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Abstract Diploid hybrid potato breeding is emerg-

ing as an alternative to breeding tetraploid potato

clones. The development of diploid breeding varieties

involves recent, shallow pedigrees with a limited

number of founders. Within this context, alternative

QTL detection methodologies should be considered to

enable identification of relevant QTLs and character-

ize the founders of the pedigree. To that end, we are

using a dataset of multiple diploid potato F3 families

under selection derived by a cross between an inbred

Solanum chacoense and an outbred diploid Solanum

tuberosum, and identify QTLs for tuber fresh weight.

We used three methods for QTL detection: (1) a

Genome Wide Association Study model, (2) a linkage

approach tailored to the population under study and (3)

a more general approach for modelling multiallelic

QTLs in complex pedigrees using identity-by-descent

(IBD) probabilities. We show that all three approaches

enable detection of QTLs in the population under

study, but the method that makes better use of IBD

information has a more direct and detailed interpre-

tation by linking QTL alleles to the founders.

Keywords QTL mapping � Diploid potato � Hybrid
potato � GWAS � Identity-by-descent � Pedigree

Introduction

Diploid hybrid potato and QTL mapping

Diploid hybrid potato breeding promises a paradigm

shift in potato breeding consisting of replacing the

tetraploid clones with diploid hybrids propagated by

true seed (Lindhout et al. 2011; Jansky et al. 2016).

This transition is based on the development of self-

compatible diploid potato germplasm and, subse-

quently, the gradual selection against the genetic load

through selfing. The resulting inbred lines enable the

exploitation of heterosis through hybrid breeding, the

introgression of genes through backcrossing and the
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utilization of all breeding methods and genomic tools

developed for diploid crops. Besides the consequences

regarding breeding and crop management (Lindhout

et al. 2018), this shift also influences quantitative trait

loci (QTL) mapping methodology.

In potato, QTLs have been mapped using both

tetraploid and diploid populations. QTLs in the

tetraploid level were detected initially by association

mapping (Gebhardt et al. 2004; Simko et al. 2004),

because of the complex tetrasomic inheritance that

delayed the development of proper methodology and

software for linkage mapping (Bradshaw et al. 2008;

McCord et al. 2011; Hackett et al. 2013; Massa et al.

2015; Bourke et al. 2015, 2018). Therefore, most

linkage studies in potato have been conducted at

diploid level, in F1 populations of biparental crosses

involving heterozygous parents (full-sib families)

(Gebhardt et al. 1989; Schäfer-Pregl et al. 1998;

Manrique-Carpintero et al. 2015). Selfing was hin-

dered by the self-incompatibility and inbreeding

depression of diploid potato and therefore the use of

selfed material has been limited to the study of

segregation distortion and self-fertility (Peterson et al.

2016; Zhang et al. 2019).

A change in QTL mapping methodology driven by

diploid hybrid breeding is the use of inbred material in

the mapping population either as parents (Endelman

and Jansky 2016) and/or as offspring, such as F2
(Endelman and Jansky 2016; Meijer et al. 2018) or

sib-mated F2 (Braun et al. 2017). In this article we

focus on another aspect of QTL mapping in the

‘‘diploid hybrid’’ era, which is the development of

diploid potato breeding populations. By the term

breeding populations here we refer to populations

with: (1) population structure derived by selection and

genetic drift and (2) more than two alleles possibly

segregating for a QTL. Unlike conventional potato

breeding programs, but also unlike many other crops,

the relevant pedigrees in diploid hybrid potato breed-

ing are shallow, very detailed and they include a

limited number of founders. These conditions can

allow for linkage mapping directly in the breeding

population ensuring relevance of the identified QTLs.

Within this context, QTL mapping methods devel-

oped for inbred-derived biparental populations, single

mapping populations and experimental populations

are not directly applicable because of their inability to

model multiple alleles and/or to allow for the

population structure. We can identify three

suitable frameworks:

1. Genome Wide Association Studies (GWAS)

2. Joint analysis of families (we will refer to this as

Stratified Linkage Analysis—SLA)

3. QTL mapping in complex pedigrees (we will refer

to this as General Linkage Analysis - GLA)

Those three approaches vary in terms of (i) the number

of QTL alleles modelled, (ii) the use of Identity-by-

Descent (IBD) or Identity-by-State (IBS) information,

(iii) the way IBD is inferred, (iv) the way population

structure is taken into account and (v) their generality.

Genome-wide association studies

GWAS methodology (also called Linkage Disequilib-

riummapping or Association mapping) was developed

for large panels of individuals with varying related-

ness. It consists in estimating a substitution effect of a

biallelic QTL under a correction for population

structure. Population structure correction is of crucial

importance to avoid false positives. In most cases, this

correction is achieved by including a genomic rela-

tionship matrix to model genetic covariance of

individuals through a random polygenic term,

although several other approaches have been proposed

(Yu et al. 2006; Sneller et al. 2009; Würschum 2012).

