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Abstract For operational water management in lowlands and polders (for instance, in the Netherlands),
lowland hydrological models are used for flow prediction, often as an input for a real‐time control system to
steer water with pumps and weirs to keep water levels within acceptable bounds. Therefore, proper
initialization of these models is essential. The ensemble Kalman filter (EnKF) has been widely used due to its
relative simplicity and robustness, while the unscented Kalman filter (UKF) has received little attention in
the operational context. Here, we test both UKF and EnKF using a lowland lumped hydrological
model. The results of a reforecast experiment in an operational context using an hourly time step show
that when using nine ensemble members, both filters can improve the accuracy of the forecast by updating
the state of a lumped hydrological model (Wageningen Lowland Runoff Simulator, WALRUS) based
on the observed discharge, while UKF has achieved better performance than EnKF. Additionally, we show
that an increase in the ensemble members does not necessarily mean a significant increase in
performance. WALRUS model with either UKF or EnKF could be considered for hydrological forecasting
for supporting water management of polders and lowlands, with UKF being the computationally
leaner option.

1. Introduction

Lowland areas cover a large part of the world with high social and economic values (Brauer et al., 2013) and
are more likely to be threatened by the floods (Zhang et al., 2008). Hence, it is crucial to conduct flood fore-
casting in these areas. Hydrological models have been used for flood forecasting. Some hydrological models
such as the HBV‐96 model (Lindström et al., 1997), the Tank model (Sugawara, 1974), the SWAT model
(Arnold et al., 1998), and the Xinanjiang model (Shi et al., 2013; Zhao, 1992) have been widely used in the
context of hydrological modeling. However, most of these models are designed for sloping catchments rather
than lowland catchments. Hence, problems can arise when applying these models to lowland areas because
lowland catchments have some unique properties in the mechanisms of hydrological processes such the
interaction between the groundwater and the surface water (Sophocleous, 2002) and the connection
between the saturated zone and the unsaturated zone (Brauer et al., 2016). As a result, lowland
rainfall‐runoff models have been developed to handle these issues (Deltares, 2013; Guse et al., 2013;
Stricker & Warmerdam, 1982; Thompson et al., 2004). For operational water management in lowlands
and polders (for instance, in the Netherlands), models such as the Wageningen Lowland Runoff
Simulator (WALRUS) (Brauer, Torfs, et al., 2014) and SOBEK‐RR (Bruni et al., 2015) are used for flow pre-
diction, often as inputs to real‐time control systems to steer water with pumps and weirs to keep water levels
within acceptable bounds. WALRUS is a lumped hydrological model for simulating lowland runoff. This
model accounts for essential processes in lowland catchments such as groundwater‐unsaturated zone cou-
pling and groundwater‐surface water feedbacks (Brauer, Torfs, et al., 2014).

While hydrological models are reported to be robust and reliable in the applications of hydrological model-
ing, it has been generally recognized that the satisfactory application of such a model can be hampered by
many factors including uncertainty in the model inputs (Ajami et al., 2007; McMillan et al., 2011; Renard
et al., 2010; Vrugt et al., 2008), uncertainty in the model structure (Beven & Binley, 1992; Butts et al., 2004;
Refsgaard et al., 2006; Uhlenbrook et al., 1999), and uncertainty in the model parameters (Ajami et al., 2007;
Beven, 1993; Kuczera & Parent, 1998; Li et al., 2010; Shen et al., 2012; Vrugt et al., 2003; Wilby, 2005; Yang
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et al., 2007). As a result, data assimilation techniques have been developed and used to handle these issues
(Liu & Gupta, 2007). In general, these data assimilation techniques can be divided into three types: error cor-
rection, parameter estimation (optimization), and state updating (Liu et al., 2012b). In this study, we only
focus on the third type. For the first type and the second type, we refer to Ajami et al. (2007), Broersen
and Weerts (2005), Gupta et al. (2006), Li et al. (2010), Shen et al. (2012), Smith et al. (2012), and Weerts
et al. (2011).

For state estimation, a general framework is to consider the hydrological model from the perspective of a
state‐space model. One of the best‐known techniques for solving the state‐space equation is the Kalman fil-
ter (KF) (Kalman, 1960). KF is proposed to provide a recursive solution to the discrete‐data linear filter pro-
blem. However, the standard KF is restricted to linear systems. Due to the nonlinearity of hydrological
models, particle filtering (PF) and some nonlinear extensions of KF, such as extended KF (EKF)
(Jazwinski, 1970) and ensemble KF (EnKF) (Evensen, 1994), have been used in the context of hydrological
modeling. Applications of EKF in the hydrological literature have been reported by Georgakakos (1986),
Francois et al. (2003), and Lü et al. (2011). EKF can be considered as a first‐order approximation to the opti-
mal form since EKF linearizes the nonlinear system using the first‐order approximations (Welch &
Bishop, 1995), while such approximations may lead to deterioration in the performance and even divergence
after a few iterations (Evensen, 1994; Reichle, McLaughlin, & Entekhabi, 2002; Reichle, Walker, et al., 2002).
Despite its central flaw, other problems, such as difficulties when calculating the Jacobian matrix, also limit
its applications (Da Ros & Borga, 1997). PF is a Monte Carlo‐based sequential data assimilation technique
that is not limited to the Gaussian assumption (Arulampalam et al., 2002). Some applications have been seen
in the context of state estimation and parameter estimation of hydrological models (Moradkhani, Hsu,
et al., 2005; Weerts & el Serafy, 2006). In PF, the sampling importance resampling (SIR) is often used to
handle this problem to avoid the degeneracy problem. However, this resampling procedure can lead to
the sample impoverishment problem because the SIR algorithm only maintains and duplicates the particles
with high weights.

