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Abstract Phytoplankton is confronted with a vari-

able assemblage of zooplankton grazers that create a

strong selection pressure for traits that reduce mortal-

ity. Phytoplankton is, however, also challenged to

remain suspended and to acquire sufficient resources

for growth. Consequently, phytoplanktic organisms

have evolved a variety of strategies to survive in a

variable environment. An overview is presented of the

various phytoplankton defense strategies, and costs

and benefits of phytoplankton defenses with a zoom-

ing in on grazer-induced colony formation. The trade-

off between phytoplankton competitive abilities and

defenses against grazing favor adaptive trait

changes—rapid evolution and phenotypic plastic-

ity—that have the potential to influence population

and community dynamics, as exemplified by

controlled chemostat experiments. An interspecific

defense–growth trade-off could explain seasonal shifts

in the species composition of an in situ phytoplankton

community yielding defense and growth rate as key

traits of the phytoplankton. The importance of grazing

and protection against grazing in shaping the phyto-

plankton community structure should not be underes-

timated. The trade-offs between nutrient acquisition,

remaining suspended, and grazing resistance generate

the dynamic phytoplankton community composition.

Keywords Adaptive trait � Algal defense � Anti-

grazing response � Chemical defense � Induced

defense � Morphology � Phenotypic plasticity � Rapid

evolution � Trade-off

Introduction

Phytoplankton can be defined as ‘‘the collective of

photosynthetic microorganisms, adapted to live partly

or continuously in open water’’ or ‘‘planktic photoau-

totrophs adapted for a life spent wholly or partly in

quasi-suspension in open water, and whose powers of

motility do not exceed turbulent entrainment’’ (Rey-

nolds, 2006). The main challenge for photosynthetic

plankton is to survive long enough to acquire sufficient

energy and nutrients to build new biomass and to

reproduce. Consequently, these organisms need to be
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regularly in the upper water strata to collect enough

light energy and have a need to ‘‘maximize opportu-

nities for suspension’’ (Reynolds, 2006). Phytoplank-

ton cells also are in demand for nutrients that need to

be concentrated from the surrounding water. Small-

sized algae with a large surface-to-volume ratio have

the most efficient uptake of dissolved nutrients and

lowest sinking losses (Reynolds, 2006). Hence, small

size might be beneficial for phytoplankton, yet sizes of

phytoplankton can span over 9 orders of magnitude

from 1 lm3 in volume for pico-cyanobacteria to

around 109 lm3 for Microcystis colonies (Reynolds,

2006). Water column stability or frequency of its

disturbance along with the availability of nutrients

formed the basis for explaining large varieties in size

and shapes, and seasonal variations in phytoplankton

community composition (Reynolds, 1980, 1998).

Three adaptive strategies are distinguished in fresh-

water phytoplankton: (1) high surface-to-volume

colonist, small, fast-growing, (C) species; (2) large,

low surface-to-volume, slow-growing, nutrient stress-

tolerant (S) species; (3) light-harvesting, disturbance-

tolerant ruderal (R) species (Reynolds, 1993; Smayda

& Reynolds, 2001). Such classification suggests that

‘‘the physical structure of the environment, or of the

availability of nutrients within it,… are, directly or

indirectly, the most important variables likely to

influence the general composition of the phytoplank-

ton’’ (Reynolds, 1980). However, survival also means

that phytoplankton is challenged to withstand grazing

(Reynolds, 2012), which is one of the most important

loss processes operating and one of the most powerful

forces in phytoplankton selection (Smetacek, 2001).

Phytoplankton is confronted with an assemblage of

protozoan and metazoan grazers (Lehman, 1988;

Reynolds, 2006), exerting a grazing pressure that

varies in time and space, and that can be a steering

factor during several periods of the year (Sommer

et al., 2012). Investment in adaptations to zooplankton

attacks implies phytoplanktic ‘‘evolution is ruled by

protection and not by competition’’ (Smetacek, 2001).

Hence, grazing creates a strong selection pressure for

traits that reduce mortality (Fig. 1). Inasmuch as these

traits reduce zooplankton food intake, and therewith

affect zooplankton growth and reproduction, they may

have variable impacts on plankton dynamics, and,

depending on magnitude, may also lead to trophic

decoupling (Sommer et al., 2012).

