The role of social capital in Iranian agricultural students' acquisition of generic skills

Gholami, H., Alambeigi, A., Farrokhnia, M., Noroozi, O., & Karbasioun, M.

This is a "Post-Print" accepted manuscript, which has been Published in "Higher Education, Skills and Work-based Learning"

This version is distributed under a non-commercial no derivatives Creative Commons (CC-BY-NC-ND) user license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and not used for commercial purposes. Further, the restriction applies that if you remix, transform, or build upon the material, you may not distribute the modified material.

Please cite this publication as follows:

https://doi.org/10.1108/HESWBL-01-2019-0015

You can download the published version at:
https://doi.org/10.1108/HESWBL-01-2019-0015
The Role of Social Capital on Generic Skills of Iranian Agricultural Students

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Higher Education, Skills and Work-Based Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>HESWBL-01-2019-0015.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research Paper</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Agricultural graduates, Employment, Gender differences, Social capital, Generic skills, Iran</td>
</tr>
</tbody>
</table>

SCHOLARONE™ Manuscripts
The Role of Social Capital on Generic Skills of Iranian Agricultural Students

Abstract

Purpose- This study was conducted to investigate the role of social capital in Iranian agricultural students’ acquisition of generic skills. For this purpose, the effect of various social capital dimensions on students’ generic skills development were examined.

Methodology- A survey was conducted among 190 third and fourth-year undergraduate students in one of the Colleges of Agriculture and Natural Resources in Iran. Partial least square (PLS) method was used to examine the relationships among various social capital dimensions (i.e., social values, social trust, social networks, social cohesion, social participation, social communications, and information sharing) with students’ generic skills.

Findings- The findings showed that social networks and social participation are effective factors in the generic skills development of students. A model designed for the development of students’ generic skills based on their social capital level predicted up to 33 percent of generic skills’ variances. Furthermore, the multi-group analysis showed that males and females vary on how various social capital dimensions affect their generic skills. In this respect, the social participation dimension had a significantly greater impact on female students’ generic skills, whereas the generic skills of male students were influenced more by the social cohesion dimension.

Practical implications- Developing generic skills through social capital can be considered as an effective strategy in countries that do not have formal programs for developing students’ generic skills. Additionally, higher education policymakers should present a more supportive approach for developing generic skills of female students through social participation in the campuses.

Originality/value- So far, no study has examined the relationships among various social capital dimensions and students’ generic skills in Iran. The picture is even more unclear when it comes to the differences between male and female students. The results of this study confirmed the importance of social networks and social participation in the universities to support students and to improve their generic skills and, consequently, their employability competencies. Furthermore, it could be inferred that male and female students have similarities and also differences in terms of the effect of social capital on developing generic skills that can provide a path for future studies.

Keywords: Agricultural graduates, Employment, Gender differences, Social capital, Generic skill, Iran

Introduction

There is a significant focus in the literature on students’ employability and career development learning (see Jackson, 2014; Molseed, Alsup, & Voyles, 2003; Pitan, 2016; Schlesinger & Daley, 2016; Shearer, 2009). In this regard, the generic skills are often considered of higher value than theoretical knowledge for a smooth transition from education to the labour markets (Adriaensen, Bijsmans and Groen, 2019). This implies
that next to the specialized knowledge and skills, generic skills are also essential for successful and innovative application of disciplinary knowledge in the workplace (Jackson and Chapman, 2012; Jackson, 2014a). As a result, these skills are recognized by experts as important factors for individuals’ employability (Bennett & Amundson, 2016; Bennett, Dunne, & Carré, 1999; Bridgstock, 2009; Hillage & Pollard, 1998; Knight & Yorke, 2002; McQuaid & Lindsay, 2005; Stiwe & Jungert, 2010), especially for the “ready to work” graduates (Jackson and Chapman, 2012; Kamaliah et al., 2018). The generic skills enable individuals to participate in the labour market as part of a flexible and adaptable workforce (Bennett, 2002; Pitan, 2017). In other words, students need generic skills to get suitable jobs and succeed in them (Alibaygi and Barani S., 2012). Scholars believe that the role of generic skills in the future workplaces will be more emphasized (Virtanen and Tynijärvi, 2019).

The agricultural sector or, to be precise, “Renewable Natural Resources’ Management” (Wallace, 1997) includes the whole of a system that produces, processes, and provides food, feed, fibre, ornamentals, and biofuel. Agriculture includes the management of natural resources such as surface water and groundwater, jungles, rangelands, and other lands for commercial or recreational uses, wildlife, the social, physical, and biological subsystems, and the public policy issues related to the total system. All activities, practices, and processes of the public and private sectors involved in agriculture and forestry are within the system (National Research Council, 2010), so agriculture graduates do not have an identifiable profession to enter the job market after graduation (Bawden, 1996). In such a situation, generic skills are crucial for meeting the diverse needs of different occupations available in the market. Not only the diversity of agricultural activities affects agricultural education and graduates’ characteristics, but the unique nature of this sector can also have consequences for agricultural education. Shahbazi and AliBeygi (2006) suggested that the interdisciplinary nature of agriculture and its specific cultural, social, and political characteristics necessitate agricultural graduates to have dynamic capability and qualities to be able to think and act on various related issues critically. Agriculture graduates are required to face uncertain and complex situations, norms, values, and conflicting interests efficiently. As Barnett (2000) argues that university students should prepare for the “supercomplexity” of the world, which refers to its contestability, challengeability, uncertainty, and unpredictability.