Further elaboration of the methodology has aimed at

avoiding confounding between the tested polymor-

phism and the relationship matrix by excluding from

the estimation of relationship all markers located in

the tested chromosome (Rincent et al. 2014; Yang

et al. 2014).

The main advantage of GWAS is its simple

application in all types of populations without the

need of explicit pedigree information. Its main disad-

vantage is that it does not make use of IBD informa-

tion. Modelling the QTL alleles only using IBS

information is based on the assumption that all

individuals carrying the same marker allele also carry

the same QTL allele, irrespective of the origin of the

marker allele. Furthermore, the use of IBD informa-

tion through linkage mapping would enable modelling

multiallelic QTLs, performing interval mapping and

directly linking the QTL effects to the pedigree

founders.
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Stratified linkage analysis

By the term Stratified Linkage Analysis we refer to a

wide group of approaches for joint analysis of families

that use IBD information and estimate multiple effects

per QTL by exploiting the population stratification.

Typical examples of populations where these

approaches are applicable are Nested Association

Mapping (NAM) populations (Yu et al. 2008; Buckler

et al. 2009; Giraud et al. 2014; Garin et al. 2017) and

populations derived from a diallel cross (Rebai and

Goffinet 1993; Jannink and Jansen 2001; Blanc et al.

2006). Although in such inbred-derived multiparental

populations more than two QTL alleles might be

present, IBD estimation is rather straightforward

because only two founder alleles segregate in each

family. Multiple QTL effects corresponding to the

founder alleles can be estimated by inferring the

parental origin and in the case of NAM populations

this is equivalent to fitting within family an indicator

expressing the contrast between common and periph-

eral parent.

Population correction usually consists in including

a family specific mean and a heterogeneous genetic

residual variance. However, in the presence of selec-

tion, genetic covariance correction is reported to be

appropriate for linkage mapping populations as it is for

association panels (Malosetti et al. 2011).

SLA approaches have limited generality as they are

developed for specific types of populations and the

explicit modelling of population structure demands

large families. With increased pedigree depth and

complexity, two problems arise: (i) IBD estimation is

not straightforward and demands more elaborate

methods and (ii) the number of parameters to be

estimated (for explicit modelling of population strat-

ification and multiple QTL alleles) increases.

General linkage analysis

By General Linkage Analysis we refer to methods for

linkage analysis in more complex populations. The

main element of those methods is the more elaborate

estimation of IBD probabilities in complex pedigrees

that are deeper, with more founders (potentially

outbred), more families and fewer individuals per

family (Thompson 2000; Almasy and Blangero 1998;

Abecasis et al. 2002; Bink et al. 2002; Zheng et al.

2014, 2015, 2018). Because of the complexity of IBD

estimation in these methods, they are sometimes

called IBD-based approaches (Xie et al. 1998; Cre-

pieux et al. 2004), although all linkage mapping

methods use IBD information (unlike association

mapping methods such as GWAS that use only IBS).

Estimation of IBD probabilities results in an n by f

matrix, where n is the number of individuals and f is

the number of founder alleles. As in every linkage

method, IBD can allow for interval mapping. Because

of the possibly high number of founders these

approaches usually fit a random multiallelic QTL

effect to decrease the number of parameters to be

estimated. For this reason this approach is usually

called random model (Xu and Atchley 1995) or

variance component method (George et al. 2000).

However, if the number of founder alleles is small,

IBD probabilities can also be fitted as fixed (Wei and

Xu 2016), as long as the IBD probabilities to the

founders are available and not only the pairwise IBD

matrix of the mapping population. Correction for

population structure is usually achieved using a

genomic relationship matrix, as in GWAS. These

methods were initially developed for animal genetics

(Fernando and Grossman 1989) but have also been

applied, as an alternative to GWAS, to complex plant

multiparental populations such as MAGIC (Verbyla

et al. 2014) and pedigreed plant breeding populations

(Parisseaux and Bernardo 2004; Crepieux et al. 2004;

van Eeuwijk et al. 2010).

The advantage compared to GWAS is the use of

IBD information that allows modelling multiallelic

QTLs and interval mapping. Compared to SLA, the

superiority of GLA lies in the generality of the

approach that can allow for routine application in

pedigreed breeding populations and increase the

relevance of the identified QTLs. Furthermore, the

explicit estimation of founder QTL allele effects,

enables tracing the origin of the QTL alleles and

characterizing the founders. The main disadvantage of

the method is the need for accurate pedigree

information.

