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A B S T R A C T   

In single-molecule localization microscopy (SMLM), the use of engineered point spread functions (PSFs) provides access to three-dimensional localization in
formation. The conventional approach of fitting PSFs with a single 2-dimensional Gaussian profile, however, often falls short in analyzing complex PSFs created by 
placing phase masks, deformable mirrors or spatial light modulators in the optical detection pathway. Here, we describe the integration of PSF modalities known as 
double-helix, saddle-point or tetra-pod into the phasor-based SMLM (pSMLM) framework enabling fast CPU based localization of single-molecule emitters with sub- 
pixel accuracy in three dimensions. For the double-helix PSF, pSMLM identifies the two individual lobes and uses their relative rotation for obtaining z-resolved 
localizations. For the analysis of saddle-point or tetra-pod PSFs, we present a novel phasor-based deconvolution approach entitled circular-tangent pSMLM. Saddle- 
point PSFs were experimentally realized by placing a deformable mirror in the Fourier plane and modulating the incoming wavefront with specific Zernike modes. 
Our pSMLM software package delivers similar precision and recall rates to the best-in-class software package (SMAP) at signal-to-noise ratios typical for organic 
fluorophores and achieves localization rates of up to 15 kHz (double-helix) and 250 kHz (saddle-point/tetra-pod) on a standard CPU. We further integrated pSMLM 
into an existing software package (SMALL-LABS) suitable for single-particle imaging and tracking in environments with obscuring backgrounds. Taken together, we 
provide a powerful hardware and software environment for advanced single-molecule studies.  

1. Introduction 

Fluorescence microscopy is frequently employed in biological sci
ences due to its high selectivity and non-invasiveness. Conventionally, 
the obtainable optical resolution in fluorescence microscopy is given by 
Abbe’s diffraction limit which is equal to the wavelength of the light 
divided by double the numerical aperture of the objective (~200 nm for 
visible light). A multitude of techniques summarized by the term super- 
resolution (SR) microscopy or nanoscopy [1–3] have been developed, 
however, to obtain spatial information well below this limit. These 
techniques include (d)STORM (direct stochastic optical reconstruction 
microscopy) [4,5], PALM (photo-activatable localization microscopy)  
[6], SIM (structured illumination microscopy) [7], STED (stimulated 
emission depletion microscopy) [8], RESOLFT (reversible saturable 
optical fluorescence transitions) [9], SOFI (super-resolution optical 
fluctuation imaging) [10], SRRF (super-resolution radial fluctuations)  
[11] and MINFLUX (minimal photon fluxes localization microscopy)  
[12]. 

Single-molecule localization microscopy (SMLM) is the sub-collec
tion of super-resolution techniques in which the fluorescent emission 
profile, ordinarily referred to as a point spread function (PSF), of a 
single fluorophore is localized with a precision (~5–40 nm) that can 

exceed the classical resolution limit by more than one order of mag
nitude [13–16]. SMLM is therefore an integral part of STORM and 
PALM, and has been extensively used in biological research [17–19], 
for example to study DNA transcription [20,21], CRISPR‑Cas DNA 
screening [22–24], nuclear pore complexes [25,26], and microtubules  
[27]. 

In a conventional fluorescence microscope, a PSF from a single 
emitter in focus resembles an Airy pattern, which can be approximated 
by a single 2-dimensional Gaussian function. This approach has been 
the basis of the earliest localization algorithms [13,16,28], which allow 
for determination of the emitter locations [16] as long as overlapping of 
PSFs is negligible. Besides Gaussian-based methods, these symmetrical 
PSFs have been analyzed via other mathematical frameworks, such as 
radial symmetry [29], cubic splines [30], or phasor (Fourier) analysis  
[31]. 

The shape of the PSF quickly deteriorates, however, if the emitter is 
out of focus (~100s of nm), leading to both a limited available axial 
range and inaccessibility of the absolute axial position [32]. Therefore, 
a variety of methods have been developed to modulate the shape of the 
PSF depending on the emitter’s axial position [33]. Historically, the first 
method (astigmatism; AS) introduced a cylindrical lens in the emission 
pathway to create ellipsoid PSFs if the emitters are out of focus [34,35]. 
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The extent of the deformation along with its orientation allows for 
determination of the axial position after a calibration procedure, and 
fitting of these PSFs could usually be performed by derivatized locali
zation algorithms as the ones used for 2D PSFs [28,31,36]. However, 
the available axial range of astigmatism is limited to less than ~1 µm, 
which led to the development of more advanced PSF shaping proce
dures that involve modulating the light in the pupil (Fourier) plane. 
Using a spatial light modulator (SLM), the principle was first employed 
to create a double helix (DH) pattern, in which the PSF is split in two 
separate lobes that non-degeneratively rotate around each other based 
on the emitters axial position, resulting in a usable axial range up to 
2.5 µm [37]. Later, the same group theoretically maximized the in
formation content of PSFs resulting in the Saddle-Point (SP) or Tetra- 
Pod (TP) designs, which are suitable for 3 µm (SP) or ≥ 6 µm (TP) axial 
ranges [38,39]. PSFs for both SP and TP are altered in the Fourier plane 
via a phase mask [38,39] or deformable mirror [40]. 