EnKF addresses the approximation problems by incorporating an ensemble of the state generated by the
Monte Carlo method (Burgers et al., 1998; Evensen, 1994; van Leeuwen, 1999). Unlike the approximation
implemented by local linearization of EKF, EnKF utilizes a Monte Carlo‐based sampling strategy to approx-
imate and propagate the probability distribution functions. EnKF has received much attention in the field of
hydrology due to its relative simplicity and robustness when addressing the nonlinear filtering problems in
the context of hydrological modeling(Clark et al., 2008; Moradkhani, Sorooshian, et al., 2005; Reichle,
McLaughlin, & Entekhabi, 2002; Xie & Zhang, 2010).

Another well‐known nonlinear extension to the KF is the unscented KF (UKF) (Julier et al., 1995). Its use-
fulness in nonlinear systems and efficient sampling strategy have led to extensive applications in many
branches of science and engineering (Chatzi & Smyth, 2009; Chowdhary & Jategaonkar, 2010; Kandepu
et al., 2008; St‐Pierre & Gingras, 2004; Wu& Smyth, 2007). However, so far, the UKF has received little atten-
tion in the context of hydrological modeling (Liu et al., 2012a). A preliminary application shows its useful-
ness in state estimation by applying it to the Xinanjiang rainfall‐runoff model (Jiang et al., 2018).

In this paper, we strive to investigate the application of UKF and EnKF to improve the forecast performance
of a lowland hydrological model by updating the model state by assimilating streamflow measurements. We
seek here to (1) introduce the basic theory of UKF and EnKF, (2) discuss the main differences and connec-
tions between UKF and EnKF, (3) demonstrate the usefulness of UKF in improving the forecast perfor-
mance by estimating the state, and (4) compare the performance of UKF and EnKF in the context of flood
forecasting.

2. Materials and Methods
2.1. State‐Space Representation

A general framework for sequential data assimilation techniques is the state‐space representation

Xk þ 1 ¼ f Xk;Uk;W;Vkð Þ (1)

Yk þ 1 ¼ h Xk þ 1; W; nk þ 1ð Þ (2)
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where Xk is the state at time k, Uk is the forcing input, W is the set of model parameters, Vk is the process
noise with the covariance matrix Qk, Yk+1 is the measurement at time k + 1, nk+1 is the observation noise
with the covariance matrix Rk+1, f (·) represents the state transition function, and h(·) represents the mea-
surement function. For simplicity, the process noise and observation noise are assumed to be additive and
zero mean. Also, we only focus on state estimation in this study. So the above model can be rewritten as

Xk þ 1 ¼ f Xk;Ukð Þ þ Vk (3)

Yk þ 1 ¼ h Xk þ 1ð Þ þ nk þ 1 (4)

KF is restricted to provide a recursive solution to the discrete‐data linear filtering problem (i.e., f (·) and
h(·) are linear models). For nonlinear cases such as the state estimation of nonlinear systems, nonlinear
filters such as EnKF and UKF are used to provide the solution.

2.2. EnKF

EnKF is a Monte Carlo‐based nonlinear filter (Gillijns et al., 2006). The approximation of error covariance is
achieved by propagating an ensemble via the system. The updated ensemble members (nmembers) at time k

( bχik; i ¼ 1; …; n) are propagated through the state transition function

bχi −k þ 1 ¼ f bχik; Ui
k;V

i
k

� �
; i ¼ 1; …; n (5)

where bχi −k þ 1 is the prediction of the ith ensemble member, Vi
k is the process noise which is assumed to be

zero‐mean white Gaussian noise, and Ui
k is the perturbed forcing data. Using the predicted ensemble

members, one can obtain the error covariance matrix

Pk þ 1 ¼ 1
n − 1

Ek þ 1ET
k þ 1 (6)

with the expectation of the error in each ensemble member

Ek þ 1 ¼ bχ1 −
k þ 1 − Xk þ 1;…;bχn −

k þ 1 − Xk þ 1
� �

(7)

where Xk þ 1 is the ensemble mean obtained by

Xk þ 1 ¼ 1
n
∑
n

i¼1
bχi −k þ 1 (8)

