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A B S T R A C T   

Community classification enables us to simplify, communicate, track and assess complex distribution patterns. 
Yet, the distribution of organisms may not coincide with predefined geographical and environmental bound-
aries, and therefore, biology itself should be leading the classification. In this study, we showed how to arrive at 
such a biology-based classification by clustering locations based on similarity in species composition. A hier-
archical classification structure allowed for the selection of classification levels that suit multiple scales of 
analysis. We also showed how to objectively identify the number of clusters present in a dataset based on the 
distribution of specific indicator species, allowing to identify clear boundaries in species composition on multiple 
scales. The resulting biology-based clusters were identified and characterized by local and regional environ-
mental conditions, showing the limited explanatory power of these environmental conditions and the added 
value of taking biology itself as a starting point of the classification. By departing community classification from 
species composition, the unknown environmental, geographical, and biotic drivers influencing species compo-
sition are accounted for.   

1. Introduction 

It is inherent to humanity to try to categorize and classify our en-
vironments, either on local, regional or global scales. This habit per-
sisted into modern sciences, by naming species and grouping these into 
zones, assemblages and communities (Quicke, 1993; Sokal, 1974), al-
though opposing currents in science perceive the environment as a 
continuum which cannot be classified into distinct units, except when 
arbitrarily done (Austin and Smith, 1989; McIntosh, 1967; Whittaker, 
1967). Yet, there is a general consensus on the scientific merit and 
practical use of community classification, as it enables us to simplify, 
communicate, track and assess complex distribution patterns (Everitt 
et al., 2011; Sokal, 1974). When describing and quantifying biotic re-
sponses to abiotic changes on larger spatial scales, such as the land-
scape-level, the community is often the most appropriate entity. Like-
wise, in environmental management, community classification may aid 
to evaluate if restoration measures indeed lead to the desired ecological 
improvements (Costanza et al., 2017; Cullum et al., 2016; Hawkins and 
Norris, 2000). 

Environmental and geographical conditions are acting at spatial 
scales ranging from landscapes down to the level of habitats (Frissell 
et al., 1986; Hawkins et al., 1993; Poff, 1997). Likewise, community 
composition can be regarded as being hierarchically structured, where 

communities described at local scales are embedded in larger-scale 
communities (Miller, 2008; Patterson and Brown, 1991; Petsch et al., 
2015), influenced by the environmental drivers that act on each specific 
spatial scale (Frissell et al., 1986). Communities on the other hand have 
often been classified on single predefined spatial scales, using artificial 
boundaries such as legislative regions or more natural boundaries such 
as catchments or geomorphologic regions. However, this ignores that 
the classification of communities can be achieved at a hierarchy of 
spatial scales, with each scale being characterized by multiple groups 
with a distinct species composition. 

Community classification is approached in different ways, departing 
from a biological perspective, from geography, from the environment, 
or from combinations of these. Previously, biology-based classifications 
have helped us to understand patterns in species distributions, by de-
lineating groups with a similar species composition and considering 
these as separate entities. Biology-based classification took a flight from 
the 1920s onwards, especially to define plant associations (Braun- 
Blanquet, 1928; Gleason, 1939, 1926) and continued to be of use in 
vegetation science ever since then (Hill, 1979; Westhoff and van der 
Maarel, 1978). 