Generic skills
Generic skills, also known as a part of employability skills, are those skills essential for employment, personal development, fulfillment, community life, and active citizenship (Clayton et al., 2004). One of the main challenges of scholars is to deal with terminology and variety of synonyms used for generic skills such as transferable, key and core skills (Bennett et al., 1999; Lorraine Dacre Pool & Sewell, 2007; Freudenberg, Brimble, & Cameron, 2011; Jones, 2009; Washer, 2007). However, there is consensus among scholars that these skills are useful in any field and potentially transferable to a wide range of areas in higher education and workplace (Bennett et al., 1999).

Generic skills typically include skills like creativity, independent working, teamwork, ability to manage others, ability to work under pressure, adaptability, numeracy, attention to details, time management, responsibility and decision-making, planning, coordinating and organizing ability (The Pedagogy for Employability Group, 2006; Dacre Pool and Sewell, 2007; Dacre Pool, Qualter and Sewell, 2014), oral and written communication such as interpersonal communication and social abilities to deal with social networking sites (Strehlke, 2010), ability to exploit new technologies (Dacre Pool and Sewell, 2007), commercial awareness (Sewell and Dacre Pool, 2010), and problem-solving (Rae, 2007; Sewell and Dacre Pool, 2010) that requires argumentation, reasoning, and critical thinking (Noroozi, Weinberger, et al., 2012; Noroozi et al., 2018).

Scholars claim that extra-curricular activities provide numerous opportunities for students to develop their generic skills (Tran, 2017b, 2017a; Zakhir, 2019). In the same vein, Tchibozo (2007) reported that graduates consider extra-curricular activities as a means to develop their generic skills required by employers, and employers assume such activities as a sign of responsibility, citizenship, and maturity of employees, which are valuable for their work. More specifically, Lau, Hsu, Acosta, and Hsu (2014) illustrated that business school graduates who were amongst the leading members of extra-curricular activities, evaluate themselves higher in general communication skills, leadership, and creativity. Also, Wheeler (2008) emphasized the importance of life spheres, such as activities and relationships that go beyond education and business hours, and cause the acquisition of management skills. Furthermore, he studied the impact of life spheres on part-time students and concluded that there is a positive correlation between the number of relationships across life spheres and performance in some specific skills. The findings of a research done by Jackson (2014b) also demonstrate the importance of life spheres (e.g., family activities, communicating with friends, professional associations, civic or
social engagement, spiritual or religious contributions) in developing some generic skills such as teamwork, effective communication, self-awareness, critical thinking, data analysis, exploiting technology, problem-solving, creativity and enterprise skills, self-management, social responsibility, and professionalism.

Also, the extent to and the manner in which graduates develop their generic skills through these extra-curricular activities may be affected by other influential factors (Smith & Krüger, 2008). According to the scholars, including social values in training programs of university students can better improve their generic skills (e.g., social skills), which are essential for future employability of students (Sail and Alavi, 2010; Mustapha and Rahmat, 2013). In this regard, Smith (2010) underscores the fact that networking with people, particularly in professional associations, is assumed as a conventional manner to expand individual technological skills. Thus, he suggested that there must be a direct and positive correlation between an individual’s generic skills and social capital.

Social capital

The conception of social capital became the most popular over the last decades (Mačerinskenë and Aleknavičiūtė, 2011). Scholars began to emphasize the wideness and applicability of this concept and its ability to be accepted in a variety of fields. That is why social capital has a multi-dimensional nature (Koka and Prescott, 2002). Putnam (1993) defined Social capital as “features of social organizations, such as networks, norms, and trust that facilitate action and cooperation for mutual benefit”. In other words, social capital refers to available resources within social structures such as social trust, norms and values, social communication, and common objectives, which prepare individuals for collective action (Kawachi, 2001). Also, Núñez (2009) stated that social capital contains some dimensions such as social networks, social support, and sharing information and knowledge. In addition, Cohen and Pursak (2002) referred to social participation, reciprocal obligation and mutual recognition, and networks as other dimensions of social capital. Consequently, social capital can include seven distinct dimensions, which are social values, social trust, social networks, social cohesion, social participation, social communication, and sharing knowledge (Shiri *et al*., 2013).

Scholars argue that the social capital of learners is partially formed in educational systems (Shiri *et al*., 2013). There is also research evidence indicating that social capital, and consequently the generic skills, can develop through the pedagogical approaches that employ active methods and collaborative activities (Ballantine and Larres, 2007;
Francescato et al., 2007; Virtanen and Tynjälä, 2019). Indeed, the collaborative activities can promote learners’ social interactions and communications within their social networks (Norozi, Biemans, et al., 2012; Farrokhnia et al., 2019), which may further influence the development of the learners’ social capital and generic skills (Smith & Bath, 2006).