Similarly, the predicted ensemble members bχi −k þ 1 (i = 1, …, n) are propagated via the measurement

function

bγi −k þ 1 ¼ h bχi −k þ 1

� �
(9)

Then the ensemble mean is obtained by

Yk þ 1 ¼ 1
n
∑
n

i¼1
bγi −k þ 1 (10)

The Kalman gain is defined as

Kk þ 1 ¼ Pk þ 1H HTPk þ 1Hþ Rk þ 1
� �−1

(11)

Practically, the two terms Pk+1H and HTPk+1H in Equation 11 can be calculated by the following equa-
tions (Houtekamer & Mitchell, 2001):

Pk þ 1H ¼ 1
n − 1

∑
n

i¼1
bχi −k þ 1 − Xk þ 1
� � bγi −k þ 1 − Yk þ 1

� �T
(12)

and
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HTPk þ 1H ¼ 1
n − 1

∑
n

i¼1
bγi −k þ 1 − Yk þ 1
� � bγi −k þ 1 − Yk þ 1

� �T
(13)

To facilitate the comparison between UKF and EnKF, we rewrite the above equations (Equations 11–13):

Kk þ 1 ¼ PXk þ 1 Yk þ 1P
−1
Yk þ 1Yk þ 1

(14)

with

PXk þ 1Yk þ 1 ¼
1

n − 1
∑
n

i¼1
bχi −k þ 1 − Xk þ 1
� � bγi −k þ 1 − Yk þ 1

� �T
(15)

and

PYk þ 1Yk þ 1 ¼
1

n − 1
∑
n

i¼1
bγi −k þ 1 − Yk þ 1
� � bγi −k þ 1 − Yk þ 1

� �T
(16)

Using the Kalman gain, one can update the state of the ensemble members

bχik þ 1 ¼ bχi −k þ 1 þKk þ 1 Yi
k þ 1 − bγi −k þ 1

� �
(17)

with the perturbed observations

Yi
k þ 1 ¼ Yk þ 1 þ ηik þ 1; ηik þ 1 ∼ N 0;Rk þ 1ð Þ (18)

For more information about EnKF, we recommend Evensen (2003); Gillijns et al. (2006); Houtekamer and
Mitchell (2001); Moradkhani, Sorooshian, et al. (2005); and Weerts and el Serafy (2006).

2.3. UKF

UKF is a nonlinear extension of KF to overcome the drawbacks of EKF, such as the obstacles when calculat-
ing the Jacobianmatrix and the stability problemwhen the nonlinearity of the system is high. UKF utilizes a
set of sample points (weighted sigma points) to propagate and capture the expected value and covariance
(Julier et al., 2000). Various algorithms can be utilized by UKF to generate the sigma points, including the
symmetric point algorithm, the minimal skew simplex point algorithm, and the spherical simplex point
algorithm. The main distinction is the number of sigma points (hence the weights) used by the algorithm.
For an L‐dimensional state (space), the symmetric point algorithm requires 2L + 1 sigma points, while
the minimal skew simplex point algorithm requires L + 1 sigma points(Julier, 2003). However, for the mini-
mal skew simplex point algorithm, problems of numerical instability can arise due to the radius bounding
the sphere of the points. A general framework (scaled unscented transformation) is proposed to scale the
sigma points when the dimension increases (Julier, 2002). The primary purpose of this study is to estimate
the state of a conceptual hydrological model with four state variables, and hence the computational cost is
low. The symmetric sampling strategy under the scaled framework is used to ensure the robustness of the
system in this study.

All of the sample points are assigned with equal weight except the central point

W cð Þ
i ¼ W mð Þ

i ¼ 1= 2 Lþ λð Þ½ � i ¼ 1; 2; …; 2L (19)

with the scaling parameter calculated by

λ ¼ α2 Lþ κð Þ − L (20)

where L is the number of the state variables (L = 4 in this study) and κ is a secondary scaling parameter.
The weights for the central points are given as

W cð Þ
0 ¼ λ= Lþ λð Þ½ � þ 1 − α2 þ β (21)

and
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W mð Þ
0 ¼ λ= Lþ λð Þ½ � (22)

where β can be adjusted to incorporate prior knowledge of the distribution of the state (e.g., β is set to 2 for
Gaussian distribution). It is recommended that κ is set to 3 − L and α is set to a small positive value
(1 ≥ α ≥ 10−4) to control the spread of sigma points around the mean. Note that only when all of the
weights are nonnegative, it is guaranteed that the algorithm gives a positive semidefinite covariance.
Therefore, such a choice of κ and α may lead to a nonpositive semidefinite covariance when the state
dimension is higher than three and α is small. To avoid the potential problem, κ is set to 1 and α is set
to 0.9 in this study.

