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Orly Enrique Apolo-Apolo1, Manuel Pérez-Ruiz1*, Jorge Martı́nez-Guanter1

and João Valente2
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Farmers require accurate yield estimates, since they are key to predicting the volume of
stock needed at supermarkets and to organizing harvesting operations. In many cases,
the yield is visually estimated by the crop producer, but this approach is not accurate or
time efficient. This study presents a rapid sensing and yield estimation scheme using off-
the-shelf aerial imagery and deep learning. A Region-Convolutional Neural Network was
trained to detect and count the number of apple fruit on individual trees located on the
orthomosaic built from images taken by the unmanned aerial vehicle (UAV). The results
obtained with the proposed approach were compared with apple counts made in situ by
an agrotechnician, and an R2 value of 0.86 was acquired (MAE: 10.35 and RMSE: 13.56).
As only parts of the tree fruits were visible in the top-view images, linear regression was
used to estimate the number of total apples on each tree. An R2 value of 0.80 (MAE:
128.56 and RMSE: 130.56) was obtained. With the number of fruits detected and tree
coordinates two shapefile using Python script in Google Colab were generated. With the
previous information two yield maps were displayed: one with information per tree and
another with information per tree row. We are confident that these results will help to
maximize the crop producers' outputs via optimized orchard management.

Keywords: deep learning, apple, yield map, Google Colab, photogrammetry, fruit
INTRODUCTION

The successful management of modern, high-density apple orchards depends on the ability to
improve processes such as planting, cultivation, harvesting, and the optimization of fruit
commercialization (González-Araya et al., 2015). The efficient management of these tasks, where
harvesting and fruit processing are considered high-cost, high value-added operations, is key for
producers (Silwal et al., 2016). Consequently, an accurate yield estimation is crucial for the
stakeholders (apple growers and sellers), since this information can significantly contribute to
their decisions-making process (Gongal et al., 2015; Tian et al., 2019b).
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The traditional management of agricultural crops has been
inherently subjective and based on past experience, manually
counting, and historical data collected by farmers (Rahnemoonfar
and Sheppard, 2017). These methods can be inaccurate, subjected to
bias, and inefficient, since they do not reflect the yield distribution
across the orchard, especially in orchards with a high spatial
variability (Aggelopooulou et al., 2013; Bargoti and Underwood,
2017). Currently, with the breakthrough of new agricultural
technologies, many farm tasks are becoming automated, and
researchers and companies have carried out studies based on
artificial intelligence algorithms which automatically learns
decision rules from data (Abiodun et al., 2018). A particular
success has been the use of deep learning (DL) and, in particular,
the development and application of a branch of these techniques
known as Convolutional Neural Networks (CNN). These complex
algorithms use images tagged by technicians or crop experts as
inputs. These are laid out through various convolutional filters that
activate image features to generate a trained model. As reviewed by
other authors, the use of this models makes it possible to simplify
and automate some of the analytical tasks in the agricultural domain
(Kamilaris et al., 2017; Jha et al., 2019). Therefore, for example, a
model for detecting and mapping every piece of fruit in a
commercial mango orchard was proposed by Stein et al. (2016).
The fruits were detected using a model based on Faster R-CNN.
Koirala et al. (2019) tested several deep learning architectures to
detect mango fruits on RGB images taken from a terrestrial vehicle
during the night. Additionally, a method where synthetic images
were used to train the model and tested on actual images was
suggested by Rahnemoonfar and Sheppard (2017). Moreover, Fu
et al. (2018) presented a system to detect kiwifruit in field images
under different lighting conditions.

In the specific case of apple orchards, works employing
different approaches have been explored by many researchers.
Tian et al. (2019b) developed an improved model for apple
detection during different growth stages. An object detection
architecture named Yolo-V3 was used, and images with different
light conditions at ground level were obtained. The pre-harvest
yield mapping of apple orchards using segmentation techniques
was suggested by Roy et al. (2019). Their contribution was the
use of two clustering methods: semi-supervised (to separate the
apple pixels from others in the input images) and unsupervised
(to automatically identify the apples). Fruit size was estimated by
Gongal et al. (2018) using the 3D coordinates of pixels from
images taken by a 3D-camera as a tool for harvesting robots. A
fine-tuned model for apple flower detection was deployed by
Dias et al. (2018). The high accuracy of these approaches opened
the door for the possible integration of these models into
complex automated decision-making systems in the future.
Nevertheless, existing methods can be improved, since many of
the images used were taken by terrestrial vehicles and at ground
level. This means that labor remains an inefficient aspect, since
specific platforms are required for the taking of images, which
constitutes a time-consuming task and can accentuate soil
compaction problems.