GLA is well suited to the recent and rather simple

pedigree of diploid potato, where pedigree informa-

tion is available and characterizing the founders is

essential for the further development of the diploid

potato germplasm.
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Objectives

In this study, we develop methodology for QTL

detection in pedigreed breeding populations, focusing

on shallow pedigrees, derived by few possibly outbred

founders. To that end, we will use a population

described by Meijer et al. (Meijer et al. 2018). This

population is a set of F3 families with a defined

pedigree structure derived from a cross between an

inbred (Solanum chacoense) and an outbred parent

(Solanum tuberosum). It is a diploid potato QTL

mapping population with exceptionally high level of

inbreeding. We here use it as a proxy of a complex

plant breeding pedigree on the grounds that it has more

than two alleles segregating, it is under selection and it

represents an important part of the breeding germ-

plasm. The structure and complexity of the segregat-

ing population implies that no standard method for

QTL mapping is immediately applicable in this

population. The objective here was to compare the

following three different approaches to map QTLs in

this population: (1) a GWAS approach ignoring IBD

information, (2) a simplified IBD-based approach

tailored for this population (SLA), and (3) a general

IBD-based approach (GLA) (Table 1).

Materials and methods

Population and data

The mapping population consists of 840 individuals

originating from a cross between an inbred S.

chacoense genotype (we will refer to it as the ‘‘Sc’’

parent), and a highly heterozyous diploid S. tuberosum

genotype (the ‘‘St’’ parent) (Meijer et al. 2018). The

mapping population is the third generation of this

cross, as shown in Fig. 1. Specifically, two F1
individuals from the ‘‘Sc’’ x ‘‘St’’ cross were selected

and each one selfed to give rise to two main families

(called ‘‘Fam1’’ and ‘‘Fam2’’). From the F1 plant that

originated Fam1, six F2 individuals were selected and

selfed to produce six F3 subfamilies (F1 plant 1 in

Fig. 1). The F1 plant that produced the Fam2 was also

selfed but only three F2 plants were selected to give

three F3 subfamilies (F1 plant 2 in Fig. 1). Each of the

nine F3 subfamilies consisted of approximately 100

individuals.

Note that since ‘‘Sc’’ is highly homozygous this

parent contributes only one allele to the population,

which comes from a S. chacoense background (we will

refer to it as the ‘‘Sc’’ allele). On the other hand the

parental genotype ‘‘St’’ contributes (when heterozy-

gous at that locus) two alleles from a S. tuberosum

background (‘‘St_a’’ and ‘‘St_b’’ alleles). Therefore, at

a particular locus, up to three alleles can be segregat-

ing in the entire population. Also, and because of the

crossing scheme, within each of the F3 subfamilies at

most two alleles can segregate, the ‘‘Sc’’ and one of

either ‘‘St_a’’ or ‘‘St_b’’. A final important remark is

that the population is under selection forces, natural

because of inbreeding depression and artificial as

result of the regular breeding process (only best

individuals were advanced). Consequently, the popu-

lation departs from the usual assumptions of a standard

segregating mapping population.

All 840 individuals were evaluated in a greenhouse

experiment for a number of traits as described by

Meijer et al. (2018). Here, we focus on total tuber

fresh weight per plant (TFW). TFW is not expected to

be an accurate estimator of yield per hectare, but it is a

quantitative trait and as such suitable for a comparison

of QTLmodels. To enable interpretation of the results,

effects will be reported as a percentage of the

population mean. TFW showed continuous variation

and is expected to have a polygenic inheritance. In

addition, all the individuals and the two founders were

genotyped, resulting in 120 SNP markers being

polymorphic within all or some of the F3 subfamilies

as described by Meijer et al. (2018). Those SNPs were

mapped on a linkage map with 12 groups and a total

length of 817.7 cM.

Statistical models for QTL detection

The Sc allele is chosen as reference level since the Sc

parent is inbred and the Sc allele present in both

families enabling comparison of the three approaches.

In the GWASmodel (Table 1), the putative QTL allele

effect is modelled on the basis of IBS as the

substitution of an Sc SNP allele by a different one.

In SLA, marker data are simplified as explained below

to resemble those of a biparental inbred-derived

population and express the contrast between the two

founders ignoring heterozygosity of the St founder.

The informative marker data are recoded into AA, AB

or BB where A denotes the Sc allele and B the St allele
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(St_a or St_b). Markers for which the St parent is

homozygous are informative for all F3 individuals.

Markers for which the St parent is heterozygous are

informative for the F3 individuals that originate from

an heterozygous F1 plant. Subsequently, the standard

procedure of R qtl for biparental inbred-derived F3
populations was followed to estimate genotype

probabilities for every marker position and every

5cM (Broman et al. 2003). A genotypic predictor

expressing the substitution of an Sc allele by an St

allele was calculated as PrðBB j MijkÞ � PrðAA j MijkÞ
whereMijk is the recoded marker data. Given that only

one St allele can be present in each family, this

genotypic predictor was fitted within family, implic-

itly modelling a multiallelic QTL in our SLA

approach. In GLA, the marker data of founders and

offspring were combined with the pedigree of the

population to estimate the probabilities of a randomly

drawn allele from each of the 840 F3 individuals being

identical by descent with each of the three founder

alleles using the RABBIT package (Zheng et al.