Yet, the attention for biology-based approaches has decreased. 
Instead, within the various domains of ecology, abiotic characteristics 
such as environmental drivers and geographical zonation have been 
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used for classification (Bohn et al., 2004; European Commission, 2000; 
Omernik and Griffith, 2014). Such characteristics are more easily 
measurable and quantifiable (Huet, 1949) and are assumed to be in-
fluenced more directly, showing a clear link to environmental man-
agement. Numerous classifications based on geographical and en-
vironmental characteristics have been developed. In geographical 
classifications, areas are subdivided into relatively homogeneous re-
gions. These ecoregions are based on boundaries in the landscape such 
as landforms, soils and land use, and delineate areas that contain si-
milar ecosystems inhabited by similar species (Illies, 1978; Wasson 
et al., 2004). Geographical classifications have been developed for 
many organism groups (Bohn et al., 2004; Fa et al., 2004; Gering et al., 
2003; Hughes and Larsen, 1988; Van Sickle and Hughes, 2000) and 
span different spatial scales. Environmental classifications on the other 
hand are guided by certain predefined ranges of abiotic conditions, 
which are not necessarily linked to a geographic region. Environmental 
classifications have been made for a variety of applications, including 
ecological assessment (Costanza et al., 2017; Martin and Brunke, 2012; 
Van der Molen et al., 2016). In environmental classifications, the level 
of detail depends on the spatial scale of application. Classifications 
departing from a combination of geographical and environmental 
characteristics use regional delimitations, which are then subdivided 
into biotic types based on multiple environmental criteria. Examples 
are vegetation classifications (Mucina et al., 2016; Omernik and 
Griffith, 2014) and the water-type classification used for water quality 
assessment proposed by the Water Framework Directive (European 
Commission, 2000). 

All approaches discussed above have both advantages and draw-
backs in their conceptualisation of reality and application in practice. 
The main disadvantage of environment- and geography-based ap-
proaches is that they start from an a priori classification of abiotic 
conditions, either in a geographical or in an environmental context. 
Consequently, species composition itself is not leading the classifica-
tion. Indicator species, representing local communities and indirectly 
the complex of environmental and biological interactions (Dauvin et al., 
2010; Heink and Kowarik, 2010; Nijboer, 2006), are appointed to 
predefined regions or categories. However, it is unlikely that the dis-
tribution of organisms fully coincides with these arbitrary boundaries 
(Lorenz et al., 2004; Magnusson and Gering, 2004). This may be caused 
by interactions between environmental stressors and location- and 
geography-specific interactions between species, such as food web and 
non-food web relations, that influence community composition (Lake 
et al., 2007; Soberón, 2007). Indeed, regional classifications based on 
predefined landscape characteristics have lower classification strengths 
than classifications based on biotic composition (Hawkins and Vinson, 
2000; McCormick et al., 2000; Sandin and Johnson, 2000; Van Sickle 
and Hughes, 2000). Hence, there are strong arguments to take biology 
as a starting point to arrive at classifications that account for geo-
graphy, small-scale environmental variability as well as biological in-
teractions. An additional advantage is that a hierarchically structured 
classification based on biology can be used to let the organisms show 
the appropriate scales in the classification, based on discontinuities in 
species composition. This is opposed to environment- and geography- 
based classifications, which are mostly developed for a single or mul-
tiple scales that are predefined by the user. 

Yet, revitalizing biology-based classifications is accompanied by 
methodological constraints. Grouping species into specific clusters 
brings the challenge to objectively identify the most appropriate 
number of clusters which are present in a given dataset at different 
scales. Even when the clusters are clearly distinct and nonoverlapping, 
they may still be hard to identify by statistical procedures (Milligan and 
Cooper, 1985). Such internal metrics are based on measures for within- 
cluster similarity and between-cluster distance, indicating relevant 
thresholds to separate clusters (Everitt et al., 2011; Legendre and 
Legendre, 2012; Van Sickle and Hughes, 2000). However, in most cases 
species composition gradually changes along environmental gradients 

in space and time and groups may not be distinctly separated, which 
makes it complicated to objectively determine the optimal number of 
clusters with such internal metrics. Due to this difficulty, multiple cri-
teria have been used to define the optimal number of clusters 
(Adriaenssens et al., 2007; Costanza et al., 2017), while in some studies 
the adopted criteria are not reported at all (Lorenz et al., 2004; Wright 
et al., 1997). As these previously adopted metrics are clearly not ef-
fective in all cases, it is necessary to adopt another approach to ob-
jectively determine the appropriate number of clusters present in a 
dataset, which should be applicable on multiple spatial scales. 

