Development of a multidimensional risk-benefit assessment platform in food process designs: a methodological crossroad

Marta Rodriguez-Illera1, Hasmik Hayrapetyan2, Masja Nierop Groot3, Yury Tikunov4, Twan America4, Ingrid van der Meer4, Siet Sijtsma5, Coen van Wageningen4, Jerome Diaz4

Background
There is a need to expand existing risk-benefit studies of food products to incorporate environmental, economic, consumer and sustainability issues 1,3, 5. This need is met through the development of a comprehensive risk-benefit assessment platform which evaluates the entire food production value chain. The issues surrounding food safety as it relates to food quality, health and sustainability is considered in this assessment platform so that the technological solutions and food policy relating to the complex issues in food production remains relevant. This platform aids in the development of more sustainable and healthy products while not compromising safety and economic feasibility.

Objective
Create a multidimensional analysis framework (Fig. 1) by expanding risk-benefit assessment methodologies integrating environmental, nutritional, safety, economic and consumer issues within the food value chain.

Approach
Framework characteristics using MultiCriteria Decision analysis
- Decomposition and understanding of the goal’s critical aspects
- Integration of multidisciplinary qualitative and quantitative data
- Integration of WUR expertise on plants, foods, economics, health and sustainability
- Decision-making based on rational values (Fig. 3)

Building and using the decision making model
A step-wise approach (Fig. 2) is performed at different levels of the process: from the concept to the detailed process design, following a product-driven process synthesis approach as previously described.

Future perspectives
- MCDA will be used to perform a multidimensional risk-benefit analysis for novel protein sources, processes and products.
- MCDA will be used in combination with reverse engineering approaches relating to novel protein ingredients and processes.

Acknowledgements
The content of this poster has been produced and will be used within the project DFI-KB-19001, a multi-disciplinary project funded and carried out at Wageningen University and Research.


Figure 1. MultiCriteria Decision Analysis (MCDA) approach used for decision processes for multidisciplinary fields and methodologies involved in other Risk-benefit assessments.

Figure 2. MCDA risk-benefit model step-wise approach.

Figure 3. Criteria identification and weighting process as part of the MCDA approach. Illustrative draft example of a possible outcome.