Determining the sub-pixel positions corresponding to the emitters 
via DH, SP, or TP PSFs, however, is more challenging than for isotropic 
or AS PSFs, as fitting with a single 2D Gaussian is insufficient. The 
current state-of-the-art fitting algorithms [41] rely on experimentally 
retrieved PSFs [42,43], phase retrieving methods [40,44–46] or spline 
interpolation [26] to determine a PSF model based on calibration 
samples. A PSF model can then be determined from these models which 
is fitted on experimental data. These methodologies can work with 
arbitrarily shaped PSFs, including DH, SP and TP. However, these 
methods are computationally expensive and thus time-consuming. Re
cently, real-time fitting localization of experimental PSFs have been 
achieved using graphical processing units (GPUs) [26], but this has not 
yet been achieved on computation processing units (CPUs), which 
would increase the accessibility and might allow implementations di
rectly on the camera hardware. 

Here, we show fast retrieval of DH (1.5·104 loc/s) and SP/TP 
(2.5·105 loc/s) PSF localizations on a standard CPU via novel adapta
tions of the phasor-based single-molecule localization microscopy 
(pSMLM) algorithm [31]. We first explain the underlying methodology 
for DH and for SP/TP, termed circular-tangent (ct-)pSMLM, and then 
explore the performance of the methods by analyzing simulated and 
experimental data. We have implemented all pSMLM versions (2D, AS, 
DH, SP/TP) in a recently published software package (SMALL-LABS  
[47]), resulting in user-friendly and open-source software to quickly 
perform sub-pixel localization including advanced background filtering 
options. 

2. Material and methods 

2.1. Software and hardware 

All software was written and ran in MATLAB (MathWorks, UK) 
version 2018b on a 64-bit Windows 10 computer equipped with an Intel 
i5-8600 CPU @ 3.10 GHz, 16 GB RAM. 

2.2. SMALL-LABS software 

Our software package expands the original SMALL-LABS software  
[47] in several ways. Firstly, we added the original pSMLM-3D algo
rithm for 2D or astigmatism PSF sub-pixel localization, as well as the 
novel variations discussed in this manuscript. Next, a custom GUI was 
written to increase user accessibility. Lastly, the pre- and post-proces
sing options are expanded with wavelet filtering [48], cross-correlation 
drift correction in three dimensions [49], and average shifted histogram 
result image generation [50,51]. 

2.3. Saddle-point PSF simulations 

PSF simulations have been performed as described earlier [16,31] 
with NA = 1.25, emission light at 500 nm, 100 nm/pixel camera 

acquisition and 1000 PSFs for every intensity/noise combination. We 
used a full vectorial model of the PSF needed to describe the high NA 
case typically used in fluorescent super-resolution imaging. The center 
of the PSF is located within  ± 1 pixel of the center of the image. 
Zernike polynomials Z2

2 (primary astigmatism) and Z4
2 (secondary as

tigmatism) are introduced in a 0.5:-0.65 ratio [40], and z-positions 
were chosen randomly between –1.5 and +1.5 µm away from the focal 
plane. 

2.4. Sub-pixel localization of single-molecule data 

For double-helix (DH) sub-pixel localization, the four datasets from 
the 2016 SMLM challenge [41] were analyzed, which use experimental 
PSF models. These datasets differ in signal-to-noise (SNR) values (‘high 
SNR’, which mimics Alexa647 fluorophores, and ‘low SNR’, which mi
mics fluorescent proteins) and in emitter density (‘low density’ (LD) at 
0.2 loc/µm2 and ‘high density’ (HD) at 2 loc/µm2). 