Phytoplankton anti-grazing strategies

The various phytoplankton anti-grazing strategies can

be grouped based on the type of defenses, such as

morphological, physiological, and behavioral

defenses (Pančić & Kiørboe, 2018). The review by

Pančić & Kiørboe (2018) provides a detailed overview

of the diverse defense mechanisms in phytoplankton.

These authors emphasize the need for thorough

research on costs and benefits (trade-offs) of the

proposed defenses (Pančić & Kiørboe, 2018). Alter-

natively, phytoplankton defenses not necessarily need

to be classified as phytoplankton traits (morphologi-

cal, physiological, behavioral), but can also be

grouped as strategies along the effects these traits

exert on the phytoplankton–zooplankton interaction

(Fig. 1). One strategy is to avoid ingestion, which can

be achieved via adequate timing of recruitment from

cysts (Hansson, 1996; Rengefors et al., 1998), migrat-

ing to regions with lower grazing pressure (Latta et al.,

2009), changes in movements that result in lower

encounter rates with grazers (Selander et al., 2011;

Harvey & Menden-Deuer, 2012), growing to sizes

beyond the ingestion capacity of most grazers

(Lürling, 2003a), production of grazer deterrents (Xu

& Kiørboe, 2018), or making thick silicate cell walls

that provide protection against grazers that crush cells

prior to ingestion (Pančić et al., 2019). Another

strategy is to avoid digestion after being ingested

(Fig. 1). Viable gut passage might be enabled by

thickened cell walls (Van Donk et al., 1997), or

embedment in mucous (DeMott et al., 2010). Strongly

reducing grazing pressure by killing the most danger-

ous enemies is another highly effective strategy,

particularly against generalist grazers, such as Daph-

nia (DeMott, 1999; Lürling, 2003b). Alternatively, if

phytoplankton growth rate equals or exceeds the

community filtration rate, the phytoplankton popula-

tion will be maintained or may even expand

(Reynolds, 1984, 2006). Hence, those species are able

to tolerate the zooplankton community grazing

pressure.

Phytoplankton species are condemned to living

with their enemies, yet not all species possess or

express defenses against grazers. Many unicellular

species lack any defenses and probably allocate

savings from maintaining defenses to growth, which

may be a most beneficial strategy in competitive

environments (Acevedo-Trejos et al., 2018). Other
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phytoplankton species may possess constitutive

defenses, i.e., they are always expressed, or on an

intraspecies–interindividual level, different clones

with different traits may be favored depending on

environmental factors. The intraspecific genetic diver-

sity within a species allows a rapid adaptive trait

change, in which grazing and competition may cause a

quick change in the relative abundance of genotypes

with different traits, such as competitive ability and

defense against grazers (Yamamichi et al., 2011). For

instance, exposure to rotifer grazers resulted in rapid

evolution in the green alga Chlorella vulgaris Beijer-

inck that became less nutritious to the rotifers, but also

less competitive in comparison with non-grazer

exposed clones (Yoshida et al., 2003). The intraspeci-

fic genetic diversity is a prerequisite for rapid evolu-

tion, a fast, inheritable response (Yamamichi et al.,

2011).

Another mechanism of rapid adaptation is inducible

defenses, in which a single genotype produces differ-

ent phenotypes in response to grazing. Induced

defenses are typical expressions of phenotypic plas-

ticity, the defenses will only be activated when

needed. An overview of inducible defenses is given

in Van Donk et al. (2011). Inducible defenses are

favored when the risk of mortality from grazing is

variable and reliable cues are present, as defenses

usually come with costs (Tollrian & Harvell, 1999;

Pančić & Kiørboe, 2018).

Costs and benefits of phytoplankton defenses

Phytoplankton species (or even clones within a

species) have adopted various strategies of coping

with the heterogeneity in their environment. In

response to grazing, phytoplankton may possess no,

induced, or constitutive defenses. Remaining small

with a favorable surface-to-volume ratio allows fast

growth and lowers sinking loss (Reynolds, 1984). In a

competitive, mixed environment small phytoplankton

species became dominant, whereas larger species were

competitively excluded (Burson et al., 2018). How-

ever, undefended, nanoplanktic algae, i.e., algae

between 2 and 30 lm in length, are a main food

source for freshwater zooplankton (Sterner, 1989).

