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Abstract
This paper reports a first study exploring genomic prediction for adaptation of
sorghum [Sorghum bicolor (L.) Moench] to drought-stress (D-ET) and nonstress
(W-ET) environment types. The objective was to evaluate the impact of both
modeling genotype × environment interaction (G×E) and accounting for het-
erogeneous variances of marker effects on genomic prediction of parental breed-
ing values for grain yield within and across environment types (ETs). For this
aim, different genetic covariance structures and different weights for individual
markers were investigated in best linear unbiased prediction (BLUP)-based pre-
diction models. The BLUP models used a kinship matrix combining pedigree
and genomic information, termedK-BLUP. The dataset comprised testcross yield
performances under D-ET and W-ET as well as pedigree and genomic data. In
general, modeling G×E increased predictive ability and reduced empirical bias
of genomic predictions for broad adaptation across both ETs vs. models that
ignored G×E by fitting a main genetic effect only. Genomic predictions for spe-
cific adaptation to D-ET or W-ET were also improved by K-BLUP models that
explicitly accommodated G×E and used data from both ETs relative to predic-
tion models that used data from the targeted ET exclusively or models that used
all the data but assumed no G×E. Allowing for heterogeneous marker variances

Abbreviations: AIC, Akaike information criterion; BLUE, best linear unbiased estimate; BLUP, best linear unbiased prediction; D-ET, drought-stress
environment type; DArT, Diversity Arrays Technology; ET, environment type; G×E, genotype × environment interaction; GBS,
genotyping-by-sequencing; GBV, genomic breeding value; GEBV, genomic estimated breeding value; GWAS, genome-wide association study; MET,
multienvironment trial; QTL, quantitative trait loci; SNP, single nucleotide polymorphism; TPE, target population of environment; W-ET, nonstress
environment type.
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through weighted K-BLUP produced clear increments (43–72%) in predictive
ability of genomic prediction for grain yield in all adaptation scenarios. We con-
clude that G×E as well as locus-specific genetic variances should be accommo-
dated in genomic prediction models to improve adaptability of sorghum to vari-
able environmental conditions.

1 INTRODUCTION

Enhanced productivity and adaptability of crops to vari-
able environmental conditions are increasing demands
for sustainable food supply in light of projected global
population growth and climate change (Lesk, Rowhani,
& Ramankutty, 2016; Wiltshire, Kay, Gornall, & Betts,
2013). More frequent drought events and erratic rainfall
are expected to become major factors affecting crop yields
in dryland farming systems (Daryanto, Wang, & Jacinthe,
2017). For that reason, genetic improvement of crops for
adaptation to climatic fluctuations may play a central role
in achieving stable food production in the future.
Plant breeding programs of major field crops rely on

extensivemultienvironment trials (MET) conducted under
dryland conditions with the aim of adequately sampling
environmental variation in a target population of environ-
ments (TPEs)where newvarietieswill be grown. Twomain
breeding strategies have been traditionally considered by
crop breeders when dealing with selection under variable
environments: to select genotypes based on broad adapta-
tion across the entire TPE or to select for specific adap-
tation of genotypes to a targeted subset of environments
within a subdivided TPE. The relative benefit of both
strategies is influenced by the magnitude and repeatabil-
ity of G×E, which will define the effectiveness of selecting
for differential performance of genotypes in the TPE. The
definition of the breeding strategy for adaptation as well
as the implicit possibility of subdividing the TPE are key
analytical challenges that have been thoroughly discussed
in the conventional plant breeding context (e.g., Atlin,
Kleinknecht, Singh, & Piepho, 2011; Cooper & Hammer,
1996; Piepho & Möhring, 2005). The same challenges are
renewed from the genomic selection perspective (Heslot,
Jannink, & Sorrells, 2015; Malosetti, Bustos-Korts, Boer, &
van Eeuwijk, 2016). In this case, important questions are
(a) how to stratify the TPE, (b) how to use this stratifica-
tion to design the training sets, and (c) how to model of
G×E for improved genomic predictions of broad and spe-
cific adaptation. These topics are addressed in the present
article through investigating prediction for adaptation of
sorghum to drought and well-watered environments in
Australia.

Sorghum is amajor global crop particularlywell adapted
to risky production environments where marginal and
unstable rainfall patterns are likely to occur. In the Aus-
tralian cropping region, seasonal variation in water sup-
ply is the main cause of yield variability, typically associ-
atedwith inconsistent patterns of G×E (Chapman, Cooper,
Hammer, & Butler, 2000; Hammer et al., 2014). This fact
has traditionally favored selection strategies focused on
improving for broadly adapted genotypes (Borrell, Jordan,
Mullet, Henzell, & Hammer, 2006; Cooper & Hammer,
1996). Attempts to increase predictability of G×E patterns
can be based on the explicit use of environmental data
as covariates to model genotypic responses (e.g., Heslot,
Akdemir, Sorrells, & Jannink, 2014; van Eeuwijk, Denis, &
Kang, 1996). An alternative strategy is to rely on environ-
mental information to define specific ETs and use these to
classify trials sampling a TPE. Chapman et al. (2000) and
Hammer et al. (2014) applied this approach in sorghum
to characterize the intensity and timing of water limita-
tion within the TPE by using crop simulation models.
The authors suggested that selection strategies to improve
adaptation should be based on ETs rather than geographic
locations.
Postflowering water deficit is the most common and