For double-helix localization, the following settings were used. For 
SMALL-LABS-pSMLM-DH, the temporal window length and the 
minimum duration of fluorophore on-time before it is discarded were 
both set to 150 frames. Filtering for region-of-interest (ROI) finding was 
performed with a β-Spline wavelet filter with the threshold set to 1.9 
times the standard deviation of a filtered frame. Single-lobe DH location 
was performed with a phasor radius of 4 pixels (low density) or 2 pixels 
(high density). The z-position was calculated via a calibration with 
identical phasor radius. For the SMAP software with fit3dSpline sub- 
pixel localization [26], a calibration was performed with a 33 × 33 
pixel ROI. Then, localizations were identified via a mean calibrated 
PSF, with a 2.9 pixel Gaussian blur, using all calibrated z-positions. A 
threshold set to an absolute cutoff value of 86 (high SNR), 76 (low SNR, 
LD), or 29 (low SNR, HD) photons was used. The calibrated spline PSF 
was fitted with a 15 × 15 pixel ROI. Then, localizations with relative 
log-likelihood lower than −2 (low density) or −5 (high density) were 
discarded. 

For the localization of simulated saddle-point PSFs, we note that in 
order to prevent localization artefacts at specific z positions for ct- 
pSMLM (Supplementary Fig. 1), a large ROI (> ~1.2× the maximum 
distance between the lobes) had to be used to determine lateral loca
lization accurately, while a smaller ROI (~2.3 × 2.3 µm) was required 
for accurate axial localization, as ct-pSMLM with a large ROI cannot 
accurately describe the axial position around the focus. Then, all PSFs 
were localized directly with ct-pSMLM as described in the result section 
or via the SMAP software with fit3dSpline sub-pixel localization [26]. 
For ct-pSMLM, we used a 23 × 23 pixel ROI to calculate the z-position 
and a 43 × 43 pixel ROI to calculate the x and y position, and a 4th- 
order polynomial was used to fit the calibration curve. For SMAP, ca
libration was performed with a 15-px Gaussian blur to find PSFs, a 
51 × 51 pixel ROI, and 10 nm axial distance between every localiza
tion. For localization, a 10-px Gaussian blur was used to find PSFs, with 
a threshold of 20. A 41 × 41 pixel ROI spline fitting with 100 iterations 
based on the calibrated data was used to localize the PSFs. 

Localization of experimental saddle-point data was performed with the 
SMALL-LABS-pSMLM software package. A median background subtrac
tion with temporal window length of 150 frames and minimum duration 
of fluorophores to be discarded of 100 frames was used. Localizations were 
identified via a bandpass filter with a 95 threshold percentile. Potential 
lobes of saddle-point point spread functions were identified with a 3 pixel 
radius ROI 2D phasor fitting routine. Ct-pSMLM fitting was then per
formed with an 11 pixel radius ROI around the center of localizations. 
Calibration was performed using simulated point spread functions at 
varying z positions, consisting of 5000 photons on a noiseless background, 
with deformations similar to experimental data. Three-dimensional cross 
correlative drift correction was performed via the SMALL-LABS-pSMLM 
software, with 10 lateral subpixels and 10 temporal bins. The average 
shifted histogram image was created using ThunderSTORM [50], using 
50 nm axial bins and 10 lateral subpixels. 
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2.5. Assessment of localization performance 

For double-helix (DH), localizations between ground-truth (GT) and 
software 1 (S1; SMALL-LABS-pSMLM-DH) and between GT and soft
ware 2 (S2; SMAP with fit3dSpline) are linked on a frame-by-frame 
basis, with a maximum allowed lateral distance of 250 nm, and a 
maximum allowed axial distance of 500 nm. The median offset between 
GT and S1 and between GT and S2 is calculated and subtracted from the 
S1 and S2 datasets, to avoid introducing consistent offset errors in the 
RMSE calculations. The linking of localizations between GT and S1/S2 
is repeated, as localizations can be shifted in/out of the maximum 
linking distance due to the median offset. Of this linked dataset, the 
Jaccard index is calculated as follows: 

=
+ +

JACC TPo
TPo FP FN

where TPo, FP, and FN are the true positive, false positive, and false 
negative localizations, respectively. 

Then, only localizations that are present in all three datasets (GT, S1 
and S2) are selected, and of these localizations, the root mean square 
error (RMSE) in a single dimension is calculated as follows: 

=RMSE
p p
TP

( )i S i
S

i
GT 2

where pi indicates the position of localization i in any dimension, and S 
indicates S1 or S2. 

For saddle-point (SP), 1000 PSFs for every signal-to-noise combi
nation were simulated (section 2.3), after which a calibration curve was 
created in SMALL-LABS-ct-pSMLM or SMAP with PSFs containing 3·104 

photons on a 1 photon/pixel background. For SMAP localizations, ob
tained localizations well outside the expected regime (10 pixels or 
further removed from center) were discarded, and frames containing 
multiple or no localizations were fully discarded. Note, localizations 
obtained with SMAP that were clearly misfitted (an offset in z by at 
least 3 times the average z offset calculated by ct-pSMLM) were dis
carded; no such discarding was performed for ct-pSMLM. 