2015). The resulting 840 by 3 matrix allows for

modelling explicitly three QTL alleles across families.

The estimation was done for every marker position

and for a grid of 5cM. Although the marker data were

initially filtered for low minor SNP allele frequency,

IBD probabilities might indicate that one of the three

founder alleles is absent from the population. This can

happen either because of transmitting the same St

allele to both F1 plants or due to strong selection in

Table 1 Statistical models for single QTL scan with the three approaches

Terms Description

GWAS yijk ¼ lþ xijkaþ uijk þ eijk ð1Þ
yijk Response of individual k belonging to family i and subfamily j

l Mean

xijk Marker state (number of Sc SNP alleles)

a Fixed SNP allele substitution effect

uijk uijk �Nð0;Gr2uÞ random polygenic term

G Genomic relationship matrix

eijk eijk �Nð0;r2eÞ residual term
SLA yijk ¼ lþ /i þ sj þ x0ijka

0
i þ e0ijk ð2Þ

/i Fixed effect of family i

sj sj �Nð0; r2s Þ random effect of subfamily j

x0ijk x0ijk ¼ PrðQQ j MiÞ � Prðqq j MiÞ interval mapping genetic predictor for inbred biparental populations based on

informative markers

a0i Effect of substitution of an inbred founder allele by one of the outbred founder alleles within family i

e0ijk e0ijk �Nð0;r2ejÞ genetic residual term with heterogeneous variance for subfamilies

GLA yijk ¼ lþ ðx00ijkf Þ
Taf þ uijk þ eijk ð3Þ

x00ijkf Vector of three IBD probabilities (indexed by f) for individual k of family i and subfamily j

af Vector of the three founder allele effects

Fig. 1 Pedigree structure. Three founder origins denoted with

black (‘‘Sc’’), gray (‘‘St_a’’) and white (‘‘St_b’’). Two families

derived by two different F1 plants (Fam1 on the left, Fam2 on the

right). Number of F3 individuals of each subfamily noted inside

the box
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subsequent generations against any of the three alleles.

Therefore, we estimated frequencies of each founder

allele by averaging the IBD probabilities over the

population and filtered again with a threshold of 0.05

setting IBD probabilities of the low frequency founder

to 0 and rescaling the other two to sum to 1. To enable

comparisons with the other two methods, the Sc allele

was chosen as reference level and probabilities were

multiplied by two to estimate the effect of substitution

of an Sc allele.

The differences between those three ways of

modelling the putative QTL are explained following

the example of Fig. 2. For each individual in Fig. 2 we

see the marker genotype along with the number of

copies of each of the three different founder alleles

(‘‘Sc’’|‘‘St_a’’|‘‘St_b’’). If the two F1 plants have

inherited different St alleles, the segregating marker

state does not correspond to the origin of the allele and

plants 1.3.1, 1.3.2 and 1.3.3 are grouped together

although they might be carrying different QTL alleles.

SLA and GLA allow this distinction by using flanking

marker information but they differ in the fact that SLA

estimates QTL effects within family assuming that

different St alleles are transmitted. If we consider a

similar example (not shown here) with the difference

that both F1 plants have inherited the second St allele

(St_b) and have genotype GA, SLA will still use the

same genotypic predictor as in the previous example

and report two effects but GLA will not estimate an

effect for one of the two St alleles that will have (close

to) zero probability for all individuals. In that case,

GLA would properly use information across families

by estimating one effect using all individuals.

Regarding the correction for population structure,

in GWAS and GLA the genetic covariance approach

was followed, including in the model a polygenic term

with genetic covariance modelled by a genomic

relationship matrix as described by VanRaden (first

method) (VanRaden 2008) and implemented in the

synbreed R package (Wimmer et al. 2012),

G ¼ ZZ 0

2
PM pmð1� pmÞ

ð4Þ

where Z ¼ X � P, X is the marker matrix coded as (0,

1, 2), P the non-reference allele frequencies multiplied

by two, and pm the allele frequency at marker m.

Rincent et al. (2014) showed that the drawback of a

single genome-wide relationship matrix is that

markers used in the computation of matrix G interfere

with the signal at the tested position, thus reducing

detection power. Therefore, as an alternative, a set of

12 chromosome-specificGc matrices were obtained by

excluding the SNPs of the corresponding chromosome

c. So, while performing a GWAS or GLA scan, the

relationship matrix used was the one that did not

include the markers on the chromosome being scanned

(this implies that matrix G had to be updated when

moving from one chromosome to the next). In all

cases, semi-positive definiteness of the G matrix was

checked, and if necessary an approximation of the

matrix was used, replacing non-positive eigenvalues

by a small positive constant (Piepho et al. 2008). In

SLA, correction for population structure was focused

on the known stratification, by fitting a fixed family

effect for the two families and a random subpopulation

effect for the nine subfamilies. In addition, the genetic

residual variance was allowed to vary between

subfamilies.