The aim of the present study was to arrive at a community classi-
fication which uses species composition as a starting point, objectively 
defining the appropriate numbers of clusters at the appropriate scales. 
To this purpose, we grouped sites based on their species composition 
and evaluated if the resulting community classification could be related 
to the environmental conditions prevalent at these sites. To objectively 
identify the appropriate numbers of clusters in the classification, we 
used indicator value analysis as a tool to determine relevant thresholds 
(Dufrene and Legendre, 1997). The availability of high-resolution dis-
tribution data for macroinvertebrates in the Netherlands offered a un-
ique possibility to illustrate and validate our approach. 

2. Methods 

2.1. Data collection 

Data on macroinvertebrate species distribution in the Netherlands 
was collected by 19 regional water authorities as part of ecological 
monitoring programs at 7103 sites for the time period 2007–2016. This 
resulted in a dataset containing abundance data for in total 1600 spe-
cies of macroinvertebrates. For 4569 of the sites (64%), regional scale 
environmental conditions were recorded. These included geomor-
phology (size, form, soil type, presence and absence of fen features, 
being small water bodies with low buffering capacities), hydrology 
(flow character) and chemistry (salinity) (Table 1). For 2704 of the sites 
(38%), also local scale environmental conditions, which are often major 
drivers of biological gradients in freshwaters, were recorded (Verberk 
et al., 2012; Verdonschot et al., 1998), including total nitrogen con-
centration, total phosphorus concentration, dissolved oxygen (DO) 
concentration, pH, chloride concentration and temperature. 

2.2. Data analysis 

To maximize the uniformity of the data from all sites, the macro-
invertebrate data was pre-processed by only selecting species-level 
data, excluding taxa identified on a higher taxonomic level (e.g. genus, 
family, aggregate), originating from morphological identification is-
sues. This ensured a consistent dataset for further analysis and avoided 
taxonomic overlap among taxa (Nijboer and Verdonschot, 2000). In 
addition, we did not aggregate species data into a higher taxonomic 
level, as this would result in the loss of species-specific data on 

Table 1 
Regional scale environmental conditions recorded at the monitoring sites (see  
Table A1 in Appendix for definition of environmental class boundaries).       

Regional scale 
environmental 
conditions 

Characteristic of 
environmental 
condition 

Classes    

Geomorphology Size Small Medium Large  
Form Linear Isolated Both  
Soil type Mineral Peat Chalk  
Fen features Present Absent  

Hydrology Flow character Lotic Lentic  
Chemistry Salinity Brackish 

water 
Fresh water  

J. de Vries, et al.   Ecological Indicators 119 (2020) 106780

2



ecological preferences. To decrease the effect of differences in sampling 
effort between the different regional water authorities, only presence/ 
absence data was used. 

2.3. Site selection 

Classification should be based on species composition under near- 
natural conditions, since anthropogenic stress diminishes the natural 
differences between communities, obscuring the patterns in species 
composition required for an appropriate classification (McCormick 
et al., 2000; Verdonschot, 2006). Hence, to avoid the influence of 
strongly degraded sites on the classification, these have to be removed 
from the dataset. In the present study this was achieved by selecting 
sites that were not strongly degraded using a quality metric re-
presenting general degradation. To this purpose we applied the sa-
probic index, which responds to organic pollution and decreased 
oxygen concentrations, but which is also correlated with multiple other 
stressors acting on aquatic ecosystems, such as hydromorphological 
degradation and wastewater discharges (Burdon et al., 2019; Davy- 
Bowker et al., 2006; Davy-Bowker and Furse, 2006; Verdonschot et al., 
2012) and as such acts as a general stress indicator. We calculated the 
saprobic index for each site based on the saprobic valence of the 
macroinvertebrate species present (Moog et al., 2002), derived from a 
preference dataset. In this dataset, the relative abundance frequencies 
are distributed over four saprobic classes, ranging from low to high 
levels of organic pollution (Verberk et al., 2012). Sites where more than 
50% of the species present had a preference for α-mesosaprobic or 
polysaprobic conditions were marked as degraded and were removed 
from the dataset (1505 sites, 21%). 