For both ct-pSMLM and SMAP, the x, y and z positions were com
pared with the ground truth, and the standard deviation of this offset 
was calculated for every intensity and background combination and is 
shown in the results. We note that the mean of the offset was centered 
around 0 for every tested intensity/noise/software combination. 

2.6. Single-molecule microscopy 

For SMLM experiments, we used a home-built super-resolution mi
croscope similar to one reported previously [24] (also see  
Supplementary Fig. 2). Briefly, light from a fiber-coupled 642 nm laser 
(Omicron, Germany) was collimated using an achromatic lens 
(f = 30 mm, Thorlabs) and focused using an achromat lens 
(f = 150 mm, Thorlabs) in front of a polychroic mirror (ZT532/640rpc, 
Chroma) into the backfocal plane of an 100x oil-immersion objective 
(CFI Plan Apo, NA = 1.45, Nikon Japan) such that a highly inclined 
illumination (HiLo) profile with a total laser power of ~ 70 mW was 
achieved. Emitted fluorescence passing the objective, the polychroic 
mirror and a bandpass filter (ZET532/640m-TRF, Chroma) was then 
guided into a 4f geometry using the following lenses (1: f = 200 mm, 2: 
f = 100 mm, 3: f = 100 mm) towards a Prime 95B sCMOS camera 
(Photometrics, Tucson, AZ, USA), resulting in an effective 115 by 
115 nm pixel size. A 295 × 244 pixel region in the center of the camera 
was recorded (34 × 28 µm) during experimental acquisition. A de
formable mirror (DMP40-P01, Thorlabs) was placed in the Fourier 
plane between lens 2 and 3. The deformable mirror used 40 segments 
with bending arms for tip-tilt control to modulate and introduce dif
ferent Zernike modes. After calibrating (flattening) the deformable 
mirror via the REALM software [52] (https://github.com/MSiemons/ 

REALM and https://github.com/HohlbeinLab/Thorlabs_DM_Device_ 
Adapter) we used the Zernike polynomials Z2

2 (primary astigmatism) 
and Z4

2 (secondary astigmatism) to induce saddle-point PSFs [38,40]. 

2.7. STORM experiment 

A SAFe sample containing immobilized Cos7 fibroblasts from Green 
African Monkeys (ATCC) with Alexa Fluor 647 labeled tubulins was 
purchased from Abbelight (Paris, France). A nitrogen-flushed buffer 
containing 50 mM TRIS pH8, 10 mM NaCl, 10% glucose, 50 mM 2- 
mercaptoethanol, 68 µg/mL catalase, and 200 µg/mL glucose oxidase  
[27] was added to the sample chamber which was sealed off before the 
measurements. 60.000 frames of 20 ms duration were recorded using 
the setup described in section 2.6. Analysis of the single-molecule data 
was performed as specified in section 2.4. 

3. Methods 

3.1. Principles of engineered PSF localization with pSMLM: Double-helix: 
DH-pSMLM 

To localize double-helix (DH) PSFs, we rely on the fact that pSMLM- 
2D provides accurate lateral localization even when using a relatively 
small ROI around the center of an emitter [31]. Therefore, the two lobes 
rotating around each other (Fig. 1a) can be localized separately. During 
calibration, the distance and rotation between the two lobes is plotted 
against the axial position (Fig. 1b). The rotation is fitted with a third- 
order polynomial. This polynomial is weighted on the inverse of the 
standard deviation of each axial position if more than one calibration 
bead has been used. 

The lateral position is calculated as being the average lateral posi
tion of the two lobes, corrected for a ‘wobble’ factor, which is a mi
croscope-dependent distortion, and may have a lateral dependency in 
systems with large field of views [53]. This wobble factor is determined 
in x and y as function of the emitters axial position (Fig. 1c) by com
paring the lateral localization at all axial positions with the lateral lo
calization at the axial center of the calibration dataset. The average of 
this wobble factor over an axial sliding window (user-defined, default 
value is set to 5 axial positions) is determined during calibration and 
stored for future correction of lateral localization calculation (Fig. 1d). 