For each iteration, a matrix with 2L + 1 vectors (columns) of sigma points is obtained by

bχk ¼ bXk bXk þ γ
ffiffiffiffiffiffi
Pk

p bXk − γ
ffiffiffiffiffiffi
Pk

p� �h i
(23)

with the

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ λð Þ

p
(24)

where bXk is the estimated state at time k, Pk is the error covariance matrix, and
ffiffiffiffiffiffi
Pk

p
is the matrix square

root calculated by the Cholesky decomposition. bχk is propagated through the state transition function

bχ*−k þ 1 ¼ f bχk;Ukð Þ (25)

Using the weights of the sigma points, one can obtain the mean and covariance

bX−
k þ 1 ¼ ∑

2L

i¼0
W mð Þ

i bχ*i −k þ 1 (26)

P−
k þ 1 ¼ ∑

2L

i¼0
W cð Þ

i bχ*i −k þ 1 −
bX−
k þ 1

h i bχ*i −k þ 1 −
bX−
k þ 1

h iT þ Q (27)

where bχ*i −k þ 1 represents the ith column of bχ*−k þ 1 and Q represents the process‐noise covariance, which is

assumed to be constant for UKF in this study. To incorporate the process noise, one can resample the
sigma points or expand the vector of the sigma points (Haykin, 2001). We will distinguish this new set

of sigma points from the previous one by calling it bχ−k þ 1 (hence bχi −k þ 1). Again, bχ−k þ 1 is propagated through

the measurement model

bγ−k þ 1 ¼ h bχ−k þ 1

� �
(28)

Similarly, we can obtain the expected value

bY−
k þ 1 ¼ ∑

2L

i¼0
W mð Þ

i bγi −k þ 1 (29)

With the measurement Yk+1 (without the additional perturbations as required by EnKF), the state is
updated by

bXk þ 1 ¼ bX−
k þ 1 þKk þ 1 Yk þ 1 − bY−

k þ 1

� �
(30)

The Kalman gain is defined as

Kk þ 1 ¼ PXk þ 1Yk þ 1P
−1
Yk þ 1Yk þ 1

(31)

with

PXk þ 1Yk þ 1 ¼ ∑
2L

i¼0
W cð Þ

i bχi −k þ 1 −
bX−
k þ 1

h i bγi −k þ 1 −
bY−
k þ 1

h iT
(32)

and
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PYk þ 1Yk þ 1 ¼ ∑
2L

i¼0
W cð Þ

i bγi −k þ 1 −
bY−
k þ 1

h i bγi −k þ 1 −
bY−
k þ 1

h iT
þ R (33)

where R represents the measurement noise assumed to be constant in this study. Finally, the error covar-
iance is updated by

Pk þ 1 ¼ P−
k þ 1 −Kk þ 1PYk þ 1Yk þ 1Kk þ 1

T (34)

For detailed information about UKF, we recommend Haykin (2001); Julier (2002, 2003).

2.4. Comparison of EnKF and UKF

Both approaches belong to the class of sampling‐based filter algorithms in that the samples are generated
and propagated through the state‐space model to approximate the error statistics, and the procedures of
UKF and EnKF are quite similar (Roth et al., 2015), but we highlight the following essential differences.

Equation 23 shows that in contrast to the Monte Carlo sampling strategy used by EnKF, the sigma points of
UKF are generated in a deterministic way. For each iteration, EnKF maintains the ensemble members,

while UKF generates the sigma points from the estimated state bXk and error covariance Pk of the previous
time step. Second, UKF and EnKF differ in the weights of the samples. For UKF, the weights are obtained
by the equations from Equations 19–22, while each ensemble member of EnKF is equally weighted.
Furthermore, as indicated by Equations 27 and 34, the error covariance of UKF is recursively calculated
in the time update step and updated in the measurement update step, while EnKF directly calculates the
error covariance from a set of ensemble members.

Roughly speaking, all the three differences mentioned above are associated with the sampling strategies
used by the filters, and different sampling strategies can lead to different accuracy. In terms of Taylor series
expansion, the approximations of UKF can achieve at least the second‐order accuracy in the face of an arbi-
trary nonlinear function. Under the Gaussian assumption, the approximations can achieve at least the
third‐order accuracy (Haykin, 2001). A preliminary theoretical analysis shows that under the Gaussian
assumption, EnKF can achieve at least the first‐order accuracy (Luo & Moroz, 2009). Note that the analysis
does not necessarily mean that UKF can practically achieve a better approximation (performance) over
EnKF since, for EnKF, an increase in the ensemble size can lead to higher accuracy. However, the size of
the sigma points of UKF is fixed. From the perspective of the sample size, the sample size of UKF is deter-
mined by the dimension N of the state vector and the sampling algorithm used by UKF ranging from
N+ 1 to 2 *N+ 1 (Julier, 2002, 2003; Julier &Uhlmann, 1997), while for EnKF, there is no standard criterion
for determining the ensemble size (Gillijns et al., 2006).