There are countless experiments that underpin ‘‘the

Fig. 1 Potential phytoplankton defenses against generalist and

specialist zooplankton grazers. Defenses can be constitutive or

inducible and include traits that reduce ingestion by

zooplankton, reduce digestion, reduce the chance of encounter-

ing zooplankton, and even those that are directly detrimental to

zooplankton
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fate of these algae is to be grazed’’ (Reynolds et al.,

1982).

Growing to sizes above the ingestion capacity of

zooplankton is an effective strategy to protect the cells

against grazing (Lehman, 1988). Large size, forming

colonies or elongated chains are widespread charac-

teristics among numerous phytoplankton species. For

instance, members of the genus Microcystis are among

the most commonly found bloom-forming cyanobac-

teria (Harke et al., 2016) that are predominantly

unicellular in the laboratory, but colonial in the field

(Xiao et al., 2018). Several abiotic and biotic factors,

including grazers, are involved in colony formation,

which is mostly achieved through cell division, but in

Microcystis colonies may additionally grow through

cell adhesion (Xiao et al., 2017, 2018). The typical

colonial morphology reduces zooplankton feeding

rates (Fulton & Paerl, 1987, 1988). Microcystis

aeruginosa (Kützing) Kützing colonies strongly

depressed clearance rates in the flagellate Ochromo-

nas, but at a tax of lower growth and higher sinking

rates for colonies (Yang et al., 2009). Likewise,

Scenedesmus colonies were far less grazed upon by

zooplankton, but also had higher sinking rates than

unicells (Lürling, 2003a). A trade-off between grazing

loss and sinking loss in Desmodesmus/Scenedesmus

has been found—larger, protected Scenedesmaceae

had the lowest grazing loss, but the highest sinking

loss (Verschoor et al., 2009). Metabolic costs that are

associated with (induced) colony formation might be

reflected in reduced growth of colonial populations

(Zhu et al., 2016; Albini et al., 2019), particularly

under resource limitation (Zhu et al., 2016). In

diatoms, thick silicate cell walls provide protection

against grazers that crush cells prior to ingestion

(Pančić et al., 2019). Such thicker silicate cell walls

may be induced in the presence of zooplankton grazers

(Pondaven et al., 2007), but silica deposition

decreased with increasing growth rates pointing to

costs associated with the shell thickening (Pančić

et al., 2019).

Also filamentous cyanobacteria may hamper inges-

tion by zooplankton when above critical concentra-

tions (Gliwicz, 1990a, b). Filamentous cyanobacteria

might further aggregate into big flakes in the presence

of zooplankton (Lynch, 1980), or express thickening

and shortening of filaments in the presence of Daph-

nia, its exudates or the kairomone sodium octyl sulfate

that all reduce grazing loss (Cerbin et al., 2013;

Wejnerowski et al., 2018). Cells in filaments may also

benefit from N2 fixation in specialized cells. To date,

costs of a filamentous morphology have not been

assessed.

In contrast to an increase in size, also the opposite

of becoming smaller and more defended can be an

effective way of reducing grazing loss (Yoshida et al.,

2004). Chlorella vulgaris grown with rotifer (Bra-

chionus) grazers were heritably smaller, but compet-

itively inferior relative to cells grown in the absence of

rotifers (Yoshida et al., 2003). Food ingestion in

Brachionus is steered by particle size, the feeding

efficiency curve is bell shaped, which implies that

feeding on algae either larger or smaller than the

optimal size window will result in reduced feeding

efficiency and lower rotifer population growth rates

(Rothhaupt, 1990). Follow-up research on the study of

Yoshida et al. (2003) revealed that the rotifers did not

feed selectively on either the defended or undefended

clone, but that the defended clone had far better gut

passage survival than the more competitive, unde-

fended clone of C. vulgaris (Meyer et al., 2006). Such

resistance against digestion has also been observed in

green algae with thickened cell walls (Van Donk et al.,

1997). Green algae covered by mucilaginous sheaths

are also defended against digestion and grazing

promotes such digestion defenses at the cost of slower

growth (DeMott & McKinney, 2015).