critical type of drought affecting sorghum yield in Aus-
tralia and worldwide (Hammer et al., 2014; Jordan,
Hunt, Cruickshank, Borrell, & Henzell, 2012). This lim-
iting condition triggers the phenotypic expression of
a drought-adaptation mechanism known as stay-green,
which emerges as the ability of some genotypes to retain
active green leaves under drought stress during grain fill-
ing (Borrell et al., 2014a). Accordingly, themanifestation of
stay-green phenotype in sorghum can be seen as an inte-
gral indicator of terminal water deficit conditions occur-
ring in a specific environment. In our study, we used the
presence or absence of stay-green expression to classify tri-
als as two distinct types of environment within the TPE:
postflowering D-ET or W-ET, respectively. This stratifica-
tion of the TPE was then applied to evaluate genomic pre-
dictions according to three hypothetical breeding targets:
specific adaptation to terminal water-stress environments,
specific adaptation to nonstress environments and broad
adaptation across both types of environments.
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An efficient analysis of MET data is essential for
informed assessment of G×E and for accurate estima-
tion of broad and specific adaptation in plant breeding.
Many modeling approaches have been proposed during
the last decades for the analysis of MET in crop breed-
ing (as reviewed by, e.g., DeLacy, Basford, Cooper, Bull, &
McLaren, 1996; Smith, Cullis, & Thompson, 2005). Statis-
tical methods accounting for G×E have been updated to
incorporate the increasing availability of genetic marker
information. Mixed models accounting for marker × envi-
ronment interaction were initially used in crops for iden-
tification of quantitative trait loci (QTL) with across-
and within-environment effects (Boer et al., 2007; van
Eeuwijk, Bink, Chenu, & Chapman, 2010). In the frame-
work of genomic selection, a BLUP method using marker-
based relationships, termed G-BLUP (VanRaden, 2008),
has been applied to model G×E in wheat (Triticum aes-
tivum L.) breeding (Burgueño, de los Campos, Weigel, &
Crossa, 2012; Lopez-Cruz et al., 2015; Oakey et al., 2016).
Methods for multienvironment genomic prediction have
been also developed within semiparametric and Bayesian
approaches (Cuevas et al., 2016; 2017).
The G-BLUPmodels are commonly used in plant breed-

ing because they are simple to implement and produce
competitive results for prediction of complex quantitative
traits (Gianola,Weigel, Krämer, Stella, & Schön, 2014; Hes-
lot, Yang, Sorrells, & Jannink, 2012). However, its predic-
tive performance is expected to decline when genetic con-
trol of the target trait departs from an infinitesimal model
since G-BLUP assumes equal variance for all marker
effects. Bayesian methods can relax this assumption by
allowing unequal variances across the genome but at the
expenses of important increases in computational burden
and predictions that are sensitive to prior specification
(Lehermeier et al., 2012). An alternative to combine bene-
fits of bothmethodologies is to apply a BLUP-based predic-
tionmodel that allows for unequal variances of SNP effects.
This can be attained by incorporating weights for single
nucleotide polymorphism (SNP) effects in the genomic
relationshipmatrix. The SNPweighting approach has been
implemented for genomic prediction in the animal breed-
ing context (Su, Christensen, Janss, & Lund, 2014; Wang,
Misztal, Aguilar, Legarra, & Muir, 2012; Zhang et al., 2010;
Zhang, Lourenco, Aguilar, Legarra, &Misztal, 2016). How-
ever, studies evaluating its potential for plant breeding
applications are still lacking. Here, we use a SNPweighting
method based on BLUP to account for locus-specific vari-
ances of marker effects for grain yield across and within
ETs.
The objective of this research was to evaluate the effec-

tiveness of modeling genotype × ET interaction and of
accounting for heterogeneous variances of SNP effects to

improve genomic prediction of parental breeding values
for broad and specific adaptation in sorghum.

2 MATERIALS ANDMETHODS

2.1 Experimental data

The phenotypic data used in this research comprised
testcross evaluations of 603 female parental lines. These
were evaluated in hybrid combination with male testers
across 26 field trials covering 12 locations during a period
of 7 yr. The female lines are developed by the sorghum
germplasm enhancement program of the University of
Queensland and the Queensland’s Department of Agricul-
ture and Fisheries in Australia, which licenses these lines
to commercial breeding programs to be used as breeding
material or as hybrid parents. The MET dataset was con-
sidered to be representative of environmental conditions
experienced by the main sorghum production region in
Australia and defined here as the TPE. In all trials where
phenotypic variation for the stay-green trait was observed,
it was visually rated on a 1-to-9 scale atmaturity. The scores
assessed the percentage of the canopy death with a score
of 1 representing plots with 90–100% of the plant canopy
being alive and a score of 9 representing plots with 90–
100% of the plant being dead. Previous studies have shown
leaf senescence to be highly correlated with the degree of
postflowering drought stress experienced by the plant. This
information was used in our study as an environmental
descriptor to subdivide the MET dataset according to two
distinct ETs within the TPE: postflowering D-ET for trials
where stay-green was expressed andW-ET for trials where
no expression of stay-green was observed. In the present
series of trials, nine were classified as D-ET and 15 as W-
ET. The trials under D-ET conditions occurred in 5 of the
7 yr at seven different locations. The mean grain yield in
D-ET trials was 24% lower than in W-ET trials, 4.5 vs 5.9 t
ha−1, respectively. Similar levels of yield reduction caused
by drought have been reported for rice (Oryza sativaL.) and
wheat in a meta-analysis study (Zhang et al., 2018). All the
lines were tested under both ETs with different levels of
replication because of data imbalance. Further details on
the general structure of the dataset can be found in Velazco
et al. (2019b).
All female lines were genotyped using an integrated

Diversity Arrays Technology (DArT) and genotyping-
by-sequencing (GBS) methodology involving complex-
ity reduction of the genomic DNA to remove repetitive
sequences usingmethylation sensitive restriction enzymes
prior to sequencing on next-generation sequencing plat-
forms (DArT, www.diversityarrays.com). The sequence

http://www.diversityarrays.com
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data generated were then aligned to the most recent ver-
sion (v3.1.1) of the sorghum reference genome sequence
(McCormick et al., 2018; Paterson et al., 2009) to identify
SNPs. After running standard quality filtering of SNP data
for minor allele frequency (<2.5%), missing values (>20%),
and imputation, genotypes on 4782 SNP evenly spaced
markers remained for the analyses. In addition to genomic
data, genealogical information tracing back 28 generations
was available for all the lines from deep pedigree data.