The context of the study

Economic development strategies applied by the majority of Middle Eastern countries, including Iran, are mainly criticized because of their lagging human development indicators. Thus, the main task of education in Iran has been to shift from allocating rewards for unproductive skills, such as pure memorization and test-taking skills, to more productive and hard-to-test skills, namely generic skills such as creativity and teamwork (Salehi-Isfahani, 2005). The higher education system in Iran has been considerably expanded during the past 30 years, reflecting a significant shift from an elite system towards mass higher education. This expansion has led to increased access to higher education across a broader range of populations (e.g., male/female, rural/urban, old/young) coupled with an increased supply of graduates to the labour (Abbasi and Zamani-Miandashti, 2013).

However, the lack of skilled and qualified graduates or graduates' employability has still been mentioned as one of the major challenges of higher agricultural education in Iran (Pouratashi, 2019). While employers place the importance of generic skills to be relatively higher than the disciplinary competencies of agricultural graduates (Alibeigi and Zarafshani, 2006), some studies report that Iranian agricultural students have a moderate level of generic skills (Alibeigi and Zarafshani, 2006; Alibaygi et al., 2013). In a survey, most of the agricultural sector employers pointed out that newcomers mainly need more generic skills (Shahbazi and Beygi, 2006). Similarly, Sharepour, Salehi, and Fazeli (2001) carried out research among three Iranian Universities and found out that students' level of generic skills is weak. They concluded that the Iranian higher education system is not appropriately successful in fostering students’ generic skills. Also, after repeating the same research almost ten years later at the University of Mazandaran, the findings again revealed that the level of students' generic skills has more decreased (Janalizadeh-Choubbasti, Khakzad and Moradi, 2013); which, demonstrates a considerable gap between the existent situation and desired level (Alibaygi & Barani, 2012).
On the other hand, the number of women attending higher education institutions in Iran has been steadily increasing since 1989 (Shavarini, 2005). About 56 percent of bachelor of science students enrolled in agricultural and veterinary majors in different Iranian higher education institutes in 2016 were female (Mirabi, 2018). Increasing rates of female students in higher agricultural education have made their employment a critical issue (Khosravipour and Soleimanpour, 2011). Furthermore, Nedjat et al. (2013) reported that the social cohesion and social networks’ dimensions among males were significantly higher than females. Therefore, by considering the potential role of social capital on the development of individuals’ generic skills (see Smith, 2010), these differences can be further responsible for any discrepancies between male and female students in their acquisition of generic skills.

Purpose of the study

Based on the previous literature, some dimensions of social capital, such as membership in social networks, social participation, sharing information, and knowledge and social communication, are expected to have casual relationships with generic skills. However, theoretically, the effect of some other dimensions of social capital, such as social cohesion, and social trust with the acquisition of generic skills, are ambiguous. Such correlations are not yet investigated in the literature, especially when it comes to the Iranian context. Therefore, given the importance of generic skills and the ambiguity of the role of social capital in Iranian university students’ generic skills (including agriculture students), this study aimed to investigate the effect of various dimensions of social capital on students’ acquisition of generic skills. Besides, considering the previous research outcomes about the discrepancy among male and female students' social capital dimensions, we decided to focus on gender to explore the potential differences between male and female students in terms of the role of social capital in developing generic skills.

Thus, based on the arguments above, this study aims to answer the following questions:

Research question 1- To what extent do the various dimensions of social capital affect the development of Iranian university students’ generic skills?

Research question 2- Does gender moderate the effect of various dimensions of social capital on the development of Iranian university students’ generic skills?

Methodology
Participants

The population of the study consisted of all third and fourth-year undergraduate students of the College of Agriculture and Natural Resources in one of the universities in Iran. According to the Education Department of the University, the number of students was equal to 715. Based on the Cochran formula for a finite population (see Cochran, 1977), 190 students (90 male and 100 female) were recruited to participate in this study. Since the major of study was different among the students, the stratified proportional random sampling method was used to select the sample from the population under study (see table 1).

(Please insert Table 1 here)

Data collection and instruments

A questionnaire was given to the participants at the colleges or dorms, and they were asked to fill it out at their convenient time over one month. The questionnaire consisted of three main parts, including individual characteristics, social capital, and generic skills as follows:

Individual characteristics: Students were asked to state their age, gender, and major of study as the main demographical information of the study.

Social capital: Twenty-eight statements of the questionnaire separately measured the seven dimensions of social capital using self-assessment on a five-point Likert scale (ranging from 1= strongly disagree to 5= strongly agree). For example, the statements for social networks dimension include the following: “I am in touch with agricultural engineering organization” and “I consider myself as an active person in social media” (refer to table 2 for other dimensions' statements).

Generic skills: The statements of the Central Lancashire University Profile presented by Sewell and Dacre Pool (2015) were used to measure generic skills. This profile is based on the CreerEdge model of employability (Dacre Pool and Sewell, 2007). The CreerEdge model of employability was designed to be practical and understandable for both academics and students (Dacre Pool, 2017; Small, Shacklock, & Marchant, 2018). This profile was also reasonably short and understandable for students. Following our definition of generic skills, sixteen statements of the profile for
generic skills, such as oral and written communication, team work, problem-solving, time management, creativity, and idea generation skills, were used to measure students’ generic skills. The statements were translated into Persian and used to measure students’ generic skills on a five-point Likert scale (ranging from 1= strongly disagree to 5= strongly agree). Examples of statements include the following: “I have proper oral communication skills” and “I can adapt myself with new situations”.