Whether phytoplankton cells may respond to graz-

ers by forming colonies or becoming less colonial may

depend on the most dominant grazer (Long et al.,

2007). For instance, enhanced colony formation took

place when Phaeocystis was exposed to chemical cues

from the ciliate Euplotes sp., which consumes smaller

particles, while colony suppression in Phaeocystis

occurred when it was exposed to chemical signals

from the copepod Acartia tonsa Dana that consumes

larger particles (Long et al., 2007).

Copepod-induced breakup of chains in the chain-

forming dinoflagellate Alexandrium tamarense (Le-

bour) Balech into single cells and reduced swimming

speed allowed the dinoflagellates entering a ‘‘stealth

mode’’ that lowered encounter rates with copepod

grazers (Selander et al., 2011). Dinoflagellates may

also produce a bioluminescence flash in response to

copepods (Lindström et al., 2017), which leads to near

complete rejection of dinoflagellates and with cope-

pods that switch to alternative prey (Prevett et al.,

2019). Despite these bioluminescent dinoflagellates
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grow at one-third the rate of their competitors of

equivalent size, their defense reduces losses to

zooplankton grazers to such extent that they persist

in the community (Prevett et al., 2019).

The dinoflagellate Alexandrium minutum Halim

responded to polar lipids excreted from copepods with

up to a 20-fold increase in the production of saxitoxins

that intoxicate copepods (Selander et al., 2015).

Although one would expect elevated metabolic costs

involved in toxin production, up to date such costs

have not been detected (e.g., Tillmann et al., 2009).

Possibly, costs will only show up under less nutrient-

enriched conditions (Pančić & Kiørboe, 2018). Chem-

ical defenses, such as use of deterrents or toxicity, are

also found in cyanobacteria (DeMott & Moxter, 1991).

For instance, Microcystis strains produce numerous

compounds that are detrimental to zooplankton,

among them a class of heptapeptides—microcystins.

Some studies reported that exposure to zooplankton or

to cell extracts and microcystins elevated the micro-

cystin content in remaining cells (Jang et al.,

2003, 2007; Schatz et al., 2007). These microcystins

are toxic to zooplankton and cues related to it can be

used by selectively feeding zooplankton to avoid

ingestion (Ger et al., 2016), which caused those

grazers to switch to alternative non-toxic prey there-

with alleviating competition for Microcystis (Ger

et al., 2019). Comparison between a microcystin

producing wild-type and a microcystin-free mutant

strain of M. aeruginosa indicated metabolic costs

associated with the production of this cyanobacterial

toxin (Briand et al., 2012). Dinoflagellates and

cyanobacteria generally have lower growth rates than

their competitors. They show a widespread ability to

respond adaptively to grazers or grazing-associated

cues, whereas their mobility (dinoflagellates) or

buoyancy control (cyanobacteria) prevent them sink-

ing out of the euphotic zone. Clearly, these organisms

have adopted strategies to cope with the major

phytoplankton loss processes operating—grazing and

sedimentation (Reynolds, 1984; Smetacek, 2001).

From the above it becomes evident that there is a

clear trade-off between the costs and benefits of

defenses. Those defenses can always be present, or

activated only when needed. For example, the colonial

green alga Desmodesmus quadricauda (Turpin)

Brébisson was classified as permanently defended

(Verschoor et al., 2007), whereas Desmodesmus

subspicatus (Chodat) E. Hegewald & A.W.F. Schmidt

showed an inducible defense, i.e., it formed colonies

when confronted with a grazer, but otherwise

remained unicellular (Hessen & Van Donk, 1993).

This grazer–Desmodesmus/Scenedesmus interaction is

perhaps the best studied model system on inducible

defenses in phytoplankton.

Grazer-induced colony formation

Hessen & Van Donk (1993) discovered that when they

exposed unicellular D. subspicatus (at that time

Scenedesmus subspicatus) to water in which the

grazer Daphnia had been present, or to one live

Daphnia, the algae rapidly formed colonies within

48 h. Desmodesmus subspicatus increased in size

from 8 9 5 lm (length 9 width) in unicells to

40 9 6 lm in 8-celled colonies, with more and rigid

spines. Confronted with a high proportion of 8-celled

D. subspicatus colonies, grazing of a 1.75 mm Daph-

nia was reduced by 75% reflecting an increased

grazing resistance of the colonies (Hessen & Van

Donk, 1993). Research in the decade following upon

this discovery yielded more insight in the spread of the

response among members of the family Scenedes-

maceae, on costs (higher sedimentation rate) and

benefits (lower grazing mortality), and further under-

pinned induced colony formation is an adaptive

response to zooplankton grazers caused by a chemical

cue (Lürling, 2003a).

