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Abstract. Streamflow regimes are changing and expected to
further change under the influence of climate change, with
potential impacts on flow variability and the seasonality of
extremes. However, not all types of regimes are going to
change in the same way. Climate change impact assessments
can therefore benefit from identifying classes of catchments
with similar streamflow regimes. Traditional catchment clas-
sification approaches have focused on specific meteorolog-
ical and/or streamflow indices, usually neglecting the tem-
poral information stored in the data. The aim of this study
is 2-fold: (1) develop a catchment classification scheme that
enables incorporation of such temporal information and (2)
use the scheme to evaluate changes in future flow regimes.

We use the developed classification scheme, which relies
on a functional data representation, to cluster a large set of
catchments in the conterminous United States (CONUS) ac-
cording to their mean annual hydrographs. We identify five
regime classes that summarize the behavior of catchments in
the CONUS: (1) intermittent regime, (2) weak winter regime,
(3) strong winter regime, (4) New Year’s regime, and (5)
melt regime. Our results show that these spatially contigu-
ous classes are not only similar in terms of their regimes, but
also their flood and drought behavior as well as their phys-
iographical and meteorological characteristics. We therefore
deem the functional regime classes valuable for a number
of applications going beyond change assessments, including
model validation studies or predictions of streamflow char-
acteristics in ungauged basins.

To assess future regime changes, we use simulated
discharge time series obtained from the Variable Infiltration

Capacity hydrologic model driven with meteorological
time series generated by five general circulation models. A
comparison of the future regime classes derived from these
simulations with current classes shows that robust regime
changes are expected only for currently melt-influenced
regions in the Rocky Mountains. These changes in moun-
tainous, upstream regions may require adaption of water
management strategies to ensure sufficient water supply in
dependent downstream regions.

Highlights.

1. Functional data clustering enables formation of clusters
of catchments with similar hydrological regimes and a
similar drought and flood behavior.

2. We identify five streamflow regime clusters: (1) inter-
mittent regime, (2) weak winter regime, (3) strong win-
ter regime, (4) New Year’s regime, and (5) melt regime.

3. Future regime changes are most pronounced for cur-
rently melt-dominated regimes in the Rocky Mountains.

4. Functional regime clusters have widespread utility for
predictions in ungauged basins and hydroclimate analy-
ses.
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1 Introduction

The characteristics of streamflow regimes, as here described
by mean annual hydrographs, include streamflow variability
and seasonality and influence the hydrological functioning
of a catchment. Such regimes are undergoing changes and
expected to further change under future climate conditions
(Addor et al., 2014; Arnell, 1999; Brunner et al., 2019b; Hor-
ton et al., 2006; Laghari et al., 2012; Leng et al., 2016; Mi-
lano et al., 2015). Regime changes are caused by changes
in precipitation seasonality and intensity (Brönnimann et al.,
2018) and seasonal shifts and decreases in melt contributions
(Stewart et al., 2005; Farinotti et al., 2016; Jenicek et al.,
2018) related to reduced snow and glacier storage (Benis-
ton et al., 2018; Mote et al., 2005, 2018). Predicted regime
changes are relatively robust (Addor et al., 2014) compared
to changes in high and low flows, which are highly uncertain
(Brunner et al., 2019c; Madsen et al., 2014) because of di-
verse uncertainty sources introduced in various steps along
the modeling chain (Clark et al., 2016). It has been shown
that future regime changes can be linked to changes in flood
and drought characteristics, e.g., the seasonality and magni-
tude of floods (Middelkoop et al., 2001) or the duration of
droughts (Brunner and Tallaksen, 2019). Quantifying hydro-
logical regime changes can assist in inferring changes in ex-
tremes and is crucial for adapting water management prac-
tices (Clarvis et al., 2014).

We can improve our understanding of regime changes by
employing regime classification in climate change impact as-
sessments (Coopersmith et al., 2014). Most existing (regime)
clustering approaches focus on a set of indices either refer-
ring to certain physiographical or climatological catchment
characteristics (Berghuijs et al., 2014; Knoben et al., 2018;
Wolock et al., 2004), specific streamflow indices (Archfield
et al., 2014; Bower et al., 2004; Haines et al., 1988; Mc-
Cabe and Wolock, 2014), or a mixture of the two (Coop-
ersmith et al., 2012; Kuentz et al., 2017; McManamay and
Derolph, 2019; Sawicz et al., 2011; Sharghi et al., 2018; Wa-
gener et al., 2007). The use of catchment characteristics is
not always beneficial as certain streamflow indices do not
show clear links to these characteristics (Ali et al., 2012;
Addor et al., 2018; Oudin et al., 2010). One may therefore
prefer to work with streamflow indices directly when identi-
fying catchment classes with a similar streamflow behavior.
However, the use of streamflow indices requires the subjec-
tive choice of streamflow indices which may not fully cap-
ture the catchment behavior. Both the catchment and cli-
mate characteristics and the streamflow index approaches ne-
glect nearly all available temporal information embedded in
a streamflow time series or regime in the form of temporal
(auto)correlation. While some of the index-based approaches
have considered indices related to streamflow timing and sea-
sonality (Bower et al., 2004; Haines et al., 1988; McCabe
and Wolock, 2014), only very few studies have tried to ex-
plicitly take account of temporal streamflow information in

clustering hydrological catchments, e.g., by using the shape
of the autocorrelation function as an index (Toth, 2013), even
though such information is potentially very useful. We here
explore how we can make better use of the seasonal and tem-
poral information stored in the hydrological regime using a
functional data representation going beyond considering a set
of indices.