2.4. Cluster analysis 

The remaining 5598 sites were clustered based on species compo-
sition, using the cluster package within the R programme (Maechler 
et al., 2019; R Core Team, 2018). An agglomerative hierarchical clus-
tering technique was used (agnes function), as we also aimed to eluci-
date the hierarchical structure based on species assemblages. The sites 
were sequentially grouped into larger clusters until a single cluster was 
obtained (Legendre and Legendre, 2012), which was depicted in a 
dendrogram. For each clustering step, the two clusters to be potentially 
merged were chosen based on minimum resulting within-cluster var-
iance (Wards criterion). 

The most appropriate level of clustering in the hierarchy was chosen 
using indicator species analysis (Costanza et al., 2017). An indicator 
value was calculated and tested for significance based on random per-
mutation tests for each species present in a cluster (1000 iterations), 
which was based on specificity (maximum if all individuals of a species 
are found in one specific cluster only) and fidelity (maximum if the 
species occurs at all sites belonging to that specific cluster) (Dufrene 
and Legendre, 1997). This procedure was repeated for each level of 
clustering, ranging from 2 to 40 clusters, using the indval function in the 
labdsv package (Roberts, 2016). 

The output of the indicator value analyses was used to select the 
appropriate clustering levels in the hierarchy a posteriori. Three indices 
based on the indicator value analysis were used to identify these clus-
tering levels: 1) the sum of all significant indicator values, 2) the total 
number of significant indicator species and 3) the average significant p- 
value. An outcome in which the former two indices were maximized 
and the latter minimized was considered to be optimal. The first index 
was considered to be the primary indicator, because a levelling off in 
the sum of significant indicator values points to a level of clustering 
where additional clusters have a limited additional explanatory power 
(Dufrene and Legendre, 1997), which indicates a distinct change in 
species composition. This can be observed as a bend in the curve when 
plotting the index value against the total cluster number. 

2.5. Cluster characterization 

Next, it was evaluated if the resulting biology-driven clusters could 
be related to environmental conditions acting at local and regional 
scales. To this purpose, environmental conditions were summarized for 
all sites within a specific cluster for which data on local environmental 
conditions was available (2388 sites, 43%). To determine potential ef-
fects of low DO concentrations, which could potentially pose stress to 
many macroinvertebrate species (Burnett and Stickle, 2001), the 
minimum value per site over the complete monitoring period was taken 
and averaged per cluster. The same procedure was applied for pH. For 
Cl concentrations, the maximum concentration per site was used 
(Kefford et al., 2007). For total nitrogen concentration, total phos-
phorous concentration and temperature, the mean value per site was 
calculated, after which these values were averaged over all sites within 
a cluster. Subsequently, we tested for significant differences in the mean 
abiotic conditions between the clusters using one-way Anova’s and used 
Tukey’s HSD test as a post hoc procedure to test for pairwise differences 
between the individual clusters. 

Each of the regional scale environmental conditions was trans-
formed into two or three distinct environmental classes (Table 1). For a 
total of 3593 sites (64%) for which data on these conditions was 
available, the proportion of sites within a cluster fitting into each of the 
environmental classes was calculated after removal of the highly im-
pacted sites. 

3. Results 

3.1. Cluster analysis 

Cluster analysis of all sites based on its species composition using 
presence-absence data generated an agglomerative coefficient of 0.98. 
This indicated a strong clustering structure, confirming that Ward’s 
linkage criterion performed well for clustering the sites (Fig. 1). 