2.2 Phenotype analysis

Prior to the implementation of genomic prediction mod-
els, field plot data from the testcross progeny trials were
analyzed using a two-stage approach to estimate adjusted
line means in each ET (D-ET and W-ET). Spatial analysis
of each field experiment in the first stage was performed
as described in Velazco et al. (2019b). In the second stage,
spatially adjusted best linear unbiased estimates (BLUEs)
of testcross hybrid means from individual trials were com-
bined for analysis using the following model:

𝑦𝑖𝑗𝑘𝑙 = μ𝑗 + LE𝑖𝑗 + ME𝑘𝑗 + LME𝑖𝑘𝑗 + T(E)𝑙(𝑗)

+ LT(E)𝑖𝑙(𝑗) + MT(E)𝑘𝑙(𝑗) + LMT(E)𝑖𝑘𝑙(𝑗) (1)

where yijkl is the spatially adjusted BLUE for grain yield
of the ith line crossed with the kth tester in the lth trial
belonging to the jth ET, μj is the general mean for the jth
ET, LEij is the effect of the ith line in the jth ET, MEkj is the
effect of the kth male tester in the jth ET, LMEikj is the ikth
line-by-tester cross effect in the jth ET, T(E)l(j) is the effect
of the lth trial nested within the jth ET, LT(E)il(j) is the ilth
line × trial interaction effect within the jth ET, MT(E)kl(j)
is the klth tester × trial interaction effect within the jth ET,
and LMT(E)ikl(j) is the iklth line × tester × trial interaction
effect within the jth ET. All the effects were considered as
fixed except for T(E) and all its interactions, which were
assumed random and independent normally distributed
with zero mean. Heterogeneous variances across ETs were
allowed for the random effects. Even though lines are con-
ceptually random, they were taken a fixed at this stage to
avoid double shrinkage of line effects in the genomic pre-
diction stage.

2.3 Genomic prediction models

Genomic predictions for broad adaptation across ETs
and for specific adaptation within ETs were performed
with BLUP models differing in the genetic covariance
matrix between ETs and in the weights used to build the

environment-dependent relationship matrix among lines.
The general model formulation is as follows:

𝐲 = 𝐗𝛍 + 𝐙𝑔𝐠 + 𝐞 (2)

where y = (yʹD, yʹW)ʹ is a vector of line BLUEs for yield
under D-ET and W-ET from the combined analysis with
model (1); X is an incidence matrix for ET-specific general
means μ= (μD, μW)ʹ; g= (gʹD, gʹW)ʹ is amultienvironment
vector of total additive genetic effects or genomic estimated
breeding values (GEBVs), with corresponding incidence
matrixZg relating y to g; and e is a vector of random residu-
als distributed as e∼N(0,R), whereR is a diagonal matrix
with elements computed as in Smith, Cullis, and Gilmour
(2001). This matrix accounts for differences in reliability of
estimated line means in each ET resulting from within-ET
variance heterogeneity and unequal number of testers and
trials used in line evaluation. The distribution of total addi-
tive genetic effects for individual ETs was assumed to fol-
low a separable form as g∼N (0,ΣE⊗KE), whereΣE is the
genetic variance–covariancematrix betweenETs,KE is the
environment-dependent kinship matrix among lines, and
⊗ is the Kronecker product operator. The forms of ΣE and
the derivations ofKE are described below.

2.3.1 Structures for matrix ΣE

Thematrix ΣE, of order two-by-two, has diagonal elements
representing the genetic variances within each ET and the
off-diagonal elements representing the genetic covariance
between both ETs. In order to assess the effect of modeling
genotype × ET interaction on genomic predictions, four
models assuming different structures for ΣE were consid-
ered:

Model G: genetic effects were modeled using ΣEσ2g,
whereΣE is amatrix with all ones and σ2g represents
the common genetic variance for both ETs, which
is also the covariance between ETs. This model is
equivalent to fitting a main line effect across all tri-
als, ignoring line × ET interactions, that is, assum-
ing that the TPE is not subdivided into ETs.

Model GE: using a uniform or compound symmetry
structure for ΣE, which assumes the same genetic
variance in both ETs and a distinct term for the
genetic covariance between ETs. This model is
equivalent to the standard variance component
model with amain line effect plus a line × ET inter-
action effect.

Model GEH: a more general formulation of model
GE using an unstructured form for ΣE, which also
assumes genetic covariance between ETs but, in



2332 Velazco et al.Crop Science

this case, allowing for heterogeneous genetic vari-
ances across ETs. This parameterization enables the
most flexible modeling of genotype × ET interac-
tion.

Model ID: using a diagonal structure with heteroge-
neous variances for ΣE, which allows for a distinct
genetic variance in each ET but not for genetic
covariance between ETs. This model assumes inde-
pendence of line effects between ETs and is analo-
gous to conducting a separate analysis for each ET.
The IDmodel was considered only for genomic pre-
diction of specific adaptation to a targeted ET.

2.3.2 Computation of environment-
dependent kinship matrices KE

In this study, we used estimated variances of individual
SNP effects for grain yield within D-ET, within W-ET, and
across both ETs to build three different kinship matrices:
KD, KW and KB, respectively. These relationship matrices
are environment dependent since each one contains infor-
mation derived from a particular adaptation environment.
The kinship matrix KE (with E = D, W, B) combines pedi-
gree and genomic information in the following form:

𝐊E = 𝑤𝐀 + (1 − 𝑤)𝐆E (3)

where A is the numerator relationship matrix among
lines based on the full pedigree, 𝐆E is an environment-
dependent genomic relationship matrix computed from
the SNP marker data, and the parameter 𝑤 represents
the proportion of total additive genetic variance that is
not captured by SNPs and is accounted for by genealogi-
cal information contained in A. Under the BLUP method
using this merged pedigree–genomic matrix, denoted K-
BLUP, the value of 𝑤 is empirically determined based on
cross-validation in order to optimize predictive ability (see
Velazco et al., 2019b for details). Based on results from the
latter study for grain yield prediction, we used 𝑤 = 0.6 for
the present research.
The genomic matrix GE used to construct KE was com-

puted according to VanRaden (2008):

𝐆E = 𝐙𝐃E𝐙λ (4)

where λ = 1∕(2
∑
𝑝𝑖(1 − 𝑝𝑖)) is a scaling factor based on

the minor allele frequency pi of SNP i summed over all
loci, Z is a matrix of centered genotypes for each line,
and DE is a diagonal matrix of weights for the variances
explained by each SNP in a particular environmental con-
text. The environment-dependent SNPweights included in
DE were derived from (purely) genomic breeding values

F IGURE 1 Proportion (%) of the total genetic variance captured
by each single nucleotide polymorphism (SNP) for grain yield across
environmental types (ETs)

(GBVs) of all lines within D-ET (�̃�D), within W-ET (�̃�W),
or across both ETs (�̃�B), where �̃�B = 0.5�̃�D + 0.5�̃�W.
For this derivation, we applied the procedure proposed by
Wang et al. (2012), which can be generally described (for E
= D, W, B) as follows:

(a) Environment-dependent GBVs (�̃�E) were predicted
with conventional G-BLUP by fitting an unweighted
matrix, termedG, which was computed using an iden-
tity matrix I instead of DE in (4);

(b) Predicted SNP effects (�̃�E) were derived from �̃�E as:
�̃�E = λ𝐈𝐙′𝐆−1�̃�E;

(c) Individual variances of SNP effects (σ̃2𝑢𝑖,𝐸 ) were then
estimated as: σ̃2𝑢𝑖,𝐸 = �̃�2

𝑖𝐸
2𝑝𝑖(1 − 𝑝𝑖);

(d) SNP variances were standardized and used to build
DE.