In contrast to classical multivariate data, functional data
are continuously defined (Ramsay and Silverman, 2002).
Functional data analysis represents each hydrological regime
as a function and therefore circumvents the choice of indi-
vidual hydrograph characteristics, which enables exploita-
tion of the full information stored in the time series or an-
nual hydrograph when clustering catchments (Chebana et al.,
2012; Ternynck et al., 2016). The functional form of the data
is derived from discrete observations (Ramsay and Silver-
man, 2002) either by smoothing the data non-parametrically
(Jacques and Preda, 2014) or by projecting the data onto
a set of basis functions. The basis function (e.g., B-spline,
Fourier, or wavelet bases) coefficients can be used for clus-
tering (Cuevas, 2014). It has been shown in previous studies
that functional data representations can be beneficial to iden-
tify groups of similar hydrographs over a range of tempo-
ral scales, such as spring flood events (duration of 6 months;
Ternynck et al., 2016), flood events (duration of several days;
Brunner et al., 2018), low-flow events (Laaha et al., 2017),
diurnal discharges (duration of 1 d; Hannah et al., 2000), and
yearly hydrographs (Merleau et al., 2007; Jamaludin, 2016).

These previous studies focused on a limited number of sta-
tions and on current climate conditions. The goals of this
study are therefore 2-fold: (1) to develop a catchment clas-
sification scheme for streamflow regimes useful in climate
change impact assessments and (2) to use this scheme to eval-
uate changes in future flow regimes.

We develop the catchment classification scheme for a large
dataset of 671 catchments over the United States (Newman
et al., 2015; Addor et al., 2017) using a functional representa-
tion of mean annual hydrographs. This scheme makes better
use of the seasonal and temporal information stored in the hy-
drological regime than index-based approaches and is solely
based on streamflow information (i.e., no climatological in-
formation is used). However, it neither considers streamflow
patterns at short, event-timescales such as flashiness nor at
timescales longer than a year such as interannual variability.

In order to assess future regime changes, we use stream-
flow time series simulated with the hydrological Variable
Infiltration Capacity (VIC) model driven by meteorological
data derived from five general circulation models (GCMs)
under a high-emission scenario. We compare current and fu-
ture regime-class memberships to identify catchments with
future regime changes. Such change assessments are of
paramount importance in preparing for future water manage-
ment strategies because future regime shifts can influence the
variability and timing of high and low flows.
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2 Data and methods

2.1 Data

We form regime clusters, i.e., clusters of catchments with
similar mean annual hydrographs, using observed stream-
flow data of 671 catchments in the conterminous United
States (CONUS) (Newman et al., 2015). The catchments be-
long to the HCDN-2009 network (Lins, 2012), which con-
sists of a set of stations deemed suitable for analyzing hy-
drologic variations and trends in a climatic context, as flow
conditions are undisturbed by artificial diversions and stor-
age and show less than 5 % imperviousness as measured by
the National Land Cover Database (Jin et al., 2013). The data
were downloaded for the period 1981–2018 from the USGS
website (https://waterdata.usgs.gov/nwis, last access: 15 Au-
gust 2019) (R package dataRetrieval; De Cicco et al., 2018),
as data for this period were available for most stations in the
dataset. In contrast, the regime change analysis uses stream-
flow simulated by the hydrological VIC model for a subset
of 605 catchments, for which reliable data on catchment area
were available at the time the simulations were produced
(Melsen et al., 2018). Kling–Gupta efficiencies obtained over
these basins with the VIC model varied from a first quartile
of 0.47, a median of 0.6, and a third quartile of 0.71, with
the lowest values obtained in the Great Plains. Physiograph-
ical and meteorological characteristics for these catchments
are available via the Catchment Attributes and MEteorology
for Large-sample Studies dataset (CAMELS) (Addor et al.,
2017).