Unmanned aerial vehicles (UAVs) are currently modernizing
the farming industry by helping farmers to monitor their crops
Frontiers in Plant Science | www.frontiersin.org 2
in a more timely manner (Mogili and Deepak, 2018). These aerial
platforms usually mount high-resolution cameras that are
capable of acquiring quality images (thermal, spectral,
multispectral, or RGB-visible images), which can be used for
various kinds of analysis (Maes and Steppe, 2019). Moreover,
these vehicles can integrate an RTK-GNSS system for precise
real-time positioning allowing the generation of crop maps with
a centimeter-level accuracy at the field level (Chlingaryan et al.,
2018). A general method used for creating crop maps is based on
the structure from motion (SfM) algorithm (Turner et al., 2012).
This algorithm selects important features known as keypoints
from individual images to build a georeferenced orthomosaic
(Anders et al., 2019). However, despite its suitability, producing
these kinds of maps requires costly commercial software, a
powerful computer, and multiple supervised steps to generate
the new composite images (Torres-Sánchez et al., 2018).
According to the literature reviewed, the most common types
of photogrammetry software under private licenses used for this
purpose are: Pix4D® (www.pix4d.com), AgisSoft PhotoScan®

(www.agisoft.com), and Photomodeler® (www.photomodeler.
com). However, in the recent years, the emergence of
platforms, such as Docker (www.docker.com) or Django
(www.djangoproject.com), have opened up the possibility of
implementing the SfM algorithm in the cloud and developing
open-source tools that are affordable for everyone at both
professional and educational levels.

On the other hand, many of the remote sensing applications in
agriculture are based on using Geographical Information Systems
(GIS) to bring value to the farmers (Machwitz et al., 2019; Maes and
Steppe, 2019). These tools allow us to prepare and manage
agricultural georeferenced data and build geospatial snapshots of
cropland from remote sensors mounted on both aerial and
terrestrial platforms (Sharma et al., 2018). The information
generated enables the automation of field operations, the
reduction of costs, and maximization, acting as a steward of the
land (Kaloxylos et al., 2012). Until a few years ago, the most popular
types of software for GIS applications were Quantum GIS (www.
qgis.org) and Esri's ArcGIS (www.arcgis.com). The first is open-
source but the other needs a commercial license (Duarte et al.,
2017). The use of this software requires the user to have a basic
knowledge of how to work and interpret the data contained in raster
and shape files (the most common files used in GIS), although it is
not always an easy task, especially for farmers (Abdelrahman et al.,
2016). In recent years, a collection of open-source GIS libraries that
work with Python language have been developed and made
available to the general public (Gillies, 2007; Jordahl, 2014;
Rapiński and Zinkiewicz, 2019). Examples of this type of library
are GeoPandas (www.geopandas.org), GeoServer (www.geoserver.
org), and Qhull (www.qhull.org), among others. At the same time,
the development of platforms such as Google Colaboratory (www.
colab.research.google.com), a cloud service based on Jupyter
Notebooks, which allows the integration of deep learning models
and GIS tools in a simple python script, has occurred (Carneiro
et al., 2018; Bisong, 2019). This provides the opportunity to develop
geospatial analysis tools that can be readily integrated into web
platforms, allowing their adoption by farmers.
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Based on the above, it can be asserted that the high cost of
data collection and the difficulty of interpretation currently
prevents farmers from implementing data-driven agriculture
(Thompson et al., 2019). With specific regard to yield mapping
in apple orchards, based on the detection of the number of fruits,
although the proposed methods have shown promising results and
a high accuracy, they do not provide a final product with a high
potential to be exploited by the farmers. Additionally, most of them
use ground-level platforms that may increase the data collection
time and hinder their application in large agricultural areas.

Therefore, the objectives of this project were the following: (1)
exploring the feasibility of yield estimation by detecting apple
fruits on images taken by a UAV; (2) training and testing a model
based on CNNs to automatically detect apple fruits, with the aim of
making the weights and models used for apple detection available
for the general public; and (3) building an apple tree variable yield
map for each tree and one with information per each tree row.
MATERIALS AND METHODS

Location and Imagery Acquisition
This study was undertaken during the 2018 and 2019 seasons
in an orchard fields of apple (Malus x Dornestica Borkh. cv
‘Elstar') in Randwijk (latitude: 51°56'18.5”N; longitude:
5°42'24.8”E) near Wageningen (The Netherlands). The crop
field had 0.47 ha with 592 trees allocated in 14 rows with
approximately 41 trees in each row and a pollinator tree every
10 m. The average tree height was 3 m with a tree spacing was 3 ×
1 m (inter-row and intra-row), rows were NW-SE oriented, and
the crop management tasks (fertilization, thinning, pruning, etc.)
were performed following the conventional farm practices.

The UAV platform employed to take the pictures was a DJI
Phantom 4 Pro (DJI Technology Co., Ltd., Shenzhen, China) at a
Frontiers in Plant Science | www.frontiersin.org 3
set flying altitude of 10 m (Figure 1A). The onboard camera had
a 1/2.3'' CMOS sensor (with an effective pixel count of 20M), a
lens FOV of 84°, a focal length of 8.8 mm, a focal ratio of f/4.5,
and a focus to infinity. This UAV was equipped with dual-band
satellite positioning (GPS and GLONASS), which provided a
sub-meter precision location.