All three models were fitted in ASReml-R (Butler

et al. 2009) and a Wald test was used to assess

association between genotype variation and trait

variation. To map the QTLs, the corresponding P

values on a �log10 scale were plotted against map

positions. A Bonferroni-type multiple testing correc-

tion threshold was defined following Li and Ji (2005)

to control the experiment-wise error rate at 0.05.When

Fig. 2 Example of genotype coding of putative QTL. For

illustration only 6 F3 individuals are shown here. Identifier for

individual (in italic) and example SNP marker genotype (here a

G/A SNP) (in bold). The three numbers (e.g. 0|1|1) correspond to

the actual number of copies of each of the three founder alleles

(‘‘Sc’’|‘‘St_a’’|‘‘St_b’’). At the bottom, the three different ways

of modelling the putative QTL. In GWAS, as number of copies

of the non-reference SNP allele (inbred Sc allele as reference).

In SLA, as number of copies of allele of St origin. In GLA, as

number of copies of each founder allele
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two significant positions were found on the same

chromosome, they were considered to be linked to

different QTLs when they were spaced by at least 30

cM. For each of the three approaches, after an initial

search by the single-QTL models of Table 1, all

significant QTLs were combined in a multi-QTL

model, and a backward elimination process was

implemented. In GWAS and GLA, the set of chro-

mosome specific genomic relationship matrices was

replaced by a G matrix estimated by all chromosomes

without QTLs. For the backward elimination, a

conditional Wald test was used, dropping QTLs from

the full model whenever the contribution of the

particular QTL was found not significant at a signif-

icance level of 0.05. The remaining significant QTLs

were retained in a final multi-QTL model that was

used to produce estimates of allele effects.

Results

In both approaches that include a polygenic term

(GWAS and GLA), we observed an overall increase in

significance when using a chromosome-specific

instead of a standard genomic relationship matrix.

This result was expected, as including also markers

physically linked with the putative QTL when esti-

mating the genomic relationship matrix results in the

genetic background interfering with the specific

position that is being tested. The scatter plots in

Fig. 3 where most of the values are above the 1:1 line,

show that identification of QTLs on a -log10 p value

threshold of 3, would be impossible with a standard G

matrix.

The overall trend of the QTL mapping profiles was

consistent across methods indicating presence of

QTLs in chromosomes 1, 2 and 3 (Fig. 4). However,

inconsistencies were also observed, reflecting differ-

ences between the three approaches.

GWAS approach

The results of the GWAS approach with a chromo-

some-specific relationship matrix (Fig. 4) show peaks

above the threshold on the end of chromosome 1,

beginning and middle of chromosome 2, beginning

and middle of chromosome 3 and beginning of

chromosome 5. Because the two peaks on chromo-

some 2 were spaced by less than 30 cM, only the

largest one (the one at the beginning of the chromo-

some) was selected for the next modelling step. All

five candidate positions were found significant when

fitted together in a multi-QTL model, and their

positions and estimated effects are shown in Table 2.

We observe that for all but one of the significant SNPs,

the allele originating from the S. tuberosum back-

ground increased TFW (positive sign). Only for the

QTL on chromosome 3, the superior allele was the one

from S. chacoense. The largest effect was of the QTL

on chromosome 5, with a point estimate of 22.45% of

the population TFW mean. However, it was also the

one with the higher standard error (clearly higher than

for the estimates of other QTL effects) and its effect

might be overestimated because of its low minor allele

frequency (0.051).

SLA approach

The SLA profile in Fig. 4 shows similarities and

differences with the results from the GWAS approach.

Significant signal was found on chromosomes 2 and 3

as with the GWAS, but not on chromosome 1 and 5

(although on chromosome 1 a peak close to the

threshold was observed). In comparison with the

GWAS result, an extra peak was found on chromo-

some 12. The QTL on chromosome 12 should be

interpreted with caution, given that it is driven by a

single marker in the end of the chromosome. The

Fig. 3 Comparison of-log10 p values between the twoways of
modelling the polygenic term (standard G matrix on the x axis

and chromosome-specific G matrix on the y axis) for the GWAS

(left) and the GLA approach (right)
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decreased significance around the QTL in the begin-

ning of chromosome 5, that could be related to the

maturity gene StCDF1, can be attributed to the loss of

information when the state of markers is not enough to

infer IBD because of heterozygosity in the St founder

and homozygosity in the F1 plant. While the two peaks

on chromosome 2 were more than 30 cM apart and so,

considered as two different candidate QTLs, the two

peaks on chromosome 3 were at a shorter distance so

only the strongest position was selected as candidate

QTL.