2.2 Regime clustering and classification

Hydrological regime clusters are derived using functional
data analysis of the observed hydrological regimes of the 671
catchments (Fig. 1. In the functional data framework, each
hydrological regime is considered to be a function (Ram-
say and Silverman, 2002). To achieve such a functional data
representation, we project the discrete observations, i.e., the
mean annual hydrographs at daily resolution, to a set of B-
spline basis functions (R package fda; Ramsay et al., 2014)
(see illustration in Fig. 1a1–c1) because B splines are able
to mimic the main characteristics of hydrological regimes
(Brunner et al., 2018). A (smoothing) spline function is de-
fined by its order of polynomial segments and its number
and placement of knots. The number of knots determines
the ability of spline functions to represent sharp features in a
curve and the knots can be placed such that they are denser
in areas with stronger variations than in smooth areas (Höl-
lig and Hörner, 2013). We here use five spline basis func-
tions of order 4, which corresponds to a minimal number
of basis functions which still allows for flexibility in rep-
resenting diverse shapes of regimes. The suitability of five
spline basis functions is confirmed by the overall silhouette
width, which is for more spline basis functions (6 to 10)

lower than or very similar to one for the five basis functions.
The projection of the observed regimes to the five basis func-
tions results in five coefficients per observed regime, one per
spline base. The analysis is performed in R using the pack-
ages fda.usc (Febrero-Bande and Oviedo de la Fuente, 2012)
and fda (Ramsay et al., 2014) and the following functions: (1)
converting regimes to functional data objects: fdata, (2) cre-
ating B-spline basis functions: create.bspline.basis, and (3)
computing spline coefficients for all regimes: Data2fd.

The clustering into regime classes is performed using R
package stats (R Core Team, 2019). A Euclidean distance
matrix is computed using the matrix of n= 671× 5 spline
coefficients (Fig. 1a2–b2) (dist). We use a hierarchical clus-
tering algorithm (hclust) allowing for non-elliptical clusters
(Gordon, 1999) with Ward’s minimum variance criterion,
which minimizes the total within-cluster variance (Ward,
1963). To identify an optimal number of clusters, we cut the
tree at k = 2, . . .,30 clusters (cutree) and compute the mean
silhouette width (Rousseeuw, 1987), which provides a mea-
sure of clustering validity, for the different numbers of clus-
ters. We finally determine five regime clusters because the
mean silhouette width values stabilize at five clusters. A com-
parison with regime clusters derived by k-means clustering
shows that the final clusters formed are relatively stable in-
dependent of the choice of the clustering technique. Each of
the clusters can be summarized by its median regime iden-
tified using the h-mode depth, which allows for ordering of
the regimes within a cluster (Cuevas et al., 2007).

To assess whether the similarities of the catchments within
a cluster go beyond their regime type, we compare their phys-
iographical (latitude, area, elevation), climatological (mean
precipitation, fraction of snow, aridity), and flood and stream-
flow drought characteristics. The flood and drought char-
acteristics are determined using a peak-over-threshold ap-
proach (Lang et al., 1999) and a threshold-level approach
(Yevjevich, 1967), respectively. The flood threshold is fixed
at the 25th percentile of the annual maximum time series of
each catchment separately to guarantee a balanced number
of extracted events across catchments (Schlef et al., 2019).
The drought threshold is fixed at the highest value of the an-
nual minimum time series and the time series smoothed over
a window of 30 years to limit the extraction of dependent
events (Brunner et al., 2019d; Tallaksen and Hisdal, 1997).

To further investigate the physiographical and climato-
logical controls on regime-class membership and to check
whether regime classes can potentially be predicted for un-
gauged catchments, we perform a random forest classifica-
tion (Breiman, 2001; Harrell, 2015; James et al., 2013). We
fit the model to 33 non-hydrological catchment characteris-
tics in the CAMELS dataset (Addor et al., 2017), i.e., topo-
graphical, soil, geological, and climatological characteristics,
excluding gauge IDs and characteristics with missing values
(second most common geologic class in the catchment and
subsurface porosity), to predict regime-class membership (R
package randomForest; Liaw and Wiener, 2002). The related
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Figure 1. Functional data (FDA) clustering procedure: (1) FDA representation of regimes by projecting (a) discrete observations to (b) a set
of spline bases to derive a (c) functional representation of the hydrological regimes. (2) FDA clustering by computing (a) a distance matrix
using the spline coefficients from Step 1 in a (b) hierarchical clustering procedure.

analysis of estimated variable importance allows for iden-
tification of factors important in determining regime-class
membership, which is useful for ungauged basins where the
regime class cannot be determined based on discharge obser-
vations.

2.3 Model simulations

For the regime change analysis, we use daily streamflow time
series simulated by Melsen et al. (2018) in a model inter-
comparison project. They ran the Hydrologiska Byråns Vat-
tenbalansavdelning model (HBV; Bergström, 1976), the VIC
model (Liang et al., 1994), and the Sacramento Soil Moisture
Accounting model (SAC-SMA) combined with SNOW–17
(Newman et al., 2015) for 605 catchments in the CAMELS
dataset for a period representing current (1985–2008) and fu-
ture climate conditions (2070–2100). Each of these models
was run with a large number of parameter sets sampled us-
ing Sobol-based Latin hypercube sampling (Bratley and Fox,
1988) and forced with daily observed meteorological vari-
ables for the current period (Daymet; Thornton et al., 2012).
The performance of each of the sampled parameter sets was
evaluated by comparing the model simulations with observed
discharge data over a 23 year period (1985–2008) (USGS,
2019) using the Kling–Gupta efficiency metric (Gupta et al.,

2009) defined as

EKG(Q)= 1−
√
(ρ− 1)2+ (α− 1)2+ (β − 1)2, (1)

where ρ is the correlation between observed and simulated
runoff, α is the standard deviation of the simulated runoff
divided by the standard deviation of observed runoff, and β
is the mean of the simulated runoff, divided by the mean of
the observed runoff.

