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Abstract 
Many ornamental crops are polyploid or even exist at different ploidy levels. 

Polyploid QTL analysis tools have been developed in recent years, yet they are limited 
in the population types they accept. Biparental populations are nowadays being 
regarded as a limited tool for QTL discovery, as only a limited number of QTLs occurs in 
an experimental cross and their effects might not be stable across genetic backgrounds. 
Genome-Wide Association Studies include more genetic diversity but suffer from 
(hidden) genetic structure and low frequency of QTL alleles. Both factors influence QTL 
detection and effect estimation, decreasing the sensitivity of QTL analysis. Alternatively, 
multiparental populations (MPP) can be used, potentially combining multiple QTLs and 
QTL alleles with known population structure and balanced allele frequencies. Breeding 
populations of interconnected crosses also constitute a form of MPP and QTLs 
identified in them might be more applicable to commercial cultivars. To perform QTL 
analysis in polyploids, mixed models or Bayesian approaches that consider pedigree 
information are recommended. During the analysis, QTL effects are ideally estimated 
using Identity by Descent (IBD) alleles (genomic regions that originate from the same 
ancestor) which can be obtained through haplotype estimation. Although MPPs could 
thus be a powerful set-up to estimate polyploid haplotypes, a software gap was 
identified as no current polyploid haplotyping tools are able to utilize MPP pedigree 
information to obtain haplotypes across an MPP. In order to utilize MPPs to their full 
extent and expand polyploid QTL analyses to encompass typical breeding populations, 
new haplotyping tools must be developed. 

Keywords: breeding populations, IBD, GWAS, family-based analysis, pedigree-based analysis 

INTRODUCTION 
Polyploidy, the multiplicity of genome copies within a cell, is an important evolutionary 

phenomenon that has played a crucial role in plant evolution (Comai, 2005; Soltis and Soltis, 
2012). This genetic condition has also been utilized in breeding, particularly in the 
ornamental field, due to its direct effects on organ size and morphology, and its ability to 
restore fertility in interspecific hybrids. In fact, in the recent book Ornamental Crops (van 
Huylenbroeck, 2018), in which molecular breeding techniques in ornamentals are reviewed, 
virtually all crops mentioned deal with polyploidy in one or more of these cases: i) in natural 
polyploid or mixed ploidy populations, ii) in cultivars that had been unconsciously selected 
for polyploidy, iii) in plants with induced polyploidy to alter morphology or bridge 
interspecific fertility barriers. Given the interest of moving from classical to molecular 
breeding approaches, it is essential to develop and expand methodologies that allow breeders 
and researchers to analyze organisms that differ from the diploid standard. 

One of those techniques is quantitative trait loci (QTL) mapping. The term QTL arose 
almost accidentally in a mathematical article by Geldermann (1975), in which he described a 
marker-based method to associate variation in a quantitative trait with genetic loci (in a 
population of segregating individuals). Although Geldermann did not pioneer the idea, his 
acronym was rapidly adopted and has nowadays become an essential tool in breeding and 
research. Polyploid QTL models were proposed early on (Kempthorne 1957), but their 
application has lagged in comparison to diploids until genotyping technologies and 
computational resources were good enough to handle polyploid genetic complexity (Doerge 
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and Craig, 2000; Xie and Xu, 2000). 
Interpretation of a QTL analysis and its results depends directly on the population type, 

the genotyping platform and the statistical method used to detect QTLs. For instance, a QTL 
found in an F2 biparental population identifies those genomic regions for which the parents 
are polymorphic and whose variation in the F2 can be associated with phenotypic variation, 
suggesting a link between the genes in that area and the trait in question. Although the 
usefulness of this method has allowed a great variety of functional genes to be uncovered, the 
limitations of this approach are well known: QTLs detected in a biparental population might 
not be functional in other genetic backgrounds and not all causative loci can be detected due 
to the limited genetic diversity of the population’s parents. 

Alternatively, genome-wide association studies (GWAS) can be used, where a group of 
genetically diverse individuals (generally with unknown relationship between them) are used. 
In these populations, linkage between marker and QTL allele is due to evolutionary linkage 
disequilibrium (LD) rather than the LD caused by recent relatedness in biparental populations. 
Despite their great usefulness, GWAS designs remain controversial (Tam et al. 2019). Although 
they allow to study a wider range of genetic diversity, effects from rare or weak QTL alleles 
cannot be adequately estimated, and thus are generally missed. Additionally, population 
structure and allelic diversity act as confounding factors that must be taken into account in 
order to avoid statistical artifacts (Yu et al., 2006; Korte and Farlow, 2013). 

