or rain).
Additional data selections, such as selections on LCZ and smartphone series, are not feasible
with the hourly averaged data due to the strong reduction in available measurements, especially
during night-time. Figure 2.3 shows the availability of smartphone readings against time of day
(UTC). Around 8:00 UTC (5:00 LT) the number of measurements is at its minimum, at less than
10% of the daytime data density. Removing these data will strongly reduce the applicability of
the dataset; however, excluding the night-time hours will lead to an unreliable calibration of
mj , and to missing hours in the resulting validation. In addition, we will explore the effect of
using 24 hourly mj constants, to better capture Tair variation. By this methodology the average
diurnal variability of human behaviour (different clothing, being inside/outside, etc.) in July will
be accounted for through mj .
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2.4 Results

2.4.1 Estimation of daily air temperature

Figure 2.4: Average daily air temperature in São Paulo during 2014 from Test (blue line)
validated against city average (WMO, FluxNet, and hobby stations) air temperature observations
(black line) and daily averaged battery temperatures used as input (orange line)

This section presents the results for daily Test from smartphone battery temperature read-
ings. Figure 2.4 shows a validation of time series of daily Test estimates against observed average
city Tair, computed as the average of the various temperature measurements available (WMO,
Fluxnet and the citizen weather stations). Shown statistics are coefficient of determination (ρ2);
Mean Error (ME); Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). In gen-
eral Test compares very well with the observed air temperature, as was also concluded by O13.
The analysis uses optimised values of mj and T0: optimising T0 for São Paulo only slightly
changes its value in comparison to the standard value in O13 (from 39 to 39.8 ◦ C). The ρ2 is
0.86, with a ME (or bias) of -0.53 ◦ C. This bias is largest in January and February 2014. Mean
Test is consistently up to 2 ◦ C lower than the actual measured temperature. We hypothesise
that this is related to the number of measurements available in the calibration data. The num-
ber of measurements per day in the period of January – May is roughly 12 times lower than
in the rest of the year (∼ 1 x 103 versus ∼ 12 x 103). This could affect the calibration, since
the months with the highest temperature peaks are under-represented in the model calibration
(fewer measurements are available). The model seems to perform well for temperatures in the
middle of the range; however, for temperatures close to the upper and lower limits, the model
response underestimates the amplitude. When solely WMO data are used for calibration, results
deteriorate due to the coarser resolution (1 ◦ C) of the WMO data. Interestingly, calibrating
mj for separate seasons does not improve the performance (not shown), which indicates that
variability in the (daily-averaged) heat transfer is not very strong over the year. Though São
Paulo experiences seasonal variation in temperature, daily-averaged temperature variability is
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eral Test compares very well with the observed air temperature, as was also concluded by O13.
The analysis uses optimised values of mj and T0: optimising T0 for São Paulo only slightly
changes its value in comparison to the standard value in O13 (from 39 to 39.8 ◦ C). The ρ2 is
0.86, with a ME (or bias) of -0.53 ◦ C. This bias is largest in January and February 2014. Mean
Test is consistently up to 2 ◦ C lower than the actual measured temperature. We hypothesise
that this is related to the number of measurements available in the calibration data. The num-
ber of measurements per day in the period of January – May is roughly 12 times lower than
in the rest of the year (∼ 1 x 103 versus ∼ 12 x 103). This could affect the calibration, since
the months with the highest temperature peaks are under-represented in the model calibration
(fewer measurements are available). The model seems to perform well for temperatures in the
middle of the range; however, for temperatures close to the upper and lower limits, the model
response underestimates the amplitude. When solely WMO data are used for calibration, results
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Figure 2.5: Relation of the mean N̄ used per day (horizontal axis) against model performance:
(a) ρ2 and (b) RMSE. Average of 100 random samples of N̄ readings (large black dots) and the
100 samples (small black dots) to indicate the spread. Calibration of the data is performed on
the entire dataset, using FluxNet as an air temperature reference. Validation is done against the
average city air temperature (all stations combined).

weaker than, for instance, that of continental climates.

Figure 2.5 shows the model performance (ρ2 and RMSE) as a function of the number of
measurements N̄ used per day. It appears that after roughly 700 measurements the performance
quality does not significantly increase and converges to a constant value. Apparently adding more
data does not raise the quality beyond a certain threshold, but rather opens up more options
for detailed analyses. This justifies stratifying the large dataset at our disposal into subsets for
individual LCZs and even into hourly time intervals. The number of measurements left in these
selections should still produce reliable results.

2.4.2 Daily temperature estimates per LCZ
The next step is to explore the model potential for the selected LCZ data, and whether spa-
tial temperature differences can be identified and quantified by the smartphones. Whereas the
city surface cover is mainly LCZ3 and LCZ6 (Figure 2.2), a disproportionally large number of
measurements (19%) originates from LCZ1 (3% of surface cover): “compact high-rise”, which is
typically found in the city centre (Figure 2.6). Datasets of battery readings from the LCZs with
the most measurements (LCZ1; LCZ3; LCZ6; LCZ8) are used as model input. The resulting
Test values for these LCZs are compared to each other to study whether the urban fabric dis-
cernibly influences Test. A daily average UHI per LCZ is calculated by subtracting the resulting
temperatures from the daily averaged background temperature, taken from the WMO station.
Note that this station is surrounded by built-up area and cannot be considered as an ideal rural
station, though Tair differences between LCZs will still be visible using this approach. From this
analysis a surprisingly high daily mean UHI arises for LCZ8 (∼ 0.9 K), and a moderate UHI

2.4 Results 25

Figure 2.6: Histogram of the distribution of battery temperature readings in 2013 over the
urban LCZs in São Paulo. Fraction is calculated over the total of the 17 LCZs; the 7 rural LCZs
(A–G) have not been plotted; and the LCZ corresponding to each number is explained in Figure
2.2.

for LCZ3 (∼ 0.3 K; Figure 2.7a). Standard error in the mean for all LCZs is ∼ 0.09 ◦ C. Using
LCZ-specific battery temperatures does not strongly affect the model output: that is, the main
difference with the full dataset is the change in sign of the ME for LCZ8 (from -0.48 ◦ C to 0.37
◦ C; Figures 2.7b and c). Where the original model output underestimated the urban Tair, for
LCZ8 the bias is positive, suggesting higher model temperatures as is indeed seen in the large
positive UHI (Figure 2.7a). For LCZ3 the bias as compared to the full set remains negative but
decreases (to -0.27 ◦ C). Since the statistical distribution of the data is unknown, the significance
of the UHI effect in these two LCZs is investigated using the non-parametric Kruskal-Wallis test
for two independent samples. Test results (not shown) confirm that the UHI magnitude between
LCZs is significantly different, and the UHI magnitude between LCZs is significantly different.
Hence, there is a discernable difference in Test between these LCZs, which shows that the UHI
can indeed be observed with this method.

2.4.3 Estimation of hourly air temperatures
In general the results for the daily Test are satisfactory, as appears from the good model statistics
in Figure 2.4. Next, we explore whether the method can also correctly estimate hourly averaged
temperatures, despite the significantly reduced number of measurements available (Figure 2.3).
The hourly Test shows a relatively poor result (ρ2 of 0.35) with a large spread (RMSE of 3.2 ◦ C)
and an ME of roughly 0.9 ◦ C (Figure 2.8a). Upon a more careful examination, a delay in the
timing of the peaks in the smartphone estimates as compared to the reference measurements is
found (Figure 2.8a). That is, for the period around July 9th the peak of Test occurs several hours
after the peak of the measured temperature. Furthermore, the cooling rate in the evening is more
rapid in the measured temperature, whereas Test lags behind, cooling later and at a slower rate.
This may be due to the heat capacity of the system (the phone itself, and the insulating layers
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Figure 2.5: Relation of the mean N̄ used per day (horizontal axis) against model performance:
(a) ρ2 and (b) RMSE. Average of 100 random samples of N̄ readings (large black dots) and the
100 samples (small black dots) to indicate the spread. Calibration of the data is performed on
the entire dataset, using FluxNet as an air temperature reference. Validation is done against the
average city air temperature (all stations combined).
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Figure 2.7: (a) UHI [K] derived from Test per LCZ, using Congonhas as reference background
station. The mean standard errors (whiskers) are shown. Scatterplots of observations (horizontal
axis) against Test (vertical axis) of the full (b) dataset (Figure 2.4) and (c) LCZ8. The 1:1 lines
indicate where measurements would equal model results (straight black lines).
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Figure 2.8: (left) Average hourly air temperature of São Paulo during July 2014 estimated
from smartphone battery temperature readings (blue line) validated against city average air
temperature observations (black line), and (right) scatterplots of observations (horizontal axis)
against Test (vertical axis); the 1:1 lines indicate where measurements would equal model results
(straight black lines). (top) Results of the validation without a delay correction in the smartphone
data and (bottom) with a delay-corrected dataset with delay H = 4 h

between phone & air, and phone & body) causing a delay in response. To explore whether results
might improve, a delay is introduced to Equation 2:

Test(t) = mj [Tp(t+H)− T0] + T0 + ε, (2.3)

Here T (t) is the temperature (in ◦ C) at hour t (in hours UTC), and H is the delay in whole
hours (H=1,2...h). Residual analysis of hourly Test against the city average air temperature
yields the best match between smartphone estimates and temperature measurements at H=4
hours, although already at H=1 results improve significantly over the uncorrected set. The ρ2

doubles (from 0.35 to 0.72) and the large MAE and RMSE are reduced with over 1◦ C each, to
1.63 ◦ C and 1.99 ◦ C, respectively (Figure 2.8b). While the magnitude of the peaks (positive
and negative) is still much larger than the measurements indicate, the timing of the estimated
temperatures now corresponds much better to the observations. Analysis of the daily peaks in
temperature reveals that on average the delay during the day is roughly 2 hours between model
and observations, whereas at night the delay can be longer, on average up to 3 or 4 hours.

In search of a physical explanation for the delay, we formulate a simplified differential equation
for the change in temperature of the phone as caused by the differences in between the phone
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temperature, and the air- and body temperatures:

δTp

δt
=

ke(Tair − Tp)

m ∗ c
+

kb(Tb − Tp)

m ∗ c
, (2.4)

Here m is the mass of the phone, taken as 0.13 kg, and c is the specific heat of the phone,
taken as 600 JK−1kg−1 (based on specific heat of glass and sand, for simplicity). From the
supporting information of O13 it follows that k is conductivity times the area divided by the
insulating material thickness. We take the typical dimensions of the phone as 10 x 4 cm, and
the conductivity of the clothing layer between phone and body as 0.037 Km2 W−1 (0.24 clo,
resembling a pair of trousers, ASHRAE (2010)). Furthermore, in our results mj = (1 + kb/ke)
≈ 2, so kb ≈ ke = 0.11 WK−1. Using these typical values, Tb at 37◦ C and a linearly cooling of
the atmosphere with 1 K per hour, we can simulate the cooling (heating) rate of the phone. This
simple analysis indicates the phone arrives at a steady cooling rate after approximately 1 to 2
hours, depending on the exact initial values of Tair - Tp and the specific heat and mass. The data
seem to suggest a larger delay time (up to 4 hours): in reality, the heat capacity of the phone will
be larger than assumed, by including the heat capacity of the bag or clothes in which it is being
carried. The inside Tair for those readings taken indoors will influence the calibration: inside
Tair reacts to outside Tair, with a lower amplitude and another delay factor, thus increasing the
response time of the total smartphone system.

A second, implicit way to correct for the delay is by using 24 hourly mj values, rather than
a single fixed mj for the entire dataset. By determining one mj value per hour, the variations
in heat transfer efficiency over the day are taken into account, since mj is the ratio of the ther-
mal insulation k-values (Equation 2.2). Possible variations in human behaviour (e.g., clothing)
and the available measurements per hour can also be implicitly accounted for with this method.
According to theory, the heat flow between phone and environment should decrease when the
difference in temperature decreases. One would expect this to happen during the day when air
temperature is higher and therefore closer to the smartphone battery temperature (∼ 30 ◦ C). At
night, the temperature difference is larger and the rate of heat exchange would increase. When
implementing an hourly variation of mj the results (not shown) are very similar to the results for
the delay-corrected series (Figure 2.8b). There are no appreciable differences between the two
sets (i.e., hourly mj versus delay-corrected), indicating that mj implicitly corrects for the delay
in the battery response. Values for mj vary between 1.4 and 2.2 throughout the day, with the
higher values occurring during night-time. A high value indicates that the thermal insulation
between phone and environment (ke) increases, or that the thermal insulation between phone and
body (kb) decreases. A higher ke indicates a larger temperature difference between phone and
environment (O13 ), as does indeed happen during the night (if the reading takes place outdoors).

The compensating effect of mj on the delay in the battery temperature (Figure 2.8b) is
confirmed when calibrating hourly mj values to the explicitly delay-corrected set (Equation 3).
When calibrating hourly mj values to the explicitly corrected set, the range of mj is halved
(ranging between 1.7 and 2.1), though the diurnal pattern (lower mj during the day) persists:
no constant mj is obtained for the delay-corrected set. Results do not notably improve: a 0.08◦

C reduction in the MAE while ρ2 and RMSE remain equal in comparison to the hourly mj

calibration on the uncorrected dataset. This means that the observed delay in the smartphone
battery estimates can be corrected for by either explicitly accounting for the delay (as in Equation
2.3), or taking 24 hourly mj values rather than a single fixed value for the entire day.
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2.5 Discussion

2.5.1 Relation to other studies
Our study extends O13 by employing a more extensive dataset for just one city, and independent
calibration and validation datasets. The São Paulo results of O13 show nearly the same ρ2 based
on two periods of 3 months (ρ2 of 0.65 and 0.85 for winter and spring 2012, respectively), as our
results provide a ρ2 of 0.86. Their MAE for São Paulo is only slightly higher than our values
(1.2 ◦ C in O13 and ∼ 1.1 ◦ C here). This indicates that even with a smaller dataset (O13
used on average 1383 measurements per day for São Paulo, whereas this study has roughly 10
times more), the daily averaged temperature on a city-wide scale can be captured well. Though
our study has only focused on one city, the O13 study was carried out for 8 different cities in
vastly different climate zones, with different temperature seasonality and extremes. Their sound
results indicate that the method is valid across a wide variation of climates, rather than only for
São Paolo. The specific calibration constants of this work are optimised for São Paulo and are
statistically not valid for any other city. However, this is not a fundamental limitation of the
proposed method, since for other regions the model can be recalibrated using region-specific data.

Considering the data availability, we find that results deteriorate below a minimum number
of battery measurements, even on the daily scale. As an illustration, Overeem et al. (2014) have
applied the same method to Rotterdam and Amsterdam (the Netherlands), but their model
statistics are less satisfactory (ρ2 of 0.77 and 0.67; MAE of 1.22 and 1.40 ◦ C, respectively). The
daily data availability was much lower for these comparatively small cities (382 and 116 per day
for Rotterdam and Amsterdam, respectively). Similarly, with 203 readings per day Muller et al.
(2015) report an even lower ρ2 of 0.52, and a higher MAE of 1.71 ◦ C for Birmingham (UK).
Overeem et al. (2014) provide a relation between the data availability and model ρ2, showing
that the results become inaccurate for fewer than 100 measurements per day. Also, >350 daily
measurements are preferable for accurate results: the optimal number of measurements is 700+
(Figure 2.5). O13 fulfils this requirement, but the data availability reported in Overeem et al.
(2014) and Muller et al. (2015) lies below this threshold. Note that the ρ2 found by Muller et al.
(2015) is lower than the lowest ρ2 in Figure 2.5.

In our study 12 x 103 battery readings are available on average per day (section 2.3.1), and
the ρ2 value is 0.86 for the daily analysis (section 2.4.1 & Figure 2.4), which clearly illustrates
the necessity of having enough data. Overall, our results tend to be of equal or better skill
compared to earlier studies with the same heat transfer model. The high data availability provides
possibilities for studying the method at an hourly scale or making selections for separate city
areas (LCZs).

2.5.2 Data quality and additional filtering
A notable issue is the uncertainty in location of the smartphone, which is often in the order of
tens of meters. This may introduce an uncertainty in coupling a battery reading to a location
in the LCZ map (Figure 2.2). However, this map is based on satellite imagery with a resolution
of 120m2; the uncertainty in smartphone location should fall within this range. In addition, the
phone’s GPS tracking is not always turned on (O13 ), so it remains difficult to discern between
indoor and outdoor readings. However, the applied data selection (see O13 and section 2.3.1)
aims to minimise the uncertainty. In addition, the calibration process will account for this effect
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as well if relevant. Importantly, the apparent time-lag between temperature changes in phone
and environment (section 2.4.3) suggests that readings taken inside may still have been affected
by the outdoor temperature.

Moreover, our approach assumes the phone is carried in a pocket, which allows for an ex-
change of heat between body and phone. In practice this assumption may be violated, e.g.,
because the phone is carried in a bag or elsewhere, and on an hourly scale the system might
not be in equilibirum. However, calibrated mj values appeared to be close to a-priori estimated
mj values from clothing properties (O13 ), which supports confidence in the followed approach.
Additionally, we assume mj to be constant over time, whereas clothing thickness (insulation)
will obviously undergo a diurnal and seasonal cycle. Possibly, using the light sensor that many
smartphone types now possess, a distinction can be made between indoor and outdoor measure-
ments, if these data are available. A follow-up study that improves the heat transfer model by
reducing the assumptions made could be very valuable for further research with these data. The
weather can also influence human behaviour. On very hot days or days with extreme precipita-
tion, people are more likely to stay indoors, meaning that readings taken during those periods
will not reflect the outside air temperature, but rather the indoor environment. For instance, in
May 2014 several hail events occurred in São Paulo, during which the error between Test and the
observations was relatively high (up to 3◦ C on May 19th) compared to clear days. A sensitiv-
ity test where all days with rainfall higher than 0 mm were excluded (leaving 238 dry days for
calibration and 254 for validation) did not significantly improve model results enough to justify
losing several weeks of data completely in the rainy months. Less strict filters (1, 2 and 5 mm)
made the results nearly identical to the results without any filtering for precipitation. Therefore
we decided to not pursue this sensitivity aspect further.

These issues are an inherent drawback of using smartphones for air temperature data, but
by averaging a large amount of battery data in space (on the scale of a city or a LCZ) and
in time (daily or hourly), the errors will be filtered out to a certain extent, as can be con-
cluded from the favourable results of this study. For a thorough analysis of the reaction of the
smartphone battery to changes in air temperature over the course of the day, a controlled trial
should be set up with a conventional temperature sensor and several smartphones logging bat-
tery temperature. Because of several limitations (such as an inability to do continuous battery
logging) we could not perform such a trial, but we strongly recommend it for any future research.

Two additional analyses did not yield any improvement: an attempt was made to use only
smartphones with similar hardware (Samsung-GTI series), which in theory will have similar k
coefficients, similar heat capacities, similar battery temperature sensors, and a similar thermal
energy generated by the battery (P ). However, this was no improvement over using all the
smartphone data available. Additionally, we constructed an extra filter of the raw battery tem-
peratures by Gaussian mixture modelling (Reynolds, 2009). This statistical technique assumes
that the dataset consists of several sub-distributions or data-clusters, each with its own mean
and standard deviation. A data-cluster that is e.g. characterised by high temperatures could be
influenced by the battery charging or extensive use of the phone. These faulty data could be
filtered out to improve results. However, the resulting data clusters of the mixture modelling had
mean temperature differences smaller than 1◦ C with standard deviations around 6◦ C, which
hampers distinguishing of clusters.
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2.5.3 T0 calibration
Initially, results with the optimised T0 (section 2.4.1) were worse than the results using the
reference T0 from O13. The T0 was found to be as high as 49 ◦ C and the MAE of the validation
results significantly increased (by ∼ 0.3 ◦ C compared to the set using T0 = 39◦ C). This large
T0 value cannot be realistically interpreted as the approximate body temperature, which is
ideally near 37◦ C, plus a constant (Equation S-9 in O13 ). A more physically sound value for
T0 (39.8◦ C, used in the analyses) was obtained from repeating the optimisation procedure for
incrementally increasing random samples of battery temperature used for calibration. For an
increasing number (N̄) of measurements, the T0 and RMSE values decrease until N̄ = 3 x 103

(or 229 days of battery readings used). Beyond this point T0 remains constant at 39.8 ◦ C and
RMSE does not appreciably decrease any more (value ∼ 1.49 ◦ C).

2.5.4 Weather station measurement data
With three different sources of measurement data, each with their own measurement accuracy,
resolution, and location which determines the fetch of the station, knowing which station rep-
resents ‘the truth’ is nearly impossible. What the ‘true’ city temperature is remains open for
debate. Since the city is heterogeneous by default, the temperature is increasingly influenced
by local characteristics when moving from the boundary layer top to the surface layer (Barlow,
2014). What is measured by the smartphones is the urban canyon temperature, influenced by the
local microclimate. Using a city-averaged Tair constructed from all these measurements seems
to be the most robust option, to represent the urban air temperature as accurately as possible.
However, this approach will not always yield the best model statistics. Particularly with the
LCZ analysis, calibration and validation of the separate LCZs would ideally be performed with
a station located in the same LCZ. Calibration of the model using specific LCZ air temperature
data would make it better suited to detect differences in smartphone response between LCZs.
The number of suitable citizen stations to use was scarce, however. For a city with more stations
to choose from, a more thorough selection procedure (based on e.g. measurement height, meta-
data or neighbourhood) could be performed according to the principles inStewart (2011) and
Bell et al. (2015). This might also reduce the high uncertainty at night, which can among others
be caused by the high variability in measured minimum temperature (Brandsma and van der
Meulen, 2008), in combination with the low number of battery readings available during those
hours. For estimating the absolute value of the UHI with smartphones, a robust rural background
station is essential, but one was unavailable in this study.

2.5.5 Applicability
Though this article primarily functions as a proof of principle, smartphone-derived air tempera-
tures can have various applications to complement conventional data. For instance, in developing
countries where weather stations are scarce, but smartphone ownership is high, they can add
valuable information about the urban temperature. This knowledge can be vital during for in-
stance heat waves, where knowledge of which neighbourhoods are most prone to the UHI can
potentially save lives. Additionally, whereas a traditional urban measurement network is very
expensive to set up and maintain, and will be prone to vandalism, a smartphone network will
not be hindered by these limitations, providing valuable data virtually for free. This will be
particularly valuable for those cities where funds for urban research are limited.
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as well if relevant. Importantly, the apparent time-lag between temperature changes in phone
and environment (section 2.4.3) suggests that readings taken inside may still have been affected
by the outdoor temperature.
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smartphone types now possess, a distinction can be made between indoor and outdoor measure-
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filtered out to improve results. However, the resulting data clusters of the mixture modelling had
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hampers distinguishing of clusters.
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resolution, and location which determines the fetch of the station, knowing which station rep-
resents ‘the truth’ is nearly impossible. What the ‘true’ city temperature is remains open for
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local microclimate. Using a city-averaged Tair constructed from all these measurements seems
to be the most robust option, to represent the urban air temperature as accurately as possible.
However, this approach will not always yield the best model statistics. Particularly with the
LCZ analysis, calibration and validation of the separate LCZs would ideally be performed with
a station located in the same LCZ. Calibration of the model using specific LCZ air temperature
data would make it better suited to detect differences in smartphone response between LCZs.
The number of suitable citizen stations to use was scarce, however. For a city with more stations
to choose from, a more thorough selection procedure (based on e.g. measurement height, meta-
data or neighbourhood) could be performed according to the principles inStewart (2011) and
Bell et al. (2015). This might also reduce the high uncertainty at night, which can among others
be caused by the high variability in measured minimum temperature (Brandsma and van der
Meulen, 2008), in combination with the low number of battery readings available during those
hours. For estimating the absolute value of the UHI with smartphones, a robust rural background
station is essential, but one was unavailable in this study.

2.5.5 Applicability
Though this article primarily functions as a proof of principle, smartphone-derived air tempera-
tures can have various applications to complement conventional data. For instance, in developing
countries where weather stations are scarce, but smartphone ownership is high, they can add
valuable information about the urban temperature. This knowledge can be vital during for in-
stance heat waves, where knowledge of which neighbourhoods are most prone to the UHI can
potentially save lives. Additionally, whereas a traditional urban measurement network is very
expensive to set up and maintain, and will be prone to vandalism, a smartphone network will
not be hindered by these limitations, providing valuable data virtually for free. This will be
particularly valuable for those cities where funds for urban research are limited.
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Alternatively, data assimilation in NWP models can be beneficial for NWP since model
resolution is steadily increasing to an extent that the influence of cities will be felt (ECMWF,
2016). An urban scheme is often lacking within these NWP models, so data assimilation of the
urban meteorological data will be crucial for reliable forecasts. Given the scarcity of urban data,
even relatively coarse data such as the smartphone-derived temperatures can make a contribution
to the forecasts. In broader terms, the developed methodology of this study may also be useful
for algorithms which are being developed for application to other types of crowdsourced data. A
preliminary test in which smartphone based temperature data were assimilated within the WRF
modelling system for São Paolo, revealed that maximum temperatures were forecasted by about
0.5-1K better for the studied week (not shown).
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Alternatively, data assimilation in NWP models can be beneficial for NWP since model
resolution is steadily increasing to an extent that the influence of cities will be felt (ECMWF,
2016). An urban scheme is often lacking within these NWP models, so data assimilation of the
urban meteorological data will be crucial for reliable forecasts. Given the scarcity of urban data,
even relatively coarse data such as the smartphone-derived temperatures can make a contribution
to the forecasts. In broader terms, the developed methodology of this study may also be useful
for algorithms which are being developed for application to other types of crowdsourced data. A
preliminary test in which smartphone based temperature data were assimilated within the WRF
modelling system for São Paolo, revealed that maximum temperatures were forecasted by about
0.5-1K better for the studied week (not shown).
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2.6 Conclusions
This study utilises a heat transfer model to translate smartphone battery temperature readings
into city-wide air temperatures, on both a daily and an hourly scale. This work extends earlier
work by Overeem et al. (2013b) by using an extensive dataset spanning 2 years of over 10 mil-
lion battery readings taken in São Paulo, Brazil. We use a wide variety of multiple measurement
stations spread across the city for calibration, thereby better capturing the average urban air tem-
perature than using a single WMO station. The extensive data availability allows for a division
of the dataset per Local Climate Zone (LCZ) to investigate spatial differences in temperature,
as well as zooming in to the hourly temperature variations as captured by the smartphones. The
consistent division into a separate calibration (the year 2013) and validation period (the year
2014) for both daily and hourly temperatures ensures that all results are statistically robust, and
not subject to autocorrelation.

Estimated daily averaged air temperatures are good and can even be used to calculate temper-
atures of specific LCZs. A daily averaged Urban Heat Island (UHI) can be found in LCZ8 (large
low-rise) and LCZ3 (compact low-rise): these LCZs have a significant difference in temperature
in comparison to the official WMO airport station. However, insufficient battery temperature
data are available to estimate hourly UHI. This would also need a proper rural background sta-
tion: the airport is fully surrounded by built-up area (LCZ3).

On the hourly scale, initial results for temperature were poor, but vastly improve after
correcting for a seemingly delayed response of the battery temperatures to changes in air tem-
peratures. An analogous improvement can be obtained by using 24 hourly calibration (mj )
constants rather than one average value for all hours. The incorrect magnitude of especially the
night-time peaks remains an unsolved issue, possibly as a result of the low number of battery
temperature readings taken at night. A larger set of battery temperatures, especially when taken
at night, is required to reduce the negative night-time bias. Making use of an urban testbed like
Rotterdam (Heusinkveld et al., 2014) or Birmingham (Muller et al., 2015; Warren et al., 2016),
could aid with this issue.

From a large number of smartphones reading an accurate air temperature estimate for the
daily and even hourly scale of a city can be obtained, which underlines the strength of crowd-
sourced data. With newer smartphone models regularly carrying temperature, moisture or pres-
sure sensors, as well as applications such as mPing or WeatherSignal, there is no denying that
measurements from smartphones may hold a lot of potential for future (urban) meteorological
studies given their interconnectivity and every-day use in great numbers
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sourced data. With newer smartphone models regularly carrying temperature, moisture or pres-
sure sensors, as well as applications such as mPing or WeatherSignal, there is no denying that
measurements from smartphones may hold a lot of potential for future (urban) meteorological
studies given their interconnectivity and every-day use in great numbers

Acknowledgements
We would like to thank Prof. Amauri Oliveira (University of São Paulo), for providing their
Fluxnet station data. Dr. Gerald Mills (University College Dublin), Michael Foley (UCD) and
Maria de Fatima Andrade (USP) for creating and supplying the LCZ WUDAPT data for São
Paulo, and Dr. James Robinson and the OpenSignal company for supplying the battery temper-
ature dataset. We extend our thanks to the hobby meteorologists for maintaining and uploading
the data from their personal weather stations. We thank Prof. Berthold Horn (Massachusetts
Institute of Technology), for sharing the idea of Gaussian mixture modelling. Gert-Jan Steen-

2.6 Conclusions 35

eveld and Arjan Droste acknowledge funding from the Netherlands Organisation for Scientific
Research (NWO)-VIDI grant “The Windy City” (File number 864.14.007) and NWO – eScience
project ‘ERA-URBAN’ (grant 027.014.203)



3



This chapter is accepted for publication after minor revisions as:
Droste, A. M., D. Fenner, B. Heusinkveld, and G. J. Steeneveld, 2020: Assessing the potential 
and application of crowdsourced urban wind data. Quarterly Journal of the Royal Meteorological 
Society, 1–18, doi: 10.1002/qj.3811

Crowdsourcing for urban wind research

Chapter 3

The use of crowdsourcing – obtaining large quantities of data through the internet – has been of 
great value in urban meteorology. Crowdsourcing has been used to obtain urban air temperature, 
air pressure, and precipitation data from sources such as mobile phones or personal weather 
stations (PWS), but so far wind data has not been researched. Urban wind behaviour is highly 
variable and challenging to measure, since observations strongly depend on the location and 
instrumental setup. Crowdsourcing can provide a dense network of wind observations and 
may give insight into the spatial pattern of urban wind. We evaluate the skill of the popular 
“Netatmo” PWS anemometer against a reference for a rural and an urban site. Subsequently, we 
use crowdsourced wind speed observations from 60 PWSs in Amsterdam, the Netherlands, to 
analyse wind speed distributions of different Local Climate Zones (LCZs). The Netatmo PWS 
anemometer appears to systematically underestimate the wind speed, and episodes with rain or 
high relative humidity deteriorate the measurement quality. Therefore, we developed a quality 
assurance (QA) protocol to correct PWS measurements for these errors. The applied QA protocol 
strongly improves PWS data to a point where they can be used to infer the probability density 
distribution of wind speed of a city or neighbourhood. This density distribution consists of a 
mixture of two Weibull distributions, rather than the typical single Weibull distribution used 
for rural wind speed observations. The limited capability of the Netatmo PWS anemometer to 
measure near-zero wind speed causes the QA protocol to perform poorly for periods with very 
low wind speeds. However, results for a year-long wind speed climatology of the wind speed are 
satisfactory, as well as for a shorter period with higher wind speeds.
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3.1 Introduction
The urban climate is a subject of increasing interest in science and society. With ongoing climate
change and urbanisation, the need for accurate urban weather information has never been more
urgent. In order to combat the effects of heat waves, air pollution or urban flooding, knowledge
of urban weather can assist in identifying risk prone areas, to which urban planners can find
a solution. The urban climate is of particular importance to human thermal comfort and air
quality, and their associated health risks (Moonen et al., 2012).

The lack of urban weather observations is a major challenge in characterising the urban
climate. Several cities have dedicated observational networks, e.g. Birmingham (England,
Warren et al. (2016)), Berlin (Germany; Fenner et al. (2014)), Novi Sad (Serbia; Savić et al.
(2019)), Ghent (Belgium; http://www.observatory.ugent.be/index_eng.html) or Amster-
dam (the Netherlands; Ronda et al. (2017)), but the majority of cities across the world lacks such
a detailed network. WMO regulations prevent official weather stations to be located in cities,
since they require a relatively open field. Though obstructions characterise the urban climate,
their heterogeneity complicates taking representative measurements of the city as a whole. From
street to street, vast differences can occur in especially wind speed, but also temperature and,
to a lesser extent, humidity (Heusinkveld et al., 2014).

To compensate for this lack of data, the urban meteorological research community has em-
braced the use of crowdsourcing. Muller et al. (2015) define crowdsourcing as “Obtaining data or
information by enlisting the services of a (potentially large) number of people and/or from a range
of public sensors, typically connected via the Internet.” An increasing number of crowdsourcing
studies has been conducted recently, mainly to study the urban heat island effect (Steeneveld
et al., 2011; Chapman et al., 2017; Fenner et al., 2017), urban rainfall (De Vos et al., 2017) and
air pressure (Mass and Madaus, 2014). Urban air temperature and rainfall are well-captured by
so-called Personal Weather Stations (PWSs): small weather stations designed for use by citizens,
that can be installed on balconies, in gardens or on roofs.

Wind has so far not been researched through crowdsourcing. Urban wind speed and direc-
tion are hard to quantify due to the strong turbulent nature of wind. Observational studies have
usually confined to single streets, where canyon profiles of wind speed and direction are measured
with masts (Rotach et al., 2005; Eliasson et al., 2006). Urban wind studies often rely on wind
tunnel experiments or computational fluid dynamics models to study wind loads on buildings,
at pedestrian level, and for urban pollutant dispersion (Carpentieri and Robins, 2015; Ramponi
et al., 2015; Toparlar et al., 2017). Knowledge of the urban wind is important for topics such
as air pollution dispersion (Pascal et al., 2013), mechanical wind loads on buildings (Ramponi
et al., 2015), human thermal comfort (Hsieh and Huang, 2016; Heusinkveld et al., 2017), and
urban wind energy potential (Kent et al., 2017).

Crowdsourcing might be useful to investigate the urban wind climate. Crowdsourced data
are available in great quantities, but quality is often relatively low, so serious scrutiny of data
is required. The station setup and site representativeness are generally less well-known (Muller
et al., 2015), which impacts data interpretation. In this study, we aim to learn whether crowd-
sourced wind speed data from “Netatmo” PWSs are suitable for analysing urban wind speed. We
perform this research in Amsterdam (the Netherlands), where the Meteorology & Air Quality
group of Wageningen University operates an urban network of automated weather stations with
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high-quality wind measurements (Ronda et al., 2017), to serve as reference against which the
crowdsourced stations can be tested. First, the Netatmo wind module is compared to reference
sonic anemometers records in the field, in both a rural and an urban setting. Subsequently, from
these field tests a bias correction and Quality Assurance (QA) protocol is established, which is
then applied to the crowdsourced urban wind speed measurements. Finally, these data are used
to analyse the wind speed characteristics of different Local Climate Zones (LCZs,Stewart and
Oke (2012)) in Amsterdam, and compare the results to the reference network.

Below, Section 3.2 introduces the data (crowdsourced and reference stations), as well as
the QA protocol used to filter the crowdsourced data; section 3.3 shows the results, which are
discussed in further detail in section 3.4, before final conclusions are drawn in section 3.5.

3.2 Data & Methodology

3.2.1 The Netatmo wind module and data gathering

We focus on the Netatmo brand PWS, because of its popularity as PWS brand in Europe. As
an illustration, in large cities such as Berlin or Paris, hundreds to thousands of Netatmo PWSs
are set up (Meier et al., 2017), but even smaller cities such as Amsterdam or Toulouse appear
to be equipped with hundreds of stations measuring urban weather (De Vos et al., 2017; Napoly
et al., 2018). All Netatmo PWSs contain equal hardware, which limits discrepancies between
stations, and allows development of a uniform bias-correction and QA procedure. Meier et al.
(2017) have developed such a QA procedure for PWS air temperature data, and we will follow
their example to develop such a system for PWS wind speed data, using reference measurements
during QA.
The Netatmo company started distributing their wind sensor midway through 2015, as the latest
addition to their weather station. It is a cylindrical sonic anemometer of 11 cm tall and 8.5 cm
in diameter, using 4 nodes in an opening in the middle of the cylinder to measure the zonal
and meridional wind components (Figure 3.2). Measurements are made every 6 seconds and
aggregated to mean and maximum output values every 5 minutes. Accuracy of the wind speed
measurements is 0.5 m/s, and 5 ◦for wind direction (Netatmo, 2019).

The data of this study are obtained through the Netatmo online API (Application Program-
ming Interface) method getstationdata. This method provides wind data at roughly 5-minute
resolution (variable timeframe) in rounded integer km/h for wind speed and degrees for wind
direction. The API requires station and module identifiers, that are requested from the getpub-
licdata API method. This method outputs a list of station identifiers and their corresponding
weather modules (outdoor module, wind, or rain meters) which can be used in getstationdata.
For Amsterdam, 60 PWSs measuring wind speed were present within the period January 2016
-– July 2018. Not all stations were active for this whole period: at most 52 stations actively
measured in a single day, but we see a general increase of the amount of stations measuring
over time (Figure 3.1). At the beginning of 2016, few PWS owners will have had the new wind
module, though the PWS itself has been gaining popularity over the years as well.
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3.1 Introduction
The urban climate is a subject of increasing interest in science and society. With ongoing climate
change and urbanisation, the need for accurate urban weather information has never been more
urgent. In order to combat the effects of heat waves, air pollution or urban flooding, knowledge
of urban weather can assist in identifying risk prone areas, to which urban planners can find
a solution. The urban climate is of particular importance to human thermal comfort and air
quality, and their associated health risks (Moonen et al., 2012).

The lack of urban weather observations is a major challenge in characterising the urban
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since they require a relatively open field. Though obstructions characterise the urban climate,
their heterogeneity complicates taking representative measurements of the city as a whole. From
street to street, vast differences can occur in especially wind speed, but also temperature and,
to a lesser extent, humidity (Heusinkveld et al., 2014).

To compensate for this lack of data, the urban meteorological research community has em-
braced the use of crowdsourcing. Muller et al. (2015) define crowdsourcing as “Obtaining data or
information by enlisting the services of a (potentially large) number of people and/or from a range
of public sensors, typically connected via the Internet.” An increasing number of crowdsourcing
studies has been conducted recently, mainly to study the urban heat island effect (Steeneveld
et al., 2011; Chapman et al., 2017; Fenner et al., 2017), urban rainfall (De Vos et al., 2017) and
air pressure (Mass and Madaus, 2014). Urban air temperature and rainfall are well-captured by
so-called Personal Weather Stations (PWSs): small weather stations designed for use by citizens,
that can be installed on balconies, in gardens or on roofs.

Wind has so far not been researched through crowdsourcing. Urban wind speed and direc-
tion are hard to quantify due to the strong turbulent nature of wind. Observational studies have
usually confined to single streets, where canyon profiles of wind speed and direction are measured
with masts (Rotach et al., 2005; Eliasson et al., 2006). Urban wind studies often rely on wind
tunnel experiments or computational fluid dynamics models to study wind loads on buildings,
at pedestrian level, and for urban pollutant dispersion (Carpentieri and Robins, 2015; Ramponi
et al., 2015; Toparlar et al., 2017). Knowledge of the urban wind is important for topics such
as air pollution dispersion (Pascal et al., 2013), mechanical wind loads on buildings (Ramponi
et al., 2015), human thermal comfort (Hsieh and Huang, 2016; Heusinkveld et al., 2017), and
urban wind energy potential (Kent et al., 2017).

Crowdsourcing might be useful to investigate the urban wind climate. Crowdsourced data
are available in great quantities, but quality is often relatively low, so serious scrutiny of data
is required. The station setup and site representativeness are generally less well-known (Muller
et al., 2015), which impacts data interpretation. In this study, we aim to learn whether crowd-
sourced wind speed data from “Netatmo” PWSs are suitable for analysing urban wind speed. We
perform this research in Amsterdam (the Netherlands), where the Meteorology & Air Quality
group of Wageningen University operates an urban network of automated weather stations with
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high-quality wind measurements (Ronda et al., 2017), to serve as reference against which the
crowdsourced stations can be tested. First, the Netatmo wind module is compared to reference
sonic anemometers records in the field, in both a rural and an urban setting. Subsequently, from
these field tests a bias correction and Quality Assurance (QA) protocol is established, which is
then applied to the crowdsourced urban wind speed measurements. Finally, these data are used
to analyse the wind speed characteristics of different Local Climate Zones (LCZs,Stewart and
Oke (2012)) in Amsterdam, and compare the results to the reference network.