Here we focus on the VIC model and those model runs
derived using the parameter set resulting in the best model
performance in terms of EKG. EKG values over all stations
ranged from a first quartile of 0.47 over a median of 0.60 to a
third quartile of 0.71, with the lowest values obtained in the
Great Plains.

Melsen et al. (2018) forced the VIC model with daily
output from GCMs, which was statistically downscaled us-
ing the bias-correction and spatial disaggregation (BCSD)
method of Wood et al. (2004) for both the current and fu-
ture periods (Department of the Interior, Bureau of Reclama-
tion, Technical Services Center, 2013). They used the output
of five different climate models from the Coupled Model In-
tercomparison Project Phase 5 (CMIP5; Taylor et al., 2012),
including CCSM4 (ccsm), CNRM-CM5 (cnrm), INM-CM4
(inmcm), IPSL-CM5A-MR (ipsl), and MPI-ESM-MR (mpi),
and Representative Concentration Pathway 8.5 (RCP8.5;
Moss et al., 2010) representing a high-emission scenario.

Hydrol. Earth Syst. Sci., 24, 3951–3966, 2020 https://doi.org/10.5194/hess-24-3951-2020
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We here use three types of model runs: a control run,
where the hydrological model is forced with the observed
Daymet meteorology (1985–2008); five reference runs, one
per GCM, where the hydrological model is forced with the
simulated meteorology for current conditions (1985–2008);
and five future runs, where the hydrological model is forced
with simulated meteorology for the future period (2070–
2100). We refer to the regimes derived from the control run
as the control regimes, those regimes derived from the refer-
ence simulations as the reference regimes, and those regimes
derived from the future runs as future regimes.

2.4 Evaluation of simulated regimes

To determine the suitability of the VIC model for represent-
ing regime changes, we extend the model evaluation from the
Kling–Gupta efficiency EKG (Eq. 1), which provides an inte-
grative measure of model performance, to a climate sensitiv-
ity analysis performed on the control run and a comparison of
observed and simulated regime classes performed on the con-
trol and reference runs. In the climate sensitivity analysis, we
assess whether the hydrological model reacts to changes in
mean temperature and precipitation in the same way as obser-
vations. In terms of precipitation, this corresponds to check-
ing whether the model captures the resistance of a catchment,
i.e., the degree to which runoff is coupled with precipitation
(Carey et al., 2010). To do so, we follow a technique pre-
sented in Wood et al. (2004) that involves creating many sam-
ples of modeled and observed climate and streamflow and as-
sessing sensitivities from the mean behavior of each sample.
The multi-year samples help to average out the confound-
ing effects of other influences, such as the initial catchment
moisture in individual years. Accordingly, we generate new
temperature, precipitation, and streamflow time series by re-
sampling the available hydrological years with replacement
(n= 5000 times). We compute mean temperature, precipita-
tion, and streamflow for the resampled time series to derive
a relationship between mean streamflow and the two meteo-
rological variables. Conducting this experiment for both ob-
served and simulated time series supports analysis of whether
the simulated streamflow time series react to changes in mean
annual climate in the same way as observed time series.

To assess the ability of the VIC model to simulate the
observed regime class, we compare observed to simulated
regime classes for the control and reference runs. To as-
sign simulated regimes to one of the five classes, we fit a
second classification model using a random forest, which
enables classification of a given mean annual hydrograph
into one of the five regime classes using its B-spline co-
efficients. This analysis is different from the first random
forest analysis, which was aimed at identifying catchment
and climate characteristics determining class membership.
We use 10-fold cross-validation (Hastie et al., 2008) to eval-
uate the capability of the classification model to correctly
predict observed regime classes. The cross-validation shows

that the regime-class prediction error is only 2 % and that the
model can be used to predict class memberships of simulated
regimes accurately. We compare the observed regime classes
to the regime classes predicted with the random forest model
for the simulated control regimes. This comparison shows
that the VIC model is very capable of simulating hydrolog-
ical regimes with a correct regime prediction in more than
95 % of the catchments. The prediction error roughly dou-
bles when using the reference instead of the control regimes,
indicating that additional uncertainty is introduced by using
the GCM simulations as meteorological forcing.

2.5 Future regimes

We use the hydrological model simulations to assess regional
changes in regime-class memberships. To do so, we predict
the regime classes for the five reference regimes (one per
GCM) and the corresponding future regimes using the ran-
dom forest classification model. We then compare the pre-
dicted future classes to the class of the corresponding ref-
erence simulation using a contingency table of counts. We
look at the (dis)agreement of predicted regime changes for
the five GCMs and evaluate whether and where most models
agree on regime change.