Nevertheless, both approaches represent the two extremes of a gradient of population 
diversity (Würschum, 2012). Alternatively, multiple biparental populations that share parents 
can be used. We will refer to them as multiparental populations (MPP), although in literature 
they are also known as pedigreed populations, connected populations or families. MPPs 
harbour a higher level of genetic diversity than a single biparental population, allow testing 
parental genes in multiple genetic backgrounds, and can be expected to have a more balanced 
genetic structure compared to GWAS panels composed of a random sample of diverse 
individuals. Moreover, MPPs are particularly suited for the type of exploratory crossing that is 
common in breeding efforts: a few interesting parents are selected, intercrossed and a small 
population is raised from each cross. While traditionally each cross is analyzed separately, the 
MPP approach proposes joining all crosses in a single analysis. 

In this article, we consider the existing MPP populations in plant breeding and discuss 
the statistical implications of using MPPs in QTL analysis, with special attention to the 
analytical issues that arise with polyploid genetic analysis. 

MULTIPARENTAL POPULATION TYPES 

Experimental populations 
In plants, experimental MPPs have been developed for a long time. Diallel crosses, 

populations where a set of parents are crossed in all possible combinations (full diallel) or 
omitting reciprocal crosses (half diallel), were and are still used in breeding since the 
definition of general and specific combining abilities were laid down by Sprague and Tatum 
(1942). However, they were not developed for QTL analysis, but as a form of evaluating 
parental contributions to hybrids, obtaining an evaluation of the quality of a parent as a source 
for breeding (Griffing, 1956). 

More recently, complex MPP schemes have been developed. Multi-parent Advanced 
Generation Intercross (MAGIC) populations (Cavanagh et al., 2008) have already been 
developed in a variety of crops, both diploid (e.g. maize, rice, tomato) and (allo-)polyploid (e.g. 
wheat, peanut) (Huang et al., 2015). The principle of MAGIC is to combine alleles from 
different founders in a single genome, and thus evaluate each QTL allele in a variety of 
different genetic backgrounds. Another MPP scheme is termed nested association mapping 
(NAM), in which a central parent is crossed with a set of peripheral parents, followed by a 
series of backcrosses and selfings. This population design has been adopted in fewer crops, 
but nevertheless with great success. The maize NAM population (McMullen et al., 2009) is 
undoubtedly its most famous example, but other NAMs have also been developed in sorghum 
(Bouchet et al., 2017), soybean (Song et al., 2017), barley (Maurer et al., 2015) and a single 
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polyploid: wheat (Bajgain et al., 2016). 

Breeding populations 
Although the experimental MPP schemes mentioned above are useful innovations, they 

represent only a small fraction of existing MPPs. In breeding programmes, it is common 
practice to select phenotypically interesting parents and cross them together or with other 
cultivars, in order to explore new trait combinations. Thus, each parent contributes to many 
biparental populations, and these sets of connected crosses can be regarded as an MPP. 

Breeding populations are regularly screened for interesting phenotypes, and 
genotyping these populations is becoming an increasingly common practice. Thus, both 
genotypic and phenotypic data are likely to already be available for these ad-hoc MPPs. 
Additionally, it has been suggested that utilizing such populations for QTL detection provides 
results that are more readily translatable into breeding application due to their direct 
connection to the final cultivars (Jansen et al., 2003; Verhoeven et al., 2006; Würschum, 2012; 
Bink et al., 2012; Bardol et al., 2013; Han et al., 2016). 

For these reasons, development of analytical methods that allow QTL analysis in 
polyploid MPPs (Figure 1) is especially relevant for breeding efforts, as it will allow breeders 
to describe and explore more deeply the breeding material present in a program. 