More recent research elucidated the chemical

nature of the cues involved, which were identified as

aliphatic sulfates and sulfamates (Yasumoto et al.,

2005, 2006, 2008a, b). These so-called kairomones

show strong structural similarity with synthetic

anionic surfactants. Two commercially available

anionic surfactants (sodium dodecyl sulfate and

FFD-6) evoked a similar formation of colonies in

Scenedesmus as the natural cues (Lürling, 2012). The

morphological response occurred at concentrations far

below those that inhibited growth, a traditional

endpoint in ecotoxicology, and drastically reduced

the clearance rate of Daphnia (Lürling et al., 2011).

Such distortion of the adaptive response by pollutants

may have consequences for population dynamics of

both species in the interaction, but could also be spread

out in the ecosystem through numerous biological

interactions (Hanazato, 1999).
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The molecular processes behind the response of D.

subspicatus to produce colonies and form aggregates

as an adaptive response to Daphnia cues have been

unraveled recently (Roccuzzo et al., 2020). These

authors identified a role of the mitogen-activated

protein kinase (MAPK) phosphatases signaling path-

way in the response of D. subspicatus to Daphnia

infochemicals. MAPK is triggering cell division and

colony formation (Fig. 2). Investments into fatty acid

metabolism were also needed for colony formation.

Cell–cell adhesion was stimulated by the export of

carbohydrates and proteins with disulfide bonds in the

extracellular polymeric substances matrix, which also

contained fatty acids, a known class of feeding

deterrents (Roccuzzo et al., 2020; Fig. 2).

Meanwhile, colony formation in response to zoo-

plankton has been observed in several freshwater

green algae, such as Actinastrum, Chlamydomonas,

Chlorella, Coelastrum, Desmodesmus, and Scenedes-

mus (Boraas et al., 1998; Van Donk et al., 1999;

Yasumoto et al., 2000; Lürling, 2003a; Fisher et al.,

2016), but also in the cyanobacteria Microcystis (e.g.,

Yang & Kong, 2012) and Aphanizomenon (Lynch,

1980), and in the marine haptophyte Phaeocystis

(Jakobsen & Tang, 2002; Tang et al., 2008). Hence,

induced colony formation seems widespread in

phytoplankton. As indicated before, a change in

morphological appearance, such as unicellular or

colonial, may be a result of both phenotypic plasticity

or rapid evolution. For instance, the colonial appear-

ance of C. vulgaris in presence of the phagotrophic

flagellate predator Ochromonas (Boraas et al., 1998)

or when exposed to the rotifer Brachionus, was caused

by rapid evolution. Intriguing is that certain species,

such as the green alga Chlamydomonas reinhardtii

P.A. Dangeard, may form either inducible defensive

colonies (palmelloids) against rotifer grazing (Lürling

& Beekman, 2006), or heritable constitutive palmel-

loids (Becks et al., 2010). Both rapid evolution and

phenotypic plasticity occur because of the trade-off

between phytoplankton competitive abilities and

defenses against grazing. Those adaptive trait changes

in prey organisms have the potential to influence

population and community dynamics.

Consequences of phytoplankton defenses

for population and community dynamics

In a scenario where grazers and undefended algae are

co-cultured, strong population fluctuations will occur.

First, due to high phytoplankton growth rates,

Fig. 2 Overview of the molecular processes in two anti-grazer defense responses: colony formation and cell–cell adhesion: in the

green alga Desmodesmus subspicatus (cf. Roccuzzo et al., 2020)
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phytoplankton biomass will strongly increase, but as

they are heavily preyed upon, it will be followed by a

strong increase in the grazer leading to high grazer

densities and low phytoplankton biomass (Fig. 3A).