Accordingly, the obtained weighting matrices DD, DW,
andDB were used as in (4) for computation of correspond-
ing genomic matrices GD, GW, and GB, and these were
finally included in (3) to build KD, KW, and KB, respec-
tively.
According to Wang et al. (2012), weights can be recom-

puted in order to optimize predictions by iterating either on
SNP effects alone [i.e., by looping to step (b)] or on GBVs
and SNP effects [i.e., by looping to step (a)]. We obtained
optimal model performances using SNP weights from the
first iteration and these are the predictive results reported
in our study. For illustration purpose, the individual SNP
variances used asweights in the computation ofGB are rep-
resented graphically in Figure 1.
To evaluate the impact of accounting for heterogeneous

SNP variances,we also considered predictions based on the
unweighted kinship matrix, denoted simply as K, which
was formed using the unweighted G matrix—by setting



Velazco et al. 2333Crop Science

DE = I. Note that the use of this genomic matrix implies
that all SNPs are assumed to explain the same amount of
genetic variance, which is equivalent to the conventional
G-BLUP based on the first method of VanRaden (2008).
Narrow-sense heritability of grain yield in each ET was

estimated for the different models as the ratio of additive-
genetic variance to total variance. These estimates are
approximations of the true unknown heritabilities and are
presented in this study only as a measure of the ability of
the models to capture genetic variation. Additive-genetic
correlations between ETs were computed for each model
as the Pearson’s correlation coefficient using the estimated
genetic variances and covariances. Additionally, the good-
ness of fit of the models was assessed using the Akaike
information criterion (AIC).

2.4 Evaluation of genomic prediction
for broad and specific adaptation

Genomic predictionmodels were evaluated through cross-
validation technique, where the realized genotypic values
of lines (y) were used as predictands to validate GEBVs
(�̃�). Validation of predictions was framed in terms of the
different breeding objectives for adaptation, where the tar-
get genetic values were either yD or yW when selecting for
specific adaptation and yB when selecting for broad adap-
tation, with yB = 0.5yD + 0.5yW being the overall mean
across both ETs. Accordingly, the selection targets yD, yW,
and yB were predicted by the respective GEBVs �̃�D, �̃�W
and �̃�B. The GEBVs in �̃�B are given directly by model G,
whereas they were obtained as �̃�B = 0.5�̃�D + 0.5�̃�W for the
other models. Note that yB and �̃�B were computed in the
form of a selection index for broad adaptation by combing
line performances in each ET (Kelly, Smith, Eccleston, &
Cullis, 2007; Piepho & Möhring, 2005). In this study, we
used the same relative index weight of 0.5 for both ETs.
We implemented a five-fold cross-validation scheme

where data of multienvironment yield performance from
the 80% of randomly sampled lines formed the training set,
while data from the remaining 20% of lines were retained
as validation set. This partitioning of the data corresponds
to a model evaluation for genomic prediction of new lines,
which have not been field-tested yet. Prediction models
were compared on the basis of predictive ability and unbi-
asedness of predictions in the validation set. Predictive
ability was calculated as the correlation between GEBVs
and realized genotypic values. Empirical bias of genomic
predictions was determined as the regression coefficient
of realized genotypic values on GEBVs. For each predic-
tion scenario, we present average results over 20 random
replications of the cross-validation scheme. TheHotelling–
Williams t-test for dependent correlations (Steiger, 1980)

was applied to determine statistical differences in predic-
tive ability for pairwise comparisons among prediction
models.

2.5 Data analysis software

All analyses were implemented within the R environment
(R Core Team, 2019). Spatial analysis of individual tri-
als was performed under the REML-based mixed model
framework using the freely available R-package SpATS
(Rodríguez-Álvarez, Boer, Eilers, & van Eeuwijk, 2018).
Phenotypic and genomic multienvironment analyses were
implemented with the mixed model package ASReml-R
(Butler, Cullis, Gilmour, Gogel, & Thompson, 2017).

3 RESULTS

3.1 Parameter estimates and model fits

Table 1 presents estimates of heritabilities for each ET,
genetic correlations between ETs, and goodness of fit val-
ues from the K-BLUP models considered in this study.
Independent of the kinship matrix used, the model

allowing estimation of a separate genetic variance for each
ET and genetic correlation between ETs (model GEH) gave
better fits than models imposing equal genetic variances
across ETs (models G and GE) or assuming genetic inde-
pendence between ETs (model ID). According to the best-
fitting model GEH, grain yield heritability in D-ET was
higher than in W-ET and genetic performances of lines
in both ETs were highly correlated (rg = 0.95–0.97) for all
kinship matrices. The use of environment-dependent SNP
weights caused important improvements in goodness of fit
for all structures of ΣE, as reflected by marked decreases
in AIC values. However, small changes in parameter esti-
mates from the different models were produced by weight-
ing the kinshipmatrix, withmore pronounced variation in
estimated heritabilities only in the case of model ID.