 

Figure 1. Required elements for polyploid multiparental population (MPP) analysis. Left 
panel: a multiparental population is obtained. Its pedigree structure can be used in 
later analysis. Middle panel: raw genetic data can be used to estimate: i) genotypes 
(dosages) to determine heterozygote classes, ii) haplotypes, to determine which 
parents and offspring are identical by descent along chromosomes, iii) linkage map, 
to determine marker distance and order, and iv) genetic structure, as a relatedness 
matrix, from pedigree and or genotype information. Right panel: phenotypes and 
linkage maps are used to predict QTL positions. With mixed models, genetic 
structure is accounted for by the relatedness matrix and IBD alleles, while in 
Bayesian models that is achieved by incorporating pedigree information in the QTL 
models. 

STATISTICAL CONSIDERATIONS 

Genetic structure 
QTL analyses rely on association between marker and QTL alleles (also known as allelic 

disequilibrium, linkage disequilibrium, gametic phase disequilibrium or gametic 
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disequilibrium), which occurs when alleles of two loci are found together more often than by 
chance (Flint-Garcia et al., 2003). Physical linkage is not the only possible cause of LD: 
bottlenecks, genetic drift, natural selection, domestication, breeding history or recent 
relatedness can generate long-range LD across a population, even on different chromosomes, 
a property generally called population structure (Yu et al., 2006). 

The presence of population structure is one of the major differences between biparental 
populations and MPPs. In biparental populations all individuals are “equally” related (i.e. that 
any two individuals have the same probability of having a level of relatedness k), but in MPPs, 
those individuals that originate from the same cross (full siblings) are more highly related 
than those that originate from different crosses (half-siblings or unrelated). Importantly, 
unlike in GWAS panels, these patterns of relatedness are predictable and can be incorporated 
in the MPP design process in order to obtain a balanced genetic structure. 

A direct consequence of genetic structure is a non-random distribution of alleles across 
the population, which may lead to an increased rate of type I errors when genetic structure 
correlates to the phenotype. To resolve this issue, genetic structure must be considered. Two 
statistical frameworks have been used so far for this purpose: mixed models, where a 
relatedness matrix is used (Yu et al., 2006); and Bayesian QTL models in which pedigree 
information is included in their likelihoods (Bink et al., 2014). Strictly speaking, only mixed 
models have been applied using a polyploid model (Ferrão et al., 2018) through the R package 
GWASpoly (Rosyara et al., 2016). However, the diploid models of FlexQTL™ (Bink et al., 2014) 
have been used in allo-octoploid strawberry by treating each subgenome separately 
(Mangandi et al., 2017; Verma et al., 2017; Anciro et al., 2018). Expansion of this Bayesian 
framework to polyploidy would thus be an interesting development for autopolyploids and 
allopolyploids for which genotyping tools cannot obtain subgenome-specific genotypes. 

Modeling QTLs in multiparental populations 
QTL detection requires estimation of QTL effects. The number and properties of these 

effects are determined by the type of situation we expect to encounter. In general, we can 
summarize MPP QTL modeling in four categories (Han et al., 2016): 

1. Each effect is specific for each cross and parent genotype (full model in Jannink and 
Jansen, 2001; disconnected model in Blanc et al., 2006). 

It is assumed that there is no shared information between crosses. We know that protein 
and gene functions might vary depending on the context in which they are expressed (i.e. 
genetic background, environ-mental factors), but completely disregarding shared information 
between crosses is an over-conservative approach that ignores the potential to increase 
statistical power by using MPPs. 

2. Parental alleles are unique and effects are shared between crosses (reduced model 
in Jannink and Jansen, 2001; connected model in Blanc et al., 2006; parental model in 
Garin et al., 2017). 

QTLs are estimated across families, but we assume that each parent contributes 
different alleles to the MPP. While that might be realistic when all parents originate from 
completely divergent genepools, it does not reflect most breeding populations, where parents 
have some degree of relatedness and thus might share alleles at certain loci. 

3. Identity-by-descent (IBD) segments among parents harbour the same alleles, with 
identical effects between crosses (HaploMQM- model in Jansen et al., 2003; LDLA 
model in Bardol et al., 2013; ancestral model in Garin et al., 2017). 

Two alleles are said to be identical by descent if they have originated from a common 
ancestor. This method requires the identification of parental alleles that are IBD and 
estimation of the effects for each unique allele. If IBD can be estimated (see below) and QTL 
effects are stable between crosses, this is the most powerful method in MPPs (Jansen et al., 
2003). 
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4. Effects are estimated per marker and identical between crosses (model-B in 
Würschum, 2012; biallelic model in Garin et al., 2017). 