3 Results

3.1 Hydrological regime clusters

Based on the functional data clustering, the hydrological
regimes of the 671 catchments in the CAMELS dataset are
divided into five clusters, resulting in five mostly spatially
contiguous regions of catchments with similar annual hydro-
graphs (Fig. 2).

1. The first cluster, which we here call the intermittent
regime cluster, comprises regimes with a very weak sea-
sonality, dominated by the occurrence of short precip-
itation events related to thunderstorms or fronts. The
catchments belonging to this region mostly lie in the
Great Plains, the Great Basin, and the Plateau region
(158 catchments).

2. The second cluster, here referred to as the weak winter
regime, comprises regimes showing a weak seasonality
with slightly more discharge in winter and spring than
in summer and fall. The catchments belonging to this
cluster lie in the Coastal Plain, the Great Lakes region,
and parts of the Prairie region (127 catchments).

3. The third cluster, i.e., the strong winter regime, is sim-
ilar to the previous regime type with higher winter and
spring discharge compared to summer and fall but a
slightly more expressed seasonality. The catchments in
this cluster mostly belong to the Appalachian region
(206 catchments).

https://doi.org/10.5194/hess-24-3951-2020 Hydrol. Earth Syst. Sci., 24, 3951–3966, 2020
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Figure 2. Map of regime clusters and the regimes of the catchments belonging to the five clusters: (1) intermittent regime, (2) weak winter
regime, (3) strong winter regime, (4) New Year’s regime, and (5) melt regime. Regimes of individual catchments are colored according to
their cluster membership, and the median hydrograph per cluster is given in black.

4. The catchments in the fourth cluster, which we call the
New Year’s regime, have a very strong seasonality with
high discharge in winter in general and around New
Year in particular but low discharge in summer. Catch-
ments in this region are located in the Pacific Northwest
(57 catchments).

5. The fifth cluster comprises regimes that are snowmelt-
dominated and show high discharge in spring and sum-
mer vs. low discharge in winter and fall. The catchments
belonging to this melt regime are located in the Rocky
Mountains (57 catchments).

The regime classes are provided for the 671 catchments
in the CAMELS dataset via HydroShare (Brunner, 2020):
https://doi.org/10.4211/hs.069f552f96ef4e638f4bec281c5016ad.

The catchments in the five regime clusters are similar not
only in terms of their regimes, according to which the clus-
ters were formed, but also in terms of their physiographical,
climatological, and flood and drought characteristics (Fig. 3).

Catchments with an intermittent regime are comparably
large, receive only small precipitation amounts, and are dry.
Floods occur mainly in spring and summer, while droughts
occur in fall and winter. Flood magnitudes are comparably
small, while droughts are longer than droughts of catchments
belonging to other regime clusters. Catchments with a weak
winter regime lie at low elevations, and only a small fraction

of total discharge is contributed by snow. These catchments
show flood occurrence in winter and spring and droughts in
fall. Catchments with a strong winter regime lie at relatively
low elevations and receive a medium amount of precipita-
tion. Floods occur in winter and droughts in fall. Compared
to catchments with a weak winter regime, catchments with
a strong winter regime lie at higher elevations, show higher
fractions of snow, and are characterized by larger flood mag-
nitudes. Catchments with a New Year’s regime lie at high lat-
itudes and receive a lot of precipitation. Floods occur around
New Year and droughts in late fall. Flood magnitudes are
very pronounced. Catchments with a melt-dominated regime
lie at high elevations, and a large part of their discharge is
meltwater. Floods in these catchments occur in spring and
early summer due to melt processes, and droughts occur in
the winter months due to snow accumulation.

The random forest classification model fitted to the regime
clusters and a variety of physiographical and climatologi-
cal catchment characteristics allows for reliable predictions
of the correct regime class (prediction error 10 %) based on
catchment characteristics only. The related variable impor-
tance analysis shows that the most important variables for
predicting regime classes are climatological characteristics,
including mean precipitation and aridity. Important physio-
graphical predictors include the longitude and latitude of the
gauge location and catchment mean slope and elevation. Ex-

Hydrol. Earth Syst. Sci., 24, 3951–3966, 2020 https://doi.org/10.5194/hess-24-3951-2020

https://doi.org/10.4211/hs.069f552f96ef4e638f4bec281c5016ad


M. I. Brunner et al.: Regime classification and changes 3957

Figure 3. Catchment (a–f), flood (g–i), and drought characteristics (j–l) of the catchments belonging to the five regimes: intermittent,
weak winter, strong winter, New Year’s, and melt. Characteristics (a–f) were derived from the CAMELS dataset, the flood and drought
characteristics using a peak-over-threshold or threshold-level approach, respectively. SD: standard deviation. The black lines in the boxplot
indicate the median and the upper and lower whiskers correspond to 1.5×RIQ, where RIQ is the inter-quartile range. Outliers are not
displayed.

cluding these physiographical explanatory variables from the
random forest model results in only a small decrease in pre-
diction performance (prediction error 12 %).