A grid-shaped flight plan was designed using the DJI Ground
Station Pro (DJI Technology Co., Ltd., Shenzhen, China) iPad
application, which allowed us to control or plan automatic flights
for DJI aircrafts (Chen et al., 2019). The flights, in the two
seasons (2018 and 2019), to take the pictures were made 2 days
before the first harvest (40%). It was a sunny day with low wind
speed. A total of 806 pictures at 15 m above the ground were taken
in a nadiral view (vertically downward at 90°) (Figure 1B). The
image resolution was set to 5,472×3,648 pixels (JPG format). A
total of 354 images taken in 2019 were used to build the dataset for
training the CNN, while the rest (taken in 2018) were used for
creating the visible orthomosaic. These latter were obtained with a
forward overlap of 85% and a sideway overlap of 75%. The UAV
flight made in 2018 had to be made over a portion of the trees
because the rest of the field had already been harvested by
the farmer.

Five ground control points (GCPs) were established during
each flight as an indirect georeferencing of UAV images and for
an accuracy assessment of the orthomosaic obtained (Figure
1C). The precise locations of the GCP (black and white targets)
were obtained using a Topcon RTK GNSS equipment with an
accuracy below 2.5 cm. A total of 452 pictures were used for
orthomosaic creation.

Ground Truth Acquisition for Yield
Estimation
According to Moltó et al. (1992) and Jiménez et al. (2000), only
approximately 60–70% of crop production is visible from the
FIGURE 1 | Field test flight design and equipment used (A) unmanned aerial vehicle (UAV; DJI Phantom 4) used during the flights, over one of the ground control
points to associate projection coordinates with locations on the images; (B) workflow for UAV image acquisition; and (C) an image of an apple tree in the field.
July 2020 | Volume 11 | Article 1086
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outside of a tree; here lies the complexity of yield estimation, as
not all existing fruits can be detected with only external images of
the tree. Moreover, previous studies have been based on ground-
level observations on both sides of the tree canopy. However,
zenithal pictures shown only a fraction of the total fruits, making
it a challenge to generate complex models for yield estimation in
this type of study (Chen et al., 2019). On this basis, a previous
step in this research was to check the percentage of fruit visible
from the aerial pictures. At the same time as the pictures to build
the orthomosaic were taken by the UAV before harvesting, a
representative sample of 19 trees was randomly selected from
row 5 of the crop field. We assumed the number of fruits by row
remain consistent based on historical data provide by the farmer.
The tree architecture was divided according to Figure 2. Then,
visual counting of the fruit was conducted on each side (right and
left) of the tree, and the data were collected in a Microsoft Excel
(Version 16.37) file. For avoiding duplicated counting of the
fruits, a plastic tape was used to delimit the areas of interest.

Later, the apple fruits in all trees were hand-harvested and
weighed to give an average weight in kilograms per meter (kg/m)
of fruit per row. The collection of fruit was conducted in three
stages, since the market demand for fresh fruit is variable over
the time during a harvest season (Lötze and Bergh, 2004).
Moreover, farmers tend to choose the best moment to be able
to find a good price for their product.

Orthomosaic Construction and Data Pre-
Processing for Yield Map Estimation
A total of 452 images were used to build the orthomosaic [an aerial
image of an area, composed of multiple images stitched together
using photogrammetry which has been geometrically corrected
(Chen et al., 2019)]. The imagery was automatically processed
using Agisoft PhotoScan Professional 1.2.3 software (Agisoft LCC,
St. Petersburg, Russia). Following the software recommendations,
the first step was to “Align Photos” with the “High” accuracy set
up. This option uses the original resolution of images to generate a
sparse 3D point cloud with a low resolution as a necessary first
Frontiers in Plant Science | www.frontiersin.org 4
step towards building the orthomosaic. After that, GCPs were
manually located in each image. This process is necessary, as,
despite of the images taken by the UAV being geotagged using the
onboard GNSS receiver, the accuracy of this sensor is low. Then, a
3D dense point cloud (110449395 points) with a “High” accuracy
was generated in a previous step to build the final raster file
(Figure 3). Finally, the orthomosaic in the coordinate system
WGS 84 (EPSG: 4326) was exported as a GeoTIFF file with 4.18
mm/pixel to be further used in fruit detection and to build the
yield map based on the number of fruits detected.

Currently, apple orchards are being planted using advanced
machinery that records GNSS coordinates of each tree in a
standard vectorial format (shapefile) of the GIS. These files
allow storage spatial information and vector operations with
other files, such as raster files (Oliver, 2013; Maes and Steppe,
2019). On this basis, a python script was developed to create a
circular mask (1-meter diameter) with the coordinates of each
tree. The output's script was an individual shapefile for each tree
avoiding the edges of the canopy. Then, the orthomosaic was
cropped using these shapefiles, and a TIF file was obtained for
each tree as an output. Finally, each TIF file was tested using the
Faster R-CNN model to count apple fruits. Considering the
number of fruits detected and taking into account and
the distribution of fruits on the structure of the apple canopy,
a yield map estimation was created using Qgid (3.12).