To extract positional information, first a standard pSMLM-2D fitting 
is performed [31]. The localizations in each frame are compared with 
each other to find pairs within the expected distance regime (de
termined during calibration; minimum and maximum of distance be
tween lobe centers, with a ~10% error margin), and are discarded if no 
pair can be found. During the linking of the lobes, priority is given to 
lobes that only have a single possible counter-lobe over those that have 
multiple options to reduce mis-fitting of closely positioned DH PSFs. 
The axial position is then determined from the rotation of the two lobes 
via the calibration curve. The obtained distance between lobes is 
checked against the distance determined during calibration at the found 
axial position, and the localization is discarded if these values differ 
more than ~100 nm (user defined). Lastly, the lateral position is de
termined from the mean of the 2D-determined position of the two lobes, 
and corrected for the wobble determined during calibration (Fig. 1d). 

3.2. Principles of engineered PSF localization with pSMLM: Saddle-point 
and tetra-pod: ct-pSMLM 

We analyze saddle-point (SP) and tetra-pod (TP) PSFs with an 
adapted phasor-based localization methodology. SP and TP have si
milar characteristics and show separation of a single point when in 
focus into two lobes above and below the focus in perpendicular di
rections [38,39]. Moreover, they are based on similar PSF deformations 
introduced by primary and secondary astigmatism Zernike coefficients  
[40]. 
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We modified a spectral phasor-based approach [54,55] in which the 
convolution of arbitrary profiles in real space is a linear combination of 
their respective phasor representations in phasor space. In this ap
proach, the normalized intensity ratio between the original profiles in 
the convolved profile (real space) is represented as the distance of the 
original phasor profiles to the convolved phasor profile (phasor space). 
This entails that if two profiles are combined with a 1:1 ratio, the 
convolved phasor representation is on the mid-point of the line between 
the phasor representations of the original profiles. 

In SP and TP PSFs, the final spatial representation of the PSF is a 
convolution of two separated lobes of identical intensity. Thus, SP and 
TP PSFs can be treated as a 1:1 ratio of arbitrary profiles that are se
parated at a varying distance, depending on the axial position of the 
emitters. Note that by orientating the respective optical components 
correctly, this separation can be achieved perfectly on the x- or y-axis. 
Therefore, the value for the separation dlobes, along with the orientation 
of this separation provides suitable information for calibration of SP 
and TP PSFs. 

To determine the separation dlobes with phasor-based single-mole
cule localization microscopy (pSMLM), we assume that the width of the 
individual lobes in the direction of the convolution is identical to the 
width of the convolved PSF in the other, unconvolved spatial direction. 
For illustration, we show a combination of two 2-dimensional Gaussian 
distributions (Fig. 2a–c). The phasor representation of the individual 
Gaussian distributions is represented by a single phasor for both 

dimensions, each having a certain, but different, angle representing the 
emitter’s position in real space [31,55]. 

Then, if reasoned from the convolved PSF (Fig. 2c) to obtain the 
individual lobes, the tangent at the magnitude circle in the convolved 
spatial dimension (broad spatial dimension; small phasor magnitude; 
black cross located on the red circle in Fig. 2c) will intersect the mag
nitude circle of the smaller spatial dimension (large phasor magnitude; 
represented as a blue circle) at two points q (Fig. 1c; magenta and or
ange dots). Supplementary note 1 further mathematically describes 
how to obtain the locations of q. 

These points q are a measure for original arbitrary profiles with 
identical spatial sizes in both dimensions that combine in a 1:1 intensity 
ratio to result in the convolved profile. The angle between these two 
obtained intersectional points (θlobes) in phasor space is a direct nor
malized value for the distance dlobes in real space (Fig. 2c). We call this 
method circular-tangent pSMLM (ct-pSMLM). 

The obtained dlobes is used to create well-defined calibration curves 
for both SP and TP (Fig. 2d, Supplementary Fig. 3) that can be fitted 
with arbitrary functions (e.g. a fourth-order polynomial) to deduce 
axial positional information from experimental PSFs (Fig. 2e). The 
lateral localization information of the SP or TP PSFs is still inherently 
present in the original phasor-representation of the complete PSF. 

Determining localization of the SP or TP PSFs in the 
SMALL-LABS-pSMLM software consists of two parts: finding the central 
positions and further analysis with ct-pSMLM. The mid-points of single 