The questionnaire validity was examined in three ways of face, construct (i.e., confirmatory factor analysis or measurement model), and discriminant validity. A panel of agricultural extension and education faculty members approved the face validity of the questionnaire. To examine discriminant validity, the square root of the average variance extracted (AVE) was used, which is called the Fornell - Larcker (1981) criterion. For this purpose, the AVE square root should be larger than other factors’ correlation with related latent variables (Sarstedt, Ringle, and Hair, 2017). Also, the questionnaire reliability was examined using the composite reliability method in which the values higher than 0.6 indicate the reliability of the instrument (Nunnally and Bernstein, 1994) (see table 2).

Analysis

Unit of analysis and variables

Based on the research questions, students’ social capital (including seven different dimensions) is the independent variable, and generic skill is the dependent variable of the study. Also, gender is considered as the moderator variable that may affect the relationship between dependent and independent variables. The overall average score of each individual calculated from generic skills’ statements was considered as individuals’ generic skill scores, and the average score of each of the seven social capital dimensions was considered as each individual’s asset in that dimension.

Statistical tests

To examine the effect of independent variables on dependent ones, partial least square (PLS) method was used. PLS-SEM is assumed as a component-based method in unknown parameters’ estimation, which has low sensitivity towards sample size and residuals’ distribution (Chin, 1998). Furthermore, Bootstrap approaches (non-parametric), t-parametric approach (with the assumption of variance homogeneity in both matrices), and
Welch-Satterthwait method (without the assumption of variance homogeneity in both matrices) were used to explore the moderating role of gender in the effect of social capital’s different dimensions on developing generic skills.

Results

Descriptive data

The average age of the students was 21.9 years ($SD = 1.19$). Also, 47.3% of students were male, and about 52.7% were female. The total mean score of students’ generic skills was higher than average ($M = 3.60$, $SD = .57$), and the mean score of students’ social capital was 3.20 ($SD = .52$) out of 5.00.

Measurement model test

The Measurement model test aimed to evaluate the reliability and validity of the questionnaire. In this regard, confirmatory factor analysis was conducted using SmartPLS version 3 software to estimate the convergent validity and discriminant validity of the indicators of the eight constructs in the questionnaire. As a result of the convergent validity test, all the indicators had a standardized loading factor value of $\geq .5$, which confirms the convergent validity of the indicators. Also, the composite reliability was used to examine the construct reliability of the questionnaire. For all the eight factors included in the questionnaire, the composite reliability value was more than .7, which indicates the high reliability of the structure (see Table 2).

(Please insert Table 2 here)

Furthermore, to examine the discriminant validity, the square root of AVE and factor correlation coefficients were compared. According to Table 3, it is inferable that there is no correlation value higher than the square root of AVE. In other words, all variables are valid for the discriminant validity test.

(Please insert Table 3 here)

Structural model test

The Structural model test examines research hypotheses and model fitness through analyzing the data by PLS. In this regard, the statistical significance of the path coefficient among the latent variables was examined. Figure 1 depicts the results of the structural model analysis (see Figure 1).
Exact fit test: a model fit test, which applies bootstrapping to derive p values of the (Euclidean or geodesic) distances between the observed correlations and the model-implied correlations, was used to test the model fit or hypothesized model structure (Hair Jr et al., 2017). The values of Euclidean distance square indices (d-ULS) and Geodesic distance (d-G) had the t-values equal to 120.10 and 9.07 respectively in significance level 0.01, which shows the hypothesized model has indicated a good fit to the data. The Standardized Root Mean Square (SRMR) was also equal to .08, which shows a good fit of the hypothesized model to the data.

Research question 1

Based on Table 4, two components of social capital were effective in developing generic skills. The dimension of social participation had a path coefficient of .25 ($p < .01$). The amount of t-statistic for this coefficient was significant, with 99% certainty ($t = 3.22$). Such a high significance indicates that the social participation dimension plays an important role in developing students’ generic skills. The social networks dimension with a path coefficient of .15 ($p < .05$) also had a statistically positive significant effect ($t = 2.07$) on generic skills. Concerning other dimensions, since their t values were less than 1.96, it was concluded that they were not significant in predicting the level of generic skills. Furthermore, it was discovered that a model designed for the development of students’ generic skills based on their social capital level predicted up to 33 percent of generic skills’ variances, which is substantial.

Research question 2

Multi-group analysis of demographic background variables can be conducted to check the robustness or differences of the model across different groups of graduates (Jackson, 2016). Considering the importance of female students’ employability issues (Khosravipour and Soleimanpour, 2011) and evidence about possibly different patterns in female social capital (Chuang and Chuang, 2008; Nedjat et al., 2013), we focused on gender for exploring the potential differences of male and female students in terms of the
social capital effect on developing generic skills. This probability was examined whether
generic skills’ impact pattern of social capital dimensions differs in males and females.