Building and Labeling Image Datasets for
Apple Fruit Detection
Dataset size plays a critical role in making DL models successful.
A model without sufficient and representative training data is not
able to learn the fundamental discriminative patterns required to
carry out robust detection of fruits (Sonka et al., 1993). The
features of apples on the trees may dramatically diverge (e.g.,
green fruits, fruits of different sizes, fruits occluded by branches
and leaves, and overlapping fruits). Moreover, the images might
suffer from distortions, especially those generated by outdoor
light conditions and the rolling shutter effect (Chen et al., 2019).
FIGURE 2 | Detailed illustration of apple tree canopy architecture division for visual counting of fruit from both the right and left sides of the row.
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The set of processes carried out by a CNN requires images with
an appropriate resolution, since high-quality images increase the
computational resources needed (Lecun et al., 2015; Chollet, 2017).
Therefore, the images taken by the UAV in this study were cropped
to produce smaller images with a resolution of 416 × 416 px without
applying any resizing process. As a result, a preliminary sample of
1,000 images was selected to train the model. Additionally, in order
to achieve a high accuracy and avoid overfitting problems, data
augmentation techniques were applied (Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014). Data augmentation is a common
Frontiers in Plant Science | www.frontiersin.org 5
technique used to transform pictures based on rotation, changing
color channels, and the addition of filters among others. In this
paper, images were rotated by 90, 180, and 270 degrees. The
contrast and brightness were changed by varying a and b values
responsible for the color difference settings using a Python script
developed by the authors (Figure 4). Consequently, a dataset
containing a total of 3,000 pictures was used to train the CNN.

As suggested by Rahnemoonfar and Sheppard (2017), CNN
requires a huge amount of annotated pictures with the coordinates
of each fruit on the images from the training dataset. In this project, a
FIGURE 4 | Dataset augmentation process. Original images were rotated 90, 180, and 270 degrees and color distortion ware setting changing both a and b values.
A

B C

FIGURE 3 | Workflow to build an orthomosaic using Agisoft PhotoScan: (A) photo alignment and 3D sparse point cloud (each blue square represents the estimated
viewpoint of the input images). (B) dense point cloud, and (C) orthomosaic.
July 2020 | Volume 11 | Article 1086
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free and open-source labeling tool called LabelImg (v1.8.3) was used
(Tzutalin, 2015). The process was done manually and very carefully
to prevent mislabeling or occlusion, since, due to the nature of fruit
trees, many of them were completely occluded by others or even
attached to each other (Figure 5). Once all fruits had been labeled
with a bounding box, an Extensible Markup Language (XML) file in
PASCAL Visual Object Classes (VOC) format was generated.

Once the labeling process was complete, the configuration details
for the model and labels were implemented in the TensorFlow API
(www.tensorflow.org). Due to CNN's high demand for hardware
and GPU resources, Google Colaboratory (also known as Colab)
offered by Google was used to implement and train the model.
Colab, a cloud service based on Jupyter Notebooks, provides a free
single 12GBNVIDIA Tesla K80 GPU that can be continuously used
for up to 12 h. The advantage of this particular tool lies in the fact
that its access is completely free and open-source. It also allowed us
to work in the same work space with geospatial data and DL
algorithms. We consider this platform to be a powerful tool that
may in the future play a determining role in research and education
with aggregated data and expert decision-making systems based on
georeferenced data and ML (Machine Learning) algorithms.

For the local computing processes, a MacBook Pro laptop
(MacOs High Sierra 10.13.4) with a 2.5 GHz Intel Core i7
processor, 16 GB of RAM, and Graphics AMD Radeon R9
M370X 2048 MB Intel Iris Pro 1536 MB was used. The Open-
Source Computer Vision (OpenCV) library (http://opencv.org/),
which includes several hundred computer vision algorithms, was
used to process images (Rosebrock, 2016). The Keras (Chollet,
2017) open-source library was used in combination with
TensorFlow backend tools to build and deploy the DL architecture.
Frontiers in Plant Science | www.frontiersin.org 6
Fine-Tuning and Training of the Faster-
RCNN
Convolutional neural networks have been proven to be powerful
visual models that use complex data as inputs that are capable of
conducting automated fruit counting in the images. These
algorithms consider an image as a matrix of pixels whose size
(kernel) is (height × width × depth), where the depth is the
number of image channels (3 for our RGB crop images). Hidden
layers with a hierarchical structure (Lecun et al., 2015) are the
main components of a CNN; the first layers can detect lines,
corners, and simple shapes, whereas deeper layers can recognize
complex shapes (Rosebrock, 2018). A common CNN
architecture consists of several convolutional blocks (composed
of convolutional layer + pooling layers + non-linearity) and one
or more fully connected layers (Figure 6). Feature extraction,
non-linearity operations, and dimension reduction were
performed with this common architecture. Additionally, a fully
connected layer was used to classify data from images (Guo et al.,
2016), while a softmax function assigned the probability of
belonging to the class (apple).