Fig. 1. Double Helix PSF fitting via phasor-based 
localization. a Typical double helix axial position 
profile [41]. Red markers indicate initial 2D fits of 
single lobes by pSMLM. Scale bar represents 1 µm. b 
Typical calibration curve determined via 
DH‑pSMLM. The distance between the lobes is used 
to link single lobes during analysis, while the angle 
between the lobes is used to calculate the axial po
sition. c Typical wobble calculated from calibration. 
The solid line represents the average wobble in x or 
y at every axial position, the shaded area represents 
the standard deviation. d Wobble correction effect 
for a single calibration emitter. Magenta shows un
corrected lateral position of a fixed simulated 
emitter, while black shows the wobble-corrected 
position. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.) 
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PSFs are determined by first checking whether two detected emitters 
that could represent two lobes of a single SP/TP PSF belong to the same 
PSF. If these emitters have little deviation in one dimension (< 0.5 px) 
and are slightly separated in the other dimension (less than the 
calibrated maximum distance), the mid-point of these emitters is 
calculated and stored. If no other lobe can be found, it is assumed the 
located emitter is the mid-point of the SP/TP PSF. Then, ct-pSMLM is 
performed around the central point with a reasonably large region of 
interest (> 2 µm) to obtain dlobes and to calculate the axial position. 

4. Results 

4.1. Double-helix 

To evaluate the performance of DH‑pSMLM, we performed fitting of 
simulated datasets [41] via the full pSMLM-updated SMALL-LABS 
software package and compared with the currently best performing 
non-machine learned localization algorithm (experimental PSF spline 
fitting methodology incorporated in SMAP [26]). 

As the ground truth of these datasets is publicly available, we were 
able to extract (Table 1) quantitative performance parameters such as 
the expected deviation of localization accuracy in all three dimensions 
(root mean squared error, RMSE) and the Jaccard index JACC (a 

measure for correctly and incorrectly localized particles [41]). These 
performance parameters are calculated from localizations that were 
found in both software packages and in the Ground-Truth datasets. 

We observe that both SMALL-LABS-pSMLM and SMAP have com
parable RMSE errors (Table 1) in the order of 10–25 nm for the low 
density (LD), high signal to noise (SNR) dataset which are similar to the 
ones reported previously for SMAP [26,41]. However, at low signal to 
noise levels, SMAP outperforms SMALL-LABS-pSMLM on all perfor
mance indicators. This is presumably due to SMAP using the full PSF at 
once, while SMALL-LABS-pSMLM splits localization in two steps. This 
results in SMALL-LABS-pSMLM working with a lower apparent signal to 
noise level, causing a lower localization accuracy. We note that the 
reported RMSE values for SMAP analysis of the LD, low SNR dataset are 
counter-intuitively better than those of SMAP analysis of the LD, high 
SNR dataset. This is a result of the RMSE calculation methodology used 
(Material and methods), as only localizations that are found in both 
software analyses as well as in the ground-truth are used for RMSE 
calculations. 

We observe that SMALL-LABS-pSMLM outperforms SMAP in terms 
of localization recall rates (Jaccard index, Table 1) at high SNR (23% 
increase), but not at low SNR (4% decrease). The Jaccard values for 
SMAP are slightly lower than reported earlier [41] (Material and 
methods), but can be compared directly with the Jaccard values for 

Fig. 2. Principle of circular-tangent phasor- 
based single-molecule localization micro
scopy (ct-pSMLM) which can be used for 
saddle-point (SP) and tetra-pod (TP) PSF 
localization. a Single simulated 2D-Gaussian 
profile (top). The phasor representation 
(bottom) in the x dimension shows a single 
phasor, of which the angle θx1 represents x- 
position dx1 of the emitter in real space 
(orange cross in both real space and phasor 
space). The angle θy in phasor space (blue 
plus) represents y-position dy in real space. 
The magnitude of the x-dimension (red) and 
y-dimension (blue) are shown as circles with 
equal radius. b Identical to a, but with the 
2D-Gaussian profile at a different position. c 
Top: Combination of the two Gaussian pro
files shown in a and b. The wider x profile 
corresponds to a smaller x phasor magnitude 
(red circle) as compared to the profile and 
magnitude in y. Bottom: The phasor re
presentation of the profile in x is re
presented by the black cross (the y-phasor is 
omitted for clarity). Next, a line (black da
shed) is placed perpendicular on the x 
phasor magnitude circle. The positions 
where this line crosses the y phasor magni
tude circle are indicated by the orange and 
magenta dots in phasor space. These values 
are normalized values for the single emitter 
positions in real space, indicated by orange 
and magenta dots. The angle between the 
two phasor angles is θlobes (green) and re
presents dlobes in real space. d 
Representative simulated SP emitters at 
varying axial positions (Methods; for TP 
emitters see Supplementary Fig. 3). Red 
markers indicate the obtained lobe positions 
via ct-pSMLM. Scale bar represents 1 µm. e 
Typical calibration curve in which the se
paration of the lobes in x and y is plotted as 
a function of the z position. The black lines 
represent the best-fitting fourth-order poly

nomial and can be used for axial position retrieval. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 
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SMALL-LABS-pSMLM reported here. We note that no background sub
traction is performed in SMAP, while SMALL-LABS-pSMLM subtracts 
the background based on foreground temporal variations (SMALL-LABS  
[47]). 