3.2 Model validation

Before simulations are used to investigate changes in stream-
flow regimes, we tested whether climate sensitivity is realis-
tically mimicked by the applied model. The simulated time
series show a similar reaction of mean discharge to changes
in mean temperature and precipitation to that of the observed
series (Fig. 4).

Higher mean precipitation leads to higher mean discharge
independent of the catchment and regime. The reaction of
streamflow to temperature, however, seems to depend on
the catchment because the relationship between mean tem-
perature and mean discharge is generally weak and can be
positive or negative. Based on a visual analysis, the realis-
tic simulation of climate sensitivities of mean discharge by

the VIC model make it a suitable choice for climate impact
assessments of regimes. A quantitative comparison of gra-
dients in these response surfaces over all catchments con-
firms that the observed and modeled temperature sensitiv-
ities are weak, while precipitation sensitivities are similar
(the Kolmogorov–Smirnov test does not reject the null hy-
pothesis that observed and simulated gradients were drawn
from the same continuous distribution at level of significance
α = 0.05). The sensitivity gradients are computed on the re-
sponse surface of each catchment in the horizontal direction
for temperature and in the vertical direction for precipitation.

The VIC model is also able to simulate regimes match-
ing the observed regime classes. The classes of the simu-
lated control regimes predicted using the random forest clas-
sification model match the observed regime classes in more
than 95 % of the catchments (prediction error < 5 %). The
regime-class prediction error almost doubles for the refer-
ence regimes (prediction error 8–10 %) but still allows for
the simulation of the correct regime class in more than 90 %

https://doi.org/10.5194/hess-24-3951-2020 Hydrol. Earth Syst. Sci., 24, 3951–3966, 2020
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Figure 4. Climate sensitivity analysis for observations (i) and simulations (ii): dependence of mean discharge (Q) on precipitation (P )
and temperature (T ) for five example catchments, one per regime class: (a) intermittent regime: Cowhouse Creek at Pidcoke, TX (USGS
08101000); (b) weak winter regime: Potecasi Creek near Union, NC (USGS, 02053200); (c) strong winter regime: Otselic River at Cincin-
natus, NY (USGS 01510000); (d) New Year’s regime: Tucca Creek near Blaine, OR (USGS 14303200); and (e) melt regime: South Fork
Shoshone River near Valley, WY (USGS 06280300).

of the catchments. The good match of simulated control and
reference regimes with the observed regimes is illustrated in
Fig. 5b–e for the example catchments with weak and strong
winter regimes, a New Year’s regime, and a melt regime. In
contrast, the regime of the example catchment with an inter-
mittent regime is poorly simulated (Fig. 5a).

The results of our model evaluation show that the VIC
model performs well in simulating the correct regime types
when forced with observed meteorological data and in sim-
ulating changes in mean discharge as a response to changes
in mean temperature and precipitation. However, simulating
the observed regime classes becomes more difficult when
forcing the model with simulated meteorological data gen-
erated by GCMs, in particular in certain areas in the Mid-
west, in the Pacific Northwest, and in a few catchments in the
Rocky Mountains and Florida. Over all catchments, regimes
of catchments with a weak winter regime and an intermittent
regime, i.e., regimes with a weak seasonality, are not well
reproduced in GCM-forced simulations (Fig. 6, left bars). In
contrast, regimes with a strong seasonality, such as the strong
winter, New Year’s, and melt regimes, are well simulated.

These results highlight that model performance depends on
regime type.

3.3 Future regimes

Our results show that streamflow regimes may be subject
to future changes. This is illustrated by the regime shift of
the catchment with a melt regime in Fig. 5e. However, these
regime shifts do not affect all catchments and are to some ex-
tent dependent on the GCM and regime considered (Fig. 6).
Only a few regime changes are expected for catchments
with currently intermittent, strong winter, and New Year’s
regimes. Moderate regime changes are predicted for catch-
ments with a currently weak winter regime; however, simu-
lation error is quite large for this type of regime. The biggest
changes are predicted for currently melt-dominated regimes,
while catchments with current New Year’s regimes hardly
change. Currently intermittent regimes are mostly changing
to weak winter regimes, currently weak winter regimes to in-
termittent or strong winter regimes, and currently strong win-
ter regimes to weak winter or New Year’s regimes, regime
types relatively close to their current regime. In contrast,
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Figure 5. Comparison of observed (black) and simulated control regimes (observed meteorology; grey) with simulated reference (1981–
2008; blue) and future regimes (2070–2100; red) derived from the five GCMs for the five example catchments, one per regime type: (a)
intermittent regime: Cowhouse Creek at Pidcoke, TX (USGS 08101000); (b) weak winter regime: Potecasi Creek near Union, NC (USGS,
02053200); (c) strong winter regime: Otselic River at Cincinnatus, NY (USGS 01510000); (d) New Year’s regime: Tucca Creek near Blaine,
OR (USGS 14303200); and (e) melt regime: South Fork Shoshone River near Valley, WY (USGS 06280300).

melt regimes can change into any type of regime, depending
on the local climate. Catchments without predicted regime
changes may still undergo changes in individual streamflow
characteristics such as variability or low and high flows.