3.2 Genomic prediction for broad
adaptation

Predictive ability and empirical bias of genomic predic-
tions for broad adaptation across ETs are shown in Table 2.
In general, models GE and GEH improved predictive
ability compared with model G, which ignores the strat-
ification of the TPE for prediction of broadly adapted
genotypes. These improvements were always significant
(p < .05) and slightly magnified when weighted kinship
matrices were used, representing a mean relative increase
of 10% in predictive ability. More important and highly
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TABLE 1 Grain yield heritability estimates (h2) for drought (D-ET) and water-sufficient (W-ET) environmental types, additive genetic
correlations between D-ET and W-ET (rg) and Akaike information criterion (AIC) values from K-BLUP models using different kinship
matrices and genetic covariance structures between ETs

h2
Kinship matrixa Modelb D-ET W-ET rg AICc

K G 0.47 0.47 1.00 244
GE 0.50 0.50 0.94 240
GEH 0.63 0.41 0.97 221
ID 0.53 0.23 0.00 302

KB G 0.43 0.43 1.00 57
GE 0.48 0.48 0.90 39
GEH 0.60 0.36 0.95 8
ID 0.57 0.31 0.00 106

KD G 0.46 0.46 1.00 59
GE 0.51 0.51 0.90 36
GEH 0.63 0.38 0.96 0
ID 0.60 0.32 0.00 111

KW G 0.46 0.46 1.00 56
GE 0.51 0.51 0.91 37
GEH 0.63 0.38 0.96 1
ID 0.61 0.32 0.00 108

aK, unweighted kinship matrix;KB,KD,KW, kinship matrices weighted by estimated variances of individual SNP effects across both ETs, within drought ET, and
within water-sufficient ET, respectively.
bG, fitting amain genetic effect across ETs; GE andGEH, fitting a genotype×ET effect with common and heterogeneous genetic variances across ETs, respectively;
ID, fitting independent genetic effects across ETs.
cExpressed as differences relative to the best-fitting model (with AIC = 0).

TABLE 2 Predictive ability and empirical bias (regression coefficient) of genomic predictions for broad adaptation across drought and
water-sufficient environmental types (ETs), obtained from K-BLUP models using different kinship matrices and genetic covariance structures
between ETs. Mean values over 20 replicates of a five-fold cross-validation scheme

Kinship matrixb

Modela K KB KD KW Mean
Predictive ability
G 0.342 0.537 0.547 0.549 0.494
GE 0.364 0.591 0.600 0.602 0.539
GEH 0.374 0.592 0.605 0.607 0.545
Mean 0.359 0.573 0.584 0.586 –

Empirical bias
G 0.993 1.177 1.189 1.189 1.137
GE 0.735 0.931 0.928 0.931 0.881
GEH 0.816 1.052 1.043 1.045 0.989
Mean 0.848 1.054 1.053 1.055 –

aG, fitting amain genetic effect across ETs; GE andGEH, fitting a genotype× ET effect with common and heterogeneous genetic variances across ETs, respectively.
bK, unweighted kinship matrix;KB,KD,KW, kinship matrices weighted by estimated variances of individual SNP effects across both ETs, within drought ET, and
within water-sufficient ET, respectively.

significant gains in predictive ability (p < .001) were gen-
erally achieved by weighting the kinship matrix for indi-
vidual SNP effects, with an average increment of 62%
across models of ΣE. The K-BLUP models incorporating

marker effect information from a specific ET—throughKD
or KW—tended to produce marginally better results than
models using across-ETs marker information—through
KB— although these differences were not significant.
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TABLE 3 Predictive ability and empirical bias (regression coefficient) of genomic predictions for specific adaptation to drought
environmental type (D-ET), obtained from different K-BLUP models using different kinship matrices and genetic covariance structures
between ETs. Mean values over 20 replicates of a five-fold cross-validation scheme

Kinship matrixb

Modela K KB KD KW Mean
Predictive ability
G 0.265 0.468 0.485 0.479 0.424
GE 0.325 0.548 0.563 0.559 0.498
GEH 0.324 0.544 0.562 0.558 0.497
ID 0.317 0.538 0.555 0.551 0.490
Mean 0.308 0.524 0.541 0.537 –

Empirical bias
G 1.040 1.386 1.425 1.403 1.314
GE 0.828 1.039 1.046 1.047 0.990
GEH 0.783 1.043 1.035 1.032 0.973
ID 0.800 1.081 1.071 1.065 1.004
Mean 0.863 1.137 1.144 1.137 –

aG, fitting amain genetic effect across ETs; GE andGEH, fitting a genotype× ET effect with common and heterogeneous genetic variances across ETs, respectively.
bK, unweighted kinship matrix;KB,KD,KW, kinship matrices weighted by estimated variances of individual SNP effects across both ETs, within drought ET, and
within water-sufficient ET, respectively.

Almost unbiased genomic predictions were obtained by
model G using the unweighted K, while models GE and
GEH with the same kinship matrix increased bias and led
to overestimation or inflation of GEBVs, as indicated by
regression coefficients lower than 1 (Table 2). Accounting
for heterogeneous SNP variances withmatricesKB,KD, or
KW reduced bias of GEBVs for both GE and GEH models
and removed inflation of predictions for the latter. Finally,
differences in regression coefficients for a specificmodel of
ΣE were very small among weighted kinship matrices.

3.3 Genomic prediction for specific
adaptation

Table 3 shows the results on model performance for spe-
cific genomic predictions within D-ET. Overall GEBVs
across ETs obtained from model G always gave the lowest
predictive abilities for specific adaptation to D-ET, inde-
pendently of the applied kinship matrix. Models GE and
GEH, which explicitly account for genotype × ET inter-
action and produce ET-specific GEBVs, resulted in signifi-
cant increments of predictive ability in D-ET (p< .01), rep-
resenting an average improvement of 17% relative to model
G. Even though model ID made use only of D-ET data for
training and prediction, its predictive abilities were signif-
icantly higher than those of model G (p < .01) and lower
but statistically comparable to models GE and GEH when
using the same kinshipmatrix. A general increment of 72%
was obtained in predictive ability for D-ET by applying
SNP-specificweights inK-BLUP vs. themean performance

of models based on the original matrix K. The use of dif-
ferent sets of weights did not cause significant differences
in predictive ability between models, although weighting
specifically for SNP effects in D-ET gave generally better
results.
Model G gave less-biased GEBVs relative to other struc-

tures of ΣE when unweighted K-BLUP was used to pre-
dict yield in D-ET (Table 3). However, GEBVs from this
model showed the largest biases under weighted K-BLUP
and resulted in marked under prediction of line perfor-
mances. In contrast, the use of weighted kinship matrices
in models GE, GEH, and ID reduced bias and eliminated
inflation of genomic predictions for D-ET.
When specific adaptation to W-ET was the target of

prediction, the performances of different models for ΣE
were statistically similar in terms of predictive ability if the
unweightedKwas fitted (Table 4). Differences were signif-
icant only between models ID and GEH (p < .05) under
weighted K-BLUP. In contrast to results for D-ET, predic-
tive abilities of K-BLUP using model G were not signifi-
cantly different from those of the models producing ET-
specific GEBVs, while model ID gave the lowest predictive
abilities for W-ET with all kinship matrices. In line with
the findings on prediction for broad adaptation and for spe-
cific adaptation to D-ET, differences in predictive ability
between weighted and unweighted K-BLUP models were
highly significant for yield prediction inW-ET. The average
improvement rate was 43% in this case, lower than for the
other prediction scenarios. Predictive abilities were gener-
ally higher when the marker information used to scale the
kinship matrix was derived from the same W-ET. For this
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TABLE 4 Predictive ability and empirical bias (regression coefficient) of genomic predictions for specific adaptation to water-sufficient
environmental type (W-ET), obtained from different K-BLUP models using different kinship matrices and genetic covariance structures
between ETs. Mean values over 20 replicates of a five-fold cross-validation scheme