Despite the advances in computational processes and the available
power offered by the graphics processing unit (GPU), training a
neural network from scratch is still highly computationally expensive
and requires large datasets for learning (Patrıćio and Rieder, 2018). To
overcome these obstacles, a method named transfer learning (Gu
et al., 2018) was used. The main objective of this procedure is to
transfer the knowledge from one model trained on large datasets,
such as ImageNet (Gopalakrishnan et al., 2017), to another model to
solve a specific task (Talukdar et al., 2018). Several popular pretrained
networks using transfer learning, such as VGG-16, ResNet 50,
A

B

C

FIGURE 5 | Labeling process used to annotate pictures: (A) original picture taken by UAV; (B) picture with 416 × 416 px resolution; and (C) picture with each one
of the bounding boxes.
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DeepNet, and AlexNet Inception V2, are described in the literature
(Rosebrock, 2018).

The Faster R-CNN model was selected, since this network can
use several architectures, such as ResNet, Inception, and Atrous, and
thus increase the efficiency and precision of fruit detection (Dias
et al., 2018). In this study, the Faster R-CNN Inception Resnet V2
Atrous Coco (Ren et al., 2017) model with a TensorFlow object
detection application programming interface (API) was used.
TensorFlow is an open-source software library for numerical
computations (Kamilaris and Prenafeta-Boldú, 2018) and was
used because of its flexibility and the ability to deploy network
computations in multiple central processing units (CPUs), GPUs,
and servers. The model comprises three steps, with an apple tree
image as the input. Faster R-CNN extracts feature maps from the
image using a CNN and then passes these maps through a region
proposal network (RPN), which returns object proposals
(Rosebrock, 2018). Finally, these maps are classified, and the
bounding boxes enclosing the apple fruits are predicted (Figure 7).

The model was trained for 6 h, until the loss function reached the
value of 0.06. This function allowed an accurate quantification of the
model to ensure correct classification of the apples in our dataset
(Kamilaris and Prenafeta-Boldú, 2018). The batch size (the parameter
that defines the number of samples, which are images in this case, that
will be propagated through the CNN) was two images in each step.
The learning rate (a hyperparameter which determines the learning
speed of the new information over the old) was 0.001.

Statistical Analyses
To evaluate the accuracy of the trained model, 20 randomly selected
pictures cropped from the orthomosaic randomly selected were
used. The total number of fruits per picture (Nfp) was manually
counted using the Photoshop count tool (Adobe Systems Inc., San
Jose, United States), as suggested by Payne et al. (2014).
Consequently, with this data, the precision (P, Eqn. 1), recall (R,
Eqn. 2), F1score (Eqn. 3), and Accuracy (A, Eqn. 4) were used as the
evaluation metrics for fruit detection (Rosebrock, 2018). These
model evaluation metrics are defined as follows:

Precision  Pð Þ =  
TP

TP + FP
Eqn: 1

Recall  Rð Þ =  
TP

TP + FN
Eqn: 2
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F1score = 2x
PxR
P + R

Eqn: 3

Accuracy  Að Þ =  
TP
Nfp

Eqn: 4

where TP corresponds to true positives, i.e., when the algorithm
correctly detects a fruit with a bounding box; FP indicates false
positives, i.e., when a box is computed in a location where a fruit is
not located; and FN denotes false negatives, i.e., when a target fruit is
not detected.

Linear regressions were used for comparisons of the number of
fruits counted visually (in the field and on the pictures) and the number
of fruits harvested. The analysis was performed with RStudio® (http://
www.rstudio.com). A comparison of visually counted fruits and
harvested fruits was performed using the Mean Absolute Error
(MAE, Eqn. 5) and the Root Mean Square Error (RMSE, Eqn. 6):

MAE =
1
no

n
t=1 At − Ftj j Eqn: 5

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

t=1 At − Ftð Þ2
n

s
Eqn: 6

where n refers to the number of compared values, At is the actual
observed value, and Ff is the forecast value.
RESULTS

Distribution of Fruits in an Apple Orchard
Canopy
The distribution of the fruits inside an apple canopy tree can be
strongly variable. It depends on several factors, such as the tree
height, the effect of row orientation on daily light absorption, and
the apple cultivar planted in the field, among others (Gongal
et al., 2018). Table 1 shows that the largest amount of fruits was
found between the middle and underside of the tree. This could
be explained by the canopy architecture, since, on the top of the
tree, generally, there is a smaller number of branches (Willaume
et al., 2004). Furthermore, farmers tend to prune apple trees to
concentrate the majority of the fruits in the middle and
FIGURE 6 | General architecture of a convolutional neural network.
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underside of the tree. This fruit distribution makes it much easier
for the fruit picking operator during the harvesting process
(Brendon et al., 2019).

It can also be observed that each apple tree contained between
175 and 308 fruits, with an average of 255. On the other hand, the
percentage of fruits on the top of the tree had an average value of
Frontiers in Plant Science | www.frontiersin.org 8
27.31%. Hence, it must be realized that only a part of this
percentage of fruits was detected on the images obtained with
the UAV.