Indicator species analysis showed that for clustering levels up to 9 
clusters, each cluster contained at least one unique indicator species. A 
steep increase in the sum of the significant indicator values was ob-
served (Fig. 2) until a clustering level of 10 clusters. For clustering le-
vels exceeding 10 clusters, the sum of the significant indicator values 
continued to increase, but this increase levelled off considerably above 
a total cluster number of 10, followed by a second shift at clustering 
level 30. This pattern points to the levels of clustering where additional 
clusters have a limited additional explanatory power. Therefore, the 
clustering levels of 10 and 30 clusters were considered biologically 
relevant levels and were used for further analysis. For a clustering level 
of 10 clusters, the sum of the significant indicator values was 97.2, 
which is relatively high compared to the values for the other clustering 
levels. The average of the significant p-values was 0.006 and the 
number of significant indicator species was 989. For a total of 30 
clusters, the sum of the significant indicator values was 129.3 with an 
average p-value of 0.007 for a total number of 1022 significant in-
dicator species, approaching the maximum value of 131.0 observed in 
the clustering range of this study. 

For a total of 10 clusters, the number of sites per cluster varied 
between 102 and 1162 (1.8% and 20.8% of all sites respectively). The 
number of indicator species per cluster ranged from 0 to 183. For a total 
of 30 clusters, the number of sites per cluster ranged from 10 to 442 
(0.1% and 7.9% of all sites), with 0 to 144 indicator species per cluster 
(Appendix Table A2). 

3.2. Cluster characterization 

Next, it was evaluated if the resulting biology-driven clusters at two 
hierarchical levels (based on n = 5598 sites) could be related to the 
regional and local scale environmental conditions of the sites within 
each cluster (available for n = 2704 and n = 4569 sites, respectively). 
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Because describing this for a level of 30 clusters would be too lengthy, 
here we focused on illustrating our approach for the clustering level 
with a total of 10 clusters only. These 10 clusters with an overview of 
the corresponding indicator species and associated environmental 
conditions are presented in Fig. 3, based on the descriptive statistics in 
the Appendix (Table A3, Fig. A1, and Table A4). 

Conform expectation, the distribution of species did not coincide 

with geographical and environmental boundaries and consequently the 
present clusters based on species composition did overlap geo-
graphically (Fig. 4). This is expressed by the regional distribution of the 
main environmental conditions that characterize the 10 clusters, which 
also overlap in space. 

4. Discussion 

A reliable and appropriate community classification may reveal and 
predict how changes in the abiotic and biotic environment impact local 
species composition. Here, we have developed a hierarchically scaled 
community classification for aquatic macroinvertebrates using an ex-
tensive dataset generated by the regional water authorities of the 
Netherlands. By applying the present indicator species analysis, we 
were able to objectively distinguish multiple groups on different clus-
tering levels. With this classification, we aimed to show how species 
composition can guide the classification of communities over different 
scales. 

4.1. Cluster analysis 

Any clustering technique is an attempt to divide a continuum or 
gradient into distinct groups. In this respect, each site in the dataset 
could be regarded as being unique concerning its species composition 
and set of environmental conditions (Palmer and White, 1994). How-
ever, this would not allow us to generalize the effects of, amongst 
others, changes in the abiotic environment and human interventions on 
species composition. Hence, it is advantageous to group sites by simi-
larity. A method to guide this grouping is to acquire a higher similarity 
between sites within a cluster than between clusters, but for long gra-
dients in absence of clear discontinuities, this may be less feasible 
(Sokal, 1974). In such cases, combining crisp and fuzzy clustering 
techniques may help to come to an ecological classification of sites 
(Adriaenssens et al., 2007). However, in several studies, this challenge 
was solved by using subjective criteria to determine the number of 

Fig. 1. Dendrogram displaying the hierarchical agglomerative clustering of sites (n = 5598) based on the species composition, with the dashed lines indicating the 
cutoffs of the first two hierarchical levels, at 10 and 30 clusters, respectively. 