Generally, grazer (predator) oscillations lag behind

phytoplankton (prey) oscillations by a quarter of the

period (Cortez, 2011). A fixed defense in phytoplank-

ton may reduce the oscillations, or when the phyto-

plankton cells become virtually inedible, the grazer

population may collapse (Fig. 3B). In case of fast,

inducible defenses, theory predicts that they promote

stability in the phytoplankton–grazer system (Fig. 3C;

Cortez, 2011). In contrast, rapid evolution, or quickly

evolving traits can desynchronize cycles and increase

the lag between the phytoplankton and grazer

oscillations (Fig. 3D; Cortez, 2011). Indeed, all such

patterns have been observed in experiments (Yoshida

et al., 2003, 2004, 2007; Verschoor et al., 2004;

Lürling et al., 2005; Lürling & Beekman, 2006; Meyer

et al., 2006; Van der Stap et al., 2006, 2009; Becks

et al., 2010; Kasada et al., 2014).

In experiments in which an undefended strain of D.

subspicatus was co-cultured with the rotifer Bra-

chionus calyciflorus Pallas, strong populations fluctu-

ations occurred, but those fluctuations were absent in

co-cultures with either inducible defended Scenedes-

mus obliquus (Turpin) Kützing or permanently

defended Desmodesmus quadricauda (Van der Stap

et al., 2006). The rotifer went extinct in all replicates

with large permanently defended D. quadricauda

Fig. 3 Theoretical predator–prey cycles in co-cultures of a

grazer (for instance the rotifer Brachionus) with undefended

phytoplankton (e.g., Selenastrum capricornutum Printz; Panel

A), with permanent defended phytoplankton (e.g., Desmod-
esmus quadricauda; Panel B)—the inset reflects a condition

with completely inedible phytoplankton causing extinction of

the grazer, with inducible defended phytoplankton (e.g.,

Scenedesmus obliquus, Chlamydomonas reinhardtii; Panel C),

and rapidly evolving phytoplankton (e.g., Chlorella vulgaris,
Chlamydomonas reinhardtii; Panel D). Based on chemostat

studies and modeling studies (see text)
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(Van der Stap et al., 2006). In chemostat systems with

undefended Desmodesmus bicellularis (Chodat) S.S.

An, T. Friedl & E. Hegewald and rotifer Brachionus

calyciflorus strong population fluctuations that

spanned several orders of magnitude were observed,

while these were strongly dampened when Brachionus

was co-cultured with the inducible defended S.

obliquus (Verschoor et al., 2004). The stabilization

also occurred when the experiment was run with

tritrophic food chains including the predator As-

planchna (Verschoor et al., 2004). Stabilization of

intrinsic oscillations was also observed in other

Brachionus–Scenedesmus systems, where the induced

defense in S. obliquus resulted in more algal biomass

and reduced zooplankton growth (Lürling et al., 2005).

A similar result was obtained with the green alga

Chlamydomonas reinhardtii that formed defensive

palmelloid colonies in the presence of rotifers (Lürling

& Beekman, 2006; Becks et al., 2010). In chemostats

with permanently defended Desmodesmus quadri-

cauda, the rotifer densities remained very low regard-

less dilution rate, while these were much higher when

grown with inducible defended Scenedesmus obliquus

(Van der Stap et al., 2009). In those systems, the

phytoplankton–rotifer dynamics did not follow

expected limit cycles and phase shift between phyto-

plankton and rotifer oscillations (Van der Stap et al.,

2009). The latter might point towards ‘cryptic cycles’

that may occur when phytoplankton cells vary genet-

ically for defense traits, which are effective, but not

costly (Yoshida et al., 2007).

Single-clone cultures of Chlorella vulgaris (with-

out genetic variability) grown together with Bra-

chionus produced typical short-cycle oscillations with

quarter-period phase lags, whereas multi-clonal C.

vulgaris (with genetic variability) produced long

cycles with phytoplankton and rotifer densities nearly

out of phase, as theoretically predicted (Yoshida et al.,

2003). C. vulgaris cultivated together with rotifers

became heritably smaller and competitively inferior

relative to C. vulgaris grown in the absence of rotifers.