Below, Section 3.2 introduces the data (crowdsourced and reference stations), as well as
the QA protocol used to filter the crowdsourced data; section 3.3 shows the results, which are
discussed in further detail in section 3.4, before final conclusions are drawn in section 3.5.

3.2 Data & Methodology

3.2.1 The Netatmo wind module and data gathering

We focus on the Netatmo brand PWS, because of its popularity as PWS brand in Europe. As
an illustration, in large cities such as Berlin or Paris, hundreds to thousands of Netatmo PWSs
are set up (Meier et al., 2017), but even smaller cities such as Amsterdam or Toulouse appear
to be equipped with hundreds of stations measuring urban weather (De Vos et al., 2017; Napoly
et al., 2018). All Netatmo PWSs contain equal hardware, which limits discrepancies between
stations, and allows development of a uniform bias-correction and QA procedure. Meier et al.
(2017) have developed such a QA procedure for PWS air temperature data, and we will follow
their example to develop such a system for PWS wind speed data, using reference measurements
during QA.
The Netatmo company started distributing their wind sensor midway through 2015, as the latest
addition to their weather station. It is a cylindrical sonic anemometer of 11 cm tall and 8.5 cm
in diameter, using 4 nodes in an opening in the middle of the cylinder to measure the zonal
and meridional wind components (Figure 3.2). Measurements are made every 6 seconds and
aggregated to mean and maximum output values every 5 minutes. Accuracy of the wind speed
measurements is 0.5 m/s, and 5 ◦for wind direction (Netatmo, 2019).

The data of this study are obtained through the Netatmo online API (Application Program-
ming Interface) method getstationdata. This method provides wind data at roughly 5-minute
resolution (variable timeframe) in rounded integer km/h for wind speed and degrees for wind
direction. The API requires station and module identifiers, that are requested from the getpub-
licdata API method. This method outputs a list of station identifiers and their corresponding
weather modules (outdoor module, wind, or rain meters) which can be used in getstationdata.
For Amsterdam, 60 PWSs measuring wind speed were present within the period January 2016
-– July 2018. Not all stations were active for this whole period: at most 52 stations actively
measured in a single day, but we see a general increase of the amount of stations measuring
over time (Figure 3.1). At the beginning of 2016, few PWS owners will have had the new wind
module, though the PWS itself has been gaining popularity over the years as well.
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Figure 3.1: Number of actively measuring Netatmo wind stations over the course of the study
period in Amsterdam.

3.2.2 Data evaluation

To evaluate the PWS wind speed measurements against a known reference, without the complex-
ity of an urban environment, one Netatmo station was installed at the experimental rural weather
field in Wageningen, The Netherlands (51.981◦N; 5.622◦E; 5.0 m.a.s.l.). This weather field is a
well-watered flat grass field that conforms to WMO regulations for weather observations. The
Netatmo wind module was installed at 2 m height (Figure 3.2, left panel), allowing for direct
comparison with the Gill/Campbell Scientific CSAT3 3D sonic anemometer (measurement rate
10 Hz; resolution: 0.001 m/s; 2% accuracy), also installed at 2 m, distanced roughly 10 m away
from the Netatmo sensor. Rain and relative humidity are also measured at the weather field and
used in the development of the QA procedure (see section 3.2.3). The field comparison at the
weather field ran from April 2018 to December 2018.

As a second reference, located in an urban setting, we utilise observations of three Netatmo
anemometers (Figure 3.2, right panel) installed on the rooftop of the Chair of Climatology build-
ing of the Technische Universität Berlin, Germany (52.457◦N, 13.316◦E). Here the reference sonic
is a Gill Windmaster Ultrasonic Anemometer installed on a pole, measurement height (middle
of path): 9.74 m above ground level (3.74 m above roof level). Wind speed range: 0–45 m/s,
resolution: 0.001 m/s, sampling at 10 Hz to give 1-minute data. The three Netatmo sensors were
installed on a boom 0.55 m below the reference sensor, in a north-south configuration, sensors
each 0.25 m apart (Figure 3.2, right panel). These comparison measurements ran from June
2018 to March 2019.

The reference to which we compare the urban PWS observations is the Amsterdam Atmo-
spheric Meteorological Supersite (AAMS), which consists of 25 stations covering the city centre
and suburbs, measuring wind, temperature, and relative humidity. The air temperature and
humidity sensor (Decagon VP-3, U.S.A.) is mounted inside a 184 mm aspirated radiation shield
(Davis, U.S.A.). The ventilation fan is powered by two small solar panels mounted on top of the
shield. The fans work at global radiation levels >100 W/m2. The radiation screens are mounted
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Figure 3.2: Left: Netatmo wind module (top sensor) at the Wageningen weather field, outfitted
with spikes to prevent birds resting and disturbing the position. The silver cylinder is the outdoor
temperature and humidity module, which is not used in this study. Right: Netatmo setup at
TU Berlin. The sensor numbers refer to the identifiers of the Netatmo wind modules.

onto lantern posts, 0.46 m away from the edge of the lantern post, 4.0 m above ground level. The
ultrasonic anemometer (Decagon DS-2, U.S.A.) has an accuracy of 0.30 m/s or 3% (whichever
is larger). The anemometer is mounted above the radiation screen 0.50 m away from the lantern
post edge and at a height of 4.30 m above ground level.

Rain and humidity observations from the WMO station at Amsterdam airport (Schiphol,
WMO 06240, situated 10 km to the southwest of the city centre) are used in the bias correction
for the PWS wind data. By using the WMO data as input for the bias correction (rather than
the AAMS reference network), the correction protocol can be used for any city with a nearby
WMO station, and does not require an extensive urban network. The WMO wind speed data
is not used as a reference. The LCZ framework allows for an objective division of a city and its
surroundings into zones with equal morphological properties, such as building heights, vegeta-
tion fraction, and building material. The LCZ map (Figure 3.3) we constructed for Amsterdam,
following the WUDAPT guidelines (http://www.wudapt.org/) shows the location of the AAMS
and PWSs, their respective LCZs, as well as the location of the WMO station. Table S1 contains
the full table of AAMS station locations and LCZs.

Most PWSs are concentrated around the city centre (LCZ2 and LCZ5; compact / open
midrise, and LCZ6, open low-rise), with some very close to the river and canals (LCZG, water),
and three stations in sparsely built areas (LCZ9), near farmlands. We use LCZs as an indicator
for urban morphology, which has a strong impact on wind speed (especially the ratio between
building height and street width), so comparing stations with similar LCZs is required. We
assume that morphology strongly determines a certain wind speed distribution, and by pooling
the individual station data into one overall distribution per LCZ we are more likely to sample
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Figure 3.1: Number of actively measuring Netatmo wind stations over the course of the study
period in Amsterdam.

3.2.2 Data evaluation

To evaluate the PWS wind speed measurements against a known reference, without the complex-
ity of an urban environment, one Netatmo station was installed at the experimental rural weather
field in Wageningen, The Netherlands (51.981◦N; 5.622◦E; 5.0 m.a.s.l.). This weather field is a
well-watered flat grass field that conforms to WMO regulations for weather observations. The
Netatmo wind module was installed at 2 m height (Figure 3.2, left panel), allowing for direct
comparison with the Gill/Campbell Scientific CSAT3 3D sonic anemometer (measurement rate
10 Hz; resolution: 0.001 m/s; 2% accuracy), also installed at 2 m, distanced roughly 10 m away
from the Netatmo sensor. Rain and relative humidity are also measured at the weather field and
used in the development of the QA procedure (see section 3.2.3). The field comparison at the
weather field ran from April 2018 to December 2018.

As a second reference, located in an urban setting, we utilise observations of three Netatmo
anemometers (Figure 3.2, right panel) installed on the rooftop of the Chair of Climatology build-
ing of the Technische Universität Berlin, Germany (52.457◦N, 13.316◦E). Here the reference sonic
is a Gill Windmaster Ultrasonic Anemometer installed on a pole, measurement height (middle
of path): 9.74 m above ground level (3.74 m above roof level). Wind speed range: 0–45 m/s,
resolution: 0.001 m/s, sampling at 10 Hz to give 1-minute data. The three Netatmo sensors were
installed on a boom 0.55 m below the reference sensor, in a north-south configuration, sensors
each 0.25 m apart (Figure 3.2, right panel). These comparison measurements ran from June
2018 to March 2019.

The reference to which we compare the urban PWS observations is the Amsterdam Atmo-
spheric Meteorological Supersite (AAMS), which consists of 25 stations covering the city centre
and suburbs, measuring wind, temperature, and relative humidity. The air temperature and
humidity sensor (Decagon VP-3, U.S.A.) is mounted inside a 184 mm aspirated radiation shield
(Davis, U.S.A.). The ventilation fan is powered by two small solar panels mounted on top of the
shield. The fans work at global radiation levels >100 W/m2. The radiation screens are mounted
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Figure 3.2: Left: Netatmo wind module (top sensor) at the Wageningen weather field, outfitted
with spikes to prevent birds resting and disturbing the position. The silver cylinder is the outdoor
temperature and humidity module, which is not used in this study. Right: Netatmo setup at
TU Berlin. The sensor numbers refer to the identifiers of the Netatmo wind modules.

onto lantern posts, 0.46 m away from the edge of the lantern post, 4.0 m above ground level. The
ultrasonic anemometer (Decagon DS-2, U.S.A.) has an accuracy of 0.30 m/s or 3% (whichever
is larger). The anemometer is mounted above the radiation screen 0.50 m away from the lantern
post edge and at a height of 4.30 m above ground level.

Rain and humidity observations from the WMO station at Amsterdam airport (Schiphol,
WMO 06240, situated 10 km to the southwest of the city centre) are used in the bias correction
for the PWS wind data. By using the WMO data as input for the bias correction (rather than
the AAMS reference network), the correction protocol can be used for any city with a nearby
WMO station, and does not require an extensive urban network. The WMO wind speed data
is not used as a reference. The LCZ framework allows for an objective division of a city and its
surroundings into zones with equal morphological properties, such as building heights, vegeta-
tion fraction, and building material. The LCZ map (Figure 3.3) we constructed for Amsterdam,
following the WUDAPT guidelines (http://www.wudapt.org/) shows the location of the AAMS
and PWSs, their respective LCZs, as well as the location of the WMO station. Table S1 contains
the full table of AAMS station locations and LCZs.

Most PWSs are concentrated around the city centre (LCZ2 and LCZ5; compact / open
midrise, and LCZ6, open low-rise), with some very close to the river and canals (LCZG, water),
and three stations in sparsely built areas (LCZ9), near farmlands. We use LCZs as an indicator
for urban morphology, which has a strong impact on wind speed (especially the ratio between
building height and street width), so comparing stations with similar LCZs is required. We
assume that morphology strongly determines a certain wind speed distribution, and by pooling
the individual station data into one overall distribution per LCZ we are more likely to sample
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Figure 3.3: Local Climate Zone map of Amsterdam. The diamonds indicate the PWSs; the
circles the AAMS stations, and the white triangle the WMO Amsterdam Airport station. The
black rectangle indicates the “city centre” stations used for analyses.

the ‘true’ wind speed distribution for a given LCZ, and not the microscale wind climate of one
particular station.

In section 3.3.4, the PWS data will be compared to the AAMS data over the period January
2017 to June 2018, which has good data availability for both AAMS and PWS. Only stations
roughly in the city centre (between 52.33 and 52.4◦N, and 4.837 and 4.95 ◦E) are used. Using
the entire PWS network would give a biased image of the fit to the AAMS reference, since a
large amount of PWSs are outside the city centre.

The applicability of the data in calm or windy conditions is examined in sections 3.3.4 and
3.3.4, for a relatively calm period (August – September 2017) and a relatively windy period
(February – April 2018) respectively. Both periods contain a relatively high data density of the
PWS network. Both sections also address the effect of morphology on the wind speed distribution,
analysing stations in LCZ2 and LCZ5.

3.2.3 Quality Assurance protocol
To set up a QA protocol to improve the quality of the crowdsourced wind observations we follow
Meier et al. (2017), who developed a rigorous QA procedure for air temperature measurements
from crowdsourced data. We adapt and extend their QA protocol to be suitable for wind data,
as follows:
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A Location requirement & morphology (QA A1 in Meier et al. (2017)). This criterion is based
on the provided location as present in the PWS data (latitude and longitude). Stations
with equal latitude and longitude are excluded. Additionally, we did a visual assessment
using Google Earth to filter out unusual locations (such as a station in the middle of a
canal). The initial is constructed from these criteria, leaving 60 PWSs. The stations are
classified into LCZs, using the LCZ map of Figure 3.3.

B Data averaging & filtering. The PWS data is provided in integer km/h, at roughly
5-minute resolution. This step aggregates all data (PWS, WMO, test field, AAMS) into
hourly means. According to the Netatmo website, the minimum wind speed measurement
is 0 m/s, with an accuracy of 0.5 m/s (1.8 km/h). However, having placed the wind
module indoors for a period of time, we found the minimum measurement tended to be
1 or 2 km/h rather than 0 km/h, meaning that very low wind speed or calm conditions
are probably not well captured by the sensor. This is also often reported by users at the
official Netatmo forum (https://forum.netatmo.com/). The histograms of the raw PWS
data indeed show a peak at precisely 1.0 km/h, much more than seen in reference sonic
anemometer data (not shown). The crowdsourced urban data especially suffer from the
large uncertainty at low wind speeds, which comprise a significant part (up to 20 % for
some locations) of the wind distribution. To eliminate the large bias in wind distribution,
all hourly means below 1.0 km/h are excluded from the analysis. A peak at 2.0 km/h
remains visible but is less pronounced.

C Filtering for meteorological conditions. From the field experiments we determine
whether meteorological circumstances, such as rain or humidity, negatively influence the
measurements. Netatmo users report that rain disturbs the measurements, and that the
stations are prone to collecting moisture inside the sonic module. We investigate any signif-
icant influence of rainy and humid conditions, and whether filtering for these circumstances
can improve data quality.

D Systematic bias correction. Any systematic deviation from the actual wind speed as
measured during the comparison measurements at the experimental sites will be corrected
for. The bias correction based on the experimental setup will be applied to the (filtered)
crowdsourced data from Amsterdam.

3.2.4 Wind statistics
A direct comparison between the crowdsourced data and the professional AAMS data, as was
performed for Wageningen and Berlin, is complicated by the urban heterogeneity and the con-
trasting setup between PWSs and the AAMS stations. Whereas the AAMS stations are installed
on lampposts within the street canyon (public space), the PWSs are installed in private space.
The exact PWS setup is unknown, which adds uncertainty. Hence, the wind statistics, rather
than instantaneous values, are compared with each other. Under idealised, undisturbed con-
ditions, wind speed follows a 2-parameter Weibull distribution (Justus et al., 1978; Takle and
Brown, 1978; Conradsen et al., 1984). This distribution is invalid below 0, has a peak at low
values, and a long tail. The distribution is determined by a shape (a) and a scale (b) factor
(Equation 3.1):

f(x) =
a

b
(
x

b
)a−1e−(x/b)a (3.1)
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Figure 3.3: Local Climate Zone map of Amsterdam. The diamonds indicate the PWSs; the
circles the AAMS stations, and the white triangle the WMO Amsterdam Airport station. The
black rectangle indicates the “city centre” stations used for analyses.

the ‘true’ wind speed distribution for a given LCZ, and not the microscale wind climate of one
particular station.

In section 3.3.4, the PWS data will be compared to the AAMS data over the period January
2017 to June 2018, which has good data availability for both AAMS and PWS. Only stations
roughly in the city centre (between 52.33 and 52.4◦N, and 4.837 and 4.95 ◦E) are used. Using
the entire PWS network would give a biased image of the fit to the AAMS reference, since a
large amount of PWSs are outside the city centre.

The applicability of the data in calm or windy conditions is examined in sections 3.3.4 and
3.3.4, for a relatively calm period (August – September 2017) and a relatively windy period
(February – April 2018) respectively. Both periods contain a relatively high data density of the
PWS network. Both sections also address the effect of morphology on the wind speed distribution,
analysing stations in LCZ2 and LCZ5.

3.2.3 Quality Assurance protocol
To set up a QA protocol to improve the quality of the crowdsourced wind observations we follow
Meier et al. (2017), who developed a rigorous QA procedure for air temperature measurements
from crowdsourced data. We adapt and extend their QA protocol to be suitable for wind data,
as follows:
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A Location requirement & morphology (QA A1 in Meier et al. (2017)). This criterion is based
on the provided location as present in the PWS data (latitude and longitude). Stations
with equal latitude and longitude are excluded. Additionally, we did a visual assessment
using Google Earth to filter out unusual locations (such as a station in the middle of a
canal). The initial is constructed from these criteria, leaving 60 PWSs. The stations are
classified into LCZs, using the LCZ map of Figure 3.3.

B Data averaging & filtering. The PWS data is provided in integer km/h, at roughly
5-minute resolution. This step aggregates all data (PWS, WMO, test field, AAMS) into
hourly means. According to the Netatmo website, the minimum wind speed measurement
is 0 m/s, with an accuracy of 0.5 m/s (1.8 km/h). However, having placed the wind
module indoors for a period of time, we found the minimum measurement tended to be
1 or 2 km/h rather than 0 km/h, meaning that very low wind speed or calm conditions
are probably not well captured by the sensor. This is also often reported by users at the
official Netatmo forum (https://forum.netatmo.com/). The histograms of the raw PWS
data indeed show a peak at precisely 1.0 km/h, much more than seen in reference sonic
anemometer data (not shown). The crowdsourced urban data especially suffer from the
large uncertainty at low wind speeds, which comprise a significant part (up to 20 % for
some locations) of the wind distribution. To eliminate the large bias in wind distribution,
all hourly means below 1.0 km/h are excluded from the analysis. A peak at 2.0 km/h
remains visible but is less pronounced.

C Filtering for meteorological conditions. From the field experiments we determine
whether meteorological circumstances, such as rain or humidity, negatively influence the
measurements. Netatmo users report that rain disturbs the measurements, and that the
stations are prone to collecting moisture inside the sonic module. We investigate any signif-
icant influence of rainy and humid conditions, and whether filtering for these circumstances
can improve data quality.

D Systematic bias correction. Any systematic deviation from the actual wind speed as
measured during the comparison measurements at the experimental sites will be corrected
for. The bias correction based on the experimental setup will be applied to the (filtered)
crowdsourced data from Amsterdam.

3.2.4 Wind statistics
A direct comparison between the crowdsourced data and the professional AAMS data, as was
performed for Wageningen and Berlin, is complicated by the urban heterogeneity and the con-
trasting setup between PWSs and the AAMS stations. Whereas the AAMS stations are installed
on lampposts within the street canyon (public space), the PWSs are installed in private space.
The exact PWS setup is unknown, which adds uncertainty. Hence, the wind statistics, rather
than instantaneous values, are compared with each other. Under idealised, undisturbed con-
ditions, wind speed follows a 2-parameter Weibull distribution (Justus et al., 1978; Takle and
Brown, 1978; Conradsen et al., 1984). This distribution is invalid below 0, has a peak at low
values, and a long tail. The distribution is determined by a shape (a) and a scale (b) factor
(Equation 3.1):
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However, the observations do not always match the Weibull distribution for sites with distur-
bances, for instance where the wind speed distribution shows a bimodal pattern, or where there
is a high probability of null (near-zero) wind speeds. This may occur in mountainous regions,
but also in complex environments such as cities. This especially holds for PWSs, which have a
relatively low accuracy, and are therefore very likely to have high peaks at the lower end of the
wind speed distribution. Carta et al. (2009) have investigated several statistical distributions
to capture a variety of wind regimes at the Canary Islands, including stations in mountainous
regions. They found that a mixture Weibull distribution can represent a wind speed regime with
a large probability of null winds, which is what we would expect in a city. Such a distribution
combines two Weibull distributions into one overall mixture distribution: one representing the
peak, and one representing the tail end of the distribution. Equation 3.1 then turns into Equation
3.2:

f(x) = ω1
a1(x)

a1−1

ba11
exp [−(

x

b1
)a1 ] + ω2

a2(x)
a2−1

ba22
exp [−(

x

b2
)a2 ] (3.2)

Here a1,2 and b1,2 are shape and scale parameters, respectively, for the first and second mix-
ture components. ω1,2 is the proportionality of the two mixture components, and their total
sums to 1. In this case, as for equation 1, x represents the measured wind speed [km/h], and
f(x) is the probability density function.

We use the R-package mixdist to fit a mixture distribution to the PWS and AAMS data
(Macdonald and Du, 2018). This method iteratively fits the shape and scale parameters, and
estimates the proportionality of the two distributions, through a maximum likelihood procedure.
This requires an initial estimate of the first order statistical moments and proportions of the two
distributions. These are estimated from the data share below 3.0 km/h, which also provides an
estimate of the proportionality.

We assess the performance of the PWS data against the AAMS reference data through the
resulting probability density distribution (PDD). We do this graphically, and numerically using
the coefficient of determination (R2) between the two PDDs, as is common practice in the wind
energy field (Garcia et al., 1998; Celik, 2004; Carta et al., 2009). In order to compare the
wind speed distributions between the AAMS and PWSs, mixture Weibull PDDs are constructed
for both data sources for similar LCZs, for an equal time period. All shown histograms of
the measurements are made with 0.5 km/h bins: the PDDs are constructed from the fitted
distributions parameters using 0.1 km/h intervals, up to the maximum range of the data (often
20 km/h).

3.3 Results

3.3.1 Evaluating the mixture Weibull distribution
To examine whether the mixture Weibull distribution indeed outperforms a regular Weibull
distribution for representing urban wind speed, we fit various distributions to a single AAMS
station, located in the city centre (station 2194, Spuiplein, see Table S1.). This site is a square,
surrounded by midrise buildings (LCZ2). Since the site is not in a narrow street canyon, the
influence of turbulent flows will likely be smaller than at a sheltered PWS site. Data were fil-
tered for rain and humidity (QA step C), but not for low wind speeds, since the AAMS sonic
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Figure 3.4: Regular (panel a) and mixture (panel b) Weibull distributions fit to the data of
AAMS station 2194. Shape (a), scale (b) and proportionality (ω) parameters are given for all
(mixture) components. In panel b, the green line indicates the resulting mixture distribution
made from its two mixture component distributions (red and blue line).

anemometer is well-capable of measuring very low wind speeds. Fitting a normal 2-component
Weibull distribution to the observations (Figure 3.4a) offers a fairly poor result: the peak at the
low wind speeds is poorly captured whereas the right tail tends to overestimate the frequency of
higher wind speed. The fitted mixture distribution on the other hand (Figure 3.4b) captures the
peak and the tail end, though a slight underrepresentation of the transition between the peak
and tail seems to occur (at ≈4 km/h). While graphically the mixture Weibull distribution fits
well to the observations, the R2 confirms that the mixture distribution (R2 = 98%) outperforms
the regular Weibull (R2 = 84%). Note that R2 values of Weibull distribution fits tend to be
relatively high, since the 0 and the furthest tail generally match (always very close to 0) because
of the shape of the distribution. Alternatively, we can evaluate the bulk of the wind speed, below
5 km/h, while excluding 0.0 km/h. R2 for the mixture Weibull distribution for this lower end
still amounts to 93%, but for the regular Weibull distribution drops down to 66%, confirming
the superiority of the mixture Weibull distribution.

While these results show that in general the mixture Weibull distribution represents the
disturbed urban wind environment well (other AAMS stations show similar results, not shown),
for some stations the single Weibull distribution performs equally well, for instance in relatively
open environments. However, the mixture Weibull distribution is a viable tool to use for the
typically urban, sheltered PWSs.
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However, the observations do not always match the Weibull distribution for sites with distur-
bances, for instance where the wind speed distribution shows a bimodal pattern, or where there
is a high probability of null (near-zero) wind speeds. This may occur in mountainous regions,
but also in complex environments such as cities. This especially holds for PWSs, which have a
relatively low accuracy, and are therefore very likely to have high peaks at the lower end of the
wind speed distribution. Carta et al. (2009) have investigated several statistical distributions
to capture a variety of wind regimes at the Canary Islands, including stations in mountainous
regions. They found that a mixture Weibull distribution can represent a wind speed regime with
a large probability of null winds, which is what we would expect in a city. Such a distribution
combines two Weibull distributions into one overall mixture distribution: one representing the
peak, and one representing the tail end of the distribution. Equation 3.1 then turns into Equation
3.2:
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Here a1,2 and b1,2 are shape and scale parameters, respectively, for the first and second mix-
ture components. ω1,2 is the proportionality of the two mixture components, and their total
sums to 1. In this case, as for equation 1, x represents the measured wind speed [km/h], and
f(x) is the probability density function.

We use the R-package mixdist to fit a mixture distribution to the PWS and AAMS data
(Macdonald and Du, 2018). This method iteratively fits the shape and scale parameters, and
estimates the proportionality of the two distributions, through a maximum likelihood procedure.
This requires an initial estimate of the first order statistical moments and proportions of the two
distributions. These are estimated from the data share below 3.0 km/h, which also provides an
estimate of the proportionality.

We assess the performance of the PWS data against the AAMS reference data through the
resulting probability density distribution (PDD). We do this graphically, and numerically using
the coefficient of determination (R2) between the two PDDs, as is common practice in the wind
energy field (Garcia et al., 1998; Celik, 2004; Carta et al., 2009). In order to compare the
wind speed distributions between the AAMS and PWSs, mixture Weibull PDDs are constructed
for both data sources for similar LCZs, for an equal time period. All shown histograms of
the measurements are made with 0.5 km/h bins: the PDDs are constructed from the fitted
distributions parameters using 0.1 km/h intervals, up to the maximum range of the data (often
20 km/h).

3.3 Results

3.3.1 Evaluating the mixture Weibull distribution
To examine whether the mixture Weibull distribution indeed outperforms a regular Weibull
distribution for representing urban wind speed, we fit various distributions to a single AAMS
station, located in the city centre (station 2194, Spuiplein, see Table S1.). This site is a square,
surrounded by midrise buildings (LCZ2). Since the site is not in a narrow street canyon, the
influence of turbulent flows will likely be smaller than at a sheltered PWS site. Data were fil-
tered for rain and humidity (QA step C), but not for low wind speeds, since the AAMS sonic
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Figure 3.4: Regular (panel a) and mixture (panel b) Weibull distributions fit to the data of
AAMS station 2194. Shape (a), scale (b) and proportionality (ω) parameters are given for all
(mixture) components. In panel b, the green line indicates the resulting mixture distribution
made from its two mixture component distributions (red and blue line).

anemometer is well-capable of measuring very low wind speeds. Fitting a normal 2-component
Weibull distribution to the observations (Figure 3.4a) offers a fairly poor result: the peak at the
low wind speeds is poorly captured whereas the right tail tends to overestimate the frequency of
higher wind speed. The fitted mixture distribution on the other hand (Figure 3.4b) captures the
peak and the tail end, though a slight underrepresentation of the transition between the peak
and tail seems to occur (at ≈4 km/h). While graphically the mixture Weibull distribution fits
well to the observations, the R2 confirms that the mixture distribution (R2 = 98%) outperforms
the regular Weibull (R2 = 84%). Note that R2 values of Weibull distribution fits tend to be
relatively high, since the 0 and the furthest tail generally match (always very close to 0) because
of the shape of the distribution. Alternatively, we can evaluate the bulk of the wind speed, below
5 km/h, while excluding 0.0 km/h. R2 for the mixture Weibull distribution for this lower end
still amounts to 93%, but for the regular Weibull distribution drops down to 66%, confirming
the superiority of the mixture Weibull distribution.

While these results show that in general the mixture Weibull distribution represents the
disturbed urban wind environment well (other AAMS stations show similar results, not shown),
for some stations the single Weibull distribution performs equally well, for instance in relatively
open environments. However, the mixture Weibull distribution is a viable tool to use for the
typically urban, sheltered PWSs.
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Figure 3.5: Scatterplots of hourly averaged wind speeds as observed by the sonic reference
instrument (x axis) and the Netatmo station (y axis) at the Wageningen weather field. (a) shows
the unfiltered, uncorrected data, with rain and/or humidity events marked in blue. (b) shows
the resulting data after filtering and bias correction.

3.3.2 Bias analysis through comparison measurements at Wa-
geningen weather field

For the Wageningen comparison measurements the unfiltered PWS data (Figure 3.5a) show a
systematic underestimation of the wind speed which increases with the wind speed. Also, the
PWS frequently measures 1.0 km/h when the actual wind speed is higher. Thus, hourly mean
wind speeds of 1.0 km/h and lower are excluded from all crowdsourced datasets (QA step B).

Moisture can collect inside the device, which is not completely watertight, and which can
influence the measurements (a common issue according to the users’ forums). This problem
appeared after 3 months when our installed PWS stopped measuring, at which point we dis-
mantled the module, cleaned and dried it, and re-installed it in the field. Sonic anemometer
measurements are known to be disturbed by rain and water droplets, which can affect the path
of the sonic and the instrument itself (Campbell Scientific, 2017). To investigate the effect of
humidity and rain, rain events are classified as hours with more than 0.1 mm accumulated rain-
fall, measured by the Wageningen pluviometer, as well as two hours afterwards, to also take
possible collection of droplets onto the anemometer path into account. In a similar way, humid-
ity events are hours with >95% relative humidity, measured by the reference. High humidity
events mainly coincide with positive wind bias by the Netatmo station in the lower wind speed
regions, whereas rain events are distributed over the entire wind speed distribution (Figure 3.5a).

After rain and humidity filtering, and removing the 1.0 km/h data, 64% of the data remain
for analysis (2294 hours from 3570). We correct for the systematic bias based on the wind speed
measured by the PWS, not on the ‘ground truth’ of the reference sonic. Hence, the correction is
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Figure 3.6: Hourly averaged wind speeds of the three Berlin Netatmo station (y-axis) against
reference sonic observations (x-axis). Netatmo data have been filtered and corrected. (a) shows
the correction using c = 0.559 obtained from the Wageningen dataset; (b) shows the corrections
using c = 0.884, obtained from optimising on the Berlin data.

independent from reference data and can be used universally. The data is corrected with a linear
regression model, optimised for the median absolute error (MDAE) of resulting corrected wind
speed, to give high outliers less weight. Other regression models, including higher polynomial
models and multiple linear regression models including other variables such as humidity or rain,
have been tested, but a linear regression model explained most variance whilst maintaining model
simplicity.

v = N(1 + c) (3.3)

In Equation 3.3, v is the resulting, corrected wind speed [km/h], N the uncorrected (but
filtered) wind speed measured by the Netatmo anemometer, and c is the regression coefficient (c
= 0.559 in this case). The majority of the corrected data follows the 1:1 line (Figure 3.5b), though
a portion of positive outliers remains. MDAE amounts to 0.78 km/h, down from 2.5 km/h in
the uncorrected set. However, the RMSE of the corrected data is still 1.94 km/h, compared to
3.5 km/h in the uncorrected dataset, indicating the spread still visible in the corrected dataset.

3.3.3 Bias correction of comparison measurements in Berlin
To investigate the robustness of the correction coefficient obtained at the Wageningen site, it
is applied to correct the Berlin Netatmo data, after QA step B. Data for rain and humidity
are obtained from the WMO station Dahlem (WMO 10381), close to the measurement location
(52.454 ◦N, 13.302 ◦E, 51 m.a.s.l.).

The Berlin wind speed data (Figure 3.6) are notably lower than the Wageningen data, with
hourly averages only reaching 8 km/h, and some rare outliers to 14 km/h. This is partly due to
the lower wind speed in urban areas in general but can also be caused by the trees surrounding
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Figure 3.5: Scatterplots of hourly averaged wind speeds as observed by the sonic reference
instrument (x axis) and the Netatmo station (y axis) at the Wageningen weather field. (a) shows
the unfiltered, uncorrected data, with rain and/or humidity events marked in blue. (b) shows
the resulting data after filtering and bias correction.

3.3.2 Bias analysis through comparison measurements at Wa-
geningen weather field

For the Wageningen comparison measurements the unfiltered PWS data (Figure 3.5a) show a
systematic underestimation of the wind speed which increases with the wind speed. Also, the
PWS frequently measures 1.0 km/h when the actual wind speed is higher. Thus, hourly mean
wind speeds of 1.0 km/h and lower are excluded from all crowdsourced datasets (QA step B).

Moisture can collect inside the device, which is not completely watertight, and which can
influence the measurements (a common issue according to the users’ forums). This problem
appeared after 3 months when our installed PWS stopped measuring, at which point we dis-
mantled the module, cleaned and dried it, and re-installed it in the field. Sonic anemometer
measurements are known to be disturbed by rain and water droplets, which can affect the path
of the sonic and the instrument itself (Campbell Scientific, 2017). To investigate the effect of
humidity and rain, rain events are classified as hours with more than 0.1 mm accumulated rain-
fall, measured by the Wageningen pluviometer, as well as two hours afterwards, to also take
possible collection of droplets onto the anemometer path into account. In a similar way, humid-
ity events are hours with >95% relative humidity, measured by the reference. High humidity
events mainly coincide with positive wind bias by the Netatmo station in the lower wind speed
regions, whereas rain events are distributed over the entire wind speed distribution (Figure 3.5a).

After rain and humidity filtering, and removing the 1.0 km/h data, 64% of the data remain
for analysis (2294 hours from 3570). We correct for the systematic bias based on the wind speed
measured by the PWS, not on the ‘ground truth’ of the reference sonic. Hence, the correction is
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Figure 3.6: Hourly averaged wind speeds of the three Berlin Netatmo station (y-axis) against
reference sonic observations (x-axis). Netatmo data have been filtered and corrected. (a) shows
the correction using c = 0.559 obtained from the Wageningen dataset; (b) shows the corrections
using c = 0.884, obtained from optimising on the Berlin data.

independent from reference data and can be used universally. The data is corrected with a linear
regression model, optimised for the median absolute error (MDAE) of resulting corrected wind
speed, to give high outliers less weight. Other regression models, including higher polynomial
models and multiple linear regression models including other variables such as humidity or rain,
have been tested, but a linear regression model explained most variance whilst maintaining model
simplicity.

v = N(1 + c) (3.3)

In Equation 3.3, v is the resulting, corrected wind speed [km/h], N the uncorrected (but
filtered) wind speed measured by the Netatmo anemometer, and c is the regression coefficient (c
= 0.559 in this case). The majority of the corrected data follows the 1:1 line (Figure 3.5b), though
a portion of positive outliers remains. MDAE amounts to 0.78 km/h, down from 2.5 km/h in
the uncorrected set. However, the RMSE of the corrected data is still 1.94 km/h, compared to
3.5 km/h in the uncorrected dataset, indicating the spread still visible in the corrected dataset.

3.3.3 Bias correction of comparison measurements in Berlin
To investigate the robustness of the correction coefficient obtained at the Wageningen site, it
is applied to correct the Berlin Netatmo data, after QA step B. Data for rain and humidity
are obtained from the WMO station Dahlem (WMO 10381), close to the measurement location
(52.454 ◦N, 13.302 ◦E, 51 m.a.s.l.).

The Berlin wind speed data (Figure 3.6) are notably lower than the Wageningen data, with
hourly averages only reaching 8 km/h, and some rare outliers to 14 km/h. This is partly due to
the lower wind speed in urban areas in general but can also be caused by the trees surrounding
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the building, sheltering the station. In this sense, the Berlin data represent what we can expect
in terms of Netatmo setup: sheltered environments in gardens or on balconies. Consequently,
around 40 % of the hourly values are 1.0 km/h, which are filtered out in QA level B. Filtering for
rain and humidity events in QA level C (of which rain is the main contributor, humidity hardly
ever reaches 90% for this site), brings the total data reduction to 45.1%. This indicates the main
expected contributor to error is the underperformance of the hardware at low wind speeds.

The correction factor obtained from the Wageningen dataset (c = 0.559) is initially applied to
the (filtered) Berlin dataset (Figure 3.6a). Results are good, with the output statistics showing
a better response than for Wageningen: MDAE is only 0.55 km/h, RMSE is 0.64 km/h and R2

is 83%. However, some underestimation still seems to be present, albeit not as prominent as
in the initial data. Therefore, we repeated the optimisation procedure for the Berlin dataset to
derive a new correction constant. This new correction constant is higher (c = 0.884), indicating
that the underestimation of the Netatmo is stronger in Berlin compared to Wageningen. Espe-
cially at relatively low wind speeds, the fit to the reference observations is better, and model
statistics improve, though not strongly (Figure 3.6b). At the upper end of the measurements,
some overestimation appears due to the higher correction factor which weighs heavier on higher
wind speeds (see Equation 3.3). Since this new correction factor is tuned towards a wind speed
distribution characterised by lower (urban) wind speeds, this might be a preferred tool to correct
the urban PWS measurements than the correction coefficient derived from the rural Wageningen
data, which covers a much wider wind speed spectrum. In Section 3.3.4, both will be tested
to see which one results in a better fit to the reference network. A separate calculation of the
correction coefficient on the Wageningen data, using only wind speeds below 10 km/h, did not
significantly change the previously found value for c.

3.3.4 Application of QA to Amsterdam data
The previous sections showed that the Netatmo anemometer is capable of measuring wind speeds,
but requires a substantial correction for rain/humidity events and portrays a systematic negative
bias. The following sections apply the QA protocol from Section 3.2.3 to the urban PWS data,
comparing the data after each QA step to the rain and humidity filtered AAMS data as the
reference, with the R2 of the PDDs as measure of goodness of fit. In Sections 3.3.4 and 3.3.4 the
data are separated into periods of relatively low and high wind speeds to analyse the dependency
of the QA protocol on mean wind speed.

QA effect on the entire data set (January 2017 -– July 2018)

The AAMS dataset contains 99950 records over 17 stations, after filtering for rain and humidity
(which removed 34.7% of the originally available data). This filtered dataset serves as the refer-
ence against which the PWS data is tested across the various QA steps. For the PWS data, the
total unfiltered data available (prior to any QA) is 164267 records over 17 stations (Figure 3.7a).
At QA level B, which removes the 1.0 km/h values, the data set is reduced by 21.6 % to 128655
records (Figure 3.7b). At QA level C, filtering for rain and humidity, total data reduction is 45.9
%, or 88897 records (Figure 3.7c). The disturbing effect of the 1.0 km/h measurements can be
seen in Figure 3.7a, where the peak is prominent and strongly influences the PDD of the PWS
data.
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Figure 3.7: QA protocol applied to all city centre PWSs. Bars indicate the PWS data in 0.5
km/h bins; red and blue lines are the two mixture Weibull components that make up the mixture
Weibull distribution (green). Black dashed line is the rain and humidity filtered AAMS reference
probability density distribution (PDD); a1,2, b1,2 and ω1,2 are shape, scale, and proportionality
parameters of the components, respectively, as in Equation 3.2. R2 is the squared correlation
between the PWS PDD and the AAMS PDD. Panel (a) is the unfiltered, hourly averaged data;
(b) the data with 1.0 km/h values removed (QA level B); (c) the data filtered for rain and
humidity (QA level C), and (d) the bias corrected data using c = 0.559 in Equation 3.3 (QA
level D).