Geographically, regime changes are expected according to
most GCMs in the Rocky and Appalachian Mountains and to
a lesser degree in the Pacific Northwest and the Midwest. In
contrast, regimes of catchments in the Great Plains are pre-
dicted to be mostly unaffected by changes. These results are
summarized in Fig. 7a, where all catchments with at least
one GCM predicting future regime changes are colored ac-
cording to their current regime type. Even if all GCMs agree

on changes, they may not agree on the direction of change
(Fig. 7b). Catchments where models agree on both changes
and their direction are mostly located in the Rocky Moun-
tains. The currently melt-dominated regimes are expected to
change to regimes with less discharge in summer and more
discharge in winter. In all other regions, at least one model
deviates from the majority regime prediction, and the direc-
tion of change is less clear.
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Figure 6. Current regime simulation error and future predicted regime changes for the five regimes, (1) intermittent, (2) weak winter regime,
(3) strong winter regime, (4) New Year’s regime, and (5) melt regime, and the five GCMs, (a) ccsm, (b) cnrm, (c) inmcm, (d) ipsl, and
(e) mpi. The number of catchments where the reference simulations result in the observed regime class and a wrong regime class are given
in black and grey, respectively. The number of catchments with no predicted regime changes is given in black; the direction of change for the
catchments with predicted changes is indicated by the respective regime color.

4 Discussion

4.1 Hydrological regime clusters

We find functional data clustering to be a useful tool for iden-
tifying clusters of catchments with not only similar stream-
flow regimes, but also similar catchment, meteorological,
flood, and drought characteristics. This similarity corrob-
orates findings by Bower et al. (2004) and McCabe and
Wolock (2014), who established a clear link between sim-
ilarity in streamflow seasonality and climatic and physical
similarity. However, it is in contrast to findings by Ali et al.
(2012), who found that catchments similar with respect to
a set of flow indices are not necessarily physically similar.
Explicitly including seasonality or information in the tempo-
ral autocorrelation of regimes may therefore help to identify
clusters of catchments which are not only hydrologically but
also physically similar.

The five regime clusters are mostly spatially contiguous
and show similarities to the four catchment clusters built
by McManamay and Derolph (2019), who used 110 differ-

ent hydrological characteristics in their clustering procedure.
Our approach circumvents computing and selecting (a large
number of) streamflow characteristics by applying the clus-
tering procedure on a functional representation of the mean
annual hydrographs directly. The five regime clusters identi-
fied also show spatial similarities to the 10 catchment clusters
formed by Jehn et al. (2020) for the same set of catchments
using a small set of hydrological streamflow characteristics.
However, our clustering scheme results in larger clusters than
the ones seen in Jehn et al. (2020). Similarly to Jehn et al.
(2020) and Yaeger et al. (2012), we find that meteorological
characteristics in general and mean precipitation and arid-
ity in particular are stronger predictors of hydrological class
membership than physiographical catchment characteristics.
However, we also find that catchment mean slope, elevation,
and location help to explain regime-class membership. The
relationship of class membership with physiographical char-
acteristics may be weaker than the one with climatic char-
acteristics as the clusters are formed using the mean an-
nual hydrographs whose seasonality is strongly influenced
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Figure 7. (a) Current regimes and agreement of models regarding regime changes. Catchments colored according to their observed regime
show catchments where at least one out of the five GCMs predicts a regime class change. The size of the dot indicates the strength of model
agreement. (b) Future regimes and agreement of models regarding the direction of change. The size of the dot indicates agreement on change,
the color of the dot the agreement on direction of change. All GCMs predict the same change in colored catchments; GCMs disagree on
the direction of change in grey catchments, where the shading indicates the strength of agreement. Black catchments are either predicted to
experience no changes or their reference regime was incorrectly predicted by more than two GCMs.

by climate. The link to physiographical characteristics may
be stronger if streamflow characteristics at an event timescale
are considered.

The strong link between regime classes and meteorologi-
cal and physiographical catchment characteristics enables at-
tribution of ungauged catchments, where streamflow data are
not available, to one of the regime classes. This attribution
can be achieved by using the first random forest model fitted
in this analysis enabling predictions of regime-class mem-
bership using physiographical and climatological character-
istics. The ability to attribute an ungauged catchment to one
of the regime classes is potentially very useful for predicting
streamflow characteristics in ungauged basins.

The streamflow regime classes identified here do not com-
prise classes of catchments with major flow alterations as
the clustering was performed using streamflow regimes from
catchments with minimal human impact. The five classes
proposed here are therefore of limited use if a problem re-
quires inclusion of catchments with strong human flow al-
terations. A flow regime of a regulated stream may still be
attributed to one of the five regime classes identified if the
altered regime shows similarities to the flow seasonality and
variability of one of the “natural” classes. However, if flow
alteration leads to the emergence of regimes clearly distinct
from those observed under natural conditions, additional
regime classes would be necessary. In addition, the relation-
ships between catchment characteristics and class member-
ships would need to be revised to enable the assignment of
ungauged catchments to one of the classes in the updated set.