We started the final model selection with five

candidate QTLs (including the peak on chromosome

1, which was just below the threshold). When fitted

together the second peak of chromosome 2 (position

35 cM) was found not significant and was removed

from the model. Table 2 shows the QTL effects

estimated from the final multi-QTL model. Two

effects are estimated for each QTL, corresponding to

the two families (Fam1 and Fam2). For the QTL on

chromosome 1 the allele substitution effect was

significant in Fam1 but not in Fam2. We can also

observe that the effect had a negative sign, which

points to the S. chacoense allele (‘‘Sc’’) as the one

increasing TFW. For the QTL on chromosome 2, both

alleles showed a significant effect and were consistent

in pointing to the ‘‘St’’ allele as the one increasing

TFW (positive sign). Note that the effect of this QTL is

consistent with the QTL previously identified by the

GWASmodel, which also pointed to the ‘‘St’’ allele as

the superior one. A more contrasting case was

observed for the QTL on chromosome 3, where both

QTL alleles were significant but the sign opposite. So,

within Fam1 the ‘‘Sc’’ allele increased TFW, while the

opposite was true for the allele segregating in Fam2

(the ‘‘St’’ increased TFW). Because the reference

allele is always the same (the ‘‘Sc’’ allele), differences

in the estimated effects within families both in

magnitude and sign suggests that two different S.

tuberosum alleles may have been inherited in the

population, one of them within Fam1, and the other

Fig. 4 QTL detection profiles for tuber fresh weight showing

the -log10 p values along the 12 chromosomes from single-

QTL scans with the three approaches. Li and Ji threshold of 3.0

depicted

Table 2 Locations, allele effects and standard errors of the

identified QTLs with the three approaches. Effects are esti-

mated from the final multi-QTL model and expressed as per-

centage of the population mean. GWAS effects refer to

substitution of an Sc SNP allele by a different SNP allele, SLA

effects refer to substitution of an allele of Sc origin by an allele

of St origin within the two families and GLA effects refer to

substitution of a Sc allele by an St_a or an St_b allele

GWAS

Chr Pos Effect p value

chr_01 76 12.07 (2.71) 0.000008

chr_02 3.2 11.28 (2.47) 0.000005

chr_03 16 - 8.52 (2.69) 0.001566

chr_03 46 8.26 (2.60) 0.001499

chr_05 10 22.43 (6.15) 0.000267

SLA

Chr Pos Effect Fam1 Effect Fam2 p value

chr_1 27 - 8.95 (2.47) - 0.96 (5.67) 0.037198

chr_2 3.2 10.21 (2.34) 13.91 (5.63) 0.001818

chr_3 25 - 11.61 (2.85) 23.37 (7.77) 0.001645

chr_12 54 1.31 (4.47) 34.22 (6.52) 0.000998

GLA

Chr Pos Effect St_a Effect St_b p value

chr_01 76 11.57 (3.20) 12.40 (4.41) 0.009490

chr_02 5 14.74 (6.04) 10.15 (2.83) 0.008267

chr_03 5 - 12.10 (2.86) – 0.000024

chr_03 46 6.56 (2.55) – 0.009999

chr_05 5 - 2.98 (2.70) 28.00 (6.95) 0.008553

chr_08 27 11.65 (4.47) 10.60 (3.05) 0.029837
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one within Fam2. We can also conclude that the best

allele at this particular QTL is the S. tuberosum allele

that segregates within Fam2, followed by the ‘‘Sc’’

allele, and finally the second S. tuberosum allele that

happened to segregate within Fam1. We should

highlight this type of extra information available by

switching from a GWAS approach to the one here,

where not only it is possible to rank up to three alleles

but also trace in which part of the pedigree a particular

allele can be found.

GLA approach

The last profile plot in Fig. 4 shows the results of QTL

detection by the GLA approach. Seven peaks were

found above the significance threshold. In comparison

with the GWAS and SLA approaches, the GLA

approach seems to suggest a larger set of candidate

QTLs (7 vs. 5). The GLA model detected five

candidates similar to the ones GWAS did, plus two

additional ones. After fitting all seven candidate

positions, one position (chromosome 2 at 35 cM)

was dropped out from the model, resulting in a final

multi-QTL model with six QTLs.

The allele substitution effects as estimated from the

final multi-QTL model are given in Table 2. One first

difference to point out is that with the GLA model an

effect can be estimated for each of the two S.

tuberosum alleles (‘‘St_a’’ and ‘‘St_b’’). This is an

improvement over the SLA model as it gives an

explicit estimate for each of the two alleles. For each

QTL, two allele effects were estimated, except when

one of the two S. tuberosum alleles was not present in

the population (or present at a low frequency). A first

general observation is that for most of the QTLs, the

favourable alleles (i.e. the one increasing TFW) were

from the S. tuberosum background, since most of the

significant effects had a positive sign, which translates

as an improvement (increase) over the reference S.

chacoense allele. We also observed that for two of the

QTLs only one of the two S. tuberosum alleles was

segregating, which is a possible indication of either

selection, the effect of the strong bottleneck effect in

this population (started from two F1 plants), or both.