Kinship matrixb

Modela K KB KD KW Mean
Predictive ability
G 0.309 0.422 0.419 0.430 0.395
GE 0.295 0.434 0.430 0.438 0.399
GEH 0.296 0.438 0.441 0.450 0.406
ID 0.284 0.400 0.390 0.403 0.369
Mean 0.296 0.424 0.420 0.430 –

Empirical bias
G 0.930 0.960 0.945 0.966 0.950
GE 0.646 0.774 0.752 0.760 0.733
GEH 0.874 1.068 1.055 1.066 1.016
ID 1.148 1.164 1.141 1.151 1.151
Mean 0.900 0.991 0.973 0.986 –

aG, fitting amain genetic effect across ETs; GE andGEH, fitting a genotype× ET effect with common and heterogeneous genetic variances across ETs, respectively.
bK, unweighted kinship matrix;KB,KD,KW, kinship matrices weighted by estimated variances of individual SNP effects across both ETs, within drought ET, and
within water-sufficient ET, respectively.

targeted ET, predictive ability of genomic predictions was
optimal with K-BLUP fittingKW and model GEH.
As shown in Table 4, regression coefficients frommodel

G were always the closest to 1, although this model caused
inflation of GEBVs for W-ET in all cases. Accounting for
genotype × ET interaction with model GE resulted in even
stronger inflation. However, this problem was diminished
by accommodating heterogeneous genetic variances for
individual ETswithmodel GEH. Empirical bias was gener-
ally lower formost K-BLUPmodels accommodating locus-
specific variances, with the combined use of matrix KD
and model GEH giving the most unbiased and not inflated
genomic predictions in W-ET.

4 DISCUSSION

This study investigated the ability of different genomic
models to predict multienvironment GEBVs of sorghum
parental lines for grain yield by evaluating testcross
hybrid performances under drought-stress and nonstress
environments. Models considered here for multienviron-
ment genomic evaluation accommodated different genetic
covariance structures to model G×E and accounted for
homogeneous or heterogeneous variances of individual
SNP effects while incorporating additional information
frompedigree data. These featureswere fully implemented
within a unified BLUP-based framework.
Previous genomic selection studies in sorghum have

focused either on within-trial (Hunt, van Eeuwijk, Mace,
Hayes, & Jordan, 2018) or on across-trial predictions

(Velazco et al., 2019a; 2019b). This has been the common
approach in other crops as well (e.g., Albrecht et al., 2014;
Burgueño et al., 2012; Oakey et al., 2016). For the present
research, we adopted an alternative approach where the
MET series sampling the TPE was stratified according to
two types of environments (or megaenvironments), D-ET
and W-ET, and each one of these was assumed to be rep-
resented by a random sample of trials. Accordingly, our
study focused on multienvironment GEBVs that are con-
ditioned on the ETs. In the terms discussed by McLean,
Sanders, and Stroup (1991), these predictors are then appli-
cable to an intermediate inference space, which is broader
than the narrow inference space of within-trial predic-
tions. At the same time, our intermediate space GEBVs
apply to a narrower inference space relative to the more
global across-trial predictions. Nevertheless, the obtained
ET-specific genomic predictions result more informative
since they make direct reference to the targets of adap-
tation studied. Many studies have investigated the effects
of modeling G×E in the context of GP, but none had yet
reportedly compared broad vs specific adaptation strate-
gies.

4.1 Impact of modeling genotype ×
environmental type interaction

Genomic analysis indicated that the most realistic descrip-
tions of the genetic covariance between ETs were obtained
using the unstructured matrix of model GEH (Table 1).
This covariance model revealed that line performances
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under D-ET were genetically more informative than
under W-ET, as reflected by the differences in within-
ET heritabilities. A possible explanation for differences
in heritability is that in terminal-stress environments, the
additive-genetic variation of grain yield in the testcross
hybrids is magnified as a consequence of the genetic vari-
ability in stay-green expression among hybrids. This would
not be the case under adequate water conditions, where
genetic differences in stay-green are expected to have no
impact on yield. In addition, the best-fitting model of ΣE
indicated that additive-genetic effects for yield in both ETs
were highly and positively correlated. These results may
indicate that most of the genetic variation for yield in wet
environments is also contributing to yield under drought
environments but with additional genetic variability in the
latter case resulting from varying drought adaptation of
genotypes. Previous studies by Jordan et al. (2012) and Bor-
rell et al. (2014b) suggested that stay-green trait had limited
or no penalty on yield under water-sufficient conditions,
whichwould be in linewith the consistency of yield perfor-
mance across ETs found in our study. It should be noted,
however, that the high genetic correlation between D-ET
andW-ETmay be partly a consequence of the environmen-
tal classification used. Given that for this research trials
were grouped considering only the presence or absence of
stay-green, D-ET may include trials where the stay-green
phenotype was scored but the levels of drought stress were
insufficient to cause changes in genotype rankings for yield
with respect to nonstress environments. The genetic cor-
relation between ETs is expected to be lower if D-ET is
defined only by trials where stay-green expression is a clear
determinant of genetic differences in yield.
From a practical perspective, the presence of strong

genetic correlation between ETs also implies the possibil-
ity of exploiting across-ET information for genomic predic-
tion. When considering prediction for broad adaptation,
our result showed that accommodating genotype-by-ET
interaction through models GE or GEH improved predic-
tive ability relative to modeling only a main genetic effect
across ETs, as with model G (Table 2). These improve-
ments for across-environment prediction of untested lines
are similar in magnitude to those previously reported in
barley (Hordeum vulgare L.) using pure genomic models
(Malosetti et al., 2016) and slightly better than those found
in wheat using equivalent models that combined pedi-
gree and marker information (Burgueño et al., 2012; Suku-
maran, Crossa, Jarquin, Lopes, & Reynolds, 2017). Besides
predictive ability, we also considered the empirical bias of
predictions since this measuremay indicate the systematic
tendency of a model to under- or overpredict GEBVs in a
specific environment, with overprediction or inflation of
GEBVs being particularly detrimental for genetic gain in
the long term (Aguilar et al., 2010; Velazco et al., 2019a).