In this case it is assumed that a marker allele indicates QTL allele, i.e. that each QTL 
allele is in linkage with a different marker allele. 

Since we expect multiple QTL alleles, this would require a multiallelic marker system 
densely spread across the genome. These requirements are not yet met by any modern marker 
system: high-density SNPs are mostly biallelic, and multiallelic markers lack the high-density 
(and cost effectiveness) of SNPs. Whole genome sequencing could meet these criteria, but fully 
reconstructing all chromosomes (haplotyping of the whole genome) is still impossible in 
polyploids (see below). 

CONSEQUENCES OF POLYPLOIDY IN MPP ANALYSIS 
Polyploid and diploid MPPs do not differ qualitatively. Although some population 

parameters such as genetic drift, heterozygosity and allele frequencies are different in 
polyploids, these do not impact significantly the design or properties of MPPs. Complications 
arise on the analytical side during genotyping, linkage mapping and haplotyping. 

The polyploid genotyping problem 
Unlike diploids, polyploids present multiple heterozygote classes which must be 

distinguished. When two alleles (e.g. A and C) are detected, they must be quantified in order 
to estimate their dosage (ACCC, AACC or AAAC). Various tools have been developed for this 
using both fluorescence intensities of SNP arrays (Voorrips et al., 2011; Serang et al., 2012; 
Schmitz Carley et al., 2017; Zych et al., 2019) and read data from genotyping by sequencing 
(Gerard et al., 2018). These tools have helped not only in genotyping polyploids, but also in 
understanding the types of uncertainties that arise with each measurement technique (e.g. 
background fluorescence or allele bias in SNP arrays, sequencing error or overdispersion in 
sequence counts of GBS). In order to improve genotype estimation, allele frequency 
expectations in a population are usually included. There are two common frequency 
assumptions: a biparental F1 population, where frequencies depend directly on parental 
genotypes; and Hardy-Weinberg equilibrium, which is useful in randomly sampled natural 
populations (e.g. Voorrips et al., 2011; Gerard et al., 2018). To accommodate MPPs, frequency 
expectations must be adapted to reflect the structure of an MPP, i.e. to model multiple F1s. 
Such work has already been performed for fitTetra (Zych et al., 2019) and there exist programs 
initially developed with MPPs in mind (Schmitz Carley et al., 2017). These are positive 
improvements, yet more complex MPPs (e.g. combining pedigreed individuals and F1s) might 
still require further developments. 

The polyploid mapping problem 
Linkage mapping is an important tool as it allows to characterize the recombination 

behavior along the chromosomes of a species. More importantly, in order to detect QTLs, 
marker order must be known. Allopolyploids, that segregate as diploids, can use diploid 
mapping software to obtain a linkage map. However, autopolyploids, that generally segregate 
polysomically require dedicated models. Few programs are available for mapping in 
autopolyploids (Hackett et al., 2014; Bourke et al., 2018), the most flexible being polymapR 
(Bourke et al., 2018), as it can estimate integrated maps under different ploidies and 
segregation models (bivalent, preferential or multivalent pairing of chromosomes). 
Nevertheless, the package can only estimate maps in F1 populations. In order to generate a 
map for an MPP either multiple F1 maps should be generated and integrated, or polymapR 
should be adapted to accept other population structures. In any case, current methodologies 
do not allow to generate linkage maps for (auto)polyploid MPPs. 

The polyploid haplotyping problem 
More specifically relevant to MPPs is estimation of IBD. One can speak of two “kinds” of 

IBD: on the one hand family-IBD, e.g. regions of chromosomes from two offspring individuals 
that originate from the same parental chromosome; and on the other, ancestral-IBD, those 
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chromosomal regions that originate from the same common ancestor and that are broken 
down by recombination events (Browning and Browning, 2011a). The latter might even span 
across closely related species. 