Both software packages are not capable of recognizing HD PSFs with 
a good recall rate, although SMALL-LABS-pSMLM outperforms SMAP in 
all conditions, as single DH lobes are localized with only 5 × 5 pixel 
ROIs, decreasing the influence of the other nearby emitters. 

SMALL-LABS-pSMLM is ~3 – 4× faster compared to SMAP for low 
density datasets, and ~2× faster for high density datasets. However, 
most analysis time for SMALL-LABS-pSMLM (~65%) is spend on the 
background correction and format conversion rather than approximate 
localization or sub-pixel DH‑pSMLM localization (Supplementary 
Table 1). The localization procedure itself can achieve 1–1.5·104 loca
lizations per second on a standard CPU when few (1–50) emitters are 
present in the field of view, and scales linearly with the number of DH 
PSFs (Supplementary Fig. 4). 

4.2. Saddle-point and tetra-pod 

The performance of the localization of saddle-point (SP) PSFs was 
assessed and compared to experimental PSF spline fitting [26]. As ct- 
pSMLM is a non-iterative method, high localization rates of up to 
2.5·105 localizations per second were achieved on standard CPUs 
(Fig. 3a). This is an order of magnitude lower than traditional pSMLM- 
3D [31], mostly due to the large required region of interest around the 
PSF (> 2 µm; here 23 × 23 px), and partly due to the additional 
computations required for ct-pSMLM. Taken alone, the additional 
computations of ct-pSMLM compared to pSMLM-3D only result in a 
10–40% decrease in localization rates (~10% for at a large region of 
interests 23 × 23 px; ~40% decrease for 7 × 7 px). 

The lateral localization accuracy of ct-pSMLM is in line with that of 
experimental PSF spline fitting (Fig. 3b), and decreases from ~100 nm 
(~1 pixel) at typical (~200–1300) photon values for fluorescent pro
teins to ~10 nm (~0.1 pixels) at typical (~(2 – 11) × 103) photon 
values for organic fluorophores. The localisation accuracy is roughly 
one order of magnitude lower than the lateral localization accuracy of 
non-engineered PSFs at high photon values (~0.08 pixels and ~ 0.01 
pixels, respectively [31]), and roughly 1.5x worse than AS PSFs (~0.05 
pixels [31]) caused by lower effective signal to noise ratio due to the 
expanded PSF. We observed a lower limit in lateral localization accu
racy for SMAP fitting of ~10 nm (~0.1 pixel), which has an unknown 
origin. 

The axial localization accuracy of ct-pSMLM increases with in
creasing photon values as well (Fig. 3c). The average axial accuracy at 
typical photon values for organic fluorophores is ~40 nm, which 
is ~3× worse than AS PSFs with similar total photon counts and 
photons/pixel background [31]. The best obtainable axial accuracy is 
limited by the sub-optimal fitting of the calibration curve to around 

11 nm, which is similar to AS PSFs (Fig. 3c, Supplementary Fig. 5,  
[31]). We attribute this lower axial accuracy of SP PSFs compared to AS 
PSFs again to lower effective signal to noise ratios due to expanded 
PSFs. Up to 20% of SMAP-localized emitters had to be discarded from 
calculating the z offset, as these were substantially misfitted (> 3 times 
the corresponding ct-pSMLM z offset, see Methods). 

We furthermore demonstrate the implementation of ct-pSMLM in 
SMALL-LABS-pSMLM by analysing an experimental STORM experiment 
showing labelled microtubule of a Monkey cell line (Fig. 3d, Material 
and methods). The total analysis time for the SMALL-LABS-pSMLM 
analysis for the ~8 GB, 60.000 frames dataset containing 1.5 million 
localizations was ~15 min on a standard CPU, including file conversion 
(Supplementary Table 1), of which the ct-pSMLM sub-pixel fitting 
routine comprised just 77 s. 

5. Discussion 

Here we present integration of the phasor-based single-molecule 
localization microscopy (pSMLM) framework with double helix (DH), 
saddle-point (SP), and tetra-pod (TP) PSFs, achieving very good accu
racy and speed on standard CPUs. In the current implementation, DH- 
pSMLM can achieve up to 1.5·104 localizations/second on a 3.10 GHz 
processing unit, while ct-pSMLM, the basis for SP and TP localization, 
can achieve up to 2.5·105 localizations/second. Specifically, ct-pSMLM 
is designated for real-time localization methods, combined with com
putationally inexpensive filtering and background subtraction methods, 
to better enable (automated) feedback-oriented SMLM instrumentation. 
Possibly a pSMLM-based methodology could be implemented on the 
integrated circuits of cameras to further increase end-user accessibility 
of advanced single-molecule techniques. 