It should be noted that EnKF has the advantage of including different sources of uncertainties more easily
compared to UKF. For every time step, the sigma points of UKF are generated in a determinedmethod using
the state of the hydrological model and the corresponding error covariance, indicating that UKF considers
the uncertainty in the state as the dominant uncertainty of hydrological modeling. The method for generat-
ing the ensemble members of EnKF is more flexible than the method of UKF, which makes it easy to include
different sources of uncertainties such as considering uncertainty in the model inputs and uncertainty in the
model state simultaneously in the ensemble members (hence in the filtering process), while for UKF, it
would be difficult to include other uncertainties of hydrological modeling (e.g., uncertainty in the model
inputs).

3. Case Studies
3.1. Tools and Models

In this study, the WALRUS model is used to conduct the experiments. WALRUS model is a lumped
rainfall‐runoff lowland model developed by Brauer, Torfs, et al. (2014). WALRUS consists of a soil reservoir
which consists of a vadose zone and a groundwater zone, a quickflow reservoir, and a surface water reservoir
(Figure 1). dV, dG, hQ, and hS represent the state variables of WALRUS. W, β, and dV,eq are dependent vari-
ables. P, ETpot, fXG, and fXS are the model inputs. ETact and Q are the model outputs. PS, PV, PQ, ETV, ETS,
fGS, and fQS are internal fluxes. The remaining terms in Figure 1 represent the model parameters. Here we
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only present a brief description of the state variables in Table 1. For detailed information about this model,
we recommend Brauer, Torfs, et al. (2014) and Brauer, Teuling, et al. (2014).

The experiments were conducted within Delft‐FEWS (Werner et al., 2013) using OpenDA‐SOBEK.
Delft‐FEWS has its origin in flood forecasting and flood warning. In this study, Delft‐FEWS is used to import
data, run the forecasts, and export the results. The Delft‐FEWS system used in this study (FEWS Vecht) is a
standalone copy of the platform used by the water board for operational water management. OpenDA is a
toolbox that is designed for data assimilation and calibration of numerical models (Rakovec et al., 2015).
Both filtering algorithms used in this study (i.e., UKF and EnKF) have been included in OpenDA. SOBEK
is a modeling software that mainly includes submodules for open water flow and rainfall‐runoff processes
in rural and urban environments, which can be used for flood forecasting, optimization of drainage systems,
and control of irrigation systems. (Betrie et al., 2011; Bruni et al., 2015; Haile & Rientjes, 2005; Prinsen &
Becker, 2011). WALRUS is available as a rainfall‐runoff module (in C) within SOBEK. A wrapper for
OpenDA‐SOBEK‐WALRUS is implemented to link the filter algorithms and the hydrological model.

3.2. Study Area and Data Basis

The Regge catchment is a lowland catchment in the east of the Netherlands, which covers an area of 957m2

(Figure 2). The elevation differences are small, the soil is sandy, and land use is mostly grassland and agri-
cultural. The catchment is freely draining, and although there is a broad canal flowing through the catch-
ment, no surface water is expected to be exchanged between the canal and the catchment. The Regge
catchment has been used in previous study using WALRUS (Heuvelink et al., 2020), so no calibration was
required here. For WALRUS model, five parameters including cW, cV, cG, cQ, and cS require calibration
and two parameters including cD and aS are estimated from field observations. The values we used were

Figure 1. Flowchart of the model structure of WALRUS (Brauer, Torfs, et al., 2014).
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396mm for cW, 45 hr for cV, 16 × 106mmhr for cG, 7.5 hr for cQ, 0.2mmhr−1 for cS, 2,450mm for cD, and 0.01
for aS. Loamy sand is used as the soil type.

The forcing data, precipitation, and potential evapotranspiration have been acquired from the Royal
Netherlands Meteorological Institute (KNMI). Precipitation was measured at weather station Twenthe,
and potential evapotranspiration was estimated using global radiation and temperature measured at the
same station and the method of Makkink (Amatya et al., 1995; Winter et al., 1995; Xu & Singh, 2000).
Discharge observations were used for both calibration and verification. The discharge was measured by
the local water authority, Waterboard Vechtstromen. All data were provided with hourly resolution.

To improve the forecast performance, EnKF and UKF are used to estimate the model state by assimilating
the observed discharge at the catchment outlet. In the first part of the experiment, both filters are operated
every hour (i.e., with hourly time step) using the same size of ensemble members (nine ensemble members),
while the forecasts are performed and issued every 2 days for the period ranging from 2000 to 2011. In the
second part of the experiment, the performance of EnKF with different ensemble sizes (18 ensemble mem-
bers, 36 ensemble members, and 72 ensemble members) is further evaluated. Due to the high computational
cost, the second part covers a run of 1 year. In the study, both the forecast performance and the behavior of
the updated model state are analyzed. Note that all the forecasts are obtained with the measured precipita-
tion. Figure 3 displays a complete picture of the update‐forecast procedure used by both UKF and EnKF.