Generally, IBD is estimated using haplotypes (e.g. Meuwissen et al., 2001), the 
concatenation of adjacent polymorphisms, most commonly SNPs. Finding the haplotypes is 
simple when the number of possible combinations is low, (with high homozygosity and low 
ploidy). In heterozygous polyploids the issue of finding the underlying haplotypes becomes 
increasingly complex due to the great number of possible haplotypes. Combining 
polymorphisms to form haplotypes is a process known as phasing or haplotyping and can be 
performed in different ways depending on the type of data one uses. 

Firstly, genotypes can be obtained as independent polymorphism scores (e.g. from a 
SNP array), or as sequence reads, where each read might contain information about multiple 
polymorphic sites, thus providing short-range SNP phase information. Secondly, we might 
wish to resolve the haplotypes of a single individual, or of a group of individuals (related or 
unrelated). 

Haplotypes of a single individual can currently only be resolved using sequence reads, 
as independent SNP scores do not allow us to decide between the multiple haplotype 
possibilities. There already exist multiple tools that can phase polyploid haplotypes using 
next-generation sequencing (NGS) reads (Aguiar and Istrail, 2012; Berger et al., 2014; Das and 
Vikalo, 2015; He et al., 2018), and for short reads these will provide accurate results if 
sequencing is performed at adequate depth (Motazedi et al., 2018a). In the future, haplotype 
library methods based on inferring the most likely haplotype given a set of previously 
identified haplotypes (e.g. Pook et al., 2019), might provide haplotyping solutions for single 
individuals if SNP-arrays are used. These methods, however, are still in development even for 
diploids and thus might take some time to reach polyploids. 

Phasing using populations has, comparatively, received less attention. Browning and 
Browning (2011b) reviewed existing methods for diploids, and divided them in two main 
groups: i) phasing methods for unrelated individuals, which use either coalescent theory to 
haplotype likelihood via Hidden Markov Models (Scheet and Stephens, 2006; Li et al., 2010; 
Browning and Browning, 2011a) or a parsimony principle (Neigenfind et al., 2008); and ii) 
phasing models for related individuals, in which pedigree information and Mendelian 
constraints allow to determine likely haplotypes (Abecasis et al., 2002). Since 2011, other 
population haplotyping tools have been released for polyploids for independent SNPs in F1s 
(Zheng et al., 2016), for long reads in pedigreed individuals (Garg et al., 2016) and for short 
reads in parent-offspring trios (Motazedi et al., 2018b). 

None of the above-mentioned methods can currently exploit information across MPPs. 
Thus, there is no available methodology that is able to transform unphased SNP genotypes in 
polyploid MPPs into the multiallelic markers that are required to apply the modeling strategy 
3 described above. This gap does not allow to fully utilize multiparental population QTL 
detection methods in polyploids and represents a lag of polyploid methodology with respect 
to diploids. 

CONCLUSIONS 
Multiparental populations (MPPs) are an interesting prospect that could allow to 

identify and utilize QTLs with more relevance for breeding applications. In that regard, we 
must consider also MPPs beyond experimental populations and realize that the breeding 
populations of interconnected crosses that are regularly generated as a form of exploratory 
cultivar evaluation also constitute useful MPPs. 

QTL modeling of MPPs is more challenging than in biparental crosses due to genetic 
structure and higher allelic diversity, but mixed models have shown their usefulness in 
analyzing polyploid MPPs and Bayesian models, if adapted to polyploid organisms, could also 
prove a useful tool. Regarding the models of QTL effects, IBD-based (haplotype) estimates are 
the most theoretically consistent method to perform QTL analysis in MPPs, as they account 
both for family-based linkage and possible sharing of alleles between parents. However, 
estimation of IBD in polyploids is a challenging task and no method has yet been developed 
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that can adequately obtain haplotypes across MPPs fully capitalizing on the shared 
information between crosses, either from sequencing reads or from unphased SNPs. 

Polyploid genetic tools are usually developed as extensions from less general diploid 
models. Similarly, MPP polyploid tools must be developed as generalizations of methodologies 
that were developed for application in different population types. To that end it will be useful 
to look both at polyploid tools for biparental and GWAS populations and at diploid tools for 
MPP analysis, harvesting developments from both fields. 
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Paul Arens, Peter Bourke and René Smulders for their useful guidance on writing this 
manuscript. 