Fit to the reference AAMS data is poor (R2 = 64%), since the centre of the PWS PDD is
much lower than the reference. Removing these 1.0 km/h values strongly improves the fit (to R2

= 85.8 %, Figure 3.7b) but the peak at low wind speeds is still prominent. Filtering for rain and
humidity (Figure 3.7c) does little to improve the peak values, since rain events tend to coincide
with relatively high wind speeds, and as such the main data reduction occurs at the tail end
of the PDD. The fit only marginally improves with respect to the previous QA step (to R2 =
87.1%). Applying the bias correction (using c = 0.559) results in a strong improvement (R2 =
91.6%), which eliminates the high peak value, and the PWS PDD fits that of the AAMS data
much better. However, due to the linear nature of the correction, some overestimation of the
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the building, sheltering the station. In this sense, the Berlin data represent what we can expect
in terms of Netatmo setup: sheltered environments in gardens or on balconies. Consequently,
around 40 % of the hourly values are 1.0 km/h, which are filtered out in QA level B. Filtering for
rain and humidity events in QA level C (of which rain is the main contributor, humidity hardly
ever reaches 90% for this site), brings the total data reduction to 45.1%. This indicates the main
expected contributor to error is the underperformance of the hardware at low wind speeds.

The correction factor obtained from the Wageningen dataset (c = 0.559) is initially applied to
the (filtered) Berlin dataset (Figure 3.6a). Results are good, with the output statistics showing
a better response than for Wageningen: MDAE is only 0.55 km/h, RMSE is 0.64 km/h and R2

is 83%. However, some underestimation still seems to be present, albeit not as prominent as
in the initial data. Therefore, we repeated the optimisation procedure for the Berlin dataset to
derive a new correction constant. This new correction constant is higher (c = 0.884), indicating
that the underestimation of the Netatmo is stronger in Berlin compared to Wageningen. Espe-
cially at relatively low wind speeds, the fit to the reference observations is better, and model
statistics improve, though not strongly (Figure 3.6b). At the upper end of the measurements,
some overestimation appears due to the higher correction factor which weighs heavier on higher
wind speeds (see Equation 3.3). Since this new correction factor is tuned towards a wind speed
distribution characterised by lower (urban) wind speeds, this might be a preferred tool to correct
the urban PWS measurements than the correction coefficient derived from the rural Wageningen
data, which covers a much wider wind speed spectrum. In Section 3.3.4, both will be tested
to see which one results in a better fit to the reference network. A separate calculation of the
correction coefficient on the Wageningen data, using only wind speeds below 10 km/h, did not
significantly change the previously found value for c.

3.3.4 Application of QA to Amsterdam data
The previous sections showed that the Netatmo anemometer is capable of measuring wind speeds,
but requires a substantial correction for rain/humidity events and portrays a systematic negative
bias. The following sections apply the QA protocol from Section 3.2.3 to the urban PWS data,
comparing the data after each QA step to the rain and humidity filtered AAMS data as the
reference, with the R2 of the PDDs as measure of goodness of fit. In Sections 3.3.4 and 3.3.4 the
data are separated into periods of relatively low and high wind speeds to analyse the dependency
of the QA protocol on mean wind speed.

QA effect on the entire data set (January 2017 -– July 2018)

The AAMS dataset contains 99950 records over 17 stations, after filtering for rain and humidity
(which removed 34.7% of the originally available data). This filtered dataset serves as the refer-
ence against which the PWS data is tested across the various QA steps. For the PWS data, the
total unfiltered data available (prior to any QA) is 164267 records over 17 stations (Figure 3.7a).
At QA level B, which removes the 1.0 km/h values, the data set is reduced by 21.6 % to 128655
records (Figure 3.7b). At QA level C, filtering for rain and humidity, total data reduction is 45.9
%, or 88897 records (Figure 3.7c). The disturbing effect of the 1.0 km/h measurements can be
seen in Figure 3.7a, where the peak is prominent and strongly influences the PDD of the PWS
data.
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Figure 3.7: QA protocol applied to all city centre PWSs. Bars indicate the PWS data in 0.5
km/h bins; red and blue lines are the two mixture Weibull components that make up the mixture
Weibull distribution (green). Black dashed line is the rain and humidity filtered AAMS reference
probability density distribution (PDD); a1,2, b1,2 and ω1,2 are shape, scale, and proportionality
parameters of the components, respectively, as in Equation 3.2. R2 is the squared correlation
between the PWS PDD and the AAMS PDD. Panel (a) is the unfiltered, hourly averaged data;
(b) the data with 1.0 km/h values removed (QA level B); (c) the data filtered for rain and
humidity (QA level C), and (d) the bias corrected data using c = 0.559 in Equation 3.3 (QA
level D).

Fit to the reference AAMS data is poor (R2 = 64%), since the centre of the PWS PDD is
much lower than the reference. Removing these 1.0 km/h values strongly improves the fit (to R2

= 85.8 %, Figure 3.7b) but the peak at low wind speeds is still prominent. Filtering for rain and
humidity (Figure 3.7c) does little to improve the peak values, since rain events tend to coincide
with relatively high wind speeds, and as such the main data reduction occurs at the tail end
of the PDD. The fit only marginally improves with respect to the previous QA step (to R2 =
87.1%). Applying the bias correction (using c = 0.559) results in a strong improvement (R2 =
91.6%), which eliminates the high peak value, and the PWS PDD fits that of the AAMS data
much better. However, due to the linear nature of the correction, some overestimation of the
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higher wind speeds is introduced. Using c = 0.884 deteriorates the result since low wind speeds
are underrepresented in that case, and R2 is only 77.7% (not shown).
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Figure 3.8: QA applied to the calm wind period, for LCZ2 (left, panels a to d), based on 9
PWSs (bars) and 12 AAMS reference stations (dashed black lines); and LCZ5 (right, panels e to
h) based on 18 PWSs (bars) and 6 AAMS reference stations (dashed black lines). Setup similar
as in Figure 7. In panels (d) and (h), QA level D, the value for c is 0.559.

August and September 2017 were characterised by generally calm conditions in Amsterdam:
78% of hourly wind speed values measured at Amsterdam airport are below 5 m/s. During the
period 9 PWSs were operational in LCZ2, compared to 12 AAMS stations. Prior to any filtering
(QA level A), the PWS data contains 10243 observations across all 9 stations. The 12 AAMS
stations only have 2 missing hours in this period, but the rain and humidity filters remove 36.4
% of the data (leaving 11182 records).
The histograms of the wind data showcase the calm conditions in this period (Figure 3.8): both
the unfiltered PWS data and the AAMS data (Figure 3.8a) peak at very low wind speeds, and
the 1.0 km/h peak of the PWS data makes up for over 20 % of the histogram. Indeed, at QA
level B (Figure 3.8b), 27.6 % of the data is filtered out, leaving 7418 records. This shifts the
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centre of the distribution to almost exactly the value of the peak in the AAMS distribution,
resulting in a very good fit to the reference even at QA level B (R2 = 94.7%).

The tail of the PWS PDD slightly overestimates the occurrence of high wind speeds, but by
filtering for rain and humidity (Figure 3.8c) this is corrected, and the fit to the AAMS refer-
ence is further improved (R2 = 97.9 %). When applying the bias correction (with c = 0.559),
results become worse (R2 drops to 61.2 %, Figure 3.8d), since low wind speeds are overcorrected
towards higher values. The bias correction does not seem to perform well during these circum-
stances with very low wind speeds, and just data filtering is enough to obtain a good fit to the
reference network. The PWS’s tendency to underestimate wind speed seems to only become an
issue when wind speeds are not low (median wind 2 km/h), so QA step D for these situations
is not recommended.

To ensure this result is not only valid for LCZ2, stations from LCZ5 are evaluated for the
same period (Figure 3.8e-h). Here we have 6 AAMS stations with the same relative data re-
duction after rain and humidity filtering (5576 observations left), and 18 PWSs. There are a
total of 18515 hourly PWS observations across the 18 stations prior to any filtering. The low
winds seem even more prominent in LCZ5: the AAMS observations peak at 2.0 km/h (Figure
3.8e). Removing the 1.0 km/h measurements (QA level B) reduces PWS data by 20.6 % (14700
measurements left). The rain and humidity filter (QA level C) brings the total data reduction
to 49.6 % (9329 measurements left), comparable to LCZ2. This mainly filters the higher wind
speed observations at the right tail, though some overrepresentation of high wind speed remains.
Oddly enough, here the best results have been made by just the hourly, unfiltered data (QA step
A, R2 = 94.3 %), since the AAMS wind speed values themselves are very low. Understandably,
applying the bias correction (QA level D) deteriorates the fit to the AAMS values further since
the distribution is shifted to the right (Figure 3.8h).

Some differences in the characteristics of the Weibull distribution appear between the two
LCZs. Especially the scale (b) parameter is lower for both mixture components in LCZ5, indi-
cating lower wind speeds altogether (the scale parameter scales with mean wind speed). The
shape (a) parameter is only different for the first mixture component (red lines in Figure 3.8): at
4.47 in Figure 3.8f it shows a very narrow distribution with a clear peak, related to the narrow
shape of the overall distribution, indicating low wind speed values and low spread. Regardless of
the LCZ, the QA protocol is not fully able to improve wind speed estimations from PWSs under
calm conditions, only up to a certain point (QA level C, and arguable not even that for LCZ5),
and bias correction deteriorates results. Applying QA step D should therefore be dependent on
the mean wind speed. However, applying a different type of correction model, consisting of two
separate corrections (for wind speed either above or below 3 km/h) did not significantly improve
the results compared to the model used here (results not shown). The underperformance is
therefore likely due to the strong relative error introduced by the integer data resolution and the
measurement accuracy of 1.8 km/h (0.5 m/s).

Windy period (February — April 2018)

The period of February -– April 2018 was relatively windy, with 54% of the hourly wind speeds
at Amsterdam airport above 5 m/s. 15497 AAMS records are available in LCZ2 after filtering,
out of 10 AAMS stations, of which one reported no data for 1 month. 16945 unfiltered hourly
PWS records are available for LCZ2, over 9 PWSs. Data reduction is 17.9 % at QA level B
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higher wind speeds is introduced. Using c = 0.884 deteriorates the result since low wind speeds
are underrepresented in that case, and R2 is only 77.7% (not shown).
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Figure 3.8: QA applied to the calm wind period, for LCZ2 (left, panels a to d), based on 9
PWSs (bars) and 12 AAMS reference stations (dashed black lines); and LCZ5 (right, panels e to
h) based on 18 PWSs (bars) and 6 AAMS reference stations (dashed black lines). Setup similar
as in Figure 7. In panels (d) and (h), QA level D, the value for c is 0.559.

August and September 2017 were characterised by generally calm conditions in Amsterdam:
78% of hourly wind speed values measured at Amsterdam airport are below 5 m/s. During the
period 9 PWSs were operational in LCZ2, compared to 12 AAMS stations. Prior to any filtering
(QA level A), the PWS data contains 10243 observations across all 9 stations. The 12 AAMS
stations only have 2 missing hours in this period, but the rain and humidity filters remove 36.4
% of the data (leaving 11182 records).
The histograms of the wind data showcase the calm conditions in this period (Figure 3.8): both
the unfiltered PWS data and the AAMS data (Figure 3.8a) peak at very low wind speeds, and
the 1.0 km/h peak of the PWS data makes up for over 20 % of the histogram. Indeed, at QA
level B (Figure 3.8b), 27.6 % of the data is filtered out, leaving 7418 records. This shifts the
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centre of the distribution to almost exactly the value of the peak in the AAMS distribution,
resulting in a very good fit to the reference even at QA level B (R2 = 94.7%).

The tail of the PWS PDD slightly overestimates the occurrence of high wind speeds, but by
filtering for rain and humidity (Figure 3.8c) this is corrected, and the fit to the AAMS refer-
ence is further improved (R2 = 97.9 %). When applying the bias correction (with c = 0.559),
results become worse (R2 drops to 61.2 %, Figure 3.8d), since low wind speeds are overcorrected
towards higher values. The bias correction does not seem to perform well during these circum-
stances with very low wind speeds, and just data filtering is enough to obtain a good fit to the
reference network. The PWS’s tendency to underestimate wind speed seems to only become an
issue when wind speeds are not low (median wind 2 km/h), so QA step D for these situations
is not recommended.

To ensure this result is not only valid for LCZ2, stations from LCZ5 are evaluated for the
same period (Figure 3.8e-h). Here we have 6 AAMS stations with the same relative data re-
duction after rain and humidity filtering (5576 observations left), and 18 PWSs. There are a
total of 18515 hourly PWS observations across the 18 stations prior to any filtering. The low
winds seem even more prominent in LCZ5: the AAMS observations peak at 2.0 km/h (Figure
3.8e). Removing the 1.0 km/h measurements (QA level B) reduces PWS data by 20.6 % (14700
measurements left). The rain and humidity filter (QA level C) brings the total data reduction
to 49.6 % (9329 measurements left), comparable to LCZ2. This mainly filters the higher wind
speed observations at the right tail, though some overrepresentation of high wind speed remains.
Oddly enough, here the best results have been made by just the hourly, unfiltered data (QA step
A, R2 = 94.3 %), since the AAMS wind speed values themselves are very low. Understandably,
applying the bias correction (QA level D) deteriorates the fit to the AAMS values further since
the distribution is shifted to the right (Figure 3.8h).

Some differences in the characteristics of the Weibull distribution appear between the two
LCZs. Especially the scale (b) parameter is lower for both mixture components in LCZ5, indi-
cating lower wind speeds altogether (the scale parameter scales with mean wind speed). The
shape (a) parameter is only different for the first mixture component (red lines in Figure 3.8): at
4.47 in Figure 3.8f it shows a very narrow distribution with a clear peak, related to the narrow
shape of the overall distribution, indicating low wind speed values and low spread. Regardless of
the LCZ, the QA protocol is not fully able to improve wind speed estimations from PWSs under
calm conditions, only up to a certain point (QA level C, and arguable not even that for LCZ5),
and bias correction deteriorates results. Applying QA step D should therefore be dependent on
the mean wind speed. However, applying a different type of correction model, consisting of two
separate corrections (for wind speed either above or below 3 km/h) did not significantly improve
the results compared to the model used here (results not shown). The underperformance is
therefore likely due to the strong relative error introduced by the integer data resolution and the
measurement accuracy of 1.8 km/h (0.5 m/s).

Windy period (February — April 2018)

The period of February -– April 2018 was relatively windy, with 54% of the hourly wind speeds
at Amsterdam airport above 5 m/s. 15497 AAMS records are available in LCZ2 after filtering,
out of 10 AAMS stations, of which one reported no data for 1 month. 16945 unfiltered hourly
PWS records are available for LCZ2, over 9 PWSs. Data reduction is 17.9 % at QA level B
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Figure 3.9: QA applied to the windy case, for LCZ2 (left, panels a to d), based on 9 PWSs
(bars) and 10 AAMS reference stations (dashed black lines); and LCZ5 (right, panels e to h)
based on 18 PWSs (bars) and 6 AAMS reference stations (dashed black lines). Setup similar as
in Figure 7. In panels (d) and (h), QA level D, the value for c = 0.559.

(13910 records left); 38.0 % for QA level C (10507 records left). Compared to Figure 3.8, Figure
3.9 shows a wider distribution of wind speed, and the peak of the data is not at 1.0 km/h this
time, but at 2.0 km/h (Figure 3.9b). The AAMS data is centred around 5 km/h, indicating
that the average wind speed measured by the reference network is higher than in the previous
case. Here, the bias correction is clearly valuable, resulting in a very good fit at the centre of
the distribution (Figure 3.9d, R2 = 94.3%). Comparing the proportionality parameters of the
tail distribution (ω2) between Figures 3.8d and 3.9d reveals that the tail end of the distribution
contributes relatively more than the peak: ω2 always exceeds 0.5.

LCZ5 contains 6407 reference observations across 6 AAMS stations, and 30413 PWS obser-
vations after excluding missing data, across 18 PWSs. 23.4 % of the data is removed at QA level
B (23290 records left); 43.5 % for QA level C (17176 records left). The AAMS data is similar to
LCZ2, but with a longer tail end (observed wind speeds also exceed 15 km/h). Initial unfiltered
PWS data is still focused on the strong peak at 1 km/h (Figure 3.9e) resulting in a poor fit (R2

= 30 %) with the higher-tailed reference data. Removing the 1.0 km/h peak improves the fit
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by shifting the distribution to the right, but still suffers from a large number of low wind speed
observations around 2 km/h (Figure 3.9f and 3.9g). Applying the systematic bias correction
strongly improves the fit to the AAMS data (R2 = 95.4 % with c = 0.559; R2 = 94.9 % with c
= 0.884). The shape of the first Weibull component is rather curious owing to its low shape (a)
parameter. A shape parameter very close to 1 approaches the exponential distribution (where a
= 1) which carries a strong weight at the very low end of the distribution. The wider tail of LCZ2
is the most remarkable difference in wind speed distribution between the two LCZs, suggesting
a higher likelihood of higher wind speeds, which could be caused by tunnelling through street
canyons (Macdonald, 2000).
For LCZ5 we conclude that, as for LCZ2, the QA protocol strongly improves the raw PWS
data to the point where it can provide an estimate of the wind speed distribution for a windy
case. The poor result of Section 3.3.4 can therefore be attributed to the very low wind speed
which makes up the bulk of the distribution, at which the Netatmo anemometer is not capable
of measuring due to hardware limitations and the coarse output in integer km/h.

3.4 Discussion

3.4.1 Use of PWS data in other studies

The use of citizen science is not new in meteorology, and has even aided in the birth of the
field (Eden, 2009). The emergence of PWSs has contributed to various studies, especially in
urban areas lacking traditional measurements (Steeneveld et al., 2011; Wolters and Brandsma,
2012; Chapman et al., 2017; De Vos et al., 2017; Fenner et al., 2017; Chapman and Bell, 2018),
but also at the level of national weather authorities (Krennert et al., 2018). While PWS data
provides valuable insights into the under-sampled urban regions, the data remains of relatively
low quality compared to WMO standards. The nature of the technique means there is little
information regarding the setup of the station, which will not have been performed by an expert,
and can thereby lead to substantial errors in the data. Additionally, the hardware itself can be a
cause of error, such as unventilated screens heating up during the day to strongly overestimate
outside air temperature (Bell et al., 2015; Meier et al., 2017). Our study shows that hardware
can play a significant role in wind speed errors as well, here related to the effect of humidity
and rain on the anemometer. For meaningful results, extensive quality checks need to be made,
and have been constructed for PWS air temperature data (Meier et al., 2017; Napoly et al.,
2018) and rain (De Vos et al., 2017). These account for the different error sources associated
with crowdsourced PWS data by statistical checks and/or using data from surrounding (refer-
ence) stations to determine and filter out potentially erroneous data. For wind speed this is
not applicable due to the microscale character of the measurements, but grouping stations into
LCZs is an appropriate solution, reducing the impact of potentially wrong individual station data.

Using crowdsourcing or non-traditional data sources for wind measurements is compar-
atively rare: (Agüera-Pérez et al., 2014) utilise several data sources to construct a global
wind field for Andalusia (Spain). For instance, the Spanish Meteoclimatic platform (https:
//www.meteoclimatic.net/) offers data, though without QA. Furthermore, the density of the
network is scarce in comparison to our work (1 station every ≈450 km2), and only some metadata
such as measurement height is known. An interesting effort has been made to use mobile phones
to measure wind, using an add-on device to create crowdsourced Handheld Wind Observations
(Hintz et al., 2017), but the dataset is limited and seems focused towards the coast (mainly used
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Figure 3.9: QA applied to the windy case, for LCZ2 (left, panels a to d), based on 9 PWSs
(bars) and 10 AAMS reference stations (dashed black lines); and LCZ5 (right, panels e to h)
based on 18 PWSs (bars) and 6 AAMS reference stations (dashed black lines). Setup similar as
in Figure 7. In panels (d) and (h), QA level D, the value for c = 0.559.

(13910 records left); 38.0 % for QA level C (10507 records left). Compared to Figure 3.8, Figure
3.9 shows a wider distribution of wind speed, and the peak of the data is not at 1.0 km/h this
time, but at 2.0 km/h (Figure 3.9b). The AAMS data is centred around 5 km/h, indicating
that the average wind speed measured by the reference network is higher than in the previous
case. Here, the bias correction is clearly valuable, resulting in a very good fit at the centre of
the distribution (Figure 3.9d, R2 = 94.3%). Comparing the proportionality parameters of the
tail distribution (ω2) between Figures 3.8d and 3.9d reveals that the tail end of the distribution
contributes relatively more than the peak: ω2 always exceeds 0.5.

LCZ5 contains 6407 reference observations across 6 AAMS stations, and 30413 PWS obser-
vations after excluding missing data, across 18 PWSs. 23.4 % of the data is removed at QA level
B (23290 records left); 43.5 % for QA level C (17176 records left). The AAMS data is similar to
LCZ2, but with a longer tail end (observed wind speeds also exceed 15 km/h). Initial unfiltered
PWS data is still focused on the strong peak at 1 km/h (Figure 3.9e) resulting in a poor fit (R2

= 30 %) with the higher-tailed reference data. Removing the 1.0 km/h peak improves the fit

3.4 Discussion 53

by shifting the distribution to the right, but still suffers from a large number of low wind speed
observations around 2 km/h (Figure 3.9f and 3.9g). Applying the systematic bias correction
strongly improves the fit to the AAMS data (R2 = 95.4 % with c = 0.559; R2 = 94.9 % with c
= 0.884). The shape of the first Weibull component is rather curious owing to its low shape (a)
parameter. A shape parameter very close to 1 approaches the exponential distribution (where a
= 1) which carries a strong weight at the very low end of the distribution. The wider tail of LCZ2
is the most remarkable difference in wind speed distribution between the two LCZs, suggesting
a higher likelihood of higher wind speeds, which could be caused by tunnelling through street
canyons (Macdonald, 2000).
For LCZ5 we conclude that, as for LCZ2, the QA protocol strongly improves the raw PWS
data to the point where it can provide an estimate of the wind speed distribution for a windy
case. The poor result of Section 3.3.4 can therefore be attributed to the very low wind speed
which makes up the bulk of the distribution, at which the Netatmo anemometer is not capable
of measuring due to hardware limitations and the coarse output in integer km/h.

3.4 Discussion

3.4.1 Use of PWS data in other studies

The use of citizen science is not new in meteorology, and has even aided in the birth of the
field (Eden, 2009). The emergence of PWSs has contributed to various studies, especially in
urban areas lacking traditional measurements (Steeneveld et al., 2011; Wolters and Brandsma,
2012; Chapman et al., 2017; De Vos et al., 2017; Fenner et al., 2017; Chapman and Bell, 2018),
but also at the level of national weather authorities (Krennert et al., 2018). While PWS data
provides valuable insights into the under-sampled urban regions, the data remains of relatively
low quality compared to WMO standards. The nature of the technique means there is little
information regarding the setup of the station, which will not have been performed by an expert,
and can thereby lead to substantial errors in the data. Additionally, the hardware itself can be a
cause of error, such as unventilated screens heating up during the day to strongly overestimate
outside air temperature (Bell et al., 2015; Meier et al., 2017). Our study shows that hardware
can play a significant role in wind speed errors as well, here related to the effect of humidity
and rain on the anemometer. For meaningful results, extensive quality checks need to be made,
and have been constructed for PWS air temperature data (Meier et al., 2017; Napoly et al.,
2018) and rain (De Vos et al., 2017). These account for the different error sources associated
with crowdsourced PWS data by statistical checks and/or using data from surrounding (refer-
ence) stations to determine and filter out potentially erroneous data. For wind speed this is
not applicable due to the microscale character of the measurements, but grouping stations into
LCZs is an appropriate solution, reducing the impact of potentially wrong individual station data.

Using crowdsourcing or non-traditional data sources for wind measurements is compar-
atively rare: (Agüera-Pérez et al., 2014) utilise several data sources to construct a global
wind field for Andalusia (Spain). For instance, the Spanish Meteoclimatic platform (https:
//www.meteoclimatic.net/) offers data, though without QA. Furthermore, the density of the
network is scarce in comparison to our work (1 station every ≈450 km2), and only some metadata
such as measurement height is known. An interesting effort has been made to use mobile phones
to measure wind, using an add-on device to create crowdsourced Handheld Wind Observations
(Hintz et al., 2017), but the dataset is limited and seems focused towards the coast (mainly used
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by windsurfers).

3.4.2 Causes of error in PWS wind
The greatest issue with crowdsourcing data is its lack of metadata (Muller et al., 2015). The
aforementioned scarcity of studies exploring crowdsourced or otherwise unorthodox measure-
ments can be ascribed to the large uncertainties inherent to (urban) wind measurements. Wind
is strongly variable in time and space, more so than air temperature and rainfall. Especially the
station setup is a crucial factor: air temperature measurements are affected by radiation from
nearby walls or direct sunlight in the case of unshielded thermometers; rain is sensitive to the
orientation and level of shelter of the station (which can cause underestimation of rainfall), but
wind speed is affected not only by orientation (the sonic anemometer needs to be level), and
strongly by shelter and obstacles (which induce turbulence and block the flow), but also the
height of the measurement, which is unknown. Only the most basic location information is given
by Netatmo, which does not contain any information regarding setup, calibration, or height of
the measurements. Citizens have the option to provide more information about their station on
the Wunderground platform (https://www.wunderground.com/), but this is entirely voluntary
and is only provided by a few owners. PWS owners on rare occasions have their own weather
website, which often provides very detailed information about the station, but these tend to
be the higher-end stations such as Davis Vantage stations (Steeneveld et al., 2011; Wolters and
Brandsma, 2012), not the cheaper Netatmo devices.

A large uncertainty lies within the Netatmo PWS itself: our bias analysis and experimental
setup shows that the station has a tendency to underestimate relatively high wind speeds, and
substantially underestimates very low (<2 km/h) wind speeds due to the coarse output resolu-
tion. We know that the measurement frequency is roughly 0.16 Hz and that these measurements
are then aggregated into the ≈5-minute output obtained through the API, so potentially the
raw unprocessed data could provide a solution to the low wind speed errors. Other PWS brands
might not suffer from the issues at low wind speeds combined with coarse output, which could
make QA level B unnecessary.

Wind speed in the open field follows a logarithmic profile increasing with height: in the
urban area the usual boundary-layer similarity theory is not valid, but wind still increases with
height (Rotach, 1995; Castro, 2017; Kent et al., 2018). We expect the PWSs to be usually
mounted at some height above the ground, at best 2m, but also on balconies, window sills, or
wherever it is most suitable for the respective owner. A more ambitious weather hobbyist might
install the anemometer on a pole or on top of a shed, for example, to better measure the actual
wind. Stations installed on balconies or rooftops will give a completely different signal in time
than a station in a sheltered garden. When installing the anemometer, the software offers the
opportunity to report the station’s height above ground. However, this information cannot be
extracted from the Netatmo data obtained through the API, so we cannot check whether any
correction towards a standard value (e.g. 10m) is performed prior to data storage.

3.4.3 Application & perspectives
Due to the uncertainty of station setup, the data obtained from individual PWSs cannot give
an accurate representation of the wind speed climate: the station might be located on a bal-
cony, a shed, near a wall, etc. A 1-to-1 time series for individual PWSs compared to their closest
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matching AAMS stations displayed large deviations around the mean (not shown), even for daily
averages, indicating the strong microscale character of the measured wind speed. The mixture
Weibull distribution successfully captures the variability of wind within a city, and provides
insight into the wind speed differences between neighbourhoods and LCZs. For a more quantita-
tive temporal assessment of wind speed, PWSs appear not to be the right tool, and specialised
measurement networks setup by professionals are still necessary. For instance, the effect of wind
speed on thermal comfort during heat waves is better researched using stations situated in street
canyons with a higher accuracy (such as the AAMS network): the effect of wind on thermal
comfort is substantial, and strongly dependent on the local conditions (Heusinkveld et al., 2017).
While a technique like Generalised Extreme Value statistics of thermal comfort like in Steeneveld
et al. (2011) would be possible using the substantial length of the crowdsourced dataset, this is
usually not applied by policy makers, but could be in the future with increasing number of PWS
in cities worldwide.

The use of a probability density distribution is very common in the field of wind energy,
where these functions are used to assess the wind energy potential of given areas (Celik, 2004;
Carta et al., 2009; Drew et al., 2013). It would therefore be interesting to research the value
of the crowdsourced wind data for identification of possible urban wind energy generation given
the difficulties in estimating urban wind resource (Walker, 2011). A potential issue here could
again be the unknown height of the stations: a (Weibull) PDD is typically constructed at a
certain level and transposed to the hub-height of the expected wind turbine. A possible way
to circumvent this issue is to assume a likely range of heights (between 2 and 5 m seems the
most logical given the residential character of the PWS locations, though balcony stations can
be much higher) and construct the transposed PDDs for the minimum and maximum height to
see the spread in the results. GIS data on building height could also provide some information
for rooftop and balcony stations.

The sensitivity of the station to setup errors (i.e. tilting, sheltering, measurement height)
needs to be investigated in a systematic way, as Bell et al. (2015) did for air temperature. Wind
tunnel experiments using several Netatmo anemometers could investigate the influence of the
angle of tilt of the station on the reported wind speed values, and the threshold wind speed
when the measurements are of sufficient quality. A long-term urban experimental setup of the
Netatmo anemometer next to a known reference station could give some insight into expected
sensor drift and the cause of errors for the low urban wind regimes.

3.5 Conclusions
This study makes use of wind speed data of 60 Netatmo Personal Weather Stations (PWSs)
collected between January 2016 and June 2018 in the area of Amsterdam, the Netherlands, as
well as data from an urban reference network and two experimental setups. From these data, we
have established a Quality Assurance (QA) protocol to filter incorrect data, remove the effects
of rain and humidity, and correct for a systematic underestimation of wind speed measured
by PWSs. The quality-controlled PWS wind speed data can be used to construct a mixture
Weibull probability density distribution (PDD) which conforms to the reference network. The
wind distribution of different Local Climate Zones (LCZs) can be investigated by aggregating
the data from the stations in those LCZs. While we conclude that for extended periods with
very low (<2 km/h) wind speeds, the QA protocol does not improve the raw data, and the bias
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by windsurfers).

3.4.2 Causes of error in PWS wind
The greatest issue with crowdsourcing data is its lack of metadata (Muller et al., 2015). The
aforementioned scarcity of studies exploring crowdsourced or otherwise unorthodox measure-
ments can be ascribed to the large uncertainties inherent to (urban) wind measurements. Wind
is strongly variable in time and space, more so than air temperature and rainfall. Especially the
station setup is a crucial factor: air temperature measurements are affected by radiation from
nearby walls or direct sunlight in the case of unshielded thermometers; rain is sensitive to the
orientation and level of shelter of the station (which can cause underestimation of rainfall), but
wind speed is affected not only by orientation (the sonic anemometer needs to be level), and
strongly by shelter and obstacles (which induce turbulence and block the flow), but also the
height of the measurement, which is unknown. Only the most basic location information is given
by Netatmo, which does not contain any information regarding setup, calibration, or height of
the measurements. Citizens have the option to provide more information about their station on
the Wunderground platform (https://www.wunderground.com/), but this is entirely voluntary
and is only provided by a few owners. PWS owners on rare occasions have their own weather
website, which often provides very detailed information about the station, but these tend to
be the higher-end stations such as Davis Vantage stations (Steeneveld et al., 2011; Wolters and
Brandsma, 2012), not the cheaper Netatmo devices.

A large uncertainty lies within the Netatmo PWS itself: our bias analysis and experimental
setup shows that the station has a tendency to underestimate relatively high wind speeds, and
substantially underestimates very low (<2 km/h) wind speeds due to the coarse output resolu-
tion. We know that the measurement frequency is roughly 0.16 Hz and that these measurements
are then aggregated into the ≈5-minute output obtained through the API, so potentially the
raw unprocessed data could provide a solution to the low wind speed errors. Other PWS brands
might not suffer from the issues at low wind speeds combined with coarse output, which could
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3.5 Conclusions 55

matching AAMS stations displayed large deviations around the mean (not shown), even for daily
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measurement networks setup by professionals are still necessary. For instance, the effect of wind
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While a technique like Generalised Extreme Value statistics of thermal comfort like in Steeneveld
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Carta et al., 2009; Drew et al., 2013). It would therefore be interesting to research the value
of the crowdsourced wind data for identification of possible urban wind energy generation given
the difficulties in estimating urban wind resource (Walker, 2011). A potential issue here could
again be the unknown height of the stations: a (Weibull) PDD is typically constructed at a
certain level and transposed to the hub-height of the expected wind turbine. A possible way
to circumvent this issue is to assume a likely range of heights (between 2 and 5 m seems the
most logical given the residential character of the PWS locations, though balcony stations can
be much higher) and construct the transposed PDDs for the minimum and maximum height to
see the spread in the results. GIS data on building height could also provide some information
for rooftop and balcony stations.

The sensitivity of the station to setup errors (i.e. tilting, sheltering, measurement height)
needs to be investigated in a systematic way, as Bell et al. (2015) did for air temperature. Wind
tunnel experiments using several Netatmo anemometers could investigate the influence of the
angle of tilt of the station on the reported wind speed values, and the threshold wind speed
when the measurements are of sufficient quality. A long-term urban experimental setup of the
Netatmo anemometer next to a known reference station could give some insight into expected
sensor drift and the cause of errors for the low urban wind regimes.

3.5 Conclusions
This study makes use of wind speed data of 60 Netatmo Personal Weather Stations (PWSs)
collected between January 2016 and June 2018 in the area of Amsterdam, the Netherlands, as
well as data from an urban reference network and two experimental setups. From these data, we
have established a Quality Assurance (QA) protocol to filter incorrect data, remove the effects
of rain and humidity, and correct for a systematic underestimation of wind speed measured
by PWSs. The quality-controlled PWS wind speed data can be used to construct a mixture
Weibull probability density distribution (PDD) which conforms to the reference network. The
wind distribution of different Local Climate Zones (LCZs) can be investigated by aggregating
the data from the stations in those LCZs. While we conclude that for extended periods with
very low (<2 km/h) wind speeds, the QA protocol does not improve the raw data, and the bias
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correction even deteriorates results, we acknowledge that other PWS devices might not suffer
from hard- and software issues associated with the Netatmo PWS anemometer, which needs to
be investigated in further studies.
Based on the results obtained, we conclude that Netatmo PWS wind speed data is useful under
the following conditions:

• The record is of sufficient length (>≈2 months) to have a large amount of data and
document meaningful probability density distributions.

• The mean wind speed in this period is not low (>2 km/h): inherent issues with the
Netatmo hardware induces substantial errors at low wind speeds, and the output of the
stations in integer km/h only increases the relative error made.

• External WMO data of rain and humidity is available to apply the QA protocol, which
filters out rain and high relative humidity (RH > 95 %) events. Humidity impacts the
sonic anemometer and reduces its quality. Humidity and rain data could also be collected
from (QA controlled) PWSs.

• The research in question is interested in the distribution of wind, rather than the wind at
one given moment in time or space.

Acknowledgements
The authors wish to acknowledge all contributors to the Netatmo web platform, without whom
the vast dataset this article uses would not have existed. We thank Lotte de Vos (KNMI) for her
help with the Netatmo API setup. We acknowledge the Amsterdam Institute for Metropolitan
Solutions for their financial support of the AAMS observational network. Arjan Droste and Gert-
Jan Steeneveld acknowledge funding from the Netherlands Organization for Scientific Research
(NWO) VIDI Grant “The Windy City” (file 864.14.007). Daniel Fenner acknowledges funding
from the Deutsche Forschungsgemeinschaft (DFG) under Grant No. SCHE 750/15-1. Hartmut
Küster, Ingo Suchland, Fred Meier, and Carl Benz are thanked for support with the comparison
measurements at the Chair of Climatology at the Technische Universität Berlin.

3.5 Conclusions 57

Supporting Information

Table 3.1: Used AAMS reference network station details.

Station code latitude longitude LCZ
2194 52.3687 4.88883 2
2195 52.3965 4.9579 5
2198 52.371 4.90615 2
2199 52.3173 4.87797 5
2221 52.3538 4.94017 6
2223 52.3591 4.82495 5
2225 52.3667 4.87053 2
2226 52.3558 4.99615 5
2227 52.378 4.89422 2
2228 52.3922 4.94083 3
2229 52.3715 4.89677 2
2230 52.3585 4.8621 2
2231 52.3632 4.93825 2
2235 52.3567 4.91572 2
2236 52.3505 4.89412 2
2237 52.3493 4.86987 2
2238 52.3777 4.8832 2
2239 52.3554 4.78377 6
2240 52.3367 4.87368 4
2241 52.3779 4.92937 G
2245 52.3745 4.89887 2
2246 52.3884 4.92737 5
2247 52.2942 4.97872 5



3

56 Chapter 3

correction even deteriorates results, we acknowledge that other PWS devices might not suffer
from hard- and software issues associated with the Netatmo PWS anemometer, which needs to
be investigated in further studies.
Based on the results obtained, we conclude that Netatmo PWS wind speed data is useful under
the following conditions:

• The record is of sufficient length (>≈2 months) to have a large amount of data and
document meaningful probability density distributions.

• The mean wind speed in this period is not low (>2 km/h): inherent issues with the
Netatmo hardware induces substantial errors at low wind speeds, and the output of the
stations in integer km/h only increases the relative error made.

• External WMO data of rain and humidity is available to apply the QA protocol, which
filters out rain and high relative humidity (RH > 95 %) events. Humidity impacts the
sonic anemometer and reduces its quality. Humidity and rain data could also be collected
from (QA controlled) PWSs.

• The research in question is interested in the distribution of wind, rather than the wind at
one given moment in time or space.

Acknowledgements
The authors wish to acknowledge all contributors to the Netatmo web platform, without whom
the vast dataset this article uses would not have existed. We thank Lotte de Vos (KNMI) for her
help with the Netatmo API setup. We acknowledge the Amsterdam Institute for Metropolitan
Solutions for their financial support of the AAMS observational network. Arjan Droste and Gert-
Jan Steeneveld acknowledge funding from the Netherlands Organization for Scientific Research
(NWO) VIDI Grant “The Windy City” (file 864.14.007). Daniel Fenner acknowledges funding
from the Deutsche Forschungsgemeinschaft (DFG) under Grant No. SCHE 750/15-1. Hartmut
Küster, Ingo Suchland, Fred Meier, and Carl Benz are thanked for support with the comparison
measurements at the Chair of Climatology at the Technische Universität Berlin.

3.5 Conclusions 57

Supporting Information

Table 3.1: Used AAMS reference network station details.

Station code latitude longitude LCZ
2194 52.3687 4.88883 2
2195 52.3965 4.9579 5
2198 52.371 4.90615 2
2199 52.3173 4.87797 5
2221 52.3538 4.94017 6
2223 52.3591 4.82495 5
2225 52.3667 4.87053 2
2226 52.3558 4.99615 5
2227 52.378 4.89422 2
2228 52.3922 4.94083 3
2229 52.3715 4.89677 2
2230 52.3585 4.8621 2
2231 52.3632 4.93825 2
2235 52.3567 4.91572 2
2236 52.3505 4.89412 2
2237 52.3493 4.86987 2
2238 52.3777 4.8832 2
2239 52.3554 4.78377 6
2240 52.3367 4.87368 4
2241 52.3779 4.92937 G
2245 52.3745 4.89887 2
2246 52.3884 4.92737 5
2247 52.2942 4.97872 5



4



This chapter is published as:
1 de Vos, L., A. Droste, M. Zander, A. Overeem, H. Leijnse, B. Heusinkveld, G. Steeneveld, and 
R. Uijlenhoet, 2019a: Hydrometeorological monitoring using opportunistic sensing networks 
in the Amsterdam metropolitan area. Bulletin of the American Meteorological Society, BAMS–D– 
19–0091.1, doi: 10.1175/BAMS-D-19-0091.1
1 The first two authors contributed equally to this work and share co-first authorship

Hydrometeorological monitoring using
opportunistic sensing networks in the

Amsterdam metropolitan area

Chapter 4

The ongoing urbanisation and climate change urges further understanding and monitoring of 
weather in cities. Two case studies during a 17-day period over the Amsterdam metropolitan 
area, the Netherlands, are used to illustrate the potential and limitations of hydrometeorological 
monitoring using non-traditional and opportunistic sensors. We employ three types of 
opportunistic sensing networks to monitor six important environmental variables: (1) air 
temperature estimates from smartphone batteries and personal weather stations; (2) rainfall from 
commercial microwave links and personal weather stations; (3) solar radiation from smartphones; 
(4) wind speed from personal weather stations; (5) air pressure from smartphones and personal 
weather stations; (6) humidity from personal weather stations. These observations are compared 
to dedicated, traditional observations where possible, although such networks are typically sparse 
in urban areas. First we show that the passage of a front can be successfully monitored using data 
from several types of non-traditional sensors in a complementary fashion. Also we demonstrate 
the added value of opportunistic measurements in quantifying the Urban Heat Island (UHI) 
effect during a hot episode. The UHI can be clearly determined from personal weather stations, 
though UHI values tend to be high compared to records from a traditional network. Overall, 
this study illustrates the enormous potential for hydrometeorological monitoring in urban areas 
using non-traditional and opportunistic sensing networks.
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4.1 Introduction
Traditionally, hydrologists and meteorologists, scientists and practitioners alike, have relied on
dedicated measurement equipment in their research and operations. Such instruments are typ-
ically owned and operated by governmental agencies. Installed and maintained according to
(inter)national standards, they offer accurate and reliable information about the state of envi-
ronment we study, monitor and manage. Standard instruments are often based on novel mea-
surement techniques that originate in the research community and have been tested extensively
during dedicated field campaigns.