Table 1
Descriptions of the State Variables of WALRUS

Variable Units Description

dV mm Storage deficit which is used to quantify the dryness of the vadose zone
dG mm Ground depth which is used to compute the groundwater drainage flux
hQ mm Quickflow reservoir level which is utilized to simulate the combined effect of all water through

the quickflow path toward the surface water
hS mm Surface water level with respect to the channel bottom

Figure 2. Map showing the location of the Regge catchment with the meteorological station and discharge measurement
station. “Regge_Rain” represents the meteorological station, and “Regge_Q” represents the discharge measurement
station.
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In this study, the ensemble members of EnKF are obtained by perturbing
the forcing data (i.e., precipitation) (Moradkhani, Sorooshian, et al., 2005).
The multiplicative noise to perturb the precipitation data is assumed to
be lognormal distributed with the standard deviation equal to 0.25.
Perturbations to the discharge observations are assumed to be similar to
the multiplicative noise setting used by Weerts and el Serafy (2006) with
a standard deviation equal to 0.05 times the observed discharge. For
UKF, since there is no prior information about the noise of this practical
problem such as the noise magnitude, the noise covariance for UKF is
assumed to be constant and set empirically. The measurement‐noise cov-
ariance is set equal to 0.05, and the process‐noise covariance is assumed to
be a diagonal matrix Q = diag(0.5,0.5,0.5,0.5).

The Ensemble Verification System (EVS) is used to evaluate the perfor-
mance of flood forecasting methods, including ensemble forecasts such
as streamflow and precipitation (Brown et al., 2010). While many metrics
have been included in EVS, in this study, we consider the root mean
squared error (RMSE), the mean absolute error (MAE), and the continu-
ous ranked probability score (CRPS) for evaluating the forecast perfor-
mance. RMSE and MAE are used to evaluate the single‐valued forecast
performance (i.e., UKF and the ensemble mean of EnKF) since UKF is

designed to provide a single‐valued result, while CRPS is used to evaluate the performance of ensemble fore-
casts of EnKF. One advantage of the CRPS is that it reduces to theMAE if the forecast is deterministic, which
makes it possible to compare an ensemble forecast with a deterministic forecast (Hersbach, 2000). In brief, a
perfect match of the model outputs to the measurements has a value of zero. For detailed information about
the metrics, we refer to Hersbach (2000), Brown et al. (2010), Wilks (2011), and Verkade et al. (2013).

4. Results and Discussion
4.1. Effect of UKF and EnKF on Forecast Performance

Figure 4 shows a plot of the output forecast performance of UKF and the ensemble mean of EnKFmeasured
by RMSE when increasing the lead time from 1 to 120 hr.

Note that for clarity, we only show the results for all the data, “top 10%,” and “top 25%,” as the results were
similar for “top 50%” and “top 75%.” The results for “top 50%” and “top 75%” can be found in the supporting
information (Figure S1). Figure 4 shows that both UKF and EnKF can significantly improve the forecast per-
formance since the RMSE of UKF and EnKF considerably lower as compared with the corresponding RMSE
of WALRUS. UKF has achieved better performance when the lead time ranging from 1 to 60 hr since the
values obtained by UKF are lower than the values of EnKF. The difference between the updated perfor-
mance (either obtained by UKF or EnKF) and the original performance suggests that both filtering algo-
rithms can improve the forecast performance by updating the model state (hence altering the model
behavior). Besides, the difference between the improvements in the forecast performance (i.e., the difference
between the improvement of EnKF and the improvement of UKF) tends to decrease when increasing the
lead time.

Figure 5 shows a similar plot to Figure 4 (measured byMAE and CRPS). Note that CRPS is reduced toMAE
when the forecast is deterministic. Hence, CRPS is used to evaluate the performance of all the ensemble
members of EnKF, while MAE is used to evaluate the performance of the ensemble mean of EnKF and
UKF. As expected, both UKF and EnKF have improved the forecast performance, and there is a general
trend for the forecast performance to decrease when increasing the lead time. Note that there is a slight dif-
ference between the CRPS of the ensemble members of EnKF and theMAE of the ensemble mean of EnKF,
and the difference tends to increase with lead time. The above observation may suggest that the advantages
of ensemble forecasts (with respect to the ensemble mean) increase for longer lead times when using EnKF.
Besides, as illustrated by Figures 4 and 5 (especially in Figure 5), EnKF outperforms UKF for the top 10%
high flow when the lead time is greater than 85 hr.