4.2 Model validation

The uncertainty introduced into the simulations by using
the GCM meteorology as shown by differences between the
downscaled and observed time series could have different
reasons. One potential reason for these differences is that
the observations used to fit the downscaling model are fairly
short. Another reason could be that the downscaling model
was fitted using a different dataset (Maurer et al., 2002) than
used to calibrate the hydrological model (Thornton et al.,
2012), highlighting that precipitation observations are sub-
ject to measurement errors.

4.3 Future changes

The future regime changes detected are relatively robust for
currently melt-influenced regimes, while they are not con-
sistent for the other regime types. The predicted changes in
melt-influenced regimes are in line with findings by Cooper-
smith et al. (2014), who found that snowpack has diminished
in the Rocky Mountains in the past, and are consistent with
future predicted increases in temperature (Vose et al., 2017)
and related decreases in snowpack (Easterling et al., 2017).
In contrast, predicted changes in precipitation are variable in
space and time (Easterling et al., 2017), which disables clear
change assessments for rainfall-dominated regimes. Simi-
larly, Milner et al. (2017) and Adam et al. (2009) found on a
global scale that warming is generally associated with reduc-
tions in glacier melt and losses of snowpack, respectively,
and therefore changes in streamflow seasonality. However,
Adam et al. (2009) also point out that catchments more sen-
sitive to changes in precipitation than temperature may show
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different change patterns. While our study focused on de-
tecting changes between existing regime classes, there might
emerge new regimes (Leng et al., 2016), which we have not
considered here.

The changes in melt-influenced towards more rainfall-
influenced regimes in the Rocky Mountains and the depen-
dence of flood and drought timing on the streamflow regime
allow us to think about the impacts of regime changes on
future extremes. A shift from a melt regime to one of the
rainfall-influenced regimes implies a shift of the flood and
drought seasons. Under a melt regime, floods mainly occur in
spring and early summer, when snowmelt and rain–snow in-
teractions enhance the flood signal. In contrast, droughts are
mainly observed in winter due to snow accumulation tem-
porarily storing water in the catchment. A decreased influ-
ence of snow therefore moves the flood season away from
spring/early summer into the season with the biggest precip-
itation input, which is often winter or spring. Analogously,
the drought season moves away from winter into summer and
fall, the seasons with the largest precipitation deficits. At the
same time, drought and flood magnitudes may also be im-
pacted; however, the direction of change is less clear there.
These expected changes in flood and drought timing and
magnitude have potential implications for the predictability
of extremes and the spatial coherence in flood and drought
occurrence.

5 Conclusions

The aim of this study was to (1) develop a flow regime clas-
sification scheme beneficial for climate impact assessments
and to (2) use this scheme to evaluate future regime changes.
We find that the functional clustering approach applied to
classify flow regimes is efficient because it uses the tempo-
ral information stored in hydrographs, thereby sidestepping
the need to compute a (large) set of streamflow indices and
enabling identification of contiguous regions with similar
streamflow regimes. We conclude that the regime behavior
of the 671 US catchments analyzed here can be summarized
by five streamflow regime classes: intermittent regime, weak
winter regime, strong winter regime, New Year’s regime,
and melt regime. These classes are similar not only in their
regimes, but also their physiographical and meteorological
characteristics as well as their extreme streamflow behavior,
including the timing and magnitude of droughts and floods.
Because of these similarities, we deem the regime classes de-
veloped in this study beneficial not only for climate impact
assessments, but also for model validation and development,
the improvement of predictions in ungauged basins, and es-
timation of hydrological model parameters.

Our change impact assessment shows that predicted
regime changes are robust in only very few catchments due
to model disagreement regarding change and its direction.
These GCM-introduced uncertainties demonstrate that pre-

dicted regime shifts should be evaluated carefully. Indepen-
dent of the climate model, however, there is a relatively ro-
bust change signal for currently melt-influenced regimes in
mountainous catchments even though models do not neces-
sarily agree on the direction of change. Such mountainous
catchments play an important role as water towers providing
essential freshwater resources to downstream regions (Im-
merzeel et al., 2020; Viviroli et al., 2007). Expected changes
in these mountainous regions, which are crucial for water
supply, point out the potential need for adaptations of water
management strategies. Water may need to be stored in reser-
voirs during winter in order to sustain current summer flows
in dependent downstream catchments (Brunner et al., 2019a).
A careful evaluation of future regime shifts and their uncer-
tainty can guide decision making on water management and
attempt to mitigate the negative impacts of climate change.

Data availability. The regime classes derived for
the 671 catchments in the CAMELS dataset
are provided via HydroShare (Brunner, 2020):
https://doi.org/10.4211/hs.069f552f96ef4e638f4bec281c5016ad.
The daily discharge time series used in this study are available
via the USGS website at https://waterdata.usgs.gov/nwis (USGS,
2019), and the CAMELS catchment attributes can be downloaded
via https://ral.ucar.edu/solutions/products/camels (Addor et al.,
2017).
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