When visual counts of fruits are made before harvesting, the
total number of them can be affected by many factors. The main
reasons for this are natural fruit drop and biotic and abiotic
FIGURE 7 | The architecture of Faster R-CNN. “conv” represents the convolutional layer, the “relu” represents the activation function, and the “fc layer” represents
the fully connected layer. The network outputs intermediate layers of the same size in the same “stage.” “bbox_pred” represents the position offset of the object,
“cls_prob” represents the probability of the category, and the outputs show the fruits detected.
July 2020 | Volume 11 | Article 1086
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factors. Another reason it may be due to visual errors committed
by the staff devoted to counting the fruits (i.e., they may count
the same fruit twice). In Figure 8, a linear regression between the
number of fruits counted visually in the field and the number of
fruits harvested is shown. An R2 value of 0.86 was obtained,
which indicates a good correlation for both numerical variables.
However, the MAE and RMSE values obtained were high, which
indicates a bad model adjustment. The low consistency between
the number of fruits counted visually and the fruits harvested is
probably due to losses during the counting process when using a
fruit grading machine. This kind of machine does not detect
small-sized fruits; hence, the use of a manual process to count the
fruit can improve model adjustment.

The starting point was the premise that the human eye is the
most accurate method for detecting fruit on the images (Rosebrock,
2018). In this sense, in Figure 9, a linear regression between the
number of fruits counted on the image and the number of fruits
harvested is displayed. An R2 value of 0.80 can be observed, which
indicates a low correlation. As expected, the number of fruits
detected in the images taken by the UAV is insufficient for
estimating the rest of the fruits present in the canopy tree with
traditional mathematical models. The results show that it is
possible, although with a low accuracy, to make predictions of
the total number of fruits in each tree using these kinds of images.
The high values for MAE and RMSE suggest that, despite of all the
fruits being detected using DL algorithms, the variability in the
number of fruits harvested with respect to the number of detected
fruits cannot be modeled well using standard linear regression.

Distribution of Fruits in an Apple Orchard
Canopy
In Figure 10, the workflow from an input image until the fruits are
detected is shown. Over each detected apple fruit, a blue bounding
box with the probability of containing the fruits and a legend with
Frontiers in Plant Science | www.frontiersin.org 9
TP, FP, and FN are shown in (Figure 10B). Based on the above, it
was concluded that the 3,000 images tagged for apple detection
were sufficient for explaining the wide variability in the data set, as
the number of fruits detected was high. Apparently, the application
of data augmentation helped to overcome the problems in object
detection caused by illumination conditions, the distance to the
fruit, and fruit clustering, among others, as suggested by
Voulodimos et al. (2018).

In outdoor conditions, the model could not detect all fruits,
but it was able to detect most of the visible fruits. It was observed
TABLE 1 | Data on the trees randomly selected in the crop field.

Id Nfcvt Nfcvm Nfcvun Total of fruits Top (%) Middle (%) Underside (%)

1 88 95 92 275 32.00 34.55 33.45
5 85 101 99 285 29.82 35.44 34.74
9 66 77 95 238 27.73 32.35 39.92
14 83 68 77 228 36.40 29.82 33.77
17 56 75 82 213 26.29 35.21 38.50
24 51 93 82 226 22.57 41.15 36.28
25 86 87 70 243 35.39 35.80 28.81
27 77 107 124 308 25.00 34.74 40.26
32 53 78 125 256 20.70 30.47 48.83
33 88 117 64 269 32.71 43.49 23.79
34 56 89 107 252 22.22 35.32 42.46
43 35 202 82 319 10.97 63.32 25.71
48 80 117 70 267 29.96 43.82 26.22
50 90 95 72 257 35.02 36.96 28.02
51 63 44 68 175 36.00 25.14 38.86
56 77 84 78 239 32.22 35.15 32.64
57 48 128 97 273 17.58 46.89 35.53
59 69 88 98 255 27.06 34.51 38.43
62 52 110 108 270 19.26 40.74 40.00
Average 68.58 97.63 88.95 255.16 27.31 37.63 35.06
July 2020 | Volume 1
Id, number of the tree in the field; Nfcvt, Number of fruits visually counted on the top of the tree; Nfcvn, Number of fruits visually counted in the middle of the tree; Nfcvun, Number of fruits
visually counted in the lowest part of the tree; (%), percentage values for each part of the tree regarding the total.
FIGURE 8 | Linear regression between both the Number of Fruits Counted
Visually in the field and the Number of Fruits Harvested. The number of trees
analyzed was n = 19. The straight line represents the best-fit linear regression
(p < 0.001).
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that the pictures taken by an UAV suffered from notable changes,
mainly due to unstructured light conditions and the camera's
rolling shutter effect. Moreover, invisible fruits that are occluded
by foliage or other fruits are the main challenge for DL models
based on object detection (Kamilaris and Prenafeta-Boldú, 2018).
Therefore, in Table 2, an analysis of the precision of fruit
detection is presented. The values for each of the metrics used
to assess the obtained results were greater than 90% in terms of
precision (P). Similar results were obtained by Chen et al. (2019),
although their results were slightly lower, probably due to the
size of strawberry fruits, which are smaller than apple fruits. False
positives were observed in the pictures that corresponded to
Frontiers in Plant Science | www.frontiersin.org 10
immature fruits (fruits green), and where the brightness of
sunlight was slightly greater, and in those pictures that suffered
from rolling shutter. These results can be significantly improved
by taking pictures several times throughout the day, as suggested
by Fu et al. (2018), or by flying the UAV at a low speed. Finally,
the F1-score exhibited values greater than 87%, indicating the
high robustness of the trained model. On the other hand, with
visual counting (Nfp), considered to be the most reliable method,
an accuracy of 88.96% was obtained. The errors between visual
counts and object detection were similar to those obtained by
Neupane et al. (2019) when counting banana fruits. These results
demonstrate that the use of simple data augmentation techniques
such as picture rotation, filters, and transfer learning can facilitate
the building of tools with a high potential for apple fruit detection.