Figure 3. A complete picture of the update‐forecast procedure. The
horizontal axis represents the time, and the vertical axis stands for the
predicted state and updated state. Assume that tk+1 is the current time,
and the update‐forecast procedure is as follows: The state prediction at
time tk+1 is obtained by running the hydrological model with the updated
state at time tk (bXk) (Step 1, S1). Then the updated state at time tk+1 (bXk þ 1)

is obtained by updating the state prediction bX−
k þ 1 using the streamflow

observation at time (Yk+1) (Step 2, S2). Finally, issue the forecast by

running the hydrological model with the updated state at time tk+1 (bXk þ 1)
with the measured precipitation for 120 steps (Step 3, S3).
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It should be noted that the better performance of UKF in this study does
not necessarily mean that UKF is better than EnKF since the experiment
in this study is conducted in a practical and nearly operational context
where a fair comparison between the two approaches can be hampered
by many factors such as the difference in the strategies for noise specifica-
tion of both filters. EnKF used in this study incorporates the noise
information by randomly perturbing the ensembles, as indicated by
Equations 5 and 18, while UKF used in this study incorporates the noise
information by directly adding the covariance matrix of the noise to the
error covariance matrix (Equations 27 and 33). In addition, both filters
set up the noise information empirically (especially for UKF), although
similar noise specification strategies of EnKF have been used in the litera-
ture (Moradkhani, Sorooshian, et al., 2005; Weerts & el Serafy, 2006). The
noise setting of UKF used in this study is simpler as compared with the
noise setting of EnKF. The covariance of the measurement noise is set
to a smaller value compared with the one of the process noise, indicating
that the filter tends to have “more trust” in the measured values than the
simulated values. This also contributes to the high accuracy of the
updated output and the forecast output of UKF at short lead times. It
may be possible and preferable to adaptively adjust the noise settings at
each step of the filter (Clark et al., 2008; Drécourt et al., 2006; Noh
et al., 2014; Wang & Bai, 2008); however, this is deemed beyond the scope
of this study. At least, the results of this study are encouraging and sug-
gesting that UKF can become an effective and robust method to assimilate
observations into low‐dimensional models.

4.2. Behaviors of Updated Model Output and Model State

Figure 6 shows the updated outputs of four typical flood events. Both filters have increased the performance
of the outputs by updating the model state.

We further analyze the updated states and outputs based on the flood event from 1 August 2006, 01:00:00 to 8
August 2006, 01:00:00 (the flood event located in the bottom right of
Figure 6). Figure 7 shows the trajectories of updated states for the flood
event. For clarity, in Figure 7, we only show the mean of the ensemble
members rather than all the ensemble members.

As expected, both UKF and EnKF can significantly improve the perfor-
mance of outputs when the original model performance without updating
is not satisfactory. The original performance may be caused by a poor
initial condition in the model state.

Figure 7 shows that for both updated scenarios (UKF and EnKF), com-
pared with the trend of the original state (“NoUpdate”), the trends (beha-
viors) of hS and hQ have been adjusted significantly during the flood event
and are consistent with the corresponding trends of the updated model
output. To further analyze the model behaviors using UKF and EnKF,
we present the equations (Brauer, Torfs, et al., 2014)

dG ¼ f dVð Þ (35)

f QS ¼ f0 hQð Þ (36)

f GS ¼ f1 hS; dGð Þ (37)

dhs
dt

¼ f2 f QS þ f XS þ f GS
� �

(38)

Q ¼ f3 hSð Þ (39)

Figure 4. Forecast performance of UKF (“UKF_All,” “UKF_10%,” and
“UKF_25%”), the mean of the ensemble members of EnKF (“EnKF_All,”
“EnKF_10%,” and “EnKF_25%”), and WALRUS model without
updating (“NoUpdate_All,” “NoUpdate_10%,” and “NoUpdate_25%”)
measured by RMSE. It is assumed that the subsets of outputs corresponding
to the 10% highest observations and 25% highest observations result in the
sets suffixed by “_10%” and “_25%,” respectively. Also, all the outputs
result in the set suffixed by “_All.”

Figure 5. Forecast performance of UKF measured by MAE (“UKF_All,”
“UKF_10%,” and “UKF_25%”), the mean of the ensemble members of
EnKF measured by MAE (“EnKF_MAE_All,” “EnKF_MAE_10%,” and
“EnKF_MAE_25%”), the ensemble members of EnKF measured by CRPS
(“EnKF_CRPS_All,” “EnKF_ CRPS_10%,” and “EnKF_CRPS_25%”), and
WALRUS model without updating measured by MAE (“NoUpdate_All,”
“NoUpdate_10%,” and “NoUpdate_25%”).
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where dV represents the storage deficit, dG represents the groundwater depth, hQ represents the quickflow
reservoir level, fQS represents the quickflow, hS represents the surface water level, fGS represents the
groundwater drainage/surface water infiltration, fXS represents the external flow for surface water (not
included in this case), and Q represents the model output. For simplicity, the actual functions of
WALRUS model are represented by f, f0, f1, f2, and f3. The model parameters, inputs (e.g.,
precipitation), and outputs (e.g., actual evapotranspiration) are also omitted in these equations.
Equation 39 indicates the model output Q is a single function of hS, and hence it can be expected that
for each scenario (UKF, EnKF, or WALRUS), the trajectory of hS is almost identical with the trajectory
of Q. Note that time series fXS should be provided by the user (Brauer, Torfs, et al., 2014). In this study,
for simplicity, it is assumed to be zero. Therefore, it makes sense that the filters may attribute the effect
of the external flow to the other independent variables fQS and fGS (Equation 38). Together with
Equations 36 and 37, it can be expected that the filters will adjust all the state variables, while for all
the scenarios (WALRUS, UKF, and EnKF), the trends of dV and dG are similar. The reason for this is
that the groundwater depth dG tends to remain unchanged since the model structure determines that
dG does not respond quickly to rainfall (Brauer, Teuling, et al., 2014). Also, dG is not an independent
variable but tends to an equilibrium value of dV.Hence, both filters tend to change the trends of hS and
hQ during the flood event. This suggests that the updated behaviors can be affected by the model
structure. Therefore, UKF and EnKF have behaved in a similar manner.