The DH-pSMLM implementation in the SMALL-LABS software has 
similar performance as the current state-of-the-art methods when using 
organic fluorophores, while decreasing the overall analysis time when 
ran on a CPU. We note that our implementation is not particularly 
sensitive to overfitting, as stringent constraints on the pair-finding are 
used. This allows for some false positives during the initial localization 
steps which are later discarded. 

Ct-pSMLM improves on our previous phasor implementation [31] 
by offering a direct way of determining the distance between two 
emission peaks of a single PSF, well-suited for the quantification of the 
axial position in SP and TP PSFs. Here, perfect horizontal and vertical 
elongation of the PSFs is a requirement for ct-pSMLM to perform. Our 
algorithm is capable of retrieving the emitters location with a precision 
similar to current best non-machine learning localization algorithm  
[41], and is mostly limited by the fitting of the calibration curve. 
Naturally, for ct-pSMLM to work correctly, no other emitters or highly 
inhomogeneous background should be present in the fitting region. As 
SP and TP PSFs require large ROIs (e.g., 23 × 23px), this results in 
substantially lower accessible emitter density compared to approaches 

Table 1 
Double Helix PSF fitting performance, comparing SMALL-LABS-pSMLM with SMAP. Standard deviation of RMSE values determined via bootstrapping 100 times. 
Error of Jaccard determined by evaluating ten temporal bins of the original movie with equal number of frames.            

Low density High density  

High SNR Low SNR High SNR Low SNR  

pSMLMa SMAP pSMLMa SMAP pSMLMa SMAP pSMLMa SMAP  

RMSE x (nm) 10.7  ±  0.1 9.6  ±  0.1 24.7  ±  0.2 8.9  ±  0.1 32.0  ±  0.6 37.3  ±  0.7 53.7  ±  2.0 57.1  ±  2.3 
RMSE y (nm) 7.5  ±  0.1 6.5  ±  0.1 16.4  ±  0.1 6.1  ±  0.1 21.1  ±  0.4 23.0  ±  0.5 35.0  ±  1.4 41.0  ±  1.6 
RMSE z (nm) 15.1  ±  0.1 13.5  ±  0.2 34.2  ±  0.3 12.6  ±  0.2 35.6  ±  0.7 36.8  ±  0.8 70.3  ±  2.6 65.8  ±  2.8 
RMSE xyz (nm) 22.9  ±  0.2 20.5  ±  0.2 51.3  ±  0.3 19.0  ±  0.2 60.8  ±  0.8 67.0  ±  1.0 108.2  ±  2.7 110.1  ±  2.6 
Jaccard (%) 76  ±  1.2 61  ±  1.0 63  ±  1.2 65  ±  0.8 26  ±  0.6 21  ±  1.3 22  ±  0.7 5  ±  0.3 
Analysis time (s) 52 196 58 190 9 15 9 16 
Phasor time (s) 1.4  1.4  0.6  0.5  

a Using SMALL-LABS-pSMLM, including loading of .tiff file, excluding intermediate .mat file saving (also see Supplementary Table 1).  
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using standard and astigmatic PSFs. For high-density engineered PSF 
localization approaches, we point to alternative approaches such as 
deep learning [56,57] or matching pursuit [58]. 

We incorporated the novel pSMLM-derivative localization meth
odologies in the SMALL-LABS software [47]. The updated 
SMALL-LABS-pSMLM software package expands the original work with 

Fig. 3. Saddle-point (SP) ct-pSMLM performance. a Computational speed of ct-pSMLM, based on a 23 × 23 × ‘Stack size’ pixel image stack. Shaded area indicates 
the standard deviation. b, c Localization precision of ct-pSMLM, based on simulated saddle-point point spread functions with different intensities (x axis) and 
background noise levels (line types). Lateral localization precision is shown in b, while axial precision is shown in c. d Experimental STORM microtubule network 
analyzed with ct-pSMLM integrated in SMALL-LABS-pSMLM. Inset: Lateral profile of the red boxed outline. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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a user-friendly GUI, wavelet filtering, drift-correction in 3D, and result 
image generation. We believe that the software package strikes an 
excellent balance between fast analysis, accurate results, experimental 
freedom, good expandability, and straightforward installation and 
operation. The software is freely available at https://github.com/ 
HohlbeinLab/SMALL-LABS-pSMLM. 
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