Yield Map Creation
As seen in the previous sections, a highly accurate estimation of
the number of fruits per tree is not easy or straightforward.
Nevertheless, it is possible to build an apple yield map as a tool to
at least approximately determine the number of fruits in each tree of
the crop field. This foreseen information could be useful for both
farmers (to know the number of staff needed to be contracted) and
contractors (to know the volume of production to be transported).
In Figure 11, there is an apple yield map in which the number of
fruits per tree detected is shown. It allows a visualization of the high
spatial variability in the field, as well as the expected number of
fruits per tree. It also may be affirmed that there is a low percentage
(9.12%) of trees with a number of fruits between 30 and 40.

Tree-level information can be useful, but it could be more
interesting to have the same information for each row of the crop
field. In Figure 12, a more actionable apple yield map with the
total number of fruits for each row is shown. The results show that
row 5 and row 10 contain less fruits in their trees. Meanwhile, row
1 and 14 are the rows with the greatest volumes of fruits. The rest
of the rows have a similar number of fruits.
FIGURE 9 | Linear regression between the Number of Fruits Counted on
Pictures and the Number of Fruits Harvested. The number of trees analyzed was
n = 19. The straight line represents the best-fit linear regression (p < 0.001).
A B

FIGURE 10 | (A) Original RGB picture taken from an UAV and (B) apple fruits automatically detected with bounding boxes and their probabilities obtained by the
Faster R-CNN model. The errors (TP, FP, and FN) are shown as a legend below the picture.
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DISCUSSION

Computational Time Required
According to Torres-Sánchez et al. (2015), the computational
and processing time is a crucial aspect in this kind of work. In
this line, the time needed for each step is discussed in the
following lines. The alignment process took 68 min and the
dense point cloud analysis took 159 min, without taking into
account the quiet time needed to upload images and carry out the
Frontiers in Plant Science | www.frontiersin.org 11
image georeferencing process. On the other hand, the time
required for these steps mainly depends on the covered area,
the number of images and their resolution, and the computer
used, as suggested by Ai et al. (2015).

Most of the processing time was spent training the Faster
R-CNN model, which took approximately 5 h using Google
Colab. This depends on the number of images used, the batch
size, the learning rate, and the hardware used, among other
factors. This step did not take the time required for image
labeling, which is highly time-consuming, into account. It
usually takes several working days, since it is a process that is
completely manual. In a study by Tian et al. (2019a), a similar
number of images was obtained using an analogous training
time to this study. However, the studies cannot be completely
compared, since the hardware and images used were not the
same. The research carried out by Id et al. (2019) to detect
banana trees on images taken by an UAV took 180 min to train
a similar model. They used over 2,000 images with a resolution
of 600 × 600 px. However, the CNN architecture used was Yolo-
V3, which is slower than Faster R-CNN, according to
Rosebrock (2018).

Assessment of Apple Fruit Detection on
UAV Images and Orthomosaics
Construction
The main challenge in fruit detection when applying images
taken from a UAV is fruit size. In addition, the size of TIF files
increases the amount of computational resources needed to train
the models. Senthilnath et al. (2016) demonstrated a novel
method for detecting tomatoes using UAV images taken with a
multispectral camera. They used spectral clustering based on the
K-means algorithm to detect tomato fruits. The main problem
TABLE 2 | Fruit detection analyses for each of the pictures selected.

Picture TP FP FN P R F1 Nfp A

1 70 2 8 0.97 0.90 0.93 78 0.90
2 44 3 9 0.94 0.83 0.88 53 0.83
3 62 3 6 0.95 0.91 0.93 68 0.91
4 53 4 5 0.93 0.91 0.92 58 0.91
5 20 2 4 0.91 0.83 0.87 24 0.83
6 41 3 9 0.93 0.82 0.87 50 0.82
7 67 3 5 0.96 0.93 0.94 72 0.93
8 83 5 8 0.94 0.91 0.93 91 0.91
9 86 7 10 0.92 0.90 0.91 96 0.90
10 77 6 4 0.93 0.95 0.94 81 0.95
11 80 7 6 0.92 0.93 0.92 86 0.93
12 61 3 6 0.95 0.91 0.93 67 0.91
13 75 4 1 0.95 0.99 0.97 76 0.99
14 73 5 8 0.94 0.90 0.92 81 0.90
15 30 6 4 0.83 0.88 0.86 34 0.88
16 38 5 7 0.88 0.84 0.86 45 0.84
17 56 3 8 0.95 0.88 0.91 64 0.88
18 53 7 3 0.88 0.95 0.91 56 0.95
19 67 8 9 0.89 0.88 0.89 76 0.88
20 91 2 7 0.98 0.93 0.95 98 0.93
Avg 61.35 4.40 6.35 0.93 0.90 0.91 67.70 0.90
TP, True Positive; FP, False Positive; P, Precision; R, Recall; F1, F1score value; Nfp,
Number of fruits counted on pictures visually; A, Accuracy.
FIGURE 11 | Apple yield map with the number of fruits per tree detected with the Faster R-CNN model trained.
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that they found was the inability to detect fruits covered by the
leaves. Other studies, such as that proposed by Id et al. (2019) to
detect banana trees, obtained similar results in terms of accuracy
to what this study concluded. Hence, we can conclude that the
method proposed in this study was highly accurate for fruit
detection tasks. In addition, the maps generated from the
detections in images taken from a UAV represent an
innovative proposal that, until now, has not been implemented
in an apple crops field.