Our study showed that the best combinations of predictive
ability and unbiasedness were generally achieved when
genotype× ET interaction and heterogeneous genetic vari-
ances across ETs were accommodated in K-BLUP mod-
els. Collectively, these results suggest that even when the
genetic correlation between ETs was high, accounting for
a subdivided TPE in genomic analysis might be a better
strategy than ignoring this subdivisionwhen targeting pre-
diction of broadly adapted sorghum lines. In agreement
with our findings, Piepho andMöhring (2005) also demon-
strated that considering a stratified TPE in BLUP models
can maximize the expected response to selection for broad
adaptation even when the G×E component is not large.
For prediction of specific adaptation, the relative per-

formance of K-BLUP models varied according to the tar-
geted ET. The main contrasts in predictive performance
were observed between model G and model ID, with the
latter outperforming the former in D-ET and the opposite
occurring inW-ET (Tables 2 and 3). The reason for thismay
be thatmodel ID uses only data from the target ET as train-
ing set, while model G uses data from both ETs, assuming
that all the data are equally informative for prediction in
the targeted ET. Therefore, in the case of prediction for D-
ET, GEBVs frommodel IDwere exclusively based on train-
ing data from the genetically more informative ET. In con-
trast, GEBVs from model G were also based on the low-
heritability data from W-ET, which seemed to deteriorate
predictions for D-ET. For the same reason, predictions in
W-ET benefited by borrowing genetic signal from the high-
heritability D-ET data with model G, as opposed to predic-
tions that were exclusively derived from the less informa-
tive W-ET data using model ID. Besides these two alterna-
tive models, we found that models GE or GEHwere gener-
ally better options to improve specific predictions for both
ETs. The superiority in performance may be explained by
how these models combine information from both ETs to
assist prediction in the targeted ET by applying an opti-
mal weighting of the training data. The weighting pro-
cedure, which is inherent in BLUP-based estimation, has
been cleverly described by Piepho and Möhring (2005) for
the context of prediction within a subdivided TPE. In our
case, theweights depended on the amount of genetic infor-
mation provided by each ET, which was determined by
the heritabilities in individual ETs and the genetic correla-
tion between ETs. Piepho andMöhring (2005) showed that
applying this automatic weighting—by contemplating a
subdivided TPE in BLUP analysis—increased the expected
response to selection for specific adaptation when com-
pared with models that use all the data but ignore the sub-
division (as with our model G) or models that use only
data from the targeted environment (as with our model
ID). Their expectations were corroborated empirically in
the present study when inspecting predictive ability and
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bias of multienvironment genomic predictions. In addi-
tion, our results demonstrate that the benefits of using
multienvironmentmodels over genetic main effect models
also depend on the difference in genetic information con-
tent between the target and the nontarget environments
and not only on the genetic correlation between environ-
ments, as previously suggested byAtlin, Baker,McRae, and
Lu (2000) and Dawson et al. (2013).
In our study, prediction for broad adaptation was based

on a selection index that gave the same relative weight
of 0.5 to both ETs, implying that the line’s testcross per-
formances under postflowering drought and nondrought
conditions are equally important for the breeder. However,
these index weights could differ between ETs according
to informed selection decisions. For instance, the weights
could be defined considering information on long-term
frequency of drought events within a particular TPE (Atlin
et al., 2011) or on economic risk assessment of drought-
related yield loss (Zhang et al., 2019). Jordan et al. (2012)
suggested that selecting for yield under terminal drought
may be broadly beneficial for improving sorghum yield in
Australia. This implies that more relative weight should
be given to D-ET when targeting broad adaptation. Even
though the definition of user-supplied weights is beyond
the scope of the present research, it should be noted that,
as previously mentioned, a higher weight is automatically
given to D-ET data in our case by the K-BLUP models
accommodating genotype × ET interaction.
Finally, the delineation of ETs in our study was based

on a direct indicator of water stress experienced by the
crop in extensive unmanaged field trials. It is important
to mention, however, that the complementation with indi-
rect environmental indicators of drought patterns (Bustos-
Korts et al., 2019; Chenu et al., 2011) as well as with
managed drought screening (Cooper, Gho, Leafgren, Tang,
& Messina, 2014) could be helpful to better define ETs
and optimize selection. Moreover, when environmental
variables are available, this information can be exploited
directly by genomic models to predict not only for new
lines but also for new environments (Malosetti et al., 2016;
van Eeuwijk et al., 2019).

4.2 Impact of accounting for
heterogeneous SNP variances

This is the first study in plant breeding that explores how
accounting for the genetic variance captured by each SNP
in BLUP models can affect the quality of genomic predic-
tions. We derived weights for locus-specific variances from
GBVs of lines using the procedure of Wang et al. (2012).
These weights were then used to obtain GEBVs incorporat-
ing additional pedigree information through a combined

pedigree–genomic matrix. The integration of pedigree and
marker-based information with K-BLUP has been shown
to increase predictive ability and reduce bias of single- and
multitrait genomic predictions relative to conventional G-
BLUP when the additive genetic variance is not fully cap-
tured by SNPs (Velazco et al., 2019a; 2019b). The method
we used here for estimation of SNP weights is based on a
fully fledged mixed model procedure, as opposed to alter-
native weighting approaches that require Bayesian analy-
sis (Su et al., 2014; Zhang et al., 2010). The SNP weights
can be optimized predictively through an iterative pro-
cess as proposed by Wang et al. (2012). In the present
research, only one iteration was required for optimal pre-
dictive results, while more iterations were actually detri-
mental (not shown). A similar finding was reported by
Zhang et al. (2016) in a simulation study where predic-
tion accuracy decreased after the first iteration for themost
complex trait determined by 500 minor-effect QTL. The
authors attributed this decline to the fact that SNPs with
large effects are emphasized while small-effect SNPs are
excessively shrunk with successive iterations and recom-
putations of weights. The same could be argued in our case
for grain yield considering that this complex polygenic trait
is controlled bymany geneswith small effects (Melchinger,
Utz, & Schön, 1998; Schön et al., 2004).
Our results showed that accommodating heterogeneous