Literature cited 
Abecasis, G.R., Cherny, S.S., Cookson, W.O., and Cardon, L.R. (2002). Merlin–rapid analysis of dense genetic maps 
using sparse gene flow trees. Nat. Genet. 30 (1), 97–101 https://doi.org/10.1038/ng786. PubMed 

Aguiar, D., and Istrail, S. (2012). HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of 
sequence data. J. Comput. Biol. 19 (6), 577–590 https://doi.org/10.1089/cmb.2012.0084. PubMed 

Anciro, A., Mangandi, J., Verma, S., Peres, N., Whitaker, V.M., and Lee, S. (2018). FaRCg1: a quantitative trait locus 
conferring resistance to Colletotrichum crown rot caused by Colletotrichum gloeosporioides in octoploid 
strawberry. Theor. Appl. Genet. 131 (10), 2167–2177 https://doi.org/10.1007/s00122-018-3145-z. PubMed 

Bajgain, P., Rouse, M.N., Tsilo, T.J., Macharia, G.K., Bhavani, S., Jin, Y., and Anderson, J.A. (2016). Nested association 
mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS One 11 (5), e0155760 
https://doi.org/10.1371/journal.pone.0155760. PubMed 

Bardol, N., Ventelon, M., Mangin, B., Jasson, S., Loywick, V., Couton, F., Derue, C., Blanchard, P., Charcosset, A., and 
Moreau, L. (2013). Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea 
mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus 
polymorphism. Theor. Appl. Genet. 126 (11), 2717–2736 https://doi.org/10.1007/s00122-013-2167-9. PubMed 

Berger, E., Yorukoglu, D., Peng, J., and Berger, B. (2014). HapTree: a novel Bayesian framework for single individual 
polyplotyping using NGS data. PLOS Comput. Biol. 10 (3), e1003502 
https://doi.org/10.1371/journal.pcbi.1003502. PubMed 

Bink, M.C.A.M., Totir, L.R., ter Braak, C.J.F., Winkler, C.R., Boer, M.P., and Smith, O.S. (2012). QTL linkage analysis of 
connected populations using ancestral marker and pedigree information. Theor. Appl. Genet. 124 (6), 1097–1113 
https://doi.org/10.1007/s00122-011-1772-8. PubMed 

Bink, M.C.A.M., Jansen, J., Madduri, M., Voorrips, R.E., Durel, C.-E., Kouassi, A.B., Laurens, F., Mathis, F., Gessler, C., 
Gobbin, D., et al. (2014). Bayesian QTL analyses using pedigreed families of an outcrossing species, with application 
to fruit firmness in apple. Theor. Appl. Genet. 127 (5), 1073–1090 https://doi.org/10.1007/s00122-014-2281-3. 
PubMed 

Blanc, G., Charcosset, A., Mangin, B., Gallais, A., and Moreau, L. (2006). Connected populations for detecting 
quantitative trait loci and testing for epistasis: an application in maize. Theor. Appl. Genet. 113 (2), 206–224 
https://doi.org/10.1007/s00122-006-0287-1. PubMed 

Bouchet, S., Olatoye, M.O., Marla, S.R., Perumal, R., Tesso, T., Yu, J., Tuinstra, M., and Morris, G.P. (2017). Increased 
power to dissect adaptive traits in global Sorghum diversity using a nested association mapping population. 
Genetics 206 (2), 573–585 https://doi.org/10.1534/genetics.116.198499. PubMed 

Bourke, P.M., van Geest, G., Voorrips, R.E., Jansen, J., Kranenburg, T., Shahin, A., Visser, R.G.F., Arens, P., Smulders, 
M.J.M., and Maliepaard, C. (2018). polymapR-linkage analysis and genetic map construction from F1 populations 
of outcrossing polyploids. Bioinformatics 34 (20), 3496–3502 https://doi.org/10.1093/bioinformatics/bty371. 
PubMed 

Browning, B.L., and Browning, S.R. (2011a). A fast, powerful method for detecting identity by descent. Am. J. Hum. 
Genet. 88 (2), 173–182 https://doi.org/10.1016/j.ajhg.2011.01.010. PubMed 