Hence, there was a trade-off between grazing resis-

tance and competitive ability among the C. vulgaris

clones (Yoshida et al., 2003). Meyer et al. (2006)

further elaborated on this using the clonal pair

UTEX265 (defense) and UTEX396 (undefended) that

possessed a trade-off between competitive ability and

resistance to grazing. Using an allele-specific quanti-

tative PCR technique these authors showed that the

superior competitor UTEX396 dominated initially,

but as rotifer densities increased, the grazing-resistant

clone UTEX265 became dominant. These two clones

have a relatively ‘‘cheap defense’’ trade-off, which

means that the defense is effective, but the loss in

competitive capacity, expressed in growth rate, is

relatively small (Kasada et al., 2014). In contrast, the

clones UTEX1809 (undefended) and UTEX1811

(defended) have a relatively ‘‘costly defense’’ trade-

off, which means the defense is not very effective

despite a strong reduction in growth rate (Kasada et al.,

2014). When mixtures of these two pairs of clones

were co-cultured with Brachionus, the relatively high

cost of a weak defense favored the undefended clone

in the UTEX1809/1811 pair, whereas the defended

clone became dominant, or both clones coexisted, for

the cheap defense trade-off pair UTEX265/396

(Kasada et al., 2014). Based on the trade-offs between

phytoplankton growth and defense against grazing,

Yamamichi & Miner (2015) illustrated in a mathe-

matical model that adaptive evolution of the prey may

rescue the predator from extinction.

Despite results from chemostats and models may be

difficult to extrapolate to aquatic ecosystems, because

most natural planktic systems are not steady state

systems (Harris, 1986), they are powerful to yield

insight in mechanisms that may steer population

dynamics and species interactions and can be used to

evaluate observed patterns. In temperate freshwater

lakes, a typical sequence of events may be noted, as

exemplified from Lake Gødstrup (Denmark) that

showed a spring bloom of diatoms was grazed down

effectively by Daphnia where after grazing-resistant

Aphanizomenon flourished until summer storms intro-

duced nutrients that promoted fast-growing, small-

sized cryptomonads (Jacobsen & Simonsen, 1993).

Likewise, in Lake Constance (Germany) highly

repetitive annual patterns of fast-growing, edible

phytoplankton in spring is followed by strong grazing

pressure and subsequent promotion of defended

phytoplankton (Ehrlich & Gaedke, 2020; Ehrlich

et al., 2020). The sequence of events is summarized

in the PEG model, which reflects biomass patterns of

phyto- and zooplankton, but does not zoom in on

species replacements (Sommer et al., 2012). Evi-

dently, mixing, competition, grazing by protists and

metazoan zooplankton, and parasitism will have an

impact on phytoplankton species composition and on

the genetic composition of species.
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In the example of Lake Constance, the spring

dominance of fast-growing, well-edible phytoplank-

ton species was possible because the grazer commu-

nity was forced towards small-bodied protist grazers

(mostly ciliates) that were controlled by small carni-

vores (cyclopoid copepods). When large-bodied graz-

ers (Daphnia) appeared the edible phytoplankton

community was grazed down rapidly favoring graz-

ing-resistant phytoplankton species, while the carni-

vore community shifted towards larger carnivorous

cladocerans reducing the grazers (Ehrlich & Gaedke,

2020). This study demonstrated that the trait dynamics

were ‘primarily endogenously driven by competition

and trophic interactions’ (Ehrlich & Gaedke, 2020). It

underpins that the CSR model, which is based on the

physical structure of the environment (Reynolds,

1993; Smayda & Reynolds, 2001), should be extended

with grazing pressure (Fig. 4).

Co-evolution of zooplankton grazers to sizes that

would allow them to ingest even the largest phyto-

plankton cells, colonies, and aggregates is strongly

constrained as zooplankton themselves are on the

menu of visually hunting predators (Lass & Spaak,

2003; Sommer et al., 2012). Even short-term fish

predation events may lead to longer-term reduction in

large-bodied grazers (Ersoy et al., 2019). Visually,

hunting fish may induce several defenses in zooplank-

ton too, such as Daphnia becoming smaller (Lass &

Spaak, 2003), where smaller animals also have a lower

maximum size of particles they can ingest (Burns,

1968).