Fig. 2. Indicator species-based indices used for selecting the most appropriate 
cluster numbers. The dashed vertical lines point to the selected cluster numbers, 
the first two hierarchical levels (10 and 30). Indices standardized by their 
maximum. Maximum sum of significant indicator values: 131.0. Maximum 
number of significant indicator species: 1071. Maximum average of significant 
p-values: 0.008. 
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clusters, while sometimes even no criteria were reported at all (Lorenz 
et al., 2004; Wright et al., 1997). Therefore, in the present study we 
used an alternative approach based on indicator value analysis to 

identify the appropriate cluster number at different scale levels 
(Dufrene and Legendre, 1997), showing that it is indeed possible to 
objectively arrive at the choice for the appropriate cluster number. 

Fig. 3. Overview of the ten clusters derived from the cluster analysis (based on n = 5598 sites) with their associated indicator species and local and regional scale 
environmental conditions (based on n = 2704 and n = 4569 sites, respectively). Strongest indicator species are those species that have the highest indicative values, 
based on specificity and fidelity (Dufrene and Legendre, 1997). P: mean total phosphorous concentration, N: mean total nitrogen concentration, DO: minimum 
oxygen concentration, T: maximum water temperature. 
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4.2. Cluster characterization 

The entity of a community and the appropriate criteria and scales 
for defining a community are continuously under debate (Austin and 
Smith, 1989; Palmer and White, 1994). Previously, the delineation of 
communities has been described on multiple spatial scales using mul-
tiple theories (Heino et al., 2005; Townsend, 1989; Vannote et al., 
1980). An operational view on defining communities was posed by 
Palmer et al. (1994), suggesting that communities could be described 
for any arbitrary spatial unit, as there is no single correct scale of ob-
servation. Contrary to these views, we showed that it is indeed possible 
to objectively identify at which spatial scales discontinuities in species 
assemblages occur. In addition, such discontinuities were identified at 
multiple spatial scales in the landscape. 

We succeeded to distinguish multiple scales with different levels of 
detail in the clustering, in our case consisting of 10 and 30 clusters. 
Which clustering level would be preferred depends on the intended 
application. In a local assessment context, it may be necessary to dis-
tinguish a larger number of clusters at a finer scale. For the current 
dataset, the classification at a level of 10 clusters represented distinctly 
different biotic groups. The classification with a total number of 30 
clusters could represent a subdivision of the biology-based water types 
into groups of near-natural and more degraded sites (Appendix Fig. A2) 
and the clusters could picture more detailed groups of species, which 
can be of use in applications at smaller spatial scales. 

The classification at a level of 10 clusters yielded groups which all 
had a distinct species composition. Some clusters could be associated 
with water types characterized by relatively extreme environmental 
conditions, such as a high salinity, acidic conditions or relatively low 
water temperatures in combination with higher dissolved oxygen con-
centrations (Fig. 3). On the other hand, for other clusters the environ-
mental conditions were not markedly different, whereas the identified 
indicator species did point at a cluster-specific species composition, 
raising the question what these biology-based clusters actually reflect. 

4.3. Ecological interpretation 

In the present study, we let species composition drive community 
classification and we evaluated if the outcome of the biological 

clustering was associated with local and regional scale environmental 
conditions. It was observed that the limited set of environmental con-
ditions did not suffice to set clear geographical and environmental 
boundaries to explain the variation and composition of the biology- 
based clusters. 