Unfortunately, the operational measurement networks available to the hydrometeorological
community today often lack the required spatial and/or temporal density for high-resolution
monitoring or forecasting of rapidly responding environmental systems. Apart from the high
installation and maintenance costs of such dedicated networks, it can be challenging, if not im-
possible, to install meteorological monitoring instruments according to the official requirements
in urban areas (Oke, 2006).

Yet, sensors are omnipresent in our environment nowadays, often related to the rapid de-
velopment in wireless communication networks (e.g. McCabe et al., 2017; Balsamo et al., 2018;
Tauro et al., 2018; Zheng et al., 2018). To make use of such opportunistic sensors could be
greatly beneficial to (meteorological) science and environmental monitoring and management
operations. Opportunistic sensors are devices that were not installed with the intention to gen-
erate large-scale observations, but can be used as such. They may not be as accurate or reliable
as the dedicated equipment we are used to, let alone meet official international standards. How-
ever, they are typically available in large numbers and are often readily accessible online. Hence,
combined with smart retrieval algorithms and statistical treatment, opportunistic sensors may
provide a valuable complementary source of information regarding the state of our environment.

This article surveys recent opportunistic sensing techniques in meteorology, from (1) rain-
fall monitoring using commercial microwave links (CML) from cellular communication networks,
via (2) crowdsourcing urban air temperature, pressure and solar radiation using smartphones to
(3) high-resolution urban monitoring of air temperature, pressure, humidity, wind speed, and
rainfall using personal weather stations (PWS). Other opportunistic sensing examples are: using
security cameras as rainfall indicators (Allamano et al., 2015), rainfall information from sensors
in driving cars (Rabiei et al., 2013), deriving the UHI from measurements of gradients of shallow
groundwater (Buik et al., 2004), using fiber-optic cables (Bense et al., 2016), using aeroplanes
to measure upper-air wind and temperature (de Haan, 2011), using hot-air balloons to measure
boundary-layer winds (de Bruijn et al., 2016), smartphone anemometers (Hintz et al., 2017), or
using networks of solar panels for radiation monitoring. Muller et al. (2015); Zheng et al. (2018)
provide excellent overviews of past and ongoing projects making use of opportunistic sensing
techniques, and USAID (2013) showcases practical applications of crowdsourcing projects for
agricultural purposes in Africa. We limit ourselves to the presented techniques since these are
relatively established even in developing countries, discussed in detail in literature, and observe
near the Earth’s surface.

We present a 17-day analysis for the Amsterdam metropolitan area, the Netherlands, where
these opportunistic sensors are employed in a complementary fashion, in particular to provide
detailed monitoring (both time series and spatially) of the passage of a front, as well as to
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demonstrate the potential of opportunistic sensors to quantify the Urban Heat Island (UHI)
effect. This study aims to showcase the availability of several opportunistic sensing techniques
and their ability to capture meteorological events.

4.2 Sampling techniques

4.2.1 Traditional sensing methods
We use three traditional data sources as reference for the opportunistic sensing observations: a
gauge-adjusted radar product; the WMO station at Amsterdam airport; and the Amsterdam
Atmospheric Monitoring Supersite (AAMS (Ronda et al., 2017)) urban network.

4.2.2 Gauge-adjusted radar dataset
The Royal Netherlands Meteorological Institute (KNMI) operates two C-band Doppler weather
radars. The 5-min reflectivity data from these radars are combined into one composite using
a weighing factor as a function of distance from the radar. Beekhuis and Mathijssen (2018)
provide detailed characteristics on the radars and the processing of their data. Reflectivity factors
Z (mm6 m−3) are converted to rainfall intensities R (mm h−1) with a fixed Z-R relationship
(Marshall et al., 1955), Z = 200R1.6, and, subsequently, accumulated to rainfall depths for
different durations. The two KNMI rain gauge networks are employed to adjust the radar-based
accumulated rainfall depths: an automatic network with 1-h rainfall depths for each hour (∼ 1
station per 1000 km2) and a manual network with 24-h 08:00–08:00 UTC rainfall depths (∼ 1
station per 100 km2). A daily spatial adjustment utilizing the manual gauge data is combined
with an hourly mean-field bias adjustment employing the automatic gauge data. The resulting
gauge-adjusted radar rainfall dataset has a spatial resolution of 0.9 km2, with no missing data
for the study period. Overeem et al. (2011) provide a more detailed description of this radar
dataset, which largely uses the methodology developed by Overeem et al. (2009a,b). Finally,
15-min path-averaged rainfall intensities are derived from the radar pixels covering each link
path of the CML dataset (described in Section 3.b.2). The gauge-adjusted radar rainfall dataset
is used as a reference to validate rainfall estimates from CMLs and PWSs.

4.2.3 WMO station Amsterdam airport
The WMO station Amsterdam airport, WMO 06240 (4.78◦E, 52.32◦N; Figure 4.1a) provides
hourly air temperature and cloud cover observations. This surface synoptic station is operated
by KNMI, situated in a polder (4.18 m below MSL) and surrounded by meadows, arable land,
and buildings as well as infrastructure from Amsterdam airport. Air temperature is observed
at 1.5-m height above short mowed grass. The sensor is covered by a radiation screen and well
ventilated. Cloud cover aloft is obtained from a LD40 ceilometer, which uses LIDAR to detect
the height and concentration of particles, such as cloud droplets. KNMI (2000) provides more
information on the temperature observation.

4.2.4 Amsterdam Atmospheric Monitoring Supersite
As an urban reference network we utilise the observations from the Amsterdam Atmospheric
Monitoring Supersite (AAMS; Ronda et al. (2017)), which consists of 30 weather stations across
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the city. The network consists of temperature and humidity sensors (Decagon VP-3, U.S.A.)
mounted inside a 184 mm aspirated radiation shield (Davis, U.S.A.). The ventilation fan is
powered by 2 small solar panels mounted on top of the shield. The fans work at global radiation
levels >100 W m−2. The radiation screens are mounted onto lantern posts using a boom to
mount the centre of the radiation screen 0.46 m away from the edge of the lantern post at a
height of 4.0 m above ground level. The sonic anemometer (Decagon DS-2, U.S.A.) has an
accuracy of 0.30 m s−1) or 3% (whichever is larger). The anemometers were mounted above the
radiation screens 0.50 m away from the lantern post edges and at heights of 4.30 m (from ground
level to centre of the anemometer).

4.2.5 Opportunistic sensing methods
Smartphone data

Smartphones contain many sensors to support their functionality, including sensors for light
levels to adjust screen brightness, pressure sensors to complement the GPS for an accurate (ver-
tical) location estimation, and thermometers for the battery to avoid damage from overheating.
Readings from such sensors can be used for opportunistic environmental sensing by collecting
them through mobile applications (‘apps’). These apps sample the sensor readings with a certain
frequency, along with the last stored GPS coordinates. Examples of apps that collect and store
smartphone sensor readings include Pressurenet (http://www.cumulonimbus.ca/) (Mass and
Madaus, 2014; Madaus and Mass, 2017), OpenSignal (https://opensignal.com/), and Atmos
(Niforatos et al., 2014, 2017).

Figure 4.1: Map of Amsterdam metropolitan area and city centre with locations of all sensor
networks: Personal Weather Stations (PWS) and Commercial Microwave Links (CML) (a), and
of smartphone battery temperature readings and Amsterdam Atmospheric Monitoring Supersite
(AAMS) stations (b).

Mass and Madaus (2014); Madaus and Mass (2017); McNicholas and Mass (2018) show that
assimilating smartphone pressure data into NWP models improves representation of convective
events. Likewise, Hintz et al. (2019) show for a case in Denmark that assimilating smartphone
pressure observations decreased the surface pressure bias in a NWP model. Different quality
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control methods were applied: for Madaus and Mass (2017) the raw smartphone pressure read-
ings were filtered to only include one value per smartphone per assimilation time step, and were
also corrected for the terrain elevation and checked for spatial and statistical consistency. Hintz
et al. (2019) additionally use a consistency check with synoptic observations. In McNicholas and
Mass (2018) a machine learning algorithm was used to remove outliers. Niforatos et al. (2017)
compared smartphone light sensor readings with manually reported classifications of weather,
which showed light readings to be indicative of present weather conditions.

City-wide air temperatures can be estimated from smartphone battery temperature readings,
as has been shown for eight major cities (Overeem et al., 2013b), for the city of Birmingham
(Muller et al., 2015) for daily temperatures, and for São Paulo for hourly and daily tempera-
tures (Droste et al., 2017). Statistical training with independent temperature measurements was
performed based on a steady-state heat transfer model: a smartphone is typically carried close
to the user’s body. The thermal energy generated by the smartphone must be balanced by heat
exchange to the body and the environment. The conductive heat flow between two adjacent
systems is assumed to be proportional to their temperature difference, and depends on the ther-
mal insulation between smartphone and environment, and between smartphone and body. This
principle allows us to estimate hourly-averaged air temperatures from hourly-averaged battery
temperatures (Overeem et al., 2013b):

T̄A,hour
e,j,h = mh

j (T̄
A,hour
bat,j,h − T0) + T0 + εj,h, (4.1)

where T̄A,hour
e,j,h is the hourly mean urban air temperature, T̄A,hour

bat,j,h is the hourly-averaged battery
temperature (both in space A and time), and T0 a constant equilibrium temperature. mh

j is a
coefficient, εj,h is a random disturbance, and h denotes the hour.

In this study we build upon a large dataset of observations obtained from the Android ap-
plication OpenSignal, which crowdsources data relevant to wireless connectivity along with the
aforementioned sensor readings. Compared to the previously mentioned studies, readings were
obtained at a far higher frequency, i.e. 15-s intervals whenever the smartphone screen is active,
not requiring the app to be opened by the user. A total of 3.14 million smartphone observations
are available for the entire study period for the Amsterdam metropolitan region (larger domain
in Figure 4.1a).

The OpenSignal dataset includes self-reported accuracy scores (1, 2 or 3) of the light and
pressure readings, as determined by the sensor management software in the smartphones (An-
droid, 2019). Only readings with the highest possible accuracy were included in our analysis. All
smartphone pressure sensor readings below 950 hPa are excluded, based on the lowest recorded
pressure in the Netherlands, 954.2 hPa (de Haij, 2009), which results in a dataset of 2.06 million
pressure readings. Light sensor readings above 0 lux are taken into account, leaving 2.32 million
light readings in the whole study period. We only include battery temperature readings between
10 – 47◦C when the smartphone is not charging: 0.4 million temperature readings within the city
centre. Hourly battery temperature readings are averaged spatially over the city centre domain
(Figure 4.1b), light and pressure are averaged over the entire region for each hour (Figure 4.1a).

Ambient air temperatures are estimated from battery temperature (Equation 4.2.5); the value
of equilibrium temperature (T0) as optimized by Overeem et al. (2013b), 39◦C, is used. Figure
4.1b shows the positions of the underlying battery temperature readings. Two different datasets
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Figure 4.1: Map of Amsterdam metropolitan area and city centre with locations of all sensor
networks: Personal Weather Stations (PWS) and Commercial Microwave Links (CML) (a), and
of smartphone battery temperature readings and Amsterdam Atmospheric Monitoring Supersite
(AAMS) stations (b).

Mass and Madaus (2014); Madaus and Mass (2017); McNicholas and Mass (2018) show that
assimilating smartphone pressure data into NWP models improves representation of convective
events. Likewise, Hintz et al. (2019) show for a case in Denmark that assimilating smartphone
pressure observations decreased the surface pressure bias in a NWP model. Different quality
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control methods were applied: for Madaus and Mass (2017) the raw smartphone pressure read-
ings were filtered to only include one value per smartphone per assimilation time step, and were
also corrected for the terrain elevation and checked for spatial and statistical consistency. Hintz
et al. (2019) additionally use a consistency check with synoptic observations. In McNicholas and
Mass (2018) a machine learning algorithm was used to remove outliers. Niforatos et al. (2017)
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tures (Droste et al., 2017). Statistical training with independent temperature measurements was
performed based on a steady-state heat transfer model: a smartphone is typically carried close
to the user’s body. The thermal energy generated by the smartphone must be balanced by heat
exchange to the body and the environment. The conductive heat flow between two adjacent
systems is assumed to be proportional to their temperature difference, and depends on the ther-
mal insulation between smartphone and environment, and between smartphone and body. This
principle allows us to estimate hourly-averaged air temperatures from hourly-averaged battery
temperatures (Overeem et al., 2013b):

T̄A,hour
e,j,h = mh

j (T̄
A,hour
bat,j,h − T0) + T0 + εj,h, (4.1)

where T̄A,hour
e,j,h is the hourly mean urban air temperature, T̄A,hour

bat,j,h is the hourly-averaged battery
temperature (both in space A and time), and T0 a constant equilibrium temperature. mh

j is a
coefficient, εj,h is a random disturbance, and h denotes the hour.

In this study we build upon a large dataset of observations obtained from the Android ap-
plication OpenSignal, which crowdsources data relevant to wireless connectivity along with the
aforementioned sensor readings. Compared to the previously mentioned studies, readings were
obtained at a far higher frequency, i.e. 15-s intervals whenever the smartphone screen is active,
not requiring the app to be opened by the user. A total of 3.14 million smartphone observations
are available for the entire study period for the Amsterdam metropolitan region (larger domain
in Figure 4.1a).
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4.1b shows the positions of the underlying battery temperature readings. Two different datasets
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are derived: one without and one with optimising the coefficients of the heat transfer model for
the available dataset. The first dataset uses a fixed value of mh

j for all hours, 2.4, as found for
a summer period in London based on daily averages (Overeem et al., 2013b). These results,
without further model calibration, are presented in Figure 4.2b, which also shows the 25th and
75th percentile. For the second dataset, records from 1 June 00:00 UTC –15 June 00:00 UTC
are employed to calibrate a value of mh

j for each clock-hour (24 in total , ranging between 2.0 to
2.6). These optimised values, found using a least squares regression, are applied to the validation
dataset from 16 June 00:00 UTC – 23 June 00:00 UTC.

A smartphone light sensor measures illumination in lux (lumen m−2), i.e. irradiance weighted
for the visible part of the electromagnetic spectrum, so a measure for the perceived brightness for
the human eye. To estimate the equivalent solar radiation, we use an empirical factor of 0.0079
lux per W m−2, based on the spectral distribution of sunlight (Chua, 2009). By applying this
transformation, the readings are treated as if they were measurements of solar radiation. This
is a fairly strong assumption, as we expect that most readings will not be made in a representa-
tive manner: with the smartphone perpendicular towards the Sun and in direct sunlight. User
behavior plays a large role (e.g. indoor versus outdoor measurements), so one may expect that
most light readings will underestimate the solar radiation, resulting in a skewed distribution. A
light sensor in a smartphone has a limited view angle (<180◦) and has a relatively poor cosine
response. Additionally, the sensor can over-saturate at high light intensities (the sensor limit is
typically around 200 W m−2). Therefore it is desirable to have many readings to increase the
probability of observations taken in favorable conditions (unshaded and perpendicular to direct
sunlight).

Because smartphone measurements are taken when the smartphone is used, most data is
available for those times where people are active. Since hundreds of smartphone measurements
are required to obtain a good signal of air temperature (Droste et al., 2017), spatial detail is
limited to Local Climate Zone (LCZ, (Stewart and Oke, 2012)) scale at best, and temporal reso-
lution to roughly hourly. The data at this availability is useful to get a broad overview of urban
temperature, but not for (spatially) detailed studies.

Commercial microwave links

Cell phone communication relies on a telecommunication link network that consists of transmit-
ting and receiving antennas, typically several km apart, between which radio signals propagate.
Telecom operators commonly use signal frequencies that are sensitive to hydrometeors. This
causes attenuation of the microwave link signals when liquid precipitation occurs between the
antennas. Upton et al. (2005) first suggested to use signal attenuation in CML networks, which
is typically monitored for quality control purposes, to determine rainfall. Soon after, this was
shown to be successful with actual CML data (Messer et al., 2006; Leijnse et al., 2007). This was
promising as microwave link networks are widespread, also in areas of the world with limited to
no traditional rainfall sensors. Subsequent research has focused on improving the techniques to
obtain accurate rainfall estimates from these datasets, (e.g. Leijnse et al., 2008; Zinevich et al.,
2008; Overeem et al., 2011; Chwala et al., 2012) and produce rainfall maps (Overeem et al., 2013a,
2016b) with real-time applicability (Chwala et al., 2016; Andersson et al., 2017; Chwala et al.,
2018). Comprehensive overviews of literature on this technique were provided by Messer and
Sendik (2015), Uijlenhoet et al. (2018), and Chwala and Kunstmann (2019). Several tools have
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been developed, documented and made (freely) available for users to construct rainfall obser-
vations with CML data: ‘Rcmlrain’ (https://github.com/fenclmar/Rcmlrain), ‘RAINLINK’
(https://github.com/overeem11/RAINLINK), ‘pycomlink’ (https://github.com/pycomlink/
pycomlink), and ‘pySNMPdaq’ (https://github.com/cchwala/pySNMPdaq).

The relation between rainfall attenuation and rainfall intensity can be described with a power
law between path-averaged specific signal attenuation (k in dB km−1) and link path-averaged
rainfall intensity (R in mm h−1) (Atlas and Ulbrich, 1977):

R = akb (4.2)

where

A = TSL− RSL; k =
Awet −Adry −Aa

L
(4.3)

Coefficients a (in mm h−1 dB−b kmb) and b (-) are dependent on signal frequency and polari-
sation (Olsen et al., 1978; Jameson, 1991). TSL and RSL are the transmitted and received signal
level (dB) respectively, Aa is the attenuation due to wet antennas (dB) assumed as a fixed value,
Awet and Adry are the attenuation under wet and dry weather conditions respectively (dB) and
L is the length of the link path (km). The specific attenuation due to rainfall is what remains
when the attenuation due to other causes (i.e. dry weather conditions and wet antennas) are
subtracted.

The time series shown in Figure 4.2d originate from the T-Mobile CML network visualised
in Figure 4.1a. Between 6 June 00:00 UTC and 10 June 14:00 UTC, 74 links were operational in
the study area. Power levels were instantaneously sampled every 15 min. Due to data transfer
issues, no power levels were available at the end of the study period. Rainfall time-series for each
link were constructed with the open source package RAINLINK (Overeem et al., 2016a), using
the approach and optimised parameters from (de Vos et al., 2019c). The wet antenna attenuation
makes up a larger fraction of the total attenuation for short links, meaning that a small error in
Aa, a constant, will result in a relatively large error in k for short links, and the effect on the
estimated value of R would subsequently be larger than for long links given the same error in Aa.

Crowdsourced personal weather stations

PWSs allow anyone to measure weather variables in their direct environment. Many automatic
PWSs can upload their measurements directly to online platforms where they can be visualized
and shared. Weather Underground (https://www.wunderground.com/wundermap), WOW-NL
(https://wow.knmi.nl/) and the Netatmo Weathermap (https://weathermap.netatmo.com/)
are examples of platforms where weather observations are visualized in real time. Ideally, weather
variables can be crowdsourced from such platforms in far higher spatial and temporal resolution
than from traditional sensor networks.

The devices are often low-cost with a lower expected measurement accuracy than typical sen-
sors from meteorological institutes. The PWSs are installed by citizens without expert knowledge
on sensor placement requirements and/or lacking available measurement site without interference
from surroundings. Hence we expect that many of the PWSs generate compromised measure-
ments. For tipping bucket rain gauges, obstructions (e.g. insects, twigs) and the device not being
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completely level with the ground, could hinder the tipping mechanism. A shielded location will
also lead to underestimation of rainfall. Overestimation of rainfall can result from PWS owners
cleaning or handling the device, resulting in tipping bucket tips, creating measurements of ar-
tificial rain. PWS wind measurements are also largely affected by their position in relation to
obstacles and the shielding effect of buildings. Furthermore, PWSs with a sonic anemometer are
sensitive to rain blocking the path of the sound waves, so data quality might be compromised
during rain events. Urban wind is highly variable in space, and is often measured as profile using
e.g. LIDAR (Drew et al., 2013), so spatial averaging of PWS wind measurements is needed to
obtain useful data. Temperature readings are highly affected by direct radiation: the lack of a
proper radiation screen in most PWSs can result in overestimation of temperature by several
degrees when positioned in direct sunlight (Bell et al., 2015; Chapman et al., 2017). Finally,
the updates of measurements to the platform can be infrequent, and connectivity problems will
result in large gaps in the time series.

Only a few studies compared PWSs with high-end sensors; temperature, relative humidity,
radiation, pressure, rainfall, wind speed and direction: Jenkins (2014); Bell et al. (2015), tem-
perature: Meier et al. (2015), rainfall: De Vos et al. (2017). Other studies have benefited from
available PWS temperature records in cities. The UHI is then defined as the difference be-
tween PWS temperatures and a rural reference station (Meier et al., 2017; Chapman et al., 2017;
Fenner et al., 2017; Golroudbary et al., 2018; Napoly et al., 2018). Preliminary work has been
performed on crowdsourced wind (Droste et al., 2018a) and rainfall measurements (De Vos et al.,
2017; Golroudbary et al., 2018; Chen et al., 2018) (and explored with simulated PWS rainfall
measurements by de Vos et al. (2018) as well). In other studies code has been developed and
made available to apply quality control on crowdsourced PWS data (the CrowdQC R-package for
PWS temperature observations https://depositonce.tu-berlin.de//handle/11303/7520.3
and TITAN https://github.com/metno/TITAN/ , and code to filter crowdsourced rainfall ob-
servations PWSQC https://github.com/LottedeVos/PWSQC.).

Measurements from all personal weather stations from the brand Netatmo in the Amsterdam
study area (Figure 4.1a) are evaluated. All devices measure temperature, pressure and humidity.
Additionally, rain and/or wind are measured in case those optional modules are installed for that
PWS. In order to standardize the variable time intervals, all measurements are attributed to the
timestamp of the 5-min interval in which it occurred. If multiple measurements occurred within
the 5-min interval they are averaged (or accumulated in case of rainfall). The measurements over
the study period are shown in Figure 4.2 (panels (a), (c), (f) and (h)), where panel (i) indicates
the dewpoint depression (DPD) as calculated from the temperature and humidity measurements
from the PWS. No QC treatment is applied on the PWS data to showcase the raw potential.
DPD is here preferred over dewpoint temperature itself to identify the frontal passage.

4.3 Case selection & study area
We selected Amsterdam (capital of the Netherlands) and its surroundings and the period be-
tween 6 June 2017 00:00 UTC and 23 June 2017 00:00 UTC as case study period (local time is
UTC+2 hours). This period contains both sufficient data from opportunistic sensing techniques,
and interesting meteorological events to illustrate the potential of the opportunistic sensing tech-
niques. The selected region is bound by 4.67–5.05◦E & 52.24–52.44◦N (26 km × 22 km). To
be able to distinguish between the inner city and suburbs, the study area was divided into two
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parts, i.e. the urban centre dataset: 4.83–4.95◦E. & 52.34–52.38◦N and the suburban dataset
4.67–5.05◦E. & 52.24–52.44◦N, excluding the urban centre area (Figure 4.1a).

The Netherlands has a temperate maritime climate (Köppen Cfb). With a mean temperature
of 18.0◦C and 50.5 mm of rainfall June 2017 was about 2.5◦C warmer and 10.5 mm drier than
the climatological mean (based on the past 30 years of observations at station WMO 06240 Am-
sterdam airport, henceforth referred to as "Amsterdam airport"). The month had eight summer
days and two tropical days (max. temp. above 25 & 30◦C respectively).

On June 6, a small low-pressure system developed over the North Sea off the coast of the
Netherlands and passed over the country, resulting in a substantial pressure drop to 992 hPa,
an hourly maximum wind speed of 54 km h−1 (7 Bft) and 12 mm of rainfall measured at Am-
sterdam airport. In the morning of June 9, an active cold front brought in relatively cold air
which resulted in 27 mm of rainfall. A clear-sky episode occurred 9–11 June, while another cold
front passed in the early morning of June 12 (Figure 4.2i). In the following period, no rain-
fall occurred, and temperatures were mild (daily maximum temperatures below 25◦C), followed
by a warm episode between June 16 and June 19. On June 19 the maximum air temperature
reached 29.8◦C at Amsterdam airport. This warm episode ended with the passage of a cold front
and associated rainfall and thunderstorms on June 22. For the remainder of the paper we will
focus on two cases, i.e. case A, describing the passing front and resulting rainfall at the start
of the study period, and case B, containing the hot summer period, with a focus on UHI detection.

For this study, the UHI is defined as the instantaneous urban air temperature difference
between the city and the countryside (Stewart, 2011). The UHI develops as a result of the
relatively low albedo of cities, high heat capacity of the urban fabric, thermal radiation trapping,
and low surface evapotranspiration. The UHI is favored by weather conditions with high solar
insolation (low cloud cover) and low wind speeds (Oke, 1982; Theeuwes et al., 2017). Earlier
crowdsourcing observations indicated that Dutch urban areas experiences a mean daily maximum
UHI of 2.3◦C and the 95th percentile amounts to 5.3◦C (Steeneveld et al., 2011). Ronda et al.
(2017) found a mean evening UHI of ∼ 1◦C, and a maximum of 4.5◦C in Amsterdam for the
summer of 2015 as a whole.

4.4 Results

4.4.1 Case A: Weather front
First we focus on the passage of a cold front over the study area on June 9. At 6:00 UTC the
operational model analysis provided by KNMI locates the frontal zone to the west of Amster-
dam (not shown), and by 12:00 UTC the front has passed the city. Prior to the frontal passage
itself, an upper air disturbance passed over Amsterdam between 3:00 and 4:00 UTC, bringing
strong convection and rainfall. Such frontal zones cause distinctive behavior in various mete-
orological variables, which we expect to be distinguishable in the crowdsourced data (Figure 4.2).

The passage of the front is clearly visible in the observed DPD and the wind speed (Figure
4.3a). The DPD steadily drops during the approach and passage of the cold front, reaching a
minimum of 1.4◦C at 9:00 UTC. Between 10:00 and 11:00 UTC, when the front has passed, the
DPD increases again up to 6.8◦C, indicating the cold and dry air mass brought in by the cold
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of the study period, and case B, containing the hot summer period, with a focus on UHI detection.

For this study, the UHI is defined as the instantaneous urban air temperature difference
between the city and the countryside (Stewart, 2011). The UHI develops as a result of the
relatively low albedo of cities, high heat capacity of the urban fabric, thermal radiation trapping,
and low surface evapotranspiration. The UHI is favored by weather conditions with high solar
insolation (low cloud cover) and low wind speeds (Oke, 1982; Theeuwes et al., 2017). Earlier
crowdsourcing observations indicated that Dutch urban areas experiences a mean daily maximum
UHI of 2.3◦C and the 95th percentile amounts to 5.3◦C (Steeneveld et al., 2011). Ronda et al.
(2017) found a mean evening UHI of ∼ 1◦C, and a maximum of 4.5◦C in Amsterdam for the
summer of 2015 as a whole.

4.4 Results

4.4.1 Case A: Weather front
First we focus on the passage of a cold front over the study area on June 9. At 6:00 UTC the
operational model analysis provided by KNMI locates the frontal zone to the west of Amster-
dam (not shown), and by 12:00 UTC the front has passed the city. Prior to the frontal passage
itself, an upper air disturbance passed over Amsterdam between 3:00 and 4:00 UTC, bringing
strong convection and rainfall. Such frontal zones cause distinctive behavior in various mete-
orological variables, which we expect to be distinguishable in the crowdsourced data (Figure 4.2).

The passage of the front is clearly visible in the observed DPD and the wind speed (Figure
4.3a). The DPD steadily drops during the approach and passage of the cold front, reaching a
minimum of 1.4◦C at 9:00 UTC. Between 10:00 and 11:00 UTC, when the front has passed, the
DPD increases again up to 6.8◦C, indicating the cold and dry air mass brought in by the cold
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Figure 4.2: Time series of opportunistic measurements of weather variables. PWS observa-
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front. Crowdsourced and reference wind speed steadily increase as the front passes (from 2 to
over 4 km h−1), before reaching its maximum (5 km h−1) directly after the passage. The con-
vection associated with the upper air disturbance at around 3:00–4:00 UTC generates a strong
peak in the wind speed. Despite the unknown measurement setup of the PWS anemometers, the
average signal of all PWSs corresponds well to that of the quality-controlled reference AAMS
network (mean bias of 0.4 km h−1), which shows the same behavior for the upper air disturbance
and the front passing. However, the AAMS signal indicates a delayed onset of the wind speed
increase (at around 9:00 UTC) and takes longer to reach a higher maximum wind speed.

1
2

3
4

5
6

7

p_case

W
in

d 
sp

ee
d 

(k
m

 h
-1
) (a)

1
2

3
4

5
6

7

D
ew

po
in

t d
ep

re
ss

io
n 

(°
C

)

10
04

10
08

10
12

10
16

Hour of day (UTC)

Pr
es

su
re

 (h
Pa

)

(b)

PWS
AAMS
Smartphone

01 06 11 16 21

Figure 4.3: (a) Hourly average wind speed measured by PWS (solid line) and AAMS (dotted
line), as well as the PWS dewpoint depression (red line, right y-axis). (b) Hourly averaged air
pressure measured by PWS (solid line) and smartphone (dashed line) on June 9. The vertical
lines indicate the boundaries of the frontal passage. At 6 UTC the front is located to the west
of Amsterdam; at 12 UTC the front has passed over the city.

The ambient air pressure (Figure 4.3b), measured by PWSs and smartphones, starts increas-
ing at the moment the front passes (8:00 UTC). Typically, air pressure decreases before a cold
front, rapidly increases during the passage, and increases at a slower rate afterwards. The ex-
pected drop prior to the frontal passage is not very pronounced in the measurements: there is
a slight decrease in pressure between 0:00 and 2:00 UTC (1.7 hPa decrease for PWS; 3.5 hPa
for smartphone). The latter is more likely associated with the upper air disturbance. After the
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percentile) of all observations at that time; lines show the median values, except for (b) where
the line shows mean temperature. Shaded areas indicate night-time. Pearson correlation (r),
standard deviation of the difference (SD) and absolute bias (bias) are calculated based on hourly
values compared with WMO observations at Schiphol.
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front. Crowdsourced and reference wind speed steadily increase as the front passes (from 2 to
over 4 km h−1), before reaching its maximum (5 km h−1) directly after the passage. The con-
vection associated with the upper air disturbance at around 3:00–4:00 UTC generates a strong
peak in the wind speed. Despite the unknown measurement setup of the PWS anemometers, the
average signal of all PWSs corresponds well to that of the quality-controlled reference AAMS
network (mean bias of 0.4 km h−1), which shows the same behavior for the upper air disturbance
and the front passing. However, the AAMS signal indicates a delayed onset of the wind speed
increase (at around 9:00 UTC) and takes longer to reach a higher maximum wind speed.

1
2

3
4

5
6

7

p_case

W
in

d 
sp

ee
d 

(k
m

 h
-1
) (a)

1
2

3
4

5
6

7

D
ew

po
in

t d
ep

re
ss

io
n 

(°
C

)

10
04

10
08

10
12

10
16

Hour of day (UTC)

Pr
es

su
re

 (h
Pa

)

(b)

PWS
AAMS
Smartphone

01 06 11 16 21

Figure 4.3: (a) Hourly average wind speed measured by PWS (solid line) and AAMS (dotted
line), as well as the PWS dewpoint depression (red line, right y-axis). (b) Hourly averaged air
pressure measured by PWS (solid line) and smartphone (dashed line) on June 9. The vertical
lines indicate the boundaries of the frontal passage. At 6 UTC the front is located to the west
of Amsterdam; at 12 UTC the front has passed over the city.

The ambient air pressure (Figure 4.3b), measured by PWSs and smartphones, starts increas-
ing at the moment the front passes (8:00 UTC). Typically, air pressure decreases before a cold
front, rapidly increases during the passage, and increases at a slower rate afterwards. The ex-
pected drop prior to the frontal passage is not very pronounced in the measurements: there is
a slight decrease in pressure between 0:00 and 2:00 UTC (1.7 hPa decrease for PWS; 3.5 hPa
for smartphone). The latter is more likely associated with the upper air disturbance. After the
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frontal passage at 8:00 UTC, the pressure rises, from 1006–1008 hPa (PWS–smartphone) up to a
maximum of 1013–1016 hPa at midnight. The pressure tendency remains roughly 1 hPa hour−1

after the front has passed.

The light intensity as measured by smartphones shows a distinct diurnal pattern in Figure
4.2e, following the course of solar radiation. The measured data are strongly skewed, so the
median light intensity values are low (Figure 4.2e). Figure 4.4 shows the 99th percentile of light
readings to capture the readings made in the most favorable light conditions (see Section 2.b.1).
The sky on June 9 is overcast (8 octas) until 11:00 UTC, at which time the front has passed over
Amsterdam and the sky clears up to scattered cloudiness (Figure 4.4). The light intensity is also
very low until 10:00 UTC, even though this is well within daylight hours. Compared to June 18
(a clear day) the light intensity is roughly halved, and the shape of the line is not as symmetrical
(as we would expect from the diurnal cycle of global radiation). The green lines in Figure 4.4
indicate the other days over the study period, showing the strong variability in the daily course
of light intensity. The light intensity measured by smartphones not only depends on incoming
radiation, but also strongly on user behavior (indoors vs outdoors, the angle of the phone) and
the type of light sensor in the smartphone, which can differ between brands. The light sensor
may also be oversaturated during high light intensities, resulting in flattened peak values.
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Figure 4.4: Hourly 99th percentile of smart phone radiation (green lines) with Amsterdam
airport cloud cover in oktas on June 9 (blue, circles) and June 18 (orange, diamonds). June 9
(blue solid line) and June 18 (orange solid line) are a cloudy and cloud-free day, respectively.

The light intensity peak at 4:00 UTC coincides with the the upper air disturbance seen in
Figure 4.3, but is actually an artefact of the low number of observations. The number of available
observations is higher during the day than during night and early morning, since it is related to
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user activity whether the smartphone logs an observation (as detailed in Section 2.b.1). At 4:00
UTC there are only 502 smartphone observations, compared to 10,373 at 15:00 UTC (17:00 local
time, the typical end of the working day), so the data is more sensitive to outliers.

The upper air disturbance, and subsequent frontal passage, of June 9 results in 27 mm rain-
fall as measured by the gauge-adjusted radar reference. Figures 4.2c and 4.2d show that the
peak of rainfall occurs after sunrise, coinciding with the timing of the frontal passage. Figures
4.5a and 4.5b depict the cumulative rain over June 9, measured by CML and PWS, against the
reference. Total amounts differ between the two methods, but both show the same time response.
The relatively short links (< 2 km) overestimate rainfall, with the majority reporting > 30 mm
rainfall (relative bias is 87%). The longer links (>= 2 km) also tend to overestimate, but much
less extreme (relative bias is 12%). Although the expected uncertainty in rainfall estimates is
higher for short links, the larger systematic bias (54% relative bias, or 0.13 mm absolute bias,
for all links) indicates that the methods to derive rainfall (RAINLINK) were not ideal for this
rainfall event, especially for short links.

PWS measurements tend to underestimate the rain as measured by the reference, with some
occurrences of large reported rainfall values that are not otherwise captured (Figure 4.5b). Nev-
ertheless, the majority of PWSs seem to agree overall with the reference (Figures 4.5b and d).
The spatial distribution of rainfall (Figure 4.6) measured by PWS and CML corresponds to that
of the gauge-adjusted radar reference. We find that areas with high rainfall in the reference also
yield high accumulations in the CML and PWS data in these areas. The overestimation by short
links up to 8 mm is visible to the northwest of the band with high rainfall. The rainfall observa-
tions by PWSs correspond well to the spatial pattern of rain, although a number measure little
(< 1 mm) rain during the hour represented in Figure 4.6. These stations are mainly clustered in
the city centre. The large amount of obstructions inside the city centre could reduce the rainfall
received by the stations, which may partly explain the underestimation tendency already seen
in Figures 4.5b and d.

4.4.2 Case B: Urban Heat Island
The last days of the study period are characterized by high temperatures and generally clear,
sunny weather, leading to higher urban temperatures (PWS median air temperature up to 30◦C
on June 19, Figure 4.7). Air temperature is measured by PWS, and derived through the smart-
phone battery temperature using the second, calibrated dataset (Section 2.b.1). The AAMS
network serves as urban reference, and the Amsterdam airport measurements are used as rural
reference for the UHI (Figure 4.7b). The smartphone-derived air temperature differs clearly from
the PWS and AAMS measurements, with more erratic behavior and strong minimum values at
night and early morning (as low as 7◦C when the AAMS values are above 16◦C). Figure 4.7c
showcases this larger spread, also indicated by the large standard deviation (2.82 ◦C compared
to 0.66 and 1.08 ◦C for the PWS). During daytime the smartphone-derived temperatures cor-
respond better with the PWS and AAMS measurements than at night. The diurnal cycle is
clearly visible: the low values at night are most likely due to a low number of measurements
available, increasing the sensitivity to outliers. Despite these occasional large deviations, the bias
amounts to -0.6◦C compared to AAMS (Figure 4.7c), which is relatively small. A large positive
bias (2.0◦C) is found when a fixed literature value for mh

j is used, for the time series shown in
Figure 4.2b, whereas the other model statistics are mostly uninfluenced by optimizing mh

j .
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frontal passage at 8:00 UTC, the pressure rises, from 1006–1008 hPa (PWS–smartphone) up to a
maximum of 1013–1016 hPa at midnight. The pressure tendency remains roughly 1 hPa hour−1

after the front has passed.

The light intensity as measured by smartphones shows a distinct diurnal pattern in Figure
4.2e, following the course of solar radiation. The measured data are strongly skewed, so the
median light intensity values are low (Figure 4.2e). Figure 4.4 shows the 99th percentile of light
readings to capture the readings made in the most favorable light conditions (see Section 2.b.1).
The sky on June 9 is overcast (8 octas) until 11:00 UTC, at which time the front has passed over
Amsterdam and the sky clears up to scattered cloudiness (Figure 4.4). The light intensity is also
very low until 10:00 UTC, even though this is well within daylight hours. Compared to June 18
(a clear day) the light intensity is roughly halved, and the shape of the line is not as symmetrical
(as we would expect from the diurnal cycle of global radiation). The green lines in Figure 4.4
indicate the other days over the study period, showing the strong variability in the daily course
of light intensity. The light intensity measured by smartphones not only depends on incoming
radiation, but also strongly on user behavior (indoors vs outdoors, the angle of the phone) and
the type of light sensor in the smartphone, which can differ between brands. The light sensor
may also be oversaturated during high light intensities, resulting in flattened peak values.
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The light intensity peak at 4:00 UTC coincides with the the upper air disturbance seen in
Figure 4.3, but is actually an artefact of the low number of observations. The number of available
observations is higher during the day than during night and early morning, since it is related to
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user activity whether the smartphone logs an observation (as detailed in Section 2.b.1). At 4:00
UTC there are only 502 smartphone observations, compared to 10,373 at 15:00 UTC (17:00 local
time, the typical end of the working day), so the data is more sensitive to outliers.