Concluding remarks

In the pelagic arena, grazing is one of the most

important losses of phytoplankton biomass and thus a

very strong selection force for traits that lower grazing

losses (Sterner, 1989). It is not surprising that various

constitutive or inducible defense strategies in phyto-

plankton have evolved—avoiding ingestion, avoiding

digestion, deterring grazers or even killing zooplank-

ton (Fig. 1). However, cells are also challenged to

remain suspended and to cope with competitors. There

is ample evidence that the conflicting allometries of

selection pressures (Lehman, 1988)—competition that

favors small, fast-growing cells with high nutrient

uptake and low sinking losses, and grazing that favors

large, or defended, slower growing organisms with

higher sinking loss—drive the size and shape diversity

of phytoplankton (Acevedo-Trejos et al., 2018). It is

the whole suite of environmental factors that con-

strains survival and growth of phytoplankton and

confronts cells with trade-offs in how to respond to the

constraints (Tilman, 1990).

These trade-offs form the basis for different strate-

gies, which are adopted by representatives of all

taxonomic groups. Small size, competitively superior

phytoplankton of less than 2 lm is, for example, found

in diatoms (e.g., Discostella, Cyclotella), in green

algae (Choricystis, Pseudodictyosphaerium), in

cyanobacteria (Prochlorococcus, Synechococcus),

but these groups also include very large, grazing-

resistant phytoplankton of more than 1 mm in size

(diatom Ethmodiscus, green alga Volvox, cyanobac-

terium Microcystis). These morphologies determine

how the organisms cope with nutrient acquisition,

Fig. 4 Three selection forces operating on phytoplankton in the

pelagic. Predation is generally largest on small-sized phyto-

plankton. Sedimentation is usually highest for large cells,

colonies, and aggregates that have no buoyancy control, and

small cells that have rather high specific mass (diatoms).

Competition is mostly strongest on larger cells and colonies that

have a less favorable surface-to-volume ratio, and thus lower

growth rates. Consequently, small-celled, fast-growing cells

suffer most from predation (1) but have in general low sinking

loss, and because of favorable surface-to-volume ratio generally

experiences less competition. Diatoms can only prevail in a

mixed water column (4). Large, sometimes armored cells or

colonies have lower growth rates, experience higher sinking

rates, but are protected against grazing (2). Some of the slow-

growing colonies or filaments possess the capacity of buoyancy

control. The gray arrows indicate potential phenotypic plasticity
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sinking and grazing, which formed the basis for the

functional group concept (Reynolds et al., 2002). In

addition to being very different and avoiding compe-

tition, being sufficiently similar has also been pro-

posed as a feasible strategy (Scheffer & van Nes,

2006), which finds support in the outcome of a recent

competition experiment (Burson et al., 2018).

Based on traits, Ehrlich et al. (2020) clustered 199

different phytoplankton species in Lake Constance

into 36 dominant morphotypes and found a clear trade-

off between defense and growth rate. Using 21 years

of measurements in Lake Constance, a concave

defense–growth trade-off was found, in which sea-

sonally increasing grazing pressure shifted the phyto-

plankton community to higher defense levels at the

cost of lower growth rates (Ehrlich et al., 2020).

Hence, these authors showed that defense and growth

rate represent key traits of the phytoplankton in Lake

Constance with changes that were fast enough to

prevent competitive exclusion. Using an interspecific

defense–growth trade-off, Ehrlich et al. (2020)

increased the understanding of seasonal shifts in the

species composition of the phytoplankton community.

Not only insight in species replacements, but also in

genetic shifts within species is needed. While the

defense–growth trade-off might be helpful in under-

standing the development of a cyanobacterial bloom in

response to grazing pressure, it will not elucidate

whether the bloom will be dominated by toxic or non-

toxic genotypes. Future research could be directed into

intraspecific, genotype variability along the trade-off

curve between competitive ability and defense against

grazers.

Resuming, in the pelagic one could imagine

adaptive trade-offs between nutrient acquisition (com-

petition), remaining suspended (sedimentation) and

grazing resistance (predation) that generate the

dynamic phytoplankton composition (Fig. 4). In that

view, phytoplankton communities not only ‘‘…should

be regarded not as the menu, but as the unserved

portion of the meal’’ (Reynolds, 1980), but, besides

unserved, also as the mostly inedible left-overs of the

meal. Grazing resistance in phytoplankton seems a

widespread phenomenon and a key trait in shaping

phytoplankton community diversity and species

replacements.
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