This could be due to missing out on certain environmental condi-
tions, both abiotic and biotic, relevant in driving the species composi-
tion at these sites, e.g. small-scale habitat variability, food quality or 
flow velocity, or the occurrence of disturbances (Feld and Hering, 2007; 
Hering et al., 2006; Poff, 1997). In the current analysis, the set of en-
vironmental conditions included six local chemical and physical para-
meters and six larger-scale parameters describing morphology, hy-
drology and chemistry. However, even when this set of environmental 
conditions would be extended, this might still be insufficient to char-
acterise the biology-based clusters, because it remains unclear which 
are exactly the key environmental variables that organisms respond to 
(Scherrer and Guisan, 2019). Hence, the challenge remains to identify 
the environmental variables with the highest ecological relevance. 
Ideally, environmental variables should be included that act on mul-
tiple spatial and temporal scales, representing both average and ex-
treme conditions in hydrology, chemistry, morphology, system condi-
tions and biology. Interactions between environmental stressors further 
complicate the identification of the set of environmental conditions that 
determine whether or not species are present or absent (Beermann 
et al., 2018; Coors and de Meester, 2008; Jackson et al., 2016). 

In addition to these environmental drivers, geographical drivers 
(such as dispersal-related processes) and biotic drivers (food web- and 
other biotic interactions) likely influenced the observed patterns in 
species distribution (Guisan and Thuiller, 2005; Lake et al., 2007). This 
shows that purely environment- and geography-based classifications 
are not sufficient to understand patterns in species composition. 
Therefore, as long as we are unable to fully characterize the true drivers 
of species composition, we should adopt biology-based classifications to 
acknowledge the unknown environmental, geographical, and biotic 
drivers of species composition. 

4.4. Application 

Community classification finds applications in many areas. Within 

Fig. 4. Spatial distributions of the sites of the 10 clusters. Grey dots indicate all sites, coloured dots indicate the sites comprising the different clusters.  
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restoration ecology, the clusters could indicate regional species pools 
available for recolonization of disturbed or restored sites (Carstensen 
et al., 2013). 

In addition, biology-based classifications can be used to refine 
ecological water quality assessment systems that are now still based on 
a priori defined geography- or environment-based classifications 
(Martin and Brunke, 2012; Van der Molen et al., 2016). A revised as-
sessment system would then be based on a biology-based classification 
of community types as described here, while the assessment system 
itself would remain similar. First a reference community should be 
described by using community type-specific indicator species within a 
relative homogeneous geographical region and set of environmental 
conditions (as in water types). The ecological status of a water body can 
then be described as the degree of similarity to this region- and water 
type-specific reference community. Yet, it remains a challenge to assign 
strongly degraded sites to one of the defined community types, since 
they may not be recognizable anymore due to the strongly im-
poverished community composition. Degraded sites under multiple 
stress will lose their distinctive features, having a low number of ubi-
quitous species. In such cases, the assignment could be done in a con-
text-specific way, with knowledge of the original water body type and 
the subsequent restoration possibilities to improve the ecological status. 

Furthermore, the delineation of communities on multiple scales can 
aid in monitoring and tracking changes in species composition under 
the influence of environmental change, further degradation and re-
storation attempts (Adriaenssens et al., 2007; Palmer et al., 1997). In 
addition, it can improve identification of the spatial scale on which 
certain stressors act, like temperature (climate change) on a larger scale 

or point pollution (e.g. road runoff) on a local scale. 

5. Conclusions 

In the present study, we let species composition drive community 
classification, not guided by a priori defined environmental or geo-
graphical boundaries. We succeeded in identifying appropriate clus-
tering levels on multiple scales in an objective way using indicator 
species analysis. The resulting biology-based clusters were compared to 
local and regional environmental conditions, showing the limited ex-
planatory power of environmental conditions and the added value of 
taking species composition itself as a starting point. By departing from a 
biological perspective in community classification, the unknown en-
vironmental, geographical, and biotic drivers influencing species com-
position are accounted for. 
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Appendix    

Fig. A1. Local environmental conditions for each cluster at a clustering level of 10 clusters. Different letters above bars indicate significant differences (p  <  0.05).  
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Fig. A2. Local abiotic conditions for each cluster at a clustering level of 30 clusters. Different letters above bars indicate significant differences (p  <  0.05). Blue 
boxes indicate clusters at a clustering level of 10 clusters. 
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Table A1 
Regional environmental conditions recorded at the monitoring sites with environmental class boundaries.       