Some extra insight about the QTLs was possible

when applying the GLAmodel in comparison with the

SLAmodel. For example, with the SLAmodel, a QTL

on chromosome 2 was detected, and two effects

estimated, one within Fam1 and another one within

Fam2 (10.21 and 13.91% of the population TFWmean

respectively). However, from that analysis we could

not conclude whether the estimates were for two

different S. tuberosum alleles or just one allele

estimated within the two different families. The

results from the GLA analysis shed some more light

on it, as the IBD information showed that two different

S. tuberosum haplotypes were inherited in the two

families in that region. This does not prove the

presence of three different QTL alleles, but it supports

that hypothesis by excluding the case of the same S.

tuberosum segment being transmitted. Another exam-

ple of additional information about QTLs was

observed on chromosome 3. With the SLA model,

one QTL at 25 cM on chromosome 3 was found, and

two effects were obtained:- 11.61% within Fam1 and

23.37% within Fam2. With those results, the sugges-

tion was that two different alleles must be segregating

at this particular QTL. However, the results from the

GLA analysis suggest a different conclusion involving

two QTLs with only one S. tuberosum allele in each

QTL. The GLA analysis suggests one QTL at 5 cM

with an effect of - 12.10%, and a second one at 46.4

cM with an effect of 6.56%. The difference between

the two analyses, is that in the GLA analysis IBD

information reveals that it is more likely that only one

S. tuberosum allele is segregating within these regions

on chromosome 3. Therefore, the hypothesis of two

closely linked but different QTLs is more likely than

the hypothesis of a single QTL. The result from the

SLA model is akin to the well-known effect of a ghost

QTL detected somewhere in-between two close-by

QTLs. The difference between the two family-specific

effects observed in SLA must have been the result of

limited segregation in Fam2. The QTLs detected on

chromosomes 1, 2, 5 and 8 seemed to segregate with

three alleles each. Again, the possibility to rank the

alleles and establish the possible genetic background

source is an added value of the GLA approach. For

example, we can identify within the population those

individuals that have a higher probability of carrying

the right version of the ‘‘St’’ allele for selection

purposes.

Discussion

The combination of population structure, possible

segregation of multiple QTL alleles and availability of
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pedigree information differentiates this population

from commonly used mapping populations in potato

breeding. However, we were able to identify QTLs

with three approaches. Applying GWAS models is a

straightforward solution but has the limitation of only

modelling biallelic QTL effects and only at marker

positions (no interval mapping). Our SLA approach is

a better alternative, that exploits the known population

structure, in a tailored-made approach to model

multiple alleles indirectly by nesting effects within a

particular level of the population structure. While a

possible option, it can only be applied in simple

pedigrees like the one shown here or inbred-derived

NAM populations. However, as we showed with our

example, the SLA approach can miss useful informa-

tion since it needs to assume that different alleles

segregate in each family. By comparison of the

estimated allele effects one can indirectly hypothesize

similar or different alleles depending on how different

the estimated effects are in the different parts of the

pedigree. In contrast, the GLA approach proposed here

directly uses IBD estimation from markers and

pedigree data to design the incidence matrix that is

used to test for QTLs and to estimate QTL effects. In

other words, the ancestry of the alleles that flow along

the pedigree is better reflected in the GLA QTL

detection model.

False marker-trait associations caused by con-

founding effects with the genetic background is a

well understood phenomenon in GWAS studies.

Examples of linkage mapping using breeding popula-

tions under selection have also described the detection

of spurious QTLs because of the genetic background

effect (Kennedy et al. 1992; Malosetti et al. 2011). In

such cases, the use of a genomic relationship matrix

offers flexibility to modelling genetic background

effects that result from population stratification and

cryptic relatedness. Another advantage of including a

polygenic term in our model is that it decreases the

need for composite interval mapping and multi-QTL

models, in the sense that each putative QTL is tested

while correcting for the genetic background. However,

it is reasonable that major QTLs will be more properly

modelled as fixed cofactors than through a random

polygenic term.

We observed that using a chromosome specific G

matrix that excludes markers at the particular chro-

mosome helps to increase the signal given by putative

QTLs, in agreement with previous studies (Rincent

et al. 2014; Yang et al. 2014). The method is

straightforward to apply when performing a QTL

search based on a single QTL model like we did here.

Some further elaboration will be needed if the QTL

model includes QTLs in most of the chromosomes. In

such cases, the estimation of the genetic relationship

matrix should at least exclude the markers in the

vicinity of the QTLs that are part of the model. In those

cases, a decision has to be made regarding the size of

the window around the QTL within which to exclude

the markers, for example using global or local LD

decay information. An alternative approach is the one

described by Wei et al., consisting in adding the

polygenic counterpart (BLUP) of the tested marker to

the response, resulting in a marker-specific response

vector (Wei and Xu 2016).