variances of SNP effects had a big impact on improving
genomic predictions for yield across and within ETs in
sorghum. The marked gains in predictive performance
imply that assuming SNP-specific variances gave better
descriptions of the additive genetic variation among lines
than assuming a common distribution for all markers.
Previous simulation studies using Bayesian and weight-
ing methods have suggested that allowing for SNP vari-
ance heterogeneity is likely to be more beneficial when
traits are influenced by a few large-effect QTL (Daetwyler,
Pong-Wong, Villanueva, & Woolliams, 2010; Zhang et al.,
2010; Zhang et al., 2014). This seems to not be the case
in our study where weighting for SNPs produced impor-
tant increases in predictive ability even when individual
SNPs explained<0.6% of the genetic variation in yield (see
Figure 1). Accordingly, the benefit is apparently a conse-
quence of considering the varying contribution of loci to
the genetic variance irrespective of the presence of major
genes. In addition, it should be considered that the levels
of gains from using SNP weighting might be partly deter-
mined by the relatively small size of the training popula-
tion and the low-density panel used (<5,000 SNPs). The
improvements are expected to be diluted with increased
number of reference lines genotyped and high-density
marker information.
For this research, we derived three sets of environment-

dependent SNP weights by considering yield in D-ET, in
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W-ET, and across ETs as different traits. We found that
weights derived from ET-specific marker effects did opti-
mize predictive ability and unbiasedness in all adaptation
scenarios. However, the small differences obtained from
changing sets of SNP weights indicate that the strategy
to obtain weights based on environmental types was not
crucial in our research. This was somewhat expected con-
sidering that the additive-genetic correlation between D-
ET andW-ETwas very high. Environment-dependent SNP
weights are likely to have more impact on genomic predic-
tion for specific adaptation in situations where the expres-
sion of yield QTL changes more markedly across environ-
ments.
So far, the approach used in plant breeding to incorpo-

rate marker-specific information into genomic prediction
models has been based on including additional effects for
themarkers identified as significant in a previous genome-
wide association study (GWAS). However, the existing
studies applying this approach on real data have reported
no improvements or evenworse predictive results for grain
yield relative to conventional G-BLUP in maize (Zea mays
L.) and rice (Bustos-Korts, Malosetti, Chapman, Biddulph,
& van Eeuwijk, 2016; Spindel et al., 2016). Using the same
approach, Rice and Lipka (2019) found that prediction
accuracies were frequently lower for complex traits simu-
lated frommaize and sorghum diversity panels. One possi-
ble explanation for these results is that by including a select
group of highly significant marker as separate effects in
BLUPmodels, the selected SNPs with larger effects receive
less or no regularization (if they are considered fixed) com-
pared with the nonsignificant SNPs with smaller effects.
The implicit emphasis given by these prediction models
to the SNPs with larger effects is expected to be beneficial
for prediction of traits affected by major QTL, but not for
traits mainly controlled by many small-effect QTL. This
has been demonstrated by Bernardo (2014) using simula-
tions and corroborated empirically by the previously men-
tioned studies. Furthermore, it should be considered that
the effect of each SNP is estimated individually in GWAS.
As a result, the sum of SNP effects may overestimate QTL
effects if several linked markers are actually capturing the
effect of the same QTL (Su et al., 2014). Finally, the def-
inition of the selected group of significant markers, and
consequently the definition of the prediction model, will
change according to the significance threshold chosen for
GWAS, which is usually arbitrary (Bush & Moore, 2012).
As shown in the studies by Bustos-Korts et al. (2016) and
Sarinelli et al. (2019) using wheat data, GWAS can fail to
identify significant SNPs for grain yield when stringent
thresholds are used, precluding the use of locus-specific
information under this strategy.
In contrast to the GWAS-based approach, the SNP

weighting method used in the present research estimates

all marker effects simultaneously, and it does not require
preselection of SNPs based on significance tests from extra
GWAS analysis. Instead, a continuous gradient of weights
is applied to all SNPs across the genome, reflecting the rel-
ative contributions of each locus to the genetic variation of
the trait. Our results have demonstrated that the weighted
BLUP models were effective to improve genomic predic-
tion for yield in sorghum. These models could be extended
to include information on large QTL affecting other traits
that have been associated with improved drought adap-
tation such as nodal root angle and stay-green (Borrell
et al., 2014b;Mace et al., 2012). Further research is required
to explore the possibilities of combining these sources of
information in a multitrait modeling framework.
An alternative weighting approach was proposed by

Zhang et al. (2014) in which only the most important
markers are weighted according to external results from
publicly available GWAS. A potential drawback of this
method results fromassuming that significantQTL regions
identified by previous independent studies are universally
applicable, ignoring specificities of target breeding popu-
lation such as the extent of linkage disequilibrium or the
interactions of QTL with the genetic background (Sandhu
et al., 2018; Vadez et al., 2011). This may partly explain
the marginal increases in predictive ability obtained by
Zhang et al. (2014) in rice when applying external weights.
Although the weights used in our research are certainly
conditional on the dataset used, they are expected to be
more suitable for prediction in the specific population of
genotypes and environments that is relevant for the breed-
ing program. Moreover, the reliability of these weights can
be constantly improved by including updated phenotypic
information, with the additional possibility of using phe-
notypes of ungenotyped lines connected through pedigree
(Zhang et al., 2016).

5 CONCLUSION

Results indicate that genomic prediction for broad adapta-
tion across postflowering D-ET and W-ET environments
in sorghum can be enhanced by considering a subdi-
vided TPE and addressing genotype × ET interaction
explicitly with multienvironment models (GE or GEH).
Specific adaptation to a targeted ET may be better pre-
dicted if genetic information from the nontargeted ET
is borrowed through multienvironment genomic mod-
els when compared with using only information from
the targeted ET or to borrowing across-ET information
through a main genetic effect model. Our study also
showed that accounting for heterogeneous variances of
SNP effects with weighted K-BLUP models can be very
effective in maximizing predictive ability and reducing
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bias of genomic predictions for grain yield. The levels of
improvements may have been only slightly dependent on
the environmental context in which SNP weights were
derived because of the strong correlation of line perfor-
mances under postflowering drought andnondrought con-
ditions in sorghum.
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