Regional environmental 
conditions  

Environmental classes    

Geomorphology Size Small: Medium: Large:   
Linear: width 0–3 m, catchment 
area 0–10 km2 

Isolated: Depth ≤ 3 m, ≤8 m 
broad 

Linear: width 3–8 m, catchment 
area 10–100 km2 

Isolated: Depth ≤ 3 m, 8–15 m 
broad 

Linear: width  >  8 m, catchment  
area  >  100 km2Isolated: Depth  >  3 m,  > 15 m broad  

Form Linear Isolated Both  
Soil type Mineral Peat Chalk  
Fen features Present Absent  

Hydrology Flow 
character 

Lotic: Lentic:    

Flow velocity  >  0 m/s Flow velocity = 0 m/s  
Chemistry Salinity Brackish water: Fresh water:    

Choride content  >  0.3 g/L Choride content ≤ 0.3 g/L  

Table A2 
Selection of significant indicator species and most dominant species, of the 10 community clusters.         

Cluster number Indicator species Indicator value p-value N. of indicator species (p ≤ 0.05) Dominant species N. of sites  

1 Arrenurus albator 0,45 0,001 88 Asellus aquaticus 338  
Clinotanypus nervosus 0,38 0,001     
Caenis horaria 0,37 0,001     
Athripsodes aterrimus 0,31 0,001     
Bithynia tentaculata 0,27 0,001     

2 Hydroporus palustris 0,32 0,001 85 Asellus aquaticus 515  
Psectrotanypus varius 0,32 0,001     
Haliplus lineaticollis 0,23 0,001     
Hydrobius fuscipes 0,23 0,001     
Asellus aquaticus 0,21 0,001     

3 Gammarus fossarum 0,34 0,001 183 Gammarus pulex 620  
Plectrocnemia conspersa 0,32 0,001     
Sericostoma personatum 0,31 0,001     
Brillia bifida 0,29 0,001     
Dugesia gonocephala 0,24 0,001     

4 Arrenurus globator 0,29 0,001 54 Asellus aquaticus 770  
Arrenurus latus 0,28 0,001     
Caenis robusta 0,26 0,001     
Plea minutissima 0,26 0,001     
Piona alpicola 0,26 0,001     

5 Helochares punctatus 0,68 0,001 176 Lumbriculus variegatus 199  
Psectrocladius platypus 0,63 0,001     
Hydroporus erythrocephalus 0,50 0,001     
Hydroporus umbrosus 0,48 0,001     
Libellula quadrimaculata 0,46 0,001     

6 Unionicola crassipes 0.30 0,001 39 Asellus aquaticus 1120  
Endochironomus albipennis 0.28 0,001     
Helobdella stagnalis 0.24 0,001     
Limnesia undulata 0.23 0,001     
Piona imminuta 0.23 0,001     

7 – – – 0 Asellus aquaticus 1162 
8 Calopteryx splendens 0,57 0,001 161 Gammarus pulex 286  

Lebertia inaequalis 0,54 0,001     
Lebertia insignis 0,53 0,001     
Baetis vernus 0,51 0,001     
Mideopsis crassipes 0,46 0,001     

9 Gammarus duebeni 0,70 0,001 77 Electra crustulenta 486  
Palaemonetes varians 0,69 0,001     
Glyptotendipes barbipes 0,59 0,001     
Chironomus aprilinus 0,54 0,001     
Neomysis integer 0,42 0,001     

10 Chelicorophium curvispinum 0.85 0,001 126 Potamopyrgus antipodarum 102  
Dikerogammarus villosus 0.77 0,001     
Hypania invalida 0.74 0,001     
Dreissena polymorpha 0.73 0,001     
Dicrotendipes nervosus 0.58 0,001    
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