Browning, S.R., and Browning, B.L. (2011b). Haplotype phasing: existing methods and new developments. Nat. Rev. 
Genet. 12 (10), 703–714 https://doi.org/10.1038/nrg3054. PubMed 

https://doi.org/10.1038/ng786
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11731797&dopt=Abstract
https://doi.org/10.1089/cmb.2012.0084
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22697235&dopt=Abstract
https://doi.org/10.1007/s00122-018-3145-z
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30032317&dopt=Abstract
https://doi.org/10.1371/journal.pone.0155760
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27186883&dopt=Abstract
https://doi.org/10.1007/s00122-013-2167-9
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23975245&dopt=Abstract
https://doi.org/10.1371/journal.pcbi.1003502
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24675685&dopt=Abstract
https://doi.org/10.1007/s00122-011-1772-8
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22228242&dopt=Abstract
https://doi.org/10.1007/s00122-014-2281-3
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24567047&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24567047&dopt=Abstract
https://doi.org/10.1007/s00122-006-0287-1
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16791688&dopt=Abstract
https://doi.org/10.1534/genetics.116.198499
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28592497&dopt=Abstract
https://doi.org/10.1093/bioinformatics/bty371
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29722786&dopt=Abstract
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29722786&dopt=Abstract
https://doi.org/10.1016/j.ajhg.2011.01.010
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21310274&dopt=Abstract
https://doi.org/10.1038/nrg3054
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21921926&dopt=Abstract


62 

Cavanagh, C., Morell, M., Mackay, I., and Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, 
validation and delivery in crop plants. Curr. Opin. Plant Biol. 11 (2), 215–221 
https://doi.org/10.1016/j.pbi.2008.01.002. PubMed 

Comai, L. (2005). The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6 (11), 836–846 
https://doi.org/10.1038/nrg1711. PubMed 

Das, S., and Vikalo, H. (2015). SDhaP: haplotype assembly for diploids and polyploids via semi-definite 
programming. BMC Genomics 16 (1), 260 https://doi.org/10.1186/s12864-015-1408-5. PubMed 

Doerge, R.W., and Craig, B.A. (2000). Model selection for quantitative trait locus analysis in polyploids. Proc. Natl. 
Acad. Sci. USA 97 (14), 7951–7956 https://doi.org/10.1073/pnas.97.14.7951. PubMed 

Ferrão, L.F.V., Benevenuto, J., Oliveira, I.B., Cellon, C., Olmstead, J., Kirst, M., Resende, M.F.R., Jr., and Munoz, P. (2018). 
Insights into the genetic basis of blueberry fruit-related traits using diploid and polyploid models in a GWAS 
context. Front. Ecol. Evol. 6, 107 https://doi.org/10.3389/fevo.2018.00107. 

Flint-Garcia, S.A., Thornsberry, J.M., and Buckler, E.S., 4th. (2003). Structure of linkage disequilibrium in plants. 
Annu. Rev. Plant Biol. 54 (1), 357–374 https://doi.org/10.1146/annurev.arplant.54.031902.134907. PubMed 

Garg, S., Martin, M., and Marschall, T. (2016). Read-based phasing of related individuals. Bioinformatics 32 (12), 
i234–i242 https://doi.org/10.1093/bioinformatics/btw276. PubMed 

Garin, V., Wimmer, V., Mezmouk, S., Malosetti, M., and van Eeuwijk, F. (2017). How do the type of QTL effect and the 
form of the residual term influence QTL detection in multi-parent populations? A case study in the maize EU-NAM 
population. Theor. Appl. Genet. 130 (8), 1753–1764 https://doi.org/10.1007/s00122-017-2923-3. PubMed 

Geldermann, H. (1975). Investigations on inheritance of quantitative characters in animals by gene markers I. 
Methods. Theor. Appl. Genet. 46 (7), 319–330 https://doi.org/10.1007/BF00281673. PubMed 

Gerard, D., Ferrão, L.F.V., Garcia, A.A.F., and Stephens, M. (2018). Genotyping polyploids from messy sequencing 
data. Genetics 210 (3), 789–807 https://doi.org/10.1534/genetics.118.301468. PubMed 

Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. 
Biol. Sci. 9 (4), 463–493 https://doi.org/10.1071/BI9560463. 

Hackett, C.A., Bradshaw, J.E., and Bryan, G.J. (2014). QTL mapping in autotetraploids using SNP dosage information. 
Theor. Appl. Genet. 127 (9), 1885–1904 https://doi.org/10.1007/s00122-014-2347-2. PubMed 
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