We suggest the use of IBD probabilities to explic-

itly model QTL alleles in reference to the founders.

Software for linkage analysis in complex pedigrees is

suitable as long as it allows the incorporation of all

aspects of the relevant pedigree, including selfing and

it reports the probabilities of each allele in the

offspring being IBD to each founder allele. An IBD-

approach with random QTL effects can be performed

using only the pairwise IBDmatrix of the offspring but

best linear unbiased prediction of QTL effects will not

be possible. Similar approaches can be used for non-

pedigreed populations, by using conserved haplotype

segments as IBD evidence. In that case, the interpre-

tation of founder allele effects is not relevant but

modelling of multiple QTL alleles can still give

further insight. In more complex pedigreed popula-

tions, fixed QTL effects will lead to an increased

number of parameters to be estimated. Therefore, it

would be more appropriate for QTLs in complex

pedigrees to be modelled as random effects. Other

extensions of the methodology include the clustering

of founder haplotypes locally into a smaller set of

ancestral haplotypes (Meuwissen and Goddard 2001;

ter Braak et al. 2010; Leroux et al. 2014) and the

combined use of different QTL models (Garin et al.

2017).

We should note a difference between IBD-based

methods and IBS methods. IBD probabilities include

in the analysis uncertainty that is not only related to

marker calling but also to the transmission of genes in

the pedigree and the genotype between markers.

Consequently, QTL alleles are modelled by a vector

of continuous values and the interpretation of allele
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frequency changes as it does not always refer to the

number of alleles but to the average probability of an

allele. Therefore, in regions of greater uncertainty, low

to moderate allele frequency can be observed in cases

of alleles that are in fact absent from the population,

leading to spurious results. In a less extreme case,

where the allele is actually present but the uncertainty

drives IBD probabilities towards the expectation from

the pedigree, significance of QTL presence might not

be affected, but the allele effect will be overestimated.

Further research in the use of IBD probabilities should

focus on assessing the accuracy of allele effects

estimation.

When IBD information is used for estimation of

multiple founder allele effects, each founder allele

effect should be modelled by a vector that shows

allelic variation and allows its separation from other

founder alleles. It is advised to explore the IBD

probabilities and if necessary exclude or treat posi-

tions that are not suitable for this analysis. Such cases

include: (i) IBDs that show presence of the allele in

only a few individuals, (ii) IBDs that are close to zero

for all individuals because one of the founder alleles is

selected against and is not present in the mapping

population or (iii) IBD probabilities of two founder

alleles that are approximately equal to each other for

all individuals because of extended IBS between

founder haplotypes (e.g. homozygosity of an outbred

founder) causing colinearity.

It is important to develop proper criteria for

evaluation of marker quality and information content

of IBD probabilities in breeding populations. This is

because the minor allele frequency is not an adequate

measure of polymorphism in populations with

heterozygosity or uncertainty of origin and the geno-

typic information coefficient (van Ooijen 2009;

Bourke et al. 2019) is not directly applicable to

populations under selection.

It should be noted that the rationale behind the

design of SLA was to use population stratification for

modelling both the QTL and the population structure.

Similarly, GLA was aiming at offering a general

approach to those two model elements. Consequently,

here we compared those two approaches, but further

research is needed to study each of those two elements

separately. Although applying SLA with a polygenic

term, instead of the explicit modelling of population

stratification, affects the QTL profile (results not

shown here), it does not affect the validity of the

discussion on the interpretation of QTL effects.

The aim of this study was to demonstrate the

application of those different approaches that are

applicable to breeding pedigrees and discuss the

interpretation of the estimated effects. However, we

should stress the importance of validation of reported

QTL before application and the benefits of densely

genotyped and accurately phenotyped experimental

populations for deeper understanding of genetic

architecture.

In diploid potato, further insight should be gained

by extending QTL detection to include dominance

effects, given the prevalence of inbreeding depression.

Furthermore, dense marker sets can increase the

mapping resolution and allow the study of residual

heterozygosity, unravelling further the genetic archi-

tecture of yield as reported by Marand et al. (2019).

The ability to map QTLs that segregate in a

breeding population is crucial for the success of a

breeding program as it can guide breeding decisions

on germplasm enhancement, population improvement

and choice of hybrid parents. QTL information can be

used in the context of Marker-Assisted Selection for

simple traits (e.g. for the introgression of resistance

genes) or genomic prediction for traits that are

regulated by a combination of major and minor genes

(Bernardo 2014). In the case under study, the use of

proper methodology can boost the improvement of the

currently emerging diploid potato germplasm and

consequently the development of diploid hybrid

potato as described by Lindhout et al. (2011).
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