The upper air disturbance, and subsequent frontal passage, of June 9 results in 27 mm rain-
fall as measured by the gauge-adjusted radar reference. Figures 4.2c and 4.2d show that the
peak of rainfall occurs after sunrise, coinciding with the timing of the frontal passage. Figures
4.5a and 4.5b depict the cumulative rain over June 9, measured by CML and PWS, against the
reference. Total amounts differ between the two methods, but both show the same time response.
The relatively short links (< 2 km) overestimate rainfall, with the majority reporting > 30 mm
rainfall (relative bias is 87%). The longer links (>= 2 km) also tend to overestimate, but much
less extreme (relative bias is 12%). Although the expected uncertainty in rainfall estimates is
higher for short links, the larger systematic bias (54% relative bias, or 0.13 mm absolute bias,
for all links) indicates that the methods to derive rainfall (RAINLINK) were not ideal for this
rainfall event, especially for short links.

PWS measurements tend to underestimate the rain as measured by the reference, with some
occurrences of large reported rainfall values that are not otherwise captured (Figure 4.5b). Nev-
ertheless, the majority of PWSs seem to agree overall with the reference (Figures 4.5b and d).
The spatial distribution of rainfall (Figure 4.6) measured by PWS and CML corresponds to that
of the gauge-adjusted radar reference. We find that areas with high rainfall in the reference also
yield high accumulations in the CML and PWS data in these areas. The overestimation by short
links up to 8 mm is visible to the northwest of the band with high rainfall. The rainfall observa-
tions by PWSs correspond well to the spatial pattern of rain, although a number measure little
(< 1 mm) rain during the hour represented in Figure 4.6. These stations are mainly clustered in
the city centre. The large amount of obstructions inside the city centre could reduce the rainfall
received by the stations, which may partly explain the underestimation tendency already seen
in Figures 4.5b and d.

4.4.2 Case B: Urban Heat Island
The last days of the study period are characterized by high temperatures and generally clear,
sunny weather, leading to higher urban temperatures (PWS median air temperature up to 30◦C
on June 19, Figure 4.7). Air temperature is measured by PWS, and derived through the smart-
phone battery temperature using the second, calibrated dataset (Section 2.b.1). The AAMS
network serves as urban reference, and the Amsterdam airport measurements are used as rural
reference for the UHI (Figure 4.7b). The smartphone-derived air temperature differs clearly from
the PWS and AAMS measurements, with more erratic behavior and strong minimum values at
night and early morning (as low as 7◦C when the AAMS values are above 16◦C). Figure 4.7c
showcases this larger spread, also indicated by the large standard deviation (2.82 ◦C compared
to 0.66 and 1.08 ◦C for the PWS). During daytime the smartphone-derived temperatures cor-
respond better with the PWS and AAMS measurements than at night. The diurnal cycle is
clearly visible: the low values at night are most likely due to a low number of measurements
available, increasing the sensitivity to outliers. Despite these occasional large deviations, the bias
amounts to -0.6◦C compared to AAMS (Figure 4.7c), which is relatively small. A large positive
bias (2.0◦C) is found when a fixed literature value for mh

j is used, for the time series shown in
Figure 4.2b, whereas the other model statistics are mostly uninfluenced by optimizing mh
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Figure 4.5: Double mass plots of commercial microwave link derived rainfall observations
(a) and PWS rainfall observations (b) on 9 June against the reference of respectively the path-
averaged and overlying pixel gauge-adjusted radar rainfall observations. Polarisation, path length
and frequency of the CML network is given in (c) and (d) shows scatter plots of both together
with their Pearson correlation (r), standard deviation of the difference (SD) and absolute bias
(bias) at 15 min time steps.

4.4 Results 73

Figure 4.6: Map of 60-min rainfall depths over the Amsterdam metropolitan area based on
gauge-adjusted radar data (pixels; 100% availability), CML data (paths; only CMLs with 100%
availability are shown), and PWS data (circles; only PWSs with at least 83.3% availability are
shown).
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Figure 4.6: Map of 60-min rainfall depths over the Amsterdam metropolitan area based on
gauge-adjusted radar data (pixels; 100% availability), CML data (paths; only CMLs with 100%
availability are shown), and PWS data (circles; only PWSs with at least 83.3% availability are
shown).
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The diurnal pattern of air temperature between centre and suburban PWSs is similar, al-
though the centre stations tend to be warmer at night, and colder during the day (Figure 4.7a).
The suburban stations contain a higher spread and bias than the centre stations, though both
show good agreement to the reference (Figure 4.7c). The AAMS air temperature is typically
about 2 to 3◦C lower during the day: this could partially be caused by the unknown setup of the
Netatmo station, which is likely be exposed to direct sunlight or close to walls, making it sen-
sitive to radiation errors. Figure 4.7b depicts the UHI estimated by subtracting the centre and
suburban PWS (red dashed line). This particular PWS–UHI shows spatial variability within the
PWS data, which is most pronounced during daytime, where the difference can be up to -1.5◦C
(i.e. the centre is 1.5◦C colder than the suburban area). Higher urban shading in the morn-
ing, and the faster heating rate of the relatively thin rural boundary layer compared to the the
deeper urban boundary layer cause this urban cool island in the morning (Theeuwes et al., 2015).

The other two UHI estimates are constructed using Amsterdam airport as rural background,
showing that the city centre is indeed much warmer at night than the rural surroundings. Urban
cool islands typically form in the morning, persisting for several hours before the city heats up
more. A remarkable 6◦C UHI peak is visible on June 22, in the afternoon (13:00–14:00 UTC).
This seems to be mainly caused by the Amsterdam airport temperature, since the PWS–UHI
(which has no true rural reference) shows a value close to 0◦C at that time. This is visible
in Figure 4.7a, where temperatures rapidly decrease in the course of a few hours on June 22
afternoon. Thunderstorms were reported on this day, and several mm of rain were measured at
Amsterdam airport (according to radar) between 14:00 and 15:00 UTC. The UHI in this case is
likely caused by the sudden cooling of the rural reference, rather than strong urban heating.

Figure 4.8 presents the spatial variability in the AAMS and PWS temperature recordings
between 2:00 and 3:00 UTC on June 18, when the UHI is typically largest. The cluster of
stations in the centre yields higher values than the suburban stations, although in both areas
many stations deviate from this trend. The centre PWS report an average UHI of 4.0◦C, the
AAMS UHI is 3.6◦C, whereas the suburban areas have an average UHI of 2.7◦C. Variability
between measurement sites is high: some stations report a temperature difference of up to
12.4◦C, and even a few with negative UHI (up to -0.6◦C).

4.5 Discussion and conclusions

4.5.1 General

We have shown that even though each technique has considerable limitations regarding accuracy,
the data from opportunistic sources can be used to monitor meteorological phenomena. The
potential of these techniques lies in the high spatial density of such observations, especially in
urban areas.

We explicitly consider observations that can be obtained near-directly from the opportunis-
tic sensors, without applying many correction schemes, to illustrate their inherent potential:
validation using the available quality assurance schemes was not the aim of this research. We
use temperature from smartphone batteries and personal weather stations (PWS), rainfall from
commercial microwave links (CML) and PWS, solar radiation from smartphones, wind speed
from PWS, air pressure from smartphones and PWS, and humidity from PWS. Two case studies
in a 17-day period over the city of Amsterdam, the Netherlands, are explored. In the first case
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The diurnal pattern of air temperature between centre and suburban PWSs is similar, al-
though the centre stations tend to be warmer at night, and colder during the day (Figure 4.7a).
The suburban stations contain a higher spread and bias than the centre stations, though both
show good agreement to the reference (Figure 4.7c). The AAMS air temperature is typically
about 2 to 3◦C lower during the day: this could partially be caused by the unknown setup of the
Netatmo station, which is likely be exposed to direct sunlight or close to walls, making it sen-
sitive to radiation errors. Figure 4.7b depicts the UHI estimated by subtracting the centre and
suburban PWS (red dashed line). This particular PWS–UHI shows spatial variability within the
PWS data, which is most pronounced during daytime, where the difference can be up to -1.5◦C
(i.e. the centre is 1.5◦C colder than the suburban area). Higher urban shading in the morn-
ing, and the faster heating rate of the relatively thin rural boundary layer compared to the the
deeper urban boundary layer cause this urban cool island in the morning (Theeuwes et al., 2015).

The other two UHI estimates are constructed using Amsterdam airport as rural background,
showing that the city centre is indeed much warmer at night than the rural surroundings. Urban
cool islands typically form in the morning, persisting for several hours before the city heats up
more. A remarkable 6◦C UHI peak is visible on June 22, in the afternoon (13:00–14:00 UTC).
This seems to be mainly caused by the Amsterdam airport temperature, since the PWS–UHI
(which has no true rural reference) shows a value close to 0◦C at that time. This is visible
in Figure 4.7a, where temperatures rapidly decrease in the course of a few hours on June 22
afternoon. Thunderstorms were reported on this day, and several mm of rain were measured at
Amsterdam airport (according to radar) between 14:00 and 15:00 UTC. The UHI in this case is
likely caused by the sudden cooling of the rural reference, rather than strong urban heating.

Figure 4.8 presents the spatial variability in the AAMS and PWS temperature recordings
between 2:00 and 3:00 UTC on June 18, when the UHI is typically largest. The cluster of
stations in the centre yields higher values than the suburban stations, although in both areas
many stations deviate from this trend. The centre PWS report an average UHI of 4.0◦C, the
AAMS UHI is 3.6◦C, whereas the suburban areas have an average UHI of 2.7◦C. Variability
between measurement sites is high: some stations report a temperature difference of up to
12.4◦C, and even a few with negative UHI (up to -0.6◦C).

4.5 Discussion and conclusions

4.5.1 General

We have shown that even though each technique has considerable limitations regarding accuracy,
the data from opportunistic sources can be used to monitor meteorological phenomena. The
potential of these techniques lies in the high spatial density of such observations, especially in
urban areas.

We explicitly consider observations that can be obtained near-directly from the opportunis-
tic sensors, without applying many correction schemes, to illustrate their inherent potential:
validation using the available quality assurance schemes was not the aim of this research. We
use temperature from smartphone batteries and personal weather stations (PWS), rainfall from
commercial microwave links (CML) and PWS, solar radiation from smartphones, wind speed
from PWS, air pressure from smartphones and PWS, and humidity from PWS. Two case studies
in a 17-day period over the city of Amsterdam, the Netherlands, are explored. In the first case
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Figure 4.8: Urban Heat Island map for the Amsterdam metropolitan area (black rectangle)
showing difference between hourly averaged air temperature for AAMS network (squares) and
PWSs (circles) with respect to 1.5-m air temperature at WMO station Amsterdam airport ob-
served at 3 UTC (triangle). The blue rectangle represents Amsterdam city centre, the remainder
of the metropolitan area is suburban. Only stations with at least 80% availability are shown. Of
the 309 PWSs only 4 are colder than WMO, at most 0.6◦C, and 24 are at least 6.0◦C warmer
than WMO, at most 12.4◦C.
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study we show how the passage of a front is apparent from many of the data sources. The second
case study shows that these measurements can be valuable in monitoring the Urban Heat Island
(UHI) effect, especially given the fact that WMO stations in urban areas are very rare.

The passage of a cold front is visible in all of the studied opportunistic sensing data sources.
The dynamics of the temperature (especially from PWS, less so from smartphones), rainfall, solar
radiation, wind speed, air pressure, and humidity all show the passage of the front. However, not
every aspect of the weather events is sufficiently captured by the data: techniques using smart-
phone observations can only estimate a variable as a spatial average over the city and cannot be
used to describe detailed spatial variability. Also, the PWS wind observations were too noisy to
describe spatial patterns in the city with confidence.

A rural reference station is needed to quantify the UHI, for which we use the WMO station
Amsterdam Airport. Even the PWS locations outside the city centre of Amsterdam (suburban,
see Figures 4.1 and 4.8) are mostly in built-up areas, and are hence expected to experience the
UHI, although less severely. This is supported by Figure 4.7b, where the temperature difference
between the city centre and the suburban areas is much less pronounced than when the WMO
station is used as rural reference. Using a single rural reference to quantify the UHI, instead of
multiple background stations, is a good practice when the main interest is in the intra-urban
variability of temperature, as in this work and e.g. Fenner et al. (2017). However, a limitation
of this practice is evident from the artificially high UHI we see in Figure 4.7 on June 22, which
was caused by local cooling at the rural site. Finally, we note that the distinction between centre
and suburban in this study was made rather crudely. In future UHI studies we recommend a
more sophisticated partitioning of the stations into different classes (such as Local Climate Zones
(Stewart and Oke, 2012)).

4.5.2 Temperature
The PWSs are suitable for monitoring the UHI. When compared to the AAMS urban reference
network, these PWS show an UHI of the same order of magnitude (2–4◦C), especially during
the night. We observe urban cool islands during the period between sunrise and local noon. Air
temperatures derived from smartphone battery temperatures exhibit much more noise than PWS
temperatures, which limits their use for UHI measurement. We note that the PWS thermometers
are not shielded from solar radiation or ventilated, whereas the AAMS are. This is clearly visible
in Figure 4.7, where the PWS temperature (and derived UHI) increases much more quickly than
the AAMS temperature. This corresponds to the findings of Bell et al. (2015).

4.5.3 Pressure
Both smartphones and PWSs provide good estimations of pressure. Pressure fields are relatively
constant in time and space, and both opportunistic sensing techniques show ability to describe
them.

4.5.4 Light
Light estimations derived from smartphones are highly variable in time. The indirect nature
of the measurement and the typical suboptimal conditions during sampling result in merely an
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study we show how the passage of a front is apparent from many of the data sources. The second
case study shows that these measurements can be valuable in monitoring the Urban Heat Island
(UHI) effect, especially given the fact that WMO stations in urban areas are very rare.

The passage of a cold front is visible in all of the studied opportunistic sensing data sources.
The dynamics of the temperature (especially from PWS, less so from smartphones), rainfall, solar
radiation, wind speed, air pressure, and humidity all show the passage of the front. However, not
every aspect of the weather events is sufficiently captured by the data: techniques using smart-
phone observations can only estimate a variable as a spatial average over the city and cannot be
used to describe detailed spatial variability. Also, the PWS wind observations were too noisy to
describe spatial patterns in the city with confidence.

A rural reference station is needed to quantify the UHI, for which we use the WMO station
Amsterdam Airport. Even the PWS locations outside the city centre of Amsterdam (suburban,
see Figures 4.1 and 4.8) are mostly in built-up areas, and are hence expected to experience the
UHI, although less severely. This is supported by Figure 4.7b, where the temperature difference
between the city centre and the suburban areas is much less pronounced than when the WMO
station is used as rural reference. Using a single rural reference to quantify the UHI, instead of
multiple background stations, is a good practice when the main interest is in the intra-urban
variability of temperature, as in this work and e.g. Fenner et al. (2017). However, a limitation
of this practice is evident from the artificially high UHI we see in Figure 4.7 on June 22, which
was caused by local cooling at the rural site. Finally, we note that the distinction between centre
and suburban in this study was made rather crudely. In future UHI studies we recommend a
more sophisticated partitioning of the stations into different classes (such as Local Climate Zones
(Stewart and Oke, 2012)).

4.5.2 Temperature
The PWSs are suitable for monitoring the UHI. When compared to the AAMS urban reference
network, these PWS show an UHI of the same order of magnitude (2–4◦C), especially during
the night. We observe urban cool islands during the period between sunrise and local noon. Air
temperatures derived from smartphone battery temperatures exhibit much more noise than PWS
temperatures, which limits their use for UHI measurement. We note that the PWS thermometers
are not shielded from solar radiation or ventilated, whereas the AAMS are. This is clearly visible
in Figure 4.7, where the PWS temperature (and derived UHI) increases much more quickly than
the AAMS temperature. This corresponds to the findings of Bell et al. (2015).

4.5.3 Pressure
Both smartphones and PWSs provide good estimations of pressure. Pressure fields are relatively
constant in time and space, and both opportunistic sensing techniques show ability to describe
them.

4.5.4 Light
Light estimations derived from smartphones are highly variable in time. The indirect nature
of the measurement and the typical suboptimal conditions during sampling result in merely an
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indicative observation of light. Such measurements should only be considered in the absense of
dedicated sensor observations and considered with caution.

4.5.5 Wind
Average wind speed from the PWSs are very low compared to what would be expected during
the passage of a front. This may partly be due to how the PWS anemometers are installed.
However, the carefully installed AAMS stations show average wind velocities of the same order
of magnitude (around 5 km h−1), indicating that the placement of the anemometers does not
play a large role here. The reasons for these wind speeds to be lower than expected lies in the
fact that the urban wind measurements are made at a lower level, and the urban fabric greatly
reduces wind speeds at street level (Macdonald, 2000). This also means that wind speeds are
expected to be highly variable across the city, which is clear from Figure 4.2f. Spatial averaging
over the city is therefore needed in order to see clear signals in the wind speed. Spatial averages
of wind speed show the same behavior between PWS and AAMS, indicating their use to measure
the urban wind as a whole. Note that the wind sensor on the Netatmo PWS is a sonic anemome-
ter, which are negatively affected by precipitation, hence wind observations during rainfall can
be less reliable. This illustrates the need of a quality-control procedure which could improve
overall data quality by filtering out precipitation events (Droste et al., 2018a).

4.5.6 Rainfall
Data from PWS and CML are shown to provide useful information on both rainfall amount and
space-time variation. Their ability to show detailed variations in space and time makes them
useful for qualitative use in rainfall monitoring. The CML network overestimated rainfall in case
A (Figure 4.5a), although the relative bias of long links (>=2 km) was 71% smaller than that of
short links (<2 km). This is likely related to the larger error contribution wet antennas have for
shorter links, and that the correction was calibrated on a different dataset, possibly with more
long links (de Vos et al., 2019c).

The PWS also show a good agreement with the reference, although most stations underesti-
mate rainfall (Figure 4.5b). This may be due to the higher wind speed above the urban fabric
which could cause buildings to act as a shield for the PWS rain gauges. It is also apparent from
Figure 4.5d that some PWSs report either zero rainfall when there is clearly rain or large amounts
of rainfall where there was none. Such, and other errors could be corrected by using automated
filters (de Vos et al., 2019b). The difference in accumulations between the city-averaged CML
and PWS rainfall data (see Figure 4.2) is partly caused by the overestimation by CML. However,
differences may also be due to the spatial variation of rain and the respective locations of the
PWS and CML. Figure 4.6 shows that for the examined hour the CML are more abundant in
high-rainfall areas, whereas the PWS are more clustered in the city centre, where less rainfall
was observed.

The method used to derive rainfall estimates from CML data (RAINLINK) is one of many
possible methods (see Section 2.b.2). Our dataset consists of instantaneously sampled CML data,
which is more prone to errors than CML data obtained with other sampling strategies and/or
more frequently than every 15 min (de Vos et al., 2019c).
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4.5.7 Outlook
Our study shows that the research opportunistic sensing techniques all yield meaningful results.
However, without quality control procedures, PWS data performs better than smartphone or
CML measurements. The PWS sensors are designed to measure hydrometeorological variables
and are less reliant on quality control than the indirect CML or smartphone observations. A
thorough procedure which removes error sources will therefore be most effective for the CML and
smartphone data, which can strongly improve with regards to the unfiltered signal. This may
change in the future when the expected measurement density of smartphones increases and their
hardware (sensor capability) improves. The observations contain large errors, as found by the
larger spread in the data than would be explained by spatial or temporal variability. However,
the opportunistic sensors provide information in time scales and areas that cannot be achieved
with traditional sensing techniques.

Many PWSs are found in densely populated areas, where also many smartphones are oper-
ational. This is mainly true for urban areas in parts of the world where people have funds to
invest in these devices (although smartphones are considered so important that they are essen-
tially ubiquitous, independent of living standards). CML networks differ as well, in sampling
strategy and frequency (which affects the accuracy of rainfall estimates) and in network density
(depending on replacement by fiber optic technology). The availability of opportunistic sensing
observations should be explored in order to judge their usefulness, especially as their accuracy
heavily relies on the quantity of observations. Because traditional meteorological measurements
are generally absent in urban areas, these new data provide a welcome addition. This is particu-
larly important for monitoring the UHI, and wind and rainfall at street level. We therefore urge
the scientific community to keep investigating new sources of data, and to study the uncertainties
therein. In combination with reference networks of meteorological measurements or stand-alone,
these new sources will provide much needed hydrometeorological information for citizens and
scientists, in any part of the world.
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Introducing the Urban Wind Island
Effect

Chapter 5

Wind is a key component of the urban climate due to its relevance for ventilation of air pollution 
and urban heat, wind nuisance, as well as for urban wind energy engineering. These winds are 
governed by the dynamics of the atmosphere closest to the surface, the atmospheric boundary 
layer (ABL). Making use of a conceptual bulk model of the ABL, we find that for certain 
atmospheric conditions the boundary-layer mean wind speed in a city can surprisingly be higher 
than its rural counterpart, despite the higher roughness of cities. This UrbanWind Island effect 
(UWI) prevails in the afternoon, and appears to be caused by a combination of differences in ABL 
growth, surface roughness and the ageostrophic wind, between city and countryside. Enhanced 
turbulence in the urban area deepens the ABL, and effectively mixes momentum into the ABL 
from aloft. Furthermore, the oscillation of the wind around the geostrophic equilibrium, caused 
by the rotation of the Earth, can create episodes where the urban boundary-layer mean wind 
speed is higher than the rural wind. By altering the surface properties within the bulk model, 
the sensitivity of the UWI to urban morphology is studied for the 10 urban Local Climate 
Zones (LCZs). These LCZs classify neighbourhoods in terms of building height, vegetation cover 
etc. and represent urban morphology regardless of culture or location. The ideal circumstances 
for the UWI to occur are a deeper initial urban boundary-layer than in the countryside, low-
rise buildings (up to 12 metres) and a moderate geostrophic wind (81 5 ms-1). The UWI 
phenomenon challenges the commonly held perception that urban wind is usually reduced 
due to drag processes. Understanding the UWI can become vital to accurately model urban air 
pollution, quantify urban wind energy potential or create accurate background conditions for
urban Computational Fluid Dynamics models.
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5.1 Introduction
The heterogeneous landscape of (large) cities causes a complex micro-climate, which can vary
from street to street. The combination of ongoing urban expansion and climate change under-
lines the need to understand the dynamics behind this microclimate. The urban microclimate
directly impacts citizen health through additional heat Oke (1982), air pollution Pascal et al.
(2013), and influences energy demand Dhakal (2009). While urban heat has been widely studied
(Oke, 1982; Arnfield, 2003; Steeneveld et al., 2011; Heusinkveld et al., 2014), knowledge about
urban wind and its variability remains scarce Barlow (2014); Wise et al. (2018). These winds are
governed by the dynamics of the atmospheric layer closest to the surface, i.e. the atmospheric
boundary layer (ABL, Figure 5.1).

This study aims to quantify the difference in wind dynamics between city and countryside,
using the conceptual Mixed-Layer Model for the daytime ABL Driedonks and Tennekes (1984);
Tennekes and Driedonks (1981); Byun and Arya (1986); Conzemius and Fedorovich (2006a). Ur-
ban wind has hitherto mainly been studied for individual buildings or street canyons Carpentieri
and Robins (2015), or over limited areas using Computational Fluid Dynamics (CFD) models
Kondo et al. (2015); O’Neill et al. (2016); Wise et al. (2018), though CFD models are increas-
ingly able to model larger urban areas Toparlar et al. (2017). However, knowledge regarding
mean wind behaviour at the scale of the ABL can be valuable for more general aspects, such as
the mean wind load on buildings, wind potential for energy production Walker (2011) or wind
nuisance in urban planning.

Differences between urban and rural wind dynamics can be caused by increased roughness,
by enhanced surface heating due to the Urban Heat Island (UHI) and changed ABL evolu-
tion. We aim to identify and understand these differences in wind behaviour through simulating
contrasting wind regimes, by altering the surface parameters (roughness, displacement height,
built fraction) and the initial conditions forcing the model (wind profile, geostrophic wind speed,
boundary-layer depth).

Theeuwes et al. (2015) have used the Mixed-Layer Model to show that for certain conditions,
boundary-layer dynamics can explain the Urban Cool Island: a period during the day where the
city is colder than the countryside. Being aware of the impact of ABL dynamics, we hypothesise
that an Urban Wind Island (UWI), where the urban wind speed is larger than the rural wind
speed, might form under favourable conditions.

5.2 Methodology
We use the conceptual Mixed-Layer Model with a separated rural and urban column, as in
Theeuwes et al. (2015). We expand their model set-up with the bulk equations for the zonal (U )
and meridional (V ) wind components (Figure 5.1).

5.2.1 Model Description
The Mixed-Layer Model is a slab model describing the mean ABL state. The model predicts well-
mixed vertical profiles of turbulent quantities (heat, moisture, momentum), topped with a sharp
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Figure 5.1: Schematic overview of the model. The rural column is indicated in green; the urban
column in red. The dashed line represents the boundary-layer depth; U , V and ∆U,∆V refer to
the zonal and meridional wind, and their respective jumps to the geostrophic wind.

jump (∆U , ∆Θ, etc.) to the free tropospheric profile, as well as the evolution of the ABL-depth
(h). These conditions represent the convective daytime ABL, which is relevant when studying
wind in the urban atmosphere. The tendency of the boundary-layer quantities is governed by
their respective surface flux, and the entrainment flux, which mixes quantities down into the
ABL from the troposphere and vice versa. Neither advection nor horizontal heterogeneity is
considered. The simplified representation of the convective boundary layer makes these models
very suitable for a wide range of conceptual studies (Tennekes (1973); Tennekes and Driedonks
(1981); Schröter et al. (2013); Conzemius and Fedorovich (2006a); Byun and Arya (1986); Mahrt
and Lenschow (1976)).

The mixed-layer equations governing the wind budget are:
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= f(V − Vgeo) +

1
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s − u′w′
h) (5.1)
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= −f(U − Ugeo) +
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Here U (geo) is the zonal boundary-layer (geostrophic) wind; V (geo) the meridional boundary-
layer (geostrophic) wind (all in ms−1); u′w′

s and u′w′
h are the surface and entrainment momentum

fluxes [m2s−2], respectively; h is the ABL depth (m); f is the Coriolis-parameter taken at 10−4

s−1, representing mid-latitudes. A full set of governing equations is presented in the supporting
material of this paper.

5.2.2 Surface model
The model consists of two, non-communicating columns: an urban column and a rural column
(Figure 5.1). The columns are uncoupled to capture the behaviour of the urban effect on its own,
rather than looking at rural-to-urban interactions (advection). The urban column represents a
large metropolitan area, uninfluenced by the rural surrounding on the diurnal time-scale we
are interested in. To distinguish between the urban and rural parts, underlying surface model
parameters vary (e.g. the displacement height d is 0 m in the rural area, but significant in
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the urban area). The surface model contains a well-validated land-surface parametrisation valid
for clear-sky, daytime cases Theeuwes et al. (2015). The urban surface includes the effect of
energy storage in impervious surface by using the Objective Hysteresis Model (Grimmond and
Oke, 2002) which calculates the storage heat flux from the net radiation and the urban building
fractions.

5.2.3 Model Validation
The rural part of the model is validated against observations from the Cabauw research tower,
which measures the profile of wind speed among other quantities up to a height of 180 m. The
Cabauw measurement site is a grassy field with a roughness length z0 of approximately 0.2 m,
and few other roughness elements in its direct neighbourhood, which represents a typical rural
field area Beljaars and Bosveld (1997). Since the mixed-layer model is only valid for clear-sky,
convective conditions, a set of clear days was chosen from the EUCAARIE campaign conducted
in Cabauw in May 2008 Kulmala et al. (2011) for model evaluation. We evaluate the modelled
wind against the vertically averaged, layer-weighted wind observations between 10 m and 180 m
conform the bulk character of the model results. Geostrophic wind forcing is determined from
surface pressure observations in a radius of 100 km around Cabauw.

The selected validation case is May 4 2008, a clear-sky day with moderate wind speeds
(geostrophic wind components Ugeo and Vgeo were on average -5 and +4.5 ms−1, respectively).
The model simulation starts at 6:00 UTC (about 2 hours after sunrise) and ends at 18:00 UTC
(LT is UTC +2), to capture the full extent of the convective boundary-layer regime. The model
captures the mean wind behaviour to a sufficient degree (Figure 5.2a), though small-scale vari-
ability in the wind signal cannot be captured by the model due to its simplified physics and
forcing. It seems the model produces relatively high friction in the first 2 hours compared to the
observations, visible by the sharp decline in the U and V wind components, which leads to an
initial underestimation of the wind speed. Afterwards the model reproduces the measurements
very well, though some low extremes in the V -component of the wind cannot be reproduced.
Overall, the RMSE in the mean wind amounts to 0.8 ms−1 which is a robust result, given the
simplifications within the model. Air temperature is modelled equally well, with an RMSE of 0.6
◦ C. The modelled surface energy balance (not shown) corresponds to observations, though the
model initially underestimates the latent heat flux (by ∼40 Wm−2), and slightly overestimates
the sensible heat flux (∼15 Wm−2) near the end of the model simulation.

The urban part of the model is validated separately, against measurements taken at King’s
College, London, at July 23rd 2012. Surface parameters are taken from Kotthaus and Grimmond
(2014), and forcing parameters (geostrophic wind, initial profiles) are taken from the SUBLIME
case description for urban model intercomparison Steeneveld et al. (2017). Observations are
made on top of a building at 49 m above ground level (2.2 times mean building height), in a
compact mid-rise neighbourhood. The chosen day is a clear-sky, convective day, though with
substantial advection of momentum and a turning of the geostrophic wind with time, which we
apply from SUBLIME.

The model performs satisfactorily (Figure 5.2b), with an RMSE of 0.78 ms−1 for the mean
wind speed. The model does not simulate the sudden jumps in wind speed seen in the obser-
vations, which can be attributed to the relatively low height of the observations, which still
induces some turbulent behaviour from the street canyons below. The overall result is good, and
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Figure 5.2: Validation of the model, for (a) May 4th 2008 at the Cabauw observational site
and (b) July 23rd 2012 at the London King’s College mast. Markers represent observations with
error bars (10 min. at Cabauw, 30 min. at London); lines are the model outcomes. Green
represents the wind magnitude (speed); in red and blue the meridional and zonal wind velocity
components, respectively.

the model can therefore be used with confidence to model both urban and rural mean wind speed.

5.2.4 Experiments
Having validated the model, we follow Theeuwes et al. (2015) for the model initialization, using
initial values from the BUBBLE campaign in Basel (Switzerland) (Rotach et al., 2005). During
this campaign 3 masts measured wind speed in and outside of Basel for an intensive observation
period of one month. Since most of the urban measurements actually took place inside the urban
canopy and roughness sublayer (below ∼2 times rooftop level (Barlow, 2014)) which causes a lot
of disturbance, direct validation of the urban wind is challenging. Hence we use the BUBBLE
measurements to provide a typical urban - rural contrast at the start of the model simulation.
This set-up is then used as a base run, against which further setups of the model are compared.

Considering the budget equations for momentum (Equations 5.1 and 5.2), the modelled wind
is influenced by 3 processes. The first process, f(V − Vgeo), is the ageostrophic term, which
redistributes momentum between the U and V components of the wind, due to the Earth’s
rotation. It follows that if (V − Vgeo) (or (U − Ugeo)) is large, dU

dt has to increase as well.
The second and third processes are in the momentum flux divergence term, which contains a
surface effect (u′w′

s) and an entrainment effect (in u′w′
h). When the fluxes are of equal sign, the

momentum distribution term is small and the ageostrophic term will dominate the momentum
budget. When the fluxes are of opposite sign, the momentum distribution term increases and
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induces some turbulent behaviour from the street canyons below. The overall result is good, and
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Figure 5.2: Validation of the model, for (a) May 4th 2008 at the Cabauw observational site
and (b) July 23rd 2012 at the London King’s College mast. Markers represent observations with
error bars (10 min. at Cabauw, 30 min. at London); lines are the model outcomes. Green
represents the wind magnitude (speed); in red and blue the meridional and zonal wind velocity
components, respectively.

the model can therefore be used with confidence to model both urban and rural mean wind speed.

5.2.4 Experiments
Having validated the model, we follow Theeuwes et al. (2015) for the model initialization, using
initial values from the BUBBLE campaign in Basel (Switzerland) (Rotach et al., 2005). During
this campaign 3 masts measured wind speed in and outside of Basel for an intensive observation
period of one month. Since most of the urban measurements actually took place inside the urban
canopy and roughness sublayer (below ∼2 times rooftop level (Barlow, 2014)) which causes a lot
of disturbance, direct validation of the urban wind is challenging. Hence we use the BUBBLE
measurements to provide a typical urban - rural contrast at the start of the model simulation.
This set-up is then used as a base run, against which further setups of the model are compared.

Considering the budget equations for momentum (Equations 5.1 and 5.2), the modelled wind
is influenced by 3 processes. The first process, f(V − Vgeo), is the ageostrophic term, which
redistributes momentum between the U and V components of the wind, due to the Earth’s
rotation. It follows that if (V − Vgeo) (or (U − Ugeo)) is large, dU

dt has to increase as well.
The second and third processes are in the momentum flux divergence term, which contains a
surface effect (u′w′

s) and an entrainment effect (in u′w′
h). When the fluxes are of equal sign, the

momentum distribution term is small and the ageostrophic term will dominate the momentum
budget. When the fluxes are of opposite sign, the momentum distribution term increases and
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contributes more to the momentum budget. To determine which of these 3 effects (surface,
entrainment, ageostrophic) is dominant in determining urban-rural wind contrasts we perform a
set of experiments.

1. In the first experiment we eliminate the effect of the different urban surface. By setting
the urban roughness lengths for heat and momentum to those of the rural surface, any
influence caused by the buildings in a city is removed.

2. In the second experiment the entrainment rate is set to zero, to simulate a boundary-layer
evolution without entrainment or detrainment from the free troposphere. The momentum
budget is thereby only governed by the surface flux and the ageostrophic term.

3. The third experiment is to set the Coriolis parameter f to 0, which eliminates the ageostrophic
term from Equation 5.1, so only the momentum divergence plays a role. Though (f ∗Vgeo)
is not 0 in this case, but just leaves the horizontal pressure gradient, we assume this to be
negligible in order to investigate the importance of the ageostrophic term as a whole.

Finally, the 10 urban Local Climate Zones (LCZs, Stewart and Oke (2012)) are implemented
in the urban surface model, to study the influence of the urban fabric on the wind behaviour.
Building height (and thereby displacement height and roughness length), urban and vegetation
fractions are varied between these LCZs to simulate varying degrees of urbanisation and urban
morphology, and their respective effects on the wind.

5.3 Results

5.3.1 Reference case study
The urban model set-up resembles the city of Basel to represent the conditions of the BUBBLE
campaign (Rotach et al., 2005). The geostrophic wind is set at 5 and 1 ms−1 for Ugeo and Vgeo,
respectively, based on a climatology of the wind at sounding station Payerne (WMO code 06610)
for June 2002 (the period of the BUBBLE campaign). Initial values of relevant model variables
are given in Table 5.1.

Table 5.1: Initial values of the model variables. z0m is the roughness length for momentum; θ
is the potential temperature.

Parameter Urban Rural
z0m 1.5 m 0.2 m
h 400 m 100 m
U(0) 2 ms−1 3 ms−1

V (0) 0 ms−1 0 ms−1

θ(0) 288 K 287 K
∆U(0) 3 ms−1 2 ms−1

∆V (0) 1 ms−1 1 ms−1

∆θ(0) 4 K 5 K

The model results for the reference case are depicted in Figure 5.3. While the rural wind has
a higher initial value than the urban wind speed, the urban wind speed accelerates for a longer
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Figure 5.3: Model results for the reference case. In green are the rural model outcomes; urban
in red. The asterisk in (b) indicates the the geostrophic equilibrium wind, respectively; dots
demarcate the hours (starting from 6 UTC). The numbers indicate the start of the model run
(at 0) and the direction in which the hodograph should be read.

amount of time after an initial drop at the start of the model run. This longer acceleration phase
causes the urban wind to ultimately surpass the rural wind speed, creating a UWI at around 11
UTC, which reaches its maximum of 0.4 ms−1 at 14 UTC.

An interesting feature of this model run is visible in the hodograph (Figure 5.3b). Both the
urban and the rural wind show a clear inertial oscillation in time, moving clockwise around the
geostrophic equilibrium wind vector. Such oscillations are typically associated with the stable
nocturnal boundary layer (Blackadar, 1957; Van de Wiel et al., 2010; Shapiro and Fedorovich,
2010), though several modelling and observational studies have also found these oscillations in
the convective boundary layer (e.g. (Schröter et al., 2013; Byun and Arya, 1986)), where they
significantly influence the wind, despite the effect of surface friction.

Figure 5.3 shows that the rural oscillation seems to be more dampened than the urban
oscillation, which describes a wider circle around the geostrophic equilibrium. This would suggest
that either the rural part has a higher internal friction dampening the oscillation, or that the
ageostrophic wind at the start of the model causes a larger amplitude of the urban oscillation.
The larger amplitude of the urban oscillation causes the urban wind to accelerate for a longer
period of time, thereby forming the UWI.

5.3.2 Experiments
The experiments described in section 5.2.4 will focus on the UWI, and how the boundary-layer
processes influence its modelled formation. Results of the first experiment, the equal roughness
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contributes more to the momentum budget. To determine which of these 3 effects (surface,
entrainment, ageostrophic) is dominant in determining urban-rural wind contrasts we perform a
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1. In the first experiment we eliminate the effect of the different urban surface. By setting
the urban roughness lengths for heat and momentum to those of the rural surface, any
influence caused by the buildings in a city is removed.

2. In the second experiment the entrainment rate is set to zero, to simulate a boundary-layer
evolution without entrainment or detrainment from the free troposphere. The momentum
budget is thereby only governed by the surface flux and the ageostrophic term.

3. The third experiment is to set the Coriolis parameter f to 0, which eliminates the ageostrophic
term from Equation 5.1, so only the momentum divergence plays a role. Though (f ∗Vgeo)
is not 0 in this case, but just leaves the horizontal pressure gradient, we assume this to be
negligible in order to investigate the importance of the ageostrophic term as a whole.

Finally, the 10 urban Local Climate Zones (LCZs, Stewart and Oke (2012)) are implemented
in the urban surface model, to study the influence of the urban fabric on the wind behaviour.
Building height (and thereby displacement height and roughness length), urban and vegetation
fractions are varied between these LCZs to simulate varying degrees of urbanisation and urban
morphology, and their respective effects on the wind.

5.3 Results

5.3.1 Reference case study
The urban model set-up resembles the city of Basel to represent the conditions of the BUBBLE
campaign (Rotach et al., 2005). The geostrophic wind is set at 5 and 1 ms−1 for Ugeo and Vgeo,
respectively, based on a climatology of the wind at sounding station Payerne (WMO code 06610)
for June 2002 (the period of the BUBBLE campaign). Initial values of relevant model variables
are given in Table 5.1.

Table 5.1: Initial values of the model variables. z0m is the roughness length for momentum; θ
is the potential temperature.