Note that the observed discharge starts to increase before the precipitation appears. This inconsistency
between the precipitation and the observed discharge may be caused by the spatial distribution of precipita-
tion over the study area since we only use the precipitation data from the Twenthe station, which is located
in the east of Regge catchment. Considering the inconsistency in the observed data, both filters may have
steered the model states in a wrong direction, though satisfactory performance has been obtained by both
approaches.

4.3. Effect of Increasing Ensemble Members of EnKF on Forecast Performance

Figure 8 displays the performance of EnKF with different numbers of ensemble members as measured by
RMSE (1 year run from 2000 to 2001).

Figure 6. Updated discharge of four typical flood events at the catchment outlet obtained by EnKF and UKF:
“NoUpdate” and “Obs” represent the outputs of the WALRUS model and the observed discharge, respectively.
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As expected, there is a slight decrease in RMSE when increasing the size of ensemble members from 9 to 18,
indicating an increase in the forecast performance. However, it can also be observed that the performance of
EnKF with even more ensemble members (i.e., 36 ensemble members and 72 ensemble members) is almost
the same as the performance of EnKF using 18 ensemble members. This observation indicates that an
increase in the size of the ensemble members does not necessarily mean a further improvement in the per-
formance. A preliminary analysis of other studies shows similar results about the relationship between the
size of ensemble members used by EnKF and the performance (Gillijns et al., 2006; Rakovec et al., 2015).

5. Conclusions

In this study, the UKF and the EnKF are employed to improve the forecast skill of a lowland conceptual
hydrologic model by state estimation. In the context of hydrological mod-
eling, EnKF is a widely used data assimilation technique, while UKF has
received little attention. Both filters were tested with a reforecast experi-
ment in an operational context using an hourly time step. In this study,
we first operated EnKF and UKF with nine ensemble members for
10 years reforecast period using perfect rainfall. The results show that
both UKF and EnKF can improve the forecast performance significantly
for all the lead times. With the same number of ensemble members,
UKF has achieved better performance. The analysis of a flood event
selected from the experiment period shows that both UKF and EnKF
adjust the model state in similar behavior to react to flow processes.

When using EnKF, onemust be concerned with the fact that the ensemble
size can influence the performance of the filter. Hence, we also investi-
gated the performance of EnKF with more ensemble members (18 ensem-
ble members, 36 ensemble members, and 72 ensemble members). The
results show that an increase in the size of the ensemble members does
not necessarily mean a significant increase in the performance. Hence,
it is necessary to consider the tradeoff between the performance and the
computational cost. The results of this study suggest that UKF can be an
effective and useful method to assimilate the observed discharge into

Figure 7. Updated state variables (hS, hQ, hS, and dV, see Table 1) for the flood event from 1 August 2006, 01:00:00
to 8 August 2006, 01:00:00.

Figure 8. Forecast performance of UKF and EnKF with different sizes of
ensemble members measured by RMSE (all data): It is assumed that the
subsets of EnKF using m ensemble members result in sets suffixed by
“_Ensm” (i.e., “EnKF_Ens9” represents the results using nine ensemble
members).
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low‐dimensional models in the context of operational flood forecasting. Note that UKF is designed to handle
low‐dimension problems. Therefore, one may still prefer to use EnKF when the dimension of the system is
higher.

It is worth noting that uncertainty may stem from several sources, such as model structure, model para-
meters, model states, and initial conditions (Clark & Vrugt, 2006; Kuczera et al., 2006; Sun, Bao, Jiang, Ji,
et al., 2018). However, in this study, we only update the model state, indicating all the uncertainties are
attributed to state uncertainty, whichmay result in model states being twisted but a satisfactory performance
from the perspective of the model residual (Sun, Bao, Jiang, Si, et al., 2018). Therefore, future work is needed
to take other uncertainties into account, such as extending the state estimation to the joint state parameter
estimation, which considers the uncertainties of model state andmodel parameters simultaneously. Another
limitation of this study is the relatively simple noise specification strategies for both filters, especially for
UKF; the measurement noise and the process noise are set to constant values empirically. Hence, more
investigations on the strategies for noise specification and their effects on forecast accuracy deserve more
attention in future studies.

Data Availability Statement

All data used in this paper are available online, and the link to download the data is as follows: https://
data.4tu.nl/repository/uuid:dfe80f20-2031-4d0c-a7f5-82a840248c20.
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