Regarding the creation of orthomosaics, many of the tools
that make use of them apply segmentation techniques to detect
objects (fruits, trees, rows, etc.). Csillik et al. (2018) developed an
algorithm for citrus tree identification. They applied the CNN
workflow using Trimble's eCognition Developer 9.3 (www.
ecognition.com). Johansen et al. (2018) also proposed a
methodology using multispectral images to detect tree canopies
with the intention of determining the number of trees. Although
these methods have a high level of accuracy, the process is not
completely automated; hence, it can be improved. On the other
hand, much of the research that currently applies DL algorithms
operates with individual images without georeferencing
(Kamilaris et al., 2017). Knowing the accurate position of each
element (plants, machinery, sensors, etc.) available on any farm
is crucial (Ramin Shamshiri et al., 2018). To our knowledge, our
methodology is the first that allows the orchard yield to be
estimated based on the number of fruits detected a tree-scale
precision on images taken by an UAV.

Figure 13 compares two schematic workflows for the
purposes of applying the DL algorithm and other common
indexes used in agriculture. On the left (Figure 13A), the
traditional workflow as used in reference A is presented. This
is characterized by the performance of the detection processes on
Frontiers in Plant Science | www.frontiersin.org 12
different platforms and in separate steps. For example, the
preparation of the datasets is usually done on a conventional
computer, while the training of the algorithms is done on a more
powerful computer (mainly with advanced GPU hardware). The
main advantage of the proposed method (Figure 13B) is that
Colab allows the data to be prepared and applies fruit detection
in georeferenced images on the same platform, which reduces the
processing time and leverages the interoperability.

Integration of Automated Yield Estimation
Systems Into the Agricultural Domain
Finally, we would like to focus on the translation of this type of
fruit detection and counting systems to the agri-economic
terrain. Being aware of the advance that this type of technique
implies for an early forecast of yield, we think that it may have an
impact on the way in which the management of farms is carried
out in the coming years. The organization of harvesting tasks, the
pruning of trees, or the fruit purchase process itself can be
optimized with this type of system. However, we would like to
point out that this type of development, although employing
collaborative platforms such as the one shown here, a priori does
not have the average producer as an end user. We envisage that
the development of an automated fruit detection system and the
possibility of generating variable crop maps, can be marketed as a
service within agricultural cooperatives. When demonstrated in a
real environment, with a model with several learning campaigns,
it can represent an important advance in the adoption of new
agricultural management systems. Although the development in
this work implements an open data model, with open-source
algorithms, the algorithm-as-a-service model is still far from a
firm implementation in the agricultural field. Cloud computing
and development platforms such as Google Colab have great
FIGURE 12 | Apple yield map with the total number of fruits by row detected with the Faster R-CNN trained model.
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potential in the near future to serve as tools for the creation of
advanced services in precision agriculture. Moreover, thanks to
advances in GPS position enabling farmers to accurately navigate
to specific location in the field, a door opens to an automatic
harvested in combination with yield maps and autonomous farm
equipment's. The object of these developments can be
anticipated as they will be integrated into software solutions
and much more automated platforms (Farm Management
Information Systems), in which the user will hardly have to
interact with the data to obtain reliable forecasts.
CONCLUSIONS

This paper introduces a novel methodology for sampling an
apple orchard at the tree level to infer the final yield. It was found
that it is possible to detect the number of fruits in apple trees
from images taken from a UAV. The assessment of the DL model
showed very promising values and, therefore, a great potential of
the method is foreseen for the estimation of apple yields and
probably the yield of other fruits.

Google Colab's usefulness as a tool for training DL algorithms
to build useful tools for farmers was assessed. This cloud
environment will make the tool more available for further
research and improve orchard management. Moreover, the use
of python opens the door to developing web tools with the aim of
automating the process. In this case we provide the code used in
the Supplementary Material.
Frontiers in Plant Science | www.frontiersin.org 13
Future works will involve the automation of all of the processes:
the creation of the orthomosaic, individual tree identification, the
detection of all the fruits in each tree, and the generation of the
yield map on a single platform integrated in a graphical user
interface (GUI). This will provide stakeholders a useful and easy-
to-use tool. Moreover, the combination of historical data from
several seasons will be tested to build models where data and
images converge to obtain accurate results.
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