Parameter Urban Rural
z0m 1.5 m 0.2 m
h 400 m 100 m
U(0) 2 ms−1 3 ms−1

V (0) 0 ms−1 0 ms−1

θ(0) 288 K 287 K
∆U(0) 3 ms−1 2 ms−1

∆V (0) 1 ms−1 1 ms−1

∆θ(0) 4 K 5 K

The model results for the reference case are depicted in Figure 5.3. While the rural wind has
a higher initial value than the urban wind speed, the urban wind speed accelerates for a longer
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Figure 5.3: Model results for the reference case. In green are the rural model outcomes; urban
in red. The asterisk in (b) indicates the the geostrophic equilibrium wind, respectively; dots
demarcate the hours (starting from 6 UTC). The numbers indicate the start of the model run
(at 0) and the direction in which the hodograph should be read.

amount of time after an initial drop at the start of the model run. This longer acceleration phase
causes the urban wind to ultimately surpass the rural wind speed, creating a UWI at around 11
UTC, which reaches its maximum of 0.4 ms−1 at 14 UTC.

An interesting feature of this model run is visible in the hodograph (Figure 5.3b). Both the
urban and the rural wind show a clear inertial oscillation in time, moving clockwise around the
geostrophic equilibrium wind vector. Such oscillations are typically associated with the stable
nocturnal boundary layer (Blackadar, 1957; Van de Wiel et al., 2010; Shapiro and Fedorovich,
2010), though several modelling and observational studies have also found these oscillations in
the convective boundary layer (e.g. (Schröter et al., 2013; Byun and Arya, 1986)), where they
significantly influence the wind, despite the effect of surface friction.

Figure 5.3 shows that the rural oscillation seems to be more dampened than the urban
oscillation, which describes a wider circle around the geostrophic equilibrium. This would suggest
that either the rural part has a higher internal friction dampening the oscillation, or that the
ageostrophic wind at the start of the model causes a larger amplitude of the urban oscillation.
The larger amplitude of the urban oscillation causes the urban wind to accelerate for a longer
period of time, thereby forming the UWI.

5.3.2 Experiments
The experiments described in section 5.2.4 will focus on the UWI, and how the boundary-layer
processes influence its modelled formation. Results of the first experiment, the equal roughness
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(Figure 5.4b), are not very different from the reference run, though the urban wind values in-
crease slightly. The urban surface momentum fluxes show a decrease, indicating lower friction
generated by the surface, which causes the wind speeds to increase and enhances the UWI to ∼1
ms−1. Hence, roughness affects the UWI, but does not seem essential in its formation.

The second experiment, without the entrainment effect (Figure 5.4c), shows remarkable dif-
ferences between the urban and the rural response. Both the urban and rural wind become nearly
stationary after 4 hours, but the urban wind increases more rapidly, to ∼4.1 ms−1, whereas the
rural wind initially decreases before slowly returning to its initial value (∼3 ms−1). The UWI is
much larger than in the reference case (∼1.5 ms−1 versus ∼0.4 ms−1) due to the stationary rural
wind. An analysis of the two components of equation 5.1 shows that the ageostrophic term and
the momentum divergence term are nearly equal but of opposite sign after 4 hours, effectively
cancelling each other out. In the reference case the momentum divergence term is much weaker:
this suggests that the entrainment counteracts against the surface flux, and that entrainment is
an important source of momentum. To study whether the result of Figure 5.4c is attributable
to the entrainment, and not to the difference in initial boundary-layer height between urban
and rural, we repeat the experiment with equal boundary-layer depths (shown in the Supporting
Information). In this case, a UWI is not formed, indicating that the increased boundary-layer
growth of the city plays a crucial role in reducing the impact of friction over the whole of the
boundary-layer.

Wind evolution is nearly stationary in the third experiment, (f = 0, Figure 5.4d). Neither
urban nor rural wind change much over the course of the model run, though the urban wind
increases more than the rural wind. This indicates that the inertial oscillation is a key driver of
the UWI, since a strong ageostrophic wind (f(V − Vgeo)) causes a stronger acceleration of the
wind, and this ageostrophic wind will be higher for the cases where the urban wind is initially
lower than the rural wind. The influence of the initial conditions of the model seems apparent
here: with urban and rural wind speeds not evolving as dramatically as in the reference case,
the initial conditions determine whether the UWI occurs or not (Figure 5.4d).
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Figure 5.4: Modelled wind speed magnitude [ms−1] for (a) the reference case; (b) the equal
roughness case; (c) the no entrainment case and (d) the no Coriolis force case. Urban wind is
given in red; rural wind in green.
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ms−1. Hence, roughness affects the UWI, but does not seem essential in its formation.
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cancelling each other out. In the reference case the momentum divergence term is much weaker:
this suggests that the entrainment counteracts against the surface flux, and that entrainment is
an important source of momentum. To study whether the result of Figure 5.4c is attributable
to the entrainment, and not to the difference in initial boundary-layer height between urban
and rural, we repeat the experiment with equal boundary-layer depths (shown in the Supporting
Information). In this case, a UWI is not formed, indicating that the increased boundary-layer
growth of the city plays a crucial role in reducing the impact of friction over the whole of the
boundary-layer.

Wind evolution is nearly stationary in the third experiment, (f = 0, Figure 5.4d). Neither
urban nor rural wind change much over the course of the model run, though the urban wind
increases more than the rural wind. This indicates that the inertial oscillation is a key driver of
the UWI, since a strong ageostrophic wind (f(V − Vgeo)) causes a stronger acceleration of the
wind, and this ageostrophic wind will be higher for the cases where the urban wind is initially
lower than the rural wind. The influence of the initial conditions of the model seems apparent
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the initial conditions determine whether the UWI occurs or not (Figure 5.4d).
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roughness case; (c) the no entrainment case and (d) the no Coriolis force case. Urban wind is
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(a) Sensitivity analysis for ∆U (b) Sensitivity analysis for h

Figure 5.5: Sensitivity of the modelled UWI for the initial ∆U & ∆V (b) and boundary-layer
depth (b). Contours indicate the value of the maximum (positive) UWI found, in ms−1. Model
initialisation for the other parameters is as in Table 5.1. In (b) the asterisk denotes the values
for the control case. Note that since U(0), V (0) are constant, the change in ∆U ,∆V changes
Ugeo and Vgeo.

5.3.3 Sensitivity to initial values and LCZs
The previous section revealed that the initial conditions are important contributors to the for-
mation of the UWI. We examine the sensitivity for initial boundary-layer depth, wind speed, and
geostrophic wind speed. In addition, we run the reference case for all 10 urban Local Climate
Zones (LCZs) (Stewart and Oke, 2012) to test how surface parameters such as roughness affect
the model outcomes. For each sensitivity analysis, the model is run with the same settings as in
Table 5.1, with a range of values for the sensitivity parameter of interest. The sensitivity analysis
is based on 11 values per parameter, linearly increasing between minimum and maximum values,
for a total of 121 model runs per analysis. The wind-jumps range between 0 and 6.0 ms−1, and
initial ABL depth from 50 to 400 m (rural) and 100 to 600 m (urban).

The modelled UWI formation appears to depend on the initial ageostrophic wind (Figure
5.5a). When the ageostrophic wind of the urban area is large, the amplitude of wind oscillation
(as seen in Section 5.3.2) becomes larger and allows for a stronger UWI formation. Figure 5.5b
shows the sensitivity of the modelled UWI to the initial boundary-layer depth (h0) in the city
and countryside. The maximum UWI is found for those cases where the initial urban boundary
layer is several hundred metres higher than its rural counterpart. This is likely linked to the
boundary-layer dynamics as seen in section 5.3.2. The higher urban boundary layer has a more
efficient mixing, and smears out the surface friction over a thicker boundary layer, decreasing dU

dt

and dV
dt (Equation 5.1).

The effect of the urban surface on the UWI is further explored by implementing the surface
characteristics of the 10 urban LCZs. Each LCZ has a distinct combination of properties such
as building height and impervious fraction that alter the boundary-layer dynamics. The model
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Figure 5.6: Time evolution of the UWI for the 10 urban LCZs (a), and hodographs for the 10
LCZs and the rural area (b). The hodograph is similarly annotated as Figure 5.3b. LCZs 1 and
4 are high-rise, 2 and 5 are mid-rise, and 3 and 6 are low-rise classes.

is initialised with the reference case settings (given in Table 5.1): the LCZ surface parameters
are given in the Supporting Material, and more details of the LCZs in Stewart and Oke (2012).

All but one LCZ show the UWI formation over the course of the model run, with the peak
commonly around 12 UTC (Figure 5.6a). LCZ 4 (open high-rise) does not show any UWI at all,
though the similar LCZ in terms of building height, LCZ 1 (compact high-rise), shows a small
UWI near the end of the model simulation (15 UTC). The building height for these LCZs is
high (40m), which in turn means that the displacement height is large. The increased friction
causes a strong sink of momentum at the surface, which reduces the urban wind speed. The UWI
formation in LCZ 1 can be attributed to the high urban fraction, which enhances the sensible
heat flux, allowing for greater boundary-layer growth. This growth can enhance entrainment
of momentum, and offset the strong friction at the surface by diluting the friction effect over a
thicker boundary layer compared to LCZ 4, which is more open and therefore contains less high
heat-storage material. The hodograph (Figure 5.6b) shows the familiar oscillation for all LCZs,
with few differences between LCZs. The weakest oscillation is seen in LCZ 1, where the wind is
dampened by the strong surface friction.

5.4 Discussion

5.4.1 UWI in previous studies

While there is a range of published urban wind studies, those that look at urban and rural wind
differences are scarce, due to the difficulties in observing and modelling urban wind. Studies that
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Figure 5.5: Sensitivity of the modelled UWI for the initial ∆U & ∆V (b) and boundary-layer
depth (b). Contours indicate the value of the maximum (positive) UWI found, in ms−1. Model
initialisation for the other parameters is as in Table 5.1. In (b) the asterisk denotes the values
for the control case. Note that since U(0), V (0) are constant, the change in ∆U ,∆V changes
Ugeo and Vgeo.

5.3.3 Sensitivity to initial values and LCZs
The previous section revealed that the initial conditions are important contributors to the for-
mation of the UWI. We examine the sensitivity for initial boundary-layer depth, wind speed, and
geostrophic wind speed. In addition, we run the reference case for all 10 urban Local Climate
Zones (LCZs) (Stewart and Oke, 2012) to test how surface parameters such as roughness affect
the model outcomes. For each sensitivity analysis, the model is run with the same settings as in
Table 5.1, with a range of values for the sensitivity parameter of interest. The sensitivity analysis
is based on 11 values per parameter, linearly increasing between minimum and maximum values,
for a total of 121 model runs per analysis. The wind-jumps range between 0 and 6.0 ms−1, and
initial ABL depth from 50 to 400 m (rural) and 100 to 600 m (urban).

The modelled UWI formation appears to depend on the initial ageostrophic wind (Figure
5.5a). When the ageostrophic wind of the urban area is large, the amplitude of wind oscillation
(as seen in Section 5.3.2) becomes larger and allows for a stronger UWI formation. Figure 5.5b
shows the sensitivity of the modelled UWI to the initial boundary-layer depth (h0) in the city
and countryside. The maximum UWI is found for those cases where the initial urban boundary
layer is several hundred metres higher than its rural counterpart. This is likely linked to the
boundary-layer dynamics as seen in section 5.3.2. The higher urban boundary layer has a more
efficient mixing, and smears out the surface friction over a thicker boundary layer, decreasing dU
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and dV
dt (Equation 5.1).

The effect of the urban surface on the UWI is further explored by implementing the surface
characteristics of the 10 urban LCZs. Each LCZ has a distinct combination of properties such
as building height and impervious fraction that alter the boundary-layer dynamics. The model
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Figure 5.6: Time evolution of the UWI for the 10 urban LCZs (a), and hodographs for the 10
LCZs and the rural area (b). The hodograph is similarly annotated as Figure 5.3b. LCZs 1 and
4 are high-rise, 2 and 5 are mid-rise, and 3 and 6 are low-rise classes.

is initialised with the reference case settings (given in Table 5.1): the LCZ surface parameters
are given in the Supporting Material, and more details of the LCZs in Stewart and Oke (2012).

All but one LCZ show the UWI formation over the course of the model run, with the peak
commonly around 12 UTC (Figure 5.6a). LCZ 4 (open high-rise) does not show any UWI at all,
though the similar LCZ in terms of building height, LCZ 1 (compact high-rise), shows a small
UWI near the end of the model simulation (15 UTC). The building height for these LCZs is
high (40m), which in turn means that the displacement height is large. The increased friction
causes a strong sink of momentum at the surface, which reduces the urban wind speed. The UWI
formation in LCZ 1 can be attributed to the high urban fraction, which enhances the sensible
heat flux, allowing for greater boundary-layer growth. This growth can enhance entrainment
of momentum, and offset the strong friction at the surface by diluting the friction effect over a
thicker boundary layer compared to LCZ 4, which is more open and therefore contains less high
heat-storage material. The hodograph (Figure 5.6b) shows the familiar oscillation for all LCZs,
with few differences between LCZs. The weakest oscillation is seen in LCZ 1, where the wind is
dampened by the strong surface friction.

5.4 Discussion

5.4.1 UWI in previous studies

While there is a range of published urban wind studies, those that look at urban and rural wind
differences are scarce, due to the difficulties in observing and modelling urban wind. Studies that
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take the broader scale of wind differences into account hint at the UWI phenomenon. Bornstein
and Johnson (1977) measure wind speed in and around the city of New York. For low wind con-
ditions they find the urban wind, downwind of the city centre, can be increased with respect to
the rural upwind values. They attribute this to the influence of the UHI, which causes enhanced
turbulent flow. Other studies confirm these results, though the threshold below which the UWI
varies per city and season. Chandler (1965) and Lee (1979) find a UWI for the city of London
(England); Fortuniak et al. (2006) for Łódź in Poland; and Shreffler (1979) for St Louis (United
States).

The results of the first experiment in section 5.3.2 resemble the effect of the UHI, where
enhanced mixing in the urban boundary-layer can accelerate the wind speed. Using a two-
dimensional mesoscale model, Byun and Arya (1990) also model the differences between a rural
and an urban site. Their results correspond to that of Chandler (1965); Bornstein and Johnson
(1977) and Lee (1979), as they also find a region of increased wind speed downwind of the city
centre, attributed to the intensity of the UHI, but they do not directly relate its magnitude to that
of the rural wind velocity. While our results are focused on the daytime wind behaviour with a
conceptual model, both observations Bornstein and Johnson (1977); Chandler (1965); Lee (1979);
Fortuniak et al. (2006); Shreffler (1979) and a more advanced mesoscale model Byun and Arya
(1990) detect the UWI, and its formation due to the enhanced urban boundary-layer mixing. The
strongest urban acceleration (UWI) occurs at night in most of these studies: however, Bornstein
and Johnson (1977) and Shreffler (1979) also find a UWI during the weak daytime UHI with a
similar magnitude as our results (∼0.5 ms−1).

5.4.2 Model choice

The model used in this study is a conceptual bulk model, which makes several assumptions
to investigate a wide range of idealised wind conditions. However, an independent run of the
single-column WRF model Skamarock and Klemp (2008) (not shown) also displays a UWI with
similar magnitude and timing, confirming the robustness of our applied model. The Mixed-
Layer Model only takes the mean boundary-layer wind into account, hence no vertical profiles
of the wind can be modelled. In reality the boundary layer can experience vertical wind shear
during neutral and weakly unstable conditions, especially in the complex terrain of cities (Rotach,
1995; Macdonald, 2000; Castro, 2017), and knowledge of the vertical structure of wind speed is
important for applications such as urban planning (e.g. through mechanical loads on buildings).
Current models cannot easily simulate the flow field of wind inside an entire city: most limit
themselves to either single buildings (Blocken et al., 2012), homogenized canyons under various
wind regimes (Rotach, 1995) or rely on resource-intensive computation for an entire urban area
Toparlar et al. (2017), and be used to select interesting circumstances which a more sophisticated
model can then study in more detail, in a limited area setting.

5.4.3 UWI

The UWI that we find seems to be caused by urban boundary-layer dynamics, but it stands to
reason that wind differences can also be caused by specific rural boundary-layer dynamics. An
example is the transition towards the stable boundary layer at the end of the afternoon, when
surface heating dies down and buoyancy suppresses turbulence. This transition in the rural
boundary layer will happen earlier than in the urban boundary layer, due to the UHI, caused by
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heat storage in the built-up surface Oke (1982); Grimmond and Oke (2002).

The nocturnal urban boundary layer often becomes neutral, where weak turbulence still
produces (surface) winds, whereas the nocturnal rural boundary layer becomes stably strati-
fied. The wind dying down in the rural area (before low-level jet formation) when there is still
turbulence in the urban boundary layer, could potentially form a UWI. Observational studies
(Chandler (1965); Lee (1979); Bornstein and Johnson (1977); Shreffler (1979); Fortuniak et al.
(2006)) suggest an interplay between the UHI and the UWI, where a strong nocturnal UHI can
fortify downward mixing of momentum into the urban boundary layer to further enhance the
UWI. Whether this nocturnal UWI shares the same mechanisms with the afternoon-UWI that
we find is a natural follow-up to this research. Rural-to-urban interactions of wind, such as urban
breezes, are also not taken into account in this model, whereas they might play an important role
in the horizontal distribution of momentum. We assume a decoupling between the urban and
rural model parts, which in reality happens at distances of over ∼50 km, where the advection is
small compared to the other components of the momentum budget. Using a 3D weather model
could provide valuable insight in the daily cycle of the UWI, and how momentum is transported
to create the UWI. Observations of the UWI are difficult to make, due to the strong influence
of the urban canopy on the wind field, but at sufficient height (2-5 times building height Barlow
(2014), tower measurements can be very useful for UWI detection.

5.5 Conclusions
Using a conceptual mixed-layer model of the urban and rural atmospheric boundary layer we
show that the mean wind in cities can exceed the wind in the rural surrounding. The model
is validated against observations of the Cabauw tower facility in the Netherlands Beljaars and
Bosveld (1997). The model initial values and forcing are based on a climatology of the typical
morning values measured in the BUBBLE campaign Rotach et al. (2005). This Urban Wind
Island effect (UWI) occurs primarily at the beginning of the afternoon, and has a magnitude
typically around 0.5 ms−1. The UWI is caused by a combination of effects:

1. Enhanced mixing in the urban boundary layer which facilitates entrainment of free tropo-
spheric air;

2. A deeper urban boundary layer that dilutes the increased urban roughness;

3. The imbalance between boundary-layer wind and the geostrophic wind, which accelerates
the wind.

The initial model conditions also determine the magnitude of the UWI. Optimal conditions
for the UWI are:

1. A deeper initial urban boundary layer than its rural counterpart;

2. A moderate initial wind speed and geostrophic wind speed;

3. Relatively low building heights (around 12 m).

An analysis of UWI magnitude for all 10 urban Local Climate Zones (LCZs) Stewart and
Oke (2012) reveals that the urban roughness from buildings decreases the UWI, and no UWI will
for high-rise LCZs. Insight in the UWI can be used to determine whether a city has potential
for urban wind farming, and to provide background knowledge for more detailed studies, for
instance in air quality modelling.
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take the broader scale of wind differences into account hint at the UWI phenomenon. Bornstein
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similar magnitude and timing, confirming the robustness of our applied model. The Mixed-
Layer Model only takes the mean boundary-layer wind into account, hence no vertical profiles
of the wind can be modelled. In reality the boundary layer can experience vertical wind shear
during neutral and weakly unstable conditions, especially in the complex terrain of cities (Rotach,
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heat storage in the built-up surface Oke (1982); Grimmond and Oke (2002).
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turbulence in the urban boundary layer, could potentially form a UWI. Observational studies
(Chandler (1965); Lee (1979); Bornstein and Johnson (1977); Shreffler (1979); Fortuniak et al.
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The initial model conditions also determine the magnitude of the UWI. Optimal conditions
for the UWI are:
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2. A moderate initial wind speed and geostrophic wind speed;

3. Relatively low building heights (around 12 m).
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Model formulation
In addition to the budget equations of momentum given in the main text, the following equations
govern the wind in the Mixed-Layer Model:
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Here U is the zonal boundary-layer wind; V the meridional boundary-layer wind; we is the
entrainment velocity (all in ms−1); γu and γv represent the tropospheric lapse rate of the wind
speed components (s−1); u′w′

s and u′w′
h are the surface and entrainment momentum fluxes

[m2s−2], respectively; h is the boundary-layer depth (m); ∆ indicates the jump of a quantity
between boundary-layer and free troposphere; f is the Coriolis-parameter taken at 10−4 s−1.
For the entrainment rate equation, T0 is a reference temperature (300 K); V∗ is approximately
the convective velocity scale w∗ [ms−1] under convective conditions (Conzemius and Fedorovich,
2006a,b); CF , CT and CD are constants with values taken from Conzemius and Fedorovich
(2006b) and Byun and Arya (1986) (CF = 0.5, CT = 0.5, CD = 0.024); N is the Brunt-Väisälä
frequency [s−1]; ∆Θ is the potential temperature jump [K] and g is the gravitational acceleration
(9.81 ms−2). In Equation 5.5, T0V

3CF /gh represents the surface heat flux; CTT0V
2
∗ represents

the non-stationarity in the turbulent kinetic energy (TKE) budget Byun and Arya (1986); and
−CD

hN
V∗

accounts for the dissipation of TKE Conzemius and Fedorovich (2006b).
The surface and entrainment fluxes of momentum are calculated as follows:

u′w′
e = −∆Uwe (5.6)

v′w′
e = −∆V we (5.7)

u′w′
s = −CdU < U > (5.8)

v′w′
s = −CdV < U > (5.9)

Cd = κ2[ln((z + d)/z0)−ΨM ((z + d)/L)] (5.10)

Where <U> is the absolute wind speed in ms−1 (i.e. the vector-sum of U and V ), and Cd is the
bulk transfer coefficient for momentum (Stull, 1988). In equation (5.10), κ is the Von Kàrmàn
constant (≈ 0.4); d is the displacement height (0 m in rural conditions, and 4/5 of the building
height in the urban surface); z and z0 are height (taken as 10 % of the boundary-layer height)
and the roughness-length of momentum (in m), respectively; and ΨM is the stability correction
function for momentum (Stull, 1988).

These equations govern the wind and momentum in the Mixed-Layer Model: in addition to
these we also calculate atmospheric potential temperature and moisture, and the interactions
with the surface with a simple surface model. Since these are not the focus of this paper we
omit writing these out: we refer to Theeuwes et al. (2015) and its supplementary material for
the equations and the surface model formulation.
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(a) Fluxes (b) Tendencies

Figure 5.5.7: Model results for the idealised initial case. Ent refers to the entrainment flux;
sfc refers to the surface flux of momentum. (a) shows the value of the urban momentum fluxes;
(b) shows the tendency of the U and V components of the wind.

Supplementary results

Figure 5.5.8 depicts an additional validation case for Cabauw, May 5 2008. Model setup is similar
as in the rural validation described in the main manuscript. The geostrophic wind components
are set at -8 and 4 ms−1) for U and V, respectively. Surface parameters remain the same as
in the original validation case, and initial values of the turbulent quantities (wind, moisture,
temperature) have been taken from the observations. The model performs well in the wind
speed, though overestimates the V component of the wind during mid-day (11 to 12 UTC),
where it cannot reproduce the short-term fluctuations in the wind speed. Overall, the result is
good: the RMSE is 0.91 ms−1 in the wind magnitude.

Momentum entrainment

For the reference case (Figure 3 of the main text), a striking difference between urban and rural
is the entrainment of V -momentum, which shows a large peak at around 11 UTC (Figure 5.5.7).
This coincides with the extended acceleration of the urban wind speed which ultimately forms
the UWI. Slower momentum is entrained downwards (V is higher than Vgeo at the time of the
peak, so entrainment slows down the boundary-layer wind), which causes a positive value for
the entrainment flux. The entrainment flux is opposite in sign to the surface flux, decreasing the
momentum divergence term. The budget of urban V wind is thereby strongly governed by the
ageostrophic term. While the U -components of both the urban and rural wind show a similar
tendency (Figure 5.5.7b), the urban V -component tendency is larger where the rural tendency
is close to zero. This matches the behaviour of the entrainment flux of V -momentum, as seen in
figure 5.5.7a.
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Figure 5.5.8: Validation of the model, for May 5th 2008 at the Cabauw observational site.
Dots represent observations (every 10 min.); lines are the model outcomes. Green represents the
wind magnitude (speed); in red and blue the meridional and zonal wind velocity components,
respectively.

Experiments

Figure 5.5.9 depicts the value of the U and V components of the wind of the 4 cases described
in Section 3.2 of the main text. In all cases, including the reference, the wind magnitude is
mainly governed by the U component, though for the zero-entrainment case (Fig 5.5.9c) the
V -component for both urban and rural wind becomes dominant, which can be attributed to the
absence of entrainment of geostrophic V momentum which slows the boundary-layer V wind
down.
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(a) Reference (b) Equal Roughness

(c) No Entrainment (d) No Coriolis force

Figure 5.5.9: Modelled U and V components of the urban and rural wind [ms−1] for (a) the
reference case; (b) the equal roughness case; (c) the no entrainment case and (d) the no Coriolis
force case.
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Figure 5.5.10: Additional entrainment case experiment where initial ABL depth for both
urban and rural parts is set at 400 m, in addition to the entrainment being turned off. Compare
with Figure 4c in the main article.

Figure 5.5.10 provides the results for the additional entrainment experiment described in
section 3.2 of the main article. In addition to entrainment being turned off, the initial boundary-
layer depth for both urban and rural parts of the model is now set at 400 m. In this case, the
rural and urban wind show very similar responses, though the urban wind accelerates earlier than
its rural counterpart. A UWI does not form in this situation, highlighting the importance of the
increased boundary-layer growth through entrainment, which is turned off in this experiment,
on the UWI formation.
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Local Climate Zone details
The values of various parameters of the urban surface model for each urban Local Climate Zone
are provided in table 5.5.2. The values were taken from the data tables in Stewart and Oke
(2012). For the analysis in section 3.3 of the main text, these parameters were changed in the
surface model to alter the surface energy balance and surface roughness, to study the UWI
formation under different urban morphological compositions.

Table 5.5.2: Surface model parameters for the 10 urban Local Climate Zones. εsurf refers to
the surface emissivity [-]; Alb to the surface albedo [-]; fgr, fimp and fbuild refer to fractions of
green, impervious and built area, respectively; z0m is the roughness length for momentum [m]
and zh is the building height [m].

LCZ εsurf Alb fgr fimp fbuild z0m zh
1 0.91 0.15 0.05 0.48 0.48 6.75 40
2 0.91 0.15 0.1 0.4 0.5 1.5 20
3 0.91 0.15 0.15 0.35 0.5 0.4 10
4 0.91 0.2 0.35 0.35 0.3 5.25 40
5 0.91 0.2 0.3 0.4 0.3 1.25 20
6 0.91 0.2 0.4 0.35 0.25 0.5 10
7 0.28 0.25 0.15 0.1 0.75 0.2 3
8 0.91 0.2 0.1 0.45 0.45 0.55 7
9 0.91 0.2 0.7 0.15 0.15 0.35 7
10 0.91 0.15 0.45 0.3 0.25 1.1 10
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The urban wind island from a
three-dimensional perspective

Chapter 6

The Urban Wind Island (UWI), a small but persistent positive wind anomaly over the city as 
a whole, has previously been revealed using a simplified conceptual model of the convective 
atmospheric boundary layer. However, the urban boundary layer is strongly heterogeneous and 
complex, and many interactions with surrounding land-use are not taken into account with the 
conceptual model used. Additionally, the transition to a stable or neutral nocturnal boundary 
layer substantially influences wind speed, for instance leading to nocturnal jets, which could also 
lead to UWI formation. This study extends the UWI research into less idealised cases by using 
the 3D WRF mesoscale model for Amsterdam (the Netherlands) and its surroundings, at 500m 
resolution. Two summers of forecast results for in total 173 days are used to identify whether the 
UWI persists in a 3-dimensional modelling environment, and which conditions are optimal for 
its formation and persistence. In order to focus only on wind modified by surface processes, large-
scale influences which modify wind speed, such as frontal passages, are identified and eliminated 
from the dataset. We find that a positive UWI is present roughly half the time, with an order of 
magnitude that is similar to the previous work (103 0.5 m/s). In addition we find an evening 
UWI that is caused by the delayed onset of the transition from an unstable to a stable or a neutral 
boundary layer in the urban area, while the rural area is already stable and calm.
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6.1 Introduction

At present, much remains unknown regarding the complex microclimate of cities and urban ar-
eas. Within a neighbourhood or even a single street canyon, strong contrasts in temperature,
wind or radiation are the norm, rather than the exception. Due to this strong heterogeneity,
taking representative urban meteorological measurements is extremely challenging and a costly
affair. Though human activity concentrates in cities, routine meteorological measurement sites
are exclusively situated in rural areas, that are preferably flat and homogeneous to capture
the undisturbed larger-scale meteorological background required for accurate large-scale weather
forecasting. Some weather stations have even been moved further away from encroaching urban
sprawl (Yang et al., 2013; Bassett et al., 2019), lest it “contaminates” the rural background with
the enhanced heat or roughness so typical of the urban environment.

The advances in computational processing power have improved numerical weather prediction
models up to the point where cities should no longer be merely considered a different land-use
class, but actually resolve several of the local-scale meteorological processes that strongly influ-
ence the urban area and its direct surroundings (Best and Grimmond, 2015). The urban heat
island (UHI) is the most well-known consequence: the larger heating effect of the urban area
caused by the relatively efficient absorption of solar radiation in the urban fabric, and longer
retention of long-wave radiation. Abundance of building materials such as concrete, metal and
asphalt, combined with a relatively low vegetation fraction and low average albedo shift a rela-
tively high latent heat flux at a typical rural site, into a high ground heat flux, or storage heat
flux as the term goes for urban meteorology. This heat is stored during the day, where the verti-
cal structure of (large) cities captures much of the incoming radiation into roads, roofs and walls
(Oke, 1988). This heat is released later at night, delaying the onset of the stable boundary layer,
rather keeping a neutral or weakly unstable urban nocturnal boundary layer, which behaves very
differently from its rural counterpart during the night.

These contrasting boundary-layer dynamics give rise to other local-scale phenomena, such
as the urban wind island (UWI): a positive difference in boundary-layer averaged wind speed
between urban and rural areas. (Droste et al., 2018b) (from here on referred to as D18 ) showed
this UWI in a conceptual model of the daytime urban and rural boundary layers (see Figure
6.1.1). This mixed-layer model is a bulk-representation of the boundary-layer, with influences
from the underlying surface and the free troposphere above. In D18, two separate columns are
modelled, with the same free atmosphere, but distinct surface properties: urban and rural. A
positive wind difference between the urban and rural column can be found under certain circum-
stances (clear-sky days with moderate wind speeds): the UWI.

Its two driving factors appeared to be the ageostrophic wind speed magnitude (the differ-
ence between the large-scale geostrophic wind speed, free of surface influence, and the mean
boundary-layer wind speed), and the difference in the boundary-layer depth between urban and
rural areas at the start of the day. The UWI is a fairly small effect, with values up to 0.5 m/s
found in D18. Hence, it stands to reason that under the idealised circumstances of the conceptual
model used, the UWI might not persist if other local processes are dominant. On the other hand,
also observational evidence of the UWI has been provided (Fortuniak et al., 2006), meaning that
there is some indication that the UWI is a real phenomenon, distinct from the sharp microscale
differences in wind speeds often observed near buildings (canyon tunnelling or wind lulls at the
leeward side of obstacles).
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Figure 6.1.1: Schematic overview of the conceptual model used in (Droste et al., 2018b).
The urban and rural part of the model do not communicate, but are influenced by the same
geostrophic wind speed.

In D18, the most favourable conditions for UWI formations appear to be a moderate geostrophic
wind speed (∼ 5 m/s), a positive difference in boundary-layer height between urban and rural
at the at sunrise, and cloudless conditions which encourage strong boundary-layer development
dominated by local effects. Note that outside of an idealised where the boundary conditions can
be controlled, frontal effects and other mesoscale phenomena may also influence the wind fields
in both urban and rural areas, which can cause wind differences between the two that should
not be considered an UWI. Thus, we narrow our definition of an UWI to be “a positive wind
difference between an urban and nearby rural area, caused by differences in local dynamics”, and
therefore need to remove large-scale effects that could suggest an UWI where there is none.

The objective of this study is therefore to establish whether the UWI phenomenon manifests
itself in a 3D-context. Since urban wind observations are challenging, especially of a boundary-
layer averaged phenomenon such as the UWI, we use mesoscale model results (Ronda et al.,
2017). These are based on the WRF model (Weather Research & Forecasting, (Powers et al.,
2017)) at very high resolution (100m at the inner domain) with improved urban physical schemes
and land-use properties for Amsterdam, the Netherlands. Using the data of 2 summers, 2017 and
2018, we research whether the UWI occurs in these model results, which conditions are optimal
to its formation, and what similarities or differences these have with respect to the theory of D18.

This paper has been organised as follows: Section 6.2 introduces the model setup, study area
and research strategy; Section 6.3 provides the results, looking at UWI statistics under various
conditions, its time of formation, and role of initial conditions; Section 6.4 discusses the impli-
cations of the found results and answers the research questions.
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6.1 Introduction
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wind or radiation are the norm, rather than the exception. Due to this strong heterogeneity,
taking representative urban meteorological measurements is extremely challenging and a costly
affair. Though human activity concentrates in cities, routine meteorological measurement sites
are exclusively situated in rural areas, that are preferably flat and homogeneous to capture
the undisturbed larger-scale meteorological background required for accurate large-scale weather
forecasting. Some weather stations have even been moved further away from encroaching urban
sprawl (Yang et al., 2013; Bassett et al., 2019), lest it “contaminates” the rural background with
the enhanced heat or roughness so typical of the urban environment.

The advances in computational processing power have improved numerical weather prediction
models up to the point where cities should no longer be merely considered a different land-use
class, but actually resolve several of the local-scale meteorological processes that strongly influ-
ence the urban area and its direct surroundings (Best and Grimmond, 2015). The urban heat
island (UHI) is the most well-known consequence: the larger heating effect of the urban area
caused by the relatively efficient absorption of solar radiation in the urban fabric, and longer
retention of long-wave radiation. Abundance of building materials such as concrete, metal and
asphalt, combined with a relatively low vegetation fraction and low average albedo shift a rela-
tively high latent heat flux at a typical rural site, into a high ground heat flux, or storage heat
flux as the term goes for urban meteorology. This heat is stored during the day, where the verti-
cal structure of (large) cities captures much of the incoming radiation into roads, roofs and walls
(Oke, 1988). This heat is released later at night, delaying the onset of the stable boundary layer,
rather keeping a neutral or weakly unstable urban nocturnal boundary layer, which behaves very
differently from its rural counterpart during the night.

These contrasting boundary-layer dynamics give rise to other local-scale phenomena, such
as the urban wind island (UWI): a positive difference in boundary-layer averaged wind speed
between urban and rural areas. (Droste et al., 2018b) (from here on referred to as D18 ) showed
this UWI in a conceptual model of the daytime urban and rural boundary layers (see Figure
6.1.1). This mixed-layer model is a bulk-representation of the boundary-layer, with influences
from the underlying surface and the free troposphere above. In D18, two separate columns are
modelled, with the same free atmosphere, but distinct surface properties: urban and rural. A
positive wind difference between the urban and rural column can be found under certain circum-
stances (clear-sky days with moderate wind speeds): the UWI.

Its two driving factors appeared to be the ageostrophic wind speed magnitude (the differ-
ence between the large-scale geostrophic wind speed, free of surface influence, and the mean
boundary-layer wind speed), and the difference in the boundary-layer depth between urban and
rural areas at the start of the day. The UWI is a fairly small effect, with values up to 0.5 m/s
found in D18. Hence, it stands to reason that under the idealised circumstances of the conceptual
model used, the UWI might not persist if other local processes are dominant. On the other hand,
also observational evidence of the UWI has been provided (Fortuniak et al., 2006), meaning that
there is some indication that the UWI is a real phenomenon, distinct from the sharp microscale
differences in wind speeds often observed near buildings (canyon tunnelling or wind lulls at the
leeward side of obstacles).
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The urban and rural part of the model do not communicate, but are influenced by the same
geostrophic wind speed.
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wind speed (∼ 5 m/s), a positive difference in boundary-layer height between urban and rural
at the at sunrise, and cloudless conditions which encourage strong boundary-layer development
dominated by local effects. Note that outside of an idealised where the boundary conditions can
be controlled, frontal effects and other mesoscale phenomena may also influence the wind fields
in both urban and rural areas, which can cause wind differences between the two that should
not be considered an UWI. Thus, we narrow our definition of an UWI to be “a positive wind
difference between an urban and nearby rural area, caused by differences in local dynamics”, and
therefore need to remove large-scale effects that could suggest an UWI where there is none.

The objective of this study is therefore to establish whether the UWI phenomenon manifests
itself in a 3D-context. Since urban wind observations are challenging, especially of a boundary-
layer averaged phenomenon such as the UWI, we use mesoscale model results (Ronda et al.,
2017). These are based on the WRF model (Weather Research & Forecasting, (Powers et al.,
2017)) at very high resolution (100m at the inner domain) with improved urban physical schemes
and land-use properties for Amsterdam, the Netherlands. Using the data of 2 summers, 2017 and
2018, we research whether the UWI occurs in these model results, which conditions are optimal
to its formation, and what similarities or differences these have with respect to the theory of D18.

This paper has been organised as follows: Section 6.2 introduces the model setup, study area
and research strategy; Section 6.3 provides the results, looking at UWI statistics under various
conditions, its time of formation, and role of initial conditions; Section 6.4 discusses the impli-
cations of the found results and answers the research questions.
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6.2 Methodology and Data
This section introduces the utilised WRF-model results and its setup for the study area of Am-
sterdam. Additionally, a single day is picked out that is expected to showcase a UWI formation
in section 6.2.2, based on the conditions as found by D18. The data analysis strategy is laid out
in section 6.2.3, outlining potential causes of the UWI and outside disturbances, and how to deal
with those.

6.2.1 WRF-model and study area
The area of interest for our study is the city of Amsterdam, the Netherlands, and its rural sur-
roundings, located at roughly 52.37 ◦ N, 4.89 ◦ E, in the north-west of the Netherlands. The
region is characterised by a temperate maritime climate (Köppen Cfb climate) with the Ijssel
Lake in the vicinity (∼ 8 km) to the east and the North Sea (∼ 30 km) to the west.

The WRF model has been run for the study area with a customised land-surface and ur-
ban physics scheme as in (Ronda et al., 2017), which forms the core dataset of this work. The
model setup works with 4 one-way nested domains, each increasing with a factor 5 in resolution,
from 100m of the inner (4th) domain up to 12.5 km for the outer domain, roughly comprising
north-western Europe. The forecasts have a lead time of 48 hours, with the first 24 hours used
as spin-up. Soil- and urban fabric temperatures are initialised from the previous forecasts, and
water temperatures for the two inner domains are taken from measurements by Rijkswaterstaat
(Directorate-General for Public Works and Water Management): the governmental water body
and infrastructure managing agency. (Ronda et al., 2017) focus their analysis on the inner, 100m
resolution domain which is mainly the urbanised area of Amsterdam. Since this domain does not
comprise of a rural area to serve as reference, but only the urban extent, we uniquely use the 500m
resolution 3rd domain, centred on Amsterdam, which encompasses a large amount of the western
Netherlands, including a swath of rural land to the south and north of Amsterdam (Figure 6.2.1).

To identify a robust urban wind signal, we use the grid-average of 5x5 grid-cells (2.5 km
x 2.5 km in total) in the city centre, which is distant from the city borders and large water
bodies. Selecting the rural reference location is more challenging, since to the east and west of
Amsterdam there are no large undisturbed rural areas, with various cities to the west and the
IJssel-lake to the east. Ideally, the rural reference wind speed would be upwind of the city, so no
plume effects or momentum changes are advected from the relatively rough urban area to the
rural reference, essentially “polluting” the rural signal which needs to be clear of urban influence.