According to the results illustrated in Table 5, using \(t \)-parametric and Welch-
Satroith, there were no significant differences between the two groups. Nonetheless,
based on the non-parametric bootstrap approach, a significant difference was found
between females and males in terms of the impact of social participation dimension \((p = .003) \) and social cohesion dimension \((p = .04) \) on generic skills development. Due to the
fact that the path coefficient in social participation for females’ model was larger than
that of males, thus it was inferred that this dimension of social capital has a statistically
stronger impact on females’ acquisition of generic skills. On the contrary, path coefficient
in social cohesion for males’ model was larger than that of females, thus it was inferred
that this dimension of social capital has a statistically stronger impact on males’
acquisition of generic skills. (see Table 5).

(Please insert Table 5 here)

Discussions

The effect of social capital’s dimensions on developing generic skills

The overall finding of this study pinpointed the fact that social capital plays a significant
role in developing students’ generic skills. Among different dimensions of social capital,
social participation has the most impact on developing the generic skills of agriculture
students \((\text{Beta}=.25, \ p < .001) \). As it was anticipated, students’ participation in social
activities provides a reliable headstock to improve their generic skills in an appropriate
environment through such social voluntary activities. Especially in Iran, university
managers and policymakers are not well informed about the importance of students’
generic skills, and as a result, these skills have no prominent position in universities’
formal curriculum. Students consciously or unconsciously practice generic skills such as
oral and written communications (like writing letters from students’ associations to the
principals of the university) or teamwork and a lot of other generic skills through social
activities. These functions could be considered the same as students’ extra-curricular
activities, which certainly increase employability or their generic skills \((\text{Tchibozo, 2007;}
\text{Stiwne and Jungert, 2010; Lau et al., 2014}) \). This finding is also consistent with Jackson’s
(2014b) findings that confirmed the effect of life spheres, including social activities on
the acquisition of generic skills.
Besides the social participation dimension, the results of this study confirmed the impact of students’ membership in social networks on their acquisition of generic skills (Beta = .15 \(p < .05 \)). This finding is also in line with Wheeler’s (2008) findings of the positive correlation of students’ communication frequencies in all life spheres with the development of students’ generic skills. Noteworthy, the Beta coefficient of social networking on the model was less than social participation. It shows that social networking had a lower impact on generic skills development in comparison to social participation. In fact, having social network does not guarantee the actualization of its positive benefits (Batistic and Tymon, 2017), and the size, diversity, and strength of an individual’s network are quite important factors that determine the function of the network in terms of the information that provides (Fugate, Kinicki and Ashforth, 2004). Thus, although membership in the social network is a predictor of students’ generic skills, social participation is a stronger and more objective signal of generic skills. However, other dimensions of social capital studied in this study did not offer an effective role in developing generic skills.

According to findings, the effect of the social values dimension was not significant on generic skills development (\(p = .39 \)), which is inconsistent with the results of Hedjazi et al.’s (2018) study. They argue that the social values dimension is effective on agricultural students’ employability skills as a broader concept, which includes generic skills, experience, career development learning, degree understanding and skills, and emotional intelligence. This inconsistency may be related to the effect of social values on the other dimensions of employability skills except for generic skills.

Also, the social trust dimension did not have a significant effect on the acquisition of generic skills (\(p = .07 \)). However, the fact is that trust in people leads to a better exchange of information, knowledge, and other resources (Khodadad Kashi and Afsari, 2014) and facilitates social participation (Sagafi and Rad, 2014). Thus there may be an indirect relationship between trust and generic skills development through the mediation of social participation, which demands further investigations.

Social cohesion was not significantly effective in students’ generic skills development (\(p = .32 \)). However, in multi-group analysis to examine the difference between females and males, it was found that the social cohesion dimension is only effective on the generic skills of male students and not female ones. This finding implies that gender moderates the effect of social cohesion on generic skills development. Also,
since social cohesion facilitates social participation (Safiri and Sadeghi, 2009; Sedaghat and Ghahreman, 2009), thus there is a possibility for a more robust relationship between social cohesion and generic skills development via the mediation of social participation.

The social communications dimension did not also significantly influence students’ generic skills development ($p = .82$). Except for some skills like oral communication, social communication does not contribute to generic skills development or any kind of employability assets unless they are consciously directed toward employment-oriented communications. The importance of this consciousness is highly reinforced in employability literature such as Dacre Pool and Sewell (2007). They included the “reflection and evaluation” as one of the dimensions of employability, which means that students should be aware of any kind of ability required for labour market and personally address their weakness and strength to prepare themselves for labour market. However, Benson, Morgan, and Filippaio (2014) argued that "social networking awareness" is ignored in higher education.

Lastly, the information-sharing dimension also did not have a significant effect on the acquisition of generic skills ($p = .14$). As we discussed for the social communication dimension, information sharing will lead to generic skills development only if it is directed consciously and strategically toward generic skills development. Therefore, this lack of effect may be attributed to the participants’ lack of awareness regarding the contribution of information sharing to their acquisition of generic skills.

The moderating role of gender

In multi-group analysis to examine the difference between females and males, it was found that among different social capital’s dimensions, the social participation has a statistically stronger impact on females’ acquisition of generic skills in comparison to males. This issue probably arises from the fact that in the context of Iran, females have more limitations to participate in society compared to males (Sedaghati Fard and Sakhamehr, 2013; Rezaei Nasab and Fotuhi, 2015). Hence, they are mostly dependent on social participation within the university (as measured in this research) to gain and practice their generic skills. In contrast, males have more opportunities such as summer jobs or social participation out of universities to develop such generic skills.
Besides, the findings confirmed that the social cohesion dimension is only effective in developing generic skills of male students and not female ones. Because of the lack of data, we cannot explain this finding with certainty, but this phenomenon again reinforces the moderating role of gender in the effect of social capital on students’ acquisition of generic skills. However, this finding should be considered with caution and re-evaluate in future research.

Conclusions

The results of this study can be divided into two key points: First, social participation and social networks’ dimensions are effective in developing the generic skills of Iranian agricultural students. Second, the social participation dimension has a greater effect on female students’ generic skills development. Furthermore, the impact of the social cohesion dimension is significant only in the development of males’ generic skills.

Although it was known in other contexts such as in the United States of America (Wheeler, 2008) and Australia (Jackson, 2014b), the results of this study confirmed the importance of social networks and social participation in Iranian universities to support students improve their generic skills and consequently their employability competencies. Thus, it is crucial to reconsider extra-curricular activities, especially in students’ organizations, as a key element of higher education and as a supplement to the formal curriculum.

It should be noted that according to findings of the current study, compared to the male students, Iranian female students generic skills acquisition is more affected by the social participation. The results of the previous studies in Iranian higher education show that female students' participation in the society is usually less than their male counterparts (Sedaghati Fard and Sakhamehr, 2013; Rezaei Nasab and Fotuhi, 2015). As a result, it can be concluded that the social environments and activities in the universities can provide opportunities for female students to develop their generic skills. Thus, policymakers and university authorities are expected to provide a variety of opportunities for social participation and activities to guarantee greater participation of females. To do so, forming a provision of a specific social environment, i.e., students’ organization for female students, is indispensable to pave the way for female students to participate in programs actively.
In conclusion, developing generic skills through social capital can be considered as an effective strategy in universities, including the universities do not have a program for developing generic skills or those looking for a more naturalistic and experiential learning environment or those encountering teaching staff skepticism regarding generic skills that could happen in any country as well as developed countries (cf. Bennett et al., 1999; Jackson, 2014a; Chan and Fong, 2018). For doing this, university and college’ authorities must provide more flexible policies regarding the social environments of the campuses as well as students’ organizations in terms of these organizations’ variety to be able to guarantee equal opportunities for both female and male students.

Limitations and future research

This study has some limitations posed by the sample that must be taken into account. One of the limitations is that the data was gathered only from one university. However, considering the fact that each university may have a different social atmosphere, such as various extra-curricular, social, and political activities, it is expected the future studies to do the same research in different universities to see the effect of varying university social atmosphere on how the social capital for the graduates would form. Furthermore, in this study, the data has been derived only from agricultural students. However, the results of the study may be different for other majors. As a result, future studies should consider different majors for more robust and generalizable findings.

Additionally, more research is needed to investigate the causal relationship between social capital dimensions and their impact on developing generic skills. More specifically, as it is argued in the discussion, social trust and social cohesion facilitate social participation (see Safiri & Sadeghi, 2009; Sagafi & Rad, 2014; Sedaghat & Ghahreman, 2009), which according to this study’s finding social participation had a significant effect on generic skills development. Thus, there is a possibility for social participation in mediating the relationship between social trust and cohesion and students’ generic skills development. Future research can test these relationships.

Lastly, this study has been taken place in the Iranian educational context. However, the social atmosphere in the educational context may differ for other countries based on their social and cultural norms (Heinrichs et al., 2006), as was seen in the other studies (see Hsu, Van DykeFollow, & Smith, 2017; Noroozi et al., 2018). Therefore, more studies are needed to be done in different countries to investigate the effect of students’ social capital on their acquisition of generic skills. Also, the effect of social participation of
female students on their acquisition of generic skills is subject to more research and consideration in some other parts of Moslem Mideast countries with limitations for women and girls for participating in a social environment.

Acknowledgments

We would also like to thank research participants that contributed to this study.

References

Heinrichs, N. et al. (2006) ‘Cultural Differences in Perceived Social Norms and Social

Cultural_Students’_Academic_Achievement_a_case_from_Iran (Accessed: 30 March 2020).

Figure 1. Research Structural – Path model
Table 1. The frequency of students’ major of study in the sample

<table>
<thead>
<tr>
<th>Major</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation and Reclamation Engineering</td>
<td>18</td>
<td>9.6</td>
</tr>
<tr>
<td>Horticultural science</td>
<td>16</td>
<td>8.5</td>
</tr>
<tr>
<td>Agricultural extension and education</td>
<td>15</td>
<td>8.0</td>
</tr>
<tr>
<td>Agricultural machinery engineering</td>
<td>25</td>
<td>13.3</td>
</tr>
<tr>
<td>Agricultural economics</td>
<td>11</td>
<td>5.9</td>
</tr>
<tr>
<td>Agronomy and plant breeding</td>
<td>26</td>
<td>13.8</td>
</tr>
<tr>
<td>Soil science</td>
<td>17</td>
<td>9.0</td>
</tr>
<tr>
<td>Crop protection</td>
<td>13</td>
<td>6.9</td>
</tr>
<tr>
<td>Animal science</td>
<td>21</td>
<td>11.2</td>
</tr>
<tr>
<td>Food Science and Technology</td>
<td>12</td>
<td>6.4</td>
</tr>
<tr>
<td>Landscape design</td>
<td>14</td>
<td>7.4</td>
</tr>
<tr>
<td>Total</td>
<td>188</td>
<td>100.0</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2. The values of the loading factor for each factor indicators of the measurement model

<table>
<thead>
<tr>
<th>Factor</th>
<th>Statements</th>
<th>Factor loading</th>
<th>t</th>
<th>Composite reliability</th>
<th>rho (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social values (F1)</td>
<td>The university values me and respects me a lot (se1)</td>
<td>.683</td>
<td>7.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Society values me and respects me a lot (se2)</td>
<td>.830</td>
<td>13.23</td>
<td></td>
<td>.807</td>
</tr>
<tr>
<td></td>
<td>I possess a good position amongst my friends or classmates (se3)</td>
<td>.772</td>
<td>10.65</td>
<td></td>
<td>.777</td>
</tr>
<tr>
<td>Social trust (F2)</td>
<td>I trust the members of my family (se4)</td>
<td>.854</td>
<td>10.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I trust my family and relatives (se5)</td>
<td>.724</td>
<td>6.15</td>
<td></td>
<td>.797</td>
</tr>
<tr>
<td></td>
<td>I trust my friends or classmates (se6)</td>
<td>.675</td>
<td>4.91</td>
<td></td>
<td>.755</td>
</tr>
<tr>
<td>Social networks (F3)</td>
<td>I am active in students' scientific association (se8)</td>
<td>.724</td>
<td>5.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I am in touch with the agricultural engineering organization. (se12)</td>
<td>.623</td>
<td>6.19</td>
<td></td>
<td>.713</td>
</tr>
<tr>
<td></td>
<td>I consider myself as an active person in social media (se13)</td>
<td>.670</td>
<td>7.57</td>
<td></td>
<td>.707</td>
</tr>
<tr>
<td>Social cohesion (F4)</td>
<td>I can easily get along with my friends and classmates (se14)</td>
<td>.864</td>
<td>25.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I'm very close to my friends and classmates (se15)</td>
<td>.836</td>
<td>19.88</td>
<td></td>
<td>.833</td>
</tr>
<tr>
<td></td>
<td>I fully understand my friends and classmates (se16)</td>
<td>.778</td>
<td>10.26</td>
<td></td>
<td>.813</td>
</tr>
<tr>
<td></td>
<td>I have a collective agreement with my friends and classmates on different issues (se18)</td>
<td>.463</td>
<td>3.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social participation (F5)</td>
<td>I am active in non-governmental organizations (NGOs) such as charities, organizations or religious institutions (se17)</td>
<td>.513</td>
<td>5.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I voluntarily help students' scientific societies scientifically and thoughtfully (se19)</td>
<td>.891</td>
<td>41.18</td>
<td></td>
<td>.851</td>
</tr>
<tr>
<td></td>
<td>I accept responsibilities in the implementation of various programs at the university or I cooperate with them (se20)</td>
<td>.776</td>
<td>15.66</td>
<td></td>
<td>.817</td>
</tr>
<tr>
<td></td>
<td>I help political societies at the university (se21)</td>
<td>.855</td>
<td>23.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information sharing (F6)</td>
<td>I receive information and knowledge in various fields from my friends and classmates (se22)</td>
<td>.837</td>
<td>21.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I offer information and knowledge in various fields to my friends and classmates (se23)</td>
<td>.895</td>
<td>39.09</td>
<td></td>
<td>.884</td>
</tr>
<tr>
<td></td>
<td>I talk about curricular subjects with my friends and classmates (se24)</td>
<td>.808</td>
<td>19.47</td>
<td></td>
<td>.818</td>
</tr>
<tr>
<td>Social communications (F7)</td>
<td>I talked with my friends and classmates on the phone last week (se25)</td>
<td>.773</td>
<td>9.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I go outdoor with my friends and classmates (se26)</td>
<td>.801</td>
<td>7.85</td>
<td></td>
<td>.810</td>
</tr>
<tr>
<td></td>
<td>I go to other cities to meet my friends and classmates (se27)</td>
<td>.488</td>
<td>3.19</td>
<td></td>
<td>.756</td>
</tr>
</tbody>
</table>
I stay in touch with my friends and classmates during the holidays (such as summer etc.) (se28) .788 7.68

<table>
<thead>
<tr>
<th>Skill</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have proper oral communication skills (mo13)</td>
<td>.605</td>
<td>8.40</td>
</tr>
<tr>
<td>I have presentation skills (e.g., in classes) (m14)</td>
<td>.641</td>
<td>11.02</td>
</tr>
<tr>
<td>I am absolutely confident about my written communication skills. (E.g. different types of letters and requests) (mo15)</td>
<td>.625</td>
<td>10.94</td>
</tr>
<tr>
<td>I can work well with others in a group (Desire to teamwork) (mo16)</td>
<td>.630</td>
<td>10.78</td>
</tr>
<tr>
<td>I have the ability to work independently (mo17)</td>
<td>.572</td>
<td>8.36</td>
</tr>
<tr>
<td>I have problem-solving competency (mo18)</td>
<td>.649</td>
<td>10.58</td>
</tr>
<tr>
<td>I am good at planning and organizing skills (mo19)</td>
<td>.675</td>
<td>13.08</td>
</tr>
<tr>
<td>I can manage my time effectively (mo20)</td>
<td>.536</td>
<td>7.73</td>
</tr>
<tr>
<td>I am ready to accept responsibility for my decisions (mo22)</td>
<td>.612</td>
<td>10.5</td>
</tr>
<tr>
<td>I am satisfied with my numeracy skills (mo25)</td>
<td>.525</td>
<td>8.45</td>
</tr>
<tr>
<td>I am good at creating new ideas (mo26)</td>
<td>.638</td>
<td>12.35</td>
</tr>
<tr>
<td>I can adapt to new situations (mo27)</td>
<td>.644</td>
<td>12.36</td>
</tr>
</tbody>
</table>
Table 3. The square root of AVE (shown as bold at diagonal) and factor correlation coefficients

<table>
<thead>
<tr>
<th>Factor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information sharing</td>
<td>.847</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social values</td>
<td>.325</td>
<td>.764</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social trust</td>
<td>.393</td>
<td>.427</td>
<td>.755</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social networks</td>
<td>.277</td>
<td>.260</td>
<td>.027</td>
<td>.674</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social cohesion</td>
<td>.487</td>
<td>.315</td>
<td>.489</td>
<td>.268</td>
<td>.753</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social participation</td>
<td>.306</td>
<td>.386</td>
<td>.084</td>
<td>.642</td>
<td>.258</td>
<td>.773</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social communications</td>
<td>.506</td>
<td>.246</td>
<td>.385</td>
<td>.151</td>
<td>.475</td>
<td>.234</td>
<td>.724</td>
<td></td>
</tr>
<tr>
<td>Generic skills</td>
<td>.388</td>
<td>.346</td>
<td>.318</td>
<td>.396</td>
<td>.368</td>
<td>.451</td>
<td>.286</td>
<td>.614</td>
</tr>
</tbody>
</table>
Table 4. Linear effect social capital dimensions on generic skills

<table>
<thead>
<tr>
<th>Examined relationship</th>
<th>Beta</th>
<th>t</th>
<th>STDE</th>
<th>Sig.</th>
<th>R²</th>
<th>R² adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social values</td>
<td>.66</td>
<td>.87</td>
<td>.08</td>
<td>.38</td>
<td>.34</td>
<td>.31</td>
</tr>
<tr>
<td>Social trust</td>
<td>.16</td>
<td>1.83</td>
<td>.09</td>
<td>.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social networks</td>
<td>.15</td>
<td>2.07</td>
<td>.07</td>
<td>.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social cohesion</td>
<td>.09</td>
<td>1.00</td>
<td>.09</td>
<td>.32</td>
<td>.34</td>
<td>.31</td>
</tr>
<tr>
<td>Social participation</td>
<td>.25</td>
<td>3.22</td>
<td>.08</td>
<td>.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information-sharing</td>
<td>.13</td>
<td>1.47</td>
<td>.09</td>
<td>.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social communications</td>
<td>.02</td>
<td>.25</td>
<td>.07</td>
<td>.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5. The results of multiple group analysis of the model based on the triple approach

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Bootstrap</th>
<th>Parametric t</th>
<th>Welch-Satterthwait</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males</td>
<td>Females</td>
<td></td>
</tr>
<tr>
<td></td>
<td>beta</td>
<td>t</td>
<td>p</td>
</tr>
<tr>
<td>Social values</td>
<td>.18</td>
<td>.98</td>
<td>.37</td>
</tr>
<tr>
<td>Social trust</td>
<td>.19</td>
<td>1.54</td>
<td>.12</td>
</tr>
<tr>
<td>Social networks</td>
<td>.09</td>
<td>.81</td>
<td>.41</td>
</tr>
<tr>
<td>Social cohesiveness</td>
<td>.25</td>
<td>2.23</td>
<td>.04</td>
</tr>
<tr>
<td>Social participation</td>
<td>.16</td>
<td>.64</td>
<td>.14</td>
</tr>
<tr>
<td>Information sharing</td>
<td>.12</td>
<td>.87</td>
<td>.38</td>
</tr>
<tr>
<td>Social communications</td>
<td>.23</td>
<td>1.75</td>
<td>.14</td>
</tr>
</tbody>
</table>

Higher Education, Skills and Work-Based Learning