The area north of Amsterdam has some urban structures, and the south is bordering a large
nature reserve with well-watered meadows. Since the southern reference is quite far from the
city, it is likely that any urban influence will already be dispersed by the time air parcels reach
the location in case of northerly winds. Hence, the UWI could be independent of wind direction,
using a fixed reference location instead, since the only other option would be the northern area,
and northerly winds occur infrequently in the Dutch climate (Sluiter, 2011). In section 6.3.1 we
first show that indeed we can use this fixed reference even during northerly winds. A grid-average
of 5x5 cells is also used for the rural wind values. Since we use a grid-average instead of a single
grid point, the exact location of the 5x5 grid is not crucial. When the grid is moved 1 or 2 grid
cells, the resulting averaged wind speed hardly changes, indicating its robustness.
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Figure 6.2.1: Land-use map of the WRF model, centred on Amsterdam. The black dots in the
north and south mark areas designated as potential rural reference points, while the dot in the
urban centre denotes the urban grid used

6.2.2 Convective case example

In D18, the UWI is most prominent on clear-sky, convective summer days with moderate wind
speed: days that also tend to have higher UHI values. For example, August 18, 2018, was a
hot day that met these criteria. Using WRF model results for UWI (Figure 6.2.2), the typical
evolution of the UWI is similar as by the conceptual model of D18. It first emerges during the
morning and peaks during the afternoon (with a value of ∼0.6 m/s, consistent with earlier model
results), after which it decreases as it becomes night-time.

In addition, a second peak is visible during the evening (20:00 UTC, or 22:00 LT) around
sunset. This hints at a separate mechanism for the UWI, unrelated to convective boundary-layer
growth. Rather, we hypothesise it is the delayed transition towards the urban stable boundary
layer: due to the high heat storage of the urban fabric, more energy to drive turbulence is avail-
able even when insolation is low or 0 (after sunset). This energy reserve is the main driver of the
UHI, and also causes a delayed transition towards a more stable (neutral) boundary layer. Thus,
a timeframe exists where the rural boundary layer is already stable while the urban boundary
layer is not, which could generate a UWI until the urban boundary layer becomes stably strat-
ified as well. Section 6.3.3 in the Results will explore the influence of atmospheric stability on
the formation of a UWI during the evening and early night.
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urban centre denotes the urban grid used

6.2.2 Convective case example

In D18, the UWI is most prominent on clear-sky, convective summer days with moderate wind
speed: days that also tend to have higher UHI values. For example, August 18, 2018, was a
hot day that met these criteria. Using WRF model results for UWI (Figure 6.2.2), the typical
evolution of the UWI is similar as by the conceptual model of D18. It first emerges during the
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sunset. This hints at a separate mechanism for the UWI, unrelated to convective boundary-layer
growth. Rather, we hypothesise it is the delayed transition towards the urban stable boundary
layer: due to the high heat storage of the urban fabric, more energy to drive turbulence is avail-
able even when insolation is low or 0 (after sunset). This energy reserve is the main driver of the
UHI, and also causes a delayed transition towards a more stable (neutral) boundary layer. Thus,
a timeframe exists where the rural boundary layer is already stable while the urban boundary
layer is not, which could generate a UWI until the urban boundary layer becomes stably strat-
ified as well. Section 6.3.3 in the Results will explore the influence of atmospheric stability on
the formation of a UWI during the evening and early night.
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Figure 6.2.2: Hourly PBL-averaged UWI over Amsterdam (The Netherlands) from WRF out-
put on August 18th, 2018. Time is in UTC (LT = UTC+2). The southern point (Figure 1) is
used as rural reference to calculate the UWI.

6.2.3 Data analysis strategy
In the introduction, we made the distinction between locally created wind differences (the UWI)
and larger-scale influences which could cause an apparent UWI. Frontal effects, rain causing
local downbursts, or storms can all modify the wind at either the urban or rural area (or both),
without the surface playing any role. To study the pure UWI, these circumstances need to be
identified and removed, by utilising some of the parameters present in the WRF model results.
Hence, the presence of clouds and their impact on surface radiation, the boundary-layer depth,
boundary-layer stability, and the geostrophic wind speed are all expected to contribute to UWI
formation, and are extracted or calculated from the WRF output variables for selection purposes:

1. Rain is accounted for by the modelled accumulated grid precipitation, which tracks how
much precipitation reaches the ground for a given grid cell over the course of that model
run. If this is non-zero for the analysed day (the second day in the 48h forecasts), it has
rained, and the entire day is flagged as such. We subdivide the rain flag into 3 classes:
a 0 for no or very little rain (<= 0.1 mm), a 1 for rain between 0.1 and 1.0 mm, and
2 for anything above 1 mm rain. WRF typically struggles with the timing and spatial
distribution of rain, and this model setup was not validated for precipitation. However,
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we are not concerned with the accuracy of the modelled rain, rather how it impedes the
modelled wind speed. Therefore, whether the modelled rain values are correct is not is not
very important: rather that we can filter out days with (heavy) rain.

2. Clouds are identified from 3 modelled cloud fraction variables: the cloud fraction at each
model level, cloud liquid water, and cloud ice water contents. Since the level and com-
position of a cloud determines its physical impact (e.g. low, warm clouds impact surface
radiation to a larger degree than high, cold clouds), we divide the cloud data into low,
middle and high clouds based on approximate altitudes (the model layer closest to the
mentioned altitude). Low between 0 and 2 km; middle between 2 and 7 km, and high
above 7 km up to 12 km. Radiation, which governs the surface heat fluxes and therefore
the strength of boundary-layer development, is expressed through the incoming shortwave
radiation.

3. The geostrophic wind speed is not a direct output variable in WRF. Instead, we calculate it
from the geopotential following Wallace and Hobbs (2006), at various levels. Since the grid
spacing is relatively small, our estimation is liable to induce numerical instability if we do
not average over a large field. Therefore, we use the geopotential gradient over 30 grid cells
to estimate the geostrophic wind positioned over the city centre. The geostrophic wind
can be calculated from the geopotential gradient at various levels: for analysis purposes,
we use the geostrophic wind calculated from the 900 hPa geopotential field.

4. Thermodynamic stability of the surface layer is approximated using the bulk Richardson
number between the surface and the first model level (approx. 30 m), which can be
calculated from WRF output variables in a straightforward manner (equation 5.6.3 in
Stull (1988)). We approximate static stability by the sign of the bulk Richardson number:
determining the layer as stable when Rib is positive, and unstable when it is negative. We
also use this bulk Richardson number to determine the boundary-layer height, using the
parcel method (Vogelezang and Holtslag, 1996), with the critical value of the Richardson
number set at 0.25. At night, we approximate the PBL depth by 700 x u∗ (Koracin and
Berkowicz, 1988; Vogelezang and Holtslag, 1996; Steeneveld et al., 2007), while during the
day the maximum of the two methods is selected as the returned PBL height. WRF does
provide a PBL estimation itself but especially at night this leads to unrealistically low
PBL depths, presumably because of the parcel method not being optimal during stable
conditions. During convective daytime, the values from the two methods corresponds
rather closely (mean relative error of ∼6%).

5. The magnitude of the total wind speed is the vector sum of the WRF outputted u and
v components of the wind speed at all model levels inside the boundary layer. The UWI
is then the difference between the PBL-averaged wind speeds of the urban and the rural
model locations.

Aided by these identifiers, we construct histograms of the modelled UWI for various condi-
tions, to identify under which circumstances the UWI is highest, how long it persists (in terms of
a continuous positive UWI episode) and during what time of the day it occurs. We also examine
whether the influence of the (initial) PBL depth is similar as in D18. Additionally, we explore
the relation with the geostrophic wind (components) to the value of the maximum daily UWI
values.
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Figure 6.2.2: Hourly PBL-averaged UWI over Amsterdam (The Netherlands) from WRF out-
put on August 18th, 2018. Time is in UTC (LT = UTC+2). The southern point (Figure 1) is
used as rural reference to calculate the UWI.
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and larger-scale influences which could cause an apparent UWI. Frontal effects, rain causing
local downbursts, or storms can all modify the wind at either the urban or rural area (or both),
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1. Rain is accounted for by the modelled accumulated grid precipitation, which tracks how
much precipitation reaches the ground for a given grid cell over the course of that model
run. If this is non-zero for the analysed day (the second day in the 48h forecasts), it has
rained, and the entire day is flagged as such. We subdivide the rain flag into 3 classes:
a 0 for no or very little rain (<= 0.1 mm), a 1 for rain between 0.1 and 1.0 mm, and
2 for anything above 1 mm rain. WRF typically struggles with the timing and spatial
distribution of rain, and this model setup was not validated for precipitation. However,
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we are not concerned with the accuracy of the modelled rain, rather how it impedes the
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very important: rather that we can filter out days with (heavy) rain.

2. Clouds are identified from 3 modelled cloud fraction variables: the cloud fraction at each
model level, cloud liquid water, and cloud ice water contents. Since the level and com-
position of a cloud determines its physical impact (e.g. low, warm clouds impact surface
radiation to a larger degree than high, cold clouds), we divide the cloud data into low,
middle and high clouds based on approximate altitudes (the model layer closest to the
mentioned altitude). Low between 0 and 2 km; middle between 2 and 7 km, and high
above 7 km up to 12 km. Radiation, which governs the surface heat fluxes and therefore
the strength of boundary-layer development, is expressed through the incoming shortwave
radiation.

3. The geostrophic wind speed is not a direct output variable in WRF. Instead, we calculate it
from the geopotential following Wallace and Hobbs (2006), at various levels. Since the grid
spacing is relatively small, our estimation is liable to induce numerical instability if we do
not average over a large field. Therefore, we use the geopotential gradient over 30 grid cells
to estimate the geostrophic wind positioned over the city centre. The geostrophic wind
can be calculated from the geopotential gradient at various levels: for analysis purposes,
we use the geostrophic wind calculated from the 900 hPa geopotential field.

4. Thermodynamic stability of the surface layer is approximated using the bulk Richardson
number between the surface and the first model level (approx. 30 m), which can be
calculated from WRF output variables in a straightforward manner (equation 5.6.3 in
Stull (1988)). We approximate static stability by the sign of the bulk Richardson number:
determining the layer as stable when Rib is positive, and unstable when it is negative. We
also use this bulk Richardson number to determine the boundary-layer height, using the
parcel method (Vogelezang and Holtslag, 1996), with the critical value of the Richardson
number set at 0.25. At night, we approximate the PBL depth by 700 x u∗ (Koracin and
Berkowicz, 1988; Vogelezang and Holtslag, 1996; Steeneveld et al., 2007), while during the
day the maximum of the two methods is selected as the returned PBL height. WRF does
provide a PBL estimation itself but especially at night this leads to unrealistically low
PBL depths, presumably because of the parcel method not being optimal during stable
conditions. During convective daytime, the values from the two methods corresponds
rather closely (mean relative error of ∼6%).

5. The magnitude of the total wind speed is the vector sum of the WRF outputted u and
v components of the wind speed at all model levels inside the boundary layer. The UWI
is then the difference between the PBL-averaged wind speeds of the urban and the rural
model locations.

Aided by these identifiers, we construct histograms of the modelled UWI for various condi-
tions, to identify under which circumstances the UWI is highest, how long it persists (in terms of
a continuous positive UWI episode) and during what time of the day it occurs. We also examine
whether the influence of the (initial) PBL depth is similar as in D18. Additionally, we explore
the relation with the geostrophic wind (components) to the value of the maximum daily UWI
values.
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6.3 Results
This section presents the results of our data analysis, starting with a justification for the selected
rural reference location in the model. Following that, the mean UWI is analysed with special
attention to the effects of rain and stability forming the nocturnal UWI. Finally, the effect of
the initial boundary-layer conditions on the UWI (PBL depth, UHI and geostrophic wind) are
investigated.

6.3.1 Rural reference location
We first test whether a fixed rural reference location can be used, even for situations where
the site is downwind from the city, and therefore potentially contaminated by the urban plume.
The period between 20 and 28 July 2018, had predominantly northerly winds, varying between
north-west and north-east. For that episode, 185 hours are available for analysis, after removing
some hours where a sea-breeze front was present. The modelled UWI is calculated for both the
northern (upwind) and southern (downwind) rural reference grids, as in Figure ref:fig:1. If the
difference in UWI between north and south sites is not statistically significant (using a 2-sided
t-test of the difference), both sites are equally usable under these conditions, even when a site
is downwind from the city. An insignificant result would suggest that this urban influence is
minimal at this distance (20 km) and can therefore be ignored, and the southern site used as
reference regardless of wind direction.

The results of the statistical test are strongly insignificant: with p = 0.769 (t = -0.294; df =
338.18) we cannot reject the null hypothesis at α = 0.05. Ergo, the mean difference between the
results for the two sites is likely zero, and there is no distinguishable urban plume effect on the
downwind wind speed at the southern site. Based on this result we will use the southern site as
rural reference for any results from here onwards.

6.3.2 Mean UWI under various conditions
A histogram of the hourly UWI values over both years (no filters) shows that the distribution
is roughly normally distributed, centred around zero, with both positive and negative outliers,
favouring generally lower positive values (Figure 6.3.1). Some extreme values lie beyond the
plotted range: these consist of only 17 hours out of a total 4152, and coincide with frontal pas-
sages. The positive UWI generally is within the range found in D18, ∼0.5 – 1 m/s, with some
distinct outliers going up to 2 m/s. The negative side of the distribution shows a more gradual
decline, but is in values roughly the same. Negative UWI seems to occur mostly at night-time
(also indicated in Figure 6.2.2), where the rural area might experience a low-level jet, or the
high roughness of the urban area has a strong effect on the boundary-layer wind speed, since the
boundary-layer depth is much lower than during the day.

When subdividing the dataset into the 3 rain categories as described in section 6.2.3, it ini-
tially seems that daily maximum UWI increases with the accumulated precipitation for that day.
Convective precipitation events can include downbursts, i.e. modifications of the wind field due
to non-local phenomena. These events are therefore better disregarded, as they do not represent
the surface-induced UWI. Rain flag 1 however contains little precipitation (0.1 up to 1 mm/d)
which is typically not associated with heavy wind activity. Possibly warm fronts, accompanied by
drizzle, affect the wind field by altering the wind direction. For the rest of this study, days with
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Figure 6.3.1: Histogram of the modelled hourly UWI over Amsterdam over 2017 and 2018.
Each bin is 0.2 m/s, totalling 4135 hours.

> 1 mm accumulated precipitation are disregarded, leaving a total of 106 days up for analysis
(61 % of the original dataset).

Figure 6.3.2a shows the averaged diurnal UWI timeseries for those days without rain (69 days
in total, 40 % of the original dataset; 1656 hours). The red line in Figure 4a is the conceptual
model of D18, run for the average forcings of the 2 years of WRF 3D data, resulting in a very
similar course of UWI between the bulk model and the 3D WRF model. The daytime values
of the WRF-UWI (blue line) show a strong similarity to the course of the UWI in D18, which
also reaches its maximum at the end of the afternoon. A difference is that the UWI in this data
already starts positive a little after sunrise (which is around 4 UTC, 6 LT), whereas the UWI
in D18 didn’t become positive before 10 LT (8 UTC). The value of this mean UWI is rather
low (0.2 m/s), but realize this contains all days with the right rain flag, rather than an idealized
case. The control case of D18 also showed UWI values around 0.3 m/s, and only under more
optimized circumstances did that value increase. The similarity between the WRF-3D data and
the mixed-layer model of D18 suggests that on average, the UWI is formed by the core processes
described in D18, but individual days see a strong spread in UWI formation and values (as seen
in the histogram of Figure 6.3.1).

The UWI is a boundary-layer averaged phenomenon, and though wind is generally a well-
mixed quantity in the convective boundary layer, in practice there will be differences with height,
e.g. related to shear. Figure 6.3.2b also includes the UWI calculated from 3 different model lev-
els, aside from the boundary-layer averaged UWI also shown in panel a. Model level 1 is close
to the surface at 32m; model level 3 is moderate, at 120m; and model level 6 higher at 300m,
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6.3 Results
This section presents the results of our data analysis, starting with a justification for the selected
rural reference location in the model. Following that, the mean UWI is analysed with special
attention to the effects of rain and stability forming the nocturnal UWI. Finally, the effect of
the initial boundary-layer conditions on the UWI (PBL depth, UHI and geostrophic wind) are
investigated.

6.3.1 Rural reference location
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the site is downwind from the city, and therefore potentially contaminated by the urban plume.
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reference regardless of wind direction.
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distinct outliers going up to 2 m/s. The negative side of the distribution shows a more gradual
decline, but is in values roughly the same. Negative UWI seems to occur mostly at night-time
(also indicated in Figure 6.2.2), where the rural area might experience a low-level jet, or the
high roughness of the urban area has a strong effect on the boundary-layer wind speed, since the
boundary-layer depth is much lower than during the day.

When subdividing the dataset into the 3 rain categories as described in section 6.2.3, it ini-
tially seems that daily maximum UWI increases with the accumulated precipitation for that day.
Convective precipitation events can include downbursts, i.e. modifications of the wind field due
to non-local phenomena. These events are therefore better disregarded, as they do not represent
the surface-induced UWI. Rain flag 1 however contains little precipitation (0.1 up to 1 mm/d)
which is typically not associated with heavy wind activity. Possibly warm fronts, accompanied by
drizzle, affect the wind field by altering the wind direction. For the rest of this study, days with
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Figure 6.3.1: Histogram of the modelled hourly UWI over Amsterdam over 2017 and 2018.
Each bin is 0.2 m/s, totalling 4135 hours.

> 1 mm accumulated precipitation are disregarded, leaving a total of 106 days up for analysis
(61 % of the original dataset).

Figure 6.3.2a shows the averaged diurnal UWI timeseries for those days without rain (69 days
in total, 40 % of the original dataset; 1656 hours). The red line in Figure 4a is the conceptual
model of D18, run for the average forcings of the 2 years of WRF 3D data, resulting in a very
similar course of UWI between the bulk model and the 3D WRF model. The daytime values
of the WRF-UWI (blue line) show a strong similarity to the course of the UWI in D18, which
also reaches its maximum at the end of the afternoon. A difference is that the UWI in this data
already starts positive a little after sunrise (which is around 4 UTC, 6 LT), whereas the UWI
in D18 didn’t become positive before 10 LT (8 UTC). The value of this mean UWI is rather
low (0.2 m/s), but realize this contains all days with the right rain flag, rather than an idealized
case. The control case of D18 also showed UWI values around 0.3 m/s, and only under more
optimized circumstances did that value increase. The similarity between the WRF-3D data and
the mixed-layer model of D18 suggests that on average, the UWI is formed by the core processes
described in D18, but individual days see a strong spread in UWI formation and values (as seen
in the histogram of Figure 6.3.1).

The UWI is a boundary-layer averaged phenomenon, and though wind is generally a well-
mixed quantity in the convective boundary layer, in practice there will be differences with height,
e.g. related to shear. Figure 6.3.2b also includes the UWI calculated from 3 different model lev-
els, aside from the boundary-layer averaged UWI also shown in panel a. Model level 1 is close
to the surface at 32m; model level 3 is moderate, at 120m; and model level 6 higher at 300m,
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Figure 6.3.2: Mean hourly WRF-modelled UWI for Amsterdam calculated over days without
rain (a; blue line) and the mixed-layer model UWI run with averaged forcings over those days
(red line). Vertical crossbars in (a) indicate the standard error. Panel (b) shows the mean hourly
UWI at various model levels, as well as the boundary-layer average which is equal to that of (a).
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meaning it will occasionally be above the boundary-level height during early morning or late at
night. Especially the surface-level UWI is more variable during the day, likely due to turbulence
in the urban area generating higher wind speeds. At night, the UWI at 300m is positive which
could be caused by low-level jets. The medium level UWI shows very similar behaviour to the
boundary-layer weighted UWI, which is less directly reliant on the surface processes but still
within the boundary-layer during the night.

The hodograph of the average wind time series data (Figure 6.3.3) separates the PBL-
averaged wind speed in its U and V component for the urban and rural location. We indeed find
a typical inertial oscillation of the wind speed over the day, turning clockwise. This is precisely
the behaviour found in D18 and also in other studies of the inertial oscillation (Blackadar, 1957;
Byun and Arya, 1986), now also extending towards night-time rather than only the convective
boundary layer. Note that this is the average wind over 2 summers of data: individual days
have quite some variability between them and may not portray an oscillation at all or only for a
certain portion of the day. Similarly, the diurnal UWI evolution also shows a lot of spread over
the 2 years [see histogram, Figure 6.3.1].
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Figure 6.3.3: Hodograph (with dots representing time rather than height) of urban (red)
and rural (green) mean hourly modelled wind speed for days without rain (selection similar to
figure 4). Each point represents one hour, starting at the middle at 00 UTC and going counter-
clockwise, ending at 23 UTC.
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Figure 6.3.2: Mean hourly WRF-modelled UWI for Amsterdam calculated over days without
rain (a; blue line) and the mixed-layer model UWI run with averaged forcings over those days
(red line). Vertical crossbars in (a) indicate the standard error. Panel (b) shows the mean hourly
UWI at various model levels, as well as the boundary-layer average which is equal to that of (a).
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meaning it will occasionally be above the boundary-level height during early morning or late at
night. Especially the surface-level UWI is more variable during the day, likely due to turbulence
in the urban area generating higher wind speeds. At night, the UWI at 300m is positive which
could be caused by low-level jets. The medium level UWI shows very similar behaviour to the
boundary-layer weighted UWI, which is less directly reliant on the surface processes but still
within the boundary-layer during the night.

The hodograph of the average wind time series data (Figure 6.3.3) separates the PBL-
averaged wind speed in its U and V component for the urban and rural location. We indeed find
a typical inertial oscillation of the wind speed over the day, turning clockwise. This is precisely
the behaviour found in D18 and also in other studies of the inertial oscillation (Blackadar, 1957;
Byun and Arya, 1986), now also extending towards night-time rather than only the convective
boundary layer. Note that this is the average wind over 2 summers of data: individual days
have quite some variability between them and may not portray an oscillation at all or only for a
certain portion of the day. Similarly, the diurnal UWI evolution also shows a lot of spread over
the 2 years [see histogram, Figure 6.3.1].
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Figure 6.3.3: Hodograph (with dots representing time rather than height) of urban (red)
and rural (green) mean hourly modelled wind speed for days without rain (selection similar to
figure 4). Each point represents one hour, starting at the middle at 00 UTC and going counter-
clockwise, ending at 23 UTC.
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6.3.3 Stability and night-time UWI

As seen in the case of Figure 6.2.2 and various other days, the UWI can be positive shortly
after sunset, which the conceptual study in D18 does not cover. During this time of the day,
the boundary-layer transitions from unstable to stable stratification, which supresses buoyancy-
driven turbulence and generally lowers wind speed. The majority of positive UWI values does
not occur during this time but rather during the day (as the mean diurnal timeseries in Figure
6.3.2 shows), so it seems that the inertial oscillation mechanic is not the (main) driver of this
evening-transition UWI.

The frequency distribution for the evening hours where the urban boundary layer is unstable
and the rural boundary layer is already stable (Figure 6.3.4), shows that the UWI for these tran-
sitional cases leans more towards the negative side compared to the convective daytime values.
The positive side of the distribution looks very similar however, though any strongly positive
values are absent. The total number of hours where this transition happens is also limited, 173 in
total after filtering for high rain days (rain flag 2), but even when including those days, the shape
of the distribution changes only slightly, centring more around 0 and containing larger outliers.
Nearly all days show this transition, which typically occurs between 18:00 and 20:00 UTC, i.e.
around or a little after sunset. The UWI during this time shows no distinct difference from that
of the entire dataset averaged. This means that the evening UWI is not strongly different in
magnitude from the UWI formed during (convective) daytime.

However, when looking at the days where the maximum daily UWI happens during this
evening time window, a pattern seems to emerge (12 days in total). The UWI over the course
of the day is generally positive or very close to zero, and at the end of the afternoon (∼ 16:00
UTC) starts to increase to reach its maximum during the transition phase (Figure 6.3.5a). This
maximum UWI tends to be fairly high, over 2 m/s in half of the cases, and then shows a reduction
as the night progresses and the urban boundary layer becomes stable. When taking the transition
window somewhat wider, considering the daily maximum UWI between 18:00 and 23:00 UTC
(23 days in total), the time evolution is similar, but the values are somewhat lower, with a more
gradual decrease during night-time (Figure 6.3.5b).

6.3.4 Role of initial conditions

The relation between initial PBL-depth and the strength of the UWI as found in D18 seems to
be much less strong in this dataset. Figure 6.3.6 relates PBL-depth of urban and rural boundary
layers at 4:00 UTC (6:00 LT, just after sunrise) to the maximum UWI during that day, but a
clear pattern is not present. The higher UWI values (> 2 m/s) all lie above the 1:1 line, so for
situations with a higher initial urban than rural PBL depth, but there are also plenty of low-UWI
days in this area of the plot, particularly for the very low values. The size of the points indicates
the duration of the UWI episode of that day (i.e. consecutive hours with positive UWI values).

A higher urban PBL depth occasionally coincides with higher daily maximum UWI values,
but there is no convincing relation: a statistical (non-parametric) test of the difference between
the two data clusters above and below the 1:1 line yielded no significant difference. This is differ-
ent from the D18 study which showed a dependence on the initial boundary-layer depth, which
was especially strong for days with a high initial difference between rural and urban boundary-
layer depths. Such days do not seem to exist within this dataset, and might therefore not be
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Figure 6.3.4: Frequency distributions of the hourly modelled UWI where both urban and rural
boundary-layers are unstable (upper plot) and where the urban PBL is still unstable where the
rural PBL is already stable (lower plot).

very realistic for Amsterdam. A statistical extrapolation based on these data (not shown) does
show a similar relation between UWI and PBL depth as in D18, but the required combination
for PBL depths does not show up in this dataset, so that extrapolation cannot be reliably used.

In a similar fashion, the value of the geostrophic wind speed is a less dominant driver for
the UWI formation than was apparent in D18. The relation with the initial ageostrophic wind
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evening time window, a pattern seems to emerge (12 days in total). The UWI over the course
of the day is generally positive or very close to zero, and at the end of the afternoon (∼ 16:00
UTC) starts to increase to reach its maximum during the transition phase (Figure 6.3.5a). This
maximum UWI tends to be fairly high, over 2 m/s in half of the cases, and then shows a reduction
as the night progresses and the urban boundary layer becomes stable. When taking the transition
window somewhat wider, considering the daily maximum UWI between 18:00 and 23:00 UTC
(23 days in total), the time evolution is similar, but the values are somewhat lower, with a more
gradual decrease during night-time (Figure 6.3.5b).

6.3.4 Role of initial conditions

The relation between initial PBL-depth and the strength of the UWI as found in D18 seems to
be much less strong in this dataset. Figure 6.3.6 relates PBL-depth of urban and rural boundary
layers at 4:00 UTC (6:00 LT, just after sunrise) to the maximum UWI during that day, but a
clear pattern is not present. The higher UWI values (> 2 m/s) all lie above the 1:1 line, so for
situations with a higher initial urban than rural PBL depth, but there are also plenty of low-UWI
days in this area of the plot, particularly for the very low values. The size of the points indicates
the duration of the UWI episode of that day (i.e. consecutive hours with positive UWI values).

A higher urban PBL depth occasionally coincides with higher daily maximum UWI values,
but there is no convincing relation: a statistical (non-parametric) test of the difference between
the two data clusters above and below the 1:1 line yielded no significant difference. This is differ-
ent from the D18 study which showed a dependence on the initial boundary-layer depth, which
was especially strong for days with a high initial difference between rural and urban boundary-
layer depths. Such days do not seem to exist within this dataset, and might therefore not be
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Figure 6.3.4: Frequency distributions of the hourly modelled UWI where both urban and rural
boundary-layers are unstable (upper plot) and where the urban PBL is still unstable where the
rural PBL is already stable (lower plot).

very realistic for Amsterdam. A statistical extrapolation based on these data (not shown) does
show a similar relation between UWI and PBL depth as in D18, but the required combination
for PBL depths does not show up in this dataset, so that extrapolation cannot be reliably used.

In a similar fashion, the value of the geostrophic wind speed is a less dominant driver for
the UWI formation than was apparent in D18. The relation with the initial ageostrophic wind
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Figure 6.3.5: Hourly UWI for days that have the maximum daily UWI occur between 18:00
UTC and 20:00 UTC (a) or 18:00 UTC and 23:00 UTC (b). Vertical black lines denote the
timeframe where the maximum daily UWI occurs, which coincides roughly with the evening
transition of the PBL.

(Ugeo˘UPBL) at sunrise is weakly positive, where a larger difference between the boundary-layer
wind speed and the geostrophic wind speed seems to lead to larger UWI values (results not
shown). Exploring the daily mean geostrophic wind speed (Figure 6.3.7), the relation between
geostrophic wind and the daily maximum UWI is again not as clear-cut as for the conceptual
model, though generally moderate geostrophic wind speeds coincide with higher UWI values.
Interestingly, higher geostrophic wind correlates with the number of hours that a positive UWI
does occur on a given day: especially within the 10-15 m/s geostrophic wind range. Why exactly
this happens is unclear: potentially the higher geostrophic wind speed incites stronger boundary-
layer flows that get accelerated through the enhanced urban turbulence.
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Figure 6.3.6: Modelled boundary-layer depth (rural and urban on x and y axis, respectively)
at 4:00 UTC (6:00 LT) related to the modelled maximum daily UWI (colours). The size of the
points is an indication of the duration of a positive UWI episode of that day: consecutive positive
UWI values.

In addition, we do not find a significant relation between the UWI and the amount of solar
radiation received at the surface over a day, nor does the type or height of cloud presence during
the day seem to have a relation to the UWI occurrence for that day (results not shown). Both
hourly values or daily sums of radiation show no clear signal, indicating that cloudiness or
radiation do not influence the UWI formation or magnitude, apart from the relation to intense
rainfall events that induce downbursts, which we have intentionally removed from the dataset.
However, there is a weak relation to the temperature difference (UHI) at just after sunrise (5:00
UTC, Figure 10). A higher UHI seems to lead to higher UWI values during the day, though for
UHI values higher than 1 ◦C the effect lessens. A higher UHI at the start of the day means more
energy available for the urban boundary-layer to grow and develop turbulence, which could in
turn lead to a higher UWI over the course of the day.

6.4 Discussion and conclusion
In this study we have looked at the Urban Wind Island (UWI), the positive urban wind anomaly,
in the setting of the 3D mesoscale meteorological model WRF. Model data from 2 consecutive
summers have shown that the UWI is present in, and that aside from a daytime UWI there is
also a evening UWI, induced by the delayed transition to the stable nocturnal boundary layer.
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UTC and 20:00 UTC (a) or 18:00 UTC and 23:00 UTC (b). Vertical black lines denote the
timeframe where the maximum daily UWI occurs, which coincides roughly with the evening
transition of the PBL.

(Ugeo˘UPBL) at sunrise is weakly positive, where a larger difference between the boundary-layer
wind speed and the geostrophic wind speed seems to lead to larger UWI values (results not
shown). Exploring the daily mean geostrophic wind speed (Figure 6.3.7), the relation between
geostrophic wind and the daily maximum UWI is again not as clear-cut as for the conceptual
model, though generally moderate geostrophic wind speeds coincide with higher UWI values.
Interestingly, higher geostrophic wind correlates with the number of hours that a positive UWI
does occur on a given day: especially within the 10-15 m/s geostrophic wind range. Why exactly
this happens is unclear: potentially the higher geostrophic wind speed incites stronger boundary-
layer flows that get accelerated through the enhanced urban turbulence.
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Figure 6.3.6: Modelled boundary-layer depth (rural and urban on x and y axis, respectively)
at 4:00 UTC (6:00 LT) related to the modelled maximum daily UWI (colours). The size of the
points is an indication of the duration of a positive UWI episode of that day: consecutive positive
UWI values.

In addition, we do not find a significant relation between the UWI and the amount of solar
radiation received at the surface over a day, nor does the type or height of cloud presence during
the day seem to have a relation to the UWI occurrence for that day (results not shown). Both
hourly values or daily sums of radiation show no clear signal, indicating that cloudiness or
radiation do not influence the UWI formation or magnitude, apart from the relation to intense
rainfall events that induce downbursts, which we have intentionally removed from the dataset.
However, there is a weak relation to the temperature difference (UHI) at just after sunrise (5:00
UTC, Figure 10). A higher UHI seems to lead to higher UWI values during the day, though for
UHI values higher than 1 ◦C the effect lessens. A higher UHI at the start of the day means more
energy available for the urban boundary-layer to grow and develop turbulence, which could in
turn lead to a higher UWI over the course of the day.

6.4 Discussion and conclusion
In this study we have looked at the Urban Wind Island (UWI), the positive urban wind anomaly,
in the setting of the 3D mesoscale meteorological model WRF. Model data from 2 consecutive
summers have shown that the UWI is present in, and that aside from a daytime UWI there is
also a evening UWI, induced by the delayed transition to the stable nocturnal boundary layer.
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Figure 6.3.7: Modelled daily mean geostrophic wind versus the number of positive UWI hours
for a given day (with no to little rain). The coloured points indicate the value of the daily
maximum UWI for that day.

The UWI is convincingly present in the modelled data, and not just in very specific circum-
stances, but even those that are not “typical” nice summer days. The value of the positive UWI
is not very high, in the order of 0.5 m/s, which is similar order of magnitude as the conceptual
model predictions of D18. The average diurnal profile of the UWI, as well as the time-averaged
hodograph in figures 4 and 5 correspond very well to the theoretical model of the UWI, but
individual days can strongly diverge from the average pattern, and reach much higher values,
up to 3 m/s. The average time evolution of the UWI corresponds to that of the conceptual
model, with an acceleration phase and positive UWI’s during morning/early afternoon, and then
negative values. The UWI timing on average is very similar to the earlier work, with the on-
set a little earlier (few hours after sunrise), but the maximum UWI is also found in the afternoon.

The absence of a relation with cloudiness or radiation suggests that the clear-sky convective
situation as modelled in D18 is not a requirement for the UWI to form. However, on days with
frontal passages or strong rainfall events, an apparent UWI can form through downbursts or time
delays in frontal passage over the urban or rural area. These are separate from the boundary-
layer phenomenon and have been filtered out in this study.

In situations where the rural boundary layer reaches stable conditions earlier than the urban
area, a UWI can form through the suppression of turbulence in the rural area while it persists
in the city, typically a few hours around sunset (18:00-20:00 UTC). In these situations, the UWI
increases at the end of the afternoon, peaking at around 19:00 UTC before reducing in value
again as the night progresses and the urban boundary layer becomes (weakly) stable or neutral.
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Figure 6.3.8: Modelled initial UHI at 5:00 UTC versus modelled daily maximum UWI for days
with little or no rain.

This is a separate effect from the UWI caused by differences in the inertial oscillation of wind
during the day, and typically leads to a weaker UWI that persists for a shorter period of time
(∼ 2-3 hours).

Overall the UWI’s conceptual framework from D18 broadly fits the UWI formation as seen
in the more realistic WRF setting, but the importance of the difference in initial urban and
rural PBL height seems to play a lesser role. There is some relation between the PBL depth at
the start of the day (4:00 UTC, corresponding to 6:00 LT as also used in D18 ), with a higher
urban boundary layer typically leading to a higher maximum UWI, but not in all situations.
The signal is somewhat noisier and not as clear-cut as the conceptual study. The magnitude
of the geostrophic wind speed is seemingly an important component of the UWI formation in
the conceptual study, but this relation is much less apparent and much noisier without any real
pattern in the 3D data. While a general relation is still visible, and similar to the conceptual
study, we find quite some spread, but the number of positive UWI hours in a day seems to
depend on the mean geostrophic wind speed.

Since we have deliberately chosen two model locations well in the middle of their respective
land-use categories, what happens on the interface between urban and rural land has been held
out of the scope of this research. The urban breeze phenomenon, analogous to sea-breeze effects,
could also have some influence on the UWI, but this would be a locally driven circulation, which
is a separate, though not to be ignored, effect on wind speeds.

We have chosen for a grid-averaged UWI, rather than a spatial analysis, mainly because the
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Figure 6.3.7: Modelled daily mean geostrophic wind versus the number of positive UWI hours
for a given day (with no to little rain). The coloured points indicate the value of the daily
maximum UWI for that day.

The UWI is convincingly present in the modelled data, and not just in very specific circum-
stances, but even those that are not “typical” nice summer days. The value of the positive UWI
is not very high, in the order of 0.5 m/s, which is similar order of magnitude as the conceptual
model predictions of D18. The average diurnal profile of the UWI, as well as the time-averaged
hodograph in figures 4 and 5 correspond very well to the theoretical model of the UWI, but
individual days can strongly diverge from the average pattern, and reach much higher values,
up to 3 m/s. The average time evolution of the UWI corresponds to that of the conceptual
model, with an acceleration phase and positive UWI’s during morning/early afternoon, and then
negative values. The UWI timing on average is very similar to the earlier work, with the on-
set a little earlier (few hours after sunrise), but the maximum UWI is also found in the afternoon.

The absence of a relation with cloudiness or radiation suggests that the clear-sky convective
situation as modelled in D18 is not a requirement for the UWI to form. However, on days with
frontal passages or strong rainfall events, an apparent UWI can form through downbursts or time
delays in frontal passage over the urban or rural area. These are separate from the boundary-
layer phenomenon and have been filtered out in this study.

In situations where the rural boundary layer reaches stable conditions earlier than the urban
area, a UWI can form through the suppression of turbulence in the rural area while it persists
in the city, typically a few hours around sunset (18:00-20:00 UTC). In these situations, the UWI
increases at the end of the afternoon, peaking at around 19:00 UTC before reducing in value
again as the night progresses and the urban boundary layer becomes (weakly) stable or neutral.
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Figure 6.3.8: Modelled initial UHI at 5:00 UTC versus modelled daily maximum UWI for days
with little or no rain.

This is a separate effect from the UWI caused by differences in the inertial oscillation of wind
during the day, and typically leads to a weaker UWI that persists for a shorter period of time
(∼ 2-3 hours).

Overall the UWI’s conceptual framework from D18 broadly fits the UWI formation as seen
in the more realistic WRF setting, but the importance of the difference in initial urban and
rural PBL height seems to play a lesser role. There is some relation between the PBL depth at
the start of the day (4:00 UTC, corresponding to 6:00 LT as also used in D18 ), with a higher
urban boundary layer typically leading to a higher maximum UWI, but not in all situations.
The signal is somewhat noisier and not as clear-cut as the conceptual study. The magnitude
of the geostrophic wind speed is seemingly an important component of the UWI formation in
the conceptual study, but this relation is much less apparent and much noisier without any real
pattern in the 3D data. While a general relation is still visible, and similar to the conceptual
study, we find quite some spread, but the number of positive UWI hours in a day seems to
depend on the mean geostrophic wind speed.

Since we have deliberately chosen two model locations well in the middle of their respective
land-use categories, what happens on the interface between urban and rural land has been held
out of the scope of this research. The urban breeze phenomenon, analogous to sea-breeze effects,
could also have some influence on the UWI, but this would be a locally driven circulation, which
is a separate, though not to be ignored, effect on wind speeds.

We have chosen for a grid-averaged UWI, rather than a spatial analysis, mainly because the
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model infrastructure is too coarse to do detailed spatial analysis of this phenomenon. The defini-
tion of a UWI (or indeed a UHI) requires a background value, which necessarily is either a point
or grid average, otherwise a meaningful UWI cannot be constructed. While we could construct
a map of the UWI in Amsterdam, not much of value would be gained, since the length scales of
urban heterogeneity are much smaller than the grid size of 500m, so spatial variability would not
be very valid, and could suggest spatial patterns that are perhaps not valid in a realistic urban
setting.

Amsterdam is, by international standards, a fairly small city. The conceptual model in D18
assumed separate urban and rural columns, with boundary-layer properties fully formed by these
respective surfaces. Since Amsterdam is quite small, the urban boundary layer might well have
some rural advection changing its composition. Similarly, the land surrounding Amsterdam are
also of mixed land-use, with various small towns interspersed with the natural areas. Repeating
this study for larger cities with distinct urban atmospheres (e.g. New York) might yield firmer
results that could be closer to the conceptual model work.

While we have taken care to identify cases where larger scale processes influence the wind
pattern, it is possible that not all of these situations have been properly captured when con-
structing the longer-period statistics. Amsterdam is relatively close to the North Sea (∼30 km),
and can experience sea breeze fronts in situations where the land-sea contrast is very high. These
fronts can reach either the rural or urban area before the other, resulting in large positive or
negative wind differences which would suggest a UWI. A workaround could be to look at sud-
den changes in wind direction at either area, but this is no guarantee that a sea breeze front is
actually passing, or that some other process, such as onset of stability (which IS a local process
we are interested in) is modifying wind direction.

Validation of the model data is primarily done in Ronda et al. (2017). However, they don’t
validate wind speed in their model setup. Urban wind measurements are notably difficult and
non-representative, effectively making an urban point measurement and the 500m grid scale
wind entirely different quantities which should not directly be compared to each other. There is
a measurement network in Amsterdam which measured urban canyon wind speed, which is again
an entirely separate quantity, which can be translated to boundary-layer wind, with a notable
degree of error. Wind direction, rather than speed, could also be an influence: if the speed is
correct but its direction is not, the inertial oscillation might start in a different way, and therefore
generate a different UWI time evolution.

In summary, the UWI is present in a realistic 3D modelling setting. Its diurnal evolution
corresponds to the conceptual framework presented in D18, with an extra mechanism generating
a UWI around sunset . This evening UWI is caused by the difference in stability between urban
and rural, where the onset of the stable rural boundary layer supresses turbulence and subse-
quently reduces wind speed. Unlike the conceptual framework, a clear-sky convective day with
low wind speeds that would be beneficial for the UHI is not required for the UWI, since there is
no clear relation to radiation or the magnitude of the geostrophic wind, and days with little rain
still generate a positive UWI.

A longer dataset (e.g. the ERA-URBAN urban meteorology reanalysis project, van Haren
et al. (2018)), also encompassing multiple cities in different geographical situations, would solidify
the statistics of this article. Amsterdam is surrounded by urban agglomerations and water bodies,
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which makes a good rural reference hard to identify. A more theoretical case study in WRF, by
creating an “academic city” (e.g. Theeuwes et al., 2013), could help further research the influence
of the forcings such as the geostrophic equilibrium and the boundary-layer depth, especially since
a statistical extrapolation does suggest a dependence on the initial boundary-layer depth, but
the data does not show the combination of PBL depth where this occurs.
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7.1 This work
This thesis has covered a broad topic: the urban atmosphere, analysed from different perspec-
tives. While a typical scientific study typically demarcates a small area of interest within this
broader topic, I have chosen to approach the field of urban meteorology from two angles: the
observational and the modelling side. This Synthesis will be similarly broad: looking at the po-
tential and pitfalls of opportunistic sensing, whether we can use the Urban Wind Island (Chapter
5) to our advantage or not, and what the future holds for the subjects covered by this thesis,
and (urban) meteorology in general: both the observational and the modelling sides.

In Chapter 1 we have noted that the connection between these sides, and their occasional
rivalry, stems from Antiquity, where the practical versus theoretical debate was as fierce as it is
today. Even the potential of crowdsourcing was already acknowledged by Aristotle in his Politics,
remarking that the many can outperform the individual (Waldron, 1995): what we now call the
"Wisdom of the Crowd".

On the observational side of the spectrum, Chapter 2 answered the question whether crowd-
sourced temperature data from smartphones could be useful to study urban air temperature
at the hourly scale. In this Chapter we further refined an existing method to extract urban
air temperatures from smartphone battery temperature data, to the point where Local Climate
Zone differences in temperature were distinguishable, as well as the diurnal cycle of hourly urban
air temperature. This shows that even data obtained through such indirect sensors
can yield valuable results at the hourly scale, albeit at lower quality than our usual
high-end meteorological equipment would.

In Chapter 3 the strong potential of Personal Weather Stations (PWSs) is explored further by
their use in wind research, having knowledge of their usefulness in temperature and rain sensing.
The Netatmo brand PWS allows citizens to setup an anemometer to measure wind speed where
they choose to, typically a garden or balcony. Wind is turbulent by nature, and it seems that
the crowdsourced wind observations have a high degree of uncertainty, caused by a combination
of hardware limitations and an unknown station configuration. Regardless, the same principle
of Chapter 2, the Wisdom of the Crowd, applies: many lower-quality observations can yield an
average of sufficient quality, which is very similar to that of an established reference network. To
answer the second research question of this thesis: After correcting for bias and and filter-
ing for precipitation, the quality-controlled PWS wind speed obtained over a longer
duration and over several stations rather than one is usable for urban wind research.

However, (urban) meteorology typically deals with day-to-day variations or even sub-daily
processes, not the statistics gathered over several months. Chapter 4 showcased the capability
of opportunistic sensing techniques to actually measure typical meteorological phenomena such
as a cold front passage and a hot spell. The combination of PWS, smartphone and Commer-
cial Microwave Link (CML) data to measure temperature, wind, rain and radiation showed the
strengths of these techniques when combined with one another. The answer to RQ 3: While
the data shows differences when compared to the established reference, and more
subtle variations in time or space are not captured, the overall picture can be painted
very well with opportunistic sensing data.

Chapters 5 and 6 deal with the other side of the spectrum: Chapter 5 uses a theoretical
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model framework, the Mixed-Layer Model, capturing only the very essence of the urban and
rural boundary layer, to investigate wind differences between these two surfaces under the same
large-scale conditions. The positive urban wind anomaly, the Urban Wind Island (UWI), that
arises from this theoretical model is small (∼ 0.5 m/s) but persistent through the afternoon.
That this phenomenon is not an artefact generated by the idealised model assumptions is proven
through the use of the more sophisticated WRF 3D mesoscale model, where analysis of 2 summers
of data shows the UWI to be a common phenomenon. These chapters answer RQs 4 and 5: The
UWI is generated through different boundary-layer growth dynamics between city
and countryside in a conceptual model (RQ 4), and is shown in a three-dimensional
modelling setting to also form during the evening through delayed transition to-
wards the stable boundary layer, though its formation seems less reliant on the
initial boundary-layer conditions. (RQ 5)

Having answered these questions, some new ones have risen to the surface, that will be
addressed in this synthesis. Firstly; given the shown potential of opportunistic sensing data: are
they on their way to replace the status quo of meteorological observations, or are there other
disadvantages to these techniques? Secondly; while the UWI persists even in a realistic modelling
environment, is a 0.5 m/s boundary-layer averaged wind difference really that noteworthy? Is it
relevant for practical purposes, or overshadowed by the turbulent nature of the urban surface? Is
the UWI a benefit, a detriment, or just simply something we can ignore? The following sections
will shed some light on these fresh questions, placing the subjects of this thesis in the broader
scientific and societal context. Finally, I will wrap up with a Vision of the Future: a vision of
crowdsourcing and citizen science; of the meteorology of the future, and our role as scientists in
an increasingly sceptic world.

7.2 Crowdsourcing: sensing opportunities
The “big data” approach, turning millions of seemingly worthless data into a usable product,
would seem to be the polar opposite of usual meteorological data gathering. For forecasting pur-
poses, the nature of meteorological data needs to be highly accurate, which in turn means data
is sparse. About 11,000 registered WMO surface monitoring stations measure weather across the
entire world (https://cpdb.wmo.int/volume_a_observing_stations/list_stations), typi-
cally concentrated in developed countries. Compare that to the literal billions of smartphones
present all over the globe (GSMA, 2019); the 250,000+ stations connected to the Weather Un-
derground network (https://www.wunderground.com/pws/overview); or the strongly increas-
ing amount of other smart devices such as smartwatches: the gap is quickly seen. Of course,
comparing numbers is hardly fair when WMO stations are specifically built to measure climate
as accurately as possible for decades, whereas a smartphone typically does not even contain an
outside air thermometer nowadays and is quickly traded in for a newer model within years.

Regardless, while this obvious discrepancy exists, it is not a good reason to disregard the
usage of unconventional devices outright. Opportunistic sensing data should always be comple-
mentary to existing, high-quality networks: where these networks show shortcomings or absence
in general is where innovative sensing techniques can show their worth (Kamel Boulos et al.,
2011; Muller et al., 2015; Chapman et al., 2017). Especially in areas which have very limited
coverage by traditional measurement sources, opportunistic sensing can provide a basic level of
knowledge of meteorological circumstances. Ways of obtaining precipitation data through CML
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On the observational side of the spectrum, Chapter 2 answered the question whether crowd-
sourced temperature data from smartphones could be useful to study urban air temperature
at the hourly scale. In this Chapter we further refined an existing method to extract urban
air temperatures from smartphone battery temperature data, to the point where Local Climate
Zone differences in temperature were distinguishable, as well as the diurnal cycle of hourly urban
air temperature. This shows that even data obtained through such indirect sensors
can yield valuable results at the hourly scale, albeit at lower quality than our usual
high-end meteorological equipment would.

In Chapter 3 the strong potential of Personal Weather Stations (PWSs) is explored further by
their use in wind research, having knowledge of their usefulness in temperature and rain sensing.
The Netatmo brand PWS allows citizens to setup an anemometer to measure wind speed where
they choose to, typically a garden or balcony. Wind is turbulent by nature, and it seems that
the crowdsourced wind observations have a high degree of uncertainty, caused by a combination
of hardware limitations and an unknown station configuration. Regardless, the same principle
of Chapter 2, the Wisdom of the Crowd, applies: many lower-quality observations can yield an
average of sufficient quality, which is very similar to that of an established reference network. To
answer the second research question of this thesis: After correcting for bias and and filter-
ing for precipitation, the quality-controlled PWS wind speed obtained over a longer
duration and over several stations rather than one is usable for urban wind research.

However, (urban) meteorology typically deals with day-to-day variations or even sub-daily
processes, not the statistics gathered over several months. Chapter 4 showcased the capability
of opportunistic sensing techniques to actually measure typical meteorological phenomena such
as a cold front passage and a hot spell. The combination of PWS, smartphone and Commer-
cial Microwave Link (CML) data to measure temperature, wind, rain and radiation showed the
strengths of these techniques when combined with one another. The answer to RQ 3: While
the data shows differences when compared to the established reference, and more
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have been refined since 2005 (Upton et al., 2005), and have been very valuable in remote areas
where rain radar does not penetrate (Uijlenhoet et al., 2018). Similarly, the very nature of op-
portunistic sensing data means that data is concentrated where people are, which is generally
the urban areas, which the usual measurements are ill-equipped for.

Figure 7.2.1: Impact of data-assimilation of PWS rainfall data (right-hand side), on a forecast
of heavy precipitation over the Netherlands, 28 July 2014 11 UTC, using the WRF model. Model
forecast is 7 hours ahead; run started at 4:00 UTC at 2.5 km resolution. The original forecast
without data assimilation is on the left. Image courtesy of Sytse Koopmans, Gert-Jan Steeneveld
and Ronald van Haren.

Modelling efforts can also benefit through opportunistic sensing data: for instance by data
assimilation of PWS data. Figure 7.2.1 shows preliminary results of assimilating data of 68 PWSs
into WRF, for a heavy precipitation event in the Netherlands, July 28 2014. Temperature, dew
point temperature and air pressure data from one specific type of PWS with low measurement
errors (Davis Vantage Pro; Bell et al. (2015)) are assimilated into the WRF model to nudge the
forecasts. The shown forecast is 7 hours ahead, and by ingesting PWS data the location and
intensity of the precipitation event correspond better to radar observations, though especially
location is still somewhat inaccurate. Other applications of opportunistic sensing data include
the use of pressure data obtained through smartphones to improve location of frontal zones (Mass
and Madaus, 2014; Madaus and Mass, 2017; Hintz et al., 2019), or using PWS measurements for
the validation of local processes such as deep convection (Mandement and Caumont, 2019).

Increasingly, crowdsourced data are finding their way into the established meteorological in-
stitutes: the ECMWF acknowledges the value of crowdsourced data, which can "[capture] rapid
temporal/spatial variations in weather parameters; enable new quality control methods (e.g. ar-
tificial intelligence) which depend on the availability of large amounts of data; verify small-scale
features and high impact weather, allowing the highlighting of situation-dependent model limi-
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tations; enable more robust upscaling of weather parameters for verification purposes" (Haiden
et al. (2018), p. 5). They list a number of requirements such data need to adhere to, mainly
real-time availability and accurate metadata in order to get an understanding of measurement
uncertainty and develop quality assurance. Such recommendations are given in many scien-
tific articles working with crowdsourced data (e.g. Fenner et al., 2017; Gharesifard et al., 2017;
de Vos et al., 2018; Chapman and Bell, 2018), including chapters 2–4 in this thesis. National
weather services could provide a central hub in order to impose some regulations on a widely
unregulated source of data, and efforts are being made such as the WOW-network for PWS data
(https://wow.metoffice.gov.uk/), run by the English MetOffice, to which 10.000 stations in
220 countries are now connected (though data this is not yet used in data assimilation, rather
for verification purposes).

Krennert et al. (2018) provide an inventory of crowdsourced data used at national weather
services, such as the Norwegian weather service improving its forecasts using purchased Ne-
tatmo data. This last sentence highlights the potential danger of using crowdsourced data:
large amounts are in commercial hands. In some cases these data are "leftovers" generated by
companies: used for their own quality-control, or essentially just an artefact of generating their
actual end-product. The telecom companies running the CML towers use the attenuation data
as quality-control rather than derive a product from it. Similarly, the OpenSignal company be-
hind the app used to derive air temperature from smartphone battery thermometers (Ch. 2) is
interested in the communication signal the phone receives, rather than its battery. In these cases,
companies would be more willing to share this data for free (or a nominal fee for processing the
data), though data of this type tend not to comply to the real-time availability the ECMWF
recommends. However, when the meteorological data is the prime objective of the company
behind the devices generating that data, the main advantage of crowdsourcing might quickly
fade. The Netatmo company has sold datasets to the Norwegian weather service, for their use
short-term forecasts (nowcasting) and correction of meteorological products (Nipen et al., 2019).

Acquisition of datasets is in itself not a problem: we could see purchasing instruments in a
similar light, where we pay to create data; data from measurement campaigns is often not free
for use by other parties either. The issue lies with the continuity of the data platform: if the
Netatmo company shifts its business model away from weather stations, this whole extensive
network could collapse if there is no alternative. The other way around is also a potential prob-
lem: the Weather Underground platform shut down its previously free API, allowing access to
its data, and replaced it with a paid format. The data might be crowdsourced, with thousands
of people contributing to one goal: but the platform where all of this data collected is ultimately
in private hands, a single company with economical profits as their goal.

This is one of the issues of relying on opportunistic sensing techniques: science moves slowly,
whereas industry moves fast. By the time a proper quality-assurance procedure is set up for a new
type of measurement to make it ready to be accepted into mainstream scientific use, the industry
might be miles away, having already discarded that instrument in favour of an upgraded ver-
sion. For instance, the Netatmo wind sensor, subject of Chapter 3, was released in 2015, and this
Chapter is the first work to even use the data and provide a first quality assessment, 4 years later.
Technological advancement can also have unintended side-effects for science: the move towards
a 5G network, operating at higher frequencies, has the unfortunate side-effect of potentially dis-
rupting satellite measurements of water vapour (Witze, 2019). While a stronger mobile network
enables a wider range of opportunistic sensing opportunities, it can threaten existing established
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networks in this way, or even existing opportunistic sensing networks: CML towers upgrading
to 5G may no longer be able to sense rainfall in the same way, requiring new retrieval techniques.

Since technological advancements of smart devices are not driven by scientific questions, but
by profits, potentially interesting scientific uses may be scrapped in later releases. Such was
the case of meteorological sensors on smartphones: the Samsung S4 model was equipped with
an actual air thermometer and hygrometer, but subsequent series have removed some of the
environmental sensors (though a barometer and light sensor are typically present in all current
models). Such external sensors seem to be pricey and could impede the design of the phone,
without providing a direct essential function for the phone usage. Rather, several apps have been
developed to turn the phone into a makeshift thermometer, often based on the battery temper-
ature conversion. Data from a direct smartphone air temperature sensor could have been very
valuable, even if it suffers from the human behaviour problems as described in (Overeem et al.,
2013b; Droste et al., 2017). Preliminary tests of smartphone-measured air temperature (direct
measurements as opposed to the battery-derived temperatures from Chapters 2 and 4) show that
the smartphone temperature data is negatively biased and strongly influenced by radiation, since
the thermometer is not shielded (Noyola Cabrera (2018), Figure 7.2.2).

Figure 7.2.2: Mean error of smartphone temperature (◦ C) readings as a function of wind speed
and global radiation (direct + diffuse). Image courtesy of Aly Noyola Cabrera (Figure 18 in his
MSc thesis).

Ultimately, human behaviour might be the key factor causing uncertainty for a large num-
ber of opportunistic sensing techniques (Lin et al., 2016). For smartphone-derived data, the
whereabouts and routine of the person using the phone is crucial to understand the data they
produce. Indoor or outdoor; whether the phone is in a pocket, on a surface or in someone’s hand;
whether the phone is out in the sun or shade, in an air-conditioned building or not, at the ground
floor or several floors above ground level, etc. The possible circumstances influencing the raw
opportunistic sensing data are endless, and so the causes of error are endless. In a lab setting
some manner of correction is possible for these error sources, but they are difficult to translate to
actual crowdsourced-obtained data (Chau, 2019). We can try to correct for average behaviour,
as we invoke the Wisdom of the Crowd once again, but we cannot ethically correct for individ-
ual behaviour. When error courses are known and can be corrected for, the potential of these
measurements is enormous: bias-corrected smartphone temperature measurements carried out in
Wageningen by Noyola Cabrera (2018), show very good agreement with transect measurements
of verified measurement equipment. The smartphone measurements are able to capture spatial
and temporal temperature differences to a good degree (Figure 7.2.3), which could translate very
well to the heterogeneous urban microclimate.

The rise of big data has not been a wholly positive one: scandals such as the Cambridge
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Figure 7.2.3: Left: air temperature readings a mobile measurement platform of known quality.
Right: air temperature readings from the smartphone after bias correction. Transect measure-
ments made in March 2018, Wageningen, the Netherlands. Image courtesy of Aly Noyola Cabrera
(Figure 26 in his MSc thesis).

Analytica misuse of private data have tainted big data for the general public, as we collectively
have come to realise how much valuable information can be distilled from the data we generate
through our daily routines (Isaak and Hanna, 2018). Privacy laws have been made stricter with
regards to the use of personal data, and the kind of information needed to correct environmental
monitoring for human behaviour steers dangerously close to very private information. While we
may (profess to) have a pure goal in mind, e.g. improving smartphone-derived measurements by
correcting for measurements taken in vehicles, a less savoury scientist might use that information
to deduce where a single smartphone owner works and lives by analysing their movement pattern
over a larger amount of time. As such, we as scientists using opportunistic sensing data are split
between the scientific curiosity, and a moral obligation to respect privacy, and we will have to
make find clever ways to use the data we have to its best purpose.

7.3 The Urban Wind Island
The first parts of this thesis have been largely focused on unconventional observation practices, by
aiming to turn opportunistic sensing observations into meteorological output of sufficient quality.
On the modelling side however, the usage of conceptual models is not exactly new or ground-
breaking for meteorology. One could say modern meteorology is built around weather models
(fed by high-quality observations) which all started in such a simple, conceptual manner, and the
real new things in that regard are the ever-increasing resolution and accuracy of models. Such
advances bring their own unique challenges to meteorology (Baklanov et al., 2011), especially
when scales are being pushed far enough to solve processes that were previously parametrised.
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real new things in that regard are the ever-increasing resolution and accuracy of models. Such
advances bring their own unique challenges to meteorology (Baklanov et al., 2011), especially
when scales are being pushed far enough to solve processes that were previously parametrised.



130 Chapter 7

For instance, the ECMWF aims to model the entire globe at a staggering 1 km resolution as
a trial, to explicitly solve deep convection (ECMWF, 2020). Such process understanding could
make great advances in the skill of numerical weather prediction.

Rather than the methodology, let us then consider the "new" phenomenon this thesis has
introduced through model usage: the Urban Wind Island effect. The UWI has been shown to
exist both in a conceptual modelling framework which uses the essential physics of the boundary
layer, as well as in the 3-dimensional modelling environment of the WRF mesoscale model. It
is important to once again note that the UWI is a boundary-layer scale phenomenon: separate
from the hyper-localised wind gusts present around buildings within the urban canyon. This is
the realm of very fine Large Eddy Simulation or Direct Numerical Simulation models, as op-
posed to the (relative) coarse-resolution mesoscale models used for weather forecasting (such
as WRF). These wind gusts can present a real danger to pedestrians (Bottema, 2000; Blocken
and Carmeliet, 2004), and knowledge of wind load on building fronts is essential for a safe built
environment.

In contrast, the UWI is a small effect, a positive urban wind anomaly in the order of 0.5
m/s, that manifests itself mostly during the afternoon and early night on nice summer days. We
picked its name to deliberately correspond to the well-known Urban Heat Island, the positive
temperature anomaly that can cause elevated levels of heat stress during hot days and nights.
The UHI is an obvious threat to human health: since it is strongest during night-time, sleeping
patterns can be disrupted for urban dwellers since they are less capable of cooling down, which
increases the risk of cardiovascular diseases, especially among the elderly or the infirm (Kovats
and Hajat, 2008).

What about the UWI then? The dangers of wind are instinctively more associated with high
wind speeds: storms, disruptive wind tunnels in streets (Bottema, 1999), or cold stress: e.g.,
the Wind Chill thermal comfort index (Steadman, 1971). It is not difficult to imagine that a
∼ 1 m/s difference is not going to matter much when average wind speeds are already fairly
high. Wind speeds above ∼ 5 m/s are broadly categorised as "disrupting"(Penwarden, 1973),
but such high wind speeds are mostly seen in autumn or winter, associated with storm activity
rather than boundary-layer mechanisms. The UWI would therefore not influence these disrup-
tive winds much: this is disregarding that the UWI might be much lower during winter since
the boundary layer is less convective, so urban-rural contrasts will be lower. More broadly: cold
stress is easier to deal with than heat. You can dress for the cold, but there is a strict (legal)
limit to how much you can dress down for the heat.

However, wind speed is an important component for heat related stress as well: hot days
can be made much more bearable if there is even the slightest gust of wind to cool the body
down and promote evaporation of sweat. The effect of wind speed on thermal comfort is strongly
non-linear and generally at its maximum for the very low, or null, wind speeds. Because of this
non-linearity, the way thermal comfort indices account for the effect of wind speed is highly vari-
able: some simple indices use a simple linear relation, while more complex energy-balance based
indices account for its non-linearity (Blazejczyk et al., 2012; Coccolo et al., 2016). Because of the
strong influence of wind speed at low wind speed, even a 0.5 m/s increase through the UWI could
greatly improve thermal comfort (Coccolo et al., 2017). This even holds for inside temperatures,
by making use of natural ventilation to drive down indoor temperature (Aynsley, 1999; Lien
and Ahme, 2011). Not only heat-related issues can be mitigated by wind, but urban air quality
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as well, by dispersing pollutants more effectively (Cheng et al., 2008). In the Gaussian plume
dispersion model (Awasthi et al., 2006), concentration of a pollutant is inversely proportional to
the wind speed, so especially at low mean wind speed, the UWI contribution could significantly
reduce pollutant concentrations.

The geometry of a city (its density, height, aspect ratio) determine how the city reacts to the
wind passing over it: as a whole construct analogous to the city in Chapter 5, or as individual
building blocks disrupting flow (Buccolieri et al., 2010). A denser, more homogeneous city will
be akin to a single block, with few winds from the inertial sub-layer penetrating down into the
urban canyon: the "skimming" regime as described in (Oke, 1988). When variability in building
height is larger, and the aspect ratio decreases, a turbulent wind regime forms with more vertical
motions that move down into the urban canyon (Chapter 4 in Oke et al. (2017)) Related to
the UWI, which should be seen as a phenomenon relating to the inertial sub-layer, this means
that for the skimming regime, the UWI will not penetrate downward towards a pedestrian level,
since the canopy layer is partially decoupled from the air above due to the density of the built
environment. The rapid variations in wind speed we feel as pedestrians in the urban canopy
layer are much more governed by the local obstacles and roughness, as opposed to a city-wide
effect. For less dense urban structures, there is more vertical exchange of air, so it is possible
that the UWI could translate downwards to a pedestrian effect, but this is highly speculative,
and would require an in-depth study. In general terms, it is important to realise the difference
between scales: the UWI operates on a boundary-layer scale, whereas individual human thermal
comfort is at the local scale, where extremely large gradients can occur. On that individual scale,
the UWI influence is small; however, when considering the health of the city as a whole, it can
certainly contribute through a small but persistent effect.

7.4 Vision of the Future
I have started this thesis by noting that meteorology is an old discipline with firm roots in
Antiquity. Its methods and practitioners have changed substantially over the past 2,500 years,
but its goal has always been the same: understanding and predicting the weather for our own
benefit. We have come a long way since then: from divine intervention and interpreting celestial
patterns, to highly accurate computational fluid dynamics and models forecasting the weather
over the entire globe at an incredible skill (Haiden et al., 2019). And yet, despite all of this
scientific and technological advancement, there are still many more questions to be answered
regarding the atmosphere, and how it influences our lives. Rapid urbanisation, a problem high-
lighted in nearly every single urban research paper, has caused us to realise that the human
environment interacts with the atmosphere as much as the other way around. Climate change,
the energy transition, global population growth: all these change how urban life will be in the
future, and thus what role urban meteorology will play in our society. Already there is much
more attention on a policy level for the "green city" of the future: a healthy urban space with
low emissions and even self sufficient in food and/or energy sources (e.g. the Green Cities EU
project https://www.thegreencity.eu/. Such a city would need to be designed to draw from
the environment: cool spaces during summertime; integrated energy production through solar
and wind power, while also keeping harmful cold stress out and being resilient against flooding
and storm damages. Urban meteorological measurements and modelling can contribute to the
planning, and maintenance, of these cities of the future (Baklanov et al., 2018).
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7.4.1 Forging Connections through Citizen Science
Such a future green city is a hopeful, optimistic Vision of the Future. But, current signs indi-
cate a darker tomorrow. Carbon emissions are not going down, despite years of overwhelming
scientific evidence and pledges by companies and nations (Peters et al., 2020). Global economic
inequality is increasing, and climate change is disproportionally affecting poorer countries (Diff-
enbaugh and Burke, 2019), suggesting that these green cities of the future will only be a reality
for the more well-off regions and people. There seems to be a discrepancy between science and
the general public: a form of mutual misunderstanding where scientists cannot understand why
their (apparently) clear results are not being understood, while the public considers them discon-
nected from "real life". This is a worrying prospect that will only worsen if we, as the scientific
community, dismiss this as an acute issue. Without interest and participation in science by the
public, the very authority of science will diminish, if it cannot connect in a meaningful way to
the inhabitants of the world it studies.

In this light, there is a place for one of the subjects of this thesis: crowdsourcing and cit-
izen science, which connects activities of the general public to scientific work. For instance,
the crowdsourcing platforms WOW-UK and WOW-NL (run by the English and Dutch national
weather services, respectively) offer opportunities for schools to participate in their network by
supplying them their own weather station, to teach children about weather and climate using
their own measurements (https://wow.metoffice.gov.uk/education). In a world that is get-
ting increasingly sceptic towards science and scientific institutions, letting citizens (children and
adults alike) participate and contribute towards science through their own experience could cre-
ate a more positive view of science and its place in society.

Campaigns where citizens can actively contribute to improve their own neighbourhood, e.g.
by measuring particulate matter (Snik et al., 2014) or urban heat to make their street "climate
proof" (e.g. through the "Measuring your City" project in Amersfoort, the Netherlands, Mureau
et al. (2018)) have been very successful, with citizens more involved and positive about changes
in their living environment (Paulos et al., 2009). Studies relying on citizen science are getting
more common and accepted, though the scientific community is still slow to accept these new
forms of data (Ottinger, 2010; Bonney et al., 2014): if the public is to embrace science, then
science has to be more open to contributions from citizens. In that way, there are many more
exciting opportunities to develop opportunistic sensing strategies for urban meteorology. With
an increase is measuring devices, we could even use PWS data to estimate urban fluxes (following
the Holtslag and Van Ulden (1983) method); identify air pollution and improve urban health
through fitness app data (Sun and Mobasheri, 2017); and create a critical, science-minded society
in the process.

7.4.2 Data-driven meteorology?
This increase in citizen science goes hand in hand with the increased possibilities of opportunistic
sensing, since both have their origin in the increased global interconnectivity. It is easier than
every to record, share and search data of any possible kind through the Internet of Things. The
increased level of technology in our everyday lives allows for much more participation in science,
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and cross-contamination of ideas (i.e. science answering questions from the public domain). In
a similar manner, the increased level of technology in the scientific field has not only given rise
to more sophisticated models or higher resolution weather forecasting, but whole new techniques
based on giant amounts of data, as this thesis has successfully shown. The use of machine
learning to recognise patterns within large datasets is rising dramatically in all scientific fields;
in meteorology it is being used to for example train climate models (Boukabara et al., 2019)
or classify extreme weather patterns (Racah et al., 2017). Machine learning approaches are a
double-edged blade for scientists. Its benefits are that it can be used to speed up traditionally
expensive parts of complex models such as the radiation scheme (Krasnopolsky et al., 2008) or
convection schemes (Gentine et al., 2018), or forecasting highly variable processes such as solar
irradiance for renewable energy purposes(Voyant et al., 2017).

In contrast, there is the danger of losing physical understanding once machine learning is
used to replace physical understanding in a model. While there are currently no forecast models
based on neural network approaches that rival physics-based model in forecast skill (Dueben
and Bauer, 2018), this could be a reality in the future. Another downside of machine learning
models is that they are based on training data, which can make it difficult to extrapolate to
entirely new situations, especially if the physical basis beneath the model is (partially) replaced
by machine learning. That could make long-range climate forecasts, or forecasts of exceptionally
rare phenomena for which little historical evidence exists, very uncertain. A synergy between
physics-driven (traditional) modelling, and data-driven (machine-learning) approaches is there-
fore necessary, to draw upon the strengths of both methods, while ensuring the quality of the
resulting outcomes (Reichstein et al., 2019).

7.4.3 Final Thoughts
To sum it all up, my vision of the future of meteorology is an integration of established tech-
niques and process understanding, coupled with innovative new data and modelling approaches.
Its goal has not changed, and will not change: to understand and forecast the fickle nature of
the atmosphere for our own benefit. Whether that is to design a healthier urban living space,
improve early warning systems, or forecast solar and wind energy resources at an even more
precise level, meteorological research is always connected to an societal issue in the end. That
does not mean fundamental research is pointless: increased understanding of the core processes
driving our atmosphere leads to better forecasts further down the line. As much as society needs
meteorology, so does meteorology need feedback from society, to be engaged in its research and
to stimulate new exciting questions to be answered and fields of research to be discovered.

This thesis now forms a part of the impressive lexicon of meteorological knowledge, formed
over 25 centuries. Whether it will withstand the jaws of time, and still be relevant 25 centuries
hence, remains a question I can only guess at. That seems unlikely; but it is my hope that
this thesis has added some novel perspectives to the current-day understanding of the urban
atmosphere. At the very least, it has been fun to write.
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Het enige interessante deel van een proefschrift is het dankwoord. Dat was een (mo-
gelijk terecht) verworpen stelling die ik bedacht had ergens in de afgelopen 4 jaar. Laten we
eerlijk zijn: niemand leest een volledig proefschrift van kaft tot kaft. De schrijfstijl is saai, de
materie te diepgaand en onbekend, en de conclusie is altijd dat er meer onderzoek nodig is en
dat we niks zeker weten. Dus duiken we, als we weer zo’n boekje in de handen gedrukt krijgen,
eerst eens lekker naar pagina 170 om eens te kijken wat voor menselijks er nou achter al dit
wetenschappelijke geneuzel schuilt. En, tikje ijdel: misschien word je zelf wel genoemd als bron
van inspiratie...? Aan al die licht ijdele collega’s, vrienden en familie: welkom! Ook als je naam
er niet bij staat ben ik je vast ergens dankbaar voor (maar bel me alsjeblieft niet om te vragen
waarvoor). Laten we maar beginnen.

Het doen van een PhD is een rare ervaring. Het kost zowel meer als minder tijd dan gepland,
meer en minder moeite dan vantevoren gedacht, en er komt een hoop meer bij kijken dan alleen
maar hoge cijfers voor (Meteorologie) vakken. Aan het begin heb ik hard lopen twijfelen of ik
er überhaupt wat mee kon, dit onderwerp. "The Windy City" is vaag en breed genoeg, en ik
lijk er in geslaagd te zijn dat nog vager en breder te maken: de titel van dit proefschrift is niet
voor niets zo lang. In wezen lijkt het nauwelijks op het voorstel dat ik al die tijd geleden heb
ingediend bij de onderzoeksschool, maar ik ben dankbaar dat ik de vrijheid en ruimte had om
zo mijn eigen draai aan het onderwerp te geven.

Dat ik die vrijheid had is vooral te danken aan mijn begeleiders. Er is me ooit een keer
verteld dat een PhD staat of valt met de supervisor, en ik heb helaas zelf enkele PhDers inder-
daad vroegtijdig zien stoppen door die reden.

Gert-Jan. Als mijn dagelijke begeleider is het jouw “eer” om dit dankwoord aan te voeren,
en die dank heb ik ook zeker. Ik kende je al een beetje voordat we aan dit project begonnen:
eerst tijdens Atmospheric Modelling (waarin je subtiel je eigen werk propageerde als basis voor
mijn case-study voor het Amsterdam UHI), later tijdens de bakfietsmetingen in Amsterdam, en
natuurlijk de ICUC in Toulouse. Blijkt dat je toch een heel ander beeld van een docent hebt als
je een week een hotelkamer deelt en een flink aantal roddels meekrijgt! Maar pas tijdens m’n
PhD leerde ik je echt goed kennen en waarderen: het duurde even voor ik goed hoogte van je
kon krijgen (en ik je durfde te bombarderen met mijn arsenaal flauwe grappen). Je droge humor,
voorliefde voor belastingen, de KLM, en verjaardagen van voormalig Duitse staatshoofden kan ik
altijd erg waarderen, evenals je impressies van sommige (ex-)collega’s. Ook projectmatig konden
we goed met elkaar overweg: je liet me vrolijk aanmodderen, kwam met nuttige opmerkingen en
hulp waar nodig, en herinnerde me er vooral aan dat dingen ook afgemaakt en aan de wereld
getoond moeten worden. De les die ik van jou heb geleerd is tenslotte: we onderzoeken dit alleen
als we er geld uit kunnen halen, of een paper over kunnen publiceren! Je bevlogenheid, enorme
werklust en aanpak bewonder ik ten zeerste, en volgens mij weet je het wonderwel te combineren
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met je vaderschap. Ik hoop dat we in de toekomst nog veel kunnen samenwerken aan interessante
urban studies.

Bert. Je was wat minder intiem betrokken bij het dagelijks reilen en zeilen van mijn PhD,
maar zeker niet onbelangrijk. Je kwam vaak op cruciale momenten met een nuttig idee, een
handig naslagwerk om te raadplegen, of één van je talloze connecties om input aan te vragen, als
ik ergens vastzat. Je interesse lag niet zozeer bij het crowdsourcen, maar meer bij het stedelijk
windeiland wat we ontdekt hebben (de naam UWI hebben we aan jou te danken!), en daar
kwam je eigen expertise met grenslaagmeteo ook zeker veelvuldig van pas. Ook was je vaak de
kalmerende factor: waar Gert-Jan en ik nogal graag op alles wat los en vast zit zaten te vitten,
bleef jij de rust zelve. Je gevleugelde uitspraak, die me altijd zal bijblijven en ik graag herhaal:
er gaan toch zoveel dingen goed. Moge dat in je pensioen ook door blijven gaan!

Of course, not only my supervisors made my PhD bearable: everyone at MAQ did. I’ve
greatly enjoyed the time I’ve worked at our chair group, getting to know the colourful personal-
ities and odd quirks of everyone. First, I’d like to thank my officemates, of Lumen A127: Aris,
Super Ingrid, Auke, Ruben, Sjoerd, Sytse and Felipe. It was a lot of fun to be in the office with
you all, and we enjoyed our share of Aris’ culinary rage, regularly held the stress-ball Olympics,
greatly improved the WUR-slogan, created start-up companies, and almost-but-not-quite pub-
lished the greatest collaboration paper the ESG has ever known. You’ll have to miss my jokes
(and cakes) from now on, though if you insist, I will pop on by every so often from across the
HWM-corridor.

Special thanks to Peter K and Imme: we’ve known each other for a pretty long while now
(ever since BWA), and it was great to do a PhD with you. Peter: I’ll miss our odd, philosophical
discussions and ground-breaking experiments on Skittles and lunar escalators, and Imme: I’ll
miss your contagious laughter and skills in PhD-songwriting.

I’d also like to thank some (former) staff members that have been inspiring to me, or helped
me out during my PhD: Bert Heus; Reinder and Natalie; Oscar and Arnold. Bert Heus: I really
admire your incredible enthusiasm for your field, and your seemingly endless knowledge on all
kinds of subjects, be they MAQ-related or wildly different areas. And double thanks for helping
me out so much with the experimental side of things! Reinder and Nathalie: without you I might
not even have considered doing a PhD. As my MSc supervisors, you showed me how much fun
it was to do science, and to present at a conference (which is still one of the best I have ever
attended). Oscar and Arnold: it’s inspiring to see how much energy and effort you both commit
to the courses you give (and I played a small part in). Such heart for our students is what makes
MAQ education special, with no small thanks to you.

But I’ve saved perhaps the most important MAQ members for this last bit: Sandra and
Caroline. Because, let’s be honest, without you being there, the whole chair group would just
collapse. Thank you for always being there to help with practical things, and also just to have
a nice chat and a cup of tea when everyone else is too busy working like crazy.

Van MAQ verschuif ik nu naar HWM: in het bijzonder Lotte, Aart, Remko, Hidde en Mar-
janne. We hebben een hoop mooie dingen samen gedaan (2 van de hoofdstukken in dit boekwerk!)
en het was altijd goed samenwerken (of in ieder geval goed samen zeiken tegen R, Lotte). Ik kijk
uit naar de vervolging van die samenwerking als jullie nieuwe HWM collega!

Dan is er naast het werk ook nog een ander leven (je zou het bijna vergeten), waarvoor ik
dankbaar ben dat ze me ervan weerhouden hebben om mezelf plat te werken. De hele Wagenin-
gen lunch-club: Monique, Tijn, Eva, Sasja, Dinja, Nadine, Amanda, Djoline, Dolf, en alweer
Marjanne: het is altijd een gezellige boel met jullie erbij, en onder het genot van idiote hoeveel-
heden thee & crumble hebben we een hoop lol gehad (en geklaagd over de WUR...). Duane: ik
kan je droogheid altijd erg op prijs stellen, evenals onze gedeelde waarderen voor woordgrappen
en goede herinneringen aan alle anime en games die we tot ons genomen hebben. Bo: ook na 20+
jaar ben je me nog niet zat, en ik hoop dat dat zo blijft; je mafheid en Bo-wijsheid maakt het
leven beter. Ryan: thanks for always being there at the end of the working day, to play games
with me, share the crazy things going on in your neck of the woods, and show your genuine
interest in my science. It’s helped stay sane over these past few busy years.

Als laatste wil ik nog mijn ouders en zus bedanken. Jullie stonden altijd voor me klaar, om
te helpen en advies te geven, en het is altijd prettig thuiskomen in Heerhugowaard. Zonder jullie
steun had ik het een stuk zwaarder gehad.
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interest in my science. It’s helped stay sane over these past few busy years.

Als laatste wil ik nog mijn ouders en zus bedanken. Jullie stonden altijd voor me klaar, om
te helpen en advies te geven, en het is altijd prettig thuiskomen in Heerhugowaard. Zonder jullie
steun had ik het een stuk